re PR libfortran/59513 (Fortran runtime error: Sequential READ or WRITE not allowed...
[official-gcc.git] / gcc / tree-ssa-phiopt.c
blob14a7122f9709d38d9476ad499cec83cf8621253f
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "flags.h"
38 #include "tm_p.h"
39 #include "predict.h"
40 #include "hard-reg-set.h"
41 #include "function.h"
42 #include "dominance.h"
43 #include "cfg.h"
44 #include "cfganal.h"
45 #include "basic-block.h"
46 #include "tree-ssa-alias.h"
47 #include "internal-fn.h"
48 #include "gimple-expr.h"
49 #include "is-a.h"
50 #include "gimple.h"
51 #include "gimplify.h"
52 #include "gimple-iterator.h"
53 #include "gimplify-me.h"
54 #include "gimple-ssa.h"
55 #include "tree-cfg.h"
56 #include "tree-phinodes.h"
57 #include "ssa-iterators.h"
58 #include "stringpool.h"
59 #include "tree-ssanames.h"
60 #include "hashtab.h"
61 #include "rtl.h"
62 #include "statistics.h"
63 #include "real.h"
64 #include "fixed-value.h"
65 #include "insn-config.h"
66 #include "expmed.h"
67 #include "dojump.h"
68 #include "explow.h"
69 #include "calls.h"
70 #include "emit-rtl.h"
71 #include "varasm.h"
72 #include "stmt.h"
73 #include "expr.h"
74 #include "tree-dfa.h"
75 #include "tree-pass.h"
76 #include "langhooks.h"
77 #include "domwalk.h"
78 #include "cfgloop.h"
79 #include "tree-data-ref.h"
80 #include "gimple-pretty-print.h"
81 #include "insn-codes.h"
82 #include "optabs.h"
83 #include "tree-scalar-evolution.h"
84 #include "tree-inline.h"
86 #ifndef HAVE_conditional_move
87 #define HAVE_conditional_move (0)
88 #endif
90 static unsigned int tree_ssa_phiopt_worker (bool, bool);
91 static bool conditional_replacement (basic_block, basic_block,
92 edge, edge, gphi *, tree, tree);
93 static int value_replacement (basic_block, basic_block,
94 edge, edge, gimple, tree, tree);
95 static bool minmax_replacement (basic_block, basic_block,
96 edge, edge, gimple, tree, tree);
97 static bool abs_replacement (basic_block, basic_block,
98 edge, edge, gimple, tree, tree);
99 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
100 hash_set<tree> *);
101 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
102 static hash_set<tree> * get_non_trapping ();
103 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
104 static void hoist_adjacent_loads (basic_block, basic_block,
105 basic_block, basic_block);
106 static bool gate_hoist_loads (void);
108 /* This pass tries to transform conditional stores into unconditional
109 ones, enabling further simplifications with the simpler then and else
110 blocks. In particular it replaces this:
112 bb0:
113 if (cond) goto bb2; else goto bb1;
114 bb1:
115 *p = RHS;
116 bb2:
118 with
120 bb0:
121 if (cond) goto bb1; else goto bb2;
122 bb1:
123 condtmp' = *p;
124 bb2:
125 condtmp = PHI <RHS, condtmp'>
126 *p = condtmp;
128 This transformation can only be done under several constraints,
129 documented below. It also replaces:
131 bb0:
132 if (cond) goto bb2; else goto bb1;
133 bb1:
134 *p = RHS1;
135 goto bb3;
136 bb2:
137 *p = RHS2;
138 bb3:
140 with
142 bb0:
143 if (cond) goto bb3; else goto bb1;
144 bb1:
145 bb3:
146 condtmp = PHI <RHS1, RHS2>
147 *p = condtmp; */
149 static unsigned int
150 tree_ssa_cs_elim (void)
152 unsigned todo;
153 /* ??? We are not interested in loop related info, but the following
154 will create it, ICEing as we didn't init loops with pre-headers.
155 An interfacing issue of find_data_references_in_bb. */
156 loop_optimizer_init (LOOPS_NORMAL);
157 scev_initialize ();
158 todo = tree_ssa_phiopt_worker (true, false);
159 scev_finalize ();
160 loop_optimizer_finalize ();
161 return todo;
164 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
166 static gphi *
167 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
169 gimple_stmt_iterator i;
170 gphi *phi = NULL;
171 if (gimple_seq_singleton_p (seq))
172 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
173 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
175 gphi *p = as_a <gphi *> (gsi_stmt (i));
176 /* If the PHI arguments are equal then we can skip this PHI. */
177 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
178 gimple_phi_arg_def (p, e1->dest_idx)))
179 continue;
181 /* If we already have a PHI that has the two edge arguments are
182 different, then return it is not a singleton for these PHIs. */
183 if (phi)
184 return NULL;
186 phi = p;
188 return phi;
191 /* The core routine of conditional store replacement and normal
192 phi optimizations. Both share much of the infrastructure in how
193 to match applicable basic block patterns. DO_STORE_ELIM is true
194 when we want to do conditional store replacement, false otherwise.
195 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
196 of diamond control flow patterns, false otherwise. */
197 static unsigned int
198 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
200 basic_block bb;
201 basic_block *bb_order;
202 unsigned n, i;
203 bool cfgchanged = false;
204 hash_set<tree> *nontrap = 0;
206 if (do_store_elim)
207 /* Calculate the set of non-trapping memory accesses. */
208 nontrap = get_non_trapping ();
210 /* Search every basic block for COND_EXPR we may be able to optimize.
212 We walk the blocks in order that guarantees that a block with
213 a single predecessor is processed before the predecessor.
214 This ensures that we collapse inner ifs before visiting the
215 outer ones, and also that we do not try to visit a removed
216 block. */
217 bb_order = single_pred_before_succ_order ();
218 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
220 for (i = 0; i < n; i++)
222 gimple cond_stmt;
223 gphi *phi;
224 basic_block bb1, bb2;
225 edge e1, e2;
226 tree arg0, arg1;
228 bb = bb_order[i];
230 cond_stmt = last_stmt (bb);
231 /* Check to see if the last statement is a GIMPLE_COND. */
232 if (!cond_stmt
233 || gimple_code (cond_stmt) != GIMPLE_COND)
234 continue;
236 e1 = EDGE_SUCC (bb, 0);
237 bb1 = e1->dest;
238 e2 = EDGE_SUCC (bb, 1);
239 bb2 = e2->dest;
241 /* We cannot do the optimization on abnormal edges. */
242 if ((e1->flags & EDGE_ABNORMAL) != 0
243 || (e2->flags & EDGE_ABNORMAL) != 0)
244 continue;
246 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
247 if (EDGE_COUNT (bb1->succs) == 0
248 || bb2 == NULL
249 || EDGE_COUNT (bb2->succs) == 0)
250 continue;
252 /* Find the bb which is the fall through to the other. */
253 if (EDGE_SUCC (bb1, 0)->dest == bb2)
255 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
257 basic_block bb_tmp = bb1;
258 edge e_tmp = e1;
259 bb1 = bb2;
260 bb2 = bb_tmp;
261 e1 = e2;
262 e2 = e_tmp;
264 else if (do_store_elim
265 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
267 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
269 if (!single_succ_p (bb1)
270 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
271 || !single_succ_p (bb2)
272 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
273 || EDGE_COUNT (bb3->preds) != 2)
274 continue;
275 if (cond_if_else_store_replacement (bb1, bb2, bb3))
276 cfgchanged = true;
277 continue;
279 else if (do_hoist_loads
280 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
282 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
284 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
285 && single_succ_p (bb1)
286 && single_succ_p (bb2)
287 && single_pred_p (bb1)
288 && single_pred_p (bb2)
289 && EDGE_COUNT (bb->succs) == 2
290 && EDGE_COUNT (bb3->preds) == 2
291 /* If one edge or the other is dominant, a conditional move
292 is likely to perform worse than the well-predicted branch. */
293 && !predictable_edge_p (EDGE_SUCC (bb, 0))
294 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
295 hoist_adjacent_loads (bb, bb1, bb2, bb3);
296 continue;
298 else
299 continue;
301 e1 = EDGE_SUCC (bb1, 0);
303 /* Make sure that bb1 is just a fall through. */
304 if (!single_succ_p (bb1)
305 || (e1->flags & EDGE_FALLTHRU) == 0)
306 continue;
308 /* Also make sure that bb1 only have one predecessor and that it
309 is bb. */
310 if (!single_pred_p (bb1)
311 || single_pred (bb1) != bb)
312 continue;
314 if (do_store_elim)
316 /* bb1 is the middle block, bb2 the join block, bb the split block,
317 e1 the fallthrough edge from bb1 to bb2. We can't do the
318 optimization if the join block has more than two predecessors. */
319 if (EDGE_COUNT (bb2->preds) > 2)
320 continue;
321 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
322 cfgchanged = true;
324 else
326 gimple_seq phis = phi_nodes (bb2);
327 gimple_stmt_iterator gsi;
328 bool candorest = true;
330 /* Value replacement can work with more than one PHI
331 so try that first. */
332 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
334 phi = as_a <gphi *> (gsi_stmt (gsi));
335 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
336 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
337 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
339 candorest = false;
340 cfgchanged = true;
341 break;
345 if (!candorest)
346 continue;
348 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
349 if (!phi)
350 continue;
352 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
353 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
355 /* Something is wrong if we cannot find the arguments in the PHI
356 node. */
357 gcc_assert (arg0 != NULL && arg1 != NULL);
359 /* Do the replacement of conditional if it can be done. */
360 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
361 cfgchanged = true;
362 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
363 cfgchanged = true;
364 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
365 cfgchanged = true;
369 free (bb_order);
371 if (do_store_elim)
372 delete nontrap;
373 /* If the CFG has changed, we should cleanup the CFG. */
374 if (cfgchanged && do_store_elim)
376 /* In cond-store replacement we have added some loads on edges
377 and new VOPS (as we moved the store, and created a load). */
378 gsi_commit_edge_inserts ();
379 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
381 else if (cfgchanged)
382 return TODO_cleanup_cfg;
383 return 0;
386 /* Replace PHI node element whose edge is E in block BB with variable NEW.
387 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
388 is known to have two edges, one of which must reach BB). */
390 static void
391 replace_phi_edge_with_variable (basic_block cond_block,
392 edge e, gimple phi, tree new_tree)
394 basic_block bb = gimple_bb (phi);
395 basic_block block_to_remove;
396 gimple_stmt_iterator gsi;
398 /* Change the PHI argument to new. */
399 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
401 /* Remove the empty basic block. */
402 if (EDGE_SUCC (cond_block, 0)->dest == bb)
404 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
405 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
406 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
407 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
409 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
411 else
413 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
414 EDGE_SUCC (cond_block, 1)->flags
415 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
416 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
417 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
419 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
421 delete_basic_block (block_to_remove);
423 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
424 gsi = gsi_last_bb (cond_block);
425 gsi_remove (&gsi, true);
427 if (dump_file && (dump_flags & TDF_DETAILS))
428 fprintf (dump_file,
429 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
430 cond_block->index,
431 bb->index);
434 /* The function conditional_replacement does the main work of doing the
435 conditional replacement. Return true if the replacement is done.
436 Otherwise return false.
437 BB is the basic block where the replacement is going to be done on. ARG0
438 is argument 0 from PHI. Likewise for ARG1. */
440 static bool
441 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
442 edge e0, edge e1, gphi *phi,
443 tree arg0, tree arg1)
445 tree result;
446 gimple stmt;
447 gassign *new_stmt;
448 tree cond;
449 gimple_stmt_iterator gsi;
450 edge true_edge, false_edge;
451 tree new_var, new_var2;
452 bool neg;
454 /* FIXME: Gimplification of complex type is too hard for now. */
455 /* We aren't prepared to handle vectors either (and it is a question
456 if it would be worthwhile anyway). */
457 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
458 || POINTER_TYPE_P (TREE_TYPE (arg0)))
459 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
460 || POINTER_TYPE_P (TREE_TYPE (arg1))))
461 return false;
463 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
464 convert it to the conditional. */
465 if ((integer_zerop (arg0) && integer_onep (arg1))
466 || (integer_zerop (arg1) && integer_onep (arg0)))
467 neg = false;
468 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
469 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
470 neg = true;
471 else
472 return false;
474 if (!empty_block_p (middle_bb))
475 return false;
477 /* At this point we know we have a GIMPLE_COND with two successors.
478 One successor is BB, the other successor is an empty block which
479 falls through into BB.
481 There is a single PHI node at the join point (BB) and its arguments
482 are constants (0, 1) or (0, -1).
484 So, given the condition COND, and the two PHI arguments, we can
485 rewrite this PHI into non-branching code:
487 dest = (COND) or dest = COND'
489 We use the condition as-is if the argument associated with the
490 true edge has the value one or the argument associated with the
491 false edge as the value zero. Note that those conditions are not
492 the same since only one of the outgoing edges from the GIMPLE_COND
493 will directly reach BB and thus be associated with an argument. */
495 stmt = last_stmt (cond_bb);
496 result = PHI_RESULT (phi);
498 /* To handle special cases like floating point comparison, it is easier and
499 less error-prone to build a tree and gimplify it on the fly though it is
500 less efficient. */
501 cond = fold_build2_loc (gimple_location (stmt),
502 gimple_cond_code (stmt), boolean_type_node,
503 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
505 /* We need to know which is the true edge and which is the false
506 edge so that we know when to invert the condition below. */
507 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
508 if ((e0 == true_edge && integer_zerop (arg0))
509 || (e0 == false_edge && !integer_zerop (arg0))
510 || (e1 == true_edge && integer_zerop (arg1))
511 || (e1 == false_edge && !integer_zerop (arg1)))
512 cond = fold_build1_loc (gimple_location (stmt),
513 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
515 if (neg)
517 cond = fold_convert_loc (gimple_location (stmt),
518 TREE_TYPE (result), cond);
519 cond = fold_build1_loc (gimple_location (stmt),
520 NEGATE_EXPR, TREE_TYPE (cond), cond);
523 /* Insert our new statements at the end of conditional block before the
524 COND_STMT. */
525 gsi = gsi_for_stmt (stmt);
526 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
527 GSI_SAME_STMT);
529 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
531 source_location locus_0, locus_1;
533 new_var2 = make_ssa_name (TREE_TYPE (result));
534 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
535 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
536 new_var = new_var2;
538 /* Set the locus to the first argument, unless is doesn't have one. */
539 locus_0 = gimple_phi_arg_location (phi, 0);
540 locus_1 = gimple_phi_arg_location (phi, 1);
541 if (locus_0 == UNKNOWN_LOCATION)
542 locus_0 = locus_1;
543 gimple_set_location (new_stmt, locus_0);
546 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
548 /* Note that we optimized this PHI. */
549 return true;
552 /* Update *ARG which is defined in STMT so that it contains the
553 computed value if that seems profitable. Return true if the
554 statement is made dead by that rewriting. */
556 static bool
557 jump_function_from_stmt (tree *arg, gimple stmt)
559 enum tree_code code = gimple_assign_rhs_code (stmt);
560 if (code == ADDR_EXPR)
562 /* For arg = &p->i transform it to p, if possible. */
563 tree rhs1 = gimple_assign_rhs1 (stmt);
564 HOST_WIDE_INT offset;
565 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
566 &offset);
567 if (tem
568 && TREE_CODE (tem) == MEM_REF
569 && (mem_ref_offset (tem) + offset) == 0)
571 *arg = TREE_OPERAND (tem, 0);
572 return true;
575 /* TODO: Much like IPA-CP jump-functions we want to handle constant
576 additions symbolically here, and we'd need to update the comparison
577 code that compares the arg + cst tuples in our caller. For now the
578 code above exactly handles the VEC_BASE pattern from vec.h. */
579 return false;
582 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
583 of the form SSA_NAME NE 0.
585 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
586 the two input values of the EQ_EXPR match arg0 and arg1.
588 If so update *code and return TRUE. Otherwise return FALSE. */
590 static bool
591 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
592 enum tree_code *code, const_tree rhs)
594 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
595 statement. */
596 if (TREE_CODE (rhs) == SSA_NAME)
598 gimple def1 = SSA_NAME_DEF_STMT (rhs);
600 /* Verify the defining statement has an EQ_EXPR on the RHS. */
601 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
603 /* Finally verify the source operands of the EQ_EXPR are equal
604 to arg0 and arg1. */
605 tree op0 = gimple_assign_rhs1 (def1);
606 tree op1 = gimple_assign_rhs2 (def1);
607 if ((operand_equal_for_phi_arg_p (arg0, op0)
608 && operand_equal_for_phi_arg_p (arg1, op1))
609 || (operand_equal_for_phi_arg_p (arg0, op1)
610 && operand_equal_for_phi_arg_p (arg1, op0)))
612 /* We will perform the optimization. */
613 *code = gimple_assign_rhs_code (def1);
614 return true;
618 return false;
621 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
623 Also return TRUE if arg0/arg1 are equal to the source arguments of a
624 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
626 Return FALSE otherwise. */
628 static bool
629 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
630 enum tree_code *code, gimple cond)
632 gimple def;
633 tree lhs = gimple_cond_lhs (cond);
634 tree rhs = gimple_cond_rhs (cond);
636 if ((operand_equal_for_phi_arg_p (arg0, lhs)
637 && operand_equal_for_phi_arg_p (arg1, rhs))
638 || (operand_equal_for_phi_arg_p (arg1, lhs)
639 && operand_equal_for_phi_arg_p (arg0, rhs)))
640 return true;
642 /* Now handle more complex case where we have an EQ comparison
643 which feeds a BIT_AND_EXPR which feeds COND.
645 First verify that COND is of the form SSA_NAME NE 0. */
646 if (*code != NE_EXPR || !integer_zerop (rhs)
647 || TREE_CODE (lhs) != SSA_NAME)
648 return false;
650 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
651 def = SSA_NAME_DEF_STMT (lhs);
652 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
653 return false;
655 /* Now verify arg0/arg1 correspond to the source arguments of an
656 EQ comparison feeding the BIT_AND_EXPR. */
658 tree tmp = gimple_assign_rhs1 (def);
659 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
660 return true;
662 tmp = gimple_assign_rhs2 (def);
663 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
664 return true;
666 return false;
669 /* Returns true if ARG is a neutral element for operation CODE
670 on the RIGHT side. */
672 static bool
673 neutral_element_p (tree_code code, tree arg, bool right)
675 switch (code)
677 case PLUS_EXPR:
678 case BIT_IOR_EXPR:
679 case BIT_XOR_EXPR:
680 return integer_zerop (arg);
682 case LROTATE_EXPR:
683 case RROTATE_EXPR:
684 case LSHIFT_EXPR:
685 case RSHIFT_EXPR:
686 case MINUS_EXPR:
687 case POINTER_PLUS_EXPR:
688 return right && integer_zerop (arg);
690 case MULT_EXPR:
691 return integer_onep (arg);
693 case TRUNC_DIV_EXPR:
694 case CEIL_DIV_EXPR:
695 case FLOOR_DIV_EXPR:
696 case ROUND_DIV_EXPR:
697 case EXACT_DIV_EXPR:
698 return right && integer_onep (arg);
700 case BIT_AND_EXPR:
701 return integer_all_onesp (arg);
703 default:
704 return false;
708 /* Returns true if ARG is an absorbing element for operation CODE. */
710 static bool
711 absorbing_element_p (tree_code code, tree arg)
713 switch (code)
715 case BIT_IOR_EXPR:
716 return integer_all_onesp (arg);
718 case MULT_EXPR:
719 case BIT_AND_EXPR:
720 return integer_zerop (arg);
722 default:
723 return false;
727 /* The function value_replacement does the main work of doing the value
728 replacement. Return non-zero if the replacement is done. Otherwise return
729 0. If we remove the middle basic block, return 2.
730 BB is the basic block where the replacement is going to be done on. ARG0
731 is argument 0 from the PHI. Likewise for ARG1. */
733 static int
734 value_replacement (basic_block cond_bb, basic_block middle_bb,
735 edge e0, edge e1, gimple phi,
736 tree arg0, tree arg1)
738 gimple_stmt_iterator gsi;
739 gimple cond;
740 edge true_edge, false_edge;
741 enum tree_code code;
742 bool emtpy_or_with_defined_p = true;
744 /* If the type says honor signed zeros we cannot do this
745 optimization. */
746 if (HONOR_SIGNED_ZEROS (arg1))
747 return 0;
749 /* If there is a statement in MIDDLE_BB that defines one of the PHI
750 arguments, then adjust arg0 or arg1. */
751 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
752 while (!gsi_end_p (gsi))
754 gimple stmt = gsi_stmt (gsi);
755 tree lhs;
756 gsi_next_nondebug (&gsi);
757 if (!is_gimple_assign (stmt))
759 emtpy_or_with_defined_p = false;
760 continue;
762 /* Now try to adjust arg0 or arg1 according to the computation
763 in the statement. */
764 lhs = gimple_assign_lhs (stmt);
765 if (!(lhs == arg0
766 && jump_function_from_stmt (&arg0, stmt))
767 || (lhs == arg1
768 && jump_function_from_stmt (&arg1, stmt)))
769 emtpy_or_with_defined_p = false;
772 cond = last_stmt (cond_bb);
773 code = gimple_cond_code (cond);
775 /* This transformation is only valid for equality comparisons. */
776 if (code != NE_EXPR && code != EQ_EXPR)
777 return 0;
779 /* We need to know which is the true edge and which is the false
780 edge so that we know if have abs or negative abs. */
781 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
783 /* At this point we know we have a COND_EXPR with two successors.
784 One successor is BB, the other successor is an empty block which
785 falls through into BB.
787 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
789 There is a single PHI node at the join point (BB) with two arguments.
791 We now need to verify that the two arguments in the PHI node match
792 the two arguments to the equality comparison. */
794 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
796 edge e;
797 tree arg;
799 /* For NE_EXPR, we want to build an assignment result = arg where
800 arg is the PHI argument associated with the true edge. For
801 EQ_EXPR we want the PHI argument associated with the false edge. */
802 e = (code == NE_EXPR ? true_edge : false_edge);
804 /* Unfortunately, E may not reach BB (it may instead have gone to
805 OTHER_BLOCK). If that is the case, then we want the single outgoing
806 edge from OTHER_BLOCK which reaches BB and represents the desired
807 path from COND_BLOCK. */
808 if (e->dest == middle_bb)
809 e = single_succ_edge (e->dest);
811 /* Now we know the incoming edge to BB that has the argument for the
812 RHS of our new assignment statement. */
813 if (e0 == e)
814 arg = arg0;
815 else
816 arg = arg1;
818 /* If the middle basic block was empty or is defining the
819 PHI arguments and this is a single phi where the args are different
820 for the edges e0 and e1 then we can remove the middle basic block. */
821 if (emtpy_or_with_defined_p
822 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
823 e0, e1) == phi)
825 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
826 /* Note that we optimized this PHI. */
827 return 2;
829 else
831 /* Replace the PHI arguments with arg. */
832 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
833 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
834 if (dump_file && (dump_flags & TDF_DETAILS))
836 fprintf (dump_file, "PHI ");
837 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
838 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
839 cond_bb->index);
840 print_generic_expr (dump_file, arg, 0);
841 fprintf (dump_file, ".\n");
843 return 1;
848 /* Now optimize (x != 0) ? x + y : y to just y.
849 The following condition is too restrictive, there can easily be another
850 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
851 gimple assign = last_and_only_stmt (middle_bb);
852 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
853 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
854 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
855 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
856 return 0;
858 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
859 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
860 return 0;
862 /* Only transform if it removes the condition. */
863 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
864 return 0;
866 /* Size-wise, this is always profitable. */
867 if (optimize_bb_for_speed_p (cond_bb)
868 /* The special case is useless if it has a low probability. */
869 && profile_status_for_fn (cfun) != PROFILE_ABSENT
870 && EDGE_PRED (middle_bb, 0)->probability < PROB_EVEN
871 /* If assign is cheap, there is no point avoiding it. */
872 && estimate_num_insns (assign, &eni_time_weights)
873 >= 3 * estimate_num_insns (cond, &eni_time_weights))
874 return 0;
876 tree lhs = gimple_assign_lhs (assign);
877 tree rhs1 = gimple_assign_rhs1 (assign);
878 tree rhs2 = gimple_assign_rhs2 (assign);
879 enum tree_code code_def = gimple_assign_rhs_code (assign);
880 tree cond_lhs = gimple_cond_lhs (cond);
881 tree cond_rhs = gimple_cond_rhs (cond);
883 if (((code == NE_EXPR && e1 == false_edge)
884 || (code == EQ_EXPR && e1 == true_edge))
885 && arg0 == lhs
886 && ((arg1 == rhs1
887 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
888 && neutral_element_p (code_def, cond_rhs, true))
889 || (arg1 == rhs2
890 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
891 && neutral_element_p (code_def, cond_rhs, false))
892 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
893 && (operand_equal_for_phi_arg_p (rhs2, cond_lhs)
894 || operand_equal_for_phi_arg_p (rhs1, cond_lhs))
895 && absorbing_element_p (code_def, cond_rhs))))
897 gsi = gsi_for_stmt (cond);
898 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
900 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
901 def-stmt in:
902 if (n_5 != 0)
903 goto <bb 3>;
904 else
905 goto <bb 4>;
907 <bb 3>:
908 # RANGE [0, 4294967294]
909 u_6 = n_5 + 4294967295;
911 <bb 4>:
912 # u_3 = PHI <u_6(3), 4294967295(2)> */
913 SSA_NAME_RANGE_INFO (lhs) = NULL;
914 SSA_NAME_ANTI_RANGE_P (lhs) = 0;
915 /* If available, we can use VR of phi result at least. */
916 tree phires = gimple_phi_result (phi);
917 struct range_info_def *phires_range_info
918 = SSA_NAME_RANGE_INFO (phires);
919 if (phires_range_info)
920 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
921 phires_range_info);
923 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
924 gsi_move_before (&gsi_from, &gsi);
925 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
926 return 2;
929 return 0;
932 /* The function minmax_replacement does the main work of doing the minmax
933 replacement. Return true if the replacement is done. Otherwise return
934 false.
935 BB is the basic block where the replacement is going to be done on. ARG0
936 is argument 0 from the PHI. Likewise for ARG1. */
938 static bool
939 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
940 edge e0, edge e1, gimple phi,
941 tree arg0, tree arg1)
943 tree result, type;
944 gcond *cond;
945 gassign *new_stmt;
946 edge true_edge, false_edge;
947 enum tree_code cmp, minmax, ass_code;
948 tree smaller, larger, arg_true, arg_false;
949 gimple_stmt_iterator gsi, gsi_from;
951 type = TREE_TYPE (PHI_RESULT (phi));
953 /* The optimization may be unsafe due to NaNs. */
954 if (HONOR_NANS (type))
955 return false;
957 cond = as_a <gcond *> (last_stmt (cond_bb));
958 cmp = gimple_cond_code (cond);
960 /* This transformation is only valid for order comparisons. Record which
961 operand is smaller/larger if the result of the comparison is true. */
962 if (cmp == LT_EXPR || cmp == LE_EXPR)
964 smaller = gimple_cond_lhs (cond);
965 larger = gimple_cond_rhs (cond);
967 else if (cmp == GT_EXPR || cmp == GE_EXPR)
969 smaller = gimple_cond_rhs (cond);
970 larger = gimple_cond_lhs (cond);
972 else
973 return false;
975 /* We need to know which is the true edge and which is the false
976 edge so that we know if have abs or negative abs. */
977 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
979 /* Forward the edges over the middle basic block. */
980 if (true_edge->dest == middle_bb)
981 true_edge = EDGE_SUCC (true_edge->dest, 0);
982 if (false_edge->dest == middle_bb)
983 false_edge = EDGE_SUCC (false_edge->dest, 0);
985 if (true_edge == e0)
987 gcc_assert (false_edge == e1);
988 arg_true = arg0;
989 arg_false = arg1;
991 else
993 gcc_assert (false_edge == e0);
994 gcc_assert (true_edge == e1);
995 arg_true = arg1;
996 arg_false = arg0;
999 if (empty_block_p (middle_bb))
1001 if (operand_equal_for_phi_arg_p (arg_true, smaller)
1002 && operand_equal_for_phi_arg_p (arg_false, larger))
1004 /* Case
1006 if (smaller < larger)
1007 rslt = smaller;
1008 else
1009 rslt = larger; */
1010 minmax = MIN_EXPR;
1012 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1013 && operand_equal_for_phi_arg_p (arg_true, larger))
1014 minmax = MAX_EXPR;
1015 else
1016 return false;
1018 else
1020 /* Recognize the following case, assuming d <= u:
1022 if (a <= u)
1023 b = MAX (a, d);
1024 x = PHI <b, u>
1026 This is equivalent to
1028 b = MAX (a, d);
1029 x = MIN (b, u); */
1031 gimple assign = last_and_only_stmt (middle_bb);
1032 tree lhs, op0, op1, bound;
1034 if (!assign
1035 || gimple_code (assign) != GIMPLE_ASSIGN)
1036 return false;
1038 lhs = gimple_assign_lhs (assign);
1039 ass_code = gimple_assign_rhs_code (assign);
1040 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1041 return false;
1042 op0 = gimple_assign_rhs1 (assign);
1043 op1 = gimple_assign_rhs2 (assign);
1045 if (true_edge->src == middle_bb)
1047 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1048 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1049 return false;
1051 if (operand_equal_for_phi_arg_p (arg_false, larger))
1053 /* Case
1055 if (smaller < larger)
1057 r' = MAX_EXPR (smaller, bound)
1059 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1060 if (ass_code != MAX_EXPR)
1061 return false;
1063 minmax = MIN_EXPR;
1064 if (operand_equal_for_phi_arg_p (op0, smaller))
1065 bound = op1;
1066 else if (operand_equal_for_phi_arg_p (op1, smaller))
1067 bound = op0;
1068 else
1069 return false;
1071 /* We need BOUND <= LARGER. */
1072 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1073 bound, larger)))
1074 return false;
1076 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1078 /* Case
1080 if (smaller < larger)
1082 r' = MIN_EXPR (larger, bound)
1084 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1085 if (ass_code != MIN_EXPR)
1086 return false;
1088 minmax = MAX_EXPR;
1089 if (operand_equal_for_phi_arg_p (op0, larger))
1090 bound = op1;
1091 else if (operand_equal_for_phi_arg_p (op1, larger))
1092 bound = op0;
1093 else
1094 return false;
1096 /* We need BOUND >= SMALLER. */
1097 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1098 bound, smaller)))
1099 return false;
1101 else
1102 return false;
1104 else
1106 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1107 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1108 return false;
1110 if (operand_equal_for_phi_arg_p (arg_true, larger))
1112 /* Case
1114 if (smaller > larger)
1116 r' = MIN_EXPR (smaller, bound)
1118 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1119 if (ass_code != MIN_EXPR)
1120 return false;
1122 minmax = MAX_EXPR;
1123 if (operand_equal_for_phi_arg_p (op0, smaller))
1124 bound = op1;
1125 else if (operand_equal_for_phi_arg_p (op1, smaller))
1126 bound = op0;
1127 else
1128 return false;
1130 /* We need BOUND >= LARGER. */
1131 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1132 bound, larger)))
1133 return false;
1135 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1137 /* Case
1139 if (smaller > larger)
1141 r' = MAX_EXPR (larger, bound)
1143 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1144 if (ass_code != MAX_EXPR)
1145 return false;
1147 minmax = MIN_EXPR;
1148 if (operand_equal_for_phi_arg_p (op0, larger))
1149 bound = op1;
1150 else if (operand_equal_for_phi_arg_p (op1, larger))
1151 bound = op0;
1152 else
1153 return false;
1155 /* We need BOUND <= SMALLER. */
1156 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1157 bound, smaller)))
1158 return false;
1160 else
1161 return false;
1164 /* Move the statement from the middle block. */
1165 gsi = gsi_last_bb (cond_bb);
1166 gsi_from = gsi_last_nondebug_bb (middle_bb);
1167 gsi_move_before (&gsi_from, &gsi);
1170 /* Emit the statement to compute min/max. */
1171 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1172 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1173 gsi = gsi_last_bb (cond_bb);
1174 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1176 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1177 return true;
1180 /* The function absolute_replacement does the main work of doing the absolute
1181 replacement. Return true if the replacement is done. Otherwise return
1182 false.
1183 bb is the basic block where the replacement is going to be done on. arg0
1184 is argument 0 from the phi. Likewise for arg1. */
1186 static bool
1187 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1188 edge e0 ATTRIBUTE_UNUSED, edge e1,
1189 gimple phi, tree arg0, tree arg1)
1191 tree result;
1192 gassign *new_stmt;
1193 gimple cond;
1194 gimple_stmt_iterator gsi;
1195 edge true_edge, false_edge;
1196 gimple assign;
1197 edge e;
1198 tree rhs, lhs;
1199 bool negate;
1200 enum tree_code cond_code;
1202 /* If the type says honor signed zeros we cannot do this
1203 optimization. */
1204 if (HONOR_SIGNED_ZEROS (arg1))
1205 return false;
1207 /* OTHER_BLOCK must have only one executable statement which must have the
1208 form arg0 = -arg1 or arg1 = -arg0. */
1210 assign = last_and_only_stmt (middle_bb);
1211 /* If we did not find the proper negation assignment, then we can not
1212 optimize. */
1213 if (assign == NULL)
1214 return false;
1216 /* If we got here, then we have found the only executable statement
1217 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1218 arg1 = -arg0, then we can not optimize. */
1219 if (gimple_code (assign) != GIMPLE_ASSIGN)
1220 return false;
1222 lhs = gimple_assign_lhs (assign);
1224 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1225 return false;
1227 rhs = gimple_assign_rhs1 (assign);
1229 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1230 if (!(lhs == arg0 && rhs == arg1)
1231 && !(lhs == arg1 && rhs == arg0))
1232 return false;
1234 cond = last_stmt (cond_bb);
1235 result = PHI_RESULT (phi);
1237 /* Only relationals comparing arg[01] against zero are interesting. */
1238 cond_code = gimple_cond_code (cond);
1239 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1240 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1241 return false;
1243 /* Make sure the conditional is arg[01] OP y. */
1244 if (gimple_cond_lhs (cond) != rhs)
1245 return false;
1247 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1248 ? real_zerop (gimple_cond_rhs (cond))
1249 : integer_zerop (gimple_cond_rhs (cond)))
1251 else
1252 return false;
1254 /* We need to know which is the true edge and which is the false
1255 edge so that we know if have abs or negative abs. */
1256 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1258 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1259 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1260 the false edge goes to OTHER_BLOCK. */
1261 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1262 e = true_edge;
1263 else
1264 e = false_edge;
1266 if (e->dest == middle_bb)
1267 negate = true;
1268 else
1269 negate = false;
1271 result = duplicate_ssa_name (result, NULL);
1273 if (negate)
1274 lhs = make_ssa_name (TREE_TYPE (result));
1275 else
1276 lhs = result;
1278 /* Build the modify expression with abs expression. */
1279 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1281 gsi = gsi_last_bb (cond_bb);
1282 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1284 if (negate)
1286 /* Get the right GSI. We want to insert after the recently
1287 added ABS_EXPR statement (which we know is the first statement
1288 in the block. */
1289 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1291 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1294 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1296 /* Note that we optimized this PHI. */
1297 return true;
1300 /* Auxiliary functions to determine the set of memory accesses which
1301 can't trap because they are preceded by accesses to the same memory
1302 portion. We do that for MEM_REFs, so we only need to track
1303 the SSA_NAME of the pointer indirectly referenced. The algorithm
1304 simply is a walk over all instructions in dominator order. When
1305 we see an MEM_REF we determine if we've already seen a same
1306 ref anywhere up to the root of the dominator tree. If we do the
1307 current access can't trap. If we don't see any dominating access
1308 the current access might trap, but might also make later accesses
1309 non-trapping, so we remember it. We need to be careful with loads
1310 or stores, for instance a load might not trap, while a store would,
1311 so if we see a dominating read access this doesn't mean that a later
1312 write access would not trap. Hence we also need to differentiate the
1313 type of access(es) seen.
1315 ??? We currently are very conservative and assume that a load might
1316 trap even if a store doesn't (write-only memory). This probably is
1317 overly conservative. */
1319 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1320 through it was seen, which would constitute a no-trap region for
1321 same accesses. */
1322 struct name_to_bb
1324 unsigned int ssa_name_ver;
1325 unsigned int phase;
1326 bool store;
1327 HOST_WIDE_INT offset, size;
1328 basic_block bb;
1331 /* Hashtable helpers. */
1333 struct ssa_names_hasher : typed_free_remove <name_to_bb>
1335 typedef name_to_bb value_type;
1336 typedef name_to_bb compare_type;
1337 static inline hashval_t hash (const value_type *);
1338 static inline bool equal (const value_type *, const compare_type *);
1341 /* Used for quick clearing of the hash-table when we see calls.
1342 Hash entries with phase < nt_call_phase are invalid. */
1343 static unsigned int nt_call_phase;
1345 /* The hash function. */
1347 inline hashval_t
1348 ssa_names_hasher::hash (const value_type *n)
1350 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1351 ^ (n->offset << 6) ^ (n->size << 3);
1354 /* The equality function of *P1 and *P2. */
1356 inline bool
1357 ssa_names_hasher::equal (const value_type *n1, const compare_type *n2)
1359 return n1->ssa_name_ver == n2->ssa_name_ver
1360 && n1->store == n2->store
1361 && n1->offset == n2->offset
1362 && n1->size == n2->size;
1365 class nontrapping_dom_walker : public dom_walker
1367 public:
1368 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
1369 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1371 virtual void before_dom_children (basic_block);
1372 virtual void after_dom_children (basic_block);
1374 private:
1376 /* We see the expression EXP in basic block BB. If it's an interesting
1377 expression (an MEM_REF through an SSA_NAME) possibly insert the
1378 expression into the set NONTRAP or the hash table of seen expressions.
1379 STORE is true if this expression is on the LHS, otherwise it's on
1380 the RHS. */
1381 void add_or_mark_expr (basic_block, tree, bool);
1383 hash_set<tree> *m_nontrapping;
1385 /* The hash table for remembering what we've seen. */
1386 hash_table<ssa_names_hasher> m_seen_ssa_names;
1389 /* Called by walk_dominator_tree, when entering the block BB. */
1390 void
1391 nontrapping_dom_walker::before_dom_children (basic_block bb)
1393 edge e;
1394 edge_iterator ei;
1395 gimple_stmt_iterator gsi;
1397 /* If we haven't seen all our predecessors, clear the hash-table. */
1398 FOR_EACH_EDGE (e, ei, bb->preds)
1399 if ((((size_t)e->src->aux) & 2) == 0)
1401 nt_call_phase++;
1402 break;
1405 /* Mark this BB as being on the path to dominator root and as visited. */
1406 bb->aux = (void*)(1 | 2);
1408 /* And walk the statements in order. */
1409 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1411 gimple stmt = gsi_stmt (gsi);
1413 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1414 nt_call_phase++;
1415 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1417 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1418 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1423 /* Called by walk_dominator_tree, when basic block BB is exited. */
1424 void
1425 nontrapping_dom_walker::after_dom_children (basic_block bb)
1427 /* This BB isn't on the path to dominator root anymore. */
1428 bb->aux = (void*)2;
1431 /* We see the expression EXP in basic block BB. If it's an interesting
1432 expression (an MEM_REF through an SSA_NAME) possibly insert the
1433 expression into the set NONTRAP or the hash table of seen expressions.
1434 STORE is true if this expression is on the LHS, otherwise it's on
1435 the RHS. */
1436 void
1437 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
1439 HOST_WIDE_INT size;
1441 if (TREE_CODE (exp) == MEM_REF
1442 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1443 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
1444 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1446 tree name = TREE_OPERAND (exp, 0);
1447 struct name_to_bb map;
1448 name_to_bb **slot;
1449 struct name_to_bb *n2bb;
1450 basic_block found_bb = 0;
1452 /* Try to find the last seen MEM_REF through the same
1453 SSA_NAME, which can trap. */
1454 map.ssa_name_ver = SSA_NAME_VERSION (name);
1455 map.phase = 0;
1456 map.bb = 0;
1457 map.store = store;
1458 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
1459 map.size = size;
1461 slot = m_seen_ssa_names.find_slot (&map, INSERT);
1462 n2bb = *slot;
1463 if (n2bb && n2bb->phase >= nt_call_phase)
1464 found_bb = n2bb->bb;
1466 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1467 (it's in a basic block on the path from us to the dominator root)
1468 then we can't trap. */
1469 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1471 m_nontrapping->add (exp);
1473 else
1475 /* EXP might trap, so insert it into the hash table. */
1476 if (n2bb)
1478 n2bb->phase = nt_call_phase;
1479 n2bb->bb = bb;
1481 else
1483 n2bb = XNEW (struct name_to_bb);
1484 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1485 n2bb->phase = nt_call_phase;
1486 n2bb->bb = bb;
1487 n2bb->store = store;
1488 n2bb->offset = map.offset;
1489 n2bb->size = size;
1490 *slot = n2bb;
1496 /* This is the entry point of gathering non trapping memory accesses.
1497 It will do a dominator walk over the whole function, and it will
1498 make use of the bb->aux pointers. It returns a set of trees
1499 (the MEM_REFs itself) which can't trap. */
1500 static hash_set<tree> *
1501 get_non_trapping (void)
1503 nt_call_phase = 0;
1504 hash_set<tree> *nontrap = new hash_set<tree>;
1505 /* We're going to do a dominator walk, so ensure that we have
1506 dominance information. */
1507 calculate_dominance_info (CDI_DOMINATORS);
1509 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1510 .walk (cfun->cfg->x_entry_block_ptr);
1512 clear_aux_for_blocks ();
1513 return nontrap;
1516 /* Do the main work of conditional store replacement. We already know
1517 that the recognized pattern looks like so:
1519 split:
1520 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1521 MIDDLE_BB:
1522 something
1523 fallthrough (edge E0)
1524 JOIN_BB:
1525 some more
1527 We check that MIDDLE_BB contains only one store, that that store
1528 doesn't trap (not via NOTRAP, but via checking if an access to the same
1529 memory location dominates us) and that the store has a "simple" RHS. */
1531 static bool
1532 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1533 edge e0, edge e1, hash_set<tree> *nontrap)
1535 gimple assign = last_and_only_stmt (middle_bb);
1536 tree lhs, rhs, name, name2;
1537 gphi *newphi;
1538 gassign *new_stmt;
1539 gimple_stmt_iterator gsi;
1540 source_location locus;
1542 /* Check if middle_bb contains of only one store. */
1543 if (!assign
1544 || !gimple_assign_single_p (assign)
1545 || gimple_has_volatile_ops (assign))
1546 return false;
1548 locus = gimple_location (assign);
1549 lhs = gimple_assign_lhs (assign);
1550 rhs = gimple_assign_rhs1 (assign);
1551 if (TREE_CODE (lhs) != MEM_REF
1552 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1553 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1554 return false;
1556 /* Prove that we can move the store down. We could also check
1557 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1558 whose value is not available readily, which we want to avoid. */
1559 if (!nontrap->contains (lhs))
1560 return false;
1562 /* Now we've checked the constraints, so do the transformation:
1563 1) Remove the single store. */
1564 gsi = gsi_for_stmt (assign);
1565 unlink_stmt_vdef (assign);
1566 gsi_remove (&gsi, true);
1567 release_defs (assign);
1569 /* 2) Insert a load from the memory of the store to the temporary
1570 on the edge which did not contain the store. */
1571 lhs = unshare_expr (lhs);
1572 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1573 new_stmt = gimple_build_assign (name, lhs);
1574 gimple_set_location (new_stmt, locus);
1575 gsi_insert_on_edge (e1, new_stmt);
1577 /* 3) Create a PHI node at the join block, with one argument
1578 holding the old RHS, and the other holding the temporary
1579 where we stored the old memory contents. */
1580 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1581 newphi = create_phi_node (name2, join_bb);
1582 add_phi_arg (newphi, rhs, e0, locus);
1583 add_phi_arg (newphi, name, e1, locus);
1585 lhs = unshare_expr (lhs);
1586 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1588 /* 4) Insert that PHI node. */
1589 gsi = gsi_after_labels (join_bb);
1590 if (gsi_end_p (gsi))
1592 gsi = gsi_last_bb (join_bb);
1593 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1595 else
1596 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1598 return true;
1601 /* Do the main work of conditional store replacement. */
1603 static bool
1604 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1605 basic_block join_bb, gimple then_assign,
1606 gimple else_assign)
1608 tree lhs_base, lhs, then_rhs, else_rhs, name;
1609 source_location then_locus, else_locus;
1610 gimple_stmt_iterator gsi;
1611 gphi *newphi;
1612 gassign *new_stmt;
1614 if (then_assign == NULL
1615 || !gimple_assign_single_p (then_assign)
1616 || gimple_clobber_p (then_assign)
1617 || gimple_has_volatile_ops (then_assign)
1618 || else_assign == NULL
1619 || !gimple_assign_single_p (else_assign)
1620 || gimple_clobber_p (else_assign)
1621 || gimple_has_volatile_ops (else_assign))
1622 return false;
1624 lhs = gimple_assign_lhs (then_assign);
1625 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1626 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1627 return false;
1629 lhs_base = get_base_address (lhs);
1630 if (lhs_base == NULL_TREE
1631 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1632 return false;
1634 then_rhs = gimple_assign_rhs1 (then_assign);
1635 else_rhs = gimple_assign_rhs1 (else_assign);
1636 then_locus = gimple_location (then_assign);
1637 else_locus = gimple_location (else_assign);
1639 /* Now we've checked the constraints, so do the transformation:
1640 1) Remove the stores. */
1641 gsi = gsi_for_stmt (then_assign);
1642 unlink_stmt_vdef (then_assign);
1643 gsi_remove (&gsi, true);
1644 release_defs (then_assign);
1646 gsi = gsi_for_stmt (else_assign);
1647 unlink_stmt_vdef (else_assign);
1648 gsi_remove (&gsi, true);
1649 release_defs (else_assign);
1651 /* 2) Create a PHI node at the join block, with one argument
1652 holding the old RHS, and the other holding the temporary
1653 where we stored the old memory contents. */
1654 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1655 newphi = create_phi_node (name, join_bb);
1656 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1657 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1659 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1661 /* 3) Insert that PHI node. */
1662 gsi = gsi_after_labels (join_bb);
1663 if (gsi_end_p (gsi))
1665 gsi = gsi_last_bb (join_bb);
1666 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1668 else
1669 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1671 return true;
1674 /* Conditional store replacement. We already know
1675 that the recognized pattern looks like so:
1677 split:
1678 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1679 THEN_BB:
1681 X = Y;
1683 goto JOIN_BB;
1684 ELSE_BB:
1686 X = Z;
1688 fallthrough (edge E0)
1689 JOIN_BB:
1690 some more
1692 We check that it is safe to sink the store to JOIN_BB by verifying that
1693 there are no read-after-write or write-after-write dependencies in
1694 THEN_BB and ELSE_BB. */
1696 static bool
1697 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1698 basic_block join_bb)
1700 gimple then_assign = last_and_only_stmt (then_bb);
1701 gimple else_assign = last_and_only_stmt (else_bb);
1702 vec<data_reference_p> then_datarefs, else_datarefs;
1703 vec<ddr_p> then_ddrs, else_ddrs;
1704 gimple then_store, else_store;
1705 bool found, ok = false, res;
1706 struct data_dependence_relation *ddr;
1707 data_reference_p then_dr, else_dr;
1708 int i, j;
1709 tree then_lhs, else_lhs;
1710 basic_block blocks[3];
1712 if (MAX_STORES_TO_SINK == 0)
1713 return false;
1715 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1716 if (then_assign && else_assign)
1717 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1718 then_assign, else_assign);
1720 /* Find data references. */
1721 then_datarefs.create (1);
1722 else_datarefs.create (1);
1723 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1724 == chrec_dont_know)
1725 || !then_datarefs.length ()
1726 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1727 == chrec_dont_know)
1728 || !else_datarefs.length ())
1730 free_data_refs (then_datarefs);
1731 free_data_refs (else_datarefs);
1732 return false;
1735 /* Find pairs of stores with equal LHS. */
1736 auto_vec<gimple, 1> then_stores, else_stores;
1737 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1739 if (DR_IS_READ (then_dr))
1740 continue;
1742 then_store = DR_STMT (then_dr);
1743 then_lhs = gimple_get_lhs (then_store);
1744 if (then_lhs == NULL_TREE)
1745 continue;
1746 found = false;
1748 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1750 if (DR_IS_READ (else_dr))
1751 continue;
1753 else_store = DR_STMT (else_dr);
1754 else_lhs = gimple_get_lhs (else_store);
1755 if (else_lhs == NULL_TREE)
1756 continue;
1758 if (operand_equal_p (then_lhs, else_lhs, 0))
1760 found = true;
1761 break;
1765 if (!found)
1766 continue;
1768 then_stores.safe_push (then_store);
1769 else_stores.safe_push (else_store);
1772 /* No pairs of stores found. */
1773 if (!then_stores.length ()
1774 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1776 free_data_refs (then_datarefs);
1777 free_data_refs (else_datarefs);
1778 return false;
1781 /* Compute and check data dependencies in both basic blocks. */
1782 then_ddrs.create (1);
1783 else_ddrs.create (1);
1784 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1785 vNULL, false)
1786 || !compute_all_dependences (else_datarefs, &else_ddrs,
1787 vNULL, false))
1789 free_dependence_relations (then_ddrs);
1790 free_dependence_relations (else_ddrs);
1791 free_data_refs (then_datarefs);
1792 free_data_refs (else_datarefs);
1793 return false;
1795 blocks[0] = then_bb;
1796 blocks[1] = else_bb;
1797 blocks[2] = join_bb;
1798 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1800 /* Check that there are no read-after-write or write-after-write dependencies
1801 in THEN_BB. */
1802 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
1804 struct data_reference *dra = DDR_A (ddr);
1805 struct data_reference *drb = DDR_B (ddr);
1807 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1808 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1809 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1810 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1811 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1812 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1814 free_dependence_relations (then_ddrs);
1815 free_dependence_relations (else_ddrs);
1816 free_data_refs (then_datarefs);
1817 free_data_refs (else_datarefs);
1818 return false;
1822 /* Check that there are no read-after-write or write-after-write dependencies
1823 in ELSE_BB. */
1824 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
1826 struct data_reference *dra = DDR_A (ddr);
1827 struct data_reference *drb = DDR_B (ddr);
1829 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1830 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1831 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1832 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1833 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1834 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1836 free_dependence_relations (then_ddrs);
1837 free_dependence_relations (else_ddrs);
1838 free_data_refs (then_datarefs);
1839 free_data_refs (else_datarefs);
1840 return false;
1844 /* Sink stores with same LHS. */
1845 FOR_EACH_VEC_ELT (then_stores, i, then_store)
1847 else_store = else_stores[i];
1848 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1849 then_store, else_store);
1850 ok = ok || res;
1853 free_dependence_relations (then_ddrs);
1854 free_dependence_relations (else_ddrs);
1855 free_data_refs (then_datarefs);
1856 free_data_refs (else_datarefs);
1858 return ok;
1861 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1863 static bool
1864 local_mem_dependence (gimple stmt, basic_block bb)
1866 tree vuse = gimple_vuse (stmt);
1867 gimple def;
1869 if (!vuse)
1870 return false;
1872 def = SSA_NAME_DEF_STMT (vuse);
1873 return (def && gimple_bb (def) == bb);
1876 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1877 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1878 and BB3 rejoins control flow following BB1 and BB2, look for
1879 opportunities to hoist loads as follows. If BB3 contains a PHI of
1880 two loads, one each occurring in BB1 and BB2, and the loads are
1881 provably of adjacent fields in the same structure, then move both
1882 loads into BB0. Of course this can only be done if there are no
1883 dependencies preventing such motion.
1885 One of the hoisted loads will always be speculative, so the
1886 transformation is currently conservative:
1888 - The fields must be strictly adjacent.
1889 - The two fields must occupy a single memory block that is
1890 guaranteed to not cross a page boundary.
1892 The last is difficult to prove, as such memory blocks should be
1893 aligned on the minimum of the stack alignment boundary and the
1894 alignment guaranteed by heap allocation interfaces. Thus we rely
1895 on a parameter for the alignment value.
1897 Provided a good value is used for the last case, the first
1898 restriction could possibly be relaxed. */
1900 static void
1901 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1902 basic_block bb2, basic_block bb3)
1904 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1905 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1906 gphi_iterator gsi;
1908 /* Walk the phis in bb3 looking for an opportunity. We are looking
1909 for phis of two SSA names, one each of which is defined in bb1 and
1910 bb2. */
1911 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1913 gphi *phi_stmt = gsi.phi ();
1914 gimple def1, def2, defswap;
1915 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
1916 tree tree_offset1, tree_offset2, tree_size2, next;
1917 int offset1, offset2, size2;
1918 unsigned align1;
1919 gimple_stmt_iterator gsi2;
1920 basic_block bb_for_def1, bb_for_def2;
1922 if (gimple_phi_num_args (phi_stmt) != 2
1923 || virtual_operand_p (gimple_phi_result (phi_stmt)))
1924 continue;
1926 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1927 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1929 if (TREE_CODE (arg1) != SSA_NAME
1930 || TREE_CODE (arg2) != SSA_NAME
1931 || SSA_NAME_IS_DEFAULT_DEF (arg1)
1932 || SSA_NAME_IS_DEFAULT_DEF (arg2))
1933 continue;
1935 def1 = SSA_NAME_DEF_STMT (arg1);
1936 def2 = SSA_NAME_DEF_STMT (arg2);
1938 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1939 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1940 continue;
1942 /* Check the mode of the arguments to be sure a conditional move
1943 can be generated for it. */
1944 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1945 == CODE_FOR_nothing)
1946 continue;
1948 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1949 if (!gimple_assign_single_p (def1)
1950 || !gimple_assign_single_p (def2)
1951 || gimple_has_volatile_ops (def1)
1952 || gimple_has_volatile_ops (def2))
1953 continue;
1955 ref1 = gimple_assign_rhs1 (def1);
1956 ref2 = gimple_assign_rhs1 (def2);
1958 if (TREE_CODE (ref1) != COMPONENT_REF
1959 || TREE_CODE (ref2) != COMPONENT_REF)
1960 continue;
1962 /* The zeroth operand of the two component references must be
1963 identical. It is not sufficient to compare get_base_address of
1964 the two references, because this could allow for different
1965 elements of the same array in the two trees. It is not safe to
1966 assume that the existence of one array element implies the
1967 existence of a different one. */
1968 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1969 continue;
1971 field1 = TREE_OPERAND (ref1, 1);
1972 field2 = TREE_OPERAND (ref2, 1);
1974 /* Check for field adjacency, and ensure field1 comes first. */
1975 for (next = DECL_CHAIN (field1);
1976 next && TREE_CODE (next) != FIELD_DECL;
1977 next = DECL_CHAIN (next))
1980 if (next != field2)
1982 for (next = DECL_CHAIN (field2);
1983 next && TREE_CODE (next) != FIELD_DECL;
1984 next = DECL_CHAIN (next))
1987 if (next != field1)
1988 continue;
1990 fieldswap = field1;
1991 field1 = field2;
1992 field2 = fieldswap;
1993 defswap = def1;
1994 def1 = def2;
1995 def2 = defswap;
1998 bb_for_def1 = gimple_bb (def1);
1999 bb_for_def2 = gimple_bb (def2);
2001 /* Check for proper alignment of the first field. */
2002 tree_offset1 = bit_position (field1);
2003 tree_offset2 = bit_position (field2);
2004 tree_size2 = DECL_SIZE (field2);
2006 if (!tree_fits_uhwi_p (tree_offset1)
2007 || !tree_fits_uhwi_p (tree_offset2)
2008 || !tree_fits_uhwi_p (tree_size2))
2009 continue;
2011 offset1 = tree_to_uhwi (tree_offset1);
2012 offset2 = tree_to_uhwi (tree_offset2);
2013 size2 = tree_to_uhwi (tree_size2);
2014 align1 = DECL_ALIGN (field1) % param_align_bits;
2016 if (offset1 % BITS_PER_UNIT != 0)
2017 continue;
2019 /* For profitability, the two field references should fit within
2020 a single cache line. */
2021 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2022 continue;
2024 /* The two expressions cannot be dependent upon vdefs defined
2025 in bb1/bb2. */
2026 if (local_mem_dependence (def1, bb_for_def1)
2027 || local_mem_dependence (def2, bb_for_def2))
2028 continue;
2030 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2031 bb0. We hoist the first one first so that a cache miss is handled
2032 efficiently regardless of hardware cache-fill policy. */
2033 gsi2 = gsi_for_stmt (def1);
2034 gsi_move_to_bb_end (&gsi2, bb0);
2035 gsi2 = gsi_for_stmt (def2);
2036 gsi_move_to_bb_end (&gsi2, bb0);
2038 if (dump_file && (dump_flags & TDF_DETAILS))
2040 fprintf (dump_file,
2041 "\nHoisting adjacent loads from %d and %d into %d: \n",
2042 bb_for_def1->index, bb_for_def2->index, bb0->index);
2043 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2044 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2049 /* Determine whether we should attempt to hoist adjacent loads out of
2050 diamond patterns in pass_phiopt. Always hoist loads if
2051 -fhoist-adjacent-loads is specified and the target machine has
2052 both a conditional move instruction and a defined cache line size. */
2054 static bool
2055 gate_hoist_loads (void)
2057 return (flag_hoist_adjacent_loads == 1
2058 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2059 && HAVE_conditional_move);
2062 /* This pass tries to replaces an if-then-else block with an
2063 assignment. We have four kinds of transformations. Some of these
2064 transformations are also performed by the ifcvt RTL optimizer.
2066 Conditional Replacement
2067 -----------------------
2069 This transformation, implemented in conditional_replacement,
2070 replaces
2072 bb0:
2073 if (cond) goto bb2; else goto bb1;
2074 bb1:
2075 bb2:
2076 x = PHI <0 (bb1), 1 (bb0), ...>;
2078 with
2080 bb0:
2081 x' = cond;
2082 goto bb2;
2083 bb2:
2084 x = PHI <x' (bb0), ...>;
2086 We remove bb1 as it becomes unreachable. This occurs often due to
2087 gimplification of conditionals.
2089 Value Replacement
2090 -----------------
2092 This transformation, implemented in value_replacement, replaces
2094 bb0:
2095 if (a != b) goto bb2; else goto bb1;
2096 bb1:
2097 bb2:
2098 x = PHI <a (bb1), b (bb0), ...>;
2100 with
2102 bb0:
2103 bb2:
2104 x = PHI <b (bb0), ...>;
2106 This opportunity can sometimes occur as a result of other
2107 optimizations.
2110 Another case caught by value replacement looks like this:
2112 bb0:
2113 t1 = a == CONST;
2114 t2 = b > c;
2115 t3 = t1 & t2;
2116 if (t3 != 0) goto bb1; else goto bb2;
2117 bb1:
2118 bb2:
2119 x = PHI (CONST, a)
2121 Gets replaced with:
2122 bb0:
2123 bb2:
2124 t1 = a == CONST;
2125 t2 = b > c;
2126 t3 = t1 & t2;
2127 x = a;
2129 ABS Replacement
2130 ---------------
2132 This transformation, implemented in abs_replacement, replaces
2134 bb0:
2135 if (a >= 0) goto bb2; else goto bb1;
2136 bb1:
2137 x = -a;
2138 bb2:
2139 x = PHI <x (bb1), a (bb0), ...>;
2141 with
2143 bb0:
2144 x' = ABS_EXPR< a >;
2145 bb2:
2146 x = PHI <x' (bb0), ...>;
2148 MIN/MAX Replacement
2149 -------------------
2151 This transformation, minmax_replacement replaces
2153 bb0:
2154 if (a <= b) goto bb2; else goto bb1;
2155 bb1:
2156 bb2:
2157 x = PHI <b (bb1), a (bb0), ...>;
2159 with
2161 bb0:
2162 x' = MIN_EXPR (a, b)
2163 bb2:
2164 x = PHI <x' (bb0), ...>;
2166 A similar transformation is done for MAX_EXPR.
2169 This pass also performs a fifth transformation of a slightly different
2170 flavor.
2172 Adjacent Load Hoisting
2173 ----------------------
2175 This transformation replaces
2177 bb0:
2178 if (...) goto bb2; else goto bb1;
2179 bb1:
2180 x1 = (<expr>).field1;
2181 goto bb3;
2182 bb2:
2183 x2 = (<expr>).field2;
2184 bb3:
2185 # x = PHI <x1, x2>;
2187 with
2189 bb0:
2190 x1 = (<expr>).field1;
2191 x2 = (<expr>).field2;
2192 if (...) goto bb2; else goto bb1;
2193 bb1:
2194 goto bb3;
2195 bb2:
2196 bb3:
2197 # x = PHI <x1, x2>;
2199 The purpose of this transformation is to enable generation of conditional
2200 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2201 the loads is speculative, the transformation is restricted to very
2202 specific cases to avoid introducing a page fault. We are looking for
2203 the common idiom:
2205 if (...)
2206 x = y->left;
2207 else
2208 x = y->right;
2210 where left and right are typically adjacent pointers in a tree structure. */
2212 namespace {
2214 const pass_data pass_data_phiopt =
2216 GIMPLE_PASS, /* type */
2217 "phiopt", /* name */
2218 OPTGROUP_NONE, /* optinfo_flags */
2219 TV_TREE_PHIOPT, /* tv_id */
2220 ( PROP_cfg | PROP_ssa ), /* properties_required */
2221 0, /* properties_provided */
2222 0, /* properties_destroyed */
2223 0, /* todo_flags_start */
2224 0, /* todo_flags_finish */
2227 class pass_phiopt : public gimple_opt_pass
2229 public:
2230 pass_phiopt (gcc::context *ctxt)
2231 : gimple_opt_pass (pass_data_phiopt, ctxt)
2234 /* opt_pass methods: */
2235 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2236 virtual bool gate (function *) { return flag_ssa_phiopt; }
2237 virtual unsigned int execute (function *)
2239 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2242 }; // class pass_phiopt
2244 } // anon namespace
2246 gimple_opt_pass *
2247 make_pass_phiopt (gcc::context *ctxt)
2249 return new pass_phiopt (ctxt);
2252 namespace {
2254 const pass_data pass_data_cselim =
2256 GIMPLE_PASS, /* type */
2257 "cselim", /* name */
2258 OPTGROUP_NONE, /* optinfo_flags */
2259 TV_TREE_PHIOPT, /* tv_id */
2260 ( PROP_cfg | PROP_ssa ), /* properties_required */
2261 0, /* properties_provided */
2262 0, /* properties_destroyed */
2263 0, /* todo_flags_start */
2264 0, /* todo_flags_finish */
2267 class pass_cselim : public gimple_opt_pass
2269 public:
2270 pass_cselim (gcc::context *ctxt)
2271 : gimple_opt_pass (pass_data_cselim, ctxt)
2274 /* opt_pass methods: */
2275 virtual bool gate (function *) { return flag_tree_cselim; }
2276 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
2278 }; // class pass_cselim
2280 } // anon namespace
2282 gimple_opt_pass *
2283 make_pass_cselim (gcc::context *ctxt)
2285 return new pass_cselim (ctxt);