2015-09-24 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / libgo / go / fmt / print.go
blob59a30d221e92aa55d0dbce98eba35a5936560ad6
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package fmt
7 import (
8 "errors"
9 "io"
10 "os"
11 "reflect"
12 "sync"
13 "unicode/utf8"
16 // Some constants in the form of bytes, to avoid string overhead.
17 // Needlessly fastidious, I suppose.
18 var (
19 commaSpaceBytes = []byte(", ")
20 nilAngleBytes = []byte("<nil>")
21 nilParenBytes = []byte("(nil)")
22 nilBytes = []byte("nil")
23 mapBytes = []byte("map[")
24 percentBangBytes = []byte("%!")
25 missingBytes = []byte("(MISSING)")
26 badIndexBytes = []byte("(BADINDEX)")
27 panicBytes = []byte("(PANIC=")
28 extraBytes = []byte("%!(EXTRA ")
29 irparenBytes = []byte("i)")
30 bytesBytes = []byte("[]byte{")
31 badWidthBytes = []byte("%!(BADWIDTH)")
32 badPrecBytes = []byte("%!(BADPREC)")
33 noVerbBytes = []byte("%!(NOVERB)")
36 // State represents the printer state passed to custom formatters.
37 // It provides access to the io.Writer interface plus information about
38 // the flags and options for the operand's format specifier.
39 type State interface {
40 // Write is the function to call to emit formatted output to be printed.
41 Write(b []byte) (ret int, err error)
42 // Width returns the value of the width option and whether it has been set.
43 Width() (wid int, ok bool)
44 // Precision returns the value of the precision option and whether it has been set.
45 Precision() (prec int, ok bool)
47 // Flag reports whether the flag c, a character, has been set.
48 Flag(c int) bool
51 // Formatter is the interface implemented by values with a custom formatter.
52 // The implementation of Format may call Sprint(f) or Fprint(f) etc.
53 // to generate its output.
54 type Formatter interface {
55 Format(f State, c rune)
58 // Stringer is implemented by any value that has a String method,
59 // which defines the ``native'' format for that value.
60 // The String method is used to print values passed as an operand
61 // to any format that accepts a string or to an unformatted printer
62 // such as Print.
63 type Stringer interface {
64 String() string
67 // GoStringer is implemented by any value that has a GoString method,
68 // which defines the Go syntax for that value.
69 // The GoString method is used to print values passed as an operand
70 // to a %#v format.
71 type GoStringer interface {
72 GoString() string
75 // Use simple []byte instead of bytes.Buffer to avoid large dependency.
76 type buffer []byte
78 func (b *buffer) Write(p []byte) (n int, err error) {
79 *b = append(*b, p...)
80 return len(p), nil
83 func (b *buffer) WriteString(s string) (n int, err error) {
84 *b = append(*b, s...)
85 return len(s), nil
88 func (b *buffer) WriteByte(c byte) error {
89 *b = append(*b, c)
90 return nil
93 func (bp *buffer) WriteRune(r rune) error {
94 if r < utf8.RuneSelf {
95 *bp = append(*bp, byte(r))
96 return nil
99 b := *bp
100 n := len(b)
101 for n+utf8.UTFMax > cap(b) {
102 b = append(b, 0)
104 w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r)
105 *bp = b[:n+w]
106 return nil
109 type pp struct {
110 n int
111 panicking bool
112 erroring bool // printing an error condition
113 buf buffer
114 // arg holds the current item, as an interface{}.
115 arg interface{}
116 // value holds the current item, as a reflect.Value, and will be
117 // the zero Value if the item has not been reflected.
118 value reflect.Value
119 // reordered records whether the format string used argument reordering.
120 reordered bool
121 // goodArgNum records whether the most recent reordering directive was valid.
122 goodArgNum bool
123 runeBuf [utf8.UTFMax]byte
124 fmt fmt
127 var ppFree = sync.Pool{
128 New: func() interface{} { return new(pp) },
131 // newPrinter allocates a new pp struct or grabs a cached one.
132 func newPrinter() *pp {
133 p := ppFree.Get().(*pp)
134 p.panicking = false
135 p.erroring = false
136 p.fmt.init(&p.buf)
137 return p
140 // free saves used pp structs in ppFree; avoids an allocation per invocation.
141 func (p *pp) free() {
142 // Don't hold on to pp structs with large buffers.
143 if cap(p.buf) > 1024 {
144 return
146 p.buf = p.buf[:0]
147 p.arg = nil
148 p.value = reflect.Value{}
149 ppFree.Put(p)
152 func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
154 func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
156 func (p *pp) Flag(b int) bool {
157 switch b {
158 case '-':
159 return p.fmt.minus
160 case '+':
161 return p.fmt.plus
162 case '#':
163 return p.fmt.sharp
164 case ' ':
165 return p.fmt.space
166 case '0':
167 return p.fmt.zero
169 return false
172 func (p *pp) add(c rune) {
173 p.buf.WriteRune(c)
176 // Implement Write so we can call Fprintf on a pp (through State), for
177 // recursive use in custom verbs.
178 func (p *pp) Write(b []byte) (ret int, err error) {
179 return p.buf.Write(b)
182 // These routines end in 'f' and take a format string.
184 // Fprintf formats according to a format specifier and writes to w.
185 // It returns the number of bytes written and any write error encountered.
186 func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
187 p := newPrinter()
188 p.doPrintf(format, a)
189 n, err = w.Write(p.buf)
190 p.free()
191 return
194 // Printf formats according to a format specifier and writes to standard output.
195 // It returns the number of bytes written and any write error encountered.
196 func Printf(format string, a ...interface{}) (n int, err error) {
197 return Fprintf(os.Stdout, format, a...)
200 // Sprintf formats according to a format specifier and returns the resulting string.
201 func Sprintf(format string, a ...interface{}) string {
202 p := newPrinter()
203 p.doPrintf(format, a)
204 s := string(p.buf)
205 p.free()
206 return s
209 // Errorf formats according to a format specifier and returns the string
210 // as a value that satisfies error.
211 func Errorf(format string, a ...interface{}) error {
212 return errors.New(Sprintf(format, a...))
215 // These routines do not take a format string
217 // Fprint formats using the default formats for its operands and writes to w.
218 // Spaces are added between operands when neither is a string.
219 // It returns the number of bytes written and any write error encountered.
220 func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
221 p := newPrinter()
222 p.doPrint(a, false, false)
223 n, err = w.Write(p.buf)
224 p.free()
225 return
228 // Print formats using the default formats for its operands and writes to standard output.
229 // Spaces are added between operands when neither is a string.
230 // It returns the number of bytes written and any write error encountered.
231 func Print(a ...interface{}) (n int, err error) {
232 return Fprint(os.Stdout, a...)
235 // Sprint formats using the default formats for its operands and returns the resulting string.
236 // Spaces are added between operands when neither is a string.
237 func Sprint(a ...interface{}) string {
238 p := newPrinter()
239 p.doPrint(a, false, false)
240 s := string(p.buf)
241 p.free()
242 return s
245 // These routines end in 'ln', do not take a format string,
246 // always add spaces between operands, and add a newline
247 // after the last operand.
249 // Fprintln formats using the default formats for its operands and writes to w.
250 // Spaces are always added between operands and a newline is appended.
251 // It returns the number of bytes written and any write error encountered.
252 func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
253 p := newPrinter()
254 p.doPrint(a, true, true)
255 n, err = w.Write(p.buf)
256 p.free()
257 return
260 // Println formats using the default formats for its operands and writes to standard output.
261 // Spaces are always added between operands and a newline is appended.
262 // It returns the number of bytes written and any write error encountered.
263 func Println(a ...interface{}) (n int, err error) {
264 return Fprintln(os.Stdout, a...)
267 // Sprintln formats using the default formats for its operands and returns the resulting string.
268 // Spaces are always added between operands and a newline is appended.
269 func Sprintln(a ...interface{}) string {
270 p := newPrinter()
271 p.doPrint(a, true, true)
272 s := string(p.buf)
273 p.free()
274 return s
277 // getField gets the i'th field of the struct value.
278 // If the field is itself is an interface, return a value for
279 // the thing inside the interface, not the interface itself.
280 func getField(v reflect.Value, i int) reflect.Value {
281 val := v.Field(i)
282 if val.Kind() == reflect.Interface && !val.IsNil() {
283 val = val.Elem()
285 return val
288 // parsenum converts ASCII to integer. num is 0 (and isnum is false) if no number present.
289 func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
290 if start >= end {
291 return 0, false, end
293 for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
294 num = num*10 + int(s[newi]-'0')
295 isnum = true
297 return
300 func (p *pp) unknownType(v reflect.Value) {
301 if !v.IsValid() {
302 p.buf.Write(nilAngleBytes)
303 return
305 p.buf.WriteByte('?')
306 p.buf.WriteString(v.Type().String())
307 p.buf.WriteByte('?')
310 func (p *pp) badVerb(verb rune) {
311 p.erroring = true
312 p.add('%')
313 p.add('!')
314 p.add(verb)
315 p.add('(')
316 switch {
317 case p.arg != nil:
318 p.buf.WriteString(reflect.TypeOf(p.arg).String())
319 p.add('=')
320 p.printArg(p.arg, 'v', 0)
321 case p.value.IsValid():
322 p.buf.WriteString(p.value.Type().String())
323 p.add('=')
324 p.printValue(p.value, 'v', 0)
325 default:
326 p.buf.Write(nilAngleBytes)
328 p.add(')')
329 p.erroring = false
332 func (p *pp) fmtBool(v bool, verb rune) {
333 switch verb {
334 case 't', 'v':
335 p.fmt.fmt_boolean(v)
336 default:
337 p.badVerb(verb)
341 // fmtC formats a rune for the 'c' format.
342 func (p *pp) fmtC(c int64) {
343 r := rune(c) // Check for overflow.
344 if int64(r) != c {
345 r = utf8.RuneError
347 w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], r)
348 p.fmt.pad(p.runeBuf[0:w])
351 func (p *pp) fmtInt64(v int64, verb rune) {
352 switch verb {
353 case 'b':
354 p.fmt.integer(v, 2, signed, ldigits)
355 case 'c':
356 p.fmtC(v)
357 case 'd', 'v':
358 p.fmt.integer(v, 10, signed, ldigits)
359 case 'o':
360 p.fmt.integer(v, 8, signed, ldigits)
361 case 'q':
362 if 0 <= v && v <= utf8.MaxRune {
363 p.fmt.fmt_qc(v)
364 } else {
365 p.badVerb(verb)
367 case 'x':
368 p.fmt.integer(v, 16, signed, ldigits)
369 case 'U':
370 p.fmtUnicode(v)
371 case 'X':
372 p.fmt.integer(v, 16, signed, udigits)
373 default:
374 p.badVerb(verb)
378 // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
379 // not, as requested, by temporarily setting the sharp flag.
380 func (p *pp) fmt0x64(v uint64, leading0x bool) {
381 sharp := p.fmt.sharp
382 p.fmt.sharp = leading0x
383 p.fmt.integer(int64(v), 16, unsigned, ldigits)
384 p.fmt.sharp = sharp
387 // fmtUnicode formats a uint64 in U+1234 form by
388 // temporarily turning on the unicode flag and tweaking the precision.
389 func (p *pp) fmtUnicode(v int64) {
390 precPresent := p.fmt.precPresent
391 sharp := p.fmt.sharp
392 p.fmt.sharp = false
393 prec := p.fmt.prec
394 if !precPresent {
395 // If prec is already set, leave it alone; otherwise 4 is minimum.
396 p.fmt.prec = 4
397 p.fmt.precPresent = true
399 p.fmt.unicode = true // turn on U+
400 p.fmt.uniQuote = sharp
401 p.fmt.integer(int64(v), 16, unsigned, udigits)
402 p.fmt.unicode = false
403 p.fmt.uniQuote = false
404 p.fmt.prec = prec
405 p.fmt.precPresent = precPresent
406 p.fmt.sharp = sharp
409 func (p *pp) fmtUint64(v uint64, verb rune) {
410 switch verb {
411 case 'b':
412 p.fmt.integer(int64(v), 2, unsigned, ldigits)
413 case 'c':
414 p.fmtC(int64(v))
415 case 'd':
416 p.fmt.integer(int64(v), 10, unsigned, ldigits)
417 case 'v':
418 if p.fmt.sharpV {
419 p.fmt0x64(v, true)
420 } else {
421 p.fmt.integer(int64(v), 10, unsigned, ldigits)
423 case 'o':
424 p.fmt.integer(int64(v), 8, unsigned, ldigits)
425 case 'q':
426 if 0 <= v && v <= utf8.MaxRune {
427 p.fmt.fmt_qc(int64(v))
428 } else {
429 p.badVerb(verb)
431 case 'x':
432 p.fmt.integer(int64(v), 16, unsigned, ldigits)
433 case 'X':
434 p.fmt.integer(int64(v), 16, unsigned, udigits)
435 case 'U':
436 p.fmtUnicode(int64(v))
437 default:
438 p.badVerb(verb)
442 func (p *pp) fmtFloat32(v float32, verb rune) {
443 switch verb {
444 case 'b':
445 p.fmt.fmt_fb32(v)
446 case 'e':
447 p.fmt.fmt_e32(v)
448 case 'E':
449 p.fmt.fmt_E32(v)
450 case 'f', 'F':
451 p.fmt.fmt_f32(v)
452 case 'g', 'v':
453 p.fmt.fmt_g32(v)
454 case 'G':
455 p.fmt.fmt_G32(v)
456 default:
457 p.badVerb(verb)
461 func (p *pp) fmtFloat64(v float64, verb rune) {
462 switch verb {
463 case 'b':
464 p.fmt.fmt_fb64(v)
465 case 'e':
466 p.fmt.fmt_e64(v)
467 case 'E':
468 p.fmt.fmt_E64(v)
469 case 'f', 'F':
470 p.fmt.fmt_f64(v)
471 case 'g', 'v':
472 p.fmt.fmt_g64(v)
473 case 'G':
474 p.fmt.fmt_G64(v)
475 default:
476 p.badVerb(verb)
480 func (p *pp) fmtComplex64(v complex64, verb rune) {
481 switch verb {
482 case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
483 p.fmt.fmt_c64(v, verb)
484 case 'v':
485 p.fmt.fmt_c64(v, 'g')
486 default:
487 p.badVerb(verb)
491 func (p *pp) fmtComplex128(v complex128, verb rune) {
492 switch verb {
493 case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
494 p.fmt.fmt_c128(v, verb)
495 case 'v':
496 p.fmt.fmt_c128(v, 'g')
497 default:
498 p.badVerb(verb)
502 func (p *pp) fmtString(v string, verb rune) {
503 switch verb {
504 case 'v':
505 if p.fmt.sharpV {
506 p.fmt.fmt_q(v)
507 } else {
508 p.fmt.fmt_s(v)
510 case 's':
511 p.fmt.fmt_s(v)
512 case 'x':
513 p.fmt.fmt_sx(v, ldigits)
514 case 'X':
515 p.fmt.fmt_sx(v, udigits)
516 case 'q':
517 p.fmt.fmt_q(v)
518 default:
519 p.badVerb(verb)
523 func (p *pp) fmtBytes(v []byte, verb rune, typ reflect.Type, depth int) {
524 if verb == 'v' || verb == 'd' {
525 if p.fmt.sharpV {
526 if v == nil {
527 if typ == nil {
528 p.buf.WriteString("[]byte(nil)")
529 } else {
530 p.buf.WriteString(typ.String())
531 p.buf.Write(nilParenBytes)
533 return
535 if typ == nil {
536 p.buf.Write(bytesBytes)
537 } else {
538 p.buf.WriteString(typ.String())
539 p.buf.WriteByte('{')
541 } else {
542 p.buf.WriteByte('[')
544 for i, c := range v {
545 if i > 0 {
546 if p.fmt.sharpV {
547 p.buf.Write(commaSpaceBytes)
548 } else {
549 p.buf.WriteByte(' ')
552 p.printArg(c, 'v', depth+1)
554 if p.fmt.sharpV {
555 p.buf.WriteByte('}')
556 } else {
557 p.buf.WriteByte(']')
559 return
561 switch verb {
562 case 's':
563 p.fmt.fmt_s(string(v))
564 case 'x':
565 p.fmt.fmt_bx(v, ldigits)
566 case 'X':
567 p.fmt.fmt_bx(v, udigits)
568 case 'q':
569 p.fmt.fmt_q(string(v))
570 default:
571 p.badVerb(verb)
575 func (p *pp) fmtPointer(value reflect.Value, verb rune) {
576 use0x64 := true
577 switch verb {
578 case 'p', 'v':
579 // ok
580 case 'b', 'd', 'o', 'x', 'X':
581 use0x64 = false
582 // ok
583 default:
584 p.badVerb(verb)
585 return
588 var u uintptr
589 switch value.Kind() {
590 case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
591 u = value.Pointer()
592 default:
593 p.badVerb(verb)
594 return
597 if p.fmt.sharpV {
598 p.add('(')
599 p.buf.WriteString(value.Type().String())
600 p.add(')')
601 p.add('(')
602 if u == 0 {
603 p.buf.Write(nilBytes)
604 } else {
605 p.fmt0x64(uint64(u), true)
607 p.add(')')
608 } else if verb == 'v' && u == 0 {
609 p.buf.Write(nilAngleBytes)
610 } else {
611 if use0x64 {
612 p.fmt0x64(uint64(u), !p.fmt.sharp)
613 } else {
614 p.fmtUint64(uint64(u), verb)
619 var (
620 intBits = reflect.TypeOf(0).Bits()
621 uintptrBits = reflect.TypeOf(uintptr(0)).Bits()
624 func (p *pp) catchPanic(arg interface{}, verb rune) {
625 if err := recover(); err != nil {
626 // If it's a nil pointer, just say "<nil>". The likeliest causes are a
627 // Stringer that fails to guard against nil or a nil pointer for a
628 // value receiver, and in either case, "<nil>" is a nice result.
629 if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
630 p.buf.Write(nilAngleBytes)
631 return
633 // Otherwise print a concise panic message. Most of the time the panic
634 // value will print itself nicely.
635 if p.panicking {
636 // Nested panics; the recursion in printArg cannot succeed.
637 panic(err)
639 p.fmt.clearflags() // We are done, and for this output we want default behavior.
640 p.buf.Write(percentBangBytes)
641 p.add(verb)
642 p.buf.Write(panicBytes)
643 p.panicking = true
644 p.printArg(err, 'v', 0)
645 p.panicking = false
646 p.buf.WriteByte(')')
650 // clearSpecialFlags pushes %#v back into the regular flags and returns their old state.
651 func (p *pp) clearSpecialFlags() (plusV, sharpV bool) {
652 plusV = p.fmt.plusV
653 if plusV {
654 p.fmt.plus = true
655 p.fmt.plusV = false
657 sharpV = p.fmt.sharpV
658 if sharpV {
659 p.fmt.sharp = true
660 p.fmt.sharpV = false
662 return
665 // restoreSpecialFlags, whose argument should be a call to clearSpecialFlags,
666 // restores the setting of the plusV and sharpV flags.
667 func (p *pp) restoreSpecialFlags(plusV, sharpV bool) {
668 if plusV {
669 p.fmt.plus = false
670 p.fmt.plusV = true
672 if sharpV {
673 p.fmt.sharp = false
674 p.fmt.sharpV = true
678 func (p *pp) handleMethods(verb rune, depth int) (handled bool) {
679 if p.erroring {
680 return
682 // Is it a Formatter?
683 if formatter, ok := p.arg.(Formatter); ok {
684 handled = true
685 defer p.restoreSpecialFlags(p.clearSpecialFlags())
686 defer p.catchPanic(p.arg, verb)
687 formatter.Format(p, verb)
688 return
691 // If we're doing Go syntax and the argument knows how to supply it, take care of it now.
692 if p.fmt.sharpV {
693 if stringer, ok := p.arg.(GoStringer); ok {
694 handled = true
695 defer p.catchPanic(p.arg, verb)
696 // Print the result of GoString unadorned.
697 p.fmt.fmt_s(stringer.GoString())
698 return
700 } else {
701 // If a string is acceptable according to the format, see if
702 // the value satisfies one of the string-valued interfaces.
703 // Println etc. set verb to %v, which is "stringable".
704 switch verb {
705 case 'v', 's', 'x', 'X', 'q':
706 // Is it an error or Stringer?
707 // The duplication in the bodies is necessary:
708 // setting handled and deferring catchPanic
709 // must happen before calling the method.
710 switch v := p.arg.(type) {
711 case error:
712 handled = true
713 defer p.catchPanic(p.arg, verb)
714 p.printArg(v.Error(), verb, depth)
715 return
717 case Stringer:
718 handled = true
719 defer p.catchPanic(p.arg, verb)
720 p.printArg(v.String(), verb, depth)
721 return
725 return false
728 func (p *pp) printArg(arg interface{}, verb rune, depth int) (wasString bool) {
729 p.arg = arg
730 p.value = reflect.Value{}
732 if arg == nil {
733 if verb == 'T' || verb == 'v' {
734 p.fmt.pad(nilAngleBytes)
735 } else {
736 p.badVerb(verb)
738 return false
741 // Special processing considerations.
742 // %T (the value's type) and %p (its address) are special; we always do them first.
743 switch verb {
744 case 'T':
745 p.printArg(reflect.TypeOf(arg).String(), 's', 0)
746 return false
747 case 'p':
748 p.fmtPointer(reflect.ValueOf(arg), verb)
749 return false
752 // Some types can be done without reflection.
753 switch f := arg.(type) {
754 case bool:
755 p.fmtBool(f, verb)
756 case float32:
757 p.fmtFloat32(f, verb)
758 case float64:
759 p.fmtFloat64(f, verb)
760 case complex64:
761 p.fmtComplex64(f, verb)
762 case complex128:
763 p.fmtComplex128(f, verb)
764 case int:
765 p.fmtInt64(int64(f), verb)
766 case int8:
767 p.fmtInt64(int64(f), verb)
768 case int16:
769 p.fmtInt64(int64(f), verb)
770 case int32:
771 p.fmtInt64(int64(f), verb)
772 case int64:
773 p.fmtInt64(f, verb)
774 case uint:
775 p.fmtUint64(uint64(f), verb)
776 case uint8:
777 p.fmtUint64(uint64(f), verb)
778 case uint16:
779 p.fmtUint64(uint64(f), verb)
780 case uint32:
781 p.fmtUint64(uint64(f), verb)
782 case uint64:
783 p.fmtUint64(f, verb)
784 case uintptr:
785 p.fmtUint64(uint64(f), verb)
786 case string:
787 p.fmtString(f, verb)
788 wasString = verb == 's' || verb == 'v'
789 case []byte:
790 p.fmtBytes(f, verb, nil, depth)
791 wasString = verb == 's'
792 default:
793 // If the type is not simple, it might have methods.
794 if handled := p.handleMethods(verb, depth); handled {
795 return false
797 // Need to use reflection
798 return p.printReflectValue(reflect.ValueOf(arg), verb, depth)
800 p.arg = nil
801 return
804 // printValue is like printArg but starts with a reflect value, not an interface{} value.
805 func (p *pp) printValue(value reflect.Value, verb rune, depth int) (wasString bool) {
806 if !value.IsValid() {
807 if verb == 'T' || verb == 'v' {
808 p.buf.Write(nilAngleBytes)
809 } else {
810 p.badVerb(verb)
812 return false
815 // Special processing considerations.
816 // %T (the value's type) and %p (its address) are special; we always do them first.
817 switch verb {
818 case 'T':
819 p.printArg(value.Type().String(), 's', 0)
820 return false
821 case 'p':
822 p.fmtPointer(value, verb)
823 return false
826 // Handle values with special methods.
827 // Call always, even when arg == nil, because handleMethods clears p.fmt.plus for us.
828 p.arg = nil // Make sure it's cleared, for safety.
829 if value.CanInterface() {
830 p.arg = value.Interface()
832 if handled := p.handleMethods(verb, depth); handled {
833 return false
836 return p.printReflectValue(value, verb, depth)
839 var byteType = reflect.TypeOf(byte(0))
841 // printReflectValue is the fallback for both printArg and printValue.
842 // It uses reflect to print the value.
843 func (p *pp) printReflectValue(value reflect.Value, verb rune, depth int) (wasString bool) {
844 oldValue := p.value
845 p.value = value
846 BigSwitch:
847 switch f := value; f.Kind() {
848 case reflect.Bool:
849 p.fmtBool(f.Bool(), verb)
850 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
851 p.fmtInt64(f.Int(), verb)
852 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
853 p.fmtUint64(f.Uint(), verb)
854 case reflect.Float32, reflect.Float64:
855 if f.Type().Size() == 4 {
856 p.fmtFloat32(float32(f.Float()), verb)
857 } else {
858 p.fmtFloat64(f.Float(), verb)
860 case reflect.Complex64, reflect.Complex128:
861 if f.Type().Size() == 8 {
862 p.fmtComplex64(complex64(f.Complex()), verb)
863 } else {
864 p.fmtComplex128(f.Complex(), verb)
866 case reflect.String:
867 p.fmtString(f.String(), verb)
868 case reflect.Map:
869 if p.fmt.sharpV {
870 p.buf.WriteString(f.Type().String())
871 if f.IsNil() {
872 p.buf.WriteString("(nil)")
873 break
875 p.buf.WriteByte('{')
876 } else {
877 p.buf.Write(mapBytes)
879 keys := f.MapKeys()
880 for i, key := range keys {
881 if i > 0 {
882 if p.fmt.sharpV {
883 p.buf.Write(commaSpaceBytes)
884 } else {
885 p.buf.WriteByte(' ')
888 p.printValue(key, verb, depth+1)
889 p.buf.WriteByte(':')
890 p.printValue(f.MapIndex(key), verb, depth+1)
892 if p.fmt.sharpV {
893 p.buf.WriteByte('}')
894 } else {
895 p.buf.WriteByte(']')
897 case reflect.Struct:
898 if p.fmt.sharpV {
899 p.buf.WriteString(value.Type().String())
901 p.add('{')
902 v := f
903 t := v.Type()
904 for i := 0; i < v.NumField(); i++ {
905 if i > 0 {
906 if p.fmt.sharpV {
907 p.buf.Write(commaSpaceBytes)
908 } else {
909 p.buf.WriteByte(' ')
912 if p.fmt.plusV || p.fmt.sharpV {
913 if f := t.Field(i); f.Name != "" {
914 p.buf.WriteString(f.Name)
915 p.buf.WriteByte(':')
918 p.printValue(getField(v, i), verb, depth+1)
920 p.buf.WriteByte('}')
921 case reflect.Interface:
922 value := f.Elem()
923 if !value.IsValid() {
924 if p.fmt.sharpV {
925 p.buf.WriteString(f.Type().String())
926 p.buf.Write(nilParenBytes)
927 } else {
928 p.buf.Write(nilAngleBytes)
930 } else {
931 wasString = p.printValue(value, verb, depth+1)
933 case reflect.Array, reflect.Slice:
934 // Byte slices are special:
935 // - Handle []byte (== []uint8) with fmtBytes.
936 // - Handle []T, where T is a named byte type, with fmtBytes only
937 // for the s, q, an x verbs. For other verbs, T might be a
938 // Stringer, so we use printValue to print each element.
939 if typ := f.Type(); typ.Elem().Kind() == reflect.Uint8 && (typ.Elem() == byteType || verb == 's' || verb == 'q' || verb == 'x') {
940 var bytes []byte
941 if f.Kind() == reflect.Slice {
942 bytes = f.Bytes()
943 } else if f.CanAddr() {
944 bytes = f.Slice(0, f.Len()).Bytes()
945 } else {
946 // We have an array, but we cannot Slice() a non-addressable array,
947 // so we build a slice by hand. This is a rare case but it would be nice
948 // if reflection could help a little more.
949 bytes = make([]byte, f.Len())
950 for i := range bytes {
951 bytes[i] = byte(f.Index(i).Uint())
954 p.fmtBytes(bytes, verb, typ, depth)
955 wasString = verb == 's'
956 break
958 if p.fmt.sharpV {
959 p.buf.WriteString(value.Type().String())
960 if f.Kind() == reflect.Slice && f.IsNil() {
961 p.buf.WriteString("(nil)")
962 break
964 p.buf.WriteByte('{')
965 } else {
966 p.buf.WriteByte('[')
968 for i := 0; i < f.Len(); i++ {
969 if i > 0 {
970 if p.fmt.sharpV {
971 p.buf.Write(commaSpaceBytes)
972 } else {
973 p.buf.WriteByte(' ')
976 p.printValue(f.Index(i), verb, depth+1)
978 if p.fmt.sharpV {
979 p.buf.WriteByte('}')
980 } else {
981 p.buf.WriteByte(']')
983 case reflect.Ptr:
984 v := f.Pointer()
985 // pointer to array or slice or struct? ok at top level
986 // but not embedded (avoid loops)
987 if v != 0 && depth == 0 {
988 switch a := f.Elem(); a.Kind() {
989 case reflect.Array, reflect.Slice:
990 p.buf.WriteByte('&')
991 p.printValue(a, verb, depth+1)
992 break BigSwitch
993 case reflect.Struct:
994 p.buf.WriteByte('&')
995 p.printValue(a, verb, depth+1)
996 break BigSwitch
997 case reflect.Map:
998 p.buf.WriteByte('&')
999 p.printValue(a, verb, depth+1)
1000 break BigSwitch
1003 fallthrough
1004 case reflect.Chan, reflect.Func, reflect.UnsafePointer:
1005 p.fmtPointer(value, verb)
1006 default:
1007 p.unknownType(f)
1009 p.value = oldValue
1010 return wasString
1013 // intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has type int.
1014 func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) {
1015 newArgNum = argNum
1016 if argNum < len(a) {
1017 num, isInt = a[argNum].(int)
1018 newArgNum = argNum + 1
1020 return
1023 // parseArgNumber returns the value of the bracketed number, minus 1
1024 // (explicit argument numbers are one-indexed but we want zero-indexed).
1025 // The opening bracket is known to be present at format[0].
1026 // The returned values are the index, the number of bytes to consume
1027 // up to the closing paren, if present, and whether the number parsed
1028 // ok. The bytes to consume will be 1 if no closing paren is present.
1029 func parseArgNumber(format string) (index int, wid int, ok bool) {
1030 // Find closing bracket.
1031 for i := 1; i < len(format); i++ {
1032 if format[i] == ']' {
1033 width, ok, newi := parsenum(format, 1, i)
1034 if !ok || newi != i {
1035 return 0, i + 1, false
1037 return width - 1, i + 1, true // arg numbers are one-indexed and skip paren.
1040 return 0, 1, false
1043 // argNumber returns the next argument to evaluate, which is either the value of the passed-in
1044 // argNum or the value of the bracketed integer that begins format[i:]. It also returns
1045 // the new value of i, that is, the index of the next byte of the format to process.
1046 func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) {
1047 if len(format) <= i || format[i] != '[' {
1048 return argNum, i, false
1050 p.reordered = true
1051 index, wid, ok := parseArgNumber(format[i:])
1052 if ok && 0 <= index && index < numArgs {
1053 return index, i + wid, true
1055 p.goodArgNum = false
1056 return argNum, i + wid, true
1059 func (p *pp) doPrintf(format string, a []interface{}) {
1060 end := len(format)
1061 argNum := 0 // we process one argument per non-trivial format
1062 afterIndex := false // previous item in format was an index like [3].
1063 p.reordered = false
1064 for i := 0; i < end; {
1065 p.goodArgNum = true
1066 lasti := i
1067 for i < end && format[i] != '%' {
1070 if i > lasti {
1071 p.buf.WriteString(format[lasti:i])
1073 if i >= end {
1074 // done processing format string
1075 break
1078 // Process one verb
1081 // Do we have flags?
1082 p.fmt.clearflags()
1084 for ; i < end; i++ {
1085 switch format[i] {
1086 case '#':
1087 p.fmt.sharp = true
1088 case '0':
1089 p.fmt.zero = true
1090 case '+':
1091 p.fmt.plus = true
1092 case '-':
1093 p.fmt.minus = true
1094 case ' ':
1095 p.fmt.space = true
1096 default:
1097 break F
1101 // Do we have an explicit argument index?
1102 argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
1104 // Do we have width?
1105 if i < end && format[i] == '*' {
1107 p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum)
1108 if !p.fmt.widPresent {
1109 p.buf.Write(badWidthBytes)
1111 afterIndex = false
1112 } else {
1113 p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
1114 if afterIndex && p.fmt.widPresent { // "%[3]2d"
1115 p.goodArgNum = false
1119 // Do we have precision?
1120 if i+1 < end && format[i] == '.' {
1122 if afterIndex { // "%[3].2d"
1123 p.goodArgNum = false
1125 argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
1126 if format[i] == '*' {
1128 p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum)
1129 if !p.fmt.precPresent {
1130 p.buf.Write(badPrecBytes)
1132 afterIndex = false
1133 } else {
1134 p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end)
1135 if !p.fmt.precPresent {
1136 p.fmt.prec = 0
1137 p.fmt.precPresent = true
1142 if !afterIndex {
1143 argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
1146 if i >= end {
1147 p.buf.Write(noVerbBytes)
1148 continue
1150 c, w := utf8.DecodeRuneInString(format[i:])
1151 i += w
1152 // percent is special - absorbs no operand
1153 if c == '%' {
1154 p.buf.WriteByte('%') // We ignore width and prec.
1155 continue
1157 if !p.goodArgNum {
1158 p.buf.Write(percentBangBytes)
1159 p.add(c)
1160 p.buf.Write(badIndexBytes)
1161 continue
1162 } else if argNum >= len(a) { // out of operands
1163 p.buf.Write(percentBangBytes)
1164 p.add(c)
1165 p.buf.Write(missingBytes)
1166 continue
1168 arg := a[argNum]
1169 argNum++
1171 if c == 'v' {
1172 if p.fmt.sharp {
1173 // Go syntax. Set the flag in the fmt and clear the sharp flag.
1174 p.fmt.sharp = false
1175 p.fmt.sharpV = true
1177 if p.fmt.plus {
1178 // Struct-field syntax. Set the flag in the fmt and clear the plus flag.
1179 p.fmt.plus = false
1180 p.fmt.plusV = true
1183 p.printArg(arg, c, 0)
1186 // Check for extra arguments unless the call accessed the arguments
1187 // out of order, in which case it's too expensive to detect if they've all
1188 // been used and arguably OK if they're not.
1189 if !p.reordered && argNum < len(a) {
1190 p.buf.Write(extraBytes)
1191 for ; argNum < len(a); argNum++ {
1192 arg := a[argNum]
1193 if arg != nil {
1194 p.buf.WriteString(reflect.TypeOf(arg).String())
1195 p.buf.WriteByte('=')
1197 p.printArg(arg, 'v', 0)
1198 if argNum+1 < len(a) {
1199 p.buf.Write(commaSpaceBytes)
1202 p.buf.WriteByte(')')
1206 func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
1207 prevString := false
1208 for argNum := 0; argNum < len(a); argNum++ {
1209 p.fmt.clearflags()
1210 // always add spaces if we're doing Println
1211 arg := a[argNum]
1212 if argNum > 0 {
1213 isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
1214 if addspace || !isString && !prevString {
1215 p.buf.WriteByte(' ')
1218 prevString = p.printArg(arg, 'v', 0)
1220 if addnewline {
1221 p.buf.WriteByte('\n')