* include/bits/atomic_futex.h [_GLIBCXX_HAVE_LINUX_FUTEX]
[official-gcc.git] / gcc / loop-unroll.c
blob913bd3c2614fb7ccfc407f28065b6338936a03f3
1 /* Loop unrolling.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "rtl.h"
26 #include "alias.h"
27 #include "tree.h"
28 #include "profile.h"
29 #include "cfgrtl.h"
30 #include "cfgloop.h"
31 #include "params.h"
32 #include "insn-codes.h"
33 #include "optabs.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "expmed.h"
37 #include "dojump.h"
38 #include "explow.h"
39 #include "calls.h"
40 #include "emit-rtl.h"
41 #include "varasm.h"
42 #include "stmt.h"
43 #include "expr.h"
44 #include "recog.h"
45 #include "target.h"
46 #include "dumpfile.h"
48 /* This pass performs loop unrolling. We only perform this
49 optimization on innermost loops (with single exception) because
50 the impact on performance is greatest here, and we want to avoid
51 unnecessary code size growth. The gain is caused by greater sequentiality
52 of code, better code to optimize for further passes and in some cases
53 by fewer testings of exit conditions. The main problem is code growth,
54 that impacts performance negatively due to effect of caches.
56 What we do:
58 -- unrolling of loops that roll constant times; this is almost always
59 win, as we get rid of exit condition tests.
60 -- unrolling of loops that roll number of times that we can compute
61 in runtime; we also get rid of exit condition tests here, but there
62 is the extra expense for calculating the number of iterations
63 -- simple unrolling of remaining loops; this is performed only if we
64 are asked to, as the gain is questionable in this case and often
65 it may even slow down the code
66 For more detailed descriptions of each of those, see comments at
67 appropriate function below.
69 There is a lot of parameters (defined and described in params.def) that
70 control how much we unroll.
72 ??? A great problem is that we don't have a good way how to determine
73 how many times we should unroll the loop; the experiments I have made
74 showed that this choice may affect performance in order of several %.
77 /* Information about induction variables to split. */
79 struct iv_to_split
81 rtx_insn *insn; /* The insn in that the induction variable occurs. */
82 rtx orig_var; /* The variable (register) for the IV before split. */
83 rtx base_var; /* The variable on that the values in the further
84 iterations are based. */
85 rtx step; /* Step of the induction variable. */
86 struct iv_to_split *next; /* Next entry in walking order. */
89 /* Information about accumulators to expand. */
91 struct var_to_expand
93 rtx_insn *insn; /* The insn in that the variable expansion occurs. */
94 rtx reg; /* The accumulator which is expanded. */
95 vec<rtx> var_expansions; /* The copies of the accumulator which is expanded. */
96 struct var_to_expand *next; /* Next entry in walking order. */
97 enum rtx_code op; /* The type of the accumulation - addition, subtraction
98 or multiplication. */
99 int expansion_count; /* Count the number of expansions generated so far. */
100 int reuse_expansion; /* The expansion we intend to reuse to expand
101 the accumulator. If REUSE_EXPANSION is 0 reuse
102 the original accumulator. Else use
103 var_expansions[REUSE_EXPANSION - 1]. */
106 /* Hashtable helper for iv_to_split. */
108 struct iv_split_hasher : free_ptr_hash <iv_to_split>
110 static inline hashval_t hash (const iv_to_split *);
111 static inline bool equal (const iv_to_split *, const iv_to_split *);
115 /* A hash function for information about insns to split. */
117 inline hashval_t
118 iv_split_hasher::hash (const iv_to_split *ivts)
120 return (hashval_t) INSN_UID (ivts->insn);
123 /* An equality functions for information about insns to split. */
125 inline bool
126 iv_split_hasher::equal (const iv_to_split *i1, const iv_to_split *i2)
128 return i1->insn == i2->insn;
131 /* Hashtable helper for iv_to_split. */
133 struct var_expand_hasher : free_ptr_hash <var_to_expand>
135 static inline hashval_t hash (const var_to_expand *);
136 static inline bool equal (const var_to_expand *, const var_to_expand *);
139 /* Return a hash for VES. */
141 inline hashval_t
142 var_expand_hasher::hash (const var_to_expand *ves)
144 return (hashval_t) INSN_UID (ves->insn);
147 /* Return true if I1 and I2 refer to the same instruction. */
149 inline bool
150 var_expand_hasher::equal (const var_to_expand *i1, const var_to_expand *i2)
152 return i1->insn == i2->insn;
155 /* Information about optimization applied in
156 the unrolled loop. */
158 struct opt_info
160 hash_table<iv_split_hasher> *insns_to_split; /* A hashtable of insns to
161 split. */
162 struct iv_to_split *iv_to_split_head; /* The first iv to split. */
163 struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list. */
164 hash_table<var_expand_hasher> *insns_with_var_to_expand; /* A hashtable of
165 insns with accumulators to expand. */
166 struct var_to_expand *var_to_expand_head; /* The first var to expand. */
167 struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list. */
168 unsigned first_new_block; /* The first basic block that was
169 duplicated. */
170 basic_block loop_exit; /* The loop exit basic block. */
171 basic_block loop_preheader; /* The loop preheader basic block. */
174 static void decide_unroll_stupid (struct loop *, int);
175 static void decide_unroll_constant_iterations (struct loop *, int);
176 static void decide_unroll_runtime_iterations (struct loop *, int);
177 static void unroll_loop_stupid (struct loop *);
178 static void decide_unrolling (int);
179 static void unroll_loop_constant_iterations (struct loop *);
180 static void unroll_loop_runtime_iterations (struct loop *);
181 static struct opt_info *analyze_insns_in_loop (struct loop *);
182 static void opt_info_start_duplication (struct opt_info *);
183 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
184 static void free_opt_info (struct opt_info *);
185 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx_insn *);
186 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx, int *);
187 static struct iv_to_split *analyze_iv_to_split_insn (rtx_insn *);
188 static void expand_var_during_unrolling (struct var_to_expand *, rtx_insn *);
189 static void insert_var_expansion_initialization (struct var_to_expand *,
190 basic_block);
191 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
192 basic_block);
193 static rtx get_expansion (struct var_to_expand *);
195 /* Emit a message summarizing the unroll that will be
196 performed for LOOP, along with the loop's location LOCUS, if
197 appropriate given the dump or -fopt-info settings. */
199 static void
200 report_unroll (struct loop *loop, location_t locus)
202 int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;
204 if (loop->lpt_decision.decision == LPT_NONE)
205 return;
207 if (!dump_enabled_p ())
208 return;
210 dump_printf_loc (report_flags, locus,
211 "loop unrolled %d times",
212 loop->lpt_decision.times);
213 if (profile_info)
214 dump_printf (report_flags,
215 " (header execution count %d)",
216 (int)loop->header->count);
218 dump_printf (report_flags, "\n");
221 /* Decide whether unroll loops and how much. */
222 static void
223 decide_unrolling (int flags)
225 struct loop *loop;
227 /* Scan the loops, inner ones first. */
228 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
230 loop->lpt_decision.decision = LPT_NONE;
231 location_t locus = get_loop_location (loop);
233 if (dump_enabled_p ())
234 dump_printf_loc (TDF_RTL, locus,
235 ";; *** Considering loop %d at BB %d for "
236 "unrolling ***\n",
237 loop->num, loop->header->index);
239 /* Do not peel cold areas. */
240 if (optimize_loop_for_size_p (loop))
242 if (dump_file)
243 fprintf (dump_file, ";; Not considering loop, cold area\n");
244 continue;
247 /* Can the loop be manipulated? */
248 if (!can_duplicate_loop_p (loop))
250 if (dump_file)
251 fprintf (dump_file,
252 ";; Not considering loop, cannot duplicate\n");
253 continue;
256 /* Skip non-innermost loops. */
257 if (loop->inner)
259 if (dump_file)
260 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
261 continue;
264 loop->ninsns = num_loop_insns (loop);
265 loop->av_ninsns = average_num_loop_insns (loop);
267 /* Try transformations one by one in decreasing order of
268 priority. */
270 decide_unroll_constant_iterations (loop, flags);
271 if (loop->lpt_decision.decision == LPT_NONE)
272 decide_unroll_runtime_iterations (loop, flags);
273 if (loop->lpt_decision.decision == LPT_NONE)
274 decide_unroll_stupid (loop, flags);
276 report_unroll (loop, locus);
280 /* Unroll LOOPS. */
281 void
282 unroll_loops (int flags)
284 struct loop *loop;
285 bool changed = false;
287 /* Now decide rest of unrolling. */
288 decide_unrolling (flags);
290 /* Scan the loops, inner ones first. */
291 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
293 /* And perform the appropriate transformations. */
294 switch (loop->lpt_decision.decision)
296 case LPT_UNROLL_CONSTANT:
297 unroll_loop_constant_iterations (loop);
298 changed = true;
299 break;
300 case LPT_UNROLL_RUNTIME:
301 unroll_loop_runtime_iterations (loop);
302 changed = true;
303 break;
304 case LPT_UNROLL_STUPID:
305 unroll_loop_stupid (loop);
306 changed = true;
307 break;
308 case LPT_NONE:
309 break;
310 default:
311 gcc_unreachable ();
315 if (changed)
317 calculate_dominance_info (CDI_DOMINATORS);
318 fix_loop_structure (NULL);
321 iv_analysis_done ();
324 /* Check whether exit of the LOOP is at the end of loop body. */
326 static bool
327 loop_exit_at_end_p (struct loop *loop)
329 struct niter_desc *desc = get_simple_loop_desc (loop);
330 rtx_insn *insn;
332 /* We should never have conditional in latch block. */
333 gcc_assert (desc->in_edge->dest != loop->header);
335 if (desc->in_edge->dest != loop->latch)
336 return false;
338 /* Check that the latch is empty. */
339 FOR_BB_INSNS (loop->latch, insn)
341 if (INSN_P (insn) && active_insn_p (insn))
342 return false;
345 return true;
348 /* Decide whether to unroll LOOP iterating constant number of times
349 and how much. */
351 static void
352 decide_unroll_constant_iterations (struct loop *loop, int flags)
354 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
355 struct niter_desc *desc;
356 widest_int iterations;
358 if (!(flags & UAP_UNROLL))
360 /* We were not asked to, just return back silently. */
361 return;
364 if (dump_file)
365 fprintf (dump_file,
366 "\n;; Considering unrolling loop with constant "
367 "number of iterations\n");
369 /* nunroll = total number of copies of the original loop body in
370 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
371 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
372 nunroll_by_av
373 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
374 if (nunroll > nunroll_by_av)
375 nunroll = nunroll_by_av;
376 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
377 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
379 if (targetm.loop_unroll_adjust)
380 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
382 /* Skip big loops. */
383 if (nunroll <= 1)
385 if (dump_file)
386 fprintf (dump_file, ";; Not considering loop, is too big\n");
387 return;
390 /* Check for simple loops. */
391 desc = get_simple_loop_desc (loop);
393 /* Check number of iterations. */
394 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
396 if (dump_file)
397 fprintf (dump_file,
398 ";; Unable to prove that the loop iterates constant times\n");
399 return;
402 /* Check whether the loop rolls enough to consider.
403 Consult also loop bounds and profile; in the case the loop has more
404 than one exit it may well loop less than determined maximal number
405 of iterations. */
406 if (desc->niter < 2 * nunroll
407 || ((get_estimated_loop_iterations (loop, &iterations)
408 || get_max_loop_iterations (loop, &iterations))
409 && wi::ltu_p (iterations, 2 * nunroll)))
411 if (dump_file)
412 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
413 return;
416 /* Success; now compute number of iterations to unroll. We alter
417 nunroll so that as few as possible copies of loop body are
418 necessary, while still not decreasing the number of unrollings
419 too much (at most by 1). */
420 best_copies = 2 * nunroll + 10;
422 i = 2 * nunroll + 2;
423 if (i - 1 >= desc->niter)
424 i = desc->niter - 2;
426 for (; i >= nunroll - 1; i--)
428 unsigned exit_mod = desc->niter % (i + 1);
430 if (!loop_exit_at_end_p (loop))
431 n_copies = exit_mod + i + 1;
432 else if (exit_mod != (unsigned) i
433 || desc->noloop_assumptions != NULL_RTX)
434 n_copies = exit_mod + i + 2;
435 else
436 n_copies = i + 1;
438 if (n_copies < best_copies)
440 best_copies = n_copies;
441 best_unroll = i;
445 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
446 loop->lpt_decision.times = best_unroll;
449 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
450 The transformation does this:
452 for (i = 0; i < 102; i++)
453 body;
455 ==> (LOOP->LPT_DECISION.TIMES == 3)
457 i = 0;
458 body; i++;
459 body; i++;
460 while (i < 102)
462 body; i++;
463 body; i++;
464 body; i++;
465 body; i++;
468 static void
469 unroll_loop_constant_iterations (struct loop *loop)
471 unsigned HOST_WIDE_INT niter;
472 unsigned exit_mod;
473 sbitmap wont_exit;
474 unsigned i;
475 edge e;
476 unsigned max_unroll = loop->lpt_decision.times;
477 struct niter_desc *desc = get_simple_loop_desc (loop);
478 bool exit_at_end = loop_exit_at_end_p (loop);
479 struct opt_info *opt_info = NULL;
480 bool ok;
482 niter = desc->niter;
484 /* Should not get here (such loop should be peeled instead). */
485 gcc_assert (niter > max_unroll + 1);
487 exit_mod = niter % (max_unroll + 1);
489 wont_exit = sbitmap_alloc (max_unroll + 1);
490 bitmap_ones (wont_exit);
492 auto_vec<edge> remove_edges;
493 if (flag_split_ivs_in_unroller
494 || flag_variable_expansion_in_unroller)
495 opt_info = analyze_insns_in_loop (loop);
497 if (!exit_at_end)
499 /* The exit is not at the end of the loop; leave exit test
500 in the first copy, so that the loops that start with test
501 of exit condition have continuous body after unrolling. */
503 if (dump_file)
504 fprintf (dump_file, ";; Condition at beginning of loop.\n");
506 /* Peel exit_mod iterations. */
507 bitmap_clear_bit (wont_exit, 0);
508 if (desc->noloop_assumptions)
509 bitmap_clear_bit (wont_exit, 1);
511 if (exit_mod)
513 opt_info_start_duplication (opt_info);
514 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
515 exit_mod,
516 wont_exit, desc->out_edge,
517 &remove_edges,
518 DLTHE_FLAG_UPDATE_FREQ
519 | (opt_info && exit_mod > 1
520 ? DLTHE_RECORD_COPY_NUMBER
521 : 0));
522 gcc_assert (ok);
524 if (opt_info && exit_mod > 1)
525 apply_opt_in_copies (opt_info, exit_mod, false, false);
527 desc->noloop_assumptions = NULL_RTX;
528 desc->niter -= exit_mod;
529 loop->nb_iterations_upper_bound -= exit_mod;
530 if (loop->any_estimate
531 && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
532 loop->nb_iterations_estimate -= exit_mod;
533 else
534 loop->any_estimate = false;
537 bitmap_set_bit (wont_exit, 1);
539 else
541 /* Leave exit test in last copy, for the same reason as above if
542 the loop tests the condition at the end of loop body. */
544 if (dump_file)
545 fprintf (dump_file, ";; Condition at end of loop.\n");
547 /* We know that niter >= max_unroll + 2; so we do not need to care of
548 case when we would exit before reaching the loop. So just peel
549 exit_mod + 1 iterations. */
550 if (exit_mod != max_unroll
551 || desc->noloop_assumptions)
553 bitmap_clear_bit (wont_exit, 0);
554 if (desc->noloop_assumptions)
555 bitmap_clear_bit (wont_exit, 1);
557 opt_info_start_duplication (opt_info);
558 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
559 exit_mod + 1,
560 wont_exit, desc->out_edge,
561 &remove_edges,
562 DLTHE_FLAG_UPDATE_FREQ
563 | (opt_info && exit_mod > 0
564 ? DLTHE_RECORD_COPY_NUMBER
565 : 0));
566 gcc_assert (ok);
568 if (opt_info && exit_mod > 0)
569 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
571 desc->niter -= exit_mod + 1;
572 loop->nb_iterations_upper_bound -= exit_mod + 1;
573 if (loop->any_estimate
574 && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
575 loop->nb_iterations_estimate -= exit_mod + 1;
576 else
577 loop->any_estimate = false;
578 desc->noloop_assumptions = NULL_RTX;
580 bitmap_set_bit (wont_exit, 0);
581 bitmap_set_bit (wont_exit, 1);
584 bitmap_clear_bit (wont_exit, max_unroll);
587 /* Now unroll the loop. */
589 opt_info_start_duplication (opt_info);
590 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
591 max_unroll,
592 wont_exit, desc->out_edge,
593 &remove_edges,
594 DLTHE_FLAG_UPDATE_FREQ
595 | (opt_info
596 ? DLTHE_RECORD_COPY_NUMBER
597 : 0));
598 gcc_assert (ok);
600 if (opt_info)
602 apply_opt_in_copies (opt_info, max_unroll, true, true);
603 free_opt_info (opt_info);
606 free (wont_exit);
608 if (exit_at_end)
610 basic_block exit_block = get_bb_copy (desc->in_edge->src);
611 /* Find a new in and out edge; they are in the last copy we have made. */
613 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
615 desc->out_edge = EDGE_SUCC (exit_block, 0);
616 desc->in_edge = EDGE_SUCC (exit_block, 1);
618 else
620 desc->out_edge = EDGE_SUCC (exit_block, 1);
621 desc->in_edge = EDGE_SUCC (exit_block, 0);
625 desc->niter /= max_unroll + 1;
626 loop->nb_iterations_upper_bound
627 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
628 if (loop->any_estimate)
629 loop->nb_iterations_estimate
630 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
631 desc->niter_expr = GEN_INT (desc->niter);
633 /* Remove the edges. */
634 FOR_EACH_VEC_ELT (remove_edges, i, e)
635 remove_path (e);
637 if (dump_file)
638 fprintf (dump_file,
639 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
640 max_unroll, num_loop_insns (loop));
643 /* Decide whether to unroll LOOP iterating runtime computable number of times
644 and how much. */
645 static void
646 decide_unroll_runtime_iterations (struct loop *loop, int flags)
648 unsigned nunroll, nunroll_by_av, i;
649 struct niter_desc *desc;
650 widest_int iterations;
652 if (!(flags & UAP_UNROLL))
654 /* We were not asked to, just return back silently. */
655 return;
658 if (dump_file)
659 fprintf (dump_file,
660 "\n;; Considering unrolling loop with runtime "
661 "computable number of iterations\n");
663 /* nunroll = total number of copies of the original loop body in
664 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
665 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
666 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
667 if (nunroll > nunroll_by_av)
668 nunroll = nunroll_by_av;
669 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
670 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
672 if (targetm.loop_unroll_adjust)
673 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
675 /* Skip big loops. */
676 if (nunroll <= 1)
678 if (dump_file)
679 fprintf (dump_file, ";; Not considering loop, is too big\n");
680 return;
683 /* Check for simple loops. */
684 desc = get_simple_loop_desc (loop);
686 /* Check simpleness. */
687 if (!desc->simple_p || desc->assumptions)
689 if (dump_file)
690 fprintf (dump_file,
691 ";; Unable to prove that the number of iterations "
692 "can be counted in runtime\n");
693 return;
696 if (desc->const_iter)
698 if (dump_file)
699 fprintf (dump_file, ";; Loop iterates constant times\n");
700 return;
703 /* Check whether the loop rolls. */
704 if ((get_estimated_loop_iterations (loop, &iterations)
705 || get_max_loop_iterations (loop, &iterations))
706 && wi::ltu_p (iterations, 2 * nunroll))
708 if (dump_file)
709 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
710 return;
713 /* Success; now force nunroll to be power of 2, as we are unable to
714 cope with overflows in computation of number of iterations. */
715 for (i = 1; 2 * i <= nunroll; i *= 2)
716 continue;
718 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
719 loop->lpt_decision.times = i - 1;
722 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
723 returns the newly created block. If INSNS is NULL_RTX, nothing is changed
724 and NULL is returned instead. */
726 basic_block
727 split_edge_and_insert (edge e, rtx_insn *insns)
729 basic_block bb;
731 if (!insns)
732 return NULL;
733 bb = split_edge (e);
734 emit_insn_after (insns, BB_END (bb));
736 /* ??? We used to assume that INSNS can contain control flow insns, and
737 that we had to try to find sub basic blocks in BB to maintain a valid
738 CFG. For this purpose we used to set the BB_SUPERBLOCK flag on BB
739 and call break_superblocks when going out of cfglayout mode. But it
740 turns out that this never happens; and that if it does ever happen,
741 the verify_flow_info at the end of the RTL loop passes would fail.
743 There are two reasons why we expected we could have control flow insns
744 in INSNS. The first is when a comparison has to be done in parts, and
745 the second is when the number of iterations is computed for loops with
746 the number of iterations known at runtime. In both cases, test cases
747 to get control flow in INSNS appear to be impossible to construct:
749 * If do_compare_rtx_and_jump needs several branches to do comparison
750 in a mode that needs comparison by parts, we cannot analyze the
751 number of iterations of the loop, and we never get to unrolling it.
753 * The code in expand_divmod that was suspected to cause creation of
754 branching code seems to be only accessed for signed division. The
755 divisions used by # of iterations analysis are always unsigned.
756 Problems might arise on architectures that emits branching code
757 for some operations that may appear in the unroller (especially
758 for division), but we have no such architectures.
760 Considering all this, it was decided that we should for now assume
761 that INSNS can in theory contain control flow insns, but in practice
762 it never does. So we don't handle the theoretical case, and should
763 a real failure ever show up, we have a pretty good clue for how to
764 fix it. */
766 return bb;
769 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
770 true, with probability PROB. If CINSN is not NULL, it is the insn to copy
771 in order to create a jump. */
773 static rtx_insn *
774 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp,
775 rtx_code_label *label, int prob, rtx_insn *cinsn)
777 rtx_insn *seq;
778 rtx_jump_insn *jump;
779 rtx cond;
780 machine_mode mode;
782 mode = GET_MODE (op0);
783 if (mode == VOIDmode)
784 mode = GET_MODE (op1);
786 start_sequence ();
787 if (GET_MODE_CLASS (mode) == MODE_CC)
789 /* A hack -- there seems to be no easy generic way how to make a
790 conditional jump from a ccmode comparison. */
791 gcc_assert (cinsn);
792 cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
793 gcc_assert (GET_CODE (cond) == comp);
794 gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
795 gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
796 emit_jump_insn (copy_insn (PATTERN (cinsn)));
797 jump = as_a <rtx_jump_insn *> (get_last_insn ());
798 JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
799 LABEL_NUSES (JUMP_LABEL (jump))++;
800 redirect_jump (jump, label, 0);
802 else
804 gcc_assert (!cinsn);
806 op0 = force_operand (op0, NULL_RTX);
807 op1 = force_operand (op1, NULL_RTX);
808 do_compare_rtx_and_jump (op0, op1, comp, 0,
809 mode, NULL_RTX, NULL, label, -1);
810 jump = as_a <rtx_jump_insn *> (get_last_insn ());
811 jump->set_jump_target (label);
812 LABEL_NUSES (label)++;
814 add_int_reg_note (jump, REG_BR_PROB, prob);
816 seq = get_insns ();
817 end_sequence ();
819 return seq;
822 /* Unroll LOOP for which we are able to count number of iterations in runtime
823 LOOP->LPT_DECISION.TIMES times. The transformation does this (with some
824 extra care for case n < 0):
826 for (i = 0; i < n; i++)
827 body;
829 ==> (LOOP->LPT_DECISION.TIMES == 3)
831 i = 0;
832 mod = n % 4;
834 switch (mod)
836 case 3:
837 body; i++;
838 case 2:
839 body; i++;
840 case 1:
841 body; i++;
842 case 0: ;
845 while (i < n)
847 body; i++;
848 body; i++;
849 body; i++;
850 body; i++;
853 static void
854 unroll_loop_runtime_iterations (struct loop *loop)
856 rtx old_niter, niter, tmp;
857 rtx_insn *init_code, *branch_code;
858 unsigned i, j, p;
859 basic_block preheader, *body, swtch, ezc_swtch;
860 sbitmap wont_exit;
861 int may_exit_copy;
862 unsigned n_peel;
863 edge e;
864 bool extra_zero_check, last_may_exit;
865 unsigned max_unroll = loop->lpt_decision.times;
866 struct niter_desc *desc = get_simple_loop_desc (loop);
867 bool exit_at_end = loop_exit_at_end_p (loop);
868 struct opt_info *opt_info = NULL;
869 bool ok;
871 if (flag_split_ivs_in_unroller
872 || flag_variable_expansion_in_unroller)
873 opt_info = analyze_insns_in_loop (loop);
875 /* Remember blocks whose dominators will have to be updated. */
876 auto_vec<basic_block> dom_bbs;
878 body = get_loop_body (loop);
879 for (i = 0; i < loop->num_nodes; i++)
881 vec<basic_block> ldom;
882 basic_block bb;
884 ldom = get_dominated_by (CDI_DOMINATORS, body[i]);
885 FOR_EACH_VEC_ELT (ldom, j, bb)
886 if (!flow_bb_inside_loop_p (loop, bb))
887 dom_bbs.safe_push (bb);
889 ldom.release ();
891 free (body);
893 if (!exit_at_end)
895 /* Leave exit in first copy (for explanation why see comment in
896 unroll_loop_constant_iterations). */
897 may_exit_copy = 0;
898 n_peel = max_unroll - 1;
899 extra_zero_check = true;
900 last_may_exit = false;
902 else
904 /* Leave exit in last copy (for explanation why see comment in
905 unroll_loop_constant_iterations). */
906 may_exit_copy = max_unroll;
907 n_peel = max_unroll;
908 extra_zero_check = false;
909 last_may_exit = true;
912 /* Get expression for number of iterations. */
913 start_sequence ();
914 old_niter = niter = gen_reg_rtx (desc->mode);
915 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
916 if (tmp != niter)
917 emit_move_insn (niter, tmp);
919 /* Count modulo by ANDing it with max_unroll; we use the fact that
920 the number of unrollings is a power of two, and thus this is correct
921 even if there is overflow in the computation. */
922 niter = expand_simple_binop (desc->mode, AND,
923 niter, gen_int_mode (max_unroll, desc->mode),
924 NULL_RTX, 0, OPTAB_LIB_WIDEN);
926 init_code = get_insns ();
927 end_sequence ();
928 unshare_all_rtl_in_chain (init_code);
930 /* Precondition the loop. */
931 split_edge_and_insert (loop_preheader_edge (loop), init_code);
933 auto_vec<edge> remove_edges;
935 wont_exit = sbitmap_alloc (max_unroll + 2);
937 /* Peel the first copy of loop body (almost always we must leave exit test
938 here; the only exception is when we have extra zero check and the number
939 of iterations is reliable. Also record the place of (possible) extra
940 zero check. */
941 bitmap_clear (wont_exit);
942 if (extra_zero_check
943 && !desc->noloop_assumptions)
944 bitmap_set_bit (wont_exit, 1);
945 ezc_swtch = loop_preheader_edge (loop)->src;
946 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
947 1, wont_exit, desc->out_edge,
948 &remove_edges,
949 DLTHE_FLAG_UPDATE_FREQ);
950 gcc_assert (ok);
952 /* Record the place where switch will be built for preconditioning. */
953 swtch = split_edge (loop_preheader_edge (loop));
955 for (i = 0; i < n_peel; i++)
957 /* Peel the copy. */
958 bitmap_clear (wont_exit);
959 if (i != n_peel - 1 || !last_may_exit)
960 bitmap_set_bit (wont_exit, 1);
961 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
962 1, wont_exit, desc->out_edge,
963 &remove_edges,
964 DLTHE_FLAG_UPDATE_FREQ);
965 gcc_assert (ok);
967 /* Create item for switch. */
968 j = n_peel - i - (extra_zero_check ? 0 : 1);
969 p = REG_BR_PROB_BASE / (i + 2);
971 preheader = split_edge (loop_preheader_edge (loop));
972 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
973 block_label (preheader), p,
974 NULL);
976 /* We rely on the fact that the compare and jump cannot be optimized out,
977 and hence the cfg we create is correct. */
978 gcc_assert (branch_code != NULL_RTX);
980 swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
981 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
982 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
983 e = make_edge (swtch, preheader,
984 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
985 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
986 e->probability = p;
989 if (extra_zero_check)
991 /* Add branch for zero iterations. */
992 p = REG_BR_PROB_BASE / (max_unroll + 1);
993 swtch = ezc_swtch;
994 preheader = split_edge (loop_preheader_edge (loop));
995 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
996 block_label (preheader), p,
997 NULL);
998 gcc_assert (branch_code != NULL_RTX);
1000 swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1001 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1002 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1003 e = make_edge (swtch, preheader,
1004 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1005 e->count = RDIV (preheader->count * REG_BR_PROB_BASE, p);
1006 e->probability = p;
1009 /* Recount dominators for outer blocks. */
1010 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1012 /* And unroll loop. */
1014 bitmap_ones (wont_exit);
1015 bitmap_clear_bit (wont_exit, may_exit_copy);
1016 opt_info_start_duplication (opt_info);
1018 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1019 max_unroll,
1020 wont_exit, desc->out_edge,
1021 &remove_edges,
1022 DLTHE_FLAG_UPDATE_FREQ
1023 | (opt_info
1024 ? DLTHE_RECORD_COPY_NUMBER
1025 : 0));
1026 gcc_assert (ok);
1028 if (opt_info)
1030 apply_opt_in_copies (opt_info, max_unroll, true, true);
1031 free_opt_info (opt_info);
1034 free (wont_exit);
1036 if (exit_at_end)
1038 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1039 /* Find a new in and out edge; they are in the last copy we have
1040 made. */
1042 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1044 desc->out_edge = EDGE_SUCC (exit_block, 0);
1045 desc->in_edge = EDGE_SUCC (exit_block, 1);
1047 else
1049 desc->out_edge = EDGE_SUCC (exit_block, 1);
1050 desc->in_edge = EDGE_SUCC (exit_block, 0);
1054 /* Remove the edges. */
1055 FOR_EACH_VEC_ELT (remove_edges, i, e)
1056 remove_path (e);
1058 /* We must be careful when updating the number of iterations due to
1059 preconditioning and the fact that the value must be valid at entry
1060 of the loop. After passing through the above code, we see that
1061 the correct new number of iterations is this: */
1062 gcc_assert (!desc->const_iter);
1063 desc->niter_expr =
1064 simplify_gen_binary (UDIV, desc->mode, old_niter,
1065 gen_int_mode (max_unroll + 1, desc->mode));
1066 loop->nb_iterations_upper_bound
1067 = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1068 if (loop->any_estimate)
1069 loop->nb_iterations_estimate
1070 = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1071 if (exit_at_end)
1073 desc->niter_expr =
1074 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1075 desc->noloop_assumptions = NULL_RTX;
1076 --loop->nb_iterations_upper_bound;
1077 if (loop->any_estimate
1078 && loop->nb_iterations_estimate != 0)
1079 --loop->nb_iterations_estimate;
1080 else
1081 loop->any_estimate = false;
1084 if (dump_file)
1085 fprintf (dump_file,
1086 ";; Unrolled loop %d times, counting # of iterations "
1087 "in runtime, %i insns\n",
1088 max_unroll, num_loop_insns (loop));
1091 /* Decide whether to unroll LOOP stupidly and how much. */
1092 static void
1093 decide_unroll_stupid (struct loop *loop, int flags)
1095 unsigned nunroll, nunroll_by_av, i;
1096 struct niter_desc *desc;
1097 widest_int iterations;
1099 if (!(flags & UAP_UNROLL_ALL))
1101 /* We were not asked to, just return back silently. */
1102 return;
1105 if (dump_file)
1106 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1108 /* nunroll = total number of copies of the original loop body in
1109 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1110 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1111 nunroll_by_av
1112 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1113 if (nunroll > nunroll_by_av)
1114 nunroll = nunroll_by_av;
1115 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1116 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1118 if (targetm.loop_unroll_adjust)
1119 nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1121 /* Skip big loops. */
1122 if (nunroll <= 1)
1124 if (dump_file)
1125 fprintf (dump_file, ";; Not considering loop, is too big\n");
1126 return;
1129 /* Check for simple loops. */
1130 desc = get_simple_loop_desc (loop);
1132 /* Check simpleness. */
1133 if (desc->simple_p && !desc->assumptions)
1135 if (dump_file)
1136 fprintf (dump_file, ";; The loop is simple\n");
1137 return;
1140 /* Do not unroll loops with branches inside -- it increases number
1141 of mispredicts.
1142 TODO: this heuristic needs tunning; call inside the loop body
1143 is also relatively good reason to not unroll. */
1144 if (num_loop_branches (loop) > 1)
1146 if (dump_file)
1147 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1148 return;
1151 /* Check whether the loop rolls. */
1152 if ((get_estimated_loop_iterations (loop, &iterations)
1153 || get_max_loop_iterations (loop, &iterations))
1154 && wi::ltu_p (iterations, 2 * nunroll))
1156 if (dump_file)
1157 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1158 return;
1161 /* Success. Now force nunroll to be power of 2, as it seems that this
1162 improves results (partially because of better alignments, partially
1163 because of some dark magic). */
1164 for (i = 1; 2 * i <= nunroll; i *= 2)
1165 continue;
1167 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1168 loop->lpt_decision.times = i - 1;
1171 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation does this:
1173 while (cond)
1174 body;
1176 ==> (LOOP->LPT_DECISION.TIMES == 3)
1178 while (cond)
1180 body;
1181 if (!cond) break;
1182 body;
1183 if (!cond) break;
1184 body;
1185 if (!cond) break;
1186 body;
1189 static void
1190 unroll_loop_stupid (struct loop *loop)
1192 sbitmap wont_exit;
1193 unsigned nunroll = loop->lpt_decision.times;
1194 struct niter_desc *desc = get_simple_loop_desc (loop);
1195 struct opt_info *opt_info = NULL;
1196 bool ok;
1198 if (flag_split_ivs_in_unroller
1199 || flag_variable_expansion_in_unroller)
1200 opt_info = analyze_insns_in_loop (loop);
1203 wont_exit = sbitmap_alloc (nunroll + 1);
1204 bitmap_clear (wont_exit);
1205 opt_info_start_duplication (opt_info);
1207 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1208 nunroll, wont_exit,
1209 NULL, NULL,
1210 DLTHE_FLAG_UPDATE_FREQ
1211 | (opt_info
1212 ? DLTHE_RECORD_COPY_NUMBER
1213 : 0));
1214 gcc_assert (ok);
1216 if (opt_info)
1218 apply_opt_in_copies (opt_info, nunroll, true, true);
1219 free_opt_info (opt_info);
1222 free (wont_exit);
1224 if (desc->simple_p)
1226 /* We indeed may get here provided that there are nontrivial assumptions
1227 for a loop to be really simple. We could update the counts, but the
1228 problem is that we are unable to decide which exit will be taken
1229 (not really true in case the number of iterations is constant,
1230 but no one will do anything with this information, so we do not
1231 worry about it). */
1232 desc->simple_p = false;
1235 if (dump_file)
1236 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1237 nunroll, num_loop_insns (loop));
1240 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1241 Set *DEBUG_USES to the number of debug insns that reference the
1242 variable. */
1244 static bool
1245 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg,
1246 int *debug_uses)
1248 basic_block *body, bb;
1249 unsigned i;
1250 int count_ref = 0;
1251 rtx_insn *insn;
1253 body = get_loop_body (loop);
1254 for (i = 0; i < loop->num_nodes; i++)
1256 bb = body[i];
1258 FOR_BB_INSNS (bb, insn)
1259 if (!rtx_referenced_p (reg, insn))
1260 continue;
1261 else if (DEBUG_INSN_P (insn))
1262 ++*debug_uses;
1263 else if (++count_ref > 1)
1264 break;
1266 free (body);
1267 return (count_ref == 1);
1270 /* Reset the DEBUG_USES debug insns in LOOP that reference REG. */
1272 static void
1273 reset_debug_uses_in_loop (struct loop *loop, rtx reg, int debug_uses)
1275 basic_block *body, bb;
1276 unsigned i;
1277 rtx_insn *insn;
1279 body = get_loop_body (loop);
1280 for (i = 0; debug_uses && i < loop->num_nodes; i++)
1282 bb = body[i];
1284 FOR_BB_INSNS (bb, insn)
1285 if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1286 continue;
1287 else
1289 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1290 gen_rtx_UNKNOWN_VAR_LOC (), 0);
1291 if (!--debug_uses)
1292 break;
1295 free (body);
1298 /* Determine whether INSN contains an accumulator
1299 which can be expanded into separate copies,
1300 one for each copy of the LOOP body.
1302 for (i = 0 ; i < n; i++)
1303 sum += a[i];
1307 sum += a[i]
1308 ....
1309 i = i+1;
1310 sum1 += a[i]
1311 ....
1312 i = i+1
1313 sum2 += a[i];
1314 ....
1316 Return NULL if INSN contains no opportunity for expansion of accumulator.
1317 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1318 information and return a pointer to it.
1321 static struct var_to_expand *
1322 analyze_insn_to_expand_var (struct loop *loop, rtx_insn *insn)
1324 rtx set, dest, src;
1325 struct var_to_expand *ves;
1326 unsigned accum_pos;
1327 enum rtx_code code;
1328 int debug_uses = 0;
1330 set = single_set (insn);
1331 if (!set)
1332 return NULL;
1334 dest = SET_DEST (set);
1335 src = SET_SRC (set);
1336 code = GET_CODE (src);
1338 if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1339 return NULL;
1341 if (FLOAT_MODE_P (GET_MODE (dest)))
1343 if (!flag_associative_math)
1344 return NULL;
1345 /* In the case of FMA, we're also changing the rounding. */
1346 if (code == FMA && !flag_unsafe_math_optimizations)
1347 return NULL;
1350 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1351 in MD. But if there is no optab to generate the insn, we can not
1352 perform the variable expansion. This can happen if an MD provides
1353 an insn but not a named pattern to generate it, for example to avoid
1354 producing code that needs additional mode switches like for x87/mmx.
1356 So we check have_insn_for which looks for an optab for the operation
1357 in SRC. If it doesn't exist, we can't perform the expansion even
1358 though INSN is valid. */
1359 if (!have_insn_for (code, GET_MODE (src)))
1360 return NULL;
1362 if (!REG_P (dest)
1363 && !(GET_CODE (dest) == SUBREG
1364 && REG_P (SUBREG_REG (dest))))
1365 return NULL;
1367 /* Find the accumulator use within the operation. */
1368 if (code == FMA)
1370 /* We only support accumulation via FMA in the ADD position. */
1371 if (!rtx_equal_p (dest, XEXP (src, 2)))
1372 return NULL;
1373 accum_pos = 2;
1375 else if (rtx_equal_p (dest, XEXP (src, 0)))
1376 accum_pos = 0;
1377 else if (rtx_equal_p (dest, XEXP (src, 1)))
1379 /* The method of expansion that we are using; which includes the
1380 initialization of the expansions with zero and the summation of
1381 the expansions at the end of the computation will yield wrong
1382 results for (x = something - x) thus avoid using it in that case. */
1383 if (code == MINUS)
1384 return NULL;
1385 accum_pos = 1;
1387 else
1388 return NULL;
1390 /* It must not otherwise be used. */
1391 if (code == FMA)
1393 if (rtx_referenced_p (dest, XEXP (src, 0))
1394 || rtx_referenced_p (dest, XEXP (src, 1)))
1395 return NULL;
1397 else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1398 return NULL;
1400 /* It must be used in exactly one insn. */
1401 if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1402 return NULL;
1404 if (dump_file)
1406 fprintf (dump_file, "\n;; Expanding Accumulator ");
1407 print_rtl (dump_file, dest);
1408 fprintf (dump_file, "\n");
1411 if (debug_uses)
1412 /* Instead of resetting the debug insns, we could replace each
1413 debug use in the loop with the sum or product of all expanded
1414 accummulators. Since we'll only know of all expansions at the
1415 end, we'd have to keep track of which vars_to_expand a debug
1416 insn in the loop references, take note of each copy of the
1417 debug insn during unrolling, and when it's all done, compute
1418 the sum or product of each variable and adjust the original
1419 debug insn and each copy thereof. What a pain! */
1420 reset_debug_uses_in_loop (loop, dest, debug_uses);
1422 /* Record the accumulator to expand. */
1423 ves = XNEW (struct var_to_expand);
1424 ves->insn = insn;
1425 ves->reg = copy_rtx (dest);
1426 ves->var_expansions.create (1);
1427 ves->next = NULL;
1428 ves->op = GET_CODE (src);
1429 ves->expansion_count = 0;
1430 ves->reuse_expansion = 0;
1431 return ves;
1434 /* Determine whether there is an induction variable in INSN that
1435 we would like to split during unrolling.
1437 I.e. replace
1439 i = i + 1;
1441 i = i + 1;
1443 i = i + 1;
1446 type chains by
1448 i0 = i + 1
1450 i = i0 + 1
1452 i = i0 + 2
1455 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1456 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1457 pointer to it. */
1459 static struct iv_to_split *
1460 analyze_iv_to_split_insn (rtx_insn *insn)
1462 rtx set, dest;
1463 struct rtx_iv iv;
1464 struct iv_to_split *ivts;
1465 bool ok;
1467 /* For now we just split the basic induction variables. Later this may be
1468 extended for example by selecting also addresses of memory references. */
1469 set = single_set (insn);
1470 if (!set)
1471 return NULL;
1473 dest = SET_DEST (set);
1474 if (!REG_P (dest))
1475 return NULL;
1477 if (!biv_p (insn, dest))
1478 return NULL;
1480 ok = iv_analyze_result (insn, dest, &iv);
1482 /* This used to be an assert under the assumption that if biv_p returns
1483 true that iv_analyze_result must also return true. However, that
1484 assumption is not strictly correct as evidenced by pr25569.
1486 Returning NULL when iv_analyze_result returns false is safe and
1487 avoids the problems in pr25569 until the iv_analyze_* routines
1488 can be fixed, which is apparently hard and time consuming
1489 according to their author. */
1490 if (! ok)
1491 return NULL;
1493 if (iv.step == const0_rtx
1494 || iv.mode != iv.extend_mode)
1495 return NULL;
1497 /* Record the insn to split. */
1498 ivts = XNEW (struct iv_to_split);
1499 ivts->insn = insn;
1500 ivts->orig_var = dest;
1501 ivts->base_var = NULL_RTX;
1502 ivts->step = iv.step;
1503 ivts->next = NULL;
1505 return ivts;
1508 /* Determines which of insns in LOOP can be optimized.
1509 Return a OPT_INFO struct with the relevant hash tables filled
1510 with all insns to be optimized. The FIRST_NEW_BLOCK field
1511 is undefined for the return value. */
1513 static struct opt_info *
1514 analyze_insns_in_loop (struct loop *loop)
1516 basic_block *body, bb;
1517 unsigned i;
1518 struct opt_info *opt_info = XCNEW (struct opt_info);
1519 rtx_insn *insn;
1520 struct iv_to_split *ivts = NULL;
1521 struct var_to_expand *ves = NULL;
1522 iv_to_split **slot1;
1523 var_to_expand **slot2;
1524 vec<edge> edges = get_loop_exit_edges (loop);
1525 edge exit;
1526 bool can_apply = false;
1528 iv_analysis_loop_init (loop);
1530 body = get_loop_body (loop);
1532 if (flag_split_ivs_in_unroller)
1534 opt_info->insns_to_split
1535 = new hash_table<iv_split_hasher> (5 * loop->num_nodes);
1536 opt_info->iv_to_split_head = NULL;
1537 opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1540 /* Record the loop exit bb and loop preheader before the unrolling. */
1541 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1543 if (edges.length () == 1)
1545 exit = edges[0];
1546 if (!(exit->flags & EDGE_COMPLEX))
1548 opt_info->loop_exit = split_edge (exit);
1549 can_apply = true;
1553 if (flag_variable_expansion_in_unroller
1554 && can_apply)
1556 opt_info->insns_with_var_to_expand
1557 = new hash_table<var_expand_hasher> (5 * loop->num_nodes);
1558 opt_info->var_to_expand_head = NULL;
1559 opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1562 for (i = 0; i < loop->num_nodes; i++)
1564 bb = body[i];
1565 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1566 continue;
1568 FOR_BB_INSNS (bb, insn)
1570 if (!INSN_P (insn))
1571 continue;
1573 if (opt_info->insns_to_split)
1574 ivts = analyze_iv_to_split_insn (insn);
1576 if (ivts)
1578 slot1 = opt_info->insns_to_split->find_slot (ivts, INSERT);
1579 gcc_assert (*slot1 == NULL);
1580 *slot1 = ivts;
1581 *opt_info->iv_to_split_tail = ivts;
1582 opt_info->iv_to_split_tail = &ivts->next;
1583 continue;
1586 if (opt_info->insns_with_var_to_expand)
1587 ves = analyze_insn_to_expand_var (loop, insn);
1589 if (ves)
1591 slot2 = opt_info->insns_with_var_to_expand->find_slot (ves, INSERT);
1592 gcc_assert (*slot2 == NULL);
1593 *slot2 = ves;
1594 *opt_info->var_to_expand_tail = ves;
1595 opt_info->var_to_expand_tail = &ves->next;
1600 edges.release ();
1601 free (body);
1602 return opt_info;
1605 /* Called just before loop duplication. Records start of duplicated area
1606 to OPT_INFO. */
1608 static void
1609 opt_info_start_duplication (struct opt_info *opt_info)
1611 if (opt_info)
1612 opt_info->first_new_block = last_basic_block_for_fn (cfun);
1615 /* Determine the number of iterations between initialization of the base
1616 variable and the current copy (N_COPY). N_COPIES is the total number
1617 of newly created copies. UNROLLING is true if we are unrolling
1618 (not peeling) the loop. */
1620 static unsigned
1621 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1623 if (unrolling)
1625 /* If we are unrolling, initialization is done in the original loop
1626 body (number 0). */
1627 return n_copy;
1629 else
1631 /* If we are peeling, the copy in that the initialization occurs has
1632 number 1. The original loop (number 0) is the last. */
1633 if (n_copy)
1634 return n_copy - 1;
1635 else
1636 return n_copies;
1640 /* Allocate basic variable for the induction variable chain. */
1642 static void
1643 allocate_basic_variable (struct iv_to_split *ivts)
1645 rtx expr = SET_SRC (single_set (ivts->insn));
1647 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1650 /* Insert initialization of basic variable of IVTS before INSN, taking
1651 the initial value from INSN. */
1653 static void
1654 insert_base_initialization (struct iv_to_split *ivts, rtx_insn *insn)
1656 rtx expr = copy_rtx (SET_SRC (single_set (insn)));
1657 rtx_insn *seq;
1659 start_sequence ();
1660 expr = force_operand (expr, ivts->base_var);
1661 if (expr != ivts->base_var)
1662 emit_move_insn (ivts->base_var, expr);
1663 seq = get_insns ();
1664 end_sequence ();
1666 emit_insn_before (seq, insn);
1669 /* Replace the use of induction variable described in IVTS in INSN
1670 by base variable + DELTA * step. */
1672 static void
1673 split_iv (struct iv_to_split *ivts, rtx_insn *insn, unsigned delta)
1675 rtx expr, *loc, incr, var;
1676 rtx_insn *seq;
1677 machine_mode mode = GET_MODE (ivts->base_var);
1678 rtx src, dest, set;
1680 /* Construct base + DELTA * step. */
1681 if (!delta)
1682 expr = ivts->base_var;
1683 else
1685 incr = simplify_gen_binary (MULT, mode,
1686 ivts->step, gen_int_mode (delta, mode));
1687 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1688 ivts->base_var, incr);
1691 /* Figure out where to do the replacement. */
1692 loc = &SET_SRC (single_set (insn));
1694 /* If we can make the replacement right away, we're done. */
1695 if (validate_change (insn, loc, expr, 0))
1696 return;
1698 /* Otherwise, force EXPR into a register and try again. */
1699 start_sequence ();
1700 var = gen_reg_rtx (mode);
1701 expr = force_operand (expr, var);
1702 if (expr != var)
1703 emit_move_insn (var, expr);
1704 seq = get_insns ();
1705 end_sequence ();
1706 emit_insn_before (seq, insn);
1708 if (validate_change (insn, loc, var, 0))
1709 return;
1711 /* The last chance. Try recreating the assignment in insn
1712 completely from scratch. */
1713 set = single_set (insn);
1714 gcc_assert (set);
1716 start_sequence ();
1717 *loc = var;
1718 src = copy_rtx (SET_SRC (set));
1719 dest = copy_rtx (SET_DEST (set));
1720 src = force_operand (src, dest);
1721 if (src != dest)
1722 emit_move_insn (dest, src);
1723 seq = get_insns ();
1724 end_sequence ();
1726 emit_insn_before (seq, insn);
1727 delete_insn (insn);
1731 /* Return one expansion of the accumulator recorded in struct VE. */
1733 static rtx
1734 get_expansion (struct var_to_expand *ve)
1736 rtx reg;
1738 if (ve->reuse_expansion == 0)
1739 reg = ve->reg;
1740 else
1741 reg = ve->var_expansions[ve->reuse_expansion - 1];
1743 if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
1744 ve->reuse_expansion = 0;
1745 else
1746 ve->reuse_expansion++;
1748 return reg;
1752 /* Given INSN replace the uses of the accumulator recorded in VE
1753 with a new register. */
1755 static void
1756 expand_var_during_unrolling (struct var_to_expand *ve, rtx_insn *insn)
1758 rtx new_reg, set;
1759 bool really_new_expansion = false;
1761 set = single_set (insn);
1762 gcc_assert (set);
1764 /* Generate a new register only if the expansion limit has not been
1765 reached. Else reuse an already existing expansion. */
1766 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1768 really_new_expansion = true;
1769 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1771 else
1772 new_reg = get_expansion (ve);
1774 validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
1775 if (apply_change_group ())
1776 if (really_new_expansion)
1778 ve->var_expansions.safe_push (new_reg);
1779 ve->expansion_count++;
1783 /* Initialize the variable expansions in loop preheader. PLACE is the
1784 loop-preheader basic block where the initialization of the
1785 expansions should take place. The expansions are initialized with
1786 (-0) when the operation is plus or minus to honor sign zero. This
1787 way we can prevent cases where the sign of the final result is
1788 effected by the sign of the expansion. Here is an example to
1789 demonstrate this:
1791 for (i = 0 ; i < n; i++)
1792 sum += something;
1796 sum += something
1797 ....
1798 i = i+1;
1799 sum1 += something
1800 ....
1801 i = i+1
1802 sum2 += something;
1803 ....
1805 When SUM is initialized with -zero and SOMETHING is also -zero; the
1806 final result of sum should be -zero thus the expansions sum1 and sum2
1807 should be initialized with -zero as well (otherwise we will get +zero
1808 as the final result). */
1810 static void
1811 insert_var_expansion_initialization (struct var_to_expand *ve,
1812 basic_block place)
1814 rtx_insn *seq;
1815 rtx var, zero_init;
1816 unsigned i;
1817 machine_mode mode = GET_MODE (ve->reg);
1818 bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
1820 if (ve->var_expansions.length () == 0)
1821 return;
1823 start_sequence ();
1824 switch (ve->op)
1826 case FMA:
1827 /* Note that we only accumulate FMA via the ADD operand. */
1828 case PLUS:
1829 case MINUS:
1830 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1832 if (honor_signed_zero_p)
1833 zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
1834 else
1835 zero_init = CONST0_RTX (mode);
1836 emit_move_insn (var, zero_init);
1838 break;
1840 case MULT:
1841 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1843 zero_init = CONST1_RTX (GET_MODE (var));
1844 emit_move_insn (var, zero_init);
1846 break;
1848 default:
1849 gcc_unreachable ();
1852 seq = get_insns ();
1853 end_sequence ();
1855 emit_insn_after (seq, BB_END (place));
1858 /* Combine the variable expansions at the loop exit. PLACE is the
1859 loop exit basic block where the summation of the expansions should
1860 take place. */
1862 static void
1863 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
1865 rtx sum = ve->reg;
1866 rtx expr, var;
1867 rtx_insn *seq, *insn;
1868 unsigned i;
1870 if (ve->var_expansions.length () == 0)
1871 return;
1873 start_sequence ();
1874 switch (ve->op)
1876 case FMA:
1877 /* Note that we only accumulate FMA via the ADD operand. */
1878 case PLUS:
1879 case MINUS:
1880 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1881 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
1882 break;
1884 case MULT:
1885 FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1886 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
1887 break;
1889 default:
1890 gcc_unreachable ();
1893 expr = force_operand (sum, ve->reg);
1894 if (expr != ve->reg)
1895 emit_move_insn (ve->reg, expr);
1896 seq = get_insns ();
1897 end_sequence ();
1899 insn = BB_HEAD (place);
1900 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1901 insn = NEXT_INSN (insn);
1903 emit_insn_after (seq, insn);
1906 /* Strip away REG_EQUAL notes for IVs we're splitting.
1908 Updating REG_EQUAL notes for IVs we split is tricky: We
1909 cannot tell until after unrolling, DF-rescanning, and liveness
1910 updating, whether an EQ_USE is reached by the split IV while
1911 the IV reg is still live. See PR55006.
1913 ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
1914 because RTL loop-iv requires us to defer rescanning insns and
1915 any notes attached to them. So resort to old techniques... */
1917 static void
1918 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx_insn *insn)
1920 struct iv_to_split *ivts;
1921 rtx note = find_reg_equal_equiv_note (insn);
1922 if (! note)
1923 return;
1924 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
1925 if (reg_mentioned_p (ivts->orig_var, note))
1927 remove_note (insn, note);
1928 return;
1932 /* Apply loop optimizations in loop copies using the
1933 data which gathered during the unrolling. Structure
1934 OPT_INFO record that data.
1936 UNROLLING is true if we unrolled (not peeled) the loop.
1937 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
1938 the loop (as it should happen in complete unrolling, but not in ordinary
1939 peeling of the loop). */
1941 static void
1942 apply_opt_in_copies (struct opt_info *opt_info,
1943 unsigned n_copies, bool unrolling,
1944 bool rewrite_original_loop)
1946 unsigned i, delta;
1947 basic_block bb, orig_bb;
1948 rtx_insn *insn, *orig_insn, *next;
1949 struct iv_to_split ivts_templ, *ivts;
1950 struct var_to_expand ve_templ, *ves;
1952 /* Sanity check -- we need to put initialization in the original loop
1953 body. */
1954 gcc_assert (!unrolling || rewrite_original_loop);
1956 /* Allocate the basic variables (i0). */
1957 if (opt_info->insns_to_split)
1958 for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
1959 allocate_basic_variable (ivts);
1961 for (i = opt_info->first_new_block;
1962 i < (unsigned) last_basic_block_for_fn (cfun);
1963 i++)
1965 bb = BASIC_BLOCK_FOR_FN (cfun, i);
1966 orig_bb = get_bb_original (bb);
1968 /* bb->aux holds position in copy sequence initialized by
1969 duplicate_loop_to_header_edge. */
1970 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
1971 unrolling);
1972 bb->aux = 0;
1973 orig_insn = BB_HEAD (orig_bb);
1974 FOR_BB_INSNS_SAFE (bb, insn, next)
1976 if (!INSN_P (insn)
1977 || (DEBUG_INSN_P (insn)
1978 && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
1979 continue;
1981 while (!INSN_P (orig_insn)
1982 || (DEBUG_INSN_P (orig_insn)
1983 && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
1984 == LABEL_DECL)))
1985 orig_insn = NEXT_INSN (orig_insn);
1987 ivts_templ.insn = orig_insn;
1988 ve_templ.insn = orig_insn;
1990 /* Apply splitting iv optimization. */
1991 if (opt_info->insns_to_split)
1993 maybe_strip_eq_note_for_split_iv (opt_info, insn);
1995 ivts = opt_info->insns_to_split->find (&ivts_templ);
1997 if (ivts)
1999 gcc_assert (GET_CODE (PATTERN (insn))
2000 == GET_CODE (PATTERN (orig_insn)));
2002 if (!delta)
2003 insert_base_initialization (ivts, insn);
2004 split_iv (ivts, insn, delta);
2007 /* Apply variable expansion optimization. */
2008 if (unrolling && opt_info->insns_with_var_to_expand)
2010 ves = (struct var_to_expand *)
2011 opt_info->insns_with_var_to_expand->find (&ve_templ);
2012 if (ves)
2014 gcc_assert (GET_CODE (PATTERN (insn))
2015 == GET_CODE (PATTERN (orig_insn)));
2016 expand_var_during_unrolling (ves, insn);
2019 orig_insn = NEXT_INSN (orig_insn);
2023 if (!rewrite_original_loop)
2024 return;
2026 /* Initialize the variable expansions in the loop preheader
2027 and take care of combining them at the loop exit. */
2028 if (opt_info->insns_with_var_to_expand)
2030 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2031 insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2032 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2033 combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2036 /* Rewrite also the original loop body. Find them as originals of the blocks
2037 in the last copied iteration, i.e. those that have
2038 get_bb_copy (get_bb_original (bb)) == bb. */
2039 for (i = opt_info->first_new_block;
2040 i < (unsigned) last_basic_block_for_fn (cfun);
2041 i++)
2043 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2044 orig_bb = get_bb_original (bb);
2045 if (get_bb_copy (orig_bb) != bb)
2046 continue;
2048 delta = determine_split_iv_delta (0, n_copies, unrolling);
2049 for (orig_insn = BB_HEAD (orig_bb);
2050 orig_insn != NEXT_INSN (BB_END (bb));
2051 orig_insn = next)
2053 next = NEXT_INSN (orig_insn);
2055 if (!INSN_P (orig_insn))
2056 continue;
2058 ivts_templ.insn = orig_insn;
2059 if (opt_info->insns_to_split)
2061 maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2063 ivts = (struct iv_to_split *)
2064 opt_info->insns_to_split->find (&ivts_templ);
2065 if (ivts)
2067 if (!delta)
2068 insert_base_initialization (ivts, orig_insn);
2069 split_iv (ivts, orig_insn, delta);
2070 continue;
2078 /* Release OPT_INFO. */
2080 static void
2081 free_opt_info (struct opt_info *opt_info)
2083 delete opt_info->insns_to_split;
2084 opt_info->insns_to_split = NULL;
2085 if (opt_info->insns_with_var_to_expand)
2087 struct var_to_expand *ves;
2089 for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2090 ves->var_expansions.release ();
2091 delete opt_info->insns_with_var_to_expand;
2092 opt_info->insns_with_var_to_expand = NULL;
2094 free (opt_info);