2013-09-04 Teresa Johnson <tejohnson@google.com>
[official-gcc.git] / gcc / tree-cfg.c
blobbc1e1ba90fcca0db090b93cef6a82133ab6ee25e
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "except.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
43 #include "target.h"
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
48 /* Local declarations. */
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity = 20;
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
66 static struct pointer_map_t *edge_to_cases;
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
72 static bitmap touched_switch_bbs;
74 /* CFG statistics. */
75 struct cfg_stats_d
77 long num_merged_labels;
80 static struct cfg_stats_d cfg_stats;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
88 location_t locus;
89 int discriminator;
92 /* Hashtable helpers. */
94 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
96 typedef locus_discrim_map value_type;
97 typedef locus_discrim_map compare_type;
98 static inline hashval_t hash (const value_type *);
99 static inline bool equal (const value_type *, const compare_type *);
102 /* Trivial hash function for a location_t. ITEM is a pointer to
103 a hash table entry that maps a location_t to a discriminator. */
105 inline hashval_t
106 locus_discrim_hasher::hash (const value_type *item)
108 return LOCATION_LINE (item->locus);
111 /* Equality function for the locus-to-discriminator map. A and B
112 point to the two hash table entries to compare. */
114 inline bool
115 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
117 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
120 static hash_table <locus_discrim_hasher> discriminator_per_locus;
122 /* Basic blocks and flowgraphs. */
123 static void make_blocks (gimple_seq);
124 static void factor_computed_gotos (void);
126 /* Edges. */
127 static void make_edges (void);
128 static void assign_discriminators (void);
129 static void make_cond_expr_edges (basic_block);
130 static void make_gimple_switch_edges (basic_block);
131 static void make_goto_expr_edges (basic_block);
132 static void make_gimple_asm_edges (basic_block);
133 static edge gimple_redirect_edge_and_branch (edge, basic_block);
134 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
135 static unsigned int split_critical_edges (void);
137 /* Various helpers. */
138 static inline bool stmt_starts_bb_p (gimple, gimple);
139 static int gimple_verify_flow_info (void);
140 static void gimple_make_forwarder_block (edge);
141 static gimple first_non_label_stmt (basic_block);
142 static bool verify_gimple_transaction (gimple);
144 /* Flowgraph optimization and cleanup. */
145 static void gimple_merge_blocks (basic_block, basic_block);
146 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
147 static void remove_bb (basic_block);
148 static edge find_taken_edge_computed_goto (basic_block, tree);
149 static edge find_taken_edge_cond_expr (basic_block, tree);
150 static edge find_taken_edge_switch_expr (basic_block, tree);
151 static tree find_case_label_for_value (gimple, tree);
153 void
154 init_empty_tree_cfg_for_function (struct function *fn)
156 /* Initialize the basic block array. */
157 init_flow (fn);
158 profile_status_for_function (fn) = PROFILE_ABSENT;
159 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
160 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
161 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
162 vec_safe_grow_cleared (basic_block_info_for_function (fn),
163 initial_cfg_capacity);
165 /* Build a mapping of labels to their associated blocks. */
166 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
167 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
168 initial_cfg_capacity);
170 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
171 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
172 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
173 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
175 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
176 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
177 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
178 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
181 void
182 init_empty_tree_cfg (void)
184 init_empty_tree_cfg_for_function (cfun);
187 /*---------------------------------------------------------------------------
188 Create basic blocks
189 ---------------------------------------------------------------------------*/
191 /* Entry point to the CFG builder for trees. SEQ is the sequence of
192 statements to be added to the flowgraph. */
194 static void
195 build_gimple_cfg (gimple_seq seq)
197 /* Register specific gimple functions. */
198 gimple_register_cfg_hooks ();
200 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
202 init_empty_tree_cfg ();
204 found_computed_goto = 0;
205 make_blocks (seq);
207 /* Computed gotos are hell to deal with, especially if there are
208 lots of them with a large number of destinations. So we factor
209 them to a common computed goto location before we build the
210 edge list. After we convert back to normal form, we will un-factor
211 the computed gotos since factoring introduces an unwanted jump. */
212 if (found_computed_goto)
213 factor_computed_gotos ();
215 /* Make sure there is always at least one block, even if it's empty. */
216 if (n_basic_blocks == NUM_FIXED_BLOCKS)
217 create_empty_bb (ENTRY_BLOCK_PTR);
219 /* Adjust the size of the array. */
220 if (basic_block_info->length () < (size_t) n_basic_blocks)
221 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
223 /* To speed up statement iterator walks, we first purge dead labels. */
224 cleanup_dead_labels ();
226 /* Group case nodes to reduce the number of edges.
227 We do this after cleaning up dead labels because otherwise we miss
228 a lot of obvious case merging opportunities. */
229 group_case_labels ();
231 /* Create the edges of the flowgraph. */
232 discriminator_per_locus.create (13);
233 make_edges ();
234 assign_discriminators ();
235 cleanup_dead_labels ();
236 discriminator_per_locus.dispose ();
239 static unsigned int
240 execute_build_cfg (void)
242 gimple_seq body = gimple_body (current_function_decl);
244 build_gimple_cfg (body);
245 gimple_set_body (current_function_decl, NULL);
246 if (dump_file && (dump_flags & TDF_DETAILS))
248 fprintf (dump_file, "Scope blocks:\n");
249 dump_scope_blocks (dump_file, dump_flags);
251 cleanup_tree_cfg ();
252 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
253 return 0;
256 namespace {
258 const pass_data pass_data_build_cfg =
260 GIMPLE_PASS, /* type */
261 "cfg", /* name */
262 OPTGROUP_NONE, /* optinfo_flags */
263 false, /* has_gate */
264 true, /* has_execute */
265 TV_TREE_CFG, /* tv_id */
266 PROP_gimple_leh, /* properties_required */
267 ( PROP_cfg | PROP_loops ), /* properties_provided */
268 0, /* properties_destroyed */
269 0, /* todo_flags_start */
270 TODO_verify_stmts, /* todo_flags_finish */
273 class pass_build_cfg : public gimple_opt_pass
275 public:
276 pass_build_cfg(gcc::context *ctxt)
277 : gimple_opt_pass(pass_data_build_cfg, ctxt)
280 /* opt_pass methods: */
281 unsigned int execute () { return execute_build_cfg (); }
283 }; // class pass_build_cfg
285 } // anon namespace
287 gimple_opt_pass *
288 make_pass_build_cfg (gcc::context *ctxt)
290 return new pass_build_cfg (ctxt);
294 /* Return true if T is a computed goto. */
296 static bool
297 computed_goto_p (gimple t)
299 return (gimple_code (t) == GIMPLE_GOTO
300 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
304 /* Search the CFG for any computed gotos. If found, factor them to a
305 common computed goto site. Also record the location of that site so
306 that we can un-factor the gotos after we have converted back to
307 normal form. */
309 static void
310 factor_computed_gotos (void)
312 basic_block bb;
313 tree factored_label_decl = NULL;
314 tree var = NULL;
315 gimple factored_computed_goto_label = NULL;
316 gimple factored_computed_goto = NULL;
318 /* We know there are one or more computed gotos in this function.
319 Examine the last statement in each basic block to see if the block
320 ends with a computed goto. */
322 FOR_EACH_BB (bb)
324 gimple_stmt_iterator gsi = gsi_last_bb (bb);
325 gimple last;
327 if (gsi_end_p (gsi))
328 continue;
330 last = gsi_stmt (gsi);
332 /* Ignore the computed goto we create when we factor the original
333 computed gotos. */
334 if (last == factored_computed_goto)
335 continue;
337 /* If the last statement is a computed goto, factor it. */
338 if (computed_goto_p (last))
340 gimple assignment;
342 /* The first time we find a computed goto we need to create
343 the factored goto block and the variable each original
344 computed goto will use for their goto destination. */
345 if (!factored_computed_goto)
347 basic_block new_bb = create_empty_bb (bb);
348 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
350 /* Create the destination of the factored goto. Each original
351 computed goto will put its desired destination into this
352 variable and jump to the label we create immediately
353 below. */
354 var = create_tmp_var (ptr_type_node, "gotovar");
356 /* Build a label for the new block which will contain the
357 factored computed goto. */
358 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
359 factored_computed_goto_label
360 = gimple_build_label (factored_label_decl);
361 gsi_insert_after (&new_gsi, factored_computed_goto_label,
362 GSI_NEW_STMT);
364 /* Build our new computed goto. */
365 factored_computed_goto = gimple_build_goto (var);
366 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
369 /* Copy the original computed goto's destination into VAR. */
370 assignment = gimple_build_assign (var, gimple_goto_dest (last));
371 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
373 /* And re-vector the computed goto to the new destination. */
374 gimple_goto_set_dest (last, factored_label_decl);
380 /* Build a flowgraph for the sequence of stmts SEQ. */
382 static void
383 make_blocks (gimple_seq seq)
385 gimple_stmt_iterator i = gsi_start (seq);
386 gimple stmt = NULL;
387 bool start_new_block = true;
388 bool first_stmt_of_seq = true;
389 basic_block bb = ENTRY_BLOCK_PTR;
391 while (!gsi_end_p (i))
393 gimple prev_stmt;
395 prev_stmt = stmt;
396 stmt = gsi_stmt (i);
398 /* If the statement starts a new basic block or if we have determined
399 in a previous pass that we need to create a new block for STMT, do
400 so now. */
401 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
403 if (!first_stmt_of_seq)
404 gsi_split_seq_before (&i, &seq);
405 bb = create_basic_block (seq, NULL, bb);
406 start_new_block = false;
409 /* Now add STMT to BB and create the subgraphs for special statement
410 codes. */
411 gimple_set_bb (stmt, bb);
413 if (computed_goto_p (stmt))
414 found_computed_goto = true;
416 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
417 next iteration. */
418 if (stmt_ends_bb_p (stmt))
420 /* If the stmt can make abnormal goto use a new temporary
421 for the assignment to the LHS. This makes sure the old value
422 of the LHS is available on the abnormal edge. Otherwise
423 we will end up with overlapping life-ranges for abnormal
424 SSA names. */
425 if (gimple_has_lhs (stmt)
426 && stmt_can_make_abnormal_goto (stmt)
427 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
429 tree lhs = gimple_get_lhs (stmt);
430 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
431 gimple s = gimple_build_assign (lhs, tmp);
432 gimple_set_location (s, gimple_location (stmt));
433 gimple_set_block (s, gimple_block (stmt));
434 gimple_set_lhs (stmt, tmp);
435 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
436 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
437 DECL_GIMPLE_REG_P (tmp) = 1;
438 gsi_insert_after (&i, s, GSI_SAME_STMT);
440 start_new_block = true;
443 gsi_next (&i);
444 first_stmt_of_seq = false;
449 /* Create and return a new empty basic block after bb AFTER. */
451 static basic_block
452 create_bb (void *h, void *e, basic_block after)
454 basic_block bb;
456 gcc_assert (!e);
458 /* Create and initialize a new basic block. Since alloc_block uses
459 GC allocation that clears memory to allocate a basic block, we do
460 not have to clear the newly allocated basic block here. */
461 bb = alloc_block ();
463 bb->index = last_basic_block;
464 bb->flags = BB_NEW;
465 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
467 /* Add the new block to the linked list of blocks. */
468 link_block (bb, after);
470 /* Grow the basic block array if needed. */
471 if ((size_t) last_basic_block == basic_block_info->length ())
473 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
474 vec_safe_grow_cleared (basic_block_info, new_size);
477 /* Add the newly created block to the array. */
478 SET_BASIC_BLOCK (last_basic_block, bb);
480 n_basic_blocks++;
481 last_basic_block++;
483 return bb;
487 /*---------------------------------------------------------------------------
488 Edge creation
489 ---------------------------------------------------------------------------*/
491 /* Fold COND_EXPR_COND of each COND_EXPR. */
493 void
494 fold_cond_expr_cond (void)
496 basic_block bb;
498 FOR_EACH_BB (bb)
500 gimple stmt = last_stmt (bb);
502 if (stmt && gimple_code (stmt) == GIMPLE_COND)
504 location_t loc = gimple_location (stmt);
505 tree cond;
506 bool zerop, onep;
508 fold_defer_overflow_warnings ();
509 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
510 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
511 if (cond)
513 zerop = integer_zerop (cond);
514 onep = integer_onep (cond);
516 else
517 zerop = onep = false;
519 fold_undefer_overflow_warnings (zerop || onep,
520 stmt,
521 WARN_STRICT_OVERFLOW_CONDITIONAL);
522 if (zerop)
523 gimple_cond_make_false (stmt);
524 else if (onep)
525 gimple_cond_make_true (stmt);
530 /* Join all the blocks in the flowgraph. */
532 static void
533 make_edges (void)
535 basic_block bb;
536 struct omp_region *cur_region = NULL;
538 /* Create an edge from entry to the first block with executable
539 statements in it. */
540 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
542 /* Traverse the basic block array placing edges. */
543 FOR_EACH_BB (bb)
545 gimple last = last_stmt (bb);
546 bool fallthru;
548 if (last)
550 enum gimple_code code = gimple_code (last);
551 switch (code)
553 case GIMPLE_GOTO:
554 make_goto_expr_edges (bb);
555 fallthru = false;
556 break;
557 case GIMPLE_RETURN:
558 make_edge (bb, EXIT_BLOCK_PTR, 0);
559 fallthru = false;
560 break;
561 case GIMPLE_COND:
562 make_cond_expr_edges (bb);
563 fallthru = false;
564 break;
565 case GIMPLE_SWITCH:
566 make_gimple_switch_edges (bb);
567 fallthru = false;
568 break;
569 case GIMPLE_RESX:
570 make_eh_edges (last);
571 fallthru = false;
572 break;
573 case GIMPLE_EH_DISPATCH:
574 fallthru = make_eh_dispatch_edges (last);
575 break;
577 case GIMPLE_CALL:
578 /* If this function receives a nonlocal goto, then we need to
579 make edges from this call site to all the nonlocal goto
580 handlers. */
581 if (stmt_can_make_abnormal_goto (last))
582 make_abnormal_goto_edges (bb, true);
584 /* If this statement has reachable exception handlers, then
585 create abnormal edges to them. */
586 make_eh_edges (last);
588 /* BUILTIN_RETURN is really a return statement. */
589 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
590 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
591 /* Some calls are known not to return. */
592 else
593 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
594 break;
596 case GIMPLE_ASSIGN:
597 /* A GIMPLE_ASSIGN may throw internally and thus be considered
598 control-altering. */
599 if (is_ctrl_altering_stmt (last))
600 make_eh_edges (last);
601 fallthru = true;
602 break;
604 case GIMPLE_ASM:
605 make_gimple_asm_edges (bb);
606 fallthru = true;
607 break;
609 case GIMPLE_OMP_PARALLEL:
610 case GIMPLE_OMP_TASK:
611 case GIMPLE_OMP_FOR:
612 case GIMPLE_OMP_SINGLE:
613 case GIMPLE_OMP_MASTER:
614 case GIMPLE_OMP_ORDERED:
615 case GIMPLE_OMP_CRITICAL:
616 case GIMPLE_OMP_SECTION:
617 cur_region = new_omp_region (bb, code, cur_region);
618 fallthru = true;
619 break;
621 case GIMPLE_OMP_SECTIONS:
622 cur_region = new_omp_region (bb, code, cur_region);
623 fallthru = true;
624 break;
626 case GIMPLE_OMP_SECTIONS_SWITCH:
627 fallthru = false;
628 break;
630 case GIMPLE_OMP_ATOMIC_LOAD:
631 case GIMPLE_OMP_ATOMIC_STORE:
632 fallthru = true;
633 break;
635 case GIMPLE_OMP_RETURN:
636 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
637 somewhere other than the next block. This will be
638 created later. */
639 cur_region->exit = bb;
640 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
641 cur_region = cur_region->outer;
642 break;
644 case GIMPLE_OMP_CONTINUE:
645 cur_region->cont = bb;
646 switch (cur_region->type)
648 case GIMPLE_OMP_FOR:
649 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
650 succs edges as abnormal to prevent splitting
651 them. */
652 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
653 /* Make the loopback edge. */
654 make_edge (bb, single_succ (cur_region->entry),
655 EDGE_ABNORMAL);
657 /* Create an edge from GIMPLE_OMP_FOR to exit, which
658 corresponds to the case that the body of the loop
659 is not executed at all. */
660 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
661 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
662 fallthru = false;
663 break;
665 case GIMPLE_OMP_SECTIONS:
666 /* Wire up the edges into and out of the nested sections. */
668 basic_block switch_bb = single_succ (cur_region->entry);
670 struct omp_region *i;
671 for (i = cur_region->inner; i ; i = i->next)
673 gcc_assert (i->type == GIMPLE_OMP_SECTION);
674 make_edge (switch_bb, i->entry, 0);
675 make_edge (i->exit, bb, EDGE_FALLTHRU);
678 /* Make the loopback edge to the block with
679 GIMPLE_OMP_SECTIONS_SWITCH. */
680 make_edge (bb, switch_bb, 0);
682 /* Make the edge from the switch to exit. */
683 make_edge (switch_bb, bb->next_bb, 0);
684 fallthru = false;
686 break;
688 default:
689 gcc_unreachable ();
691 break;
693 case GIMPLE_TRANSACTION:
695 tree abort_label = gimple_transaction_label (last);
696 if (abort_label)
697 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
698 fallthru = true;
700 break;
702 default:
703 gcc_assert (!stmt_ends_bb_p (last));
704 fallthru = true;
707 else
708 fallthru = true;
710 if (fallthru)
711 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
714 if (root_omp_region)
715 free_omp_regions ();
717 /* Fold COND_EXPR_COND of each COND_EXPR. */
718 fold_cond_expr_cond ();
721 /* Find the next available discriminator value for LOCUS. The
722 discriminator distinguishes among several basic blocks that
723 share a common locus, allowing for more accurate sample-based
724 profiling. */
726 static int
727 next_discriminator_for_locus (location_t locus)
729 struct locus_discrim_map item;
730 struct locus_discrim_map **slot;
732 item.locus = locus;
733 item.discriminator = 0;
734 slot = discriminator_per_locus.find_slot_with_hash (
735 &item, LOCATION_LINE (locus), INSERT);
736 gcc_assert (slot);
737 if (*slot == HTAB_EMPTY_ENTRY)
739 *slot = XNEW (struct locus_discrim_map);
740 gcc_assert (*slot);
741 (*slot)->locus = locus;
742 (*slot)->discriminator = 0;
744 (*slot)->discriminator++;
745 return (*slot)->discriminator;
748 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
750 static bool
751 same_line_p (location_t locus1, location_t locus2)
753 expanded_location from, to;
755 if (locus1 == locus2)
756 return true;
758 from = expand_location (locus1);
759 to = expand_location (locus2);
761 if (from.line != to.line)
762 return false;
763 if (from.file == to.file)
764 return true;
765 return (from.file != NULL
766 && to.file != NULL
767 && filename_cmp (from.file, to.file) == 0);
770 /* Assign discriminators to each basic block. */
772 static void
773 assign_discriminators (void)
775 basic_block bb;
777 FOR_EACH_BB (bb)
779 edge e;
780 edge_iterator ei;
781 gimple last = last_stmt (bb);
782 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
784 if (locus == UNKNOWN_LOCATION)
785 continue;
787 FOR_EACH_EDGE (e, ei, bb->succs)
789 gimple first = first_non_label_stmt (e->dest);
790 gimple last = last_stmt (e->dest);
791 if ((first && same_line_p (locus, gimple_location (first)))
792 || (last && same_line_p (locus, gimple_location (last))))
794 if (e->dest->discriminator != 0 && bb->discriminator == 0)
795 bb->discriminator = next_discriminator_for_locus (locus);
796 else
797 e->dest->discriminator = next_discriminator_for_locus (locus);
803 /* Create the edges for a GIMPLE_COND starting at block BB. */
805 static void
806 make_cond_expr_edges (basic_block bb)
808 gimple entry = last_stmt (bb);
809 gimple then_stmt, else_stmt;
810 basic_block then_bb, else_bb;
811 tree then_label, else_label;
812 edge e;
814 gcc_assert (entry);
815 gcc_assert (gimple_code (entry) == GIMPLE_COND);
817 /* Entry basic blocks for each component. */
818 then_label = gimple_cond_true_label (entry);
819 else_label = gimple_cond_false_label (entry);
820 then_bb = label_to_block (then_label);
821 else_bb = label_to_block (else_label);
822 then_stmt = first_stmt (then_bb);
823 else_stmt = first_stmt (else_bb);
825 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
826 e->goto_locus = gimple_location (then_stmt);
827 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
828 if (e)
829 e->goto_locus = gimple_location (else_stmt);
831 /* We do not need the labels anymore. */
832 gimple_cond_set_true_label (entry, NULL_TREE);
833 gimple_cond_set_false_label (entry, NULL_TREE);
837 /* Called for each element in the hash table (P) as we delete the
838 edge to cases hash table.
840 Clear all the TREE_CHAINs to prevent problems with copying of
841 SWITCH_EXPRs and structure sharing rules, then free the hash table
842 element. */
844 static bool
845 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
846 void *data ATTRIBUTE_UNUSED)
848 tree t, next;
850 for (t = (tree) *value; t; t = next)
852 next = CASE_CHAIN (t);
853 CASE_CHAIN (t) = NULL;
856 *value = NULL;
857 return true;
860 /* Start recording information mapping edges to case labels. */
862 void
863 start_recording_case_labels (void)
865 gcc_assert (edge_to_cases == NULL);
866 edge_to_cases = pointer_map_create ();
867 touched_switch_bbs = BITMAP_ALLOC (NULL);
870 /* Return nonzero if we are recording information for case labels. */
872 static bool
873 recording_case_labels_p (void)
875 return (edge_to_cases != NULL);
878 /* Stop recording information mapping edges to case labels and
879 remove any information we have recorded. */
880 void
881 end_recording_case_labels (void)
883 bitmap_iterator bi;
884 unsigned i;
885 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
886 pointer_map_destroy (edge_to_cases);
887 edge_to_cases = NULL;
888 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
890 basic_block bb = BASIC_BLOCK (i);
891 if (bb)
893 gimple stmt = last_stmt (bb);
894 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
895 group_case_labels_stmt (stmt);
898 BITMAP_FREE (touched_switch_bbs);
901 /* If we are inside a {start,end}_recording_cases block, then return
902 a chain of CASE_LABEL_EXPRs from T which reference E.
904 Otherwise return NULL. */
906 static tree
907 get_cases_for_edge (edge e, gimple t)
909 void **slot;
910 size_t i, n;
912 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
913 chains available. Return NULL so the caller can detect this case. */
914 if (!recording_case_labels_p ())
915 return NULL;
917 slot = pointer_map_contains (edge_to_cases, e);
918 if (slot)
919 return (tree) *slot;
921 /* If we did not find E in the hash table, then this must be the first
922 time we have been queried for information about E & T. Add all the
923 elements from T to the hash table then perform the query again. */
925 n = gimple_switch_num_labels (t);
926 for (i = 0; i < n; i++)
928 tree elt = gimple_switch_label (t, i);
929 tree lab = CASE_LABEL (elt);
930 basic_block label_bb = label_to_block (lab);
931 edge this_edge = find_edge (e->src, label_bb);
933 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
934 a new chain. */
935 slot = pointer_map_insert (edge_to_cases, this_edge);
936 CASE_CHAIN (elt) = (tree) *slot;
937 *slot = elt;
940 return (tree) *pointer_map_contains (edge_to_cases, e);
943 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
945 static void
946 make_gimple_switch_edges (basic_block bb)
948 gimple entry = last_stmt (bb);
949 size_t i, n;
951 n = gimple_switch_num_labels (entry);
953 for (i = 0; i < n; ++i)
955 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
956 basic_block label_bb = label_to_block (lab);
957 make_edge (bb, label_bb, 0);
962 /* Return the basic block holding label DEST. */
964 basic_block
965 label_to_block_fn (struct function *ifun, tree dest)
967 int uid = LABEL_DECL_UID (dest);
969 /* We would die hard when faced by an undefined label. Emit a label to
970 the very first basic block. This will hopefully make even the dataflow
971 and undefined variable warnings quite right. */
972 if (seen_error () && uid < 0)
974 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
975 gimple stmt;
977 stmt = gimple_build_label (dest);
978 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
979 uid = LABEL_DECL_UID (dest);
981 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
982 return NULL;
983 return (*ifun->cfg->x_label_to_block_map)[uid];
986 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
987 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
989 void
990 make_abnormal_goto_edges (basic_block bb, bool for_call)
992 basic_block target_bb;
993 gimple_stmt_iterator gsi;
995 FOR_EACH_BB (target_bb)
997 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
999 gimple label_stmt = gsi_stmt (gsi);
1000 tree target;
1002 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1003 break;
1005 target = gimple_label_label (label_stmt);
1007 /* Make an edge to every label block that has been marked as a
1008 potential target for a computed goto or a non-local goto. */
1009 if ((FORCED_LABEL (target) && !for_call)
1010 || (DECL_NONLOCAL (target) && for_call))
1012 make_edge (bb, target_bb, EDGE_ABNORMAL);
1013 break;
1016 if (!gsi_end_p (gsi))
1018 /* Make an edge to every setjmp-like call. */
1019 gimple call_stmt = gsi_stmt (gsi);
1020 if (is_gimple_call (call_stmt)
1021 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1022 make_edge (bb, target_bb, EDGE_ABNORMAL);
1027 /* Create edges for a goto statement at block BB. */
1029 static void
1030 make_goto_expr_edges (basic_block bb)
1032 gimple_stmt_iterator last = gsi_last_bb (bb);
1033 gimple goto_t = gsi_stmt (last);
1035 /* A simple GOTO creates normal edges. */
1036 if (simple_goto_p (goto_t))
1038 tree dest = gimple_goto_dest (goto_t);
1039 basic_block label_bb = label_to_block (dest);
1040 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1041 e->goto_locus = gimple_location (goto_t);
1042 gsi_remove (&last, true);
1043 return;
1046 /* A computed GOTO creates abnormal edges. */
1047 make_abnormal_goto_edges (bb, false);
1050 /* Create edges for an asm statement with labels at block BB. */
1052 static void
1053 make_gimple_asm_edges (basic_block bb)
1055 gimple stmt = last_stmt (bb);
1056 int i, n = gimple_asm_nlabels (stmt);
1058 for (i = 0; i < n; ++i)
1060 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1061 basic_block label_bb = label_to_block (label);
1062 make_edge (bb, label_bb, 0);
1066 /*---------------------------------------------------------------------------
1067 Flowgraph analysis
1068 ---------------------------------------------------------------------------*/
1070 /* Cleanup useless labels in basic blocks. This is something we wish
1071 to do early because it allows us to group case labels before creating
1072 the edges for the CFG, and it speeds up block statement iterators in
1073 all passes later on.
1074 We rerun this pass after CFG is created, to get rid of the labels that
1075 are no longer referenced. After then we do not run it any more, since
1076 (almost) no new labels should be created. */
1078 /* A map from basic block index to the leading label of that block. */
1079 static struct label_record
1081 /* The label. */
1082 tree label;
1084 /* True if the label is referenced from somewhere. */
1085 bool used;
1086 } *label_for_bb;
1088 /* Given LABEL return the first label in the same basic block. */
1090 static tree
1091 main_block_label (tree label)
1093 basic_block bb = label_to_block (label);
1094 tree main_label = label_for_bb[bb->index].label;
1096 /* label_to_block possibly inserted undefined label into the chain. */
1097 if (!main_label)
1099 label_for_bb[bb->index].label = label;
1100 main_label = label;
1103 label_for_bb[bb->index].used = true;
1104 return main_label;
1107 /* Clean up redundant labels within the exception tree. */
1109 static void
1110 cleanup_dead_labels_eh (void)
1112 eh_landing_pad lp;
1113 eh_region r;
1114 tree lab;
1115 int i;
1117 if (cfun->eh == NULL)
1118 return;
1120 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1121 if (lp && lp->post_landing_pad)
1123 lab = main_block_label (lp->post_landing_pad);
1124 if (lab != lp->post_landing_pad)
1126 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1127 EH_LANDING_PAD_NR (lab) = lp->index;
1131 FOR_ALL_EH_REGION (r)
1132 switch (r->type)
1134 case ERT_CLEANUP:
1135 case ERT_MUST_NOT_THROW:
1136 break;
1138 case ERT_TRY:
1140 eh_catch c;
1141 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1143 lab = c->label;
1144 if (lab)
1145 c->label = main_block_label (lab);
1148 break;
1150 case ERT_ALLOWED_EXCEPTIONS:
1151 lab = r->u.allowed.label;
1152 if (lab)
1153 r->u.allowed.label = main_block_label (lab);
1154 break;
1159 /* Cleanup redundant labels. This is a three-step process:
1160 1) Find the leading label for each block.
1161 2) Redirect all references to labels to the leading labels.
1162 3) Cleanup all useless labels. */
1164 void
1165 cleanup_dead_labels (void)
1167 basic_block bb;
1168 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1170 /* Find a suitable label for each block. We use the first user-defined
1171 label if there is one, or otherwise just the first label we see. */
1172 FOR_EACH_BB (bb)
1174 gimple_stmt_iterator i;
1176 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1178 tree label;
1179 gimple stmt = gsi_stmt (i);
1181 if (gimple_code (stmt) != GIMPLE_LABEL)
1182 break;
1184 label = gimple_label_label (stmt);
1186 /* If we have not yet seen a label for the current block,
1187 remember this one and see if there are more labels. */
1188 if (!label_for_bb[bb->index].label)
1190 label_for_bb[bb->index].label = label;
1191 continue;
1194 /* If we did see a label for the current block already, but it
1195 is an artificially created label, replace it if the current
1196 label is a user defined label. */
1197 if (!DECL_ARTIFICIAL (label)
1198 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1200 label_for_bb[bb->index].label = label;
1201 break;
1206 /* Now redirect all jumps/branches to the selected label.
1207 First do so for each block ending in a control statement. */
1208 FOR_EACH_BB (bb)
1210 gimple stmt = last_stmt (bb);
1211 tree label, new_label;
1213 if (!stmt)
1214 continue;
1216 switch (gimple_code (stmt))
1218 case GIMPLE_COND:
1219 label = gimple_cond_true_label (stmt);
1220 if (label)
1222 new_label = main_block_label (label);
1223 if (new_label != label)
1224 gimple_cond_set_true_label (stmt, new_label);
1227 label = gimple_cond_false_label (stmt);
1228 if (label)
1230 new_label = main_block_label (label);
1231 if (new_label != label)
1232 gimple_cond_set_false_label (stmt, new_label);
1234 break;
1236 case GIMPLE_SWITCH:
1238 size_t i, n = gimple_switch_num_labels (stmt);
1240 /* Replace all destination labels. */
1241 for (i = 0; i < n; ++i)
1243 tree case_label = gimple_switch_label (stmt, i);
1244 label = CASE_LABEL (case_label);
1245 new_label = main_block_label (label);
1246 if (new_label != label)
1247 CASE_LABEL (case_label) = new_label;
1249 break;
1252 case GIMPLE_ASM:
1254 int i, n = gimple_asm_nlabels (stmt);
1256 for (i = 0; i < n; ++i)
1258 tree cons = gimple_asm_label_op (stmt, i);
1259 tree label = main_block_label (TREE_VALUE (cons));
1260 TREE_VALUE (cons) = label;
1262 break;
1265 /* We have to handle gotos until they're removed, and we don't
1266 remove them until after we've created the CFG edges. */
1267 case GIMPLE_GOTO:
1268 if (!computed_goto_p (stmt))
1270 label = gimple_goto_dest (stmt);
1271 new_label = main_block_label (label);
1272 if (new_label != label)
1273 gimple_goto_set_dest (stmt, new_label);
1275 break;
1277 case GIMPLE_TRANSACTION:
1279 tree label = gimple_transaction_label (stmt);
1280 if (label)
1282 tree new_label = main_block_label (label);
1283 if (new_label != label)
1284 gimple_transaction_set_label (stmt, new_label);
1287 break;
1289 default:
1290 break;
1294 /* Do the same for the exception region tree labels. */
1295 cleanup_dead_labels_eh ();
1297 /* Finally, purge dead labels. All user-defined labels and labels that
1298 can be the target of non-local gotos and labels which have their
1299 address taken are preserved. */
1300 FOR_EACH_BB (bb)
1302 gimple_stmt_iterator i;
1303 tree label_for_this_bb = label_for_bb[bb->index].label;
1305 if (!label_for_this_bb)
1306 continue;
1308 /* If the main label of the block is unused, we may still remove it. */
1309 if (!label_for_bb[bb->index].used)
1310 label_for_this_bb = NULL;
1312 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1314 tree label;
1315 gimple stmt = gsi_stmt (i);
1317 if (gimple_code (stmt) != GIMPLE_LABEL)
1318 break;
1320 label = gimple_label_label (stmt);
1322 if (label == label_for_this_bb
1323 || !DECL_ARTIFICIAL (label)
1324 || DECL_NONLOCAL (label)
1325 || FORCED_LABEL (label))
1326 gsi_next (&i);
1327 else
1328 gsi_remove (&i, true);
1332 free (label_for_bb);
1335 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1336 the ones jumping to the same label.
1337 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1339 void
1340 group_case_labels_stmt (gimple stmt)
1342 int old_size = gimple_switch_num_labels (stmt);
1343 int i, j, new_size = old_size;
1344 basic_block default_bb = NULL;
1346 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1348 /* Look for possible opportunities to merge cases. */
1349 i = 1;
1350 while (i < old_size)
1352 tree base_case, base_high;
1353 basic_block base_bb;
1355 base_case = gimple_switch_label (stmt, i);
1357 gcc_assert (base_case);
1358 base_bb = label_to_block (CASE_LABEL (base_case));
1360 /* Discard cases that have the same destination as the
1361 default case. */
1362 if (base_bb == default_bb)
1364 gimple_switch_set_label (stmt, i, NULL_TREE);
1365 i++;
1366 new_size--;
1367 continue;
1370 base_high = CASE_HIGH (base_case)
1371 ? CASE_HIGH (base_case)
1372 : CASE_LOW (base_case);
1373 i++;
1375 /* Try to merge case labels. Break out when we reach the end
1376 of the label vector or when we cannot merge the next case
1377 label with the current one. */
1378 while (i < old_size)
1380 tree merge_case = gimple_switch_label (stmt, i);
1381 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1382 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1384 /* Merge the cases if they jump to the same place,
1385 and their ranges are consecutive. */
1386 if (merge_bb == base_bb
1387 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1389 base_high = CASE_HIGH (merge_case) ?
1390 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1391 CASE_HIGH (base_case) = base_high;
1392 gimple_switch_set_label (stmt, i, NULL_TREE);
1393 new_size--;
1394 i++;
1396 else
1397 break;
1401 /* Compress the case labels in the label vector, and adjust the
1402 length of the vector. */
1403 for (i = 0, j = 0; i < new_size; i++)
1405 while (! gimple_switch_label (stmt, j))
1406 j++;
1407 gimple_switch_set_label (stmt, i,
1408 gimple_switch_label (stmt, j++));
1411 gcc_assert (new_size <= old_size);
1412 gimple_switch_set_num_labels (stmt, new_size);
1415 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1416 and scan the sorted vector of cases. Combine the ones jumping to the
1417 same label. */
1419 void
1420 group_case_labels (void)
1422 basic_block bb;
1424 FOR_EACH_BB (bb)
1426 gimple stmt = last_stmt (bb);
1427 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1428 group_case_labels_stmt (stmt);
1432 /* Checks whether we can merge block B into block A. */
1434 static bool
1435 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1437 gimple stmt;
1438 gimple_stmt_iterator gsi;
1440 if (!single_succ_p (a))
1441 return false;
1443 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1444 return false;
1446 if (single_succ (a) != b)
1447 return false;
1449 if (!single_pred_p (b))
1450 return false;
1452 if (b == EXIT_BLOCK_PTR)
1453 return false;
1455 /* If A ends by a statement causing exceptions or something similar, we
1456 cannot merge the blocks. */
1457 stmt = last_stmt (a);
1458 if (stmt && stmt_ends_bb_p (stmt))
1459 return false;
1461 /* Do not allow a block with only a non-local label to be merged. */
1462 if (stmt
1463 && gimple_code (stmt) == GIMPLE_LABEL
1464 && DECL_NONLOCAL (gimple_label_label (stmt)))
1465 return false;
1467 /* Examine the labels at the beginning of B. */
1468 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1470 tree lab;
1471 stmt = gsi_stmt (gsi);
1472 if (gimple_code (stmt) != GIMPLE_LABEL)
1473 break;
1474 lab = gimple_label_label (stmt);
1476 /* Do not remove user forced labels or for -O0 any user labels. */
1477 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1478 return false;
1481 /* Protect the loop latches. */
1482 if (current_loops && b->loop_father->latch == b)
1483 return false;
1485 /* It must be possible to eliminate all phi nodes in B. If ssa form
1486 is not up-to-date and a name-mapping is registered, we cannot eliminate
1487 any phis. Symbols marked for renaming are never a problem though. */
1488 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1490 gimple phi = gsi_stmt (gsi);
1491 /* Technically only new names matter. */
1492 if (name_registered_for_update_p (PHI_RESULT (phi)))
1493 return false;
1496 /* When not optimizing, don't merge if we'd lose goto_locus. */
1497 if (!optimize
1498 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1500 location_t goto_locus = single_succ_edge (a)->goto_locus;
1501 gimple_stmt_iterator prev, next;
1502 prev = gsi_last_nondebug_bb (a);
1503 next = gsi_after_labels (b);
1504 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1505 gsi_next_nondebug (&next);
1506 if ((gsi_end_p (prev)
1507 || gimple_location (gsi_stmt (prev)) != goto_locus)
1508 && (gsi_end_p (next)
1509 || gimple_location (gsi_stmt (next)) != goto_locus))
1510 return false;
1513 return true;
1516 /* Return true if the var whose chain of uses starts at PTR has no
1517 nondebug uses. */
1518 bool
1519 has_zero_uses_1 (const ssa_use_operand_t *head)
1521 const ssa_use_operand_t *ptr;
1523 for (ptr = head->next; ptr != head; ptr = ptr->next)
1524 if (!is_gimple_debug (USE_STMT (ptr)))
1525 return false;
1527 return true;
1530 /* Return true if the var whose chain of uses starts at PTR has a
1531 single nondebug use. Set USE_P and STMT to that single nondebug
1532 use, if so, or to NULL otherwise. */
1533 bool
1534 single_imm_use_1 (const ssa_use_operand_t *head,
1535 use_operand_p *use_p, gimple *stmt)
1537 ssa_use_operand_t *ptr, *single_use = 0;
1539 for (ptr = head->next; ptr != head; ptr = ptr->next)
1540 if (!is_gimple_debug (USE_STMT (ptr)))
1542 if (single_use)
1544 single_use = NULL;
1545 break;
1547 single_use = ptr;
1550 if (use_p)
1551 *use_p = single_use;
1553 if (stmt)
1554 *stmt = single_use ? single_use->loc.stmt : NULL;
1556 return !!single_use;
1559 /* Replaces all uses of NAME by VAL. */
1561 void
1562 replace_uses_by (tree name, tree val)
1564 imm_use_iterator imm_iter;
1565 use_operand_p use;
1566 gimple stmt;
1567 edge e;
1569 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1571 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1573 replace_exp (use, val);
1575 if (gimple_code (stmt) == GIMPLE_PHI)
1577 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1578 if (e->flags & EDGE_ABNORMAL)
1580 /* This can only occur for virtual operands, since
1581 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1582 would prevent replacement. */
1583 gcc_checking_assert (virtual_operand_p (name));
1584 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1589 if (gimple_code (stmt) != GIMPLE_PHI)
1591 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1592 gimple orig_stmt = stmt;
1593 size_t i;
1595 /* Mark the block if we changed the last stmt in it. */
1596 if (cfgcleanup_altered_bbs
1597 && stmt_ends_bb_p (stmt))
1598 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1600 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1601 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1602 only change sth from non-invariant to invariant, and only
1603 when propagating constants. */
1604 if (is_gimple_min_invariant (val))
1605 for (i = 0; i < gimple_num_ops (stmt); i++)
1607 tree op = gimple_op (stmt, i);
1608 /* Operands may be empty here. For example, the labels
1609 of a GIMPLE_COND are nulled out following the creation
1610 of the corresponding CFG edges. */
1611 if (op && TREE_CODE (op) == ADDR_EXPR)
1612 recompute_tree_invariant_for_addr_expr (op);
1615 if (fold_stmt (&gsi))
1616 stmt = gsi_stmt (gsi);
1618 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1619 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1621 update_stmt (stmt);
1625 gcc_checking_assert (has_zero_uses (name));
1627 /* Also update the trees stored in loop structures. */
1628 if (current_loops)
1630 struct loop *loop;
1631 loop_iterator li;
1633 FOR_EACH_LOOP (li, loop, 0)
1635 substitute_in_loop_info (loop, name, val);
1640 /* Merge block B into block A. */
1642 static void
1643 gimple_merge_blocks (basic_block a, basic_block b)
1645 gimple_stmt_iterator last, gsi, psi;
1647 if (dump_file)
1648 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1650 /* Remove all single-valued PHI nodes from block B of the form
1651 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1652 gsi = gsi_last_bb (a);
1653 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1655 gimple phi = gsi_stmt (psi);
1656 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1657 gimple copy;
1658 bool may_replace_uses = (virtual_operand_p (def)
1659 || may_propagate_copy (def, use));
1661 /* In case we maintain loop closed ssa form, do not propagate arguments
1662 of loop exit phi nodes. */
1663 if (current_loops
1664 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1665 && !virtual_operand_p (def)
1666 && TREE_CODE (use) == SSA_NAME
1667 && a->loop_father != b->loop_father)
1668 may_replace_uses = false;
1670 if (!may_replace_uses)
1672 gcc_assert (!virtual_operand_p (def));
1674 /* Note that just emitting the copies is fine -- there is no problem
1675 with ordering of phi nodes. This is because A is the single
1676 predecessor of B, therefore results of the phi nodes cannot
1677 appear as arguments of the phi nodes. */
1678 copy = gimple_build_assign (def, use);
1679 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1680 remove_phi_node (&psi, false);
1682 else
1684 /* If we deal with a PHI for virtual operands, we can simply
1685 propagate these without fussing with folding or updating
1686 the stmt. */
1687 if (virtual_operand_p (def))
1689 imm_use_iterator iter;
1690 use_operand_p use_p;
1691 gimple stmt;
1693 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1694 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1695 SET_USE (use_p, use);
1697 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1698 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1700 else
1701 replace_uses_by (def, use);
1703 remove_phi_node (&psi, true);
1707 /* Ensure that B follows A. */
1708 move_block_after (b, a);
1710 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1711 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1713 /* Remove labels from B and set gimple_bb to A for other statements. */
1714 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1716 gimple stmt = gsi_stmt (gsi);
1717 if (gimple_code (stmt) == GIMPLE_LABEL)
1719 tree label = gimple_label_label (stmt);
1720 int lp_nr;
1722 gsi_remove (&gsi, false);
1724 /* Now that we can thread computed gotos, we might have
1725 a situation where we have a forced label in block B
1726 However, the label at the start of block B might still be
1727 used in other ways (think about the runtime checking for
1728 Fortran assigned gotos). So we can not just delete the
1729 label. Instead we move the label to the start of block A. */
1730 if (FORCED_LABEL (label))
1732 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1733 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1735 /* Other user labels keep around in a form of a debug stmt. */
1736 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1738 gimple dbg = gimple_build_debug_bind (label,
1739 integer_zero_node,
1740 stmt);
1741 gimple_debug_bind_reset_value (dbg);
1742 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1745 lp_nr = EH_LANDING_PAD_NR (label);
1746 if (lp_nr)
1748 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1749 lp->post_landing_pad = NULL;
1752 else
1754 gimple_set_bb (stmt, a);
1755 gsi_next (&gsi);
1759 /* Merge the sequences. */
1760 last = gsi_last_bb (a);
1761 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1762 set_bb_seq (b, NULL);
1764 if (cfgcleanup_altered_bbs)
1765 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1769 /* Return the one of two successors of BB that is not reachable by a
1770 complex edge, if there is one. Else, return BB. We use
1771 this in optimizations that use post-dominators for their heuristics,
1772 to catch the cases in C++ where function calls are involved. */
1774 basic_block
1775 single_noncomplex_succ (basic_block bb)
1777 edge e0, e1;
1778 if (EDGE_COUNT (bb->succs) != 2)
1779 return bb;
1781 e0 = EDGE_SUCC (bb, 0);
1782 e1 = EDGE_SUCC (bb, 1);
1783 if (e0->flags & EDGE_COMPLEX)
1784 return e1->dest;
1785 if (e1->flags & EDGE_COMPLEX)
1786 return e0->dest;
1788 return bb;
1791 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1793 void
1794 notice_special_calls (gimple call)
1796 int flags = gimple_call_flags (call);
1798 if (flags & ECF_MAY_BE_ALLOCA)
1799 cfun->calls_alloca = true;
1800 if (flags & ECF_RETURNS_TWICE)
1801 cfun->calls_setjmp = true;
1805 /* Clear flags set by notice_special_calls. Used by dead code removal
1806 to update the flags. */
1808 void
1809 clear_special_calls (void)
1811 cfun->calls_alloca = false;
1812 cfun->calls_setjmp = false;
1815 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1817 static void
1818 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1820 /* Since this block is no longer reachable, we can just delete all
1821 of its PHI nodes. */
1822 remove_phi_nodes (bb);
1824 /* Remove edges to BB's successors. */
1825 while (EDGE_COUNT (bb->succs) > 0)
1826 remove_edge (EDGE_SUCC (bb, 0));
1830 /* Remove statements of basic block BB. */
1832 static void
1833 remove_bb (basic_block bb)
1835 gimple_stmt_iterator i;
1837 if (dump_file)
1839 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1840 if (dump_flags & TDF_DETAILS)
1842 dump_bb (dump_file, bb, 0, dump_flags);
1843 fprintf (dump_file, "\n");
1847 if (current_loops)
1849 struct loop *loop = bb->loop_father;
1851 /* If a loop gets removed, clean up the information associated
1852 with it. */
1853 if (loop->latch == bb
1854 || loop->header == bb)
1855 free_numbers_of_iterations_estimates_loop (loop);
1858 /* Remove all the instructions in the block. */
1859 if (bb_seq (bb) != NULL)
1861 /* Walk backwards so as to get a chance to substitute all
1862 released DEFs into debug stmts. See
1863 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1864 details. */
1865 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1867 gimple stmt = gsi_stmt (i);
1868 if (gimple_code (stmt) == GIMPLE_LABEL
1869 && (FORCED_LABEL (gimple_label_label (stmt))
1870 || DECL_NONLOCAL (gimple_label_label (stmt))))
1872 basic_block new_bb;
1873 gimple_stmt_iterator new_gsi;
1875 /* A non-reachable non-local label may still be referenced.
1876 But it no longer needs to carry the extra semantics of
1877 non-locality. */
1878 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1880 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1881 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1884 new_bb = bb->prev_bb;
1885 new_gsi = gsi_start_bb (new_bb);
1886 gsi_remove (&i, false);
1887 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1889 else
1891 /* Release SSA definitions if we are in SSA. Note that we
1892 may be called when not in SSA. For example,
1893 final_cleanup calls this function via
1894 cleanup_tree_cfg. */
1895 if (gimple_in_ssa_p (cfun))
1896 release_defs (stmt);
1898 gsi_remove (&i, true);
1901 if (gsi_end_p (i))
1902 i = gsi_last_bb (bb);
1903 else
1904 gsi_prev (&i);
1908 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1909 bb->il.gimple.seq = NULL;
1910 bb->il.gimple.phi_nodes = NULL;
1914 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1915 predicate VAL, return the edge that will be taken out of the block.
1916 If VAL does not match a unique edge, NULL is returned. */
1918 edge
1919 find_taken_edge (basic_block bb, tree val)
1921 gimple stmt;
1923 stmt = last_stmt (bb);
1925 gcc_assert (stmt);
1926 gcc_assert (is_ctrl_stmt (stmt));
1928 if (val == NULL)
1929 return NULL;
1931 if (!is_gimple_min_invariant (val))
1932 return NULL;
1934 if (gimple_code (stmt) == GIMPLE_COND)
1935 return find_taken_edge_cond_expr (bb, val);
1937 if (gimple_code (stmt) == GIMPLE_SWITCH)
1938 return find_taken_edge_switch_expr (bb, val);
1940 if (computed_goto_p (stmt))
1942 /* Only optimize if the argument is a label, if the argument is
1943 not a label then we can not construct a proper CFG.
1945 It may be the case that we only need to allow the LABEL_REF to
1946 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1947 appear inside a LABEL_EXPR just to be safe. */
1948 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1949 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1950 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1951 return NULL;
1954 gcc_unreachable ();
1957 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1958 statement, determine which of the outgoing edges will be taken out of the
1959 block. Return NULL if either edge may be taken. */
1961 static edge
1962 find_taken_edge_computed_goto (basic_block bb, tree val)
1964 basic_block dest;
1965 edge e = NULL;
1967 dest = label_to_block (val);
1968 if (dest)
1970 e = find_edge (bb, dest);
1971 gcc_assert (e != NULL);
1974 return e;
1977 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1978 statement, determine which of the two edges will be taken out of the
1979 block. Return NULL if either edge may be taken. */
1981 static edge
1982 find_taken_edge_cond_expr (basic_block bb, tree val)
1984 edge true_edge, false_edge;
1986 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1988 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1989 return (integer_zerop (val) ? false_edge : true_edge);
1992 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1993 statement, determine which edge will be taken out of the block. Return
1994 NULL if any edge may be taken. */
1996 static edge
1997 find_taken_edge_switch_expr (basic_block bb, tree val)
1999 basic_block dest_bb;
2000 edge e;
2001 gimple switch_stmt;
2002 tree taken_case;
2004 switch_stmt = last_stmt (bb);
2005 taken_case = find_case_label_for_value (switch_stmt, val);
2006 dest_bb = label_to_block (CASE_LABEL (taken_case));
2008 e = find_edge (bb, dest_bb);
2009 gcc_assert (e);
2010 return e;
2014 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2015 We can make optimal use here of the fact that the case labels are
2016 sorted: We can do a binary search for a case matching VAL. */
2018 static tree
2019 find_case_label_for_value (gimple switch_stmt, tree val)
2021 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2022 tree default_case = gimple_switch_default_label (switch_stmt);
2024 for (low = 0, high = n; high - low > 1; )
2026 size_t i = (high + low) / 2;
2027 tree t = gimple_switch_label (switch_stmt, i);
2028 int cmp;
2030 /* Cache the result of comparing CASE_LOW and val. */
2031 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2033 if (cmp > 0)
2034 high = i;
2035 else
2036 low = i;
2038 if (CASE_HIGH (t) == NULL)
2040 /* A singe-valued case label. */
2041 if (cmp == 0)
2042 return t;
2044 else
2046 /* A case range. We can only handle integer ranges. */
2047 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2048 return t;
2052 return default_case;
2056 /* Dump a basic block on stderr. */
2058 void
2059 gimple_debug_bb (basic_block bb)
2061 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2065 /* Dump basic block with index N on stderr. */
2067 basic_block
2068 gimple_debug_bb_n (int n)
2070 gimple_debug_bb (BASIC_BLOCK (n));
2071 return BASIC_BLOCK (n);
2075 /* Dump the CFG on stderr.
2077 FLAGS are the same used by the tree dumping functions
2078 (see TDF_* in dumpfile.h). */
2080 void
2081 gimple_debug_cfg (int flags)
2083 gimple_dump_cfg (stderr, flags);
2087 /* Dump the program showing basic block boundaries on the given FILE.
2089 FLAGS are the same used by the tree dumping functions (see TDF_* in
2090 tree.h). */
2092 void
2093 gimple_dump_cfg (FILE *file, int flags)
2095 if (flags & TDF_DETAILS)
2097 dump_function_header (file, current_function_decl, flags);
2098 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2099 n_basic_blocks, n_edges, last_basic_block);
2101 brief_dump_cfg (file, flags | TDF_COMMENT);
2102 fprintf (file, "\n");
2105 if (flags & TDF_STATS)
2106 dump_cfg_stats (file);
2108 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2112 /* Dump CFG statistics on FILE. */
2114 void
2115 dump_cfg_stats (FILE *file)
2117 static long max_num_merged_labels = 0;
2118 unsigned long size, total = 0;
2119 long num_edges;
2120 basic_block bb;
2121 const char * const fmt_str = "%-30s%-13s%12s\n";
2122 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2123 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2124 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2125 const char *funcname = current_function_name ();
2127 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2129 fprintf (file, "---------------------------------------------------------\n");
2130 fprintf (file, fmt_str, "", " Number of ", "Memory");
2131 fprintf (file, fmt_str, "", " instances ", "used ");
2132 fprintf (file, "---------------------------------------------------------\n");
2134 size = n_basic_blocks * sizeof (struct basic_block_def);
2135 total += size;
2136 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2137 SCALE (size), LABEL (size));
2139 num_edges = 0;
2140 FOR_EACH_BB (bb)
2141 num_edges += EDGE_COUNT (bb->succs);
2142 size = num_edges * sizeof (struct edge_def);
2143 total += size;
2144 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2146 fprintf (file, "---------------------------------------------------------\n");
2147 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2148 LABEL (total));
2149 fprintf (file, "---------------------------------------------------------\n");
2150 fprintf (file, "\n");
2152 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2153 max_num_merged_labels = cfg_stats.num_merged_labels;
2155 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2156 cfg_stats.num_merged_labels, max_num_merged_labels);
2158 fprintf (file, "\n");
2162 /* Dump CFG statistics on stderr. Keep extern so that it's always
2163 linked in the final executable. */
2165 DEBUG_FUNCTION void
2166 debug_cfg_stats (void)
2168 dump_cfg_stats (stderr);
2171 /*---------------------------------------------------------------------------
2172 Miscellaneous helpers
2173 ---------------------------------------------------------------------------*/
2175 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2176 flow. Transfers of control flow associated with EH are excluded. */
2178 static bool
2179 call_can_make_abnormal_goto (gimple t)
2181 /* If the function has no non-local labels, then a call cannot make an
2182 abnormal transfer of control. */
2183 if (!cfun->has_nonlocal_label
2184 && !cfun->calls_setjmp)
2185 return false;
2187 /* Likewise if the call has no side effects. */
2188 if (!gimple_has_side_effects (t))
2189 return false;
2191 /* Likewise if the called function is leaf. */
2192 if (gimple_call_flags (t) & ECF_LEAF)
2193 return false;
2195 return true;
2199 /* Return true if T can make an abnormal transfer of control flow.
2200 Transfers of control flow associated with EH are excluded. */
2202 bool
2203 stmt_can_make_abnormal_goto (gimple t)
2205 if (computed_goto_p (t))
2206 return true;
2207 if (is_gimple_call (t))
2208 return call_can_make_abnormal_goto (t);
2209 return false;
2213 /* Return true if T represents a stmt that always transfers control. */
2215 bool
2216 is_ctrl_stmt (gimple t)
2218 switch (gimple_code (t))
2220 case GIMPLE_COND:
2221 case GIMPLE_SWITCH:
2222 case GIMPLE_GOTO:
2223 case GIMPLE_RETURN:
2224 case GIMPLE_RESX:
2225 return true;
2226 default:
2227 return false;
2232 /* Return true if T is a statement that may alter the flow of control
2233 (e.g., a call to a non-returning function). */
2235 bool
2236 is_ctrl_altering_stmt (gimple t)
2238 gcc_assert (t);
2240 switch (gimple_code (t))
2242 case GIMPLE_CALL:
2244 int flags = gimple_call_flags (t);
2246 /* A call alters control flow if it can make an abnormal goto. */
2247 if (call_can_make_abnormal_goto (t))
2248 return true;
2250 /* A call also alters control flow if it does not return. */
2251 if (flags & ECF_NORETURN)
2252 return true;
2254 /* TM ending statements have backedges out of the transaction.
2255 Return true so we split the basic block containing them.
2256 Note that the TM_BUILTIN test is merely an optimization. */
2257 if ((flags & ECF_TM_BUILTIN)
2258 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2259 return true;
2261 /* BUILT_IN_RETURN call is same as return statement. */
2262 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2263 return true;
2265 break;
2267 case GIMPLE_EH_DISPATCH:
2268 /* EH_DISPATCH branches to the individual catch handlers at
2269 this level of a try or allowed-exceptions region. It can
2270 fallthru to the next statement as well. */
2271 return true;
2273 case GIMPLE_ASM:
2274 if (gimple_asm_nlabels (t) > 0)
2275 return true;
2276 break;
2278 CASE_GIMPLE_OMP:
2279 /* OpenMP directives alter control flow. */
2280 return true;
2282 case GIMPLE_TRANSACTION:
2283 /* A transaction start alters control flow. */
2284 return true;
2286 default:
2287 break;
2290 /* If a statement can throw, it alters control flow. */
2291 return stmt_can_throw_internal (t);
2295 /* Return true if T is a simple local goto. */
2297 bool
2298 simple_goto_p (gimple t)
2300 return (gimple_code (t) == GIMPLE_GOTO
2301 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2305 /* Return true if STMT should start a new basic block. PREV_STMT is
2306 the statement preceding STMT. It is used when STMT is a label or a
2307 case label. Labels should only start a new basic block if their
2308 previous statement wasn't a label. Otherwise, sequence of labels
2309 would generate unnecessary basic blocks that only contain a single
2310 label. */
2312 static inline bool
2313 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2315 if (stmt == NULL)
2316 return false;
2318 /* Labels start a new basic block only if the preceding statement
2319 wasn't a label of the same type. This prevents the creation of
2320 consecutive blocks that have nothing but a single label. */
2321 if (gimple_code (stmt) == GIMPLE_LABEL)
2323 /* Nonlocal and computed GOTO targets always start a new block. */
2324 if (DECL_NONLOCAL (gimple_label_label (stmt))
2325 || FORCED_LABEL (gimple_label_label (stmt)))
2326 return true;
2328 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2330 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2331 return true;
2333 cfg_stats.num_merged_labels++;
2334 return false;
2336 else
2337 return true;
2339 else if (gimple_code (stmt) == GIMPLE_CALL
2340 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2341 /* setjmp acts similar to a nonlocal GOTO target and thus should
2342 start a new block. */
2343 return true;
2345 return false;
2349 /* Return true if T should end a basic block. */
2351 bool
2352 stmt_ends_bb_p (gimple t)
2354 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2357 /* Remove block annotations and other data structures. */
2359 void
2360 delete_tree_cfg_annotations (void)
2362 vec_free (label_to_block_map);
2366 /* Return the first statement in basic block BB. */
2368 gimple
2369 first_stmt (basic_block bb)
2371 gimple_stmt_iterator i = gsi_start_bb (bb);
2372 gimple stmt = NULL;
2374 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2376 gsi_next (&i);
2377 stmt = NULL;
2379 return stmt;
2382 /* Return the first non-label statement in basic block BB. */
2384 static gimple
2385 first_non_label_stmt (basic_block bb)
2387 gimple_stmt_iterator i = gsi_start_bb (bb);
2388 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2389 gsi_next (&i);
2390 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2393 /* Return the last statement in basic block BB. */
2395 gimple
2396 last_stmt (basic_block bb)
2398 gimple_stmt_iterator i = gsi_last_bb (bb);
2399 gimple stmt = NULL;
2401 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2403 gsi_prev (&i);
2404 stmt = NULL;
2406 return stmt;
2409 /* Return the last statement of an otherwise empty block. Return NULL
2410 if the block is totally empty, or if it contains more than one
2411 statement. */
2413 gimple
2414 last_and_only_stmt (basic_block bb)
2416 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2417 gimple last, prev;
2419 if (gsi_end_p (i))
2420 return NULL;
2422 last = gsi_stmt (i);
2423 gsi_prev_nondebug (&i);
2424 if (gsi_end_p (i))
2425 return last;
2427 /* Empty statements should no longer appear in the instruction stream.
2428 Everything that might have appeared before should be deleted by
2429 remove_useless_stmts, and the optimizers should just gsi_remove
2430 instead of smashing with build_empty_stmt.
2432 Thus the only thing that should appear here in a block containing
2433 one executable statement is a label. */
2434 prev = gsi_stmt (i);
2435 if (gimple_code (prev) == GIMPLE_LABEL)
2436 return last;
2437 else
2438 return NULL;
2441 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2443 static void
2444 reinstall_phi_args (edge new_edge, edge old_edge)
2446 edge_var_map_vector *v;
2447 edge_var_map *vm;
2448 int i;
2449 gimple_stmt_iterator phis;
2451 v = redirect_edge_var_map_vector (old_edge);
2452 if (!v)
2453 return;
2455 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2456 v->iterate (i, &vm) && !gsi_end_p (phis);
2457 i++, gsi_next (&phis))
2459 gimple phi = gsi_stmt (phis);
2460 tree result = redirect_edge_var_map_result (vm);
2461 tree arg = redirect_edge_var_map_def (vm);
2463 gcc_assert (result == gimple_phi_result (phi));
2465 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2468 redirect_edge_var_map_clear (old_edge);
2471 /* Returns the basic block after which the new basic block created
2472 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2473 near its "logical" location. This is of most help to humans looking
2474 at debugging dumps. */
2476 static basic_block
2477 split_edge_bb_loc (edge edge_in)
2479 basic_block dest = edge_in->dest;
2480 basic_block dest_prev = dest->prev_bb;
2482 if (dest_prev)
2484 edge e = find_edge (dest_prev, dest);
2485 if (e && !(e->flags & EDGE_COMPLEX))
2486 return edge_in->src;
2488 return dest_prev;
2491 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2492 Abort on abnormal edges. */
2494 static basic_block
2495 gimple_split_edge (edge edge_in)
2497 basic_block new_bb, after_bb, dest;
2498 edge new_edge, e;
2500 /* Abnormal edges cannot be split. */
2501 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2503 dest = edge_in->dest;
2505 after_bb = split_edge_bb_loc (edge_in);
2507 new_bb = create_empty_bb (after_bb);
2508 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2509 new_bb->count = edge_in->count;
2510 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2511 new_edge->probability = REG_BR_PROB_BASE;
2512 new_edge->count = edge_in->count;
2514 e = redirect_edge_and_branch (edge_in, new_bb);
2515 gcc_assert (e == edge_in);
2516 reinstall_phi_args (new_edge, e);
2518 return new_bb;
2522 /* Verify properties of the address expression T with base object BASE. */
2524 static tree
2525 verify_address (tree t, tree base)
2527 bool old_constant;
2528 bool old_side_effects;
2529 bool new_constant;
2530 bool new_side_effects;
2532 old_constant = TREE_CONSTANT (t);
2533 old_side_effects = TREE_SIDE_EFFECTS (t);
2535 recompute_tree_invariant_for_addr_expr (t);
2536 new_side_effects = TREE_SIDE_EFFECTS (t);
2537 new_constant = TREE_CONSTANT (t);
2539 if (old_constant != new_constant)
2541 error ("constant not recomputed when ADDR_EXPR changed");
2542 return t;
2544 if (old_side_effects != new_side_effects)
2546 error ("side effects not recomputed when ADDR_EXPR changed");
2547 return t;
2550 if (!(TREE_CODE (base) == VAR_DECL
2551 || TREE_CODE (base) == PARM_DECL
2552 || TREE_CODE (base) == RESULT_DECL))
2553 return NULL_TREE;
2555 if (DECL_GIMPLE_REG_P (base))
2557 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2558 return base;
2561 return NULL_TREE;
2564 /* Callback for walk_tree, check that all elements with address taken are
2565 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2566 inside a PHI node. */
2568 static tree
2569 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2571 tree t = *tp, x;
2573 if (TYPE_P (t))
2574 *walk_subtrees = 0;
2576 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2577 #define CHECK_OP(N, MSG) \
2578 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2579 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2581 switch (TREE_CODE (t))
2583 case SSA_NAME:
2584 if (SSA_NAME_IN_FREE_LIST (t))
2586 error ("SSA name in freelist but still referenced");
2587 return *tp;
2589 break;
2591 case INDIRECT_REF:
2592 error ("INDIRECT_REF in gimple IL");
2593 return t;
2595 case MEM_REF:
2596 x = TREE_OPERAND (t, 0);
2597 if (!POINTER_TYPE_P (TREE_TYPE (x))
2598 || !is_gimple_mem_ref_addr (x))
2600 error ("invalid first operand of MEM_REF");
2601 return x;
2603 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2604 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2606 error ("invalid offset operand of MEM_REF");
2607 return TREE_OPERAND (t, 1);
2609 if (TREE_CODE (x) == ADDR_EXPR
2610 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2611 return x;
2612 *walk_subtrees = 0;
2613 break;
2615 case ASSERT_EXPR:
2616 x = fold (ASSERT_EXPR_COND (t));
2617 if (x == boolean_false_node)
2619 error ("ASSERT_EXPR with an always-false condition");
2620 return *tp;
2622 break;
2624 case MODIFY_EXPR:
2625 error ("MODIFY_EXPR not expected while having tuples");
2626 return *tp;
2628 case ADDR_EXPR:
2630 tree tem;
2632 gcc_assert (is_gimple_address (t));
2634 /* Skip any references (they will be checked when we recurse down the
2635 tree) and ensure that any variable used as a prefix is marked
2636 addressable. */
2637 for (x = TREE_OPERAND (t, 0);
2638 handled_component_p (x);
2639 x = TREE_OPERAND (x, 0))
2642 if ((tem = verify_address (t, x)))
2643 return tem;
2645 if (!(TREE_CODE (x) == VAR_DECL
2646 || TREE_CODE (x) == PARM_DECL
2647 || TREE_CODE (x) == RESULT_DECL))
2648 return NULL;
2650 if (!TREE_ADDRESSABLE (x))
2652 error ("address taken, but ADDRESSABLE bit not set");
2653 return x;
2656 break;
2659 case COND_EXPR:
2660 x = COND_EXPR_COND (t);
2661 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2663 error ("non-integral used in condition");
2664 return x;
2666 if (!is_gimple_condexpr (x))
2668 error ("invalid conditional operand");
2669 return x;
2671 break;
2673 case NON_LVALUE_EXPR:
2674 case TRUTH_NOT_EXPR:
2675 gcc_unreachable ();
2677 CASE_CONVERT:
2678 case FIX_TRUNC_EXPR:
2679 case FLOAT_EXPR:
2680 case NEGATE_EXPR:
2681 case ABS_EXPR:
2682 case BIT_NOT_EXPR:
2683 CHECK_OP (0, "invalid operand to unary operator");
2684 break;
2686 case REALPART_EXPR:
2687 case IMAGPART_EXPR:
2688 case BIT_FIELD_REF:
2689 if (!is_gimple_reg_type (TREE_TYPE (t)))
2691 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2692 return t;
2695 if (TREE_CODE (t) == BIT_FIELD_REF)
2697 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2698 || !host_integerp (TREE_OPERAND (t, 2), 1))
2700 error ("invalid position or size operand to BIT_FIELD_REF");
2701 return t;
2703 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2704 && (TYPE_PRECISION (TREE_TYPE (t))
2705 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2707 error ("integral result type precision does not match "
2708 "field size of BIT_FIELD_REF");
2709 return t;
2711 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2712 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2713 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2714 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2716 error ("mode precision of non-integral result does not "
2717 "match field size of BIT_FIELD_REF");
2718 return t;
2721 t = TREE_OPERAND (t, 0);
2723 /* Fall-through. */
2724 case COMPONENT_REF:
2725 case ARRAY_REF:
2726 case ARRAY_RANGE_REF:
2727 case VIEW_CONVERT_EXPR:
2728 /* We have a nest of references. Verify that each of the operands
2729 that determine where to reference is either a constant or a variable,
2730 verify that the base is valid, and then show we've already checked
2731 the subtrees. */
2732 while (handled_component_p (t))
2734 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2735 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2736 else if (TREE_CODE (t) == ARRAY_REF
2737 || TREE_CODE (t) == ARRAY_RANGE_REF)
2739 CHECK_OP (1, "invalid array index");
2740 if (TREE_OPERAND (t, 2))
2741 CHECK_OP (2, "invalid array lower bound");
2742 if (TREE_OPERAND (t, 3))
2743 CHECK_OP (3, "invalid array stride");
2745 else if (TREE_CODE (t) == BIT_FIELD_REF
2746 || TREE_CODE (t) == REALPART_EXPR
2747 || TREE_CODE (t) == IMAGPART_EXPR)
2749 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2750 "REALPART_EXPR");
2751 return t;
2754 t = TREE_OPERAND (t, 0);
2757 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2759 error ("invalid reference prefix");
2760 return t;
2762 *walk_subtrees = 0;
2763 break;
2764 case PLUS_EXPR:
2765 case MINUS_EXPR:
2766 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2767 POINTER_PLUS_EXPR. */
2768 if (POINTER_TYPE_P (TREE_TYPE (t)))
2770 error ("invalid operand to plus/minus, type is a pointer");
2771 return t;
2773 CHECK_OP (0, "invalid operand to binary operator");
2774 CHECK_OP (1, "invalid operand to binary operator");
2775 break;
2777 case POINTER_PLUS_EXPR:
2778 /* Check to make sure the first operand is a pointer or reference type. */
2779 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2781 error ("invalid operand to pointer plus, first operand is not a pointer");
2782 return t;
2784 /* Check to make sure the second operand is a ptrofftype. */
2785 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2787 error ("invalid operand to pointer plus, second operand is not an "
2788 "integer type of appropriate width");
2789 return t;
2791 /* FALLTHROUGH */
2792 case LT_EXPR:
2793 case LE_EXPR:
2794 case GT_EXPR:
2795 case GE_EXPR:
2796 case EQ_EXPR:
2797 case NE_EXPR:
2798 case UNORDERED_EXPR:
2799 case ORDERED_EXPR:
2800 case UNLT_EXPR:
2801 case UNLE_EXPR:
2802 case UNGT_EXPR:
2803 case UNGE_EXPR:
2804 case UNEQ_EXPR:
2805 case LTGT_EXPR:
2806 case MULT_EXPR:
2807 case TRUNC_DIV_EXPR:
2808 case CEIL_DIV_EXPR:
2809 case FLOOR_DIV_EXPR:
2810 case ROUND_DIV_EXPR:
2811 case TRUNC_MOD_EXPR:
2812 case CEIL_MOD_EXPR:
2813 case FLOOR_MOD_EXPR:
2814 case ROUND_MOD_EXPR:
2815 case RDIV_EXPR:
2816 case EXACT_DIV_EXPR:
2817 case MIN_EXPR:
2818 case MAX_EXPR:
2819 case LSHIFT_EXPR:
2820 case RSHIFT_EXPR:
2821 case LROTATE_EXPR:
2822 case RROTATE_EXPR:
2823 case BIT_IOR_EXPR:
2824 case BIT_XOR_EXPR:
2825 case BIT_AND_EXPR:
2826 CHECK_OP (0, "invalid operand to binary operator");
2827 CHECK_OP (1, "invalid operand to binary operator");
2828 break;
2830 case CONSTRUCTOR:
2831 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2832 *walk_subtrees = 0;
2833 break;
2835 case CASE_LABEL_EXPR:
2836 if (CASE_CHAIN (t))
2838 error ("invalid CASE_CHAIN");
2839 return t;
2841 break;
2843 default:
2844 break;
2846 return NULL;
2848 #undef CHECK_OP
2852 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2853 Returns true if there is an error, otherwise false. */
2855 static bool
2856 verify_types_in_gimple_min_lval (tree expr)
2858 tree op;
2860 if (is_gimple_id (expr))
2861 return false;
2863 if (TREE_CODE (expr) != TARGET_MEM_REF
2864 && TREE_CODE (expr) != MEM_REF)
2866 error ("invalid expression for min lvalue");
2867 return true;
2870 /* TARGET_MEM_REFs are strange beasts. */
2871 if (TREE_CODE (expr) == TARGET_MEM_REF)
2872 return false;
2874 op = TREE_OPERAND (expr, 0);
2875 if (!is_gimple_val (op))
2877 error ("invalid operand in indirect reference");
2878 debug_generic_stmt (op);
2879 return true;
2881 /* Memory references now generally can involve a value conversion. */
2883 return false;
2886 /* Verify if EXPR is a valid GIMPLE reference expression. If
2887 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2888 if there is an error, otherwise false. */
2890 static bool
2891 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2893 while (handled_component_p (expr))
2895 tree op = TREE_OPERAND (expr, 0);
2897 if (TREE_CODE (expr) == ARRAY_REF
2898 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2900 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2901 || (TREE_OPERAND (expr, 2)
2902 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2903 || (TREE_OPERAND (expr, 3)
2904 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2906 error ("invalid operands to array reference");
2907 debug_generic_stmt (expr);
2908 return true;
2912 /* Verify if the reference array element types are compatible. */
2913 if (TREE_CODE (expr) == ARRAY_REF
2914 && !useless_type_conversion_p (TREE_TYPE (expr),
2915 TREE_TYPE (TREE_TYPE (op))))
2917 error ("type mismatch in array reference");
2918 debug_generic_stmt (TREE_TYPE (expr));
2919 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2920 return true;
2922 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2923 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2924 TREE_TYPE (TREE_TYPE (op))))
2926 error ("type mismatch in array range reference");
2927 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2929 return true;
2932 if ((TREE_CODE (expr) == REALPART_EXPR
2933 || TREE_CODE (expr) == IMAGPART_EXPR)
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_TYPE (op))))
2937 error ("type mismatch in real/imagpart reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2940 return true;
2943 if (TREE_CODE (expr) == COMPONENT_REF
2944 && !useless_type_conversion_p (TREE_TYPE (expr),
2945 TREE_TYPE (TREE_OPERAND (expr, 1))))
2947 error ("type mismatch in component reference");
2948 debug_generic_stmt (TREE_TYPE (expr));
2949 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2950 return true;
2953 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2955 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2956 that their operand is not an SSA name or an invariant when
2957 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2958 bug). Otherwise there is nothing to verify, gross mismatches at
2959 most invoke undefined behavior. */
2960 if (require_lvalue
2961 && (TREE_CODE (op) == SSA_NAME
2962 || is_gimple_min_invariant (op)))
2964 error ("conversion of an SSA_NAME on the left hand side");
2965 debug_generic_stmt (expr);
2966 return true;
2968 else if (TREE_CODE (op) == SSA_NAME
2969 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2971 error ("conversion of register to a different size");
2972 debug_generic_stmt (expr);
2973 return true;
2975 else if (!handled_component_p (op))
2976 return false;
2979 expr = op;
2982 if (TREE_CODE (expr) == MEM_REF)
2984 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2986 error ("invalid address operand in MEM_REF");
2987 debug_generic_stmt (expr);
2988 return true;
2990 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2991 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2993 error ("invalid offset operand in MEM_REF");
2994 debug_generic_stmt (expr);
2995 return true;
2998 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3000 if (!TMR_BASE (expr)
3001 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3003 error ("invalid address operand in TARGET_MEM_REF");
3004 return true;
3006 if (!TMR_OFFSET (expr)
3007 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3008 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3010 error ("invalid offset operand in TARGET_MEM_REF");
3011 debug_generic_stmt (expr);
3012 return true;
3016 return ((require_lvalue || !is_gimple_min_invariant (expr))
3017 && verify_types_in_gimple_min_lval (expr));
3020 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3021 list of pointer-to types that is trivially convertible to DEST. */
3023 static bool
3024 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3026 tree src;
3028 if (!TYPE_POINTER_TO (src_obj))
3029 return true;
3031 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3032 if (useless_type_conversion_p (dest, src))
3033 return true;
3035 return false;
3038 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3039 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3041 static bool
3042 valid_fixed_convert_types_p (tree type1, tree type2)
3044 return (FIXED_POINT_TYPE_P (type1)
3045 && (INTEGRAL_TYPE_P (type2)
3046 || SCALAR_FLOAT_TYPE_P (type2)
3047 || FIXED_POINT_TYPE_P (type2)));
3050 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3051 is a problem, otherwise false. */
3053 static bool
3054 verify_gimple_call (gimple stmt)
3056 tree fn = gimple_call_fn (stmt);
3057 tree fntype, fndecl;
3058 unsigned i;
3060 if (gimple_call_internal_p (stmt))
3062 if (fn)
3064 error ("gimple call has two targets");
3065 debug_generic_stmt (fn);
3066 return true;
3069 else
3071 if (!fn)
3073 error ("gimple call has no target");
3074 return true;
3078 if (fn && !is_gimple_call_addr (fn))
3080 error ("invalid function in gimple call");
3081 debug_generic_stmt (fn);
3082 return true;
3085 if (fn
3086 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3087 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3088 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3090 error ("non-function in gimple call");
3091 return true;
3094 fndecl = gimple_call_fndecl (stmt);
3095 if (fndecl
3096 && TREE_CODE (fndecl) == FUNCTION_DECL
3097 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3098 && !DECL_PURE_P (fndecl)
3099 && !TREE_READONLY (fndecl))
3101 error ("invalid pure const state for function");
3102 return true;
3105 if (gimple_call_lhs (stmt)
3106 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3107 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3109 error ("invalid LHS in gimple call");
3110 return true;
3113 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3115 error ("LHS in noreturn call");
3116 return true;
3119 fntype = gimple_call_fntype (stmt);
3120 if (fntype
3121 && gimple_call_lhs (stmt)
3122 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3123 TREE_TYPE (fntype))
3124 /* ??? At least C++ misses conversions at assignments from
3125 void * call results.
3126 ??? Java is completely off. Especially with functions
3127 returning java.lang.Object.
3128 For now simply allow arbitrary pointer type conversions. */
3129 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3130 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3132 error ("invalid conversion in gimple call");
3133 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3134 debug_generic_stmt (TREE_TYPE (fntype));
3135 return true;
3138 if (gimple_call_chain (stmt)
3139 && !is_gimple_val (gimple_call_chain (stmt)))
3141 error ("invalid static chain in gimple call");
3142 debug_generic_stmt (gimple_call_chain (stmt));
3143 return true;
3146 /* If there is a static chain argument, this should not be an indirect
3147 call, and the decl should have DECL_STATIC_CHAIN set. */
3148 if (gimple_call_chain (stmt))
3150 if (!gimple_call_fndecl (stmt))
3152 error ("static chain in indirect gimple call");
3153 return true;
3155 fn = TREE_OPERAND (fn, 0);
3157 if (!DECL_STATIC_CHAIN (fn))
3159 error ("static chain with function that doesn%'t use one");
3160 return true;
3164 /* ??? The C frontend passes unpromoted arguments in case it
3165 didn't see a function declaration before the call. So for now
3166 leave the call arguments mostly unverified. Once we gimplify
3167 unit-at-a-time we have a chance to fix this. */
3169 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3171 tree arg = gimple_call_arg (stmt, i);
3172 if ((is_gimple_reg_type (TREE_TYPE (arg))
3173 && !is_gimple_val (arg))
3174 || (!is_gimple_reg_type (TREE_TYPE (arg))
3175 && !is_gimple_lvalue (arg)))
3177 error ("invalid argument to gimple call");
3178 debug_generic_expr (arg);
3179 return true;
3183 return false;
3186 /* Verifies the gimple comparison with the result type TYPE and
3187 the operands OP0 and OP1. */
3189 static bool
3190 verify_gimple_comparison (tree type, tree op0, tree op1)
3192 tree op0_type = TREE_TYPE (op0);
3193 tree op1_type = TREE_TYPE (op1);
3195 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3197 error ("invalid operands in gimple comparison");
3198 return true;
3201 /* For comparisons we do not have the operations type as the
3202 effective type the comparison is carried out in. Instead
3203 we require that either the first operand is trivially
3204 convertible into the second, or the other way around.
3205 Because we special-case pointers to void we allow
3206 comparisons of pointers with the same mode as well. */
3207 if (!useless_type_conversion_p (op0_type, op1_type)
3208 && !useless_type_conversion_p (op1_type, op0_type)
3209 && (!POINTER_TYPE_P (op0_type)
3210 || !POINTER_TYPE_P (op1_type)
3211 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3213 error ("mismatching comparison operand types");
3214 debug_generic_expr (op0_type);
3215 debug_generic_expr (op1_type);
3216 return true;
3219 /* The resulting type of a comparison may be an effective boolean type. */
3220 if (INTEGRAL_TYPE_P (type)
3221 && (TREE_CODE (type) == BOOLEAN_TYPE
3222 || TYPE_PRECISION (type) == 1))
3224 if (TREE_CODE (op0_type) == VECTOR_TYPE
3225 || TREE_CODE (op1_type) == VECTOR_TYPE)
3227 error ("vector comparison returning a boolean");
3228 debug_generic_expr (op0_type);
3229 debug_generic_expr (op1_type);
3230 return true;
3233 /* Or an integer vector type with the same size and element count
3234 as the comparison operand types. */
3235 else if (TREE_CODE (type) == VECTOR_TYPE
3236 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3238 if (TREE_CODE (op0_type) != VECTOR_TYPE
3239 || TREE_CODE (op1_type) != VECTOR_TYPE)
3241 error ("non-vector operands in vector comparison");
3242 debug_generic_expr (op0_type);
3243 debug_generic_expr (op1_type);
3244 return true;
3247 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3248 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3249 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3250 /* The result of a vector comparison is of signed
3251 integral type. */
3252 || TYPE_UNSIGNED (TREE_TYPE (type)))
3254 error ("invalid vector comparison resulting type");
3255 debug_generic_expr (type);
3256 return true;
3259 else
3261 error ("bogus comparison result type");
3262 debug_generic_expr (type);
3263 return true;
3266 return false;
3269 /* Verify a gimple assignment statement STMT with an unary rhs.
3270 Returns true if anything is wrong. */
3272 static bool
3273 verify_gimple_assign_unary (gimple stmt)
3275 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3276 tree lhs = gimple_assign_lhs (stmt);
3277 tree lhs_type = TREE_TYPE (lhs);
3278 tree rhs1 = gimple_assign_rhs1 (stmt);
3279 tree rhs1_type = TREE_TYPE (rhs1);
3281 if (!is_gimple_reg (lhs))
3283 error ("non-register as LHS of unary operation");
3284 return true;
3287 if (!is_gimple_val (rhs1))
3289 error ("invalid operand in unary operation");
3290 return true;
3293 /* First handle conversions. */
3294 switch (rhs_code)
3296 CASE_CONVERT:
3298 /* Allow conversions from pointer type to integral type only if
3299 there is no sign or zero extension involved.
3300 For targets were the precision of ptrofftype doesn't match that
3301 of pointers we need to allow arbitrary conversions to ptrofftype. */
3302 if ((POINTER_TYPE_P (lhs_type)
3303 && INTEGRAL_TYPE_P (rhs1_type))
3304 || (POINTER_TYPE_P (rhs1_type)
3305 && INTEGRAL_TYPE_P (lhs_type)
3306 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3307 || ptrofftype_p (sizetype))))
3308 return false;
3310 /* Allow conversion from integral to offset type and vice versa. */
3311 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3312 && INTEGRAL_TYPE_P (rhs1_type))
3313 || (INTEGRAL_TYPE_P (lhs_type)
3314 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3315 return false;
3317 /* Otherwise assert we are converting between types of the
3318 same kind. */
3319 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3321 error ("invalid types in nop conversion");
3322 debug_generic_expr (lhs_type);
3323 debug_generic_expr (rhs1_type);
3324 return true;
3327 return false;
3330 case ADDR_SPACE_CONVERT_EXPR:
3332 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3333 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3334 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3336 error ("invalid types in address space conversion");
3337 debug_generic_expr (lhs_type);
3338 debug_generic_expr (rhs1_type);
3339 return true;
3342 return false;
3345 case FIXED_CONVERT_EXPR:
3347 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3348 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3350 error ("invalid types in fixed-point conversion");
3351 debug_generic_expr (lhs_type);
3352 debug_generic_expr (rhs1_type);
3353 return true;
3356 return false;
3359 case FLOAT_EXPR:
3361 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3362 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3363 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3365 error ("invalid types in conversion to floating point");
3366 debug_generic_expr (lhs_type);
3367 debug_generic_expr (rhs1_type);
3368 return true;
3371 return false;
3374 case FIX_TRUNC_EXPR:
3376 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3377 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3378 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3380 error ("invalid types in conversion to integer");
3381 debug_generic_expr (lhs_type);
3382 debug_generic_expr (rhs1_type);
3383 return true;
3386 return false;
3389 case VEC_UNPACK_HI_EXPR:
3390 case VEC_UNPACK_LO_EXPR:
3391 case REDUC_MAX_EXPR:
3392 case REDUC_MIN_EXPR:
3393 case REDUC_PLUS_EXPR:
3394 case VEC_UNPACK_FLOAT_HI_EXPR:
3395 case VEC_UNPACK_FLOAT_LO_EXPR:
3396 /* FIXME. */
3397 return false;
3399 case NEGATE_EXPR:
3400 case ABS_EXPR:
3401 case BIT_NOT_EXPR:
3402 case PAREN_EXPR:
3403 case NON_LVALUE_EXPR:
3404 case CONJ_EXPR:
3405 break;
3407 default:
3408 gcc_unreachable ();
3411 /* For the remaining codes assert there is no conversion involved. */
3412 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3414 error ("non-trivial conversion in unary operation");
3415 debug_generic_expr (lhs_type);
3416 debug_generic_expr (rhs1_type);
3417 return true;
3420 return false;
3423 /* Verify a gimple assignment statement STMT with a binary rhs.
3424 Returns true if anything is wrong. */
3426 static bool
3427 verify_gimple_assign_binary (gimple stmt)
3429 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3430 tree lhs = gimple_assign_lhs (stmt);
3431 tree lhs_type = TREE_TYPE (lhs);
3432 tree rhs1 = gimple_assign_rhs1 (stmt);
3433 tree rhs1_type = TREE_TYPE (rhs1);
3434 tree rhs2 = gimple_assign_rhs2 (stmt);
3435 tree rhs2_type = TREE_TYPE (rhs2);
3437 if (!is_gimple_reg (lhs))
3439 error ("non-register as LHS of binary operation");
3440 return true;
3443 if (!is_gimple_val (rhs1)
3444 || !is_gimple_val (rhs2))
3446 error ("invalid operands in binary operation");
3447 return true;
3450 /* First handle operations that involve different types. */
3451 switch (rhs_code)
3453 case COMPLEX_EXPR:
3455 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3456 || !(INTEGRAL_TYPE_P (rhs1_type)
3457 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3458 || !(INTEGRAL_TYPE_P (rhs2_type)
3459 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3461 error ("type mismatch in complex expression");
3462 debug_generic_expr (lhs_type);
3463 debug_generic_expr (rhs1_type);
3464 debug_generic_expr (rhs2_type);
3465 return true;
3468 return false;
3471 case LSHIFT_EXPR:
3472 case RSHIFT_EXPR:
3473 case LROTATE_EXPR:
3474 case RROTATE_EXPR:
3476 /* Shifts and rotates are ok on integral types, fixed point
3477 types and integer vector types. */
3478 if ((!INTEGRAL_TYPE_P (rhs1_type)
3479 && !FIXED_POINT_TYPE_P (rhs1_type)
3480 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3481 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3482 || (!INTEGRAL_TYPE_P (rhs2_type)
3483 /* Vector shifts of vectors are also ok. */
3484 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3485 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3486 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3487 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3488 || !useless_type_conversion_p (lhs_type, rhs1_type))
3490 error ("type mismatch in shift expression");
3491 debug_generic_expr (lhs_type);
3492 debug_generic_expr (rhs1_type);
3493 debug_generic_expr (rhs2_type);
3494 return true;
3497 return false;
3500 case VEC_LSHIFT_EXPR:
3501 case VEC_RSHIFT_EXPR:
3503 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3504 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3505 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3506 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3507 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3508 || (!INTEGRAL_TYPE_P (rhs2_type)
3509 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3510 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3511 || !useless_type_conversion_p (lhs_type, rhs1_type))
3513 error ("type mismatch in vector shift expression");
3514 debug_generic_expr (lhs_type);
3515 debug_generic_expr (rhs1_type);
3516 debug_generic_expr (rhs2_type);
3517 return true;
3519 /* For shifting a vector of non-integral components we
3520 only allow shifting by a constant multiple of the element size. */
3521 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3522 && (TREE_CODE (rhs2) != INTEGER_CST
3523 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3524 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3526 error ("non-element sized vector shift of floating point vector");
3527 return true;
3530 return false;
3533 case WIDEN_LSHIFT_EXPR:
3535 if (!INTEGRAL_TYPE_P (lhs_type)
3536 || !INTEGRAL_TYPE_P (rhs1_type)
3537 || TREE_CODE (rhs2) != INTEGER_CST
3538 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3540 error ("type mismatch in widening vector shift expression");
3541 debug_generic_expr (lhs_type);
3542 debug_generic_expr (rhs1_type);
3543 debug_generic_expr (rhs2_type);
3544 return true;
3547 return false;
3550 case VEC_WIDEN_LSHIFT_HI_EXPR:
3551 case VEC_WIDEN_LSHIFT_LO_EXPR:
3553 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3554 || TREE_CODE (lhs_type) != VECTOR_TYPE
3555 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3556 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3557 || TREE_CODE (rhs2) != INTEGER_CST
3558 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3559 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3561 error ("type mismatch in widening vector shift expression");
3562 debug_generic_expr (lhs_type);
3563 debug_generic_expr (rhs1_type);
3564 debug_generic_expr (rhs2_type);
3565 return true;
3568 return false;
3571 case PLUS_EXPR:
3572 case MINUS_EXPR:
3574 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3575 ??? This just makes the checker happy and may not be what is
3576 intended. */
3577 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3578 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3580 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3581 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3583 error ("invalid non-vector operands to vector valued plus");
3584 return true;
3586 lhs_type = TREE_TYPE (lhs_type);
3587 rhs1_type = TREE_TYPE (rhs1_type);
3588 rhs2_type = TREE_TYPE (rhs2_type);
3589 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3590 the pointer to 2nd place. */
3591 if (POINTER_TYPE_P (rhs2_type))
3593 tree tem = rhs1_type;
3594 rhs1_type = rhs2_type;
3595 rhs2_type = tem;
3597 goto do_pointer_plus_expr_check;
3599 if (POINTER_TYPE_P (lhs_type)
3600 || POINTER_TYPE_P (rhs1_type)
3601 || POINTER_TYPE_P (rhs2_type))
3603 error ("invalid (pointer) operands to plus/minus");
3604 return true;
3607 /* Continue with generic binary expression handling. */
3608 break;
3611 case POINTER_PLUS_EXPR:
3613 do_pointer_plus_expr_check:
3614 if (!POINTER_TYPE_P (rhs1_type)
3615 || !useless_type_conversion_p (lhs_type, rhs1_type)
3616 || !ptrofftype_p (rhs2_type))
3618 error ("type mismatch in pointer plus expression");
3619 debug_generic_stmt (lhs_type);
3620 debug_generic_stmt (rhs1_type);
3621 debug_generic_stmt (rhs2_type);
3622 return true;
3625 return false;
3628 case TRUTH_ANDIF_EXPR:
3629 case TRUTH_ORIF_EXPR:
3630 case TRUTH_AND_EXPR:
3631 case TRUTH_OR_EXPR:
3632 case TRUTH_XOR_EXPR:
3634 gcc_unreachable ();
3636 case LT_EXPR:
3637 case LE_EXPR:
3638 case GT_EXPR:
3639 case GE_EXPR:
3640 case EQ_EXPR:
3641 case NE_EXPR:
3642 case UNORDERED_EXPR:
3643 case ORDERED_EXPR:
3644 case UNLT_EXPR:
3645 case UNLE_EXPR:
3646 case UNGT_EXPR:
3647 case UNGE_EXPR:
3648 case UNEQ_EXPR:
3649 case LTGT_EXPR:
3650 /* Comparisons are also binary, but the result type is not
3651 connected to the operand types. */
3652 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3654 case WIDEN_MULT_EXPR:
3655 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3656 return true;
3657 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3658 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3660 case WIDEN_SUM_EXPR:
3661 case VEC_WIDEN_MULT_HI_EXPR:
3662 case VEC_WIDEN_MULT_LO_EXPR:
3663 case VEC_WIDEN_MULT_EVEN_EXPR:
3664 case VEC_WIDEN_MULT_ODD_EXPR:
3665 case VEC_PACK_TRUNC_EXPR:
3666 case VEC_PACK_SAT_EXPR:
3667 case VEC_PACK_FIX_TRUNC_EXPR:
3668 /* FIXME. */
3669 return false;
3671 case MULT_EXPR:
3672 case MULT_HIGHPART_EXPR:
3673 case TRUNC_DIV_EXPR:
3674 case CEIL_DIV_EXPR:
3675 case FLOOR_DIV_EXPR:
3676 case ROUND_DIV_EXPR:
3677 case TRUNC_MOD_EXPR:
3678 case CEIL_MOD_EXPR:
3679 case FLOOR_MOD_EXPR:
3680 case ROUND_MOD_EXPR:
3681 case RDIV_EXPR:
3682 case EXACT_DIV_EXPR:
3683 case MIN_EXPR:
3684 case MAX_EXPR:
3685 case BIT_IOR_EXPR:
3686 case BIT_XOR_EXPR:
3687 case BIT_AND_EXPR:
3688 /* Continue with generic binary expression handling. */
3689 break;
3691 default:
3692 gcc_unreachable ();
3695 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3696 || !useless_type_conversion_p (lhs_type, rhs2_type))
3698 error ("type mismatch in binary expression");
3699 debug_generic_stmt (lhs_type);
3700 debug_generic_stmt (rhs1_type);
3701 debug_generic_stmt (rhs2_type);
3702 return true;
3705 return false;
3708 /* Verify a gimple assignment statement STMT with a ternary rhs.
3709 Returns true if anything is wrong. */
3711 static bool
3712 verify_gimple_assign_ternary (gimple stmt)
3714 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3715 tree lhs = gimple_assign_lhs (stmt);
3716 tree lhs_type = TREE_TYPE (lhs);
3717 tree rhs1 = gimple_assign_rhs1 (stmt);
3718 tree rhs1_type = TREE_TYPE (rhs1);
3719 tree rhs2 = gimple_assign_rhs2 (stmt);
3720 tree rhs2_type = TREE_TYPE (rhs2);
3721 tree rhs3 = gimple_assign_rhs3 (stmt);
3722 tree rhs3_type = TREE_TYPE (rhs3);
3724 if (!is_gimple_reg (lhs))
3726 error ("non-register as LHS of ternary operation");
3727 return true;
3730 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3731 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3732 || !is_gimple_val (rhs2)
3733 || !is_gimple_val (rhs3))
3735 error ("invalid operands in ternary operation");
3736 return true;
3739 /* First handle operations that involve different types. */
3740 switch (rhs_code)
3742 case WIDEN_MULT_PLUS_EXPR:
3743 case WIDEN_MULT_MINUS_EXPR:
3744 if ((!INTEGRAL_TYPE_P (rhs1_type)
3745 && !FIXED_POINT_TYPE_P (rhs1_type))
3746 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3747 || !useless_type_conversion_p (lhs_type, rhs3_type)
3748 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3749 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3751 error ("type mismatch in widening multiply-accumulate expression");
3752 debug_generic_expr (lhs_type);
3753 debug_generic_expr (rhs1_type);
3754 debug_generic_expr (rhs2_type);
3755 debug_generic_expr (rhs3_type);
3756 return true;
3758 break;
3760 case FMA_EXPR:
3761 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3762 || !useless_type_conversion_p (lhs_type, rhs2_type)
3763 || !useless_type_conversion_p (lhs_type, rhs3_type))
3765 error ("type mismatch in fused multiply-add expression");
3766 debug_generic_expr (lhs_type);
3767 debug_generic_expr (rhs1_type);
3768 debug_generic_expr (rhs2_type);
3769 debug_generic_expr (rhs3_type);
3770 return true;
3772 break;
3774 case COND_EXPR:
3775 case VEC_COND_EXPR:
3776 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3777 || !useless_type_conversion_p (lhs_type, rhs3_type))
3779 error ("type mismatch in conditional expression");
3780 debug_generic_expr (lhs_type);
3781 debug_generic_expr (rhs2_type);
3782 debug_generic_expr (rhs3_type);
3783 return true;
3785 break;
3787 case VEC_PERM_EXPR:
3788 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3789 || !useless_type_conversion_p (lhs_type, rhs2_type))
3791 error ("type mismatch in vector permute expression");
3792 debug_generic_expr (lhs_type);
3793 debug_generic_expr (rhs1_type);
3794 debug_generic_expr (rhs2_type);
3795 debug_generic_expr (rhs3_type);
3796 return true;
3799 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3800 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3801 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3803 error ("vector types expected in vector permute expression");
3804 debug_generic_expr (lhs_type);
3805 debug_generic_expr (rhs1_type);
3806 debug_generic_expr (rhs2_type);
3807 debug_generic_expr (rhs3_type);
3808 return true;
3811 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3812 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3813 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3814 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3815 != TYPE_VECTOR_SUBPARTS (lhs_type))
3817 error ("vectors with different element number found "
3818 "in vector permute expression");
3819 debug_generic_expr (lhs_type);
3820 debug_generic_expr (rhs1_type);
3821 debug_generic_expr (rhs2_type);
3822 debug_generic_expr (rhs3_type);
3823 return true;
3826 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3827 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3828 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3830 error ("invalid mask type in vector permute expression");
3831 debug_generic_expr (lhs_type);
3832 debug_generic_expr (rhs1_type);
3833 debug_generic_expr (rhs2_type);
3834 debug_generic_expr (rhs3_type);
3835 return true;
3838 return false;
3840 case DOT_PROD_EXPR:
3841 case REALIGN_LOAD_EXPR:
3842 /* FIXME. */
3843 return false;
3845 default:
3846 gcc_unreachable ();
3848 return false;
3851 /* Verify a gimple assignment statement STMT with a single rhs.
3852 Returns true if anything is wrong. */
3854 static bool
3855 verify_gimple_assign_single (gimple stmt)
3857 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3858 tree lhs = gimple_assign_lhs (stmt);
3859 tree lhs_type = TREE_TYPE (lhs);
3860 tree rhs1 = gimple_assign_rhs1 (stmt);
3861 tree rhs1_type = TREE_TYPE (rhs1);
3862 bool res = false;
3864 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3866 error ("non-trivial conversion at assignment");
3867 debug_generic_expr (lhs_type);
3868 debug_generic_expr (rhs1_type);
3869 return true;
3872 if (gimple_clobber_p (stmt)
3873 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3875 error ("non-decl/MEM_REF LHS in clobber statement");
3876 debug_generic_expr (lhs);
3877 return true;
3880 if (handled_component_p (lhs))
3881 res |= verify_types_in_gimple_reference (lhs, true);
3883 /* Special codes we cannot handle via their class. */
3884 switch (rhs_code)
3886 case ADDR_EXPR:
3888 tree op = TREE_OPERAND (rhs1, 0);
3889 if (!is_gimple_addressable (op))
3891 error ("invalid operand in unary expression");
3892 return true;
3895 /* Technically there is no longer a need for matching types, but
3896 gimple hygiene asks for this check. In LTO we can end up
3897 combining incompatible units and thus end up with addresses
3898 of globals that change their type to a common one. */
3899 if (!in_lto_p
3900 && !types_compatible_p (TREE_TYPE (op),
3901 TREE_TYPE (TREE_TYPE (rhs1)))
3902 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3903 TREE_TYPE (op)))
3905 error ("type mismatch in address expression");
3906 debug_generic_stmt (TREE_TYPE (rhs1));
3907 debug_generic_stmt (TREE_TYPE (op));
3908 return true;
3911 return verify_types_in_gimple_reference (op, true);
3914 /* tcc_reference */
3915 case INDIRECT_REF:
3916 error ("INDIRECT_REF in gimple IL");
3917 return true;
3919 case COMPONENT_REF:
3920 case BIT_FIELD_REF:
3921 case ARRAY_REF:
3922 case ARRAY_RANGE_REF:
3923 case VIEW_CONVERT_EXPR:
3924 case REALPART_EXPR:
3925 case IMAGPART_EXPR:
3926 case TARGET_MEM_REF:
3927 case MEM_REF:
3928 if (!is_gimple_reg (lhs)
3929 && is_gimple_reg_type (TREE_TYPE (lhs)))
3931 error ("invalid rhs for gimple memory store");
3932 debug_generic_stmt (lhs);
3933 debug_generic_stmt (rhs1);
3934 return true;
3936 return res || verify_types_in_gimple_reference (rhs1, false);
3938 /* tcc_constant */
3939 case SSA_NAME:
3940 case INTEGER_CST:
3941 case REAL_CST:
3942 case FIXED_CST:
3943 case COMPLEX_CST:
3944 case VECTOR_CST:
3945 case STRING_CST:
3946 return res;
3948 /* tcc_declaration */
3949 case CONST_DECL:
3950 return res;
3951 case VAR_DECL:
3952 case PARM_DECL:
3953 if (!is_gimple_reg (lhs)
3954 && !is_gimple_reg (rhs1)
3955 && is_gimple_reg_type (TREE_TYPE (lhs)))
3957 error ("invalid rhs for gimple memory store");
3958 debug_generic_stmt (lhs);
3959 debug_generic_stmt (rhs1);
3960 return true;
3962 return res;
3964 case CONSTRUCTOR:
3965 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3967 unsigned int i;
3968 tree elt_i, elt_v, elt_t = NULL_TREE;
3970 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3971 return res;
3972 /* For vector CONSTRUCTORs we require that either it is empty
3973 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3974 (then the element count must be correct to cover the whole
3975 outer vector and index must be NULL on all elements, or it is
3976 a CONSTRUCTOR of scalar elements, where we as an exception allow
3977 smaller number of elements (assuming zero filling) and
3978 consecutive indexes as compared to NULL indexes (such
3979 CONSTRUCTORs can appear in the IL from FEs). */
3980 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3982 if (elt_t == NULL_TREE)
3984 elt_t = TREE_TYPE (elt_v);
3985 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3987 tree elt_t = TREE_TYPE (elt_v);
3988 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3989 TREE_TYPE (elt_t)))
3991 error ("incorrect type of vector CONSTRUCTOR"
3992 " elements");
3993 debug_generic_stmt (rhs1);
3994 return true;
3996 else if (CONSTRUCTOR_NELTS (rhs1)
3997 * TYPE_VECTOR_SUBPARTS (elt_t)
3998 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4000 error ("incorrect number of vector CONSTRUCTOR"
4001 " elements");
4002 debug_generic_stmt (rhs1);
4003 return true;
4006 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4007 elt_t))
4009 error ("incorrect type of vector CONSTRUCTOR elements");
4010 debug_generic_stmt (rhs1);
4011 return true;
4013 else if (CONSTRUCTOR_NELTS (rhs1)
4014 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4016 error ("incorrect number of vector CONSTRUCTOR elements");
4017 debug_generic_stmt (rhs1);
4018 return true;
4021 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4023 error ("incorrect type of vector CONSTRUCTOR elements");
4024 debug_generic_stmt (rhs1);
4025 return true;
4027 if (elt_i != NULL_TREE
4028 && (TREE_CODE (elt_t) == VECTOR_TYPE
4029 || TREE_CODE (elt_i) != INTEGER_CST
4030 || compare_tree_int (elt_i, i) != 0))
4032 error ("vector CONSTRUCTOR with non-NULL element index");
4033 debug_generic_stmt (rhs1);
4034 return true;
4038 return res;
4039 case OBJ_TYPE_REF:
4040 case ASSERT_EXPR:
4041 case WITH_SIZE_EXPR:
4042 /* FIXME. */
4043 return res;
4045 default:;
4048 return res;
4051 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4052 is a problem, otherwise false. */
4054 static bool
4055 verify_gimple_assign (gimple stmt)
4057 switch (gimple_assign_rhs_class (stmt))
4059 case GIMPLE_SINGLE_RHS:
4060 return verify_gimple_assign_single (stmt);
4062 case GIMPLE_UNARY_RHS:
4063 return verify_gimple_assign_unary (stmt);
4065 case GIMPLE_BINARY_RHS:
4066 return verify_gimple_assign_binary (stmt);
4068 case GIMPLE_TERNARY_RHS:
4069 return verify_gimple_assign_ternary (stmt);
4071 default:
4072 gcc_unreachable ();
4076 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4077 is a problem, otherwise false. */
4079 static bool
4080 verify_gimple_return (gimple stmt)
4082 tree op = gimple_return_retval (stmt);
4083 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4085 /* We cannot test for present return values as we do not fix up missing
4086 return values from the original source. */
4087 if (op == NULL)
4088 return false;
4090 if (!is_gimple_val (op)
4091 && TREE_CODE (op) != RESULT_DECL)
4093 error ("invalid operand in return statement");
4094 debug_generic_stmt (op);
4095 return true;
4098 if ((TREE_CODE (op) == RESULT_DECL
4099 && DECL_BY_REFERENCE (op))
4100 || (TREE_CODE (op) == SSA_NAME
4101 && SSA_NAME_VAR (op)
4102 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4103 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4104 op = TREE_TYPE (op);
4106 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4108 error ("invalid conversion in return statement");
4109 debug_generic_stmt (restype);
4110 debug_generic_stmt (TREE_TYPE (op));
4111 return true;
4114 return false;
4118 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4119 is a problem, otherwise false. */
4121 static bool
4122 verify_gimple_goto (gimple stmt)
4124 tree dest = gimple_goto_dest (stmt);
4126 /* ??? We have two canonical forms of direct goto destinations, a
4127 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4128 if (TREE_CODE (dest) != LABEL_DECL
4129 && (!is_gimple_val (dest)
4130 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4132 error ("goto destination is neither a label nor a pointer");
4133 return true;
4136 return false;
4139 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4140 is a problem, otherwise false. */
4142 static bool
4143 verify_gimple_switch (gimple stmt)
4145 unsigned int i, n;
4146 tree elt, prev_upper_bound = NULL_TREE;
4147 tree index_type, elt_type = NULL_TREE;
4149 if (!is_gimple_val (gimple_switch_index (stmt)))
4151 error ("invalid operand to switch statement");
4152 debug_generic_stmt (gimple_switch_index (stmt));
4153 return true;
4156 index_type = TREE_TYPE (gimple_switch_index (stmt));
4157 if (! INTEGRAL_TYPE_P (index_type))
4159 error ("non-integral type switch statement");
4160 debug_generic_expr (index_type);
4161 return true;
4164 elt = gimple_switch_label (stmt, 0);
4165 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4167 error ("invalid default case label in switch statement");
4168 debug_generic_expr (elt);
4169 return true;
4172 n = gimple_switch_num_labels (stmt);
4173 for (i = 1; i < n; i++)
4175 elt = gimple_switch_label (stmt, i);
4177 if (! CASE_LOW (elt))
4179 error ("invalid case label in switch statement");
4180 debug_generic_expr (elt);
4181 return true;
4183 if (CASE_HIGH (elt)
4184 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4186 error ("invalid case range in switch statement");
4187 debug_generic_expr (elt);
4188 return true;
4191 if (elt_type)
4193 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4194 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4196 error ("type mismatch for case label in switch statement");
4197 debug_generic_expr (elt);
4198 return true;
4201 else
4203 elt_type = TREE_TYPE (CASE_LOW (elt));
4204 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4206 error ("type precision mismatch in switch statement");
4207 return true;
4211 if (prev_upper_bound)
4213 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4215 error ("case labels not sorted in switch statement");
4216 return true;
4220 prev_upper_bound = CASE_HIGH (elt);
4221 if (! prev_upper_bound)
4222 prev_upper_bound = CASE_LOW (elt);
4225 return false;
4228 /* Verify a gimple debug statement STMT.
4229 Returns true if anything is wrong. */
4231 static bool
4232 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4234 /* There isn't much that could be wrong in a gimple debug stmt. A
4235 gimple debug bind stmt, for example, maps a tree, that's usually
4236 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4237 component or member of an aggregate type, to another tree, that
4238 can be an arbitrary expression. These stmts expand into debug
4239 insns, and are converted to debug notes by var-tracking.c. */
4240 return false;
4243 /* Verify a gimple label statement STMT.
4244 Returns true if anything is wrong. */
4246 static bool
4247 verify_gimple_label (gimple stmt)
4249 tree decl = gimple_label_label (stmt);
4250 int uid;
4251 bool err = false;
4253 if (TREE_CODE (decl) != LABEL_DECL)
4254 return true;
4255 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4256 && DECL_CONTEXT (decl) != current_function_decl)
4258 error ("label's context is not the current function decl");
4259 err |= true;
4262 uid = LABEL_DECL_UID (decl);
4263 if (cfun->cfg
4264 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4266 error ("incorrect entry in label_to_block_map");
4267 err |= true;
4270 uid = EH_LANDING_PAD_NR (decl);
4271 if (uid)
4273 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4274 if (decl != lp->post_landing_pad)
4276 error ("incorrect setting of landing pad number");
4277 err |= true;
4281 return err;
4284 /* Verify the GIMPLE statement STMT. Returns true if there is an
4285 error, otherwise false. */
4287 static bool
4288 verify_gimple_stmt (gimple stmt)
4290 switch (gimple_code (stmt))
4292 case GIMPLE_ASSIGN:
4293 return verify_gimple_assign (stmt);
4295 case GIMPLE_LABEL:
4296 return verify_gimple_label (stmt);
4298 case GIMPLE_CALL:
4299 return verify_gimple_call (stmt);
4301 case GIMPLE_COND:
4302 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4304 error ("invalid comparison code in gimple cond");
4305 return true;
4307 if (!(!gimple_cond_true_label (stmt)
4308 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4309 || !(!gimple_cond_false_label (stmt)
4310 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4312 error ("invalid labels in gimple cond");
4313 return true;
4316 return verify_gimple_comparison (boolean_type_node,
4317 gimple_cond_lhs (stmt),
4318 gimple_cond_rhs (stmt));
4320 case GIMPLE_GOTO:
4321 return verify_gimple_goto (stmt);
4323 case GIMPLE_SWITCH:
4324 return verify_gimple_switch (stmt);
4326 case GIMPLE_RETURN:
4327 return verify_gimple_return (stmt);
4329 case GIMPLE_ASM:
4330 return false;
4332 case GIMPLE_TRANSACTION:
4333 return verify_gimple_transaction (stmt);
4335 /* Tuples that do not have tree operands. */
4336 case GIMPLE_NOP:
4337 case GIMPLE_PREDICT:
4338 case GIMPLE_RESX:
4339 case GIMPLE_EH_DISPATCH:
4340 case GIMPLE_EH_MUST_NOT_THROW:
4341 return false;
4343 CASE_GIMPLE_OMP:
4344 /* OpenMP directives are validated by the FE and never operated
4345 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4346 non-gimple expressions when the main index variable has had
4347 its address taken. This does not affect the loop itself
4348 because the header of an GIMPLE_OMP_FOR is merely used to determine
4349 how to setup the parallel iteration. */
4350 return false;
4352 case GIMPLE_DEBUG:
4353 return verify_gimple_debug (stmt);
4355 default:
4356 gcc_unreachable ();
4360 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4361 and false otherwise. */
4363 static bool
4364 verify_gimple_phi (gimple phi)
4366 bool err = false;
4367 unsigned i;
4368 tree phi_result = gimple_phi_result (phi);
4369 bool virtual_p;
4371 if (!phi_result)
4373 error ("invalid PHI result");
4374 return true;
4377 virtual_p = virtual_operand_p (phi_result);
4378 if (TREE_CODE (phi_result) != SSA_NAME
4379 || (virtual_p
4380 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4382 error ("invalid PHI result");
4383 err = true;
4386 for (i = 0; i < gimple_phi_num_args (phi); i++)
4388 tree t = gimple_phi_arg_def (phi, i);
4390 if (!t)
4392 error ("missing PHI def");
4393 err |= true;
4394 continue;
4396 /* Addressable variables do have SSA_NAMEs but they
4397 are not considered gimple values. */
4398 else if ((TREE_CODE (t) == SSA_NAME
4399 && virtual_p != virtual_operand_p (t))
4400 || (virtual_p
4401 && (TREE_CODE (t) != SSA_NAME
4402 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4403 || (!virtual_p
4404 && !is_gimple_val (t)))
4406 error ("invalid PHI argument");
4407 debug_generic_expr (t);
4408 err |= true;
4410 #ifdef ENABLE_TYPES_CHECKING
4411 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4413 error ("incompatible types in PHI argument %u", i);
4414 debug_generic_stmt (TREE_TYPE (phi_result));
4415 debug_generic_stmt (TREE_TYPE (t));
4416 err |= true;
4418 #endif
4421 return err;
4424 /* Verify the GIMPLE statements inside the sequence STMTS. */
4426 static bool
4427 verify_gimple_in_seq_2 (gimple_seq stmts)
4429 gimple_stmt_iterator ittr;
4430 bool err = false;
4432 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4434 gimple stmt = gsi_stmt (ittr);
4436 switch (gimple_code (stmt))
4438 case GIMPLE_BIND:
4439 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4440 break;
4442 case GIMPLE_TRY:
4443 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4444 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4445 break;
4447 case GIMPLE_EH_FILTER:
4448 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4449 break;
4451 case GIMPLE_EH_ELSE:
4452 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4453 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4454 break;
4456 case GIMPLE_CATCH:
4457 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4458 break;
4460 case GIMPLE_TRANSACTION:
4461 err |= verify_gimple_transaction (stmt);
4462 break;
4464 default:
4466 bool err2 = verify_gimple_stmt (stmt);
4467 if (err2)
4468 debug_gimple_stmt (stmt);
4469 err |= err2;
4474 return err;
4477 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4478 is a problem, otherwise false. */
4480 static bool
4481 verify_gimple_transaction (gimple stmt)
4483 tree lab = gimple_transaction_label (stmt);
4484 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4485 return true;
4486 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4490 /* Verify the GIMPLE statements inside the statement list STMTS. */
4492 DEBUG_FUNCTION void
4493 verify_gimple_in_seq (gimple_seq stmts)
4495 timevar_push (TV_TREE_STMT_VERIFY);
4496 if (verify_gimple_in_seq_2 (stmts))
4497 internal_error ("verify_gimple failed");
4498 timevar_pop (TV_TREE_STMT_VERIFY);
4501 /* Return true when the T can be shared. */
4503 bool
4504 tree_node_can_be_shared (tree t)
4506 if (IS_TYPE_OR_DECL_P (t)
4507 || is_gimple_min_invariant (t)
4508 || TREE_CODE (t) == SSA_NAME
4509 || t == error_mark_node
4510 || TREE_CODE (t) == IDENTIFIER_NODE)
4511 return true;
4513 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4514 return true;
4516 if (DECL_P (t))
4517 return true;
4519 return false;
4522 /* Called via walk_tree. Verify tree sharing. */
4524 static tree
4525 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4527 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4529 if (tree_node_can_be_shared (*tp))
4531 *walk_subtrees = false;
4532 return NULL;
4535 if (pointer_set_insert (visited, *tp))
4536 return *tp;
4538 return NULL;
4541 /* Called via walk_gimple_stmt. Verify tree sharing. */
4543 static tree
4544 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4546 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4547 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4550 static bool eh_error_found;
4551 static int
4552 verify_eh_throw_stmt_node (void **slot, void *data)
4554 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4555 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4557 if (!pointer_set_contains (visited, node->stmt))
4559 error ("dead STMT in EH table");
4560 debug_gimple_stmt (node->stmt);
4561 eh_error_found = true;
4563 return 1;
4566 /* Verify if the location LOCs block is in BLOCKS. */
4568 static bool
4569 verify_location (pointer_set_t *blocks, location_t loc)
4571 tree block = LOCATION_BLOCK (loc);
4572 if (block != NULL_TREE
4573 && !pointer_set_contains (blocks, block))
4575 error ("location references block not in block tree");
4576 return true;
4578 if (block != NULL_TREE)
4579 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4580 return false;
4583 /* Called via walk_tree. Verify that expressions have no blocks. */
4585 static tree
4586 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4588 if (!EXPR_P (*tp))
4590 *walk_subtrees = false;
4591 return NULL;
4594 location_t loc = EXPR_LOCATION (*tp);
4595 if (LOCATION_BLOCK (loc) != NULL)
4596 return *tp;
4598 return NULL;
4601 /* Called via walk_tree. Verify locations of expressions. */
4603 static tree
4604 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4606 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4608 if (TREE_CODE (*tp) == VAR_DECL
4609 && DECL_HAS_DEBUG_EXPR_P (*tp))
4611 tree t = DECL_DEBUG_EXPR (*tp);
4612 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4613 if (addr)
4614 return addr;
4616 if ((TREE_CODE (*tp) == VAR_DECL
4617 || TREE_CODE (*tp) == PARM_DECL
4618 || TREE_CODE (*tp) == RESULT_DECL)
4619 && DECL_HAS_VALUE_EXPR_P (*tp))
4621 tree t = DECL_VALUE_EXPR (*tp);
4622 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4623 if (addr)
4624 return addr;
4627 if (!EXPR_P (*tp))
4629 *walk_subtrees = false;
4630 return NULL;
4633 location_t loc = EXPR_LOCATION (*tp);
4634 if (verify_location (blocks, loc))
4635 return *tp;
4637 return NULL;
4640 /* Called via walk_gimple_op. Verify locations of expressions. */
4642 static tree
4643 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4645 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4646 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4649 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4651 static void
4652 collect_subblocks (pointer_set_t *blocks, tree block)
4654 tree t;
4655 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4657 pointer_set_insert (blocks, t);
4658 collect_subblocks (blocks, t);
4662 /* Verify the GIMPLE statements in the CFG of FN. */
4664 DEBUG_FUNCTION void
4665 verify_gimple_in_cfg (struct function *fn)
4667 basic_block bb;
4668 bool err = false;
4669 struct pointer_set_t *visited, *visited_stmts, *blocks;
4671 timevar_push (TV_TREE_STMT_VERIFY);
4672 visited = pointer_set_create ();
4673 visited_stmts = pointer_set_create ();
4675 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4676 blocks = pointer_set_create ();
4677 if (DECL_INITIAL (fn->decl))
4679 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4680 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4683 FOR_EACH_BB_FN (bb, fn)
4685 gimple_stmt_iterator gsi;
4687 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4689 gimple phi = gsi_stmt (gsi);
4690 bool err2 = false;
4691 unsigned i;
4693 pointer_set_insert (visited_stmts, phi);
4695 if (gimple_bb (phi) != bb)
4697 error ("gimple_bb (phi) is set to a wrong basic block");
4698 err2 = true;
4701 err2 |= verify_gimple_phi (phi);
4703 /* Only PHI arguments have locations. */
4704 if (gimple_location (phi) != UNKNOWN_LOCATION)
4706 error ("PHI node with location");
4707 err2 = true;
4710 for (i = 0; i < gimple_phi_num_args (phi); i++)
4712 tree arg = gimple_phi_arg_def (phi, i);
4713 tree addr = walk_tree (&arg, verify_node_sharing_1,
4714 visited, NULL);
4715 if (addr)
4717 error ("incorrect sharing of tree nodes");
4718 debug_generic_expr (addr);
4719 err2 |= true;
4721 location_t loc = gimple_phi_arg_location (phi, i);
4722 if (virtual_operand_p (gimple_phi_result (phi))
4723 && loc != UNKNOWN_LOCATION)
4725 error ("virtual PHI with argument locations");
4726 err2 = true;
4728 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4729 if (addr)
4731 debug_generic_expr (addr);
4732 err2 = true;
4734 err2 |= verify_location (blocks, loc);
4737 if (err2)
4738 debug_gimple_stmt (phi);
4739 err |= err2;
4742 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4744 gimple stmt = gsi_stmt (gsi);
4745 bool err2 = false;
4746 struct walk_stmt_info wi;
4747 tree addr;
4748 int lp_nr;
4750 pointer_set_insert (visited_stmts, stmt);
4752 if (gimple_bb (stmt) != bb)
4754 error ("gimple_bb (stmt) is set to a wrong basic block");
4755 err2 = true;
4758 err2 |= verify_gimple_stmt (stmt);
4759 err2 |= verify_location (blocks, gimple_location (stmt));
4761 memset (&wi, 0, sizeof (wi));
4762 wi.info = (void *) visited;
4763 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4764 if (addr)
4766 error ("incorrect sharing of tree nodes");
4767 debug_generic_expr (addr);
4768 err2 |= true;
4771 memset (&wi, 0, sizeof (wi));
4772 wi.info = (void *) blocks;
4773 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4774 if (addr)
4776 debug_generic_expr (addr);
4777 err2 |= true;
4780 /* ??? Instead of not checking these stmts at all the walker
4781 should know its context via wi. */
4782 if (!is_gimple_debug (stmt)
4783 && !is_gimple_omp (stmt))
4785 memset (&wi, 0, sizeof (wi));
4786 addr = walk_gimple_op (stmt, verify_expr, &wi);
4787 if (addr)
4789 debug_generic_expr (addr);
4790 inform (gimple_location (stmt), "in statement");
4791 err2 |= true;
4795 /* If the statement is marked as part of an EH region, then it is
4796 expected that the statement could throw. Verify that when we
4797 have optimizations that simplify statements such that we prove
4798 that they cannot throw, that we update other data structures
4799 to match. */
4800 lp_nr = lookup_stmt_eh_lp (stmt);
4801 if (lp_nr != 0)
4803 if (!stmt_could_throw_p (stmt))
4805 error ("statement marked for throw, but doesn%'t");
4806 err2 |= true;
4808 else if (lp_nr > 0
4809 && !gsi_one_before_end_p (gsi)
4810 && stmt_can_throw_internal (stmt))
4812 error ("statement marked for throw in middle of block");
4813 err2 |= true;
4817 if (err2)
4818 debug_gimple_stmt (stmt);
4819 err |= err2;
4823 eh_error_found = false;
4824 if (get_eh_throw_stmt_table (cfun))
4825 htab_traverse (get_eh_throw_stmt_table (cfun),
4826 verify_eh_throw_stmt_node,
4827 visited_stmts);
4829 if (err || eh_error_found)
4830 internal_error ("verify_gimple failed");
4832 pointer_set_destroy (visited);
4833 pointer_set_destroy (visited_stmts);
4834 pointer_set_destroy (blocks);
4835 verify_histograms ();
4836 timevar_pop (TV_TREE_STMT_VERIFY);
4840 /* Verifies that the flow information is OK. */
4842 static int
4843 gimple_verify_flow_info (void)
4845 int err = 0;
4846 basic_block bb;
4847 gimple_stmt_iterator gsi;
4848 gimple stmt;
4849 edge e;
4850 edge_iterator ei;
4852 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4854 error ("ENTRY_BLOCK has IL associated with it");
4855 err = 1;
4858 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4860 error ("EXIT_BLOCK has IL associated with it");
4861 err = 1;
4864 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4865 if (e->flags & EDGE_FALLTHRU)
4867 error ("fallthru to exit from bb %d", e->src->index);
4868 err = 1;
4871 FOR_EACH_BB (bb)
4873 bool found_ctrl_stmt = false;
4875 stmt = NULL;
4877 /* Skip labels on the start of basic block. */
4878 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4880 tree label;
4881 gimple prev_stmt = stmt;
4883 stmt = gsi_stmt (gsi);
4885 if (gimple_code (stmt) != GIMPLE_LABEL)
4886 break;
4888 label = gimple_label_label (stmt);
4889 if (prev_stmt && DECL_NONLOCAL (label))
4891 error ("nonlocal label ");
4892 print_generic_expr (stderr, label, 0);
4893 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4894 bb->index);
4895 err = 1;
4898 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4900 error ("EH landing pad label ");
4901 print_generic_expr (stderr, label, 0);
4902 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4903 bb->index);
4904 err = 1;
4907 if (label_to_block (label) != bb)
4909 error ("label ");
4910 print_generic_expr (stderr, label, 0);
4911 fprintf (stderr, " to block does not match in bb %d",
4912 bb->index);
4913 err = 1;
4916 if (decl_function_context (label) != current_function_decl)
4918 error ("label ");
4919 print_generic_expr (stderr, label, 0);
4920 fprintf (stderr, " has incorrect context in bb %d",
4921 bb->index);
4922 err = 1;
4926 /* Verify that body of basic block BB is free of control flow. */
4927 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4929 gimple stmt = gsi_stmt (gsi);
4931 if (found_ctrl_stmt)
4933 error ("control flow in the middle of basic block %d",
4934 bb->index);
4935 err = 1;
4938 if (stmt_ends_bb_p (stmt))
4939 found_ctrl_stmt = true;
4941 if (gimple_code (stmt) == GIMPLE_LABEL)
4943 error ("label ");
4944 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4945 fprintf (stderr, " in the middle of basic block %d", bb->index);
4946 err = 1;
4950 gsi = gsi_last_bb (bb);
4951 if (gsi_end_p (gsi))
4952 continue;
4954 stmt = gsi_stmt (gsi);
4956 if (gimple_code (stmt) == GIMPLE_LABEL)
4957 continue;
4959 err |= verify_eh_edges (stmt);
4961 if (is_ctrl_stmt (stmt))
4963 FOR_EACH_EDGE (e, ei, bb->succs)
4964 if (e->flags & EDGE_FALLTHRU)
4966 error ("fallthru edge after a control statement in bb %d",
4967 bb->index);
4968 err = 1;
4972 if (gimple_code (stmt) != GIMPLE_COND)
4974 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4975 after anything else but if statement. */
4976 FOR_EACH_EDGE (e, ei, bb->succs)
4977 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4979 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4980 bb->index);
4981 err = 1;
4985 switch (gimple_code (stmt))
4987 case GIMPLE_COND:
4989 edge true_edge;
4990 edge false_edge;
4992 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4994 if (!true_edge
4995 || !false_edge
4996 || !(true_edge->flags & EDGE_TRUE_VALUE)
4997 || !(false_edge->flags & EDGE_FALSE_VALUE)
4998 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4999 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5000 || EDGE_COUNT (bb->succs) >= 3)
5002 error ("wrong outgoing edge flags at end of bb %d",
5003 bb->index);
5004 err = 1;
5007 break;
5009 case GIMPLE_GOTO:
5010 if (simple_goto_p (stmt))
5012 error ("explicit goto at end of bb %d", bb->index);
5013 err = 1;
5015 else
5017 /* FIXME. We should double check that the labels in the
5018 destination blocks have their address taken. */
5019 FOR_EACH_EDGE (e, ei, bb->succs)
5020 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5021 | EDGE_FALSE_VALUE))
5022 || !(e->flags & EDGE_ABNORMAL))
5024 error ("wrong outgoing edge flags at end of bb %d",
5025 bb->index);
5026 err = 1;
5029 break;
5031 case GIMPLE_CALL:
5032 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5033 break;
5034 /* ... fallthru ... */
5035 case GIMPLE_RETURN:
5036 if (!single_succ_p (bb)
5037 || (single_succ_edge (bb)->flags
5038 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5039 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5041 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5042 err = 1;
5044 if (single_succ (bb) != EXIT_BLOCK_PTR)
5046 error ("return edge does not point to exit in bb %d",
5047 bb->index);
5048 err = 1;
5050 break;
5052 case GIMPLE_SWITCH:
5054 tree prev;
5055 edge e;
5056 size_t i, n;
5058 n = gimple_switch_num_labels (stmt);
5060 /* Mark all the destination basic blocks. */
5061 for (i = 0; i < n; ++i)
5063 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5064 basic_block label_bb = label_to_block (lab);
5065 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5066 label_bb->aux = (void *)1;
5069 /* Verify that the case labels are sorted. */
5070 prev = gimple_switch_label (stmt, 0);
5071 for (i = 1; i < n; ++i)
5073 tree c = gimple_switch_label (stmt, i);
5074 if (!CASE_LOW (c))
5076 error ("found default case not at the start of "
5077 "case vector");
5078 err = 1;
5079 continue;
5081 if (CASE_LOW (prev)
5082 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5084 error ("case labels not sorted: ");
5085 print_generic_expr (stderr, prev, 0);
5086 fprintf (stderr," is greater than ");
5087 print_generic_expr (stderr, c, 0);
5088 fprintf (stderr," but comes before it.\n");
5089 err = 1;
5091 prev = c;
5093 /* VRP will remove the default case if it can prove it will
5094 never be executed. So do not verify there always exists
5095 a default case here. */
5097 FOR_EACH_EDGE (e, ei, bb->succs)
5099 if (!e->dest->aux)
5101 error ("extra outgoing edge %d->%d",
5102 bb->index, e->dest->index);
5103 err = 1;
5106 e->dest->aux = (void *)2;
5107 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5108 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5110 error ("wrong outgoing edge flags at end of bb %d",
5111 bb->index);
5112 err = 1;
5116 /* Check that we have all of them. */
5117 for (i = 0; i < n; ++i)
5119 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5120 basic_block label_bb = label_to_block (lab);
5122 if (label_bb->aux != (void *)2)
5124 error ("missing edge %i->%i", bb->index, label_bb->index);
5125 err = 1;
5129 FOR_EACH_EDGE (e, ei, bb->succs)
5130 e->dest->aux = (void *)0;
5132 break;
5134 case GIMPLE_EH_DISPATCH:
5135 err |= verify_eh_dispatch_edge (stmt);
5136 break;
5138 default:
5139 break;
5143 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5144 verify_dominators (CDI_DOMINATORS);
5146 return err;
5150 /* Updates phi nodes after creating a forwarder block joined
5151 by edge FALLTHRU. */
5153 static void
5154 gimple_make_forwarder_block (edge fallthru)
5156 edge e;
5157 edge_iterator ei;
5158 basic_block dummy, bb;
5159 tree var;
5160 gimple_stmt_iterator gsi;
5162 dummy = fallthru->src;
5163 bb = fallthru->dest;
5165 if (single_pred_p (bb))
5166 return;
5168 /* If we redirected a branch we must create new PHI nodes at the
5169 start of BB. */
5170 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5172 gimple phi, new_phi;
5174 phi = gsi_stmt (gsi);
5175 var = gimple_phi_result (phi);
5176 new_phi = create_phi_node (var, bb);
5177 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5178 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5179 UNKNOWN_LOCATION);
5182 /* Add the arguments we have stored on edges. */
5183 FOR_EACH_EDGE (e, ei, bb->preds)
5185 if (e == fallthru)
5186 continue;
5188 flush_pending_stmts (e);
5193 /* Return a non-special label in the head of basic block BLOCK.
5194 Create one if it doesn't exist. */
5196 tree
5197 gimple_block_label (basic_block bb)
5199 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5200 bool first = true;
5201 tree label;
5202 gimple stmt;
5204 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5206 stmt = gsi_stmt (i);
5207 if (gimple_code (stmt) != GIMPLE_LABEL)
5208 break;
5209 label = gimple_label_label (stmt);
5210 if (!DECL_NONLOCAL (label))
5212 if (!first)
5213 gsi_move_before (&i, &s);
5214 return label;
5218 label = create_artificial_label (UNKNOWN_LOCATION);
5219 stmt = gimple_build_label (label);
5220 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5221 return label;
5225 /* Attempt to perform edge redirection by replacing a possibly complex
5226 jump instruction by a goto or by removing the jump completely.
5227 This can apply only if all edges now point to the same block. The
5228 parameters and return values are equivalent to
5229 redirect_edge_and_branch. */
5231 static edge
5232 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5234 basic_block src = e->src;
5235 gimple_stmt_iterator i;
5236 gimple stmt;
5238 /* We can replace or remove a complex jump only when we have exactly
5239 two edges. */
5240 if (EDGE_COUNT (src->succs) != 2
5241 /* Verify that all targets will be TARGET. Specifically, the
5242 edge that is not E must also go to TARGET. */
5243 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5244 return NULL;
5246 i = gsi_last_bb (src);
5247 if (gsi_end_p (i))
5248 return NULL;
5250 stmt = gsi_stmt (i);
5252 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5254 gsi_remove (&i, true);
5255 e = ssa_redirect_edge (e, target);
5256 e->flags = EDGE_FALLTHRU;
5257 return e;
5260 return NULL;
5264 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5265 edge representing the redirected branch. */
5267 static edge
5268 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5270 basic_block bb = e->src;
5271 gimple_stmt_iterator gsi;
5272 edge ret;
5273 gimple stmt;
5275 if (e->flags & EDGE_ABNORMAL)
5276 return NULL;
5278 if (e->dest == dest)
5279 return NULL;
5281 if (e->flags & EDGE_EH)
5282 return redirect_eh_edge (e, dest);
5284 if (e->src != ENTRY_BLOCK_PTR)
5286 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5287 if (ret)
5288 return ret;
5291 gsi = gsi_last_bb (bb);
5292 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5294 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5296 case GIMPLE_COND:
5297 /* For COND_EXPR, we only need to redirect the edge. */
5298 break;
5300 case GIMPLE_GOTO:
5301 /* No non-abnormal edges should lead from a non-simple goto, and
5302 simple ones should be represented implicitly. */
5303 gcc_unreachable ();
5305 case GIMPLE_SWITCH:
5307 tree label = gimple_block_label (dest);
5308 tree cases = get_cases_for_edge (e, stmt);
5310 /* If we have a list of cases associated with E, then use it
5311 as it's a lot faster than walking the entire case vector. */
5312 if (cases)
5314 edge e2 = find_edge (e->src, dest);
5315 tree last, first;
5317 first = cases;
5318 while (cases)
5320 last = cases;
5321 CASE_LABEL (cases) = label;
5322 cases = CASE_CHAIN (cases);
5325 /* If there was already an edge in the CFG, then we need
5326 to move all the cases associated with E to E2. */
5327 if (e2)
5329 tree cases2 = get_cases_for_edge (e2, stmt);
5331 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5332 CASE_CHAIN (cases2) = first;
5334 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5336 else
5338 size_t i, n = gimple_switch_num_labels (stmt);
5340 for (i = 0; i < n; i++)
5342 tree elt = gimple_switch_label (stmt, i);
5343 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5344 CASE_LABEL (elt) = label;
5348 break;
5350 case GIMPLE_ASM:
5352 int i, n = gimple_asm_nlabels (stmt);
5353 tree label = NULL;
5355 for (i = 0; i < n; ++i)
5357 tree cons = gimple_asm_label_op (stmt, i);
5358 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5360 if (!label)
5361 label = gimple_block_label (dest);
5362 TREE_VALUE (cons) = label;
5366 /* If we didn't find any label matching the former edge in the
5367 asm labels, we must be redirecting the fallthrough
5368 edge. */
5369 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5371 break;
5373 case GIMPLE_RETURN:
5374 gsi_remove (&gsi, true);
5375 e->flags |= EDGE_FALLTHRU;
5376 break;
5378 case GIMPLE_OMP_RETURN:
5379 case GIMPLE_OMP_CONTINUE:
5380 case GIMPLE_OMP_SECTIONS_SWITCH:
5381 case GIMPLE_OMP_FOR:
5382 /* The edges from OMP constructs can be simply redirected. */
5383 break;
5385 case GIMPLE_EH_DISPATCH:
5386 if (!(e->flags & EDGE_FALLTHRU))
5387 redirect_eh_dispatch_edge (stmt, e, dest);
5388 break;
5390 case GIMPLE_TRANSACTION:
5391 /* The ABORT edge has a stored label associated with it, otherwise
5392 the edges are simply redirectable. */
5393 if (e->flags == 0)
5394 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5395 break;
5397 default:
5398 /* Otherwise it must be a fallthru edge, and we don't need to
5399 do anything besides redirecting it. */
5400 gcc_assert (e->flags & EDGE_FALLTHRU);
5401 break;
5404 /* Update/insert PHI nodes as necessary. */
5406 /* Now update the edges in the CFG. */
5407 e = ssa_redirect_edge (e, dest);
5409 return e;
5412 /* Returns true if it is possible to remove edge E by redirecting
5413 it to the destination of the other edge from E->src. */
5415 static bool
5416 gimple_can_remove_branch_p (const_edge e)
5418 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5419 return false;
5421 return true;
5424 /* Simple wrapper, as we can always redirect fallthru edges. */
5426 static basic_block
5427 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5429 e = gimple_redirect_edge_and_branch (e, dest);
5430 gcc_assert (e);
5432 return NULL;
5436 /* Splits basic block BB after statement STMT (but at least after the
5437 labels). If STMT is NULL, BB is split just after the labels. */
5439 static basic_block
5440 gimple_split_block (basic_block bb, void *stmt)
5442 gimple_stmt_iterator gsi;
5443 gimple_stmt_iterator gsi_tgt;
5444 gimple act;
5445 gimple_seq list;
5446 basic_block new_bb;
5447 edge e;
5448 edge_iterator ei;
5450 new_bb = create_empty_bb (bb);
5452 /* Redirect the outgoing edges. */
5453 new_bb->succs = bb->succs;
5454 bb->succs = NULL;
5455 FOR_EACH_EDGE (e, ei, new_bb->succs)
5456 e->src = new_bb;
5458 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5459 stmt = NULL;
5461 /* Move everything from GSI to the new basic block. */
5462 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5464 act = gsi_stmt (gsi);
5465 if (gimple_code (act) == GIMPLE_LABEL)
5466 continue;
5468 if (!stmt)
5469 break;
5471 if (stmt == act)
5473 gsi_next (&gsi);
5474 break;
5478 if (gsi_end_p (gsi))
5479 return new_bb;
5481 /* Split the statement list - avoid re-creating new containers as this
5482 brings ugly quadratic memory consumption in the inliner.
5483 (We are still quadratic since we need to update stmt BB pointers,
5484 sadly.) */
5485 gsi_split_seq_before (&gsi, &list);
5486 set_bb_seq (new_bb, list);
5487 for (gsi_tgt = gsi_start (list);
5488 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5489 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5491 return new_bb;
5495 /* Moves basic block BB after block AFTER. */
5497 static bool
5498 gimple_move_block_after (basic_block bb, basic_block after)
5500 if (bb->prev_bb == after)
5501 return true;
5503 unlink_block (bb);
5504 link_block (bb, after);
5506 return true;
5510 /* Return TRUE if block BB has no executable statements, otherwise return
5511 FALSE. */
5513 bool
5514 gimple_empty_block_p (basic_block bb)
5516 /* BB must have no executable statements. */
5517 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5518 if (phi_nodes (bb))
5519 return false;
5520 if (gsi_end_p (gsi))
5521 return true;
5522 if (is_gimple_debug (gsi_stmt (gsi)))
5523 gsi_next_nondebug (&gsi);
5524 return gsi_end_p (gsi);
5528 /* Split a basic block if it ends with a conditional branch and if the
5529 other part of the block is not empty. */
5531 static basic_block
5532 gimple_split_block_before_cond_jump (basic_block bb)
5534 gimple last, split_point;
5535 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5536 if (gsi_end_p (gsi))
5537 return NULL;
5538 last = gsi_stmt (gsi);
5539 if (gimple_code (last) != GIMPLE_COND
5540 && gimple_code (last) != GIMPLE_SWITCH)
5541 return NULL;
5542 gsi_prev_nondebug (&gsi);
5543 split_point = gsi_stmt (gsi);
5544 return split_block (bb, split_point)->dest;
5548 /* Return true if basic_block can be duplicated. */
5550 static bool
5551 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5553 return true;
5556 /* Create a duplicate of the basic block BB. NOTE: This does not
5557 preserve SSA form. */
5559 static basic_block
5560 gimple_duplicate_bb (basic_block bb)
5562 basic_block new_bb;
5563 gimple_stmt_iterator gsi, gsi_tgt;
5564 gimple_seq phis = phi_nodes (bb);
5565 gimple phi, stmt, copy;
5567 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5569 /* Copy the PHI nodes. We ignore PHI node arguments here because
5570 the incoming edges have not been setup yet. */
5571 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5573 phi = gsi_stmt (gsi);
5574 copy = create_phi_node (NULL_TREE, new_bb);
5575 create_new_def_for (gimple_phi_result (phi), copy,
5576 gimple_phi_result_ptr (copy));
5579 gsi_tgt = gsi_start_bb (new_bb);
5580 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5582 def_operand_p def_p;
5583 ssa_op_iter op_iter;
5584 tree lhs;
5586 stmt = gsi_stmt (gsi);
5587 if (gimple_code (stmt) == GIMPLE_LABEL)
5588 continue;
5590 /* Don't duplicate label debug stmts. */
5591 if (gimple_debug_bind_p (stmt)
5592 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5593 == LABEL_DECL)
5594 continue;
5596 /* Create a new copy of STMT and duplicate STMT's virtual
5597 operands. */
5598 copy = gimple_copy (stmt);
5599 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5601 maybe_duplicate_eh_stmt (copy, stmt);
5602 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5604 /* When copying around a stmt writing into a local non-user
5605 aggregate, make sure it won't share stack slot with other
5606 vars. */
5607 lhs = gimple_get_lhs (stmt);
5608 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5610 tree base = get_base_address (lhs);
5611 if (base
5612 && (TREE_CODE (base) == VAR_DECL
5613 || TREE_CODE (base) == RESULT_DECL)
5614 && DECL_IGNORED_P (base)
5615 && !TREE_STATIC (base)
5616 && !DECL_EXTERNAL (base)
5617 && (TREE_CODE (base) != VAR_DECL
5618 || !DECL_HAS_VALUE_EXPR_P (base)))
5619 DECL_NONSHAREABLE (base) = 1;
5622 /* Create new names for all the definitions created by COPY and
5623 add replacement mappings for each new name. */
5624 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5625 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5628 return new_bb;
5631 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5633 static void
5634 add_phi_args_after_copy_edge (edge e_copy)
5636 basic_block bb, bb_copy = e_copy->src, dest;
5637 edge e;
5638 edge_iterator ei;
5639 gimple phi, phi_copy;
5640 tree def;
5641 gimple_stmt_iterator psi, psi_copy;
5643 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5644 return;
5646 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5648 if (e_copy->dest->flags & BB_DUPLICATED)
5649 dest = get_bb_original (e_copy->dest);
5650 else
5651 dest = e_copy->dest;
5653 e = find_edge (bb, dest);
5654 if (!e)
5656 /* During loop unrolling the target of the latch edge is copied.
5657 In this case we are not looking for edge to dest, but to
5658 duplicated block whose original was dest. */
5659 FOR_EACH_EDGE (e, ei, bb->succs)
5661 if ((e->dest->flags & BB_DUPLICATED)
5662 && get_bb_original (e->dest) == dest)
5663 break;
5666 gcc_assert (e != NULL);
5669 for (psi = gsi_start_phis (e->dest),
5670 psi_copy = gsi_start_phis (e_copy->dest);
5671 !gsi_end_p (psi);
5672 gsi_next (&psi), gsi_next (&psi_copy))
5674 phi = gsi_stmt (psi);
5675 phi_copy = gsi_stmt (psi_copy);
5676 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5677 add_phi_arg (phi_copy, def, e_copy,
5678 gimple_phi_arg_location_from_edge (phi, e));
5683 /* Basic block BB_COPY was created by code duplication. Add phi node
5684 arguments for edges going out of BB_COPY. The blocks that were
5685 duplicated have BB_DUPLICATED set. */
5687 void
5688 add_phi_args_after_copy_bb (basic_block bb_copy)
5690 edge e_copy;
5691 edge_iterator ei;
5693 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5695 add_phi_args_after_copy_edge (e_copy);
5699 /* Blocks in REGION_COPY array of length N_REGION were created by
5700 duplication of basic blocks. Add phi node arguments for edges
5701 going from these blocks. If E_COPY is not NULL, also add
5702 phi node arguments for its destination.*/
5704 void
5705 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5706 edge e_copy)
5708 unsigned i;
5710 for (i = 0; i < n_region; i++)
5711 region_copy[i]->flags |= BB_DUPLICATED;
5713 for (i = 0; i < n_region; i++)
5714 add_phi_args_after_copy_bb (region_copy[i]);
5715 if (e_copy)
5716 add_phi_args_after_copy_edge (e_copy);
5718 for (i = 0; i < n_region; i++)
5719 region_copy[i]->flags &= ~BB_DUPLICATED;
5722 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5723 important exit edge EXIT. By important we mean that no SSA name defined
5724 inside region is live over the other exit edges of the region. All entry
5725 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5726 to the duplicate of the region. Dominance and loop information is
5727 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5728 UPDATE_DOMINANCE is false then we assume that the caller will update the
5729 dominance information after calling this function. The new basic
5730 blocks are stored to REGION_COPY in the same order as they had in REGION,
5731 provided that REGION_COPY is not NULL.
5732 The function returns false if it is unable to copy the region,
5733 true otherwise. */
5735 bool
5736 gimple_duplicate_sese_region (edge entry, edge exit,
5737 basic_block *region, unsigned n_region,
5738 basic_block *region_copy,
5739 bool update_dominance)
5741 unsigned i;
5742 bool free_region_copy = false, copying_header = false;
5743 struct loop *loop = entry->dest->loop_father;
5744 edge exit_copy;
5745 vec<basic_block> doms;
5746 edge redirected;
5747 int total_freq = 0, entry_freq = 0;
5748 gcov_type total_count = 0, entry_count = 0;
5750 if (!can_copy_bbs_p (region, n_region))
5751 return false;
5753 /* Some sanity checking. Note that we do not check for all possible
5754 missuses of the functions. I.e. if you ask to copy something weird,
5755 it will work, but the state of structures probably will not be
5756 correct. */
5757 for (i = 0; i < n_region; i++)
5759 /* We do not handle subloops, i.e. all the blocks must belong to the
5760 same loop. */
5761 if (region[i]->loop_father != loop)
5762 return false;
5764 if (region[i] != entry->dest
5765 && region[i] == loop->header)
5766 return false;
5769 set_loop_copy (loop, loop);
5771 /* In case the function is used for loop header copying (which is the primary
5772 use), ensure that EXIT and its copy will be new latch and entry edges. */
5773 if (loop->header == entry->dest)
5775 copying_header = true;
5776 set_loop_copy (loop, loop_outer (loop));
5778 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5779 return false;
5781 for (i = 0; i < n_region; i++)
5782 if (region[i] != exit->src
5783 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5784 return false;
5787 if (!region_copy)
5789 region_copy = XNEWVEC (basic_block, n_region);
5790 free_region_copy = true;
5793 initialize_original_copy_tables ();
5795 /* Record blocks outside the region that are dominated by something
5796 inside. */
5797 if (update_dominance)
5799 doms.create (0);
5800 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5803 if (entry->dest->count)
5805 total_count = entry->dest->count;
5806 entry_count = entry->count;
5807 /* Fix up corner cases, to avoid division by zero or creation of negative
5808 frequencies. */
5809 if (entry_count > total_count)
5810 entry_count = total_count;
5812 else
5814 total_freq = entry->dest->frequency;
5815 entry_freq = EDGE_FREQUENCY (entry);
5816 /* Fix up corner cases, to avoid division by zero or creation of negative
5817 frequencies. */
5818 if (total_freq == 0)
5819 total_freq = 1;
5820 else if (entry_freq > total_freq)
5821 entry_freq = total_freq;
5824 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5825 split_edge_bb_loc (entry), update_dominance);
5826 if (total_count)
5828 scale_bbs_frequencies_gcov_type (region, n_region,
5829 total_count - entry_count,
5830 total_count);
5831 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5832 total_count);
5834 else
5836 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5837 total_freq);
5838 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5841 if (copying_header)
5843 loop->header = exit->dest;
5844 loop->latch = exit->src;
5847 /* Redirect the entry and add the phi node arguments. */
5848 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5849 gcc_assert (redirected != NULL);
5850 flush_pending_stmts (entry);
5852 /* Concerning updating of dominators: We must recount dominators
5853 for entry block and its copy. Anything that is outside of the
5854 region, but was dominated by something inside needs recounting as
5855 well. */
5856 if (update_dominance)
5858 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5859 doms.safe_push (get_bb_original (entry->dest));
5860 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5861 doms.release ();
5864 /* Add the other PHI node arguments. */
5865 add_phi_args_after_copy (region_copy, n_region, NULL);
5867 if (free_region_copy)
5868 free (region_copy);
5870 free_original_copy_tables ();
5871 return true;
5874 /* Checks if BB is part of the region defined by N_REGION BBS. */
5875 static bool
5876 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5878 unsigned int n;
5880 for (n = 0; n < n_region; n++)
5882 if (bb == bbs[n])
5883 return true;
5885 return false;
5888 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5889 are stored to REGION_COPY in the same order in that they appear
5890 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5891 the region, EXIT an exit from it. The condition guarding EXIT
5892 is moved to ENTRY. Returns true if duplication succeeds, false
5893 otherwise.
5895 For example,
5897 some_code;
5898 if (cond)
5900 else
5903 is transformed to
5905 if (cond)
5907 some_code;
5910 else
5912 some_code;
5917 bool
5918 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5919 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5920 basic_block *region_copy ATTRIBUTE_UNUSED)
5922 unsigned i;
5923 bool free_region_copy = false;
5924 struct loop *loop = exit->dest->loop_father;
5925 struct loop *orig_loop = entry->dest->loop_father;
5926 basic_block switch_bb, entry_bb, nentry_bb;
5927 vec<basic_block> doms;
5928 int total_freq = 0, exit_freq = 0;
5929 gcov_type total_count = 0, exit_count = 0;
5930 edge exits[2], nexits[2], e;
5931 gimple_stmt_iterator gsi;
5932 gimple cond_stmt;
5933 edge sorig, snew;
5934 basic_block exit_bb;
5935 gimple_stmt_iterator psi;
5936 gimple phi;
5937 tree def;
5938 struct loop *target, *aloop, *cloop;
5940 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5941 exits[0] = exit;
5942 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5944 if (!can_copy_bbs_p (region, n_region))
5945 return false;
5947 initialize_original_copy_tables ();
5948 set_loop_copy (orig_loop, loop);
5950 target= loop;
5951 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5953 if (bb_part_of_region_p (aloop->header, region, n_region))
5955 cloop = duplicate_loop (aloop, target);
5956 duplicate_subloops (aloop, cloop);
5960 if (!region_copy)
5962 region_copy = XNEWVEC (basic_block, n_region);
5963 free_region_copy = true;
5966 gcc_assert (!need_ssa_update_p (cfun));
5968 /* Record blocks outside the region that are dominated by something
5969 inside. */
5970 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5972 if (exit->src->count)
5974 total_count = exit->src->count;
5975 exit_count = exit->count;
5976 /* Fix up corner cases, to avoid division by zero or creation of negative
5977 frequencies. */
5978 if (exit_count > total_count)
5979 exit_count = total_count;
5981 else
5983 total_freq = exit->src->frequency;
5984 exit_freq = EDGE_FREQUENCY (exit);
5985 /* Fix up corner cases, to avoid division by zero or creation of negative
5986 frequencies. */
5987 if (total_freq == 0)
5988 total_freq = 1;
5989 if (exit_freq > total_freq)
5990 exit_freq = total_freq;
5993 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5994 split_edge_bb_loc (exit), true);
5995 if (total_count)
5997 scale_bbs_frequencies_gcov_type (region, n_region,
5998 total_count - exit_count,
5999 total_count);
6000 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6001 total_count);
6003 else
6005 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6006 total_freq);
6007 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6010 /* Create the switch block, and put the exit condition to it. */
6011 entry_bb = entry->dest;
6012 nentry_bb = get_bb_copy (entry_bb);
6013 if (!last_stmt (entry->src)
6014 || !stmt_ends_bb_p (last_stmt (entry->src)))
6015 switch_bb = entry->src;
6016 else
6017 switch_bb = split_edge (entry);
6018 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6020 gsi = gsi_last_bb (switch_bb);
6021 cond_stmt = last_stmt (exit->src);
6022 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6023 cond_stmt = gimple_copy (cond_stmt);
6025 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6027 sorig = single_succ_edge (switch_bb);
6028 sorig->flags = exits[1]->flags;
6029 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6031 /* Register the new edge from SWITCH_BB in loop exit lists. */
6032 rescan_loop_exit (snew, true, false);
6034 /* Add the PHI node arguments. */
6035 add_phi_args_after_copy (region_copy, n_region, snew);
6037 /* Get rid of now superfluous conditions and associated edges (and phi node
6038 arguments). */
6039 exit_bb = exit->dest;
6041 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6042 PENDING_STMT (e) = NULL;
6044 /* The latch of ORIG_LOOP was copied, and so was the backedge
6045 to the original header. We redirect this backedge to EXIT_BB. */
6046 for (i = 0; i < n_region; i++)
6047 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6049 gcc_assert (single_succ_edge (region_copy[i]));
6050 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6051 PENDING_STMT (e) = NULL;
6052 for (psi = gsi_start_phis (exit_bb);
6053 !gsi_end_p (psi);
6054 gsi_next (&psi))
6056 phi = gsi_stmt (psi);
6057 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6058 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6061 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6062 PENDING_STMT (e) = NULL;
6064 /* Anything that is outside of the region, but was dominated by something
6065 inside needs to update dominance info. */
6066 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6067 doms.release ();
6068 /* Update the SSA web. */
6069 update_ssa (TODO_update_ssa);
6071 if (free_region_copy)
6072 free (region_copy);
6074 free_original_copy_tables ();
6075 return true;
6078 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6079 adding blocks when the dominator traversal reaches EXIT. This
6080 function silently assumes that ENTRY strictly dominates EXIT. */
6082 void
6083 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6084 vec<basic_block> *bbs_p)
6086 basic_block son;
6088 for (son = first_dom_son (CDI_DOMINATORS, entry);
6089 son;
6090 son = next_dom_son (CDI_DOMINATORS, son))
6092 bbs_p->safe_push (son);
6093 if (son != exit)
6094 gather_blocks_in_sese_region (son, exit, bbs_p);
6098 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6099 The duplicates are recorded in VARS_MAP. */
6101 static void
6102 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6103 tree to_context)
6105 tree t = *tp, new_t;
6106 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6107 void **loc;
6109 if (DECL_CONTEXT (t) == to_context)
6110 return;
6112 loc = pointer_map_contains (vars_map, t);
6114 if (!loc)
6116 loc = pointer_map_insert (vars_map, t);
6118 if (SSA_VAR_P (t))
6120 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6121 add_local_decl (f, new_t);
6123 else
6125 gcc_assert (TREE_CODE (t) == CONST_DECL);
6126 new_t = copy_node (t);
6128 DECL_CONTEXT (new_t) = to_context;
6130 *loc = new_t;
6132 else
6133 new_t = (tree) *loc;
6135 *tp = new_t;
6139 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6140 VARS_MAP maps old ssa names and var_decls to the new ones. */
6142 static tree
6143 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6144 tree to_context)
6146 void **loc;
6147 tree new_name;
6149 gcc_assert (!virtual_operand_p (name));
6151 loc = pointer_map_contains (vars_map, name);
6153 if (!loc)
6155 tree decl = SSA_NAME_VAR (name);
6156 if (decl)
6158 replace_by_duplicate_decl (&decl, vars_map, to_context);
6159 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6160 decl, SSA_NAME_DEF_STMT (name));
6161 if (SSA_NAME_IS_DEFAULT_DEF (name))
6162 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6163 decl, new_name);
6165 else
6166 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6167 name, SSA_NAME_DEF_STMT (name));
6169 loc = pointer_map_insert (vars_map, name);
6170 *loc = new_name;
6172 else
6173 new_name = (tree) *loc;
6175 return new_name;
6178 struct move_stmt_d
6180 tree orig_block;
6181 tree new_block;
6182 tree from_context;
6183 tree to_context;
6184 struct pointer_map_t *vars_map;
6185 htab_t new_label_map;
6186 struct pointer_map_t *eh_map;
6187 bool remap_decls_p;
6190 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6191 contained in *TP if it has been ORIG_BLOCK previously and change the
6192 DECL_CONTEXT of every local variable referenced in *TP. */
6194 static tree
6195 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6197 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6198 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6199 tree t = *tp;
6201 if (EXPR_P (t))
6203 tree block = TREE_BLOCK (t);
6204 if (block == p->orig_block
6205 || (p->orig_block == NULL_TREE
6206 && block != NULL_TREE))
6207 TREE_SET_BLOCK (t, p->new_block);
6208 #ifdef ENABLE_CHECKING
6209 else if (block != NULL_TREE)
6211 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6212 block = BLOCK_SUPERCONTEXT (block);
6213 gcc_assert (block == p->orig_block);
6215 #endif
6217 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6219 if (TREE_CODE (t) == SSA_NAME)
6220 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6221 else if (TREE_CODE (t) == LABEL_DECL)
6223 if (p->new_label_map)
6225 struct tree_map in, *out;
6226 in.base.from = t;
6227 out = (struct tree_map *)
6228 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6229 if (out)
6230 *tp = t = out->to;
6233 DECL_CONTEXT (t) = p->to_context;
6235 else if (p->remap_decls_p)
6237 /* Replace T with its duplicate. T should no longer appear in the
6238 parent function, so this looks wasteful; however, it may appear
6239 in referenced_vars, and more importantly, as virtual operands of
6240 statements, and in alias lists of other variables. It would be
6241 quite difficult to expunge it from all those places. ??? It might
6242 suffice to do this for addressable variables. */
6243 if ((TREE_CODE (t) == VAR_DECL
6244 && !is_global_var (t))
6245 || TREE_CODE (t) == CONST_DECL)
6246 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6248 *walk_subtrees = 0;
6250 else if (TYPE_P (t))
6251 *walk_subtrees = 0;
6253 return NULL_TREE;
6256 /* Helper for move_stmt_r. Given an EH region number for the source
6257 function, map that to the duplicate EH regio number in the dest. */
6259 static int
6260 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6262 eh_region old_r, new_r;
6263 void **slot;
6265 old_r = get_eh_region_from_number (old_nr);
6266 slot = pointer_map_contains (p->eh_map, old_r);
6267 new_r = (eh_region) *slot;
6269 return new_r->index;
6272 /* Similar, but operate on INTEGER_CSTs. */
6274 static tree
6275 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6277 int old_nr, new_nr;
6279 old_nr = tree_low_cst (old_t_nr, 0);
6280 new_nr = move_stmt_eh_region_nr (old_nr, p);
6282 return build_int_cst (integer_type_node, new_nr);
6285 /* Like move_stmt_op, but for gimple statements.
6287 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6288 contained in the current statement in *GSI_P and change the
6289 DECL_CONTEXT of every local variable referenced in the current
6290 statement. */
6292 static tree
6293 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6294 struct walk_stmt_info *wi)
6296 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6297 gimple stmt = gsi_stmt (*gsi_p);
6298 tree block = gimple_block (stmt);
6300 if (block == p->orig_block
6301 || (p->orig_block == NULL_TREE
6302 && block != NULL_TREE))
6303 gimple_set_block (stmt, p->new_block);
6305 switch (gimple_code (stmt))
6307 case GIMPLE_CALL:
6308 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6310 tree r, fndecl = gimple_call_fndecl (stmt);
6311 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6312 switch (DECL_FUNCTION_CODE (fndecl))
6314 case BUILT_IN_EH_COPY_VALUES:
6315 r = gimple_call_arg (stmt, 1);
6316 r = move_stmt_eh_region_tree_nr (r, p);
6317 gimple_call_set_arg (stmt, 1, r);
6318 /* FALLTHRU */
6320 case BUILT_IN_EH_POINTER:
6321 case BUILT_IN_EH_FILTER:
6322 r = gimple_call_arg (stmt, 0);
6323 r = move_stmt_eh_region_tree_nr (r, p);
6324 gimple_call_set_arg (stmt, 0, r);
6325 break;
6327 default:
6328 break;
6331 break;
6333 case GIMPLE_RESX:
6335 int r = gimple_resx_region (stmt);
6336 r = move_stmt_eh_region_nr (r, p);
6337 gimple_resx_set_region (stmt, r);
6339 break;
6341 case GIMPLE_EH_DISPATCH:
6343 int r = gimple_eh_dispatch_region (stmt);
6344 r = move_stmt_eh_region_nr (r, p);
6345 gimple_eh_dispatch_set_region (stmt, r);
6347 break;
6349 case GIMPLE_OMP_RETURN:
6350 case GIMPLE_OMP_CONTINUE:
6351 break;
6352 default:
6353 if (is_gimple_omp (stmt))
6355 /* Do not remap variables inside OMP directives. Variables
6356 referenced in clauses and directive header belong to the
6357 parent function and should not be moved into the child
6358 function. */
6359 bool save_remap_decls_p = p->remap_decls_p;
6360 p->remap_decls_p = false;
6361 *handled_ops_p = true;
6363 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6364 move_stmt_op, wi);
6366 p->remap_decls_p = save_remap_decls_p;
6368 break;
6371 return NULL_TREE;
6374 /* Move basic block BB from function CFUN to function DEST_FN. The
6375 block is moved out of the original linked list and placed after
6376 block AFTER in the new list. Also, the block is removed from the
6377 original array of blocks and placed in DEST_FN's array of blocks.
6378 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6379 updated to reflect the moved edges.
6381 The local variables are remapped to new instances, VARS_MAP is used
6382 to record the mapping. */
6384 static void
6385 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6386 basic_block after, bool update_edge_count_p,
6387 struct move_stmt_d *d)
6389 struct control_flow_graph *cfg;
6390 edge_iterator ei;
6391 edge e;
6392 gimple_stmt_iterator si;
6393 unsigned old_len, new_len;
6395 /* Remove BB from dominance structures. */
6396 delete_from_dominance_info (CDI_DOMINATORS, bb);
6398 /* Move BB from its current loop to the copy in the new function. */
6399 if (current_loops)
6401 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6402 if (new_loop)
6403 bb->loop_father = new_loop;
6406 /* Link BB to the new linked list. */
6407 move_block_after (bb, after);
6409 /* Update the edge count in the corresponding flowgraphs. */
6410 if (update_edge_count_p)
6411 FOR_EACH_EDGE (e, ei, bb->succs)
6413 cfun->cfg->x_n_edges--;
6414 dest_cfun->cfg->x_n_edges++;
6417 /* Remove BB from the original basic block array. */
6418 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6419 cfun->cfg->x_n_basic_blocks--;
6421 /* Grow DEST_CFUN's basic block array if needed. */
6422 cfg = dest_cfun->cfg;
6423 cfg->x_n_basic_blocks++;
6424 if (bb->index >= cfg->x_last_basic_block)
6425 cfg->x_last_basic_block = bb->index + 1;
6427 old_len = vec_safe_length (cfg->x_basic_block_info);
6428 if ((unsigned) cfg->x_last_basic_block >= old_len)
6430 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6431 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6434 (*cfg->x_basic_block_info)[bb->index] = bb;
6436 /* Remap the variables in phi nodes. */
6437 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6439 gimple phi = gsi_stmt (si);
6440 use_operand_p use;
6441 tree op = PHI_RESULT (phi);
6442 ssa_op_iter oi;
6443 unsigned i;
6445 if (virtual_operand_p (op))
6447 /* Remove the phi nodes for virtual operands (alias analysis will be
6448 run for the new function, anyway). */
6449 remove_phi_node (&si, true);
6450 continue;
6453 SET_PHI_RESULT (phi,
6454 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6455 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6457 op = USE_FROM_PTR (use);
6458 if (TREE_CODE (op) == SSA_NAME)
6459 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6462 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6464 location_t locus = gimple_phi_arg_location (phi, i);
6465 tree block = LOCATION_BLOCK (locus);
6467 if (locus == UNKNOWN_LOCATION)
6468 continue;
6469 if (d->orig_block == NULL_TREE || block == d->orig_block)
6471 if (d->new_block == NULL_TREE)
6472 locus = LOCATION_LOCUS (locus);
6473 else
6474 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6475 gimple_phi_arg_set_location (phi, i, locus);
6479 gsi_next (&si);
6482 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6484 gimple stmt = gsi_stmt (si);
6485 struct walk_stmt_info wi;
6487 memset (&wi, 0, sizeof (wi));
6488 wi.info = d;
6489 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6491 if (gimple_code (stmt) == GIMPLE_LABEL)
6493 tree label = gimple_label_label (stmt);
6494 int uid = LABEL_DECL_UID (label);
6496 gcc_assert (uid > -1);
6498 old_len = vec_safe_length (cfg->x_label_to_block_map);
6499 if (old_len <= (unsigned) uid)
6501 new_len = 3 * uid / 2 + 1;
6502 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6505 (*cfg->x_label_to_block_map)[uid] = bb;
6506 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6508 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6510 if (uid >= dest_cfun->cfg->last_label_uid)
6511 dest_cfun->cfg->last_label_uid = uid + 1;
6514 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6515 remove_stmt_from_eh_lp_fn (cfun, stmt);
6517 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6518 gimple_remove_stmt_histograms (cfun, stmt);
6520 /* We cannot leave any operands allocated from the operand caches of
6521 the current function. */
6522 free_stmt_operands (stmt);
6523 push_cfun (dest_cfun);
6524 update_stmt (stmt);
6525 pop_cfun ();
6528 FOR_EACH_EDGE (e, ei, bb->succs)
6529 if (e->goto_locus != UNKNOWN_LOCATION)
6531 tree block = LOCATION_BLOCK (e->goto_locus);
6532 if (d->orig_block == NULL_TREE
6533 || block == d->orig_block)
6534 e->goto_locus = d->new_block ?
6535 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6536 LOCATION_LOCUS (e->goto_locus);
6540 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6541 the outermost EH region. Use REGION as the incoming base EH region. */
6543 static eh_region
6544 find_outermost_region_in_block (struct function *src_cfun,
6545 basic_block bb, eh_region region)
6547 gimple_stmt_iterator si;
6549 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6551 gimple stmt = gsi_stmt (si);
6552 eh_region stmt_region;
6553 int lp_nr;
6555 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6556 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6557 if (stmt_region)
6559 if (region == NULL)
6560 region = stmt_region;
6561 else if (stmt_region != region)
6563 region = eh_region_outermost (src_cfun, stmt_region, region);
6564 gcc_assert (region != NULL);
6569 return region;
6572 static tree
6573 new_label_mapper (tree decl, void *data)
6575 htab_t hash = (htab_t) data;
6576 struct tree_map *m;
6577 void **slot;
6579 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6581 m = XNEW (struct tree_map);
6582 m->hash = DECL_UID (decl);
6583 m->base.from = decl;
6584 m->to = create_artificial_label (UNKNOWN_LOCATION);
6585 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6586 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6587 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6589 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6590 gcc_assert (*slot == NULL);
6592 *slot = m;
6594 return m->to;
6597 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6598 subblocks. */
6600 static void
6601 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6602 tree to_context)
6604 tree *tp, t;
6606 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6608 t = *tp;
6609 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6610 continue;
6611 replace_by_duplicate_decl (&t, vars_map, to_context);
6612 if (t != *tp)
6614 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6616 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6617 DECL_HAS_VALUE_EXPR_P (t) = 1;
6619 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6620 *tp = t;
6624 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6625 replace_block_vars_by_duplicates (block, vars_map, to_context);
6628 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6629 from FN1 to FN2. */
6631 static void
6632 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6633 struct loop *loop)
6635 /* Discard it from the old loop array. */
6636 (*get_loops (fn1))[loop->num] = NULL;
6638 /* Place it in the new loop array, assigning it a new number. */
6639 loop->num = number_of_loops (fn2);
6640 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6642 /* Recurse to children. */
6643 for (loop = loop->inner; loop; loop = loop->next)
6644 fixup_loop_arrays_after_move (fn1, fn2, loop);
6647 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6648 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6649 single basic block in the original CFG and the new basic block is
6650 returned. DEST_CFUN must not have a CFG yet.
6652 Note that the region need not be a pure SESE region. Blocks inside
6653 the region may contain calls to abort/exit. The only restriction
6654 is that ENTRY_BB should be the only entry point and it must
6655 dominate EXIT_BB.
6657 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6658 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6659 to the new function.
6661 All local variables referenced in the region are assumed to be in
6662 the corresponding BLOCK_VARS and unexpanded variable lists
6663 associated with DEST_CFUN. */
6665 basic_block
6666 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6667 basic_block exit_bb, tree orig_block)
6669 vec<basic_block> bbs, dom_bbs;
6670 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6671 basic_block after, bb, *entry_pred, *exit_succ, abb;
6672 struct function *saved_cfun = cfun;
6673 int *entry_flag, *exit_flag;
6674 unsigned *entry_prob, *exit_prob;
6675 unsigned i, num_entry_edges, num_exit_edges;
6676 edge e;
6677 edge_iterator ei;
6678 htab_t new_label_map;
6679 struct pointer_map_t *vars_map, *eh_map;
6680 struct loop *loop = entry_bb->loop_father;
6681 struct move_stmt_d d;
6683 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6684 region. */
6685 gcc_assert (entry_bb != exit_bb
6686 && (!exit_bb
6687 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6689 /* Collect all the blocks in the region. Manually add ENTRY_BB
6690 because it won't be added by dfs_enumerate_from. */
6691 bbs.create (0);
6692 bbs.safe_push (entry_bb);
6693 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6695 /* The blocks that used to be dominated by something in BBS will now be
6696 dominated by the new block. */
6697 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6698 bbs.address (),
6699 bbs.length ());
6701 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6702 the predecessor edges to ENTRY_BB and the successor edges to
6703 EXIT_BB so that we can re-attach them to the new basic block that
6704 will replace the region. */
6705 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6706 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6707 entry_flag = XNEWVEC (int, num_entry_edges);
6708 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6709 i = 0;
6710 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6712 entry_prob[i] = e->probability;
6713 entry_flag[i] = e->flags;
6714 entry_pred[i++] = e->src;
6715 remove_edge (e);
6718 if (exit_bb)
6720 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6721 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6722 exit_flag = XNEWVEC (int, num_exit_edges);
6723 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6724 i = 0;
6725 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6727 exit_prob[i] = e->probability;
6728 exit_flag[i] = e->flags;
6729 exit_succ[i++] = e->dest;
6730 remove_edge (e);
6733 else
6735 num_exit_edges = 0;
6736 exit_succ = NULL;
6737 exit_flag = NULL;
6738 exit_prob = NULL;
6741 /* Switch context to the child function to initialize DEST_FN's CFG. */
6742 gcc_assert (dest_cfun->cfg == NULL);
6743 push_cfun (dest_cfun);
6745 init_empty_tree_cfg ();
6747 /* Initialize EH information for the new function. */
6748 eh_map = NULL;
6749 new_label_map = NULL;
6750 if (saved_cfun->eh)
6752 eh_region region = NULL;
6754 FOR_EACH_VEC_ELT (bbs, i, bb)
6755 region = find_outermost_region_in_block (saved_cfun, bb, region);
6757 init_eh_for_function ();
6758 if (region != NULL)
6760 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6761 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6762 new_label_mapper, new_label_map);
6766 /* Initialize an empty loop tree. */
6767 struct loops *loops = ggc_alloc_cleared_loops ();
6768 init_loops_structure (dest_cfun, loops, 1);
6769 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6770 set_loops_for_fn (dest_cfun, loops);
6772 /* Move the outlined loop tree part. */
6773 FOR_EACH_VEC_ELT (bbs, i, bb)
6775 if (bb->loop_father->header == bb
6776 && loop_outer (bb->loop_father) == loop)
6778 struct loop *loop = bb->loop_father;
6779 flow_loop_tree_node_remove (bb->loop_father);
6780 flow_loop_tree_node_add (get_loop (dest_cfun, 0), loop);
6781 fixup_loop_arrays_after_move (saved_cfun, cfun, loop);
6784 /* Remove loop exits from the outlined region. */
6785 if (loops_for_fn (saved_cfun)->exits)
6786 FOR_EACH_EDGE (e, ei, bb->succs)
6788 void **slot = htab_find_slot_with_hash
6789 (loops_for_fn (saved_cfun)->exits, e,
6790 htab_hash_pointer (e), NO_INSERT);
6791 if (slot)
6792 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6797 /* Adjust the number of blocks in the tree root of the outlined part. */
6798 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6800 /* Setup a mapping to be used by move_block_to_fn. */
6801 loop->aux = current_loops->tree_root;
6803 pop_cfun ();
6805 /* Move blocks from BBS into DEST_CFUN. */
6806 gcc_assert (bbs.length () >= 2);
6807 after = dest_cfun->cfg->x_entry_block_ptr;
6808 vars_map = pointer_map_create ();
6810 memset (&d, 0, sizeof (d));
6811 d.orig_block = orig_block;
6812 d.new_block = DECL_INITIAL (dest_cfun->decl);
6813 d.from_context = cfun->decl;
6814 d.to_context = dest_cfun->decl;
6815 d.vars_map = vars_map;
6816 d.new_label_map = new_label_map;
6817 d.eh_map = eh_map;
6818 d.remap_decls_p = true;
6820 FOR_EACH_VEC_ELT (bbs, i, bb)
6822 /* No need to update edge counts on the last block. It has
6823 already been updated earlier when we detached the region from
6824 the original CFG. */
6825 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6826 after = bb;
6829 loop->aux = NULL;
6830 /* Loop sizes are no longer correct, fix them up. */
6831 loop->num_nodes -= bbs.length ();
6832 for (struct loop *outer = loop_outer (loop);
6833 outer; outer = loop_outer (outer))
6834 outer->num_nodes -= bbs.length ();
6836 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6837 if (orig_block)
6839 tree block;
6840 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6841 == NULL_TREE);
6842 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6843 = BLOCK_SUBBLOCKS (orig_block);
6844 for (block = BLOCK_SUBBLOCKS (orig_block);
6845 block; block = BLOCK_CHAIN (block))
6846 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6847 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6850 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6851 vars_map, dest_cfun->decl);
6853 if (new_label_map)
6854 htab_delete (new_label_map);
6855 if (eh_map)
6856 pointer_map_destroy (eh_map);
6857 pointer_map_destroy (vars_map);
6859 /* Rewire the entry and exit blocks. The successor to the entry
6860 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6861 the child function. Similarly, the predecessor of DEST_FN's
6862 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6863 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6864 various CFG manipulation function get to the right CFG.
6866 FIXME, this is silly. The CFG ought to become a parameter to
6867 these helpers. */
6868 push_cfun (dest_cfun);
6869 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6870 if (exit_bb)
6871 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6872 pop_cfun ();
6874 /* Back in the original function, the SESE region has disappeared,
6875 create a new basic block in its place. */
6876 bb = create_empty_bb (entry_pred[0]);
6877 if (current_loops)
6878 add_bb_to_loop (bb, loop);
6879 for (i = 0; i < num_entry_edges; i++)
6881 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6882 e->probability = entry_prob[i];
6885 for (i = 0; i < num_exit_edges; i++)
6887 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6888 e->probability = exit_prob[i];
6891 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6892 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6893 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6894 dom_bbs.release ();
6896 if (exit_bb)
6898 free (exit_prob);
6899 free (exit_flag);
6900 free (exit_succ);
6902 free (entry_prob);
6903 free (entry_flag);
6904 free (entry_pred);
6905 bbs.release ();
6907 return bb;
6911 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6914 void
6915 dump_function_to_file (tree fndecl, FILE *file, int flags)
6917 tree arg, var, old_current_fndecl = current_function_decl;
6918 struct function *dsf;
6919 bool ignore_topmost_bind = false, any_var = false;
6920 basic_block bb;
6921 tree chain;
6922 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6923 && decl_is_tm_clone (fndecl));
6924 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6926 current_function_decl = fndecl;
6927 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6929 arg = DECL_ARGUMENTS (fndecl);
6930 while (arg)
6932 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6933 fprintf (file, " ");
6934 print_generic_expr (file, arg, dump_flags);
6935 if (flags & TDF_VERBOSE)
6936 print_node (file, "", arg, 4);
6937 if (DECL_CHAIN (arg))
6938 fprintf (file, ", ");
6939 arg = DECL_CHAIN (arg);
6941 fprintf (file, ")\n");
6943 if (flags & TDF_VERBOSE)
6944 print_node (file, "", fndecl, 2);
6946 dsf = DECL_STRUCT_FUNCTION (fndecl);
6947 if (dsf && (flags & TDF_EH))
6948 dump_eh_tree (file, dsf);
6950 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6952 dump_node (fndecl, TDF_SLIM | flags, file);
6953 current_function_decl = old_current_fndecl;
6954 return;
6957 /* When GIMPLE is lowered, the variables are no longer available in
6958 BIND_EXPRs, so display them separately. */
6959 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6961 unsigned ix;
6962 ignore_topmost_bind = true;
6964 fprintf (file, "{\n");
6965 if (!vec_safe_is_empty (fun->local_decls))
6966 FOR_EACH_LOCAL_DECL (fun, ix, var)
6968 print_generic_decl (file, var, flags);
6969 if (flags & TDF_VERBOSE)
6970 print_node (file, "", var, 4);
6971 fprintf (file, "\n");
6973 any_var = true;
6975 if (gimple_in_ssa_p (cfun))
6976 for (ix = 1; ix < num_ssa_names; ++ix)
6978 tree name = ssa_name (ix);
6979 if (name && !SSA_NAME_VAR (name))
6981 fprintf (file, " ");
6982 print_generic_expr (file, TREE_TYPE (name), flags);
6983 fprintf (file, " ");
6984 print_generic_expr (file, name, flags);
6985 fprintf (file, ";\n");
6987 any_var = true;
6992 if (fun && fun->decl == fndecl
6993 && fun->cfg
6994 && basic_block_info_for_function (fun))
6996 /* If the CFG has been built, emit a CFG-based dump. */
6997 if (!ignore_topmost_bind)
6998 fprintf (file, "{\n");
7000 if (any_var && n_basic_blocks_for_function (fun))
7001 fprintf (file, "\n");
7003 FOR_EACH_BB_FN (bb, fun)
7004 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7006 fprintf (file, "}\n");
7008 else if (DECL_SAVED_TREE (fndecl) == NULL)
7010 /* The function is now in GIMPLE form but the CFG has not been
7011 built yet. Emit the single sequence of GIMPLE statements
7012 that make up its body. */
7013 gimple_seq body = gimple_body (fndecl);
7015 if (gimple_seq_first_stmt (body)
7016 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7017 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7018 print_gimple_seq (file, body, 0, flags);
7019 else
7021 if (!ignore_topmost_bind)
7022 fprintf (file, "{\n");
7024 if (any_var)
7025 fprintf (file, "\n");
7027 print_gimple_seq (file, body, 2, flags);
7028 fprintf (file, "}\n");
7031 else
7033 int indent;
7035 /* Make a tree based dump. */
7036 chain = DECL_SAVED_TREE (fndecl);
7037 if (chain && TREE_CODE (chain) == BIND_EXPR)
7039 if (ignore_topmost_bind)
7041 chain = BIND_EXPR_BODY (chain);
7042 indent = 2;
7044 else
7045 indent = 0;
7047 else
7049 if (!ignore_topmost_bind)
7050 fprintf (file, "{\n");
7051 indent = 2;
7054 if (any_var)
7055 fprintf (file, "\n");
7057 print_generic_stmt_indented (file, chain, flags, indent);
7058 if (ignore_topmost_bind)
7059 fprintf (file, "}\n");
7062 if (flags & TDF_ENUMERATE_LOCALS)
7063 dump_enumerated_decls (file, flags);
7064 fprintf (file, "\n\n");
7066 current_function_decl = old_current_fndecl;
7069 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7071 DEBUG_FUNCTION void
7072 debug_function (tree fn, int flags)
7074 dump_function_to_file (fn, stderr, flags);
7078 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7080 static void
7081 print_pred_bbs (FILE *file, basic_block bb)
7083 edge e;
7084 edge_iterator ei;
7086 FOR_EACH_EDGE (e, ei, bb->preds)
7087 fprintf (file, "bb_%d ", e->src->index);
7091 /* Print on FILE the indexes for the successors of basic_block BB. */
7093 static void
7094 print_succ_bbs (FILE *file, basic_block bb)
7096 edge e;
7097 edge_iterator ei;
7099 FOR_EACH_EDGE (e, ei, bb->succs)
7100 fprintf (file, "bb_%d ", e->dest->index);
7103 /* Print to FILE the basic block BB following the VERBOSITY level. */
7105 void
7106 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7108 char *s_indent = (char *) alloca ((size_t) indent + 1);
7109 memset ((void *) s_indent, ' ', (size_t) indent);
7110 s_indent[indent] = '\0';
7112 /* Print basic_block's header. */
7113 if (verbosity >= 2)
7115 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7116 print_pred_bbs (file, bb);
7117 fprintf (file, "}, succs = {");
7118 print_succ_bbs (file, bb);
7119 fprintf (file, "})\n");
7122 /* Print basic_block's body. */
7123 if (verbosity >= 3)
7125 fprintf (file, "%s {\n", s_indent);
7126 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7127 fprintf (file, "%s }\n", s_indent);
7131 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7133 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7134 VERBOSITY level this outputs the contents of the loop, or just its
7135 structure. */
7137 static void
7138 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7140 char *s_indent;
7141 basic_block bb;
7143 if (loop == NULL)
7144 return;
7146 s_indent = (char *) alloca ((size_t) indent + 1);
7147 memset ((void *) s_indent, ' ', (size_t) indent);
7148 s_indent[indent] = '\0';
7150 /* Print loop's header. */
7151 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7152 if (loop->header)
7153 fprintf (file, "header = %d", loop->header->index);
7154 else
7156 fprintf (file, "deleted)\n");
7157 return;
7159 if (loop->latch)
7160 fprintf (file, ", latch = %d", loop->latch->index);
7161 else
7162 fprintf (file, ", multiple latches");
7163 fprintf (file, ", niter = ");
7164 print_generic_expr (file, loop->nb_iterations, 0);
7166 if (loop->any_upper_bound)
7168 fprintf (file, ", upper_bound = ");
7169 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7172 if (loop->any_estimate)
7174 fprintf (file, ", estimate = ");
7175 dump_double_int (file, loop->nb_iterations_estimate, true);
7177 fprintf (file, ")\n");
7179 /* Print loop's body. */
7180 if (verbosity >= 1)
7182 fprintf (file, "%s{\n", s_indent);
7183 FOR_EACH_BB (bb)
7184 if (bb->loop_father == loop)
7185 print_loops_bb (file, bb, indent, verbosity);
7187 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7188 fprintf (file, "%s}\n", s_indent);
7192 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7193 spaces. Following VERBOSITY level this outputs the contents of the
7194 loop, or just its structure. */
7196 static void
7197 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7198 int verbosity)
7200 if (loop == NULL)
7201 return;
7203 print_loop (file, loop, indent, verbosity);
7204 print_loop_and_siblings (file, loop->next, indent, verbosity);
7207 /* Follow a CFG edge from the entry point of the program, and on entry
7208 of a loop, pretty print the loop structure on FILE. */
7210 void
7211 print_loops (FILE *file, int verbosity)
7213 basic_block bb;
7215 bb = ENTRY_BLOCK_PTR;
7216 if (bb && bb->loop_father)
7217 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7220 /* Dump a loop. */
7222 DEBUG_FUNCTION void
7223 debug (struct loop &ref)
7225 print_loop (stderr, &ref, 0, /*verbosity*/0);
7228 DEBUG_FUNCTION void
7229 debug (struct loop *ptr)
7231 if (ptr)
7232 debug (*ptr);
7233 else
7234 fprintf (stderr, "<nil>\n");
7237 /* Dump a loop verbosely. */
7239 DEBUG_FUNCTION void
7240 debug_verbose (struct loop &ref)
7242 print_loop (stderr, &ref, 0, /*verbosity*/3);
7245 DEBUG_FUNCTION void
7246 debug_verbose (struct loop *ptr)
7248 if (ptr)
7249 debug (*ptr);
7250 else
7251 fprintf (stderr, "<nil>\n");
7255 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7257 DEBUG_FUNCTION void
7258 debug_loops (int verbosity)
7260 print_loops (stderr, verbosity);
7263 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7265 DEBUG_FUNCTION void
7266 debug_loop (struct loop *loop, int verbosity)
7268 print_loop (stderr, loop, 0, verbosity);
7271 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7272 level. */
7274 DEBUG_FUNCTION void
7275 debug_loop_num (unsigned num, int verbosity)
7277 debug_loop (get_loop (cfun, num), verbosity);
7280 /* Return true if BB ends with a call, possibly followed by some
7281 instructions that must stay with the call. Return false,
7282 otherwise. */
7284 static bool
7285 gimple_block_ends_with_call_p (basic_block bb)
7287 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7288 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7292 /* Return true if BB ends with a conditional branch. Return false,
7293 otherwise. */
7295 static bool
7296 gimple_block_ends_with_condjump_p (const_basic_block bb)
7298 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7299 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7303 /* Return true if we need to add fake edge to exit at statement T.
7304 Helper function for gimple_flow_call_edges_add. */
7306 static bool
7307 need_fake_edge_p (gimple t)
7309 tree fndecl = NULL_TREE;
7310 int call_flags = 0;
7312 /* NORETURN and LONGJMP calls already have an edge to exit.
7313 CONST and PURE calls do not need one.
7314 We don't currently check for CONST and PURE here, although
7315 it would be a good idea, because those attributes are
7316 figured out from the RTL in mark_constant_function, and
7317 the counter incrementation code from -fprofile-arcs
7318 leads to different results from -fbranch-probabilities. */
7319 if (is_gimple_call (t))
7321 fndecl = gimple_call_fndecl (t);
7322 call_flags = gimple_call_flags (t);
7325 if (is_gimple_call (t)
7326 && fndecl
7327 && DECL_BUILT_IN (fndecl)
7328 && (call_flags & ECF_NOTHROW)
7329 && !(call_flags & ECF_RETURNS_TWICE)
7330 /* fork() doesn't really return twice, but the effect of
7331 wrapping it in __gcov_fork() which calls __gcov_flush()
7332 and clears the counters before forking has the same
7333 effect as returning twice. Force a fake edge. */
7334 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7335 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7336 return false;
7338 if (is_gimple_call (t))
7340 edge_iterator ei;
7341 edge e;
7342 basic_block bb;
7344 if (!(call_flags & ECF_NORETURN))
7345 return true;
7347 bb = gimple_bb (t);
7348 FOR_EACH_EDGE (e, ei, bb->succs)
7349 if ((e->flags & EDGE_FAKE) == 0)
7350 return true;
7353 if (gimple_code (t) == GIMPLE_ASM
7354 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7355 return true;
7357 return false;
7361 /* Add fake edges to the function exit for any non constant and non
7362 noreturn calls (or noreturn calls with EH/abnormal edges),
7363 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7364 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7365 that were split.
7367 The goal is to expose cases in which entering a basic block does
7368 not imply that all subsequent instructions must be executed. */
7370 static int
7371 gimple_flow_call_edges_add (sbitmap blocks)
7373 int i;
7374 int blocks_split = 0;
7375 int last_bb = last_basic_block;
7376 bool check_last_block = false;
7378 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7379 return 0;
7381 if (! blocks)
7382 check_last_block = true;
7383 else
7384 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7386 /* In the last basic block, before epilogue generation, there will be
7387 a fallthru edge to EXIT. Special care is required if the last insn
7388 of the last basic block is a call because make_edge folds duplicate
7389 edges, which would result in the fallthru edge also being marked
7390 fake, which would result in the fallthru edge being removed by
7391 remove_fake_edges, which would result in an invalid CFG.
7393 Moreover, we can't elide the outgoing fake edge, since the block
7394 profiler needs to take this into account in order to solve the minimal
7395 spanning tree in the case that the call doesn't return.
7397 Handle this by adding a dummy instruction in a new last basic block. */
7398 if (check_last_block)
7400 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7401 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7402 gimple t = NULL;
7404 if (!gsi_end_p (gsi))
7405 t = gsi_stmt (gsi);
7407 if (t && need_fake_edge_p (t))
7409 edge e;
7411 e = find_edge (bb, EXIT_BLOCK_PTR);
7412 if (e)
7414 gsi_insert_on_edge (e, gimple_build_nop ());
7415 gsi_commit_edge_inserts ();
7420 /* Now add fake edges to the function exit for any non constant
7421 calls since there is no way that we can determine if they will
7422 return or not... */
7423 for (i = 0; i < last_bb; i++)
7425 basic_block bb = BASIC_BLOCK (i);
7426 gimple_stmt_iterator gsi;
7427 gimple stmt, last_stmt;
7429 if (!bb)
7430 continue;
7432 if (blocks && !bitmap_bit_p (blocks, i))
7433 continue;
7435 gsi = gsi_last_nondebug_bb (bb);
7436 if (!gsi_end_p (gsi))
7438 last_stmt = gsi_stmt (gsi);
7441 stmt = gsi_stmt (gsi);
7442 if (need_fake_edge_p (stmt))
7444 edge e;
7446 /* The handling above of the final block before the
7447 epilogue should be enough to verify that there is
7448 no edge to the exit block in CFG already.
7449 Calling make_edge in such case would cause us to
7450 mark that edge as fake and remove it later. */
7451 #ifdef ENABLE_CHECKING
7452 if (stmt == last_stmt)
7454 e = find_edge (bb, EXIT_BLOCK_PTR);
7455 gcc_assert (e == NULL);
7457 #endif
7459 /* Note that the following may create a new basic block
7460 and renumber the existing basic blocks. */
7461 if (stmt != last_stmt)
7463 e = split_block (bb, stmt);
7464 if (e)
7465 blocks_split++;
7467 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7469 gsi_prev (&gsi);
7471 while (!gsi_end_p (gsi));
7475 if (blocks_split)
7476 verify_flow_info ();
7478 return blocks_split;
7481 /* Removes edge E and all the blocks dominated by it, and updates dominance
7482 information. The IL in E->src needs to be updated separately.
7483 If dominance info is not available, only the edge E is removed.*/
7485 void
7486 remove_edge_and_dominated_blocks (edge e)
7488 vec<basic_block> bbs_to_remove = vNULL;
7489 vec<basic_block> bbs_to_fix_dom = vNULL;
7490 bitmap df, df_idom;
7491 edge f;
7492 edge_iterator ei;
7493 bool none_removed = false;
7494 unsigned i;
7495 basic_block bb, dbb;
7496 bitmap_iterator bi;
7498 if (!dom_info_available_p (CDI_DOMINATORS))
7500 remove_edge (e);
7501 return;
7504 /* No updating is needed for edges to exit. */
7505 if (e->dest == EXIT_BLOCK_PTR)
7507 if (cfgcleanup_altered_bbs)
7508 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7509 remove_edge (e);
7510 return;
7513 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7514 that is not dominated by E->dest, then this set is empty. Otherwise,
7515 all the basic blocks dominated by E->dest are removed.
7517 Also, to DF_IDOM we store the immediate dominators of the blocks in
7518 the dominance frontier of E (i.e., of the successors of the
7519 removed blocks, if there are any, and of E->dest otherwise). */
7520 FOR_EACH_EDGE (f, ei, e->dest->preds)
7522 if (f == e)
7523 continue;
7525 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7527 none_removed = true;
7528 break;
7532 df = BITMAP_ALLOC (NULL);
7533 df_idom = BITMAP_ALLOC (NULL);
7535 if (none_removed)
7536 bitmap_set_bit (df_idom,
7537 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7538 else
7540 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7541 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7543 FOR_EACH_EDGE (f, ei, bb->succs)
7545 if (f->dest != EXIT_BLOCK_PTR)
7546 bitmap_set_bit (df, f->dest->index);
7549 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7550 bitmap_clear_bit (df, bb->index);
7552 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7554 bb = BASIC_BLOCK (i);
7555 bitmap_set_bit (df_idom,
7556 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7560 if (cfgcleanup_altered_bbs)
7562 /* Record the set of the altered basic blocks. */
7563 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7564 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7567 /* Remove E and the cancelled blocks. */
7568 if (none_removed)
7569 remove_edge (e);
7570 else
7572 /* Walk backwards so as to get a chance to substitute all
7573 released DEFs into debug stmts. See
7574 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7575 details. */
7576 for (i = bbs_to_remove.length (); i-- > 0; )
7577 delete_basic_block (bbs_to_remove[i]);
7580 /* Update the dominance information. The immediate dominator may change only
7581 for blocks whose immediate dominator belongs to DF_IDOM:
7583 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7584 removal. Let Z the arbitrary block such that idom(Z) = Y and
7585 Z dominates X after the removal. Before removal, there exists a path P
7586 from Y to X that avoids Z. Let F be the last edge on P that is
7587 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7588 dominates W, and because of P, Z does not dominate W), and W belongs to
7589 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7590 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7592 bb = BASIC_BLOCK (i);
7593 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7594 dbb;
7595 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7596 bbs_to_fix_dom.safe_push (dbb);
7599 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7601 BITMAP_FREE (df);
7602 BITMAP_FREE (df_idom);
7603 bbs_to_remove.release ();
7604 bbs_to_fix_dom.release ();
7607 /* Purge dead EH edges from basic block BB. */
7609 bool
7610 gimple_purge_dead_eh_edges (basic_block bb)
7612 bool changed = false;
7613 edge e;
7614 edge_iterator ei;
7615 gimple stmt = last_stmt (bb);
7617 if (stmt && stmt_can_throw_internal (stmt))
7618 return false;
7620 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7622 if (e->flags & EDGE_EH)
7624 remove_edge_and_dominated_blocks (e);
7625 changed = true;
7627 else
7628 ei_next (&ei);
7631 return changed;
7634 /* Purge dead EH edges from basic block listed in BLOCKS. */
7636 bool
7637 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7639 bool changed = false;
7640 unsigned i;
7641 bitmap_iterator bi;
7643 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7645 basic_block bb = BASIC_BLOCK (i);
7647 /* Earlier gimple_purge_dead_eh_edges could have removed
7648 this basic block already. */
7649 gcc_assert (bb || changed);
7650 if (bb != NULL)
7651 changed |= gimple_purge_dead_eh_edges (bb);
7654 return changed;
7657 /* Purge dead abnormal call edges from basic block BB. */
7659 bool
7660 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7662 bool changed = false;
7663 edge e;
7664 edge_iterator ei;
7665 gimple stmt = last_stmt (bb);
7667 if (!cfun->has_nonlocal_label
7668 && !cfun->calls_setjmp)
7669 return false;
7671 if (stmt && stmt_can_make_abnormal_goto (stmt))
7672 return false;
7674 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7676 if (e->flags & EDGE_ABNORMAL)
7678 if (e->flags & EDGE_FALLTHRU)
7679 e->flags &= ~EDGE_ABNORMAL;
7680 else
7681 remove_edge_and_dominated_blocks (e);
7682 changed = true;
7684 else
7685 ei_next (&ei);
7688 return changed;
7691 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7693 bool
7694 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7696 bool changed = false;
7697 unsigned i;
7698 bitmap_iterator bi;
7700 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7702 basic_block bb = BASIC_BLOCK (i);
7704 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7705 this basic block already. */
7706 gcc_assert (bb || changed);
7707 if (bb != NULL)
7708 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7711 return changed;
7714 /* This function is called whenever a new edge is created or
7715 redirected. */
7717 static void
7718 gimple_execute_on_growing_pred (edge e)
7720 basic_block bb = e->dest;
7722 if (!gimple_seq_empty_p (phi_nodes (bb)))
7723 reserve_phi_args_for_new_edge (bb);
7726 /* This function is called immediately before edge E is removed from
7727 the edge vector E->dest->preds. */
7729 static void
7730 gimple_execute_on_shrinking_pred (edge e)
7732 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7733 remove_phi_args (e);
7736 /*---------------------------------------------------------------------------
7737 Helper functions for Loop versioning
7738 ---------------------------------------------------------------------------*/
7740 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7741 of 'first'. Both of them are dominated by 'new_head' basic block. When
7742 'new_head' was created by 'second's incoming edge it received phi arguments
7743 on the edge by split_edge(). Later, additional edge 'e' was created to
7744 connect 'new_head' and 'first'. Now this routine adds phi args on this
7745 additional edge 'e' that new_head to second edge received as part of edge
7746 splitting. */
7748 static void
7749 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7750 basic_block new_head, edge e)
7752 gimple phi1, phi2;
7753 gimple_stmt_iterator psi1, psi2;
7754 tree def;
7755 edge e2 = find_edge (new_head, second);
7757 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7758 edge, we should always have an edge from NEW_HEAD to SECOND. */
7759 gcc_assert (e2 != NULL);
7761 /* Browse all 'second' basic block phi nodes and add phi args to
7762 edge 'e' for 'first' head. PHI args are always in correct order. */
7764 for (psi2 = gsi_start_phis (second),
7765 psi1 = gsi_start_phis (first);
7766 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7767 gsi_next (&psi2), gsi_next (&psi1))
7769 phi1 = gsi_stmt (psi1);
7770 phi2 = gsi_stmt (psi2);
7771 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7772 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7777 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7778 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7779 the destination of the ELSE part. */
7781 static void
7782 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7783 basic_block second_head ATTRIBUTE_UNUSED,
7784 basic_block cond_bb, void *cond_e)
7786 gimple_stmt_iterator gsi;
7787 gimple new_cond_expr;
7788 tree cond_expr = (tree) cond_e;
7789 edge e0;
7791 /* Build new conditional expr */
7792 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7793 NULL_TREE, NULL_TREE);
7795 /* Add new cond in cond_bb. */
7796 gsi = gsi_last_bb (cond_bb);
7797 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7799 /* Adjust edges appropriately to connect new head with first head
7800 as well as second head. */
7801 e0 = single_succ_edge (cond_bb);
7802 e0->flags &= ~EDGE_FALLTHRU;
7803 e0->flags |= EDGE_FALSE_VALUE;
7807 /* Do book-keeping of basic block BB for the profile consistency checker.
7808 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7809 then do post-pass accounting. Store the counting in RECORD. */
7810 static void
7811 gimple_account_profile_record (basic_block bb, int after_pass,
7812 struct profile_record *record)
7814 gimple_stmt_iterator i;
7815 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7817 record->size[after_pass]
7818 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7819 if (profile_status == PROFILE_READ)
7820 record->time[after_pass]
7821 += estimate_num_insns (gsi_stmt (i),
7822 &eni_time_weights) * bb->count;
7823 else if (profile_status == PROFILE_GUESSED)
7824 record->time[after_pass]
7825 += estimate_num_insns (gsi_stmt (i),
7826 &eni_time_weights) * bb->frequency;
7830 struct cfg_hooks gimple_cfg_hooks = {
7831 "gimple",
7832 gimple_verify_flow_info,
7833 gimple_dump_bb, /* dump_bb */
7834 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7835 create_bb, /* create_basic_block */
7836 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7837 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7838 gimple_can_remove_branch_p, /* can_remove_branch_p */
7839 remove_bb, /* delete_basic_block */
7840 gimple_split_block, /* split_block */
7841 gimple_move_block_after, /* move_block_after */
7842 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7843 gimple_merge_blocks, /* merge_blocks */
7844 gimple_predict_edge, /* predict_edge */
7845 gimple_predicted_by_p, /* predicted_by_p */
7846 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7847 gimple_duplicate_bb, /* duplicate_block */
7848 gimple_split_edge, /* split_edge */
7849 gimple_make_forwarder_block, /* make_forward_block */
7850 NULL, /* tidy_fallthru_edge */
7851 NULL, /* force_nonfallthru */
7852 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7853 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7854 gimple_flow_call_edges_add, /* flow_call_edges_add */
7855 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7856 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7857 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7858 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7859 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7860 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7861 flush_pending_stmts, /* flush_pending_stmts */
7862 gimple_empty_block_p, /* block_empty_p */
7863 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7864 gimple_account_profile_record,
7868 /* Split all critical edges. */
7870 static unsigned int
7871 split_critical_edges (void)
7873 basic_block bb;
7874 edge e;
7875 edge_iterator ei;
7877 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7878 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7879 mappings around the calls to split_edge. */
7880 start_recording_case_labels ();
7881 FOR_ALL_BB (bb)
7883 FOR_EACH_EDGE (e, ei, bb->succs)
7885 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7886 split_edge (e);
7887 /* PRE inserts statements to edges and expects that
7888 since split_critical_edges was done beforehand, committing edge
7889 insertions will not split more edges. In addition to critical
7890 edges we must split edges that have multiple successors and
7891 end by control flow statements, such as RESX.
7892 Go ahead and split them too. This matches the logic in
7893 gimple_find_edge_insert_loc. */
7894 else if ((!single_pred_p (e->dest)
7895 || !gimple_seq_empty_p (phi_nodes (e->dest))
7896 || e->dest == EXIT_BLOCK_PTR)
7897 && e->src != ENTRY_BLOCK_PTR
7898 && !(e->flags & EDGE_ABNORMAL))
7900 gimple_stmt_iterator gsi;
7902 gsi = gsi_last_bb (e->src);
7903 if (!gsi_end_p (gsi)
7904 && stmt_ends_bb_p (gsi_stmt (gsi))
7905 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7906 && !gimple_call_builtin_p (gsi_stmt (gsi),
7907 BUILT_IN_RETURN)))
7908 split_edge (e);
7912 end_recording_case_labels ();
7913 return 0;
7916 namespace {
7918 const pass_data pass_data_split_crit_edges =
7920 GIMPLE_PASS, /* type */
7921 "crited", /* name */
7922 OPTGROUP_NONE, /* optinfo_flags */
7923 false, /* has_gate */
7924 true, /* has_execute */
7925 TV_TREE_SPLIT_EDGES, /* tv_id */
7926 PROP_cfg, /* properties_required */
7927 PROP_no_crit_edges, /* properties_provided */
7928 0, /* properties_destroyed */
7929 0, /* todo_flags_start */
7930 TODO_verify_flow, /* todo_flags_finish */
7933 class pass_split_crit_edges : public gimple_opt_pass
7935 public:
7936 pass_split_crit_edges(gcc::context *ctxt)
7937 : gimple_opt_pass(pass_data_split_crit_edges, ctxt)
7940 /* opt_pass methods: */
7941 unsigned int execute () { return split_critical_edges (); }
7943 }; // class pass_split_crit_edges
7945 } // anon namespace
7947 gimple_opt_pass *
7948 make_pass_split_crit_edges (gcc::context *ctxt)
7950 return new pass_split_crit_edges (ctxt);
7954 /* Build a ternary operation and gimplify it. Emit code before GSI.
7955 Return the gimple_val holding the result. */
7957 tree
7958 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7959 tree type, tree a, tree b, tree c)
7961 tree ret;
7962 location_t loc = gimple_location (gsi_stmt (*gsi));
7964 ret = fold_build3_loc (loc, code, type, a, b, c);
7965 STRIP_NOPS (ret);
7967 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7968 GSI_SAME_STMT);
7971 /* Build a binary operation and gimplify it. Emit code before GSI.
7972 Return the gimple_val holding the result. */
7974 tree
7975 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7976 tree type, tree a, tree b)
7978 tree ret;
7980 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7981 STRIP_NOPS (ret);
7983 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7984 GSI_SAME_STMT);
7987 /* Build a unary operation and gimplify it. Emit code before GSI.
7988 Return the gimple_val holding the result. */
7990 tree
7991 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7992 tree a)
7994 tree ret;
7996 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7997 STRIP_NOPS (ret);
7999 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8000 GSI_SAME_STMT);
8005 /* Emit return warnings. */
8007 static unsigned int
8008 execute_warn_function_return (void)
8010 source_location location;
8011 gimple last;
8012 edge e;
8013 edge_iterator ei;
8015 if (!targetm.warn_func_return (cfun->decl))
8016 return 0;
8018 /* If we have a path to EXIT, then we do return. */
8019 if (TREE_THIS_VOLATILE (cfun->decl)
8020 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
8022 location = UNKNOWN_LOCATION;
8023 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8025 last = last_stmt (e->src);
8026 if ((gimple_code (last) == GIMPLE_RETURN
8027 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8028 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8029 break;
8031 if (location == UNKNOWN_LOCATION)
8032 location = cfun->function_end_locus;
8033 warning_at (location, 0, "%<noreturn%> function does return");
8036 /* If we see "return;" in some basic block, then we do reach the end
8037 without returning a value. */
8038 else if (warn_return_type
8039 && !TREE_NO_WARNING (cfun->decl)
8040 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
8041 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8043 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8045 gimple last = last_stmt (e->src);
8046 if (gimple_code (last) == GIMPLE_RETURN
8047 && gimple_return_retval (last) == NULL
8048 && !gimple_no_warning_p (last))
8050 location = gimple_location (last);
8051 if (location == UNKNOWN_LOCATION)
8052 location = cfun->function_end_locus;
8053 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8054 TREE_NO_WARNING (cfun->decl) = 1;
8055 break;
8059 return 0;
8063 /* Given a basic block B which ends with a conditional and has
8064 precisely two successors, determine which of the edges is taken if
8065 the conditional is true and which is taken if the conditional is
8066 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8068 void
8069 extract_true_false_edges_from_block (basic_block b,
8070 edge *true_edge,
8071 edge *false_edge)
8073 edge e = EDGE_SUCC (b, 0);
8075 if (e->flags & EDGE_TRUE_VALUE)
8077 *true_edge = e;
8078 *false_edge = EDGE_SUCC (b, 1);
8080 else
8082 *false_edge = e;
8083 *true_edge = EDGE_SUCC (b, 1);
8087 namespace {
8089 const pass_data pass_data_warn_function_return =
8091 GIMPLE_PASS, /* type */
8092 "*warn_function_return", /* name */
8093 OPTGROUP_NONE, /* optinfo_flags */
8094 false, /* has_gate */
8095 true, /* has_execute */
8096 TV_NONE, /* tv_id */
8097 PROP_cfg, /* properties_required */
8098 0, /* properties_provided */
8099 0, /* properties_destroyed */
8100 0, /* todo_flags_start */
8101 0, /* todo_flags_finish */
8104 class pass_warn_function_return : public gimple_opt_pass
8106 public:
8107 pass_warn_function_return(gcc::context *ctxt)
8108 : gimple_opt_pass(pass_data_warn_function_return, ctxt)
8111 /* opt_pass methods: */
8112 unsigned int execute () { return execute_warn_function_return (); }
8114 }; // class pass_warn_function_return
8116 } // anon namespace
8118 gimple_opt_pass *
8119 make_pass_warn_function_return (gcc::context *ctxt)
8121 return new pass_warn_function_return (ctxt);
8124 /* Emit noreturn warnings. */
8126 static unsigned int
8127 execute_warn_function_noreturn (void)
8129 if (!TREE_THIS_VOLATILE (current_function_decl)
8130 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
8131 warn_function_noreturn (current_function_decl);
8132 return 0;
8135 static bool
8136 gate_warn_function_noreturn (void)
8138 return warn_suggest_attribute_noreturn;
8141 namespace {
8143 const pass_data pass_data_warn_function_noreturn =
8145 GIMPLE_PASS, /* type */
8146 "*warn_function_noreturn", /* name */
8147 OPTGROUP_NONE, /* optinfo_flags */
8148 true, /* has_gate */
8149 true, /* has_execute */
8150 TV_NONE, /* tv_id */
8151 PROP_cfg, /* properties_required */
8152 0, /* properties_provided */
8153 0, /* properties_destroyed */
8154 0, /* todo_flags_start */
8155 0, /* todo_flags_finish */
8158 class pass_warn_function_noreturn : public gimple_opt_pass
8160 public:
8161 pass_warn_function_noreturn(gcc::context *ctxt)
8162 : gimple_opt_pass(pass_data_warn_function_noreturn, ctxt)
8165 /* opt_pass methods: */
8166 bool gate () { return gate_warn_function_noreturn (); }
8167 unsigned int execute () { return execute_warn_function_noreturn (); }
8169 }; // class pass_warn_function_noreturn
8171 } // anon namespace
8173 gimple_opt_pass *
8174 make_pass_warn_function_noreturn (gcc::context *ctxt)
8176 return new pass_warn_function_noreturn (ctxt);
8180 /* Walk a gimplified function and warn for functions whose return value is
8181 ignored and attribute((warn_unused_result)) is set. This is done before
8182 inlining, so we don't have to worry about that. */
8184 static void
8185 do_warn_unused_result (gimple_seq seq)
8187 tree fdecl, ftype;
8188 gimple_stmt_iterator i;
8190 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8192 gimple g = gsi_stmt (i);
8194 switch (gimple_code (g))
8196 case GIMPLE_BIND:
8197 do_warn_unused_result (gimple_bind_body (g));
8198 break;
8199 case GIMPLE_TRY:
8200 do_warn_unused_result (gimple_try_eval (g));
8201 do_warn_unused_result (gimple_try_cleanup (g));
8202 break;
8203 case GIMPLE_CATCH:
8204 do_warn_unused_result (gimple_catch_handler (g));
8205 break;
8206 case GIMPLE_EH_FILTER:
8207 do_warn_unused_result (gimple_eh_filter_failure (g));
8208 break;
8210 case GIMPLE_CALL:
8211 if (gimple_call_lhs (g))
8212 break;
8213 if (gimple_call_internal_p (g))
8214 break;
8216 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8217 LHS. All calls whose value is ignored should be
8218 represented like this. Look for the attribute. */
8219 fdecl = gimple_call_fndecl (g);
8220 ftype = gimple_call_fntype (g);
8222 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8224 location_t loc = gimple_location (g);
8226 if (fdecl)
8227 warning_at (loc, OPT_Wunused_result,
8228 "ignoring return value of %qD, "
8229 "declared with attribute warn_unused_result",
8230 fdecl);
8231 else
8232 warning_at (loc, OPT_Wunused_result,
8233 "ignoring return value of function "
8234 "declared with attribute warn_unused_result");
8236 break;
8238 default:
8239 /* Not a container, not a call, or a call whose value is used. */
8240 break;
8245 static unsigned int
8246 run_warn_unused_result (void)
8248 do_warn_unused_result (gimple_body (current_function_decl));
8249 return 0;
8252 static bool
8253 gate_warn_unused_result (void)
8255 return flag_warn_unused_result;
8258 namespace {
8260 const pass_data pass_data_warn_unused_result =
8262 GIMPLE_PASS, /* type */
8263 "*warn_unused_result", /* name */
8264 OPTGROUP_NONE, /* optinfo_flags */
8265 true, /* has_gate */
8266 true, /* has_execute */
8267 TV_NONE, /* tv_id */
8268 PROP_gimple_any, /* properties_required */
8269 0, /* properties_provided */
8270 0, /* properties_destroyed */
8271 0, /* todo_flags_start */
8272 0, /* todo_flags_finish */
8275 class pass_warn_unused_result : public gimple_opt_pass
8277 public:
8278 pass_warn_unused_result(gcc::context *ctxt)
8279 : gimple_opt_pass(pass_data_warn_unused_result, ctxt)
8282 /* opt_pass methods: */
8283 bool gate () { return gate_warn_unused_result (); }
8284 unsigned int execute () { return run_warn_unused_result (); }
8286 }; // class pass_warn_unused_result
8288 } // anon namespace
8290 gimple_opt_pass *
8291 make_pass_warn_unused_result (gcc::context *ctxt)
8293 return new pass_warn_unused_result (ctxt);
8297 /* Garbage collection support for edge_def. */
8299 extern void gt_ggc_mx (tree&);
8300 extern void gt_ggc_mx (gimple&);
8301 extern void gt_ggc_mx (rtx&);
8302 extern void gt_ggc_mx (basic_block&);
8304 void
8305 gt_ggc_mx (edge_def *e)
8307 tree block = LOCATION_BLOCK (e->goto_locus);
8308 gt_ggc_mx (e->src);
8309 gt_ggc_mx (e->dest);
8310 if (current_ir_type () == IR_GIMPLE)
8311 gt_ggc_mx (e->insns.g);
8312 else
8313 gt_ggc_mx (e->insns.r);
8314 gt_ggc_mx (block);
8317 /* PCH support for edge_def. */
8319 extern void gt_pch_nx (tree&);
8320 extern void gt_pch_nx (gimple&);
8321 extern void gt_pch_nx (rtx&);
8322 extern void gt_pch_nx (basic_block&);
8324 void
8325 gt_pch_nx (edge_def *e)
8327 tree block = LOCATION_BLOCK (e->goto_locus);
8328 gt_pch_nx (e->src);
8329 gt_pch_nx (e->dest);
8330 if (current_ir_type () == IR_GIMPLE)
8331 gt_pch_nx (e->insns.g);
8332 else
8333 gt_pch_nx (e->insns.r);
8334 gt_pch_nx (block);
8337 void
8338 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8340 tree block = LOCATION_BLOCK (e->goto_locus);
8341 op (&(e->src), cookie);
8342 op (&(e->dest), cookie);
8343 if (current_ir_type () == IR_GIMPLE)
8344 op (&(e->insns.g), cookie);
8345 else
8346 op (&(e->insns.r), cookie);
8347 op (&(block), cookie);