Bump version number, post release.
[official-gcc.git] / gcc-4_9-branch / gcc / tree-ssa-math-opts.c
blob0e8d54d34fee9ae5b6543411e451fd1151c4a6a6
1 /* Global, SSA-based optimizations using mathematical identities.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
28 that can be optimized to
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
36 We do this for loop invariant divisors, and with this pass whenever
37 we notice that a division has the same divisor multiple times.
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
87 #include "config.h"
88 #include "system.h"
89 #include "coretypes.h"
90 #include "tm.h"
91 #include "flags.h"
92 #include "tree.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-fold.h"
97 #include "gimple-expr.h"
98 #include "is-a.h"
99 #include "gimple.h"
100 #include "gimple-iterator.h"
101 #include "gimplify-me.h"
102 #include "stor-layout.h"
103 #include "gimple-ssa.h"
104 #include "tree-cfg.h"
105 #include "tree-phinodes.h"
106 #include "ssa-iterators.h"
107 #include "stringpool.h"
108 #include "tree-ssanames.h"
109 #include "expr.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "tree-pass.h"
113 #include "alloc-pool.h"
114 #include "target.h"
115 #include "gimple-pretty-print.h"
117 /* FIXME: RTL headers have to be included here for optabs. */
118 #include "rtl.h" /* Because optabs.h wants enum rtx_code. */
119 #include "expr.h" /* Because optabs.h wants sepops. */
120 #include "optabs.h"
122 /* This structure represents one basic block that either computes a
123 division, or is a common dominator for basic block that compute a
124 division. */
125 struct occurrence {
126 /* The basic block represented by this structure. */
127 basic_block bb;
129 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
130 inserted in BB. */
131 tree recip_def;
133 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
134 was inserted in BB. */
135 gimple recip_def_stmt;
137 /* Pointer to a list of "struct occurrence"s for blocks dominated
138 by BB. */
139 struct occurrence *children;
141 /* Pointer to the next "struct occurrence"s in the list of blocks
142 sharing a common dominator. */
143 struct occurrence *next;
145 /* The number of divisions that are in BB before compute_merit. The
146 number of divisions that are in BB or post-dominate it after
147 compute_merit. */
148 int num_divisions;
150 /* True if the basic block has a division, false if it is a common
151 dominator for basic blocks that do. If it is false and trapping
152 math is active, BB is not a candidate for inserting a reciprocal. */
153 bool bb_has_division;
156 static struct
158 /* Number of 1.0/X ops inserted. */
159 int rdivs_inserted;
161 /* Number of 1.0/FUNC ops inserted. */
162 int rfuncs_inserted;
163 } reciprocal_stats;
165 static struct
167 /* Number of cexpi calls inserted. */
168 int inserted;
169 } sincos_stats;
171 static struct
173 /* Number of hand-written 16-bit bswaps found. */
174 int found_16bit;
176 /* Number of hand-written 32-bit bswaps found. */
177 int found_32bit;
179 /* Number of hand-written 64-bit bswaps found. */
180 int found_64bit;
181 } bswap_stats;
183 static struct
185 /* Number of widening multiplication ops inserted. */
186 int widen_mults_inserted;
188 /* Number of integer multiply-and-accumulate ops inserted. */
189 int maccs_inserted;
191 /* Number of fp fused multiply-add ops inserted. */
192 int fmas_inserted;
193 } widen_mul_stats;
195 /* The instance of "struct occurrence" representing the highest
196 interesting block in the dominator tree. */
197 static struct occurrence *occ_head;
199 /* Allocation pool for getting instances of "struct occurrence". */
200 static alloc_pool occ_pool;
204 /* Allocate and return a new struct occurrence for basic block BB, and
205 whose children list is headed by CHILDREN. */
206 static struct occurrence *
207 occ_new (basic_block bb, struct occurrence *children)
209 struct occurrence *occ;
211 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
212 memset (occ, 0, sizeof (struct occurrence));
214 occ->bb = bb;
215 occ->children = children;
216 return occ;
220 /* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
221 list of "struct occurrence"s, one per basic block, having IDOM as
222 their common dominator.
224 We try to insert NEW_OCC as deep as possible in the tree, and we also
225 insert any other block that is a common dominator for BB and one
226 block already in the tree. */
228 static void
229 insert_bb (struct occurrence *new_occ, basic_block idom,
230 struct occurrence **p_head)
232 struct occurrence *occ, **p_occ;
234 for (p_occ = p_head; (occ = *p_occ) != NULL; )
236 basic_block bb = new_occ->bb, occ_bb = occ->bb;
237 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
238 if (dom == bb)
240 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
241 from its list. */
242 *p_occ = occ->next;
243 occ->next = new_occ->children;
244 new_occ->children = occ;
246 /* Try the next block (it may as well be dominated by BB). */
249 else if (dom == occ_bb)
251 /* OCC_BB dominates BB. Tail recurse to look deeper. */
252 insert_bb (new_occ, dom, &occ->children);
253 return;
256 else if (dom != idom)
258 gcc_assert (!dom->aux);
260 /* There is a dominator between IDOM and BB, add it and make
261 two children out of NEW_OCC and OCC. First, remove OCC from
262 its list. */
263 *p_occ = occ->next;
264 new_occ->next = occ;
265 occ->next = NULL;
267 /* None of the previous blocks has DOM as a dominator: if we tail
268 recursed, we would reexamine them uselessly. Just switch BB with
269 DOM, and go on looking for blocks dominated by DOM. */
270 new_occ = occ_new (dom, new_occ);
273 else
275 /* Nothing special, go on with the next element. */
276 p_occ = &occ->next;
280 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
281 new_occ->next = *p_head;
282 *p_head = new_occ;
285 /* Register that we found a division in BB. */
287 static inline void
288 register_division_in (basic_block bb)
290 struct occurrence *occ;
292 occ = (struct occurrence *) bb->aux;
293 if (!occ)
295 occ = occ_new (bb, NULL);
296 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
299 occ->bb_has_division = true;
300 occ->num_divisions++;
304 /* Compute the number of divisions that postdominate each block in OCC and
305 its children. */
307 static void
308 compute_merit (struct occurrence *occ)
310 struct occurrence *occ_child;
311 basic_block dom = occ->bb;
313 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
315 basic_block bb;
316 if (occ_child->children)
317 compute_merit (occ_child);
319 if (flag_exceptions)
320 bb = single_noncomplex_succ (dom);
321 else
322 bb = dom;
324 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
325 occ->num_divisions += occ_child->num_divisions;
330 /* Return whether USE_STMT is a floating-point division by DEF. */
331 static inline bool
332 is_division_by (gimple use_stmt, tree def)
334 return is_gimple_assign (use_stmt)
335 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
336 && gimple_assign_rhs2 (use_stmt) == def
337 /* Do not recognize x / x as valid division, as we are getting
338 confused later by replacing all immediate uses x in such
339 a stmt. */
340 && gimple_assign_rhs1 (use_stmt) != def;
343 /* Walk the subset of the dominator tree rooted at OCC, setting the
344 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
345 the given basic block. The field may be left NULL, of course,
346 if it is not possible or profitable to do the optimization.
348 DEF_BSI is an iterator pointing at the statement defining DEF.
349 If RECIP_DEF is set, a dominator already has a computation that can
350 be used. */
352 static void
353 insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
354 tree def, tree recip_def, int threshold)
356 tree type;
357 gimple new_stmt;
358 gimple_stmt_iterator gsi;
359 struct occurrence *occ_child;
361 if (!recip_def
362 && (occ->bb_has_division || !flag_trapping_math)
363 && occ->num_divisions >= threshold)
365 /* Make a variable with the replacement and substitute it. */
366 type = TREE_TYPE (def);
367 recip_def = create_tmp_reg (type, "reciptmp");
368 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
369 build_one_cst (type), def);
371 if (occ->bb_has_division)
373 /* Case 1: insert before an existing division. */
374 gsi = gsi_after_labels (occ->bb);
375 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
376 gsi_next (&gsi);
378 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
380 else if (def_gsi && occ->bb == def_gsi->bb)
382 /* Case 2: insert right after the definition. Note that this will
383 never happen if the definition statement can throw, because in
384 that case the sole successor of the statement's basic block will
385 dominate all the uses as well. */
386 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
388 else
390 /* Case 3: insert in a basic block not containing defs/uses. */
391 gsi = gsi_after_labels (occ->bb);
392 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
395 reciprocal_stats.rdivs_inserted++;
397 occ->recip_def_stmt = new_stmt;
400 occ->recip_def = recip_def;
401 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
402 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
406 /* Replace the division at USE_P with a multiplication by the reciprocal, if
407 possible. */
409 static inline void
410 replace_reciprocal (use_operand_p use_p)
412 gimple use_stmt = USE_STMT (use_p);
413 basic_block bb = gimple_bb (use_stmt);
414 struct occurrence *occ = (struct occurrence *) bb->aux;
416 if (optimize_bb_for_speed_p (bb)
417 && occ->recip_def && use_stmt != occ->recip_def_stmt)
419 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
420 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
421 SET_USE (use_p, occ->recip_def);
422 fold_stmt_inplace (&gsi);
423 update_stmt (use_stmt);
428 /* Free OCC and return one more "struct occurrence" to be freed. */
430 static struct occurrence *
431 free_bb (struct occurrence *occ)
433 struct occurrence *child, *next;
435 /* First get the two pointers hanging off OCC. */
436 next = occ->next;
437 child = occ->children;
438 occ->bb->aux = NULL;
439 pool_free (occ_pool, occ);
441 /* Now ensure that we don't recurse unless it is necessary. */
442 if (!child)
443 return next;
444 else
446 while (next)
447 next = free_bb (next);
449 return child;
454 /* Look for floating-point divisions among DEF's uses, and try to
455 replace them by multiplications with the reciprocal. Add
456 as many statements computing the reciprocal as needed.
458 DEF must be a GIMPLE register of a floating-point type. */
460 static void
461 execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
463 use_operand_p use_p;
464 imm_use_iterator use_iter;
465 struct occurrence *occ;
466 int count = 0, threshold;
468 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
470 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
472 gimple use_stmt = USE_STMT (use_p);
473 if (is_division_by (use_stmt, def))
475 register_division_in (gimple_bb (use_stmt));
476 count++;
480 /* Do the expensive part only if we can hope to optimize something. */
481 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
482 if (count >= threshold)
484 gimple use_stmt;
485 for (occ = occ_head; occ; occ = occ->next)
487 compute_merit (occ);
488 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
491 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
493 if (is_division_by (use_stmt, def))
495 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
496 replace_reciprocal (use_p);
501 for (occ = occ_head; occ; )
502 occ = free_bb (occ);
504 occ_head = NULL;
507 static bool
508 gate_cse_reciprocals (void)
510 return optimize && flag_reciprocal_math;
513 /* Go through all the floating-point SSA_NAMEs, and call
514 execute_cse_reciprocals_1 on each of them. */
515 static unsigned int
516 execute_cse_reciprocals (void)
518 basic_block bb;
519 tree arg;
521 occ_pool = create_alloc_pool ("dominators for recip",
522 sizeof (struct occurrence),
523 n_basic_blocks_for_fn (cfun) / 3 + 1);
525 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
526 calculate_dominance_info (CDI_DOMINATORS);
527 calculate_dominance_info (CDI_POST_DOMINATORS);
529 #ifdef ENABLE_CHECKING
530 FOR_EACH_BB_FN (bb, cfun)
531 gcc_assert (!bb->aux);
532 #endif
534 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
535 if (FLOAT_TYPE_P (TREE_TYPE (arg))
536 && is_gimple_reg (arg))
538 tree name = ssa_default_def (cfun, arg);
539 if (name)
540 execute_cse_reciprocals_1 (NULL, name);
543 FOR_EACH_BB_FN (bb, cfun)
545 gimple_stmt_iterator gsi;
546 gimple phi;
547 tree def;
549 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
551 phi = gsi_stmt (gsi);
552 def = PHI_RESULT (phi);
553 if (! virtual_operand_p (def)
554 && FLOAT_TYPE_P (TREE_TYPE (def)))
555 execute_cse_reciprocals_1 (NULL, def);
558 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
560 gimple stmt = gsi_stmt (gsi);
562 if (gimple_has_lhs (stmt)
563 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
564 && FLOAT_TYPE_P (TREE_TYPE (def))
565 && TREE_CODE (def) == SSA_NAME)
566 execute_cse_reciprocals_1 (&gsi, def);
569 if (optimize_bb_for_size_p (bb))
570 continue;
572 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
573 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
575 gimple stmt = gsi_stmt (gsi);
576 tree fndecl;
578 if (is_gimple_assign (stmt)
579 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
581 tree arg1 = gimple_assign_rhs2 (stmt);
582 gimple stmt1;
584 if (TREE_CODE (arg1) != SSA_NAME)
585 continue;
587 stmt1 = SSA_NAME_DEF_STMT (arg1);
589 if (is_gimple_call (stmt1)
590 && gimple_call_lhs (stmt1)
591 && (fndecl = gimple_call_fndecl (stmt1))
592 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
593 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
595 enum built_in_function code;
596 bool md_code, fail;
597 imm_use_iterator ui;
598 use_operand_p use_p;
600 code = DECL_FUNCTION_CODE (fndecl);
601 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
603 fndecl = targetm.builtin_reciprocal (code, md_code, false);
604 if (!fndecl)
605 continue;
607 /* Check that all uses of the SSA name are divisions,
608 otherwise replacing the defining statement will do
609 the wrong thing. */
610 fail = false;
611 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
613 gimple stmt2 = USE_STMT (use_p);
614 if (is_gimple_debug (stmt2))
615 continue;
616 if (!is_gimple_assign (stmt2)
617 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
618 || gimple_assign_rhs1 (stmt2) == arg1
619 || gimple_assign_rhs2 (stmt2) != arg1)
621 fail = true;
622 break;
625 if (fail)
626 continue;
628 gimple_replace_ssa_lhs (stmt1, arg1);
629 gimple_call_set_fndecl (stmt1, fndecl);
630 update_stmt (stmt1);
631 reciprocal_stats.rfuncs_inserted++;
633 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
635 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
636 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
637 fold_stmt_inplace (&gsi);
638 update_stmt (stmt);
645 statistics_counter_event (cfun, "reciprocal divs inserted",
646 reciprocal_stats.rdivs_inserted);
647 statistics_counter_event (cfun, "reciprocal functions inserted",
648 reciprocal_stats.rfuncs_inserted);
650 free_dominance_info (CDI_DOMINATORS);
651 free_dominance_info (CDI_POST_DOMINATORS);
652 free_alloc_pool (occ_pool);
653 return 0;
656 namespace {
658 const pass_data pass_data_cse_reciprocals =
660 GIMPLE_PASS, /* type */
661 "recip", /* name */
662 OPTGROUP_NONE, /* optinfo_flags */
663 true, /* has_gate */
664 true, /* has_execute */
665 TV_NONE, /* tv_id */
666 PROP_ssa, /* properties_required */
667 0, /* properties_provided */
668 0, /* properties_destroyed */
669 0, /* todo_flags_start */
670 ( TODO_update_ssa | TODO_verify_ssa
671 | TODO_verify_stmts ), /* todo_flags_finish */
674 class pass_cse_reciprocals : public gimple_opt_pass
676 public:
677 pass_cse_reciprocals (gcc::context *ctxt)
678 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
681 /* opt_pass methods: */
682 bool gate () { return gate_cse_reciprocals (); }
683 unsigned int execute () { return execute_cse_reciprocals (); }
685 }; // class pass_cse_reciprocals
687 } // anon namespace
689 gimple_opt_pass *
690 make_pass_cse_reciprocals (gcc::context *ctxt)
692 return new pass_cse_reciprocals (ctxt);
695 /* Records an occurrence at statement USE_STMT in the vector of trees
696 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
697 is not yet initialized. Returns true if the occurrence was pushed on
698 the vector. Adjusts *TOP_BB to be the basic block dominating all
699 statements in the vector. */
701 static bool
702 maybe_record_sincos (vec<gimple> *stmts,
703 basic_block *top_bb, gimple use_stmt)
705 basic_block use_bb = gimple_bb (use_stmt);
706 if (*top_bb
707 && (*top_bb == use_bb
708 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
709 stmts->safe_push (use_stmt);
710 else if (!*top_bb
711 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
713 stmts->safe_push (use_stmt);
714 *top_bb = use_bb;
716 else
717 return false;
719 return true;
722 /* Look for sin, cos and cexpi calls with the same argument NAME and
723 create a single call to cexpi CSEing the result in this case.
724 We first walk over all immediate uses of the argument collecting
725 statements that we can CSE in a vector and in a second pass replace
726 the statement rhs with a REALPART or IMAGPART expression on the
727 result of the cexpi call we insert before the use statement that
728 dominates all other candidates. */
730 static bool
731 execute_cse_sincos_1 (tree name)
733 gimple_stmt_iterator gsi;
734 imm_use_iterator use_iter;
735 tree fndecl, res, type;
736 gimple def_stmt, use_stmt, stmt;
737 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
738 vec<gimple> stmts = vNULL;
739 basic_block top_bb = NULL;
740 int i;
741 bool cfg_changed = false;
743 type = TREE_TYPE (name);
744 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
746 if (gimple_code (use_stmt) != GIMPLE_CALL
747 || !gimple_call_lhs (use_stmt)
748 || !(fndecl = gimple_call_fndecl (use_stmt))
749 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
750 continue;
752 switch (DECL_FUNCTION_CODE (fndecl))
754 CASE_FLT_FN (BUILT_IN_COS):
755 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
756 break;
758 CASE_FLT_FN (BUILT_IN_SIN):
759 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
760 break;
762 CASE_FLT_FN (BUILT_IN_CEXPI):
763 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
764 break;
766 default:;
770 if (seen_cos + seen_sin + seen_cexpi <= 1)
772 stmts.release ();
773 return false;
776 /* Simply insert cexpi at the beginning of top_bb but not earlier than
777 the name def statement. */
778 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
779 if (!fndecl)
780 return false;
781 stmt = gimple_build_call (fndecl, 1, name);
782 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
783 gimple_call_set_lhs (stmt, res);
785 def_stmt = SSA_NAME_DEF_STMT (name);
786 if (!SSA_NAME_IS_DEFAULT_DEF (name)
787 && gimple_code (def_stmt) != GIMPLE_PHI
788 && gimple_bb (def_stmt) == top_bb)
790 gsi = gsi_for_stmt (def_stmt);
791 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
793 else
795 gsi = gsi_after_labels (top_bb);
796 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
798 sincos_stats.inserted++;
800 /* And adjust the recorded old call sites. */
801 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
803 tree rhs = NULL;
804 fndecl = gimple_call_fndecl (use_stmt);
806 switch (DECL_FUNCTION_CODE (fndecl))
808 CASE_FLT_FN (BUILT_IN_COS):
809 rhs = fold_build1 (REALPART_EXPR, type, res);
810 break;
812 CASE_FLT_FN (BUILT_IN_SIN):
813 rhs = fold_build1 (IMAGPART_EXPR, type, res);
814 break;
816 CASE_FLT_FN (BUILT_IN_CEXPI):
817 rhs = res;
818 break;
820 default:;
821 gcc_unreachable ();
824 /* Replace call with a copy. */
825 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
827 gsi = gsi_for_stmt (use_stmt);
828 gsi_replace (&gsi, stmt, true);
829 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
830 cfg_changed = true;
833 stmts.release ();
835 return cfg_changed;
838 /* To evaluate powi(x,n), the floating point value x raised to the
839 constant integer exponent n, we use a hybrid algorithm that
840 combines the "window method" with look-up tables. For an
841 introduction to exponentiation algorithms and "addition chains",
842 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
843 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
844 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
845 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
847 /* Provide a default value for POWI_MAX_MULTS, the maximum number of
848 multiplications to inline before calling the system library's pow
849 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
850 so this default never requires calling pow, powf or powl. */
852 #ifndef POWI_MAX_MULTS
853 #define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
854 #endif
856 /* The size of the "optimal power tree" lookup table. All
857 exponents less than this value are simply looked up in the
858 powi_table below. This threshold is also used to size the
859 cache of pseudo registers that hold intermediate results. */
860 #define POWI_TABLE_SIZE 256
862 /* The size, in bits of the window, used in the "window method"
863 exponentiation algorithm. This is equivalent to a radix of
864 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
865 #define POWI_WINDOW_SIZE 3
867 /* The following table is an efficient representation of an
868 "optimal power tree". For each value, i, the corresponding
869 value, j, in the table states than an optimal evaluation
870 sequence for calculating pow(x,i) can be found by evaluating
871 pow(x,j)*pow(x,i-j). An optimal power tree for the first
872 100 integers is given in Knuth's "Seminumerical algorithms". */
874 static const unsigned char powi_table[POWI_TABLE_SIZE] =
876 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
877 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
878 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
879 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
880 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
881 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
882 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
883 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
884 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
885 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
886 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
887 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
888 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
889 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
890 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
891 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
892 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
893 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
894 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
895 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
896 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
897 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
898 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
899 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
900 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
901 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
902 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
903 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
904 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
905 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
906 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
907 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
911 /* Return the number of multiplications required to calculate
912 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
913 subroutine of powi_cost. CACHE is an array indicating
914 which exponents have already been calculated. */
916 static int
917 powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
919 /* If we've already calculated this exponent, then this evaluation
920 doesn't require any additional multiplications. */
921 if (cache[n])
922 return 0;
924 cache[n] = true;
925 return powi_lookup_cost (n - powi_table[n], cache)
926 + powi_lookup_cost (powi_table[n], cache) + 1;
929 /* Return the number of multiplications required to calculate
930 powi(x,n) for an arbitrary x, given the exponent N. This
931 function needs to be kept in sync with powi_as_mults below. */
933 static int
934 powi_cost (HOST_WIDE_INT n)
936 bool cache[POWI_TABLE_SIZE];
937 unsigned HOST_WIDE_INT digit;
938 unsigned HOST_WIDE_INT val;
939 int result;
941 if (n == 0)
942 return 0;
944 /* Ignore the reciprocal when calculating the cost. */
945 val = (n < 0) ? -n : n;
947 /* Initialize the exponent cache. */
948 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
949 cache[1] = true;
951 result = 0;
953 while (val >= POWI_TABLE_SIZE)
955 if (val & 1)
957 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
958 result += powi_lookup_cost (digit, cache)
959 + POWI_WINDOW_SIZE + 1;
960 val >>= POWI_WINDOW_SIZE;
962 else
964 val >>= 1;
965 result++;
969 return result + powi_lookup_cost (val, cache);
972 /* Recursive subroutine of powi_as_mults. This function takes the
973 array, CACHE, of already calculated exponents and an exponent N and
974 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
976 static tree
977 powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
978 HOST_WIDE_INT n, tree *cache)
980 tree op0, op1, ssa_target;
981 unsigned HOST_WIDE_INT digit;
982 gimple mult_stmt;
984 if (n < POWI_TABLE_SIZE && cache[n])
985 return cache[n];
987 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
989 if (n < POWI_TABLE_SIZE)
991 cache[n] = ssa_target;
992 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
993 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
995 else if (n & 1)
997 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
998 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
999 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
1001 else
1003 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
1004 op1 = op0;
1007 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
1008 gimple_set_location (mult_stmt, loc);
1009 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1011 return ssa_target;
1014 /* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1015 This function needs to be kept in sync with powi_cost above. */
1017 static tree
1018 powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1019 tree arg0, HOST_WIDE_INT n)
1021 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1022 gimple div_stmt;
1023 tree target;
1025 if (n == 0)
1026 return build_real (type, dconst1);
1028 memset (cache, 0, sizeof (cache));
1029 cache[1] = arg0;
1031 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
1032 if (n >= 0)
1033 return result;
1035 /* If the original exponent was negative, reciprocate the result. */
1036 target = make_temp_ssa_name (type, NULL, "powmult");
1037 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1038 build_real (type, dconst1),
1039 result);
1040 gimple_set_location (div_stmt, loc);
1041 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1043 return target;
1046 /* ARG0 and N are the two arguments to a powi builtin in GSI with
1047 location info LOC. If the arguments are appropriate, create an
1048 equivalent sequence of statements prior to GSI using an optimal
1049 number of multiplications, and return an expession holding the
1050 result. */
1052 static tree
1053 gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1054 tree arg0, HOST_WIDE_INT n)
1056 /* Avoid largest negative number. */
1057 if (n != -n
1058 && ((n >= -1 && n <= 2)
1059 || (optimize_function_for_speed_p (cfun)
1060 && powi_cost (n) <= POWI_MAX_MULTS)))
1061 return powi_as_mults (gsi, loc, arg0, n);
1063 return NULL_TREE;
1066 /* Build a gimple call statement that calls FN with argument ARG.
1067 Set the lhs of the call statement to a fresh SSA name. Insert the
1068 statement prior to GSI's current position, and return the fresh
1069 SSA name. */
1071 static tree
1072 build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1073 tree fn, tree arg)
1075 gimple call_stmt;
1076 tree ssa_target;
1078 call_stmt = gimple_build_call (fn, 1, arg);
1079 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
1080 gimple_set_lhs (call_stmt, ssa_target);
1081 gimple_set_location (call_stmt, loc);
1082 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1084 return ssa_target;
1087 /* Build a gimple binary operation with the given CODE and arguments
1088 ARG0, ARG1, assigning the result to a new SSA name for variable
1089 TARGET. Insert the statement prior to GSI's current position, and
1090 return the fresh SSA name.*/
1092 static tree
1093 build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1094 const char *name, enum tree_code code,
1095 tree arg0, tree arg1)
1097 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
1098 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1099 gimple_set_location (stmt, loc);
1100 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1101 return result;
1104 /* Build a gimple reference operation with the given CODE and argument
1105 ARG, assigning the result to a new SSA name of TYPE with NAME.
1106 Insert the statement prior to GSI's current position, and return
1107 the fresh SSA name. */
1109 static inline tree
1110 build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1111 const char *name, enum tree_code code, tree arg0)
1113 tree result = make_temp_ssa_name (type, NULL, name);
1114 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1115 gimple_set_location (stmt, loc);
1116 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1117 return result;
1120 /* Build a gimple assignment to cast VAL to TYPE. Insert the statement
1121 prior to GSI's current position, and return the fresh SSA name. */
1123 static tree
1124 build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1125 tree type, tree val)
1127 tree result = make_ssa_name (type, NULL);
1128 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1129 gimple_set_location (stmt, loc);
1130 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1131 return result;
1134 /* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1135 with location info LOC. If possible, create an equivalent and
1136 less expensive sequence of statements prior to GSI, and return an
1137 expession holding the result. */
1139 static tree
1140 gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1141 tree arg0, tree arg1)
1143 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
1144 REAL_VALUE_TYPE c2, dconst3;
1145 HOST_WIDE_INT n;
1146 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
1147 enum machine_mode mode;
1148 bool hw_sqrt_exists, c_is_int, c2_is_int;
1150 /* If the exponent isn't a constant, there's nothing of interest
1151 to be done. */
1152 if (TREE_CODE (arg1) != REAL_CST)
1153 return NULL_TREE;
1155 /* If the exponent is equivalent to an integer, expand to an optimal
1156 multiplication sequence when profitable. */
1157 c = TREE_REAL_CST (arg1);
1158 n = real_to_integer (&c);
1159 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1160 c_is_int = real_identical (&c, &cint);
1162 if (c_is_int
1163 && ((n >= -1 && n <= 2)
1164 || (flag_unsafe_math_optimizations
1165 && optimize_insn_for_speed_p ()
1166 && powi_cost (n) <= POWI_MAX_MULTS)))
1167 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1169 /* Attempt various optimizations using sqrt and cbrt. */
1170 type = TREE_TYPE (arg0);
1171 mode = TYPE_MODE (type);
1172 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1174 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1175 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1176 sqrt(-0) = -0. */
1177 if (sqrtfn
1178 && REAL_VALUES_EQUAL (c, dconsthalf)
1179 && !HONOR_SIGNED_ZEROS (mode))
1180 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
1182 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1183 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1184 so do this optimization even if -Os. Don't do this optimization
1185 if we don't have a hardware sqrt insn. */
1186 dconst1_4 = dconst1;
1187 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1188 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
1190 if (flag_unsafe_math_optimizations
1191 && sqrtfn
1192 && REAL_VALUES_EQUAL (c, dconst1_4)
1193 && hw_sqrt_exists)
1195 /* sqrt(x) */
1196 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1198 /* sqrt(sqrt(x)) */
1199 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1202 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1203 optimizing for space. Don't do this optimization if we don't have
1204 a hardware sqrt insn. */
1205 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1206 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1208 if (flag_unsafe_math_optimizations
1209 && sqrtfn
1210 && optimize_function_for_speed_p (cfun)
1211 && REAL_VALUES_EQUAL (c, dconst3_4)
1212 && hw_sqrt_exists)
1214 /* sqrt(x) */
1215 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1217 /* sqrt(sqrt(x)) */
1218 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
1220 /* sqrt(x) * sqrt(sqrt(x)) */
1221 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1222 sqrt_arg0, sqrt_sqrt);
1225 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1226 optimizations since 1./3. is not exactly representable. If x
1227 is negative and finite, the correct value of pow(x,1./3.) is
1228 a NaN with the "invalid" exception raised, because the value
1229 of 1./3. actually has an even denominator. The correct value
1230 of cbrt(x) is a negative real value. */
1231 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1232 dconst1_3 = real_value_truncate (mode, dconst_third ());
1234 if (flag_unsafe_math_optimizations
1235 && cbrtfn
1236 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1237 && REAL_VALUES_EQUAL (c, dconst1_3))
1238 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
1240 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1241 if we don't have a hardware sqrt insn. */
1242 dconst1_6 = dconst1_3;
1243 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1245 if (flag_unsafe_math_optimizations
1246 && sqrtfn
1247 && cbrtfn
1248 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1249 && optimize_function_for_speed_p (cfun)
1250 && hw_sqrt_exists
1251 && REAL_VALUES_EQUAL (c, dconst1_6))
1253 /* sqrt(x) */
1254 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1256 /* cbrt(sqrt(x)) */
1257 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
1260 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1261 and c not an integer, into
1263 sqrt(x) * powi(x, n/2), n > 0;
1264 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1266 Do not calculate the powi factor when n/2 = 0. */
1267 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1268 n = real_to_integer (&c2);
1269 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1270 c2_is_int = real_identical (&c2, &cint);
1272 if (flag_unsafe_math_optimizations
1273 && sqrtfn
1274 && c2_is_int
1275 && !c_is_int
1276 && optimize_function_for_speed_p (cfun))
1278 tree powi_x_ndiv2 = NULL_TREE;
1280 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1281 possible or profitable, give up. Skip the degenerate case when
1282 n is 1 or -1, where the result is always 1. */
1283 if (absu_hwi (n) != 1)
1285 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1286 abs_hwi (n / 2));
1287 if (!powi_x_ndiv2)
1288 return NULL_TREE;
1291 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1292 result of the optimal multiply sequence just calculated. */
1293 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
1295 if (absu_hwi (n) == 1)
1296 result = sqrt_arg0;
1297 else
1298 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1299 sqrt_arg0, powi_x_ndiv2);
1301 /* If n is negative, reciprocate the result. */
1302 if (n < 0)
1303 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1304 build_real (type, dconst1), result);
1305 return result;
1308 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1310 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1311 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1313 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1314 different from pow(x, 1./3.) due to rounding and behavior with
1315 negative x, we need to constrain this transformation to unsafe
1316 math and positive x or finite math. */
1317 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1318 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1319 real_round (&c2, mode, &c2);
1320 n = real_to_integer (&c2);
1321 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1322 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1323 real_convert (&c2, mode, &c2);
1325 if (flag_unsafe_math_optimizations
1326 && cbrtfn
1327 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
1328 && real_identical (&c2, &c)
1329 && !c2_is_int
1330 && optimize_function_for_speed_p (cfun)
1331 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1333 tree powi_x_ndiv3 = NULL_TREE;
1335 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1336 possible or profitable, give up. Skip the degenerate case when
1337 abs(n) < 3, where the result is always 1. */
1338 if (absu_hwi (n) >= 3)
1340 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
1341 abs_hwi (n / 3));
1342 if (!powi_x_ndiv3)
1343 return NULL_TREE;
1346 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1347 as that creates an unnecessary variable. Instead, just produce
1348 either cbrt(x) or cbrt(x) * cbrt(x). */
1349 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
1351 if (absu_hwi (n) % 3 == 1)
1352 powi_cbrt_x = cbrt_x;
1353 else
1354 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1355 cbrt_x, cbrt_x);
1357 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
1358 if (absu_hwi (n) < 3)
1359 result = powi_cbrt_x;
1360 else
1361 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1362 powi_x_ndiv3, powi_cbrt_x);
1364 /* If n is negative, reciprocate the result. */
1365 if (n < 0)
1366 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1367 build_real (type, dconst1), result);
1369 return result;
1372 /* No optimizations succeeded. */
1373 return NULL_TREE;
1376 /* ARG is the argument to a cabs builtin call in GSI with location info
1377 LOC. Create a sequence of statements prior to GSI that calculates
1378 sqrt(R*R + I*I), where R and I are the real and imaginary components
1379 of ARG, respectively. Return an expression holding the result. */
1381 static tree
1382 gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1384 tree real_part, imag_part, addend1, addend2, sum, result;
1385 tree type = TREE_TYPE (TREE_TYPE (arg));
1386 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1387 enum machine_mode mode = TYPE_MODE (type);
1389 if (!flag_unsafe_math_optimizations
1390 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1391 || !sqrtfn
1392 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1393 return NULL_TREE;
1395 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
1396 REALPART_EXPR, arg);
1397 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1398 real_part, real_part);
1399 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
1400 IMAGPART_EXPR, arg);
1401 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
1402 imag_part, imag_part);
1403 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1404 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
1406 return result;
1409 /* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
1410 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1411 an optimal number of multiplies, when n is a constant. */
1413 static unsigned int
1414 execute_cse_sincos (void)
1416 basic_block bb;
1417 bool cfg_changed = false;
1419 calculate_dominance_info (CDI_DOMINATORS);
1420 memset (&sincos_stats, 0, sizeof (sincos_stats));
1422 FOR_EACH_BB_FN (bb, cfun)
1424 gimple_stmt_iterator gsi;
1425 bool cleanup_eh = false;
1427 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1429 gimple stmt = gsi_stmt (gsi);
1430 tree fndecl;
1432 /* Only the last stmt in a bb could throw, no need to call
1433 gimple_purge_dead_eh_edges if we change something in the middle
1434 of a basic block. */
1435 cleanup_eh = false;
1437 if (is_gimple_call (stmt)
1438 && gimple_call_lhs (stmt)
1439 && (fndecl = gimple_call_fndecl (stmt))
1440 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1442 tree arg, arg0, arg1, result;
1443 HOST_WIDE_INT n;
1444 location_t loc;
1446 switch (DECL_FUNCTION_CODE (fndecl))
1448 CASE_FLT_FN (BUILT_IN_COS):
1449 CASE_FLT_FN (BUILT_IN_SIN):
1450 CASE_FLT_FN (BUILT_IN_CEXPI):
1451 /* Make sure we have either sincos or cexp. */
1452 if (!targetm.libc_has_function (function_c99_math_complex)
1453 && !targetm.libc_has_function (function_sincos))
1454 break;
1456 arg = gimple_call_arg (stmt, 0);
1457 if (TREE_CODE (arg) == SSA_NAME)
1458 cfg_changed |= execute_cse_sincos_1 (arg);
1459 break;
1461 CASE_FLT_FN (BUILT_IN_POW):
1462 arg0 = gimple_call_arg (stmt, 0);
1463 arg1 = gimple_call_arg (stmt, 1);
1465 loc = gimple_location (stmt);
1466 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1468 if (result)
1470 tree lhs = gimple_get_lhs (stmt);
1471 gimple new_stmt = gimple_build_assign (lhs, result);
1472 gimple_set_location (new_stmt, loc);
1473 unlink_stmt_vdef (stmt);
1474 gsi_replace (&gsi, new_stmt, true);
1475 cleanup_eh = true;
1476 if (gimple_vdef (stmt))
1477 release_ssa_name (gimple_vdef (stmt));
1479 break;
1481 CASE_FLT_FN (BUILT_IN_POWI):
1482 arg0 = gimple_call_arg (stmt, 0);
1483 arg1 = gimple_call_arg (stmt, 1);
1484 loc = gimple_location (stmt);
1486 if (real_minus_onep (arg0))
1488 tree t0, t1, cond, one, minus_one;
1489 gimple stmt;
1491 t0 = TREE_TYPE (arg0);
1492 t1 = TREE_TYPE (arg1);
1493 one = build_real (t0, dconst1);
1494 minus_one = build_real (t0, dconstm1);
1496 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1497 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1498 arg1,
1499 build_int_cst (t1,
1500 1));
1501 gimple_set_location (stmt, loc);
1502 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1504 result = make_temp_ssa_name (t0, NULL, "powi");
1505 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1506 cond,
1507 minus_one, one);
1508 gimple_set_location (stmt, loc);
1509 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1511 else
1513 if (!tree_fits_shwi_p (arg1))
1514 break;
1516 n = tree_to_shwi (arg1);
1517 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1520 if (result)
1522 tree lhs = gimple_get_lhs (stmt);
1523 gimple new_stmt = gimple_build_assign (lhs, result);
1524 gimple_set_location (new_stmt, loc);
1525 unlink_stmt_vdef (stmt);
1526 gsi_replace (&gsi, new_stmt, true);
1527 cleanup_eh = true;
1528 if (gimple_vdef (stmt))
1529 release_ssa_name (gimple_vdef (stmt));
1531 break;
1533 CASE_FLT_FN (BUILT_IN_CABS):
1534 arg0 = gimple_call_arg (stmt, 0);
1535 loc = gimple_location (stmt);
1536 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1538 if (result)
1540 tree lhs = gimple_get_lhs (stmt);
1541 gimple new_stmt = gimple_build_assign (lhs, result);
1542 gimple_set_location (new_stmt, loc);
1543 unlink_stmt_vdef (stmt);
1544 gsi_replace (&gsi, new_stmt, true);
1545 cleanup_eh = true;
1546 if (gimple_vdef (stmt))
1547 release_ssa_name (gimple_vdef (stmt));
1549 break;
1551 default:;
1555 if (cleanup_eh)
1556 cfg_changed |= gimple_purge_dead_eh_edges (bb);
1559 statistics_counter_event (cfun, "sincos statements inserted",
1560 sincos_stats.inserted);
1562 free_dominance_info (CDI_DOMINATORS);
1563 return cfg_changed ? TODO_cleanup_cfg : 0;
1566 static bool
1567 gate_cse_sincos (void)
1569 /* We no longer require either sincos or cexp, since powi expansion
1570 piggybacks on this pass. */
1571 return optimize;
1574 namespace {
1576 const pass_data pass_data_cse_sincos =
1578 GIMPLE_PASS, /* type */
1579 "sincos", /* name */
1580 OPTGROUP_NONE, /* optinfo_flags */
1581 true, /* has_gate */
1582 true, /* has_execute */
1583 TV_NONE, /* tv_id */
1584 PROP_ssa, /* properties_required */
1585 0, /* properties_provided */
1586 0, /* properties_destroyed */
1587 0, /* todo_flags_start */
1588 ( TODO_update_ssa | TODO_verify_ssa
1589 | TODO_verify_stmts ), /* todo_flags_finish */
1592 class pass_cse_sincos : public gimple_opt_pass
1594 public:
1595 pass_cse_sincos (gcc::context *ctxt)
1596 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1599 /* opt_pass methods: */
1600 bool gate () { return gate_cse_sincos (); }
1601 unsigned int execute () { return execute_cse_sincos (); }
1603 }; // class pass_cse_sincos
1605 } // anon namespace
1607 gimple_opt_pass *
1608 make_pass_cse_sincos (gcc::context *ctxt)
1610 return new pass_cse_sincos (ctxt);
1613 /* A symbolic number is used to detect byte permutation and selection
1614 patterns. Therefore the field N contains an artificial number
1615 consisting of byte size markers:
1617 0 - byte has the value 0
1618 1..size - byte contains the content of the byte
1619 number indexed with that value minus one */
1621 struct symbolic_number {
1622 unsigned HOST_WIDEST_INT n;
1623 tree type;
1626 /* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1627 number N. Return false if the requested operation is not permitted
1628 on a symbolic number. */
1630 static inline bool
1631 do_shift_rotate (enum tree_code code,
1632 struct symbolic_number *n,
1633 int count)
1635 int bitsize = TYPE_PRECISION (n->type);
1637 if (count % 8 != 0)
1638 return false;
1640 /* Zero out the extra bits of N in order to avoid them being shifted
1641 into the significant bits. */
1642 if (bitsize < 8 * (int)sizeof (HOST_WIDEST_INT))
1643 n->n &= ((unsigned HOST_WIDEST_INT)1 << bitsize) - 1;
1645 switch (code)
1647 case LSHIFT_EXPR:
1648 n->n <<= count;
1649 break;
1650 case RSHIFT_EXPR:
1651 /* Arithmetic shift of signed type: result is dependent on the value. */
1652 if (!TYPE_UNSIGNED (n->type)
1653 && (n->n & ((unsigned HOST_WIDEST_INT) 0xff << (bitsize - 8))))
1654 return false;
1655 n->n >>= count;
1656 break;
1657 case LROTATE_EXPR:
1658 n->n = (n->n << count) | (n->n >> (bitsize - count));
1659 break;
1660 case RROTATE_EXPR:
1661 n->n = (n->n >> count) | (n->n << (bitsize - count));
1662 break;
1663 default:
1664 return false;
1666 /* Zero unused bits for size. */
1667 if (bitsize < 8 * (int)sizeof (HOST_WIDEST_INT))
1668 n->n &= ((unsigned HOST_WIDEST_INT)1 << bitsize) - 1;
1669 return true;
1672 /* Perform sanity checking for the symbolic number N and the gimple
1673 statement STMT. */
1675 static inline bool
1676 verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1678 tree lhs_type;
1680 lhs_type = gimple_expr_type (stmt);
1682 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1683 return false;
1685 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
1686 return false;
1688 return true;
1691 /* find_bswap_1 invokes itself recursively with N and tries to perform
1692 the operation given by the rhs of STMT on the result. If the
1693 operation could successfully be executed the function returns the
1694 tree expression of the source operand and NULL otherwise. */
1696 static tree
1697 find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1699 enum tree_code code;
1700 tree rhs1, rhs2 = NULL;
1701 gimple rhs1_stmt, rhs2_stmt;
1702 tree source_expr1;
1703 enum gimple_rhs_class rhs_class;
1705 if (!limit || !is_gimple_assign (stmt))
1706 return NULL_TREE;
1708 rhs1 = gimple_assign_rhs1 (stmt);
1710 if (TREE_CODE (rhs1) != SSA_NAME)
1711 return NULL_TREE;
1713 code = gimple_assign_rhs_code (stmt);
1714 rhs_class = gimple_assign_rhs_class (stmt);
1715 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1717 if (rhs_class == GIMPLE_BINARY_RHS)
1718 rhs2 = gimple_assign_rhs2 (stmt);
1720 /* Handle unary rhs and binary rhs with integer constants as second
1721 operand. */
1723 if (rhs_class == GIMPLE_UNARY_RHS
1724 || (rhs_class == GIMPLE_BINARY_RHS
1725 && TREE_CODE (rhs2) == INTEGER_CST))
1727 if (code != BIT_AND_EXPR
1728 && code != LSHIFT_EXPR
1729 && code != RSHIFT_EXPR
1730 && code != LROTATE_EXPR
1731 && code != RROTATE_EXPR
1732 && code != NOP_EXPR
1733 && code != CONVERT_EXPR)
1734 return NULL_TREE;
1736 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1738 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1739 to initialize the symbolic number. */
1740 if (!source_expr1)
1742 int size;
1744 /* Set up the symbolic number N by setting each byte to a
1745 value between 1 and the byte size of rhs1. The highest
1746 order byte is set to n->size and the lowest order
1747 byte to 1. */
1748 n->type = TREE_TYPE (rhs1);
1749 size = TYPE_PRECISION (n->type);
1750 if (size % BITS_PER_UNIT != 0)
1751 return NULL_TREE;
1752 if (size > HOST_BITS_PER_WIDEST_INT)
1753 return NULL_TREE;
1754 size /= BITS_PER_UNIT;
1755 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1756 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1758 if (size < (int)sizeof (HOST_WIDEST_INT))
1759 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1760 (size * BITS_PER_UNIT)) - 1;
1762 source_expr1 = rhs1;
1765 switch (code)
1767 case BIT_AND_EXPR:
1769 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1770 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1771 unsigned HOST_WIDEST_INT tmp = val;
1773 /* Only constants masking full bytes are allowed. */
1774 for (i = 0; i < size; i++, tmp >>= BITS_PER_UNIT)
1775 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1776 return NULL_TREE;
1778 n->n &= val;
1780 break;
1781 case LSHIFT_EXPR:
1782 case RSHIFT_EXPR:
1783 case LROTATE_EXPR:
1784 case RROTATE_EXPR:
1785 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1786 return NULL_TREE;
1787 break;
1788 CASE_CONVERT:
1790 int type_size, old_type_size;
1791 tree type;
1793 type = gimple_expr_type (stmt);
1794 type_size = TYPE_PRECISION (type);
1795 if (type_size % BITS_PER_UNIT != 0)
1796 return NULL_TREE;
1797 if (type_size > (int) HOST_BITS_PER_WIDEST_INT)
1798 return NULL_TREE;
1800 /* Sign extension: result is dependent on the value. */
1801 old_type_size = TYPE_PRECISION (n->type);
1802 if (!TYPE_UNSIGNED (n->type)
1803 && type_size > old_type_size
1804 && n->n &
1805 ((unsigned HOST_WIDEST_INT) 0xff << (old_type_size - 8)))
1806 return NULL_TREE;
1808 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1810 /* If STMT casts to a smaller type mask out the bits not
1811 belonging to the target type. */
1812 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1814 n->type = type;
1816 break;
1817 default:
1818 return NULL_TREE;
1820 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1823 /* Handle binary rhs. */
1825 if (rhs_class == GIMPLE_BINARY_RHS)
1827 int i, size;
1828 struct symbolic_number n1, n2;
1829 unsigned HOST_WIDEST_INT mask;
1830 tree source_expr2;
1832 if (code != BIT_IOR_EXPR)
1833 return NULL_TREE;
1835 if (TREE_CODE (rhs2) != SSA_NAME)
1836 return NULL_TREE;
1838 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1840 switch (code)
1842 case BIT_IOR_EXPR:
1843 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1845 if (!source_expr1)
1846 return NULL_TREE;
1848 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1850 if (source_expr1 != source_expr2
1851 || TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
1852 return NULL_TREE;
1854 n->type = n1.type;
1855 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1856 for (i = 0, mask = 0xff; i < size; i++, mask <<= BITS_PER_UNIT)
1858 unsigned HOST_WIDEST_INT masked1, masked2;
1860 masked1 = n1.n & mask;
1861 masked2 = n2.n & mask;
1862 if (masked1 && masked2 && masked1 != masked2)
1863 return NULL_TREE;
1865 n->n = n1.n | n2.n;
1867 if (!verify_symbolic_number_p (n, stmt))
1868 return NULL_TREE;
1870 break;
1871 default:
1872 return NULL_TREE;
1874 return source_expr1;
1876 return NULL_TREE;
1879 /* Check if STMT completes a bswap implementation consisting of ORs,
1880 SHIFTs and ANDs. Return the source tree expression on which the
1881 byte swap is performed and NULL if no bswap was found. */
1883 static tree
1884 find_bswap (gimple stmt)
1886 /* The number which the find_bswap result should match in order to
1887 have a full byte swap. The number is shifted to the left according
1888 to the size of the symbolic number before using it. */
1889 unsigned HOST_WIDEST_INT cmp =
1890 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
1891 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
1893 struct symbolic_number n;
1894 tree source_expr;
1895 int limit, bitsize;
1897 /* The last parameter determines the depth search limit. It usually
1898 correlates directly to the number of bytes to be touched. We
1899 increase that number by three here in order to also
1900 cover signed -> unsigned converions of the src operand as can be seen
1901 in libgcc, and for initial shift/and operation of the src operand. */
1902 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1903 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1904 source_expr = find_bswap_1 (stmt, &n, limit);
1906 if (!source_expr)
1907 return NULL_TREE;
1909 /* Zero out the extra bits of N and CMP. */
1910 bitsize = TYPE_PRECISION (n.type);
1911 if (bitsize < 8 * (int)sizeof (HOST_WIDEST_INT))
1913 unsigned HOST_WIDEST_INT mask =
1914 ((unsigned HOST_WIDEST_INT)1 << bitsize) - 1;
1916 n.n &= mask;
1917 cmp >>= sizeof (HOST_WIDEST_INT) * BITS_PER_UNIT - bitsize;
1920 /* A complete byte swap should make the symbolic number to start
1921 with the largest digit in the highest order byte. */
1922 if (cmp != n.n)
1923 return NULL_TREE;
1925 return source_expr;
1928 /* Find manual byte swap implementations and turn them into a bswap
1929 builtin invokation. */
1931 static unsigned int
1932 execute_optimize_bswap (void)
1934 basic_block bb;
1935 bool bswap16_p, bswap32_p, bswap64_p;
1936 bool changed = false;
1937 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
1939 if (BITS_PER_UNIT != 8 || CHAR_BIT != 8)
1940 return 0;
1942 if (sizeof (HOST_WIDEST_INT) < 8)
1943 return 0;
1945 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
1946 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
1947 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
1948 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
1949 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
1950 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
1951 || (bswap32_p && word_mode == SImode)));
1953 if (!bswap16_p && !bswap32_p && !bswap64_p)
1954 return 0;
1956 /* Determine the argument type of the builtins. The code later on
1957 assumes that the return and argument type are the same. */
1958 if (bswap16_p)
1960 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
1961 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1964 if (bswap32_p)
1966 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
1967 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1970 if (bswap64_p)
1972 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
1973 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1976 memset (&bswap_stats, 0, sizeof (bswap_stats));
1978 FOR_EACH_BB_FN (bb, cfun)
1980 gimple_stmt_iterator gsi;
1982 /* We do a reverse scan for bswap patterns to make sure we get the
1983 widest match. As bswap pattern matching doesn't handle
1984 previously inserted smaller bswap replacements as sub-
1985 patterns, the wider variant wouldn't be detected. */
1986 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1988 gimple stmt = gsi_stmt (gsi);
1989 tree bswap_src, bswap_type;
1990 tree bswap_tmp;
1991 tree fndecl = NULL_TREE;
1992 int type_size;
1993 gimple call;
1995 if (!is_gimple_assign (stmt)
1996 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1997 continue;
1999 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
2001 switch (type_size)
2003 case 16:
2004 if (bswap16_p)
2006 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2007 bswap_type = bswap16_type;
2009 break;
2010 case 32:
2011 if (bswap32_p)
2013 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
2014 bswap_type = bswap32_type;
2016 break;
2017 case 64:
2018 if (bswap64_p)
2020 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
2021 bswap_type = bswap64_type;
2023 break;
2024 default:
2025 continue;
2028 if (!fndecl)
2029 continue;
2031 bswap_src = find_bswap (stmt);
2033 if (!bswap_src)
2034 continue;
2036 changed = true;
2037 if (type_size == 16)
2038 bswap_stats.found_16bit++;
2039 else if (type_size == 32)
2040 bswap_stats.found_32bit++;
2041 else
2042 bswap_stats.found_64bit++;
2044 bswap_tmp = bswap_src;
2046 /* Convert the src expression if necessary. */
2047 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2049 gimple convert_stmt;
2050 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2051 convert_stmt = gimple_build_assign_with_ops
2052 (NOP_EXPR, bswap_tmp, bswap_src, NULL);
2053 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2056 call = gimple_build_call (fndecl, 1, bswap_tmp);
2058 bswap_tmp = gimple_assign_lhs (stmt);
2060 /* Convert the result if necessary. */
2061 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
2063 gimple convert_stmt;
2064 bswap_tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2065 convert_stmt = gimple_build_assign_with_ops
2066 (NOP_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
2067 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
2070 gimple_call_set_lhs (call, bswap_tmp);
2072 if (dump_file)
2074 fprintf (dump_file, "%d bit bswap implementation found at: ",
2075 (int)type_size);
2076 print_gimple_stmt (dump_file, stmt, 0, 0);
2079 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2080 gsi_remove (&gsi, true);
2084 statistics_counter_event (cfun, "16-bit bswap implementations found",
2085 bswap_stats.found_16bit);
2086 statistics_counter_event (cfun, "32-bit bswap implementations found",
2087 bswap_stats.found_32bit);
2088 statistics_counter_event (cfun, "64-bit bswap implementations found",
2089 bswap_stats.found_64bit);
2091 return (changed ? TODO_update_ssa | TODO_verify_ssa
2092 | TODO_verify_stmts : 0);
2095 static bool
2096 gate_optimize_bswap (void)
2098 return flag_expensive_optimizations && optimize;
2101 namespace {
2103 const pass_data pass_data_optimize_bswap =
2105 GIMPLE_PASS, /* type */
2106 "bswap", /* name */
2107 OPTGROUP_NONE, /* optinfo_flags */
2108 true, /* has_gate */
2109 true, /* has_execute */
2110 TV_NONE, /* tv_id */
2111 PROP_ssa, /* properties_required */
2112 0, /* properties_provided */
2113 0, /* properties_destroyed */
2114 0, /* todo_flags_start */
2115 0, /* todo_flags_finish */
2118 class pass_optimize_bswap : public gimple_opt_pass
2120 public:
2121 pass_optimize_bswap (gcc::context *ctxt)
2122 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2125 /* opt_pass methods: */
2126 bool gate () { return gate_optimize_bswap (); }
2127 unsigned int execute () { return execute_optimize_bswap (); }
2129 }; // class pass_optimize_bswap
2131 } // anon namespace
2133 gimple_opt_pass *
2134 make_pass_optimize_bswap (gcc::context *ctxt)
2136 return new pass_optimize_bswap (ctxt);
2139 /* Return true if stmt is a type conversion operation that can be stripped
2140 when used in a widening multiply operation. */
2141 static bool
2142 widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2144 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2146 if (TREE_CODE (result_type) == INTEGER_TYPE)
2148 tree op_type;
2149 tree inner_op_type;
2151 if (!CONVERT_EXPR_CODE_P (rhs_code))
2152 return false;
2154 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2156 /* If the type of OP has the same precision as the result, then
2157 we can strip this conversion. The multiply operation will be
2158 selected to create the correct extension as a by-product. */
2159 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2160 return true;
2162 /* We can also strip a conversion if it preserves the signed-ness of
2163 the operation and doesn't narrow the range. */
2164 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2166 /* If the inner-most type is unsigned, then we can strip any
2167 intermediate widening operation. If it's signed, then the
2168 intermediate widening operation must also be signed. */
2169 if ((TYPE_UNSIGNED (inner_op_type)
2170 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
2171 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2172 return true;
2174 return false;
2177 return rhs_code == FIXED_CONVERT_EXPR;
2180 /* Return true if RHS is a suitable operand for a widening multiplication,
2181 assuming a target type of TYPE.
2182 There are two cases:
2184 - RHS makes some value at least twice as wide. Store that value
2185 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
2187 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2188 but leave *TYPE_OUT untouched. */
2190 static bool
2191 is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2192 tree *new_rhs_out)
2194 gimple stmt;
2195 tree type1, rhs1;
2197 if (TREE_CODE (rhs) == SSA_NAME)
2199 stmt = SSA_NAME_DEF_STMT (rhs);
2200 if (is_gimple_assign (stmt))
2202 if (! widening_mult_conversion_strippable_p (type, stmt))
2203 rhs1 = rhs;
2204 else
2206 rhs1 = gimple_assign_rhs1 (stmt);
2208 if (TREE_CODE (rhs1) == INTEGER_CST)
2210 *new_rhs_out = rhs1;
2211 *type_out = NULL;
2212 return true;
2216 else
2217 rhs1 = rhs;
2219 type1 = TREE_TYPE (rhs1);
2221 if (TREE_CODE (type1) != TREE_CODE (type)
2222 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
2223 return false;
2225 *new_rhs_out = rhs1;
2226 *type_out = type1;
2227 return true;
2230 if (TREE_CODE (rhs) == INTEGER_CST)
2232 *new_rhs_out = rhs;
2233 *type_out = NULL;
2234 return true;
2237 return false;
2240 /* Return true if STMT performs a widening multiplication, assuming the
2241 output type is TYPE. If so, store the unwidened types of the operands
2242 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2243 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2244 and *TYPE2_OUT would give the operands of the multiplication. */
2246 static bool
2247 is_widening_mult_p (gimple stmt,
2248 tree *type1_out, tree *rhs1_out,
2249 tree *type2_out, tree *rhs2_out)
2251 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2253 if (TREE_CODE (type) != INTEGER_TYPE
2254 && TREE_CODE (type) != FIXED_POINT_TYPE)
2255 return false;
2257 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2258 rhs1_out))
2259 return false;
2261 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2262 rhs2_out))
2263 return false;
2265 if (*type1_out == NULL)
2267 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
2268 return false;
2269 *type1_out = *type2_out;
2272 if (*type2_out == NULL)
2274 if (!int_fits_type_p (*rhs2_out, *type1_out))
2275 return false;
2276 *type2_out = *type1_out;
2279 /* Ensure that the larger of the two operands comes first. */
2280 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2282 tree tmp;
2283 tmp = *type1_out;
2284 *type1_out = *type2_out;
2285 *type2_out = tmp;
2286 tmp = *rhs1_out;
2287 *rhs1_out = *rhs2_out;
2288 *rhs2_out = tmp;
2291 return true;
2294 /* Process a single gimple statement STMT, which has a MULT_EXPR as
2295 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2296 value is true iff we converted the statement. */
2298 static bool
2299 convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
2301 tree lhs, rhs1, rhs2, type, type1, type2;
2302 enum insn_code handler;
2303 enum machine_mode to_mode, from_mode, actual_mode;
2304 optab op;
2305 int actual_precision;
2306 location_t loc = gimple_location (stmt);
2307 bool from_unsigned1, from_unsigned2;
2309 lhs = gimple_assign_lhs (stmt);
2310 type = TREE_TYPE (lhs);
2311 if (TREE_CODE (type) != INTEGER_TYPE)
2312 return false;
2314 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
2315 return false;
2317 to_mode = TYPE_MODE (type);
2318 from_mode = TYPE_MODE (type1);
2319 from_unsigned1 = TYPE_UNSIGNED (type1);
2320 from_unsigned2 = TYPE_UNSIGNED (type2);
2322 if (from_unsigned1 && from_unsigned2)
2323 op = umul_widen_optab;
2324 else if (!from_unsigned1 && !from_unsigned2)
2325 op = smul_widen_optab;
2326 else
2327 op = usmul_widen_optab;
2329 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2330 0, &actual_mode);
2332 if (handler == CODE_FOR_nothing)
2334 if (op != smul_widen_optab)
2336 /* We can use a signed multiply with unsigned types as long as
2337 there is a wider mode to use, or it is the smaller of the two
2338 types that is unsigned. Note that type1 >= type2, always. */
2339 if ((TYPE_UNSIGNED (type1)
2340 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2341 || (TYPE_UNSIGNED (type2)
2342 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2344 from_mode = GET_MODE_WIDER_MODE (from_mode);
2345 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2346 return false;
2349 op = smul_widen_optab;
2350 handler = find_widening_optab_handler_and_mode (op, to_mode,
2351 from_mode, 0,
2352 &actual_mode);
2354 if (handler == CODE_FOR_nothing)
2355 return false;
2357 from_unsigned1 = from_unsigned2 = false;
2359 else
2360 return false;
2363 /* Ensure that the inputs to the handler are in the correct precison
2364 for the opcode. This will be the full mode size. */
2365 actual_precision = GET_MODE_PRECISION (actual_mode);
2366 if (2 * actual_precision > TYPE_PRECISION (type))
2367 return false;
2368 if (actual_precision != TYPE_PRECISION (type1)
2369 || from_unsigned1 != TYPE_UNSIGNED (type1))
2370 rhs1 = build_and_insert_cast (gsi, loc,
2371 build_nonstandard_integer_type
2372 (actual_precision, from_unsigned1), rhs1);
2373 if (actual_precision != TYPE_PRECISION (type2)
2374 || from_unsigned2 != TYPE_UNSIGNED (type2))
2375 rhs2 = build_and_insert_cast (gsi, loc,
2376 build_nonstandard_integer_type
2377 (actual_precision, from_unsigned2), rhs2);
2379 /* Handle constants. */
2380 if (TREE_CODE (rhs1) == INTEGER_CST)
2381 rhs1 = fold_convert (type1, rhs1);
2382 if (TREE_CODE (rhs2) == INTEGER_CST)
2383 rhs2 = fold_convert (type2, rhs2);
2385 gimple_assign_set_rhs1 (stmt, rhs1);
2386 gimple_assign_set_rhs2 (stmt, rhs2);
2387 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2388 update_stmt (stmt);
2389 widen_mul_stats.widen_mults_inserted++;
2390 return true;
2393 /* Process a single gimple statement STMT, which is found at the
2394 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2395 rhs (given by CODE), and try to convert it into a
2396 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2397 is true iff we converted the statement. */
2399 static bool
2400 convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2401 enum tree_code code)
2403 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
2404 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
2405 tree type, type1, type2, optype;
2406 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2407 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2408 optab this_optab;
2409 enum tree_code wmult_code;
2410 enum insn_code handler;
2411 enum machine_mode to_mode, from_mode, actual_mode;
2412 location_t loc = gimple_location (stmt);
2413 int actual_precision;
2414 bool from_unsigned1, from_unsigned2;
2416 lhs = gimple_assign_lhs (stmt);
2417 type = TREE_TYPE (lhs);
2418 if (TREE_CODE (type) != INTEGER_TYPE
2419 && TREE_CODE (type) != FIXED_POINT_TYPE)
2420 return false;
2422 if (code == MINUS_EXPR)
2423 wmult_code = WIDEN_MULT_MINUS_EXPR;
2424 else
2425 wmult_code = WIDEN_MULT_PLUS_EXPR;
2427 rhs1 = gimple_assign_rhs1 (stmt);
2428 rhs2 = gimple_assign_rhs2 (stmt);
2430 if (TREE_CODE (rhs1) == SSA_NAME)
2432 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2433 if (is_gimple_assign (rhs1_stmt))
2434 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2437 if (TREE_CODE (rhs2) == SSA_NAME)
2439 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2440 if (is_gimple_assign (rhs2_stmt))
2441 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2444 /* Allow for one conversion statement between the multiply
2445 and addition/subtraction statement. If there are more than
2446 one conversions then we assume they would invalidate this
2447 transformation. If that's not the case then they should have
2448 been folded before now. */
2449 if (CONVERT_EXPR_CODE_P (rhs1_code))
2451 conv1_stmt = rhs1_stmt;
2452 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2453 if (TREE_CODE (rhs1) == SSA_NAME)
2455 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2456 if (is_gimple_assign (rhs1_stmt))
2457 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2459 else
2460 return false;
2462 if (CONVERT_EXPR_CODE_P (rhs2_code))
2464 conv2_stmt = rhs2_stmt;
2465 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2466 if (TREE_CODE (rhs2) == SSA_NAME)
2468 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2469 if (is_gimple_assign (rhs2_stmt))
2470 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2472 else
2473 return false;
2476 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2477 is_widening_mult_p, but we still need the rhs returns.
2479 It might also appear that it would be sufficient to use the existing
2480 operands of the widening multiply, but that would limit the choice of
2481 multiply-and-accumulate instructions.
2483 If the widened-multiplication result has more than one uses, it is
2484 probably wiser not to do the conversion. */
2485 if (code == PLUS_EXPR
2486 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
2488 if (!has_single_use (rhs1)
2489 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2490 &type2, &mult_rhs2))
2491 return false;
2492 add_rhs = rhs2;
2493 conv_stmt = conv1_stmt;
2495 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
2497 if (!has_single_use (rhs2)
2498 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2499 &type2, &mult_rhs2))
2500 return false;
2501 add_rhs = rhs1;
2502 conv_stmt = conv2_stmt;
2504 else
2505 return false;
2507 to_mode = TYPE_MODE (type);
2508 from_mode = TYPE_MODE (type1);
2509 from_unsigned1 = TYPE_UNSIGNED (type1);
2510 from_unsigned2 = TYPE_UNSIGNED (type2);
2511 optype = type1;
2513 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2514 if (from_unsigned1 != from_unsigned2)
2516 if (!INTEGRAL_TYPE_P (type))
2517 return false;
2518 /* We can use a signed multiply with unsigned types as long as
2519 there is a wider mode to use, or it is the smaller of the two
2520 types that is unsigned. Note that type1 >= type2, always. */
2521 if ((from_unsigned1
2522 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2523 || (from_unsigned2
2524 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2526 from_mode = GET_MODE_WIDER_MODE (from_mode);
2527 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2528 return false;
2531 from_unsigned1 = from_unsigned2 = false;
2532 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2533 false);
2536 /* If there was a conversion between the multiply and addition
2537 then we need to make sure it fits a multiply-and-accumulate.
2538 The should be a single mode change which does not change the
2539 value. */
2540 if (conv_stmt)
2542 /* We use the original, unmodified data types for this. */
2543 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2544 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2545 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2546 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2548 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2550 /* Conversion is a truncate. */
2551 if (TYPE_PRECISION (to_type) < data_size)
2552 return false;
2554 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2556 /* Conversion is an extend. Check it's the right sort. */
2557 if (TYPE_UNSIGNED (from_type) != is_unsigned
2558 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2559 return false;
2561 /* else convert is a no-op for our purposes. */
2564 /* Verify that the machine can perform a widening multiply
2565 accumulate in this mode/signedness combination, otherwise
2566 this transformation is likely to pessimize code. */
2567 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
2568 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2569 from_mode, 0, &actual_mode);
2571 if (handler == CODE_FOR_nothing)
2572 return false;
2574 /* Ensure that the inputs to the handler are in the correct precison
2575 for the opcode. This will be the full mode size. */
2576 actual_precision = GET_MODE_PRECISION (actual_mode);
2577 if (actual_precision != TYPE_PRECISION (type1)
2578 || from_unsigned1 != TYPE_UNSIGNED (type1))
2579 mult_rhs1 = build_and_insert_cast (gsi, loc,
2580 build_nonstandard_integer_type
2581 (actual_precision, from_unsigned1),
2582 mult_rhs1);
2583 if (actual_precision != TYPE_PRECISION (type2)
2584 || from_unsigned2 != TYPE_UNSIGNED (type2))
2585 mult_rhs2 = build_and_insert_cast (gsi, loc,
2586 build_nonstandard_integer_type
2587 (actual_precision, from_unsigned2),
2588 mult_rhs2);
2590 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2591 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
2593 /* Handle constants. */
2594 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
2595 mult_rhs1 = fold_convert (type1, mult_rhs1);
2596 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
2597 mult_rhs2 = fold_convert (type2, mult_rhs2);
2599 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
2600 add_rhs);
2601 update_stmt (gsi_stmt (*gsi));
2602 widen_mul_stats.maccs_inserted++;
2603 return true;
2606 /* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2607 with uses in additions and subtractions to form fused multiply-add
2608 operations. Returns true if successful and MUL_STMT should be removed. */
2610 static bool
2611 convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
2613 tree mul_result = gimple_get_lhs (mul_stmt);
2614 tree type = TREE_TYPE (mul_result);
2615 gimple use_stmt, neguse_stmt, fma_stmt;
2616 use_operand_p use_p;
2617 imm_use_iterator imm_iter;
2619 if (FLOAT_TYPE_P (type)
2620 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2621 return false;
2623 /* We don't want to do bitfield reduction ops. */
2624 if (INTEGRAL_TYPE_P (type)
2625 && (TYPE_PRECISION (type)
2626 != GET_MODE_PRECISION (TYPE_MODE (type))))
2627 return false;
2629 /* If the target doesn't support it, don't generate it. We assume that
2630 if fma isn't available then fms, fnma or fnms are not either. */
2631 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2632 return false;
2634 /* If the multiplication has zero uses, it is kept around probably because
2635 of -fnon-call-exceptions. Don't optimize it away in that case,
2636 it is DCE job. */
2637 if (has_zero_uses (mul_result))
2638 return false;
2640 /* Make sure that the multiplication statement becomes dead after
2641 the transformation, thus that all uses are transformed to FMAs.
2642 This means we assume that an FMA operation has the same cost
2643 as an addition. */
2644 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2646 enum tree_code use_code;
2647 tree result = mul_result;
2648 bool negate_p = false;
2650 use_stmt = USE_STMT (use_p);
2652 if (is_gimple_debug (use_stmt))
2653 continue;
2655 /* For now restrict this operations to single basic blocks. In theory
2656 we would want to support sinking the multiplication in
2657 m = a*b;
2658 if ()
2659 ma = m + c;
2660 else
2661 d = m;
2662 to form a fma in the then block and sink the multiplication to the
2663 else block. */
2664 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2665 return false;
2667 if (!is_gimple_assign (use_stmt))
2668 return false;
2670 use_code = gimple_assign_rhs_code (use_stmt);
2672 /* A negate on the multiplication leads to FNMA. */
2673 if (use_code == NEGATE_EXPR)
2675 ssa_op_iter iter;
2676 use_operand_p usep;
2678 result = gimple_assign_lhs (use_stmt);
2680 /* Make sure the negate statement becomes dead with this
2681 single transformation. */
2682 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2683 &use_p, &neguse_stmt))
2684 return false;
2686 /* Make sure the multiplication isn't also used on that stmt. */
2687 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2688 if (USE_FROM_PTR (usep) == mul_result)
2689 return false;
2691 /* Re-validate. */
2692 use_stmt = neguse_stmt;
2693 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2694 return false;
2695 if (!is_gimple_assign (use_stmt))
2696 return false;
2698 use_code = gimple_assign_rhs_code (use_stmt);
2699 negate_p = true;
2702 switch (use_code)
2704 case MINUS_EXPR:
2705 if (gimple_assign_rhs2 (use_stmt) == result)
2706 negate_p = !negate_p;
2707 break;
2708 case PLUS_EXPR:
2709 break;
2710 default:
2711 /* FMA can only be formed from PLUS and MINUS. */
2712 return false;
2715 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2716 by a MULT_EXPR that we'll visit later, we might be able to
2717 get a more profitable match with fnma.
2718 OTOH, if we don't, a negate / fma pair has likely lower latency
2719 that a mult / subtract pair. */
2720 if (use_code == MINUS_EXPR && !negate_p
2721 && gimple_assign_rhs1 (use_stmt) == result
2722 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2723 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2725 tree rhs2 = gimple_assign_rhs2 (use_stmt);
2727 if (TREE_CODE (rhs2) == SSA_NAME)
2729 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
2730 if (has_single_use (rhs2)
2731 && is_gimple_assign (stmt2)
2732 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2733 return false;
2737 /* We can't handle a * b + a * b. */
2738 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2739 return false;
2741 /* While it is possible to validate whether or not the exact form
2742 that we've recognized is available in the backend, the assumption
2743 is that the transformation is never a loss. For instance, suppose
2744 the target only has the plain FMA pattern available. Consider
2745 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2746 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2747 still have 3 operations, but in the FMA form the two NEGs are
2748 independent and could be run in parallel. */
2751 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2753 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2754 enum tree_code use_code;
2755 tree addop, mulop1 = op1, result = mul_result;
2756 bool negate_p = false;
2758 if (is_gimple_debug (use_stmt))
2759 continue;
2761 use_code = gimple_assign_rhs_code (use_stmt);
2762 if (use_code == NEGATE_EXPR)
2764 result = gimple_assign_lhs (use_stmt);
2765 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2766 gsi_remove (&gsi, true);
2767 release_defs (use_stmt);
2769 use_stmt = neguse_stmt;
2770 gsi = gsi_for_stmt (use_stmt);
2771 use_code = gimple_assign_rhs_code (use_stmt);
2772 negate_p = true;
2775 if (gimple_assign_rhs1 (use_stmt) == result)
2777 addop = gimple_assign_rhs2 (use_stmt);
2778 /* a * b - c -> a * b + (-c) */
2779 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2780 addop = force_gimple_operand_gsi (&gsi,
2781 build1 (NEGATE_EXPR,
2782 type, addop),
2783 true, NULL_TREE, true,
2784 GSI_SAME_STMT);
2786 else
2788 addop = gimple_assign_rhs1 (use_stmt);
2789 /* a - b * c -> (-b) * c + a */
2790 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2791 negate_p = !negate_p;
2794 if (negate_p)
2795 mulop1 = force_gimple_operand_gsi (&gsi,
2796 build1 (NEGATE_EXPR,
2797 type, mulop1),
2798 true, NULL_TREE, true,
2799 GSI_SAME_STMT);
2801 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
2802 gimple_assign_lhs (use_stmt),
2803 mulop1, op2,
2804 addop);
2805 gsi_replace (&gsi, fma_stmt, true);
2806 widen_mul_stats.fmas_inserted++;
2809 return true;
2812 /* Find integer multiplications where the operands are extended from
2813 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2814 where appropriate. */
2816 static unsigned int
2817 execute_optimize_widening_mul (void)
2819 basic_block bb;
2820 bool cfg_changed = false;
2822 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2824 FOR_EACH_BB_FN (bb, cfun)
2826 gimple_stmt_iterator gsi;
2828 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
2830 gimple stmt = gsi_stmt (gsi);
2831 enum tree_code code;
2833 if (is_gimple_assign (stmt))
2835 code = gimple_assign_rhs_code (stmt);
2836 switch (code)
2838 case MULT_EXPR:
2839 if (!convert_mult_to_widen (stmt, &gsi)
2840 && convert_mult_to_fma (stmt,
2841 gimple_assign_rhs1 (stmt),
2842 gimple_assign_rhs2 (stmt)))
2844 gsi_remove (&gsi, true);
2845 release_defs (stmt);
2846 continue;
2848 break;
2850 case PLUS_EXPR:
2851 case MINUS_EXPR:
2852 convert_plusminus_to_widen (&gsi, stmt, code);
2853 break;
2855 default:;
2858 else if (is_gimple_call (stmt)
2859 && gimple_call_lhs (stmt))
2861 tree fndecl = gimple_call_fndecl (stmt);
2862 if (fndecl
2863 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2865 switch (DECL_FUNCTION_CODE (fndecl))
2867 case BUILT_IN_POWF:
2868 case BUILT_IN_POW:
2869 case BUILT_IN_POWL:
2870 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2871 && REAL_VALUES_EQUAL
2872 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2873 dconst2)
2874 && convert_mult_to_fma (stmt,
2875 gimple_call_arg (stmt, 0),
2876 gimple_call_arg (stmt, 0)))
2878 unlink_stmt_vdef (stmt);
2879 if (gsi_remove (&gsi, true)
2880 && gimple_purge_dead_eh_edges (bb))
2881 cfg_changed = true;
2882 release_defs (stmt);
2883 continue;
2885 break;
2887 default:;
2891 gsi_next (&gsi);
2895 statistics_counter_event (cfun, "widening multiplications inserted",
2896 widen_mul_stats.widen_mults_inserted);
2897 statistics_counter_event (cfun, "widening maccs inserted",
2898 widen_mul_stats.maccs_inserted);
2899 statistics_counter_event (cfun, "fused multiply-adds inserted",
2900 widen_mul_stats.fmas_inserted);
2902 return cfg_changed ? TODO_cleanup_cfg : 0;
2905 static bool
2906 gate_optimize_widening_mul (void)
2908 return flag_expensive_optimizations && optimize;
2911 namespace {
2913 const pass_data pass_data_optimize_widening_mul =
2915 GIMPLE_PASS, /* type */
2916 "widening_mul", /* name */
2917 OPTGROUP_NONE, /* optinfo_flags */
2918 true, /* has_gate */
2919 true, /* has_execute */
2920 TV_NONE, /* tv_id */
2921 PROP_ssa, /* properties_required */
2922 0, /* properties_provided */
2923 0, /* properties_destroyed */
2924 0, /* todo_flags_start */
2925 ( TODO_verify_ssa | TODO_verify_stmts
2926 | TODO_update_ssa ), /* todo_flags_finish */
2929 class pass_optimize_widening_mul : public gimple_opt_pass
2931 public:
2932 pass_optimize_widening_mul (gcc::context *ctxt)
2933 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
2936 /* opt_pass methods: */
2937 bool gate () { return gate_optimize_widening_mul (); }
2938 unsigned int execute () { return execute_optimize_widening_mul (); }
2940 }; // class pass_optimize_widening_mul
2942 } // anon namespace
2944 gimple_opt_pass *
2945 make_pass_optimize_widening_mul (gcc::context *ctxt)
2947 return new pass_optimize_widening_mul (ctxt);