1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains subroutines used only from the file reload1.cc.
21 It knows how to scan one insn for operands and values
22 that need to be copied into registers to make valid code.
23 It also finds other operands and values which are valid
24 but for which equivalent values in registers exist and
25 ought to be used instead.
27 Before processing the first insn of the function, call `init_reload'.
28 init_reload actually has to be called earlier anyway.
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
58 find_reloads can alter the operands of the instruction it is called on.
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
72 Using a reload register for several reloads in one insn:
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload. */
88 /* We do not enable this with CHECKING_P, since it is awfully slow. */
93 #include "coretypes.h"
105 #include "rtl-error.h"
107 #include "addresses.h"
108 #include "function-abi.h"
110 /* True if X is a constant that can be forced into the constant pool.
111 MODE is the mode of the operand, or VOIDmode if not known. */
112 #define CONST_POOL_OK_P(MODE, X) \
113 ((MODE) != VOIDmode \
115 && GET_CODE (X) != HIGH \
116 && !targetm.cannot_force_const_mem (MODE, X))
118 /* True if C is a non-empty register class that has too few registers
119 to be safely used as a reload target class. */
122 small_register_class_p (reg_class_t rclass
)
124 return (reg_class_size
[(int) rclass
] == 1
125 || (reg_class_size
[(int) rclass
] >= 1
126 && targetm
.class_likely_spilled_p (rclass
)));
130 /* All reloads of the current insn are recorded here. See reload.h for
133 struct reload rld
[MAX_RELOADS
];
135 /* All the "earlyclobber" operands of the current insn
136 are recorded here. */
138 rtx reload_earlyclobbers
[MAX_RECOG_OPERANDS
];
140 int reload_n_operands
;
142 /* Replacing reloads.
144 If `replace_reloads' is nonzero, then as each reload is recorded
145 an entry is made for it in the table `replacements'.
146 Then later `subst_reloads' can look through that table and
147 perform all the replacements needed. */
149 /* Nonzero means record the places to replace. */
150 static int replace_reloads
;
152 /* Each replacement is recorded with a structure like this. */
155 rtx
*where
; /* Location to store in */
156 int what
; /* which reload this is for */
157 machine_mode mode
; /* mode it must have */
160 static struct replacement replacements
[MAX_RECOG_OPERANDS
* ((MAX_REGS_PER_ADDRESS
* 2) + 1)];
162 /* Number of replacements currently recorded. */
163 static int n_replacements
;
165 /* Used to track what is modified by an operand. */
168 int reg_flag
; /* Nonzero if referencing a register. */
169 int safe
; /* Nonzero if this can't conflict with anything. */
170 rtx base
; /* Base address for MEM. */
171 poly_int64 start
; /* Starting offset or register number. */
172 poly_int64 end
; /* Ending offset or register number. */
175 /* Save MEMs needed to copy from one class of registers to another. One MEM
176 is used per mode, but normally only one or two modes are ever used.
178 We keep two versions, before and after register elimination. The one
179 after register elimination is record separately for each operand. This
180 is done in case the address is not valid to be sure that we separately
183 static rtx secondary_memlocs
[NUM_MACHINE_MODES
];
184 static rtx secondary_memlocs_elim
[NUM_MACHINE_MODES
][MAX_RECOG_OPERANDS
];
185 static int secondary_memlocs_elim_used
= 0;
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx_insn
*this_insn
;
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm
;
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known
;
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p
;
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed
;
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum
;
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 /* If we are going to reload an address, compute the reload type to
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
246 static int push_secondary_reload (int, rtx
, int, int, enum reg_class
,
247 machine_mode
, enum reload_type
,
248 enum insn_code
*, secondary_reload_info
*);
249 static enum reg_class
find_valid_class (machine_mode
, machine_mode
,
251 static void push_replacement (rtx
*, int, machine_mode
);
252 static void dup_replacements (rtx
*, rtx
*);
253 static void combine_reloads (void);
254 static int find_reusable_reload (rtx
*, rtx
, enum reg_class
,
255 enum reload_type
, int, int);
256 static rtx
find_dummy_reload (rtx
, rtx
, rtx
*, rtx
*, machine_mode
,
257 machine_mode
, reg_class_t
, int, int);
258 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx
);
259 static struct decomposition
decompose (rtx
);
260 static int immune_p (rtx
, rtx
, struct decomposition
);
261 static bool alternative_allows_const_pool_ref (rtx
, const char *, int);
262 static rtx
find_reloads_toplev (rtx
, int, enum reload_type
, int, int,
264 static rtx
make_memloc (rtx
, int);
265 static bool maybe_memory_address_addr_space_p (machine_mode
, rtx
,
266 addr_space_t
, rtx
*);
267 static int find_reloads_address (machine_mode
, rtx
*, rtx
, rtx
*,
268 int, enum reload_type
, int, rtx_insn
*);
269 static rtx
subst_reg_equivs (rtx
, rtx_insn
*);
270 static rtx
subst_indexed_address (rtx
);
271 static void update_auto_inc_notes (rtx_insn
*, int, int);
272 static int find_reloads_address_1 (machine_mode
, addr_space_t
, rtx
, int,
273 enum rtx_code
, enum rtx_code
, rtx
*,
274 int, enum reload_type
,int, rtx_insn
*);
275 static void find_reloads_address_part (rtx
, rtx
*, enum reg_class
,
277 enum reload_type
, int);
278 static rtx
find_reloads_subreg_address (rtx
, int, enum reload_type
,
279 int, rtx_insn
*, int *);
280 static void copy_replacements_1 (rtx
*, rtx
*, int);
281 static poly_int64
find_inc_amount (rtx
, rtx
);
282 static int refers_to_mem_for_reload_p (rtx
);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
286 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
290 push_reg_equiv_alt_mem (int regno
, rtx mem
)
294 for (it
= reg_equiv_alt_mem_list (regno
); it
; it
= XEXP (it
, 1))
295 if (rtx_equal_p (XEXP (it
, 0), mem
))
298 reg_equiv_alt_mem_list (regno
)
299 = alloc_EXPR_LIST (REG_EQUIV
, mem
,
300 reg_equiv_alt_mem_list (regno
));
303 /* Determine if any secondary reloads are needed for loading (if IN_P is
304 nonzero) or storing (if IN_P is zero) X to or from a reload register of
305 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
306 are needed, push them.
308 Return the reload number of the secondary reload we made, or -1 if
309 we didn't need one. *PICODE is set to the insn_code to use if we do
310 need a secondary reload. */
313 push_secondary_reload (int in_p
, rtx x
, int opnum
, int optional
,
314 enum reg_class reload_class
,
315 machine_mode reload_mode
, enum reload_type type
,
316 enum insn_code
*picode
, secondary_reload_info
*prev_sri
)
318 enum reg_class rclass
= NO_REGS
;
319 enum reg_class scratch_class
;
320 machine_mode mode
= reload_mode
;
321 enum insn_code icode
= CODE_FOR_nothing
;
322 enum insn_code t_icode
= CODE_FOR_nothing
;
323 enum reload_type secondary_type
;
324 int s_reload
, t_reload
= -1;
325 const char *scratch_constraint
;
326 secondary_reload_info sri
;
328 if (type
== RELOAD_FOR_INPUT_ADDRESS
329 || type
== RELOAD_FOR_OUTPUT_ADDRESS
330 || type
== RELOAD_FOR_INPADDR_ADDRESS
331 || type
== RELOAD_FOR_OUTADDR_ADDRESS
)
332 secondary_type
= type
;
334 secondary_type
= in_p
? RELOAD_FOR_INPUT_ADDRESS
: RELOAD_FOR_OUTPUT_ADDRESS
;
336 *picode
= CODE_FOR_nothing
;
338 /* If X is a paradoxical SUBREG, use the inner value to determine both the
339 mode and object being reloaded. */
340 if (paradoxical_subreg_p (x
))
343 reload_mode
= GET_MODE (x
);
346 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
347 is still a pseudo-register by now, it *must* have an equivalent MEM
348 but we don't want to assume that), use that equivalent when seeing if
349 a secondary reload is needed since whether or not a reload is needed
350 might be sensitive to the form of the MEM. */
352 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
353 && reg_equiv_mem (REGNO (x
)))
354 x
= reg_equiv_mem (REGNO (x
));
356 sri
.icode
= CODE_FOR_nothing
;
357 sri
.prev_sri
= prev_sri
;
358 rclass
= (enum reg_class
) targetm
.secondary_reload (in_p
, x
, reload_class
,
360 icode
= (enum insn_code
) sri
.icode
;
362 /* If we don't need any secondary registers, done. */
363 if (rclass
== NO_REGS
&& icode
== CODE_FOR_nothing
)
366 if (rclass
!= NO_REGS
)
367 t_reload
= push_secondary_reload (in_p
, x
, opnum
, optional
, rclass
,
368 reload_mode
, type
, &t_icode
, &sri
);
370 /* If we will be using an insn, the secondary reload is for a
373 if (icode
!= CODE_FOR_nothing
)
375 /* If IN_P is nonzero, the reload register will be the output in
376 operand 0. If IN_P is zero, the reload register will be the input
377 in operand 1. Outputs should have an initial "=", which we must
380 /* ??? It would be useful to be able to handle only two, or more than
381 three, operands, but for now we can only handle the case of having
382 exactly three: output, input and one temp/scratch. */
383 gcc_assert (insn_data
[(int) icode
].n_operands
== 3);
385 /* ??? We currently have no way to represent a reload that needs
386 an icode to reload from an intermediate tertiary reload register.
387 We should probably have a new field in struct reload to tag a
388 chain of scratch operand reloads onto. */
389 gcc_assert (rclass
== NO_REGS
);
391 scratch_constraint
= insn_data
[(int) icode
].operand
[2].constraint
;
392 gcc_assert (*scratch_constraint
== '=');
393 scratch_constraint
++;
394 if (*scratch_constraint
== '&')
395 scratch_constraint
++;
396 scratch_class
= (reg_class_for_constraint
397 (lookup_constraint (scratch_constraint
)));
399 rclass
= scratch_class
;
400 mode
= insn_data
[(int) icode
].operand
[2].mode
;
403 /* This case isn't valid, so fail. Reload is allowed to use the same
404 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
405 in the case of a secondary register, we actually need two different
406 registers for correct code. We fail here to prevent the possibility of
407 silently generating incorrect code later.
409 The convention is that secondary input reloads are valid only if the
410 secondary_class is different from class. If you have such a case, you
411 cannot use secondary reloads, you must work around the problem some
414 Allow this when a reload_in/out pattern is being used. I.e. assume
415 that the generated code handles this case. */
417 gcc_assert (!in_p
|| rclass
!= reload_class
|| icode
!= CODE_FOR_nothing
418 || t_icode
!= CODE_FOR_nothing
);
420 /* See if we can reuse an existing secondary reload. */
421 for (s_reload
= 0; s_reload
< n_reloads
; s_reload
++)
422 if (rld
[s_reload
].secondary_p
423 && (reg_class_subset_p (rclass
, rld
[s_reload
].rclass
)
424 || reg_class_subset_p (rld
[s_reload
].rclass
, rclass
))
425 && ((in_p
&& rld
[s_reload
].inmode
== mode
)
426 || (! in_p
&& rld
[s_reload
].outmode
== mode
))
427 && ((in_p
&& rld
[s_reload
].secondary_in_reload
== t_reload
)
428 || (! in_p
&& rld
[s_reload
].secondary_out_reload
== t_reload
))
429 && ((in_p
&& rld
[s_reload
].secondary_in_icode
== t_icode
)
430 || (! in_p
&& rld
[s_reload
].secondary_out_icode
== t_icode
))
431 && (small_register_class_p (rclass
)
432 || targetm
.small_register_classes_for_mode_p (VOIDmode
))
433 && MERGABLE_RELOADS (secondary_type
, rld
[s_reload
].when_needed
,
434 opnum
, rld
[s_reload
].opnum
))
437 rld
[s_reload
].inmode
= mode
;
439 rld
[s_reload
].outmode
= mode
;
441 if (reg_class_subset_p (rclass
, rld
[s_reload
].rclass
))
442 rld
[s_reload
].rclass
= rclass
;
444 rld
[s_reload
].opnum
= MIN (rld
[s_reload
].opnum
, opnum
);
445 rld
[s_reload
].optional
&= optional
;
446 rld
[s_reload
].secondary_p
= 1;
447 if (MERGE_TO_OTHER (secondary_type
, rld
[s_reload
].when_needed
,
448 opnum
, rld
[s_reload
].opnum
))
449 rld
[s_reload
].when_needed
= RELOAD_OTHER
;
454 if (s_reload
== n_reloads
)
456 /* If we need a memory location to copy between the two reload regs,
457 set it up now. Note that we do the input case before making
458 the reload and the output case after. This is due to the
459 way reloads are output. */
461 if (in_p
&& icode
== CODE_FOR_nothing
462 && targetm
.secondary_memory_needed (mode
, rclass
, reload_class
))
464 get_secondary_mem (x
, reload_mode
, opnum
, type
);
466 /* We may have just added new reloads. Make sure we add
467 the new reload at the end. */
468 s_reload
= n_reloads
;
471 /* We need to make a new secondary reload for this register class. */
472 rld
[s_reload
].in
= rld
[s_reload
].out
= 0;
473 rld
[s_reload
].rclass
= rclass
;
475 rld
[s_reload
].inmode
= in_p
? mode
: VOIDmode
;
476 rld
[s_reload
].outmode
= ! in_p
? mode
: VOIDmode
;
477 rld
[s_reload
].reg_rtx
= 0;
478 rld
[s_reload
].optional
= optional
;
479 rld
[s_reload
].inc
= 0;
480 /* Maybe we could combine these, but it seems too tricky. */
481 rld
[s_reload
].nocombine
= 1;
482 rld
[s_reload
].in_reg
= 0;
483 rld
[s_reload
].out_reg
= 0;
484 rld
[s_reload
].opnum
= opnum
;
485 rld
[s_reload
].when_needed
= secondary_type
;
486 rld
[s_reload
].secondary_in_reload
= in_p
? t_reload
: -1;
487 rld
[s_reload
].secondary_out_reload
= ! in_p
? t_reload
: -1;
488 rld
[s_reload
].secondary_in_icode
= in_p
? t_icode
: CODE_FOR_nothing
;
489 rld
[s_reload
].secondary_out_icode
490 = ! in_p
? t_icode
: CODE_FOR_nothing
;
491 rld
[s_reload
].secondary_p
= 1;
495 if (! in_p
&& icode
== CODE_FOR_nothing
496 && targetm
.secondary_memory_needed (mode
, reload_class
, rclass
))
497 get_secondary_mem (x
, mode
, opnum
, type
);
504 /* If a secondary reload is needed, return its class. If both an intermediate
505 register and a scratch register is needed, we return the class of the
506 intermediate register. */
508 secondary_reload_class (bool in_p
, reg_class_t rclass
, machine_mode mode
,
511 enum insn_code icode
;
512 secondary_reload_info sri
;
514 sri
.icode
= CODE_FOR_nothing
;
517 = (enum reg_class
) targetm
.secondary_reload (in_p
, x
, rclass
, mode
, &sri
);
518 icode
= (enum insn_code
) sri
.icode
;
520 /* If there are no secondary reloads at all, we return NO_REGS.
521 If an intermediate register is needed, we return its class. */
522 if (icode
== CODE_FOR_nothing
|| rclass
!= NO_REGS
)
525 /* No intermediate register is needed, but we have a special reload
526 pattern, which we assume for now needs a scratch register. */
527 return scratch_reload_class (icode
);
530 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
531 three operands, verify that operand 2 is an output operand, and return
533 ??? We'd like to be able to handle any pattern with at least 2 operands,
534 for zero or more scratch registers, but that needs more infrastructure. */
536 scratch_reload_class (enum insn_code icode
)
538 const char *scratch_constraint
;
539 enum reg_class rclass
;
541 gcc_assert (insn_data
[(int) icode
].n_operands
== 3);
542 scratch_constraint
= insn_data
[(int) icode
].operand
[2].constraint
;
543 gcc_assert (*scratch_constraint
== '=');
544 scratch_constraint
++;
545 if (*scratch_constraint
== '&')
546 scratch_constraint
++;
547 rclass
= reg_class_for_constraint (lookup_constraint (scratch_constraint
));
548 gcc_assert (rclass
!= NO_REGS
);
552 /* Return a memory location that will be used to copy X in mode MODE.
553 If we haven't already made a location for this mode in this insn,
554 call find_reloads_address on the location being returned. */
557 get_secondary_mem (rtx x ATTRIBUTE_UNUSED
, machine_mode mode
,
558 int opnum
, enum reload_type type
)
563 /* By default, if MODE is narrower than a word, widen it to a word.
564 This is required because most machines that require these memory
565 locations do not support short load and stores from all registers
566 (e.g., FP registers). */
568 mode
= targetm
.secondary_memory_needed_mode (mode
);
570 /* If we already have made a MEM for this operand in MODE, return it. */
571 if (secondary_memlocs_elim
[(int) mode
][opnum
] != 0)
572 return secondary_memlocs_elim
[(int) mode
][opnum
];
574 /* If this is the first time we've tried to get a MEM for this mode,
575 allocate a new one. `something_changed' in reload will get set
576 by noticing that the frame size has changed. */
578 if (secondary_memlocs
[(int) mode
] == 0)
580 #ifdef SECONDARY_MEMORY_NEEDED_RTX
581 secondary_memlocs
[(int) mode
] = SECONDARY_MEMORY_NEEDED_RTX (mode
);
583 secondary_memlocs
[(int) mode
]
584 = assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
588 /* Get a version of the address doing any eliminations needed. If that
589 didn't give us a new MEM, make a new one if it isn't valid. */
591 loc
= eliminate_regs (secondary_memlocs
[(int) mode
], VOIDmode
, NULL_RTX
);
592 mem_valid
= strict_memory_address_addr_space_p (mode
, XEXP (loc
, 0),
593 MEM_ADDR_SPACE (loc
));
595 if (! mem_valid
&& loc
== secondary_memlocs
[(int) mode
])
596 loc
= copy_rtx (loc
);
598 /* The only time the call below will do anything is if the stack
599 offset is too large. In that case IND_LEVELS doesn't matter, so we
600 can just pass a zero. Adjust the type to be the address of the
601 corresponding object. If the address was valid, save the eliminated
602 address. If it wasn't valid, we need to make a reload each time, so
607 type
= (type
== RELOAD_FOR_INPUT
? RELOAD_FOR_INPUT_ADDRESS
608 : type
== RELOAD_FOR_OUTPUT
? RELOAD_FOR_OUTPUT_ADDRESS
611 find_reloads_address (mode
, &loc
, XEXP (loc
, 0), &XEXP (loc
, 0),
615 secondary_memlocs_elim
[(int) mode
][opnum
] = loc
;
616 if (secondary_memlocs_elim_used
<= (int)mode
)
617 secondary_memlocs_elim_used
= (int)mode
+ 1;
621 /* Clear any secondary memory locations we've made. */
624 clear_secondary_mem (void)
626 memset (secondary_memlocs
, 0, sizeof secondary_memlocs
);
630 /* Find the largest class which has at least one register valid in
631 mode INNER, and which for every such register, that register number
632 plus N is also valid in OUTER (if in range) and is cheap to move
633 into REGNO. Such a class must exist. */
635 static enum reg_class
636 find_valid_class (machine_mode outer ATTRIBUTE_UNUSED
,
637 machine_mode inner ATTRIBUTE_UNUSED
, int n
,
638 unsigned int dest_regno ATTRIBUTE_UNUSED
)
643 enum reg_class best_class
= NO_REGS
;
644 enum reg_class dest_class ATTRIBUTE_UNUSED
= REGNO_REG_CLASS (dest_regno
);
645 unsigned int best_size
= 0;
648 for (rclass
= 1; rclass
< N_REG_CLASSES
; rclass
++)
652 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
- n
&& ! bad
; regno
++)
653 if (TEST_HARD_REG_BIT (reg_class_contents
[rclass
], regno
))
655 if (targetm
.hard_regno_mode_ok (regno
, inner
))
658 if (TEST_HARD_REG_BIT (reg_class_contents
[rclass
], regno
+ n
)
659 && !targetm
.hard_regno_mode_ok (regno
+ n
, outer
))
666 cost
= register_move_cost (outer
, (enum reg_class
) rclass
, dest_class
);
668 if ((reg_class_size
[rclass
] > best_size
669 && (best_cost
< 0 || best_cost
>= cost
))
672 best_class
= (enum reg_class
) rclass
;
673 best_size
= reg_class_size
[rclass
];
674 best_cost
= register_move_cost (outer
, (enum reg_class
) rclass
,
679 gcc_assert (best_size
!= 0);
684 /* We are trying to reload a subreg of something that is not a register.
685 Find the largest class which contains only registers valid in
686 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
687 which we would eventually like to obtain the object. */
689 static enum reg_class
690 find_valid_class_1 (machine_mode outer ATTRIBUTE_UNUSED
,
691 machine_mode mode ATTRIBUTE_UNUSED
,
692 enum reg_class dest_class ATTRIBUTE_UNUSED
)
697 enum reg_class best_class
= NO_REGS
;
698 unsigned int best_size
= 0;
701 for (rclass
= 1; rclass
< N_REG_CLASSES
; rclass
++)
703 unsigned int computed_rclass_size
= 0;
705 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
707 if (in_hard_reg_set_p (reg_class_contents
[rclass
], mode
, regno
)
708 && targetm
.hard_regno_mode_ok (regno
, mode
))
709 computed_rclass_size
++;
712 cost
= register_move_cost (outer
, (enum reg_class
) rclass
, dest_class
);
714 if ((computed_rclass_size
> best_size
715 && (best_cost
< 0 || best_cost
>= cost
))
718 best_class
= (enum reg_class
) rclass
;
719 best_size
= computed_rclass_size
;
720 best_cost
= register_move_cost (outer
, (enum reg_class
) rclass
,
725 gcc_assert (best_size
!= 0);
727 #ifdef LIMIT_RELOAD_CLASS
728 best_class
= LIMIT_RELOAD_CLASS (mode
, best_class
);
733 /* Return the number of a previously made reload that can be combined with
734 a new one, or n_reloads if none of the existing reloads can be used.
735 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
736 push_reload, they determine the kind of the new reload that we try to
737 combine. P_IN points to the corresponding value of IN, which can be
738 modified by this function.
739 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
742 find_reusable_reload (rtx
*p_in
, rtx out
, enum reg_class rclass
,
743 enum reload_type type
, int opnum
, int dont_share
)
747 /* We can't merge two reloads if the output of either one is
750 if (earlyclobber_operand_p (out
))
753 /* We can use an existing reload if the class is right
754 and at least one of IN and OUT is a match
755 and the other is at worst neutral.
756 (A zero compared against anything is neutral.)
758 For targets with small register classes, don't use existing reloads
759 unless they are for the same thing since that can cause us to need
760 more reload registers than we otherwise would. */
762 for (i
= 0; i
< n_reloads
; i
++)
763 if ((reg_class_subset_p (rclass
, rld
[i
].rclass
)
764 || reg_class_subset_p (rld
[i
].rclass
, rclass
))
765 /* If the existing reload has a register, it must fit our class. */
766 && (rld
[i
].reg_rtx
== 0
767 || TEST_HARD_REG_BIT (reg_class_contents
[(int) rclass
],
768 true_regnum (rld
[i
].reg_rtx
)))
769 && ((in
!= 0 && MATCHES (rld
[i
].in
, in
) && ! dont_share
770 && (out
== 0 || rld
[i
].out
== 0 || MATCHES (rld
[i
].out
, out
)))
771 || (out
!= 0 && MATCHES (rld
[i
].out
, out
)
772 && (in
== 0 || rld
[i
].in
== 0 || MATCHES (rld
[i
].in
, in
))))
773 && (rld
[i
].out
== 0 || ! earlyclobber_operand_p (rld
[i
].out
))
774 && (small_register_class_p (rclass
)
775 || targetm
.small_register_classes_for_mode_p (VOIDmode
))
776 && MERGABLE_RELOADS (type
, rld
[i
].when_needed
, opnum
, rld
[i
].opnum
))
779 /* Reloading a plain reg for input can match a reload to postincrement
780 that reg, since the postincrement's value is the right value.
781 Likewise, it can match a preincrement reload, since we regard
782 the preincrementation as happening before any ref in this insn
784 for (i
= 0; i
< n_reloads
; i
++)
785 if ((reg_class_subset_p (rclass
, rld
[i
].rclass
)
786 || reg_class_subset_p (rld
[i
].rclass
, rclass
))
787 /* If the existing reload has a register, it must fit our
789 && (rld
[i
].reg_rtx
== 0
790 || TEST_HARD_REG_BIT (reg_class_contents
[(int) rclass
],
791 true_regnum (rld
[i
].reg_rtx
)))
792 && out
== 0 && rld
[i
].out
== 0 && rld
[i
].in
!= 0
794 && GET_RTX_CLASS (GET_CODE (rld
[i
].in
)) == RTX_AUTOINC
795 && MATCHES (XEXP (rld
[i
].in
, 0), in
))
796 || (REG_P (rld
[i
].in
)
797 && GET_RTX_CLASS (GET_CODE (in
)) == RTX_AUTOINC
798 && MATCHES (XEXP (in
, 0), rld
[i
].in
)))
799 && (rld
[i
].out
== 0 || ! earlyclobber_operand_p (rld
[i
].out
))
800 && (small_register_class_p (rclass
)
801 || targetm
.small_register_classes_for_mode_p (VOIDmode
))
802 && MERGABLE_RELOADS (type
, rld
[i
].when_needed
,
803 opnum
, rld
[i
].opnum
))
805 /* Make sure reload_in ultimately has the increment,
806 not the plain register. */
816 (a) (subreg:OUTER_MODE REG ...) represents a word or subword subreg
817 of a multiword value; and
819 (b) the number of *words* in REG does not match the number of *registers*
823 complex_word_subreg_p (machine_mode outer_mode
, rtx reg
)
825 machine_mode inner_mode
= GET_MODE (reg
);
826 poly_uint64 reg_words
= REG_NREGS (reg
) * UNITS_PER_WORD
;
827 return (known_le (GET_MODE_SIZE (outer_mode
), UNITS_PER_WORD
)
828 && maybe_gt (GET_MODE_SIZE (inner_mode
), UNITS_PER_WORD
)
829 && !known_equal_after_align_up (GET_MODE_SIZE (inner_mode
),
830 reg_words
, UNITS_PER_WORD
));
833 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
834 expression. MODE is the mode that X will be used in. OUTPUT is true if
835 the function is invoked for the output part of an enclosing reload. */
838 reload_inner_reg_of_subreg (rtx x
, machine_mode mode
, bool output
)
842 /* Only SUBREGs are problematical. */
843 if (GET_CODE (x
) != SUBREG
)
846 inner
= SUBREG_REG (x
);
848 /* If INNER is a constant or PLUS, then INNER will need reloading. */
849 if (CONSTANT_P (inner
) || GET_CODE (inner
) == PLUS
)
852 /* If INNER is not a hard register, then INNER will not need reloading. */
853 if (!(REG_P (inner
) && HARD_REGISTER_P (inner
)))
856 /* If INNER is not ok for MODE, then INNER will need reloading. */
857 if (!targetm
.hard_regno_mode_ok (subreg_regno (x
), mode
))
860 /* If this is for an output, and the outer part is a word or smaller,
861 INNER is larger than a word and the number of registers in INNER is
862 not the same as the number of words in INNER, then INNER will need
863 reloading (with an in-out reload). */
864 return output
&& complex_word_subreg_p (mode
, inner
);
867 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
868 requiring an extra reload register. The caller has already found that
869 IN contains some reference to REGNO, so check that we can produce the
870 new value in a single step. E.g. if we have
871 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
872 instruction that adds one to a register, this should succeed.
873 However, if we have something like
874 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
875 needs to be loaded into a register first, we need a separate reload
877 Such PLUS reloads are generated by find_reload_address_part.
878 The out-of-range PLUS expressions are usually introduced in the instruction
879 patterns by register elimination and substituting pseudos without a home
880 by their function-invariant equivalences. */
882 can_reload_into (rtx in
, int regno
, machine_mode mode
)
887 struct recog_data_d save_recog_data
;
889 /* For matching constraints, we often get notional input reloads where
890 we want to use the original register as the reload register. I.e.
891 technically this is a non-optional input-output reload, but IN is
892 already a valid register, and has been chosen as the reload register.
893 Speed this up, since it trivially works. */
897 /* To test MEMs properly, we'd have to take into account all the reloads
898 that are already scheduled, which can become quite complicated.
899 And since we've already handled address reloads for this MEM, it
900 should always succeed anyway. */
904 /* If we can make a simple SET insn that does the job, everything should
906 dst
= gen_rtx_REG (mode
, regno
);
907 test_insn
= make_insn_raw (gen_rtx_SET (dst
, in
));
908 save_recog_data
= recog_data
;
909 if (recog_memoized (test_insn
) >= 0)
911 extract_insn (test_insn
);
912 r
= constrain_operands (1, get_enabled_alternatives (test_insn
));
914 recog_data
= save_recog_data
;
918 /* Record one reload that needs to be performed.
919 IN is an rtx saying where the data are to be found before this instruction.
920 OUT says where they must be stored after the instruction.
921 (IN is zero for data not read, and OUT is zero for data not written.)
922 INLOC and OUTLOC point to the places in the instructions where
923 IN and OUT were found.
924 If IN and OUT are both nonzero, it means the same register must be used
925 to reload both IN and OUT.
927 RCLASS is a register class required for the reloaded data.
928 INMODE is the machine mode that the instruction requires
929 for the reg that replaces IN and OUTMODE is likewise for OUT.
931 If IN is zero, then OUT's location and mode should be passed as
934 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
936 OPTIONAL nonzero means this reload does not need to be performed:
937 it can be discarded if that is more convenient.
939 OPNUM and TYPE say what the purpose of this reload is.
941 The return value is the reload-number for this reload.
943 If both IN and OUT are nonzero, in some rare cases we might
944 want to make two separate reloads. (Actually we never do this now.)
945 Therefore, the reload-number for OUT is stored in
946 output_reloadnum when we return; the return value applies to IN.
947 Usually (presently always), when IN and OUT are nonzero,
948 the two reload-numbers are equal, but the caller should be careful to
952 push_reload (rtx in
, rtx out
, rtx
*inloc
, rtx
*outloc
,
953 enum reg_class rclass
, machine_mode inmode
,
954 machine_mode outmode
, int strict_low
, int optional
,
955 int opnum
, enum reload_type type
)
959 int dont_remove_subreg
= 0;
960 #ifdef LIMIT_RELOAD_CLASS
961 rtx
*in_subreg_loc
= 0, *out_subreg_loc
= 0;
963 int secondary_in_reload
= -1, secondary_out_reload
= -1;
964 enum insn_code secondary_in_icode
= CODE_FOR_nothing
;
965 enum insn_code secondary_out_icode
= CODE_FOR_nothing
;
966 enum reg_class subreg_in_class ATTRIBUTE_UNUSED
;
967 subreg_in_class
= NO_REGS
;
969 /* INMODE and/or OUTMODE could be VOIDmode if no mode
970 has been specified for the operand. In that case,
971 use the operand's mode as the mode to reload. */
972 if (inmode
== VOIDmode
&& in
!= 0)
973 inmode
= GET_MODE (in
);
974 if (outmode
== VOIDmode
&& out
!= 0)
975 outmode
= GET_MODE (out
);
977 /* If find_reloads and friends until now missed to replace a pseudo
978 with a constant of reg_equiv_constant something went wrong
980 Note that it can't simply be done here if we missed it earlier
981 since the constant might need to be pushed into the literal pool
982 and the resulting memref would probably need further
984 if (in
!= 0 && REG_P (in
))
986 int regno
= REGNO (in
);
988 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
989 || reg_renumber
[regno
] >= 0
990 || reg_equiv_constant (regno
) == NULL_RTX
);
993 /* reg_equiv_constant only contains constants which are obviously
994 not appropriate as destination. So if we would need to replace
995 the destination pseudo with a constant we are in real
997 if (out
!= 0 && REG_P (out
))
999 int regno
= REGNO (out
);
1001 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
1002 || reg_renumber
[regno
] >= 0
1003 || reg_equiv_constant (regno
) == NULL_RTX
);
1006 /* If we have a read-write operand with an address side-effect,
1007 change either IN or OUT so the side-effect happens only once. */
1008 if (in
!= 0 && out
!= 0 && MEM_P (in
) && rtx_equal_p (in
, out
))
1009 switch (GET_CODE (XEXP (in
, 0)))
1011 case POST_INC
: case POST_DEC
: case POST_MODIFY
:
1012 in
= replace_equiv_address_nv (in
, XEXP (XEXP (in
, 0), 0));
1015 case PRE_INC
: case PRE_DEC
: case PRE_MODIFY
:
1016 out
= replace_equiv_address_nv (out
, XEXP (XEXP (out
, 0), 0));
1023 /* If we are reloading a (SUBREG constant ...), really reload just the
1024 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1025 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1026 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1027 register is a pseudo, also reload the inside expression.
1028 For machines that extend byte loads, do this for any SUBREG of a pseudo
1029 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1030 M2 is an integral mode that gets extended when loaded.
1031 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1032 where either M1 is not valid for R or M2 is wider than a word but we
1033 only need one register to store an M2-sized quantity in R.
1034 (However, if OUT is nonzero, we need to reload the reg *and*
1035 the subreg, so do nothing here, and let following statement handle it.)
1037 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1038 we can't handle it here because CONST_INT does not indicate a mode.
1040 Similarly, we must reload the inside expression if we have a
1041 STRICT_LOW_PART (presumably, in == out in this case).
1043 Also reload the inner expression if it does not require a secondary
1044 reload but the SUBREG does.
1046 Also reload the inner expression if it is a register that is in
1047 the class whose registers cannot be referenced in a different size
1048 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1049 cannot reload just the inside since we might end up with the wrong
1050 register class. But if it is inside a STRICT_LOW_PART, we have
1051 no choice, so we hope we do get the right register class there.
1053 Finally, reload the inner expression if it is a pseudo that will
1054 become a MEM and the MEM has a mode-dependent address, as in that
1055 case we obviously cannot change the mode of the MEM to that of the
1056 containing SUBREG as that would change the interpretation of the
1059 scalar_int_mode inner_mode
;
1060 if (in
!= 0 && GET_CODE (in
) == SUBREG
1061 && targetm
.can_change_mode_class (GET_MODE (SUBREG_REG (in
)),
1063 && contains_allocatable_reg_of_mode
[rclass
][GET_MODE (SUBREG_REG (in
))]
1065 || (subreg_lowpart_p (in
)
1066 && (CONSTANT_P (SUBREG_REG (in
))
1067 || GET_CODE (SUBREG_REG (in
)) == PLUS
1068 || (((REG_P (SUBREG_REG (in
))
1069 && REGNO (SUBREG_REG (in
)) >= FIRST_PSEUDO_REGISTER
)
1070 || MEM_P (SUBREG_REG (in
)))
1071 && (paradoxical_subreg_p (inmode
,
1072 GET_MODE (SUBREG_REG (in
)))
1073 || (known_le (GET_MODE_SIZE (inmode
), UNITS_PER_WORD
)
1074 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG
1077 && GET_MODE_SIZE (inner_mode
) <= UNITS_PER_WORD
1078 && paradoxical_subreg_p (inmode
, inner_mode
)
1079 && LOAD_EXTEND_OP (inner_mode
) != UNKNOWN
)
1080 || (WORD_REGISTER_OPERATIONS
1081 && partial_subreg_p (inmode
,
1082 GET_MODE (SUBREG_REG (in
)))
1083 && (known_equal_after_align_down
1084 (GET_MODE_SIZE (inmode
) - 1,
1085 GET_MODE_SIZE (GET_MODE (SUBREG_REG
1088 || (REG_P (SUBREG_REG (in
))
1089 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
1090 /* The case where out is nonzero
1091 is handled differently in the following statement. */
1092 && (out
== 0 || subreg_lowpart_p (in
))
1093 && (complex_word_subreg_p (inmode
, SUBREG_REG (in
))
1094 || !targetm
.hard_regno_mode_ok (subreg_regno (in
),
1096 || (secondary_reload_class (1, rclass
, inmode
, in
) != NO_REGS
1097 && (secondary_reload_class (1, rclass
,
1098 GET_MODE (SUBREG_REG (in
)),
1101 || (REG_P (SUBREG_REG (in
))
1102 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
1103 && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (in
)),
1104 GET_MODE (SUBREG_REG (in
)),
1106 || (REG_P (SUBREG_REG (in
))
1107 && REGNO (SUBREG_REG (in
)) >= FIRST_PSEUDO_REGISTER
1108 && reg_equiv_mem (REGNO (SUBREG_REG (in
)))
1109 && (mode_dependent_address_p
1110 (XEXP (reg_equiv_mem (REGNO (SUBREG_REG (in
))), 0),
1111 MEM_ADDR_SPACE (reg_equiv_mem (REGNO (SUBREG_REG (in
)))))))))
1113 #ifdef LIMIT_RELOAD_CLASS
1114 in_subreg_loc
= inloc
;
1116 inloc
= &SUBREG_REG (in
);
1119 if (!WORD_REGISTER_OPERATIONS
1120 && LOAD_EXTEND_OP (GET_MODE (in
)) == UNKNOWN
1122 /* This is supposed to happen only for paradoxical subregs made by
1123 combine.cc. (SUBREG (MEM)) isn't supposed to occur other ways. */
1124 gcc_assert (known_le (GET_MODE_SIZE (GET_MODE (in
)),
1125 GET_MODE_SIZE (inmode
)));
1127 inmode
= GET_MODE (in
);
1130 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1131 where M1 is not valid for R if it was not handled by the code above.
1133 Similar issue for (SUBREG constant ...) if it was not handled by the
1134 code above. This can happen if SUBREG_BYTE != 0.
1136 However, we must reload the inner reg *as well as* the subreg in
1139 if (in
!= 0 && reload_inner_reg_of_subreg (in
, inmode
, false))
1141 if (REG_P (SUBREG_REG (in
)))
1143 = find_valid_class (inmode
, GET_MODE (SUBREG_REG (in
)),
1144 subreg_regno_offset (REGNO (SUBREG_REG (in
)),
1145 GET_MODE (SUBREG_REG (in
)),
1148 REGNO (SUBREG_REG (in
)));
1149 else if (CONSTANT_P (SUBREG_REG (in
))
1150 || GET_CODE (SUBREG_REG (in
)) == PLUS
)
1151 subreg_in_class
= find_valid_class_1 (inmode
,
1152 GET_MODE (SUBREG_REG (in
)),
1155 /* This relies on the fact that emit_reload_insns outputs the
1156 instructions for input reloads of type RELOAD_OTHER in the same
1157 order as the reloads. Thus if the outer reload is also of type
1158 RELOAD_OTHER, we are guaranteed that this inner reload will be
1159 output before the outer reload. */
1160 push_reload (SUBREG_REG (in
), NULL_RTX
, &SUBREG_REG (in
), (rtx
*) 0,
1161 subreg_in_class
, VOIDmode
, VOIDmode
, 0, 0, opnum
, type
);
1162 dont_remove_subreg
= 1;
1165 /* Similarly for paradoxical and problematical SUBREGs on the output.
1166 Note that there is no reason we need worry about the previous value
1167 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1168 entitled to clobber it all (except in the case of a word mode subreg
1169 or of a STRICT_LOW_PART, in that latter case the constraint should
1170 label it input-output.) */
1171 if (out
!= 0 && GET_CODE (out
) == SUBREG
1172 && (subreg_lowpart_p (out
) || strict_low
)
1173 && targetm
.can_change_mode_class (GET_MODE (SUBREG_REG (out
)),
1175 && contains_allocatable_reg_of_mode
[rclass
][GET_MODE (SUBREG_REG (out
))]
1176 && (CONSTANT_P (SUBREG_REG (out
))
1178 || (((REG_P (SUBREG_REG (out
))
1179 && REGNO (SUBREG_REG (out
)) >= FIRST_PSEUDO_REGISTER
)
1180 || MEM_P (SUBREG_REG (out
)))
1181 && (paradoxical_subreg_p (outmode
, GET_MODE (SUBREG_REG (out
)))
1182 || (WORD_REGISTER_OPERATIONS
1183 && partial_subreg_p (outmode
, GET_MODE (SUBREG_REG (out
)))
1184 && (known_equal_after_align_down
1185 (GET_MODE_SIZE (outmode
) - 1,
1186 GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))) - 1,
1188 || (REG_P (SUBREG_REG (out
))
1189 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1190 /* The case of a word mode subreg
1191 is handled differently in the following statement. */
1192 && ! (known_le (GET_MODE_SIZE (outmode
), UNITS_PER_WORD
)
1193 && maybe_gt (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))),
1195 && !targetm
.hard_regno_mode_ok (subreg_regno (out
), outmode
))
1196 || (secondary_reload_class (0, rclass
, outmode
, out
) != NO_REGS
1197 && (secondary_reload_class (0, rclass
, GET_MODE (SUBREG_REG (out
)),
1200 || (REG_P (SUBREG_REG (out
))
1201 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1202 && !REG_CAN_CHANGE_MODE_P (REGNO (SUBREG_REG (out
)),
1203 GET_MODE (SUBREG_REG (out
)),
1206 #ifdef LIMIT_RELOAD_CLASS
1207 out_subreg_loc
= outloc
;
1209 outloc
= &SUBREG_REG (out
);
1211 gcc_assert (WORD_REGISTER_OPERATIONS
|| !MEM_P (out
)
1212 || known_le (GET_MODE_SIZE (GET_MODE (out
)),
1213 GET_MODE_SIZE (outmode
)));
1214 outmode
= GET_MODE (out
);
1217 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1218 where either M1 is not valid for R or M2 is wider than a word but we
1219 only need one register to store an M2-sized quantity in R.
1221 However, we must reload the inner reg *as well as* the subreg in
1222 that case and the inner reg is an in-out reload. */
1224 if (out
!= 0 && reload_inner_reg_of_subreg (out
, outmode
, true))
1226 enum reg_class in_out_class
1227 = find_valid_class (outmode
, GET_MODE (SUBREG_REG (out
)),
1228 subreg_regno_offset (REGNO (SUBREG_REG (out
)),
1229 GET_MODE (SUBREG_REG (out
)),
1232 REGNO (SUBREG_REG (out
)));
1234 /* This relies on the fact that emit_reload_insns outputs the
1235 instructions for output reloads of type RELOAD_OTHER in reverse
1236 order of the reloads. Thus if the outer reload is also of type
1237 RELOAD_OTHER, we are guaranteed that this inner reload will be
1238 output after the outer reload. */
1239 push_reload (SUBREG_REG (out
), SUBREG_REG (out
), &SUBREG_REG (out
),
1240 &SUBREG_REG (out
), in_out_class
, VOIDmode
, VOIDmode
,
1241 0, 0, opnum
, RELOAD_OTHER
);
1242 dont_remove_subreg
= 1;
1245 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1246 if (in
!= 0 && out
!= 0 && MEM_P (out
)
1247 && (REG_P (in
) || MEM_P (in
) || GET_CODE (in
) == PLUS
)
1248 && reg_overlap_mentioned_for_reload_p (in
, XEXP (out
, 0)))
1251 /* If IN is a SUBREG of a hard register, make a new REG. This
1252 simplifies some of the cases below. */
1254 if (in
!= 0 && GET_CODE (in
) == SUBREG
&& REG_P (SUBREG_REG (in
))
1255 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
1256 && ! dont_remove_subreg
)
1257 in
= gen_rtx_REG (GET_MODE (in
), subreg_regno (in
));
1259 /* Similarly for OUT. */
1260 if (out
!= 0 && GET_CODE (out
) == SUBREG
1261 && REG_P (SUBREG_REG (out
))
1262 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1263 && ! dont_remove_subreg
)
1264 out
= gen_rtx_REG (GET_MODE (out
), subreg_regno (out
));
1266 /* Narrow down the class of register wanted if that is
1267 desirable on this machine for efficiency. */
1269 reg_class_t preferred_class
= rclass
;
1272 preferred_class
= targetm
.preferred_reload_class (in
, rclass
);
1274 /* Output reloads may need analogous treatment, different in detail. */
1277 = targetm
.preferred_output_reload_class (out
, preferred_class
);
1279 /* Discard what the target said if we cannot do it. */
1280 if (preferred_class
!= NO_REGS
1281 || (optional
&& type
== RELOAD_FOR_OUTPUT
))
1282 rclass
= (enum reg_class
) preferred_class
;
1285 /* Make sure we use a class that can handle the actual pseudo
1286 inside any subreg. For example, on the 386, QImode regs
1287 can appear within SImode subregs. Although GENERAL_REGS
1288 can handle SImode, QImode needs a smaller class. */
1289 #ifdef LIMIT_RELOAD_CLASS
1291 rclass
= LIMIT_RELOAD_CLASS (inmode
, rclass
);
1292 else if (in
!= 0 && GET_CODE (in
) == SUBREG
)
1293 rclass
= LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in
)), rclass
);
1296 rclass
= LIMIT_RELOAD_CLASS (outmode
, rclass
);
1297 if (out
!= 0 && GET_CODE (out
) == SUBREG
)
1298 rclass
= LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out
)), rclass
);
1301 /* Verify that this class is at least possible for the mode that
1303 if (this_insn_is_asm
)
1306 if (paradoxical_subreg_p (inmode
, outmode
))
1310 if (mode
== VOIDmode
)
1312 error_for_asm (this_insn
, "cannot reload integer constant "
1313 "operand in %<asm%>");
1318 outmode
= word_mode
;
1320 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1321 if (targetm
.hard_regno_mode_ok (i
, mode
)
1322 && in_hard_reg_set_p (reg_class_contents
[(int) rclass
], mode
, i
))
1324 if (i
== FIRST_PSEUDO_REGISTER
)
1326 error_for_asm (this_insn
, "impossible register constraint "
1328 /* Avoid further trouble with this insn. */
1329 PATTERN (this_insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
1330 /* We used to continue here setting class to ALL_REGS, but it triggers
1331 sanity check on i386 for:
1332 void foo(long double d)
1336 Returning zero here ought to be safe as we take care in
1337 find_reloads to not process the reloads when instruction was
1344 /* Optional output reloads are always OK even if we have no register class,
1345 since the function of these reloads is only to have spill_reg_store etc.
1346 set, so that the storing insn can be deleted later. */
1347 gcc_assert (rclass
!= NO_REGS
1348 || (optional
!= 0 && type
== RELOAD_FOR_OUTPUT
));
1350 i
= find_reusable_reload (&in
, out
, rclass
, type
, opnum
, dont_share
);
1354 /* See if we need a secondary reload register to move between CLASS
1355 and IN or CLASS and OUT. Get the icode and push any required reloads
1356 needed for each of them if so. */
1360 = push_secondary_reload (1, in
, opnum
, optional
, rclass
, inmode
, type
,
1361 &secondary_in_icode
, NULL
);
1362 if (out
!= 0 && GET_CODE (out
) != SCRATCH
)
1363 secondary_out_reload
1364 = push_secondary_reload (0, out
, opnum
, optional
, rclass
, outmode
,
1365 type
, &secondary_out_icode
, NULL
);
1367 /* We found no existing reload suitable for re-use.
1368 So add an additional reload. */
1370 if (subreg_in_class
== NO_REGS
1373 || (GET_CODE (in
) == SUBREG
&& REG_P (SUBREG_REG (in
))))
1374 && reg_or_subregno (in
) < FIRST_PSEUDO_REGISTER
)
1375 subreg_in_class
= REGNO_REG_CLASS (reg_or_subregno (in
));
1376 /* If a memory location is needed for the copy, make one. */
1377 if (subreg_in_class
!= NO_REGS
1378 && targetm
.secondary_memory_needed (inmode
, subreg_in_class
, rclass
))
1379 get_secondary_mem (in
, inmode
, opnum
, type
);
1384 rld
[i
].rclass
= rclass
;
1385 rld
[i
].inmode
= inmode
;
1386 rld
[i
].outmode
= outmode
;
1388 rld
[i
].optional
= optional
;
1390 rld
[i
].nocombine
= 0;
1391 rld
[i
].in_reg
= inloc
? *inloc
: 0;
1392 rld
[i
].out_reg
= outloc
? *outloc
: 0;
1393 rld
[i
].opnum
= opnum
;
1394 rld
[i
].when_needed
= type
;
1395 rld
[i
].secondary_in_reload
= secondary_in_reload
;
1396 rld
[i
].secondary_out_reload
= secondary_out_reload
;
1397 rld
[i
].secondary_in_icode
= secondary_in_icode
;
1398 rld
[i
].secondary_out_icode
= secondary_out_icode
;
1399 rld
[i
].secondary_p
= 0;
1405 || (GET_CODE (out
) == SUBREG
&& REG_P (SUBREG_REG (out
))))
1406 && reg_or_subregno (out
) < FIRST_PSEUDO_REGISTER
1407 && (targetm
.secondary_memory_needed
1408 (outmode
, rclass
, REGNO_REG_CLASS (reg_or_subregno (out
)))))
1409 get_secondary_mem (out
, outmode
, opnum
, type
);
1413 /* We are reusing an existing reload,
1414 but we may have additional information for it.
1415 For example, we may now have both IN and OUT
1416 while the old one may have just one of them. */
1418 /* The modes can be different. If they are, we want to reload in
1419 the larger mode, so that the value is valid for both modes. */
1420 if (inmode
!= VOIDmode
1421 && partial_subreg_p (rld
[i
].inmode
, inmode
))
1422 rld
[i
].inmode
= inmode
;
1423 if (outmode
!= VOIDmode
1424 && partial_subreg_p (rld
[i
].outmode
, outmode
))
1425 rld
[i
].outmode
= outmode
;
1428 rtx in_reg
= inloc
? *inloc
: 0;
1429 /* If we merge reloads for two distinct rtl expressions that
1430 are identical in content, there might be duplicate address
1431 reloads. Remove the extra set now, so that if we later find
1432 that we can inherit this reload, we can get rid of the
1433 address reloads altogether.
1435 Do not do this if both reloads are optional since the result
1436 would be an optional reload which could potentially leave
1437 unresolved address replacements.
1439 It is not sufficient to call transfer_replacements since
1440 choose_reload_regs will remove the replacements for address
1441 reloads of inherited reloads which results in the same
1443 if (rld
[i
].in
!= in
&& rtx_equal_p (in
, rld
[i
].in
)
1444 && ! (rld
[i
].optional
&& optional
))
1446 /* We must keep the address reload with the lower operand
1448 if (opnum
> rld
[i
].opnum
)
1450 remove_address_replacements (in
);
1452 in_reg
= rld
[i
].in_reg
;
1455 remove_address_replacements (rld
[i
].in
);
1457 /* When emitting reloads we don't necessarily look at the in-
1458 and outmode, but also directly at the operands (in and out).
1459 So we can't simply overwrite them with whatever we have found
1460 for this (to-be-merged) reload, we have to "merge" that too.
1461 Reusing another reload already verified that we deal with the
1462 same operands, just possibly in different modes. So we
1463 overwrite the operands only when the new mode is larger.
1464 See also PR33613. */
1466 || partial_subreg_p (GET_MODE (rld
[i
].in
), GET_MODE (in
)))
1470 && partial_subreg_p (GET_MODE (rld
[i
].in_reg
),
1471 GET_MODE (in_reg
))))
1472 rld
[i
].in_reg
= in_reg
;
1478 && partial_subreg_p (GET_MODE (rld
[i
].out
),
1483 || partial_subreg_p (GET_MODE (rld
[i
].out_reg
),
1484 GET_MODE (*outloc
))))
1485 rld
[i
].out_reg
= *outloc
;
1487 if (reg_class_subset_p (rclass
, rld
[i
].rclass
))
1488 rld
[i
].rclass
= rclass
;
1489 rld
[i
].optional
&= optional
;
1490 if (MERGE_TO_OTHER (type
, rld
[i
].when_needed
,
1491 opnum
, rld
[i
].opnum
))
1492 rld
[i
].when_needed
= RELOAD_OTHER
;
1493 rld
[i
].opnum
= MIN (rld
[i
].opnum
, opnum
);
1496 /* If the ostensible rtx being reloaded differs from the rtx found
1497 in the location to substitute, this reload is not safe to combine
1498 because we cannot reliably tell whether it appears in the insn. */
1500 if (in
!= 0 && in
!= *inloc
)
1501 rld
[i
].nocombine
= 1;
1503 /* If we will replace IN and OUT with the reload-reg,
1504 record where they are located so that substitution need
1505 not do a tree walk. */
1507 if (replace_reloads
)
1511 struct replacement
*r
= &replacements
[n_replacements
++];
1516 if (outloc
!= 0 && outloc
!= inloc
)
1518 struct replacement
*r
= &replacements
[n_replacements
++];
1525 /* If this reload is just being introduced and it has both
1526 an incoming quantity and an outgoing quantity that are
1527 supposed to be made to match, see if either one of the two
1528 can serve as the place to reload into.
1530 If one of them is acceptable, set rld[i].reg_rtx
1533 if (in
!= 0 && out
!= 0 && in
!= out
&& rld
[i
].reg_rtx
== 0)
1535 rld
[i
].reg_rtx
= find_dummy_reload (in
, out
, inloc
, outloc
,
1538 earlyclobber_operand_p (out
));
1540 /* If the outgoing register already contains the same value
1541 as the incoming one, we can dispense with loading it.
1542 The easiest way to tell the caller that is to give a phony
1543 value for the incoming operand (same as outgoing one). */
1544 if (rld
[i
].reg_rtx
== out
1545 && (REG_P (in
) || CONSTANT_P (in
))
1546 && find_equiv_reg (in
, this_insn
, NO_REGS
, REGNO (out
),
1547 static_reload_reg_p
, i
, inmode
) != 0)
1551 /* If this is an input reload and the operand contains a register that
1552 dies in this insn and is used nowhere else, see if it is the right class
1553 to be used for this reload. Use it if so. (This occurs most commonly
1554 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1555 this if it is also an output reload that mentions the register unless
1556 the output is a SUBREG that clobbers an entire register.
1558 Note that the operand might be one of the spill regs, if it is a
1559 pseudo reg and we are in a block where spilling has not taken place.
1560 But if there is no spilling in this block, that is OK.
1561 An explicitly used hard reg cannot be a spill reg. */
1563 if (rld
[i
].reg_rtx
== 0 && in
!= 0 && hard_regs_live_known
)
1567 machine_mode rel_mode
= inmode
;
1569 if (out
&& partial_subreg_p (rel_mode
, outmode
))
1572 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1573 if (REG_NOTE_KIND (note
) == REG_DEAD
1574 && REG_P (XEXP (note
, 0))
1575 && (regno
= REGNO (XEXP (note
, 0))) < FIRST_PSEUDO_REGISTER
1576 && reg_mentioned_p (XEXP (note
, 0), in
)
1577 /* Check that a former pseudo is valid; see find_dummy_reload. */
1578 && (ORIGINAL_REGNO (XEXP (note
, 0)) < FIRST_PSEUDO_REGISTER
1579 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
1580 ORIGINAL_REGNO (XEXP (note
, 0)))
1581 && REG_NREGS (XEXP (note
, 0)) == 1))
1582 && ! refers_to_regno_for_reload_p (regno
,
1583 end_hard_regno (rel_mode
,
1585 PATTERN (this_insn
), inloc
)
1586 && ! find_reg_fusage (this_insn
, USE
, XEXP (note
, 0))
1587 /* If this is also an output reload, IN cannot be used as
1588 the reload register if it is set in this insn unless IN
1590 && (out
== 0 || in
== out
1591 || ! hard_reg_set_here_p (regno
,
1592 end_hard_regno (rel_mode
, regno
),
1593 PATTERN (this_insn
)))
1594 /* ??? Why is this code so different from the previous?
1595 Is there any simple coherent way to describe the two together?
1596 What's going on here. */
1598 || (GET_CODE (in
) == SUBREG
1599 && (known_equal_after_align_up
1600 (GET_MODE_SIZE (GET_MODE (in
)),
1601 GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))),
1603 /* Make sure the operand fits in the reg that dies. */
1604 && known_le (GET_MODE_SIZE (rel_mode
),
1605 GET_MODE_SIZE (GET_MODE (XEXP (note
, 0))))
1606 && targetm
.hard_regno_mode_ok (regno
, inmode
)
1607 && targetm
.hard_regno_mode_ok (regno
, outmode
))
1610 unsigned int nregs
= MAX (hard_regno_nregs (regno
, inmode
),
1611 hard_regno_nregs (regno
, outmode
));
1613 for (offs
= 0; offs
< nregs
; offs
++)
1614 if (fixed_regs
[regno
+ offs
]
1615 || ! TEST_HARD_REG_BIT (reg_class_contents
[(int) rclass
],
1620 && (! (refers_to_regno_for_reload_p
1621 (regno
, end_hard_regno (inmode
, regno
), in
, (rtx
*) 0))
1622 || can_reload_into (in
, regno
, inmode
)))
1624 rld
[i
].reg_rtx
= gen_rtx_REG (rel_mode
, regno
);
1631 output_reloadnum
= i
;
1636 /* Record an additional place we must replace a value
1637 for which we have already recorded a reload.
1638 RELOADNUM is the value returned by push_reload
1639 when the reload was recorded.
1640 This is used in insn patterns that use match_dup. */
1643 push_replacement (rtx
*loc
, int reloadnum
, machine_mode mode
)
1645 if (replace_reloads
)
1647 struct replacement
*r
= &replacements
[n_replacements
++];
1648 r
->what
= reloadnum
;
1654 /* Duplicate any replacement we have recorded to apply at
1655 location ORIG_LOC to also be performed at DUP_LOC.
1656 This is used in insn patterns that use match_dup. */
1659 dup_replacements (rtx
*dup_loc
, rtx
*orig_loc
)
1661 int i
, n
= n_replacements
;
1663 for (i
= 0; i
< n
; i
++)
1665 struct replacement
*r
= &replacements
[i
];
1666 if (r
->where
== orig_loc
)
1667 push_replacement (dup_loc
, r
->what
, r
->mode
);
1671 /* Transfer all replacements that used to be in reload FROM to be in
1675 transfer_replacements (int to
, int from
)
1679 for (i
= 0; i
< n_replacements
; i
++)
1680 if (replacements
[i
].what
== from
)
1681 replacements
[i
].what
= to
;
1684 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1685 or a subpart of it. If we have any replacements registered for IN_RTX,
1686 cancel the reloads that were supposed to load them.
1687 Return nonzero if we canceled any reloads. */
1689 remove_address_replacements (rtx in_rtx
)
1692 char reload_flags
[MAX_RELOADS
];
1693 int something_changed
= 0;
1695 memset (reload_flags
, 0, sizeof reload_flags
);
1696 for (i
= 0, j
= 0; i
< n_replacements
; i
++)
1698 if (loc_mentioned_in_p (replacements
[i
].where
, in_rtx
))
1699 reload_flags
[replacements
[i
].what
] |= 1;
1702 replacements
[j
++] = replacements
[i
];
1703 reload_flags
[replacements
[i
].what
] |= 2;
1706 /* Note that the following store must be done before the recursive calls. */
1709 for (i
= n_reloads
- 1; i
>= 0; i
--)
1711 if (reload_flags
[i
] == 1)
1713 deallocate_reload_reg (i
);
1714 remove_address_replacements (rld
[i
].in
);
1716 something_changed
= 1;
1719 return something_changed
;
1722 /* If there is only one output reload, and it is not for an earlyclobber
1723 operand, try to combine it with a (logically unrelated) input reload
1724 to reduce the number of reload registers needed.
1726 This is safe if the input reload does not appear in
1727 the value being output-reloaded, because this implies
1728 it is not needed any more once the original insn completes.
1730 If that doesn't work, see we can use any of the registers that
1731 die in this insn as a reload register. We can if it is of the right
1732 class and does not appear in the value being output-reloaded. */
1735 combine_reloads (void)
1738 int output_reload
= -1;
1739 int secondary_out
= -1;
1742 /* Find the output reload; return unless there is exactly one
1743 and that one is mandatory. */
1745 for (i
= 0; i
< n_reloads
; i
++)
1746 if (rld
[i
].out
!= 0)
1748 if (output_reload
>= 0)
1753 if (output_reload
< 0 || rld
[output_reload
].optional
)
1756 /* An input-output reload isn't combinable. */
1758 if (rld
[output_reload
].in
!= 0)
1761 /* If this reload is for an earlyclobber operand, we can't do anything. */
1762 if (earlyclobber_operand_p (rld
[output_reload
].out
))
1765 /* If there is a reload for part of the address of this operand, we would
1766 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1767 its life to the point where doing this combine would not lower the
1768 number of spill registers needed. */
1769 for (i
= 0; i
< n_reloads
; i
++)
1770 if ((rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
1771 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
1772 && rld
[i
].opnum
== rld
[output_reload
].opnum
)
1775 /* Check each input reload; can we combine it? */
1777 for (i
= 0; i
< n_reloads
; i
++)
1778 if (rld
[i
].in
&& ! rld
[i
].optional
&& ! rld
[i
].nocombine
1779 /* Life span of this reload must not extend past main insn. */
1780 && rld
[i
].when_needed
!= RELOAD_FOR_OUTPUT_ADDRESS
1781 && rld
[i
].when_needed
!= RELOAD_FOR_OUTADDR_ADDRESS
1782 && rld
[i
].when_needed
!= RELOAD_OTHER
1783 && (ira_reg_class_max_nregs
[(int)rld
[i
].rclass
][(int) rld
[i
].inmode
]
1784 == ira_reg_class_max_nregs
[(int) rld
[output_reload
].rclass
]
1785 [(int) rld
[output_reload
].outmode
])
1786 && known_eq (rld
[i
].inc
, 0)
1787 && rld
[i
].reg_rtx
== 0
1788 /* Don't combine two reloads with different secondary
1789 memory locations. */
1790 && (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
] == 0
1791 || secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
] == 0
1792 || rtx_equal_p (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
],
1793 secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
]))
1794 && (targetm
.small_register_classes_for_mode_p (VOIDmode
)
1795 ? (rld
[i
].rclass
== rld
[output_reload
].rclass
)
1796 : (reg_class_subset_p (rld
[i
].rclass
,
1797 rld
[output_reload
].rclass
)
1798 || reg_class_subset_p (rld
[output_reload
].rclass
,
1800 && (MATCHES (rld
[i
].in
, rld
[output_reload
].out
)
1801 /* Args reversed because the first arg seems to be
1802 the one that we imagine being modified
1803 while the second is the one that might be affected. */
1804 || (! reg_overlap_mentioned_for_reload_p (rld
[output_reload
].out
,
1806 /* However, if the input is a register that appears inside
1807 the output, then we also can't share.
1808 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1809 If the same reload reg is used for both reg 69 and the
1810 result to be stored in memory, then that result
1811 will clobber the address of the memory ref. */
1812 && ! (REG_P (rld
[i
].in
)
1813 && reg_overlap_mentioned_for_reload_p (rld
[i
].in
,
1814 rld
[output_reload
].out
))))
1815 && ! reload_inner_reg_of_subreg (rld
[i
].in
, rld
[i
].inmode
,
1816 rld
[i
].when_needed
!= RELOAD_FOR_INPUT
)
1817 && (reg_class_size
[(int) rld
[i
].rclass
]
1818 || targetm
.small_register_classes_for_mode_p (VOIDmode
))
1819 /* We will allow making things slightly worse by combining an
1820 input and an output, but no worse than that. */
1821 && (rld
[i
].when_needed
== RELOAD_FOR_INPUT
1822 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT
))
1826 /* We have found a reload to combine with! */
1827 rld
[i
].out
= rld
[output_reload
].out
;
1828 rld
[i
].out_reg
= rld
[output_reload
].out_reg
;
1829 rld
[i
].outmode
= rld
[output_reload
].outmode
;
1830 /* Mark the old output reload as inoperative. */
1831 rld
[output_reload
].out
= 0;
1832 /* The combined reload is needed for the entire insn. */
1833 rld
[i
].when_needed
= RELOAD_OTHER
;
1834 /* If the output reload had a secondary reload, copy it. */
1835 if (rld
[output_reload
].secondary_out_reload
!= -1)
1837 rld
[i
].secondary_out_reload
1838 = rld
[output_reload
].secondary_out_reload
;
1839 rld
[i
].secondary_out_icode
1840 = rld
[output_reload
].secondary_out_icode
;
1843 /* Copy any secondary MEM. */
1844 if (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
] != 0)
1845 secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
]
1846 = secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
];
1847 /* If required, minimize the register class. */
1848 if (reg_class_subset_p (rld
[output_reload
].rclass
,
1850 rld
[i
].rclass
= rld
[output_reload
].rclass
;
1852 /* Transfer all replacements from the old reload to the combined. */
1853 for (j
= 0; j
< n_replacements
; j
++)
1854 if (replacements
[j
].what
== output_reload
)
1855 replacements
[j
].what
= i
;
1860 /* If this insn has only one operand that is modified or written (assumed
1861 to be the first), it must be the one corresponding to this reload. It
1862 is safe to use anything that dies in this insn for that output provided
1863 that it does not occur in the output (we already know it isn't an
1864 earlyclobber. If this is an asm insn, give up. */
1866 if (INSN_CODE (this_insn
) == -1)
1869 for (i
= 1; i
< insn_data
[INSN_CODE (this_insn
)].n_operands
; i
++)
1870 if (insn_data
[INSN_CODE (this_insn
)].operand
[i
].constraint
[0] == '='
1871 || insn_data
[INSN_CODE (this_insn
)].operand
[i
].constraint
[0] == '+')
1874 /* See if some hard register that dies in this insn and is not used in
1875 the output is the right class. Only works if the register we pick
1876 up can fully hold our output reload. */
1877 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1878 if (REG_NOTE_KIND (note
) == REG_DEAD
1879 && REG_P (XEXP (note
, 0))
1880 && !reg_overlap_mentioned_for_reload_p (XEXP (note
, 0),
1881 rld
[output_reload
].out
)
1882 && (regno
= REGNO (XEXP (note
, 0))) < FIRST_PSEUDO_REGISTER
1883 && targetm
.hard_regno_mode_ok (regno
, rld
[output_reload
].outmode
)
1884 && TEST_HARD_REG_BIT (reg_class_contents
[(int) rld
[output_reload
].rclass
],
1886 && (hard_regno_nregs (regno
, rld
[output_reload
].outmode
)
1887 <= REG_NREGS (XEXP (note
, 0)))
1888 /* Ensure that a secondary or tertiary reload for this output
1889 won't want this register. */
1890 && ((secondary_out
= rld
[output_reload
].secondary_out_reload
) == -1
1891 || (!(TEST_HARD_REG_BIT
1892 (reg_class_contents
[(int) rld
[secondary_out
].rclass
], regno
))
1893 && ((secondary_out
= rld
[secondary_out
].secondary_out_reload
) == -1
1894 || !(TEST_HARD_REG_BIT
1895 (reg_class_contents
[(int) rld
[secondary_out
].rclass
],
1897 && !fixed_regs
[regno
]
1898 /* Check that a former pseudo is valid; see find_dummy_reload. */
1899 && (ORIGINAL_REGNO (XEXP (note
, 0)) < FIRST_PSEUDO_REGISTER
1900 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
1901 ORIGINAL_REGNO (XEXP (note
, 0)))
1902 && REG_NREGS (XEXP (note
, 0)) == 1)))
1904 rld
[output_reload
].reg_rtx
1905 = gen_rtx_REG (rld
[output_reload
].outmode
, regno
);
1910 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1911 See if one of IN and OUT is a register that may be used;
1912 this is desirable since a spill-register won't be needed.
1913 If so, return the register rtx that proves acceptable.
1915 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1916 RCLASS is the register class required for the reload.
1918 If FOR_REAL is >= 0, it is the number of the reload,
1919 and in some cases when it can be discovered that OUT doesn't need
1920 to be computed, clear out rld[FOR_REAL].out.
1922 If FOR_REAL is -1, this should not be done, because this call
1923 is just to see if a register can be found, not to find and install it.
1925 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1926 puts an additional constraint on being able to use IN for OUT since
1927 IN must not appear elsewhere in the insn (it is assumed that IN itself
1928 is safe from the earlyclobber). */
1931 find_dummy_reload (rtx real_in
, rtx real_out
, rtx
*inloc
, rtx
*outloc
,
1932 machine_mode inmode
, machine_mode outmode
,
1933 reg_class_t rclass
, int for_real
, int earlyclobber
)
1941 /* If operands exceed a word, we can't use either of them
1942 unless they have the same size. */
1943 if (maybe_ne (GET_MODE_SIZE (outmode
), GET_MODE_SIZE (inmode
))
1944 && (maybe_gt (GET_MODE_SIZE (outmode
), UNITS_PER_WORD
)
1945 || maybe_gt (GET_MODE_SIZE (inmode
), UNITS_PER_WORD
)))
1948 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1949 respectively refers to a hard register. */
1951 /* Find the inside of any subregs. */
1952 while (GET_CODE (out
) == SUBREG
)
1954 if (REG_P (SUBREG_REG (out
))
1955 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
)
1956 out_offset
+= subreg_regno_offset (REGNO (SUBREG_REG (out
)),
1957 GET_MODE (SUBREG_REG (out
)),
1960 out
= SUBREG_REG (out
);
1962 while (GET_CODE (in
) == SUBREG
)
1964 if (REG_P (SUBREG_REG (in
))
1965 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
)
1966 in_offset
+= subreg_regno_offset (REGNO (SUBREG_REG (in
)),
1967 GET_MODE (SUBREG_REG (in
)),
1970 in
= SUBREG_REG (in
);
1973 /* Narrow down the reg class, the same way push_reload will;
1974 otherwise we might find a dummy now, but push_reload won't. */
1976 reg_class_t preferred_class
= targetm
.preferred_reload_class (in
, rclass
);
1977 if (preferred_class
!= NO_REGS
)
1978 rclass
= (enum reg_class
) preferred_class
;
1981 /* See if OUT will do. */
1983 && REGNO (out
) < FIRST_PSEUDO_REGISTER
)
1985 unsigned int regno
= REGNO (out
) + out_offset
;
1986 unsigned int nwords
= hard_regno_nregs (regno
, outmode
);
1989 /* When we consider whether the insn uses OUT,
1990 ignore references within IN. They don't prevent us
1991 from copying IN into OUT, because those refs would
1992 move into the insn that reloads IN.
1994 However, we only ignore IN in its role as this reload.
1995 If the insn uses IN elsewhere and it contains OUT,
1996 that counts. We can't be sure it's the "same" operand
1997 so it might not go through this reload.
1999 We also need to avoid using OUT if it, or part of it, is a
2000 fixed register. Modifying such registers, even transiently,
2001 may have undefined effects on the machine, such as modifying
2002 the stack pointer. */
2004 *inloc
= const0_rtx
;
2006 if (regno
< FIRST_PSEUDO_REGISTER
2007 && targetm
.hard_regno_mode_ok (regno
, outmode
)
2008 && ! refers_to_regno_for_reload_p (regno
, regno
+ nwords
,
2009 PATTERN (this_insn
), outloc
))
2013 for (i
= 0; i
< nwords
; i
++)
2014 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) rclass
],
2016 || fixed_regs
[regno
+ i
])
2021 if (REG_P (real_out
))
2024 value
= gen_rtx_REG (outmode
, regno
);
2031 /* Consider using IN if OUT was not acceptable
2032 or if OUT dies in this insn (like the quotient in a divmod insn).
2033 We can't use IN unless it is dies in this insn,
2034 which means we must know accurately which hard regs are live.
2035 Also, the result can't go in IN if IN is used within OUT,
2036 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2037 if (hard_regs_live_known
2039 && REGNO (in
) < FIRST_PSEUDO_REGISTER
2041 || find_reg_note (this_insn
, REG_UNUSED
, real_out
))
2042 && find_reg_note (this_insn
, REG_DEAD
, real_in
)
2043 && !fixed_regs
[REGNO (in
)]
2044 && targetm
.hard_regno_mode_ok (REGNO (in
),
2045 /* The only case where out and real_out
2046 might have different modes is where
2047 real_out is a subreg, and in that
2048 case, out has a real mode. */
2049 (GET_MODE (out
) != VOIDmode
2050 ? GET_MODE (out
) : outmode
))
2051 && (ORIGINAL_REGNO (in
) < FIRST_PSEUDO_REGISTER
2052 /* However only do this if we can be sure that this input
2053 operand doesn't correspond with an uninitialized pseudo.
2054 global can assign some hardreg to it that is the same as
2055 the one assigned to a different, also live pseudo (as it
2056 can ignore the conflict). We must never introduce writes
2057 to such hardregs, as they would clobber the other live
2058 pseudo. See PR 20973. */
2059 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun
)),
2060 ORIGINAL_REGNO (in
))
2061 /* Similarly, only do this if we can be sure that the death
2062 note is still valid. global can assign some hardreg to
2063 the pseudo referenced in the note and simultaneously a
2064 subword of this hardreg to a different, also live pseudo,
2065 because only another subword of the hardreg is actually
2066 used in the insn. This cannot happen if the pseudo has
2067 been assigned exactly one hardreg. See PR 33732. */
2068 && REG_NREGS (in
) == 1)))
2070 unsigned int regno
= REGNO (in
) + in_offset
;
2071 unsigned int nwords
= hard_regno_nregs (regno
, inmode
);
2073 if (! refers_to_regno_for_reload_p (regno
, regno
+ nwords
, out
, (rtx
*) 0)
2074 && ! hard_reg_set_here_p (regno
, regno
+ nwords
,
2075 PATTERN (this_insn
))
2077 || ! refers_to_regno_for_reload_p (regno
, regno
+ nwords
,
2078 PATTERN (this_insn
), inloc
)))
2082 for (i
= 0; i
< nwords
; i
++)
2083 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) rclass
],
2089 /* If we were going to use OUT as the reload reg
2090 and changed our mind, it means OUT is a dummy that
2091 dies here. So don't bother copying value to it. */
2092 if (for_real
>= 0 && value
== real_out
)
2093 rld
[for_real
].out
= 0;
2094 if (REG_P (real_in
))
2097 value
= gen_rtx_REG (inmode
, regno
);
2105 /* This page contains subroutines used mainly for determining
2106 whether the IN or an OUT of a reload can serve as the
2109 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2112 earlyclobber_operand_p (rtx x
)
2116 for (i
= 0; i
< n_earlyclobbers
; i
++)
2117 if (reload_earlyclobbers
[i
] == x
)
2123 /* Return 1 if expression X alters a hard reg in the range
2124 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2125 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2126 X should be the body of an instruction. */
2129 hard_reg_set_here_p (unsigned int beg_regno
, unsigned int end_regno
, rtx x
)
2131 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
2133 rtx op0
= SET_DEST (x
);
2135 while (GET_CODE (op0
) == SUBREG
)
2136 op0
= SUBREG_REG (op0
);
2139 unsigned int r
= REGNO (op0
);
2141 /* See if this reg overlaps range under consideration. */
2143 && end_hard_regno (GET_MODE (op0
), r
) > beg_regno
)
2147 else if (GET_CODE (x
) == PARALLEL
)
2149 int i
= XVECLEN (x
, 0) - 1;
2152 if (hard_reg_set_here_p (beg_regno
, end_regno
, XVECEXP (x
, 0, i
)))
2159 /* Return true if ADDR is a valid memory address for mode MODE
2160 in address space AS, and check that each pseudo reg has the
2161 proper kind of hard reg. */
2164 strict_memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED
,
2165 rtx addr
, addr_space_t as
, code_helper
)
2167 #ifdef GO_IF_LEGITIMATE_ADDRESS
2168 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
2169 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
2175 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 1, as
,
2180 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2181 if they are the same hard reg, and has special hacks for
2182 autoincrement and autodecrement.
2183 This is specifically intended for find_reloads to use
2184 in determining whether two operands match.
2185 X is the operand whose number is the lower of the two.
2187 The value is 2 if Y contains a pre-increment that matches
2188 a non-incrementing address in X. */
2190 /* ??? To be completely correct, we should arrange to pass
2191 for X the output operand and for Y the input operand.
2192 For now, we assume that the output operand has the lower number
2193 because that is natural in (SET output (... input ...)). */
2196 operands_match_p (rtx x
, rtx y
)
2199 RTX_CODE code
= GET_CODE (x
);
2205 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
2206 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
2207 && REG_P (SUBREG_REG (y
)))))
2213 i
= REGNO (SUBREG_REG (x
));
2214 if (i
>= FIRST_PSEUDO_REGISTER
)
2216 i
+= subreg_regno_offset (REGNO (SUBREG_REG (x
)),
2217 GET_MODE (SUBREG_REG (x
)),
2224 if (GET_CODE (y
) == SUBREG
)
2226 j
= REGNO (SUBREG_REG (y
));
2227 if (j
>= FIRST_PSEUDO_REGISTER
)
2229 j
+= subreg_regno_offset (REGNO (SUBREG_REG (y
)),
2230 GET_MODE (SUBREG_REG (y
)),
2237 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2238 multiple hard register group of scalar integer registers, so that
2239 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2241 scalar_int_mode xmode
;
2242 if (REG_WORDS_BIG_ENDIAN
2243 && is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
)
2244 && GET_MODE_SIZE (xmode
) > UNITS_PER_WORD
2245 && i
< FIRST_PSEUDO_REGISTER
)
2246 i
+= hard_regno_nregs (i
, xmode
) - 1;
2247 scalar_int_mode ymode
;
2248 if (REG_WORDS_BIG_ENDIAN
2249 && is_a
<scalar_int_mode
> (GET_MODE (y
), &ymode
)
2250 && GET_MODE_SIZE (ymode
) > UNITS_PER_WORD
2251 && j
< FIRST_PSEUDO_REGISTER
)
2252 j
+= hard_regno_nregs (j
, ymode
) - 1;
2256 /* If two operands must match, because they are really a single
2257 operand of an assembler insn, then two postincrements are invalid
2258 because the assembler insn would increment only once.
2259 On the other hand, a postincrement matches ordinary indexing
2260 if the postincrement is the output operand. */
2261 if (code
== POST_DEC
|| code
== POST_INC
|| code
== POST_MODIFY
)
2262 return operands_match_p (XEXP (x
, 0), y
);
2263 /* Two preincrements are invalid
2264 because the assembler insn would increment only once.
2265 On the other hand, a preincrement matches ordinary indexing
2266 if the preincrement is the input operand.
2267 In this case, return 2, since some callers need to do special
2268 things when this happens. */
2269 if (GET_CODE (y
) == PRE_DEC
|| GET_CODE (y
) == PRE_INC
2270 || GET_CODE (y
) == PRE_MODIFY
)
2271 return operands_match_p (x
, XEXP (y
, 0)) ? 2 : 0;
2275 /* Now we have disposed of all the cases in which different rtx codes
2277 if (code
!= GET_CODE (y
))
2280 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2281 if (GET_MODE (x
) != GET_MODE (y
))
2284 /* MEMs referring to different address space are not equivalent. */
2285 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
2294 if (!same_vector_encodings_p (x
, y
))
2299 return label_ref_label (x
) == label_ref_label (y
);
2301 return XSTR (x
, 0) == XSTR (y
, 0);
2307 /* Compare the elements. If any pair of corresponding elements
2308 fail to match, return 0 for the whole things. */
2311 fmt
= GET_RTX_FORMAT (code
);
2312 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2318 if (XWINT (x
, i
) != XWINT (y
, i
))
2323 if (XINT (x
, i
) != XINT (y
, i
))
2328 if (maybe_ne (SUBREG_BYTE (x
), SUBREG_BYTE (y
)))
2333 val
= operands_match_p (XEXP (x
, i
), XEXP (y
, i
));
2336 /* If any subexpression returns 2,
2337 we should return 2 if we are successful. */
2346 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2348 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; --j
)
2350 val
= operands_match_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
2358 /* It is believed that rtx's at this level will never
2359 contain anything but integers and other rtx's,
2360 except for within LABEL_REFs and SYMBOL_REFs. */
2365 return 1 + success_2
;
2368 /* Describe the range of registers or memory referenced by X.
2369 If X is a register, set REG_FLAG and put the first register
2370 number into START and the last plus one into END.
2371 If X is a memory reference, put a base address into BASE
2372 and a range of integer offsets into START and END.
2373 If X is pushing on the stack, we can assume it causes no trouble,
2374 so we set the SAFE field. */
2376 static struct decomposition
2379 struct decomposition val
;
2380 int all_const
= 0, regno
;
2382 memset (&val
, 0, sizeof (val
));
2384 switch (GET_CODE (x
))
2388 rtx base
= NULL_RTX
, offset
= 0;
2389 rtx addr
= XEXP (x
, 0);
2391 if (GET_CODE (addr
) == PRE_DEC
|| GET_CODE (addr
) == PRE_INC
2392 || GET_CODE (addr
) == POST_DEC
|| GET_CODE (addr
) == POST_INC
)
2394 val
.base
= XEXP (addr
, 0);
2395 val
.start
= -GET_MODE_SIZE (GET_MODE (x
));
2396 val
.end
= GET_MODE_SIZE (GET_MODE (x
));
2397 val
.safe
= REGNO (val
.base
) == STACK_POINTER_REGNUM
;
2401 if (GET_CODE (addr
) == PRE_MODIFY
|| GET_CODE (addr
) == POST_MODIFY
)
2403 if (GET_CODE (XEXP (addr
, 1)) == PLUS
2404 && XEXP (addr
, 0) == XEXP (XEXP (addr
, 1), 0)
2405 && CONSTANT_P (XEXP (XEXP (addr
, 1), 1)))
2407 val
.base
= XEXP (addr
, 0);
2408 val
.start
= -INTVAL (XEXP (XEXP (addr
, 1), 1));
2409 val
.end
= INTVAL (XEXP (XEXP (addr
, 1), 1));
2410 val
.safe
= REGNO (val
.base
) == STACK_POINTER_REGNUM
;
2415 if (GET_CODE (addr
) == CONST
)
2417 addr
= XEXP (addr
, 0);
2420 if (GET_CODE (addr
) == PLUS
)
2422 if (CONSTANT_P (XEXP (addr
, 0)))
2424 base
= XEXP (addr
, 1);
2425 offset
= XEXP (addr
, 0);
2427 else if (CONSTANT_P (XEXP (addr
, 1)))
2429 base
= XEXP (addr
, 0);
2430 offset
= XEXP (addr
, 1);
2437 offset
= const0_rtx
;
2439 if (GET_CODE (offset
) == CONST
)
2440 offset
= XEXP (offset
, 0);
2441 if (GET_CODE (offset
) == PLUS
)
2443 if (CONST_INT_P (XEXP (offset
, 0)))
2445 base
= gen_rtx_PLUS (GET_MODE (base
), base
, XEXP (offset
, 1));
2446 offset
= XEXP (offset
, 0);
2448 else if (CONST_INT_P (XEXP (offset
, 1)))
2450 base
= gen_rtx_PLUS (GET_MODE (base
), base
, XEXP (offset
, 0));
2451 offset
= XEXP (offset
, 1);
2455 base
= gen_rtx_PLUS (GET_MODE (base
), base
, offset
);
2456 offset
= const0_rtx
;
2459 else if (!CONST_INT_P (offset
))
2461 base
= gen_rtx_PLUS (GET_MODE (base
), base
, offset
);
2462 offset
= const0_rtx
;
2465 if (all_const
&& GET_CODE (base
) == PLUS
)
2466 base
= gen_rtx_CONST (GET_MODE (base
), base
);
2468 gcc_assert (CONST_INT_P (offset
));
2470 val
.start
= INTVAL (offset
);
2471 val
.end
= val
.start
+ GET_MODE_SIZE (GET_MODE (x
));
2478 regno
= true_regnum (x
);
2479 if (regno
< 0 || regno
>= FIRST_PSEUDO_REGISTER
)
2481 /* A pseudo with no hard reg. */
2482 val
.start
= REGNO (x
);
2483 val
.end
= val
.start
+ 1;
2489 val
.end
= end_hard_regno (GET_MODE (x
), regno
);
2494 if (!REG_P (SUBREG_REG (x
)))
2495 /* This could be more precise, but it's good enough. */
2496 return decompose (SUBREG_REG (x
));
2497 regno
= true_regnum (x
);
2498 if (regno
< 0 || regno
>= FIRST_PSEUDO_REGISTER
)
2499 return decompose (SUBREG_REG (x
));
2504 val
.end
= regno
+ subreg_nregs (x
);
2508 /* This hasn't been assigned yet, so it can't conflict yet. */
2513 gcc_assert (CONSTANT_P (x
));
2520 /* Return 1 if altering Y will not modify the value of X.
2521 Y is also described by YDATA, which should be decompose (Y). */
2524 immune_p (rtx x
, rtx y
, struct decomposition ydata
)
2526 struct decomposition xdata
;
2529 /* In this case the decomposition structure contains register
2530 numbers rather than byte offsets. */
2531 return !refers_to_regno_for_reload_p (ydata
.start
.to_constant (),
2532 ydata
.end
.to_constant (),
2537 gcc_assert (MEM_P (y
));
2538 /* If Y is memory and X is not, Y can't affect X. */
2542 xdata
= decompose (x
);
2544 if (! rtx_equal_p (xdata
.base
, ydata
.base
))
2546 /* If bases are distinct symbolic constants, there is no overlap. */
2547 if (CONSTANT_P (xdata
.base
) && CONSTANT_P (ydata
.base
))
2549 /* Constants and stack slots never overlap. */
2550 if (CONSTANT_P (xdata
.base
)
2551 && (ydata
.base
== frame_pointer_rtx
2552 || ydata
.base
== hard_frame_pointer_rtx
2553 || ydata
.base
== stack_pointer_rtx
))
2555 if (CONSTANT_P (ydata
.base
)
2556 && (xdata
.base
== frame_pointer_rtx
2557 || xdata
.base
== hard_frame_pointer_rtx
2558 || xdata
.base
== stack_pointer_rtx
))
2560 /* If either base is variable, we don't know anything. */
2564 return known_ge (xdata
.start
, ydata
.end
) || known_ge (ydata
.start
, xdata
.end
);
2567 /* Similar, but calls decompose. */
2570 safe_from_earlyclobber (rtx op
, rtx clobber
)
2572 struct decomposition early_data
;
2574 early_data
= decompose (clobber
);
2575 return immune_p (op
, clobber
, early_data
);
2578 /* Main entry point of this file: search the body of INSN
2579 for values that need reloading and record them with push_reload.
2580 REPLACE nonzero means record also where the values occur
2581 so that subst_reloads can be used.
2583 IND_LEVELS says how many levels of indirection are supported by this
2584 machine; a value of zero means that a memory reference is not a valid
2587 LIVE_KNOWN says we have valid information about which hard
2588 regs are live at each point in the program; this is true when
2589 we are called from global_alloc but false when stupid register
2590 allocation has been done.
2592 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2593 which is nonnegative if the reg has been commandeered for reloading into.
2594 It is copied into STATIC_RELOAD_REG_P and referenced from there
2595 by various subroutines.
2597 Return TRUE if some operands need to be changed, because of swapping
2598 commutative operands, reg_equiv_address substitution, or whatever. */
2601 find_reloads (rtx_insn
*insn
, int replace
, int ind_levels
, int live_known
,
2602 short *reload_reg_p
)
2604 int insn_code_number
;
2607 /* These start out as the constraints for the insn
2608 and they are chewed up as we consider alternatives. */
2609 const char *constraints
[MAX_RECOG_OPERANDS
];
2610 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2612 enum reg_class preferred_class
[MAX_RECOG_OPERANDS
];
2613 char pref_or_nothing
[MAX_RECOG_OPERANDS
];
2614 /* Nonzero for a MEM operand whose entire address needs a reload.
2615 May be -1 to indicate the entire address may or may not need a reload. */
2616 int address_reloaded
[MAX_RECOG_OPERANDS
];
2617 /* Nonzero for an address operand that needs to be completely reloaded.
2618 May be -1 to indicate the entire operand may or may not need a reload. */
2619 int address_operand_reloaded
[MAX_RECOG_OPERANDS
];
2620 /* Value of enum reload_type to use for operand. */
2621 enum reload_type operand_type
[MAX_RECOG_OPERANDS
];
2622 /* Value of enum reload_type to use within address of operand. */
2623 enum reload_type address_type
[MAX_RECOG_OPERANDS
];
2624 /* Save the usage of each operand. */
2625 enum reload_usage
{ RELOAD_READ
, RELOAD_READ_WRITE
, RELOAD_WRITE
} modified
[MAX_RECOG_OPERANDS
];
2626 int no_input_reloads
= 0, no_output_reloads
= 0;
2628 reg_class_t this_alternative
[MAX_RECOG_OPERANDS
];
2629 char this_alternative_match_win
[MAX_RECOG_OPERANDS
];
2630 char this_alternative_win
[MAX_RECOG_OPERANDS
];
2631 char this_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2632 char this_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2633 int this_alternative_matches
[MAX_RECOG_OPERANDS
];
2634 reg_class_t goal_alternative
[MAX_RECOG_OPERANDS
];
2635 int this_alternative_number
;
2636 int goal_alternative_number
= 0;
2637 int operand_reloadnum
[MAX_RECOG_OPERANDS
];
2638 int goal_alternative_matches
[MAX_RECOG_OPERANDS
];
2639 int goal_alternative_matched
[MAX_RECOG_OPERANDS
];
2640 char goal_alternative_match_win
[MAX_RECOG_OPERANDS
];
2641 char goal_alternative_win
[MAX_RECOG_OPERANDS
];
2642 char goal_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2643 char goal_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2644 int goal_alternative_swapped
;
2647 char operands_match
[MAX_RECOG_OPERANDS
][MAX_RECOG_OPERANDS
];
2648 rtx substed_operand
[MAX_RECOG_OPERANDS
];
2649 rtx body
= PATTERN (insn
);
2650 rtx set
= single_set (insn
);
2651 int goal_earlyclobber
= 0, this_earlyclobber
;
2652 machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
2658 n_earlyclobbers
= 0;
2659 replace_reloads
= replace
;
2660 hard_regs_live_known
= live_known
;
2661 static_reload_reg_p
= reload_reg_p
;
2663 if (JUMP_P (insn
) && INSN_CODE (insn
) < 0)
2665 extract_insn (insn
);
2666 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2667 if (recog_data
.operand_type
[i
] != OP_IN
)
2669 if (i
< recog_data
.n_operands
)
2671 error_for_asm (insn
,
2672 "the target does not support %<asm goto%> "
2673 "with outputs in %<asm%>");
2674 ira_nullify_asm_goto (insn
);
2679 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads. */
2680 if (JUMP_P (insn
) || CALL_P (insn
))
2681 no_output_reloads
= 1;
2683 /* The eliminated forms of any secondary memory locations are per-insn, so
2684 clear them out here. */
2686 if (secondary_memlocs_elim_used
)
2688 memset (secondary_memlocs_elim
, 0,
2689 sizeof (secondary_memlocs_elim
[0]) * secondary_memlocs_elim_used
);
2690 secondary_memlocs_elim_used
= 0;
2693 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2694 is cheap to move between them. If it is not, there may not be an insn
2695 to do the copy, so we may need a reload. */
2696 if (GET_CODE (body
) == SET
2697 && REG_P (SET_DEST (body
))
2698 && REGNO (SET_DEST (body
)) < FIRST_PSEUDO_REGISTER
2699 && REG_P (SET_SRC (body
))
2700 && REGNO (SET_SRC (body
)) < FIRST_PSEUDO_REGISTER
2701 && register_move_cost (GET_MODE (SET_SRC (body
)),
2702 REGNO_REG_CLASS (REGNO (SET_SRC (body
))),
2703 REGNO_REG_CLASS (REGNO (SET_DEST (body
)))) == 2)
2706 extract_insn (insn
);
2708 noperands
= reload_n_operands
= recog_data
.n_operands
;
2709 n_alternatives
= recog_data
.n_alternatives
;
2711 /* Just return "no reloads" if insn has no operands with constraints. */
2712 if (noperands
== 0 || n_alternatives
== 0)
2715 insn_code_number
= INSN_CODE (insn
);
2716 this_insn_is_asm
= insn_code_number
< 0;
2718 memcpy (operand_mode
, recog_data
.operand_mode
,
2719 noperands
* sizeof (machine_mode
));
2720 memcpy (constraints
, recog_data
.constraints
,
2721 noperands
* sizeof (const char *));
2725 /* If we will need to know, later, whether some pair of operands
2726 are the same, we must compare them now and save the result.
2727 Reloading the base and index registers will clobber them
2728 and afterward they will fail to match. */
2730 for (i
= 0; i
< noperands
; i
++)
2736 substed_operand
[i
] = recog_data
.operand
[i
];
2739 modified
[i
] = RELOAD_READ
;
2741 /* Scan this operand's constraint to see if it is an output operand,
2742 an in-out operand, is commutative, or should match another. */
2746 p
+= CONSTRAINT_LEN (c
, p
);
2750 modified
[i
] = RELOAD_WRITE
;
2753 modified
[i
] = RELOAD_READ_WRITE
;
2757 /* The last operand should not be marked commutative. */
2758 gcc_assert (i
!= noperands
- 1);
2760 /* We currently only support one commutative pair of
2761 operands. Some existing asm code currently uses more
2762 than one pair. Previously, that would usually work,
2763 but sometimes it would crash the compiler. We
2764 continue supporting that case as well as we can by
2765 silently ignoring all but the first pair. In the
2766 future we may handle it correctly. */
2767 if (commutative
< 0)
2770 gcc_assert (this_insn_is_asm
);
2773 /* Use of ISDIGIT is tempting here, but it may get expensive because
2774 of locale support we don't want. */
2775 case '0': case '1': case '2': case '3': case '4':
2776 case '5': case '6': case '7': case '8': case '9':
2778 c
= strtoul (p
- 1, &end
, 10);
2781 operands_match
[c
][i
]
2782 = operands_match_p (recog_data
.operand
[c
],
2783 recog_data
.operand
[i
]);
2785 /* An operand may not match itself. */
2786 gcc_assert (c
!= i
);
2788 /* If C can be commuted with C+1, and C might need to match I,
2789 then C+1 might also need to match I. */
2790 if (commutative
>= 0)
2792 if (c
== commutative
|| c
== commutative
+ 1)
2794 int other
= c
+ (c
== commutative
? 1 : -1);
2795 operands_match
[other
][i
]
2796 = operands_match_p (recog_data
.operand
[other
],
2797 recog_data
.operand
[i
]);
2799 if (i
== commutative
|| i
== commutative
+ 1)
2801 int other
= i
+ (i
== commutative
? 1 : -1);
2802 operands_match
[c
][other
]
2803 = operands_match_p (recog_data
.operand
[c
],
2804 recog_data
.operand
[other
]);
2806 /* Note that C is supposed to be less than I.
2807 No need to consider altering both C and I because in
2808 that case we would alter one into the other. */
2815 /* Examine each operand that is a memory reference or memory address
2816 and reload parts of the addresses into index registers.
2817 Also here any references to pseudo regs that didn't get hard regs
2818 but are equivalent to constants get replaced in the insn itself
2819 with those constants. Nobody will ever see them again.
2821 Finally, set up the preferred classes of each operand. */
2823 for (i
= 0; i
< noperands
; i
++)
2825 RTX_CODE code
= GET_CODE (recog_data
.operand
[i
]);
2827 address_reloaded
[i
] = 0;
2828 address_operand_reloaded
[i
] = 0;
2829 operand_type
[i
] = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT
2830 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT
2833 = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT_ADDRESS
2834 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT_ADDRESS
2837 if (*constraints
[i
] == 0)
2838 /* Ignore things like match_operator operands. */
2840 else if (insn_extra_address_constraint
2841 (lookup_constraint (constraints
[i
])))
2843 address_operand_reloaded
[i
]
2844 = find_reloads_address (recog_data
.operand_mode
[i
], (rtx
*) 0,
2845 recog_data
.operand
[i
],
2846 recog_data
.operand_loc
[i
],
2847 i
, operand_type
[i
], ind_levels
, insn
);
2849 /* If we now have a simple operand where we used to have a
2850 PLUS or MULT or ASHIFT, re-recognize and try again. */
2851 if ((OBJECT_P (*recog_data
.operand_loc
[i
])
2852 || GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2853 && (GET_CODE (recog_data
.operand
[i
]) == MULT
2854 || GET_CODE (recog_data
.operand
[i
]) == ASHIFT
2855 || GET_CODE (recog_data
.operand
[i
]) == PLUS
))
2857 INSN_CODE (insn
) = -1;
2858 retval
= find_reloads (insn
, replace
, ind_levels
, live_known
,
2863 recog_data
.operand
[i
] = *recog_data
.operand_loc
[i
];
2864 substed_operand
[i
] = recog_data
.operand
[i
];
2866 /* Address operands are reloaded in their existing mode,
2867 no matter what is specified in the machine description. */
2868 operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2870 /* If the address is a single CONST_INT pick address mode
2871 instead otherwise we will later not know in which mode
2872 the reload should be performed. */
2873 if (operand_mode
[i
] == VOIDmode
)
2874 operand_mode
[i
] = Pmode
;
2877 else if (code
== MEM
)
2880 = find_reloads_address (GET_MODE (recog_data
.operand
[i
]),
2881 recog_data
.operand_loc
[i
],
2882 XEXP (recog_data
.operand
[i
], 0),
2883 &XEXP (recog_data
.operand
[i
], 0),
2884 i
, address_type
[i
], ind_levels
, insn
);
2885 recog_data
.operand
[i
] = *recog_data
.operand_loc
[i
];
2886 substed_operand
[i
] = recog_data
.operand
[i
];
2888 else if (code
== SUBREG
)
2890 rtx reg
= SUBREG_REG (recog_data
.operand
[i
]);
2892 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2895 && &SET_DEST (set
) == recog_data
.operand_loc
[i
],
2897 &address_reloaded
[i
]);
2899 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2900 that didn't get a hard register, emit a USE with a REG_EQUAL
2901 note in front so that we might inherit a previous, possibly
2907 && known_ge (GET_MODE_SIZE (GET_MODE (reg
)),
2908 GET_MODE_SIZE (GET_MODE (op
)))
2909 && reg_equiv_constant (REGNO (reg
)) == 0)
2910 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode
, reg
),
2912 REG_EQUAL
, reg_equiv_memory_loc (REGNO (reg
)));
2914 substed_operand
[i
] = recog_data
.operand
[i
] = op
;
2916 else if (code
== PLUS
|| GET_RTX_CLASS (code
) == RTX_UNARY
)
2917 /* We can get a PLUS as an "operand" as a result of register
2918 elimination. See eliminate_regs and gen_reload. We handle
2919 a unary operator by reloading the operand. */
2920 substed_operand
[i
] = recog_data
.operand
[i
]
2921 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2922 ind_levels
, 0, insn
,
2923 &address_reloaded
[i
]);
2924 else if (code
== REG
)
2926 /* This is equivalent to calling find_reloads_toplev.
2927 The code is duplicated for speed.
2928 When we find a pseudo always equivalent to a constant,
2929 we replace it by the constant. We must be sure, however,
2930 that we don't try to replace it in the insn in which it
2932 int regno
= REGNO (recog_data
.operand
[i
]);
2933 if (reg_equiv_constant (regno
) != 0
2934 && (set
== 0 || &SET_DEST (set
) != recog_data
.operand_loc
[i
]))
2936 /* Record the existing mode so that the check if constants are
2937 allowed will work when operand_mode isn't specified. */
2939 if (operand_mode
[i
] == VOIDmode
)
2940 operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2942 substed_operand
[i
] = recog_data
.operand
[i
]
2943 = reg_equiv_constant (regno
);
2945 if (reg_equiv_memory_loc (regno
) != 0
2946 && (reg_equiv_address (regno
) != 0 || num_not_at_initial_offset
))
2947 /* We need not give a valid is_set_dest argument since the case
2948 of a constant equivalence was checked above. */
2949 substed_operand
[i
] = recog_data
.operand
[i
]
2950 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2951 ind_levels
, 0, insn
,
2952 &address_reloaded
[i
]);
2954 /* If the operand is still a register (we didn't replace it with an
2955 equivalent), get the preferred class to reload it into. */
2956 code
= GET_CODE (recog_data
.operand
[i
]);
2958 = ((code
== REG
&& REGNO (recog_data
.operand
[i
])
2959 >= FIRST_PSEUDO_REGISTER
)
2960 ? reg_preferred_class (REGNO (recog_data
.operand
[i
]))
2964 && REGNO (recog_data
.operand
[i
]) >= FIRST_PSEUDO_REGISTER
2965 && reg_alternate_class (REGNO (recog_data
.operand
[i
])) == NO_REGS
);
2968 /* If this is simply a copy from operand 1 to operand 0, merge the
2969 preferred classes for the operands. */
2970 if (set
!= 0 && noperands
>= 2 && recog_data
.operand
[0] == SET_DEST (set
)
2971 && recog_data
.operand
[1] == SET_SRC (set
))
2973 preferred_class
[0] = preferred_class
[1]
2974 = reg_class_subunion
[(int) preferred_class
[0]][(int) preferred_class
[1]];
2975 pref_or_nothing
[0] |= pref_or_nothing
[1];
2976 pref_or_nothing
[1] |= pref_or_nothing
[0];
2979 /* Now see what we need for pseudo-regs that didn't get hard regs
2980 or got the wrong kind of hard reg. For this, we must consider
2981 all the operands together against the register constraints. */
2983 best
= MAX_RECOG_OPERANDS
* 2 + 600;
2985 goal_alternative_swapped
= 0;
2987 /* The constraints are made of several alternatives.
2988 Each operand's constraint looks like foo,bar,... with commas
2989 separating the alternatives. The first alternatives for all
2990 operands go together, the second alternatives go together, etc.
2992 First loop over alternatives. */
2994 alternative_mask enabled
= get_enabled_alternatives (insn
);
2995 for (this_alternative_number
= 0;
2996 this_alternative_number
< n_alternatives
;
2997 this_alternative_number
++)
3001 if (!TEST_BIT (enabled
, this_alternative_number
))
3005 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3006 constraints
[i
] = skip_alternative (constraints
[i
]);
3011 /* If insn is commutative (it's safe to exchange a certain pair
3012 of operands) then we need to try each alternative twice, the
3013 second time matching those two operands as if we had
3014 exchanged them. To do this, really exchange them in
3016 for (swapped
= 0; swapped
< (commutative
>= 0 ? 2 : 1); swapped
++)
3018 /* Loop over operands for one constraint alternative. */
3019 /* LOSERS counts those that don't fit this alternative
3020 and would require loading. */
3022 /* BAD is set to 1 if it some operand can't fit this alternative
3023 even after reloading. */
3025 /* REJECT is a count of how undesirable this alternative says it is
3026 if any reloading is required. If the alternative matches exactly
3027 then REJECT is ignored, but otherwise it gets this much
3028 counted against it in addition to the reloading needed. Each
3029 ? counts three times here since we want the disparaging caused by
3030 a bad register class to only count 1/3 as much. */
3035 recog_data
.operand
[commutative
] = substed_operand
[commutative
+ 1];
3036 recog_data
.operand
[commutative
+ 1] = substed_operand
[commutative
];
3037 /* Swap the duplicates too. */
3038 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3039 if (recog_data
.dup_num
[i
] == commutative
3040 || recog_data
.dup_num
[i
] == commutative
+ 1)
3041 *recog_data
.dup_loc
[i
]
3042 = recog_data
.operand
[(int) recog_data
.dup_num
[i
]];
3044 std::swap (preferred_class
[commutative
],
3045 preferred_class
[commutative
+ 1]);
3046 std::swap (pref_or_nothing
[commutative
],
3047 pref_or_nothing
[commutative
+ 1]);
3048 std::swap (address_reloaded
[commutative
],
3049 address_reloaded
[commutative
+ 1]);
3052 this_earlyclobber
= 0;
3054 for (i
= 0; i
< noperands
; i
++)
3056 const char *p
= constraints
[i
];
3061 /* 0 => this operand can be reloaded somehow for this alternative. */
3063 /* 0 => this operand can be reloaded if the alternative allows regs. */
3067 rtx operand
= recog_data
.operand
[i
];
3069 /* Nonzero means this is a MEM that must be reloaded into a reg
3070 regardless of what the constraint says. */
3071 int force_reload
= 0;
3073 /* Nonzero if a constant forced into memory would be OK for this
3076 int earlyclobber
= 0;
3077 enum constraint_num cn
;
3080 /* If the operand is a SUBREG, extract
3081 the REG or MEM (or maybe even a constant) within.
3082 (Constants can occur as a result of reg_equiv_constant.) */
3084 while (GET_CODE (operand
) == SUBREG
)
3086 /* Offset only matters when operand is a REG and
3087 it is a hard reg. This is because it is passed
3088 to reg_fits_class_p if it is a REG and all pseudos
3089 return 0 from that function. */
3090 if (REG_P (SUBREG_REG (operand
))
3091 && REGNO (SUBREG_REG (operand
)) < FIRST_PSEUDO_REGISTER
)
3093 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand
)),
3094 GET_MODE (SUBREG_REG (operand
)),
3095 SUBREG_BYTE (operand
),
3096 GET_MODE (operand
)) < 0)
3098 offset
+= subreg_regno_offset (REGNO (SUBREG_REG (operand
)),
3099 GET_MODE (SUBREG_REG (operand
)),
3100 SUBREG_BYTE (operand
),
3101 GET_MODE (operand
));
3103 operand
= SUBREG_REG (operand
);
3104 /* Force reload if this is a constant or PLUS or if there may
3105 be a problem accessing OPERAND in the outer mode. */
3106 scalar_int_mode inner_mode
;
3107 if (CONSTANT_P (operand
)
3108 || GET_CODE (operand
) == PLUS
3109 /* We must force a reload of paradoxical SUBREGs
3110 of a MEM because the alignment of the inner value
3111 may not be enough to do the outer reference. On
3112 big-endian machines, it may also reference outside
3115 On machines that extend byte operations and we have a
3116 SUBREG where both the inner and outer modes are no wider
3117 than a word and the inner mode is narrower, is integral,
3118 and gets extended when loaded from memory, combine.cc has
3119 made assumptions about the behavior of the machine in such
3120 register access. If the data is, in fact, in memory we
3121 must always load using the size assumed to be in the
3122 register and let the insn do the different-sized
3125 This is doubly true if WORD_REGISTER_OPERATIONS. In
3126 this case eliminate_regs has left non-paradoxical
3127 subregs for push_reload to see. Make sure it does
3128 by forcing the reload.
3130 ??? When is it right at this stage to have a subreg
3131 of a mem that is _not_ to be handled specially? IMO
3132 those should have been reduced to just a mem. */
3133 || ((MEM_P (operand
)
3135 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
3136 && (WORD_REGISTER_OPERATIONS
3138 (GET_MODE_BITSIZE (GET_MODE (operand
)),
3140 && (paradoxical_subreg_p
3141 (operand_mode
[i
], GET_MODE (operand
)))))
3143 || (known_le (GET_MODE_SIZE (operand_mode
[i
]),
3145 && (is_a
<scalar_int_mode
>
3146 (GET_MODE (operand
), &inner_mode
))
3147 && (GET_MODE_SIZE (inner_mode
)
3149 && paradoxical_subreg_p (operand_mode
[i
],
3151 && LOAD_EXTEND_OP (inner_mode
) != UNKNOWN
)))
3152 /* We must force a reload of a SUBREG's inner expression
3153 if it is a pseudo that will become a MEM and the MEM
3154 has a mode-dependent address, as in that case we
3155 obviously cannot change the mode of the MEM to that
3156 of the containing SUBREG as that would change the
3157 interpretation of the address. */
3159 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3160 && reg_equiv_mem (REGNO (operand
))
3161 && (mode_dependent_address_p
3162 (XEXP (reg_equiv_mem (REGNO (operand
)), 0),
3164 (reg_equiv_mem (REGNO (operand
)))))))
3169 this_alternative
[i
] = NO_REGS
;
3170 this_alternative_win
[i
] = 0;
3171 this_alternative_match_win
[i
] = 0;
3172 this_alternative_offmemok
[i
] = 0;
3173 this_alternative_earlyclobber
[i
] = 0;
3174 this_alternative_matches
[i
] = -1;
3176 /* An empty constraint or empty alternative
3177 allows anything which matched the pattern. */
3178 if (*p
== 0 || *p
== ',')
3181 /* Scan this alternative's specs for this operand;
3182 set WIN if the operand fits any letter in this alternative.
3183 Otherwise, clear BADOP if this operand could
3184 fit some letter after reloads,
3185 or set WINREG if this operand could fit after reloads
3186 provided the constraint allows some registers. */
3189 switch ((c
= *p
, len
= CONSTRAINT_LEN (c
, p
)), c
)
3207 /* Ignore rest of this alternative as far as
3208 reloading is concerned. */
3211 while (*p
&& *p
!= ',');
3215 case '0': case '1': case '2': case '3': case '4':
3216 case '5': case '6': case '7': case '8': case '9':
3217 m
= strtoul (p
, &end
, 10);
3221 this_alternative_matches
[i
] = m
;
3222 /* We are supposed to match a previous operand.
3223 If we do, we win if that one did.
3224 If we do not, count both of the operands as losers.
3225 (This is too conservative, since most of the time
3226 only a single reload insn will be needed to make
3227 the two operands win. As a result, this alternative
3228 may be rejected when it is actually desirable.) */
3229 if ((swapped
&& (m
!= commutative
|| i
!= commutative
+ 1))
3230 /* If we are matching as if two operands were swapped,
3231 also pretend that operands_match had been computed
3233 But if I is the second of those and C is the first,
3234 don't exchange them, because operands_match is valid
3235 only on one side of its diagonal. */
3237 [(m
== commutative
|| m
== commutative
+ 1)
3238 ? 2 * commutative
+ 1 - m
: m
]
3239 [(i
== commutative
|| i
== commutative
+ 1)
3240 ? 2 * commutative
+ 1 - i
: i
])
3241 : operands_match
[m
][i
])
3243 /* If we are matching a non-offsettable address where an
3244 offsettable address was expected, then we must reject
3245 this combination, because we can't reload it. */
3246 if (this_alternative_offmemok
[m
]
3247 && MEM_P (recog_data
.operand
[m
])
3248 && this_alternative
[m
] == NO_REGS
3249 && ! this_alternative_win
[m
])
3252 did_match
= this_alternative_win
[m
];
3256 /* Operands don't match. */
3259 /* Retroactively mark the operand we had to match
3260 as a loser, if it wasn't already. */
3261 if (this_alternative_win
[m
])
3263 this_alternative_win
[m
] = 0;
3264 if (this_alternative
[m
] == NO_REGS
)
3266 /* But count the pair only once in the total badness of
3267 this alternative, if the pair can be a dummy reload.
3268 The pointers in operand_loc are not swapped; swap
3269 them by hand if necessary. */
3270 if (swapped
&& i
== commutative
)
3271 loc1
= commutative
+ 1;
3272 else if (swapped
&& i
== commutative
+ 1)
3276 if (swapped
&& m
== commutative
)
3277 loc2
= commutative
+ 1;
3278 else if (swapped
&& m
== commutative
+ 1)
3283 = find_dummy_reload (recog_data
.operand
[i
],
3284 recog_data
.operand
[m
],
3285 recog_data
.operand_loc
[loc1
],
3286 recog_data
.operand_loc
[loc2
],
3287 operand_mode
[i
], operand_mode
[m
],
3288 this_alternative
[m
], -1,
3289 this_alternative_earlyclobber
[m
]);
3294 /* This can be fixed with reloads if the operand
3295 we are supposed to match can be fixed with reloads. */
3297 this_alternative
[i
] = this_alternative
[m
];
3299 /* If we have to reload this operand and some previous
3300 operand also had to match the same thing as this
3301 operand, we don't know how to do that. So reject this
3303 if (! did_match
|| force_reload
)
3304 for (j
= 0; j
< i
; j
++)
3305 if (this_alternative_matches
[j
]
3306 == this_alternative_matches
[i
])
3314 /* All necessary reloads for an address_operand
3315 were handled in find_reloads_address. */
3317 = base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
3318 ADDRESS
, SCRATCH
, insn
);
3323 case TARGET_MEM_CONSTRAINT
:
3328 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3329 && reg_renumber
[REGNO (operand
)] < 0))
3331 if (CONST_POOL_OK_P (operand_mode
[i
], operand
))
3338 && ! address_reloaded
[i
]
3339 && (GET_CODE (XEXP (operand
, 0)) == PRE_DEC
3340 || GET_CODE (XEXP (operand
, 0)) == POST_DEC
))
3346 && ! address_reloaded
[i
]
3347 && (GET_CODE (XEXP (operand
, 0)) == PRE_INC
3348 || GET_CODE (XEXP (operand
, 0)) == POST_INC
))
3352 /* Memory operand whose address is not offsettable. */
3357 && ! (ind_levels
? offsettable_memref_p (operand
)
3358 : offsettable_nonstrict_memref_p (operand
))
3359 /* Certain mem addresses will become offsettable
3360 after they themselves are reloaded. This is important;
3361 we don't want our own handling of unoffsettables
3362 to override the handling of reg_equiv_address. */
3363 && !(REG_P (XEXP (operand
, 0))
3365 || reg_equiv_address (REGNO (XEXP (operand
, 0))) != 0)))
3369 /* Memory operand whose address is offsettable. */
3373 if ((MEM_P (operand
)
3374 /* If IND_LEVELS, find_reloads_address won't reload a
3375 pseudo that didn't get a hard reg, so we have to
3376 reject that case. */
3377 && ((ind_levels
? offsettable_memref_p (operand
)
3378 : offsettable_nonstrict_memref_p (operand
))
3379 /* A reloaded address is offsettable because it is now
3380 just a simple register indirect. */
3381 || address_reloaded
[i
] == 1))
3383 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3384 && reg_renumber
[REGNO (operand
)] < 0
3385 /* If reg_equiv_address is nonzero, we will be
3386 loading it into a register; hence it will be
3387 offsettable, but we cannot say that reg_equiv_mem
3388 is offsettable without checking. */
3389 && ((reg_equiv_mem (REGNO (operand
)) != 0
3390 && offsettable_memref_p (reg_equiv_mem (REGNO (operand
))))
3391 || (reg_equiv_address (REGNO (operand
)) != 0))))
3393 if (CONST_POOL_OK_P (operand_mode
[i
], operand
)
3401 /* Output operand that is stored before the need for the
3402 input operands (and their index registers) is over. */
3403 earlyclobber
= 1, this_earlyclobber
= 1;
3413 /* A PLUS is never a valid operand, but reload can make
3414 it from a register when eliminating registers. */
3415 && GET_CODE (operand
) != PLUS
3416 /* A SCRATCH is not a valid operand. */
3417 && GET_CODE (operand
) != SCRATCH
3418 && (! CONSTANT_P (operand
)
3420 || LEGITIMATE_PIC_OPERAND_P (operand
))
3421 && (GENERAL_REGS
== ALL_REGS
3423 || (REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3424 && reg_renumber
[REGNO (operand
)] < 0)))
3430 cn
= lookup_constraint (p
);
3431 switch (get_constraint_type (cn
))
3434 cl
= reg_class_for_constraint (cn
);
3440 if (CONST_INT_P (operand
)
3441 && (insn_const_int_ok_for_constraint
3442 (INTVAL (operand
), cn
)))
3447 case CT_RELAXED_MEMORY
:
3450 if (constraint_satisfied_p (operand
, cn
))
3452 /* If the address was already reloaded,
3454 else if (MEM_P (operand
) && address_reloaded
[i
] == 1)
3456 /* Likewise if the address will be reloaded because
3457 reg_equiv_address is nonzero. For reg_equiv_mem
3458 we have to check. */
3459 else if (REG_P (operand
)
3460 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3461 && reg_renumber
[REGNO (operand
)] < 0
3462 && ((reg_equiv_mem (REGNO (operand
)) != 0
3463 && (constraint_satisfied_p
3464 (reg_equiv_mem (REGNO (operand
)),
3466 || (reg_equiv_address (REGNO (operand
))
3470 /* If we didn't already win, we can reload
3471 constants via force_const_mem, and other
3472 MEMs by reloading the address like for 'o'. */
3473 if (CONST_POOL_OK_P (operand_mode
[i
], operand
)
3480 case CT_SPECIAL_MEMORY
:
3483 if (constraint_satisfied_p (operand
, cn
))
3485 /* Likewise if the address will be reloaded because
3486 reg_equiv_address is nonzero. For reg_equiv_mem
3487 we have to check. */
3488 else if (REG_P (operand
)
3489 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3490 && reg_renumber
[REGNO (operand
)] < 0
3491 && reg_equiv_mem (REGNO (operand
)) != 0
3492 && (constraint_satisfied_p
3493 (reg_equiv_mem (REGNO (operand
)), cn
)))
3498 if (constraint_satisfied_p (operand
, cn
))
3501 /* If we didn't already win, we can reload
3502 the address into a base register. */
3504 = base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
3505 ADDRESS
, SCRATCH
, insn
);
3510 if (constraint_satisfied_p (operand
, cn
))
3518 = reg_class_subunion
[this_alternative
[i
]][cl
];
3519 if (GET_MODE (operand
) == BLKmode
)
3523 && reg_fits_class_p (operand
, this_alternative
[i
],
3524 offset
, GET_MODE (recog_data
.operand
[i
])))
3528 while ((p
+= len
), c
);
3530 if (swapped
== (commutative
>= 0 ? 1 : 0))
3533 /* If this operand could be handled with a reg,
3534 and some reg is allowed, then this operand can be handled. */
3535 if (winreg
&& this_alternative
[i
] != NO_REGS
3536 && (win
|| !class_only_fixed_regs
[this_alternative
[i
]]))
3539 /* Record which operands fit this alternative. */
3540 this_alternative_earlyclobber
[i
] = earlyclobber
;
3541 if (win
&& ! force_reload
)
3542 this_alternative_win
[i
] = 1;
3543 else if (did_match
&& ! force_reload
)
3544 this_alternative_match_win
[i
] = 1;
3547 int const_to_mem
= 0;
3549 this_alternative_offmemok
[i
] = offmemok
;
3553 /* Alternative loses if it has no regs for a reg operand. */
3555 && this_alternative
[i
] == NO_REGS
3556 && this_alternative_matches
[i
] < 0)
3559 /* If this is a constant that is reloaded into the desired
3560 class by copying it to memory first, count that as another
3561 reload. This is consistent with other code and is
3562 required to avoid choosing another alternative when
3563 the constant is moved into memory by this function on
3564 an early reload pass. Note that the test here is
3565 precisely the same as in the code below that calls
3567 if (CONST_POOL_OK_P (operand_mode
[i
], operand
)
3568 && ((targetm
.preferred_reload_class (operand
,
3569 this_alternative
[i
])
3571 || no_input_reloads
))
3574 if (this_alternative
[i
] != NO_REGS
)
3578 /* Alternative loses if it requires a type of reload not
3579 permitted for this insn. We can always reload SCRATCH
3580 and objects with a REG_UNUSED note. */
3581 if (GET_CODE (operand
) != SCRATCH
3582 && modified
[i
] != RELOAD_READ
&& no_output_reloads
3583 && ! find_reg_note (insn
, REG_UNUSED
, operand
))
3585 else if (modified
[i
] != RELOAD_WRITE
&& no_input_reloads
3589 /* If we can't reload this value at all, reject this
3590 alternative. Note that we could also lose due to
3591 LIMIT_RELOAD_CLASS, but we don't check that
3594 if (! CONSTANT_P (operand
) && this_alternative
[i
] != NO_REGS
)
3596 if (targetm
.preferred_reload_class (operand
,
3597 this_alternative
[i
])
3601 if (operand_type
[i
] == RELOAD_FOR_OUTPUT
3602 && (targetm
.preferred_output_reload_class (operand
,
3603 this_alternative
[i
])
3608 /* We prefer to reload pseudos over reloading other things,
3609 since such reloads may be able to be eliminated later.
3610 If we are reloading a SCRATCH, we won't be generating any
3611 insns, just using a register, so it is also preferred.
3612 So bump REJECT in other cases. Don't do this in the
3613 case where we are forcing a constant into memory and
3614 it will then win since we don't want to have a different
3615 alternative match then. */
3616 if (! (REG_P (operand
)
3617 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
)
3618 && GET_CODE (operand
) != SCRATCH
3619 && ! (const_to_mem
&& constmemok
))
3622 /* Input reloads can be inherited more often than output
3623 reloads can be removed, so penalize output reloads. */
3624 if (operand_type
[i
] != RELOAD_FOR_INPUT
3625 && GET_CODE (operand
) != SCRATCH
)
3629 /* If this operand is a pseudo register that didn't get
3630 a hard reg and this alternative accepts some
3631 register, see if the class that we want is a subset
3632 of the preferred class for this register. If not,
3633 but it intersects that class, we'd like to use the
3634 intersection, but the best we can do is to use the
3635 preferred class, if it is instead a subset of the
3636 class we want in this alternative. If we can't use
3637 it, show that usage of this alternative should be
3638 discouraged; it will be discouraged more still if the
3639 register is `preferred or nothing'. We do this
3640 because it increases the chance of reusing our spill
3641 register in a later insn and avoiding a pair of
3642 memory stores and loads.
3644 Don't bother with this if this alternative will
3645 accept this operand.
3647 Don't do this for a multiword operand, since it is
3648 only a small win and has the risk of requiring more
3649 spill registers, which could cause a large loss.
3651 Don't do this if the preferred class has only one
3652 register because we might otherwise exhaust the
3655 if (! win
&& ! did_match
3656 && this_alternative
[i
] != NO_REGS
3657 && known_le (GET_MODE_SIZE (operand_mode
[i
]), UNITS_PER_WORD
)
3658 && reg_class_size
[(int) preferred_class
[i
]] > 0
3659 && ! small_register_class_p (preferred_class
[i
]))
3661 if (! reg_class_subset_p (this_alternative
[i
],
3662 preferred_class
[i
]))
3664 /* Since we don't have a way of forming a register
3665 class for the intersection, we just do
3666 something special if the preferred class is a
3667 subset of the class we have; that's the most
3668 common case anyway. */
3669 if (reg_class_subset_p (preferred_class
[i
],
3670 this_alternative
[i
]))
3671 this_alternative
[i
] = preferred_class
[i
];
3673 reject
+= (2 + 2 * pref_or_nothing
[i
]);
3678 /* Now see if any output operands that are marked "earlyclobber"
3679 in this alternative conflict with any input operands
3680 or any memory addresses. */
3682 for (i
= 0; i
< noperands
; i
++)
3683 if (this_alternative_earlyclobber
[i
]
3684 && (this_alternative_win
[i
] || this_alternative_match_win
[i
]))
3686 struct decomposition early_data
;
3688 early_data
= decompose (recog_data
.operand
[i
]);
3690 gcc_assert (modified
[i
] != RELOAD_READ
);
3692 if (this_alternative
[i
] == NO_REGS
)
3694 this_alternative_earlyclobber
[i
] = 0;
3695 gcc_assert (this_insn_is_asm
);
3696 error_for_asm (this_insn
,
3697 "%<&%> constraint used with no register class");
3700 for (j
= 0; j
< noperands
; j
++)
3701 /* Is this an input operand or a memory ref? */
3702 if ((MEM_P (recog_data
.operand
[j
])
3703 || modified
[j
] != RELOAD_WRITE
)
3705 /* Ignore things like match_operator operands. */
3706 && !recog_data
.is_operator
[j
]
3707 /* Don't count an input operand that is constrained to match
3708 the early clobber operand. */
3709 && ! (this_alternative_matches
[j
] == i
3710 && rtx_equal_p (recog_data
.operand
[i
],
3711 recog_data
.operand
[j
]))
3712 /* Is it altered by storing the earlyclobber operand? */
3713 && !immune_p (recog_data
.operand
[j
], recog_data
.operand
[i
],
3716 /* If the output is in a non-empty few-regs class,
3717 it's costly to reload it, so reload the input instead. */
3718 if (small_register_class_p (this_alternative
[i
])
3719 && (REG_P (recog_data
.operand
[j
])
3720 || GET_CODE (recog_data
.operand
[j
]) == SUBREG
))
3723 this_alternative_win
[j
] = 0;
3724 this_alternative_match_win
[j
] = 0;
3729 /* If an earlyclobber operand conflicts with something,
3730 it must be reloaded, so request this and count the cost. */
3734 this_alternative_win
[i
] = 0;
3735 this_alternative_match_win
[j
] = 0;
3736 for (j
= 0; j
< noperands
; j
++)
3737 if (this_alternative_matches
[j
] == i
3738 && this_alternative_match_win
[j
])
3740 this_alternative_win
[j
] = 0;
3741 this_alternative_match_win
[j
] = 0;
3747 /* If one alternative accepts all the operands, no reload required,
3748 choose that alternative; don't consider the remaining ones. */
3751 /* Unswap these so that they are never swapped at `finish'. */
3754 recog_data
.operand
[commutative
] = substed_operand
[commutative
];
3755 recog_data
.operand
[commutative
+ 1]
3756 = substed_operand
[commutative
+ 1];
3758 for (i
= 0; i
< noperands
; i
++)
3760 goal_alternative_win
[i
] = this_alternative_win
[i
];
3761 goal_alternative_match_win
[i
] = this_alternative_match_win
[i
];
3762 goal_alternative
[i
] = this_alternative
[i
];
3763 goal_alternative_offmemok
[i
] = this_alternative_offmemok
[i
];
3764 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3765 goal_alternative_earlyclobber
[i
]
3766 = this_alternative_earlyclobber
[i
];
3768 goal_alternative_number
= this_alternative_number
;
3769 goal_alternative_swapped
= swapped
;
3770 goal_earlyclobber
= this_earlyclobber
;
3774 /* REJECT, set by the ! and ? constraint characters and when a register
3775 would be reloaded into a non-preferred class, discourages the use of
3776 this alternative for a reload goal. REJECT is incremented by six
3777 for each ? and two for each non-preferred class. */
3778 losers
= losers
* 6 + reject
;
3780 /* If this alternative can be made to work by reloading,
3781 and it needs less reloading than the others checked so far,
3782 record it as the chosen goal for reloading. */
3787 for (i
= 0; i
< noperands
; i
++)
3789 goal_alternative
[i
] = this_alternative
[i
];
3790 goal_alternative_win
[i
] = this_alternative_win
[i
];
3791 goal_alternative_match_win
[i
]
3792 = this_alternative_match_win
[i
];
3793 goal_alternative_offmemok
[i
]
3794 = this_alternative_offmemok
[i
];
3795 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3796 goal_alternative_earlyclobber
[i
]
3797 = this_alternative_earlyclobber
[i
];
3799 goal_alternative_swapped
= swapped
;
3801 goal_alternative_number
= this_alternative_number
;
3802 goal_earlyclobber
= this_earlyclobber
;
3808 /* If the commutative operands have been swapped, swap
3809 them back in order to check the next alternative. */
3810 recog_data
.operand
[commutative
] = substed_operand
[commutative
];
3811 recog_data
.operand
[commutative
+ 1] = substed_operand
[commutative
+ 1];
3812 /* Unswap the duplicates too. */
3813 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3814 if (recog_data
.dup_num
[i
] == commutative
3815 || recog_data
.dup_num
[i
] == commutative
+ 1)
3816 *recog_data
.dup_loc
[i
]
3817 = recog_data
.operand
[(int) recog_data
.dup_num
[i
]];
3819 /* Unswap the operand related information as well. */
3820 std::swap (preferred_class
[commutative
],
3821 preferred_class
[commutative
+ 1]);
3822 std::swap (pref_or_nothing
[commutative
],
3823 pref_or_nothing
[commutative
+ 1]);
3824 std::swap (address_reloaded
[commutative
],
3825 address_reloaded
[commutative
+ 1]);
3830 /* The operands don't meet the constraints.
3831 goal_alternative describes the alternative
3832 that we could reach by reloading the fewest operands.
3833 Reload so as to fit it. */
3835 if (best
== MAX_RECOG_OPERANDS
* 2 + 600)
3837 /* No alternative works with reloads?? */
3838 if (insn_code_number
>= 0)
3839 fatal_insn ("unable to generate reloads for:", insn
);
3840 error_for_asm (insn
, "inconsistent operand constraints in an %<asm%>");
3841 /* Avoid further trouble with this insn. */
3842 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
3847 /* Jump to `finish' from above if all operands are valid already.
3848 In that case, goal_alternative_win is all 1. */
3851 /* Right now, for any pair of operands I and J that are required to match,
3853 goal_alternative_matches[J] is I.
3854 Set up goal_alternative_matched as the inverse function:
3855 goal_alternative_matched[I] = J. */
3857 for (i
= 0; i
< noperands
; i
++)
3858 goal_alternative_matched
[i
] = -1;
3860 for (i
= 0; i
< noperands
; i
++)
3861 if (! goal_alternative_win
[i
]
3862 && goal_alternative_matches
[i
] >= 0)
3863 goal_alternative_matched
[goal_alternative_matches
[i
]] = i
;
3865 for (i
= 0; i
< noperands
; i
++)
3866 goal_alternative_win
[i
] |= goal_alternative_match_win
[i
];
3868 /* If the best alternative is with operands 1 and 2 swapped,
3869 consider them swapped before reporting the reloads. Update the
3870 operand numbers of any reloads already pushed. */
3872 if (goal_alternative_swapped
)
3874 std::swap (substed_operand
[commutative
],
3875 substed_operand
[commutative
+ 1]);
3876 std::swap (recog_data
.operand
[commutative
],
3877 recog_data
.operand
[commutative
+ 1]);
3878 std::swap (*recog_data
.operand_loc
[commutative
],
3879 *recog_data
.operand_loc
[commutative
+ 1]);
3881 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3882 if (recog_data
.dup_num
[i
] == commutative
3883 || recog_data
.dup_num
[i
] == commutative
+ 1)
3884 *recog_data
.dup_loc
[i
]
3885 = recog_data
.operand
[(int) recog_data
.dup_num
[i
]];
3887 for (i
= 0; i
< n_reloads
; i
++)
3889 if (rld
[i
].opnum
== commutative
)
3890 rld
[i
].opnum
= commutative
+ 1;
3891 else if (rld
[i
].opnum
== commutative
+ 1)
3892 rld
[i
].opnum
= commutative
;
3896 for (i
= 0; i
< noperands
; i
++)
3898 operand_reloadnum
[i
] = -1;
3900 /* If this is an earlyclobber operand, we need to widen the scope.
3901 The reload must remain valid from the start of the insn being
3902 reloaded until after the operand is stored into its destination.
3903 We approximate this with RELOAD_OTHER even though we know that we
3904 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3906 One special case that is worth checking is when we have an
3907 output that is earlyclobber but isn't used past the insn (typically
3908 a SCRATCH). In this case, we only need have the reload live
3909 through the insn itself, but not for any of our input or output
3911 But we must not accidentally narrow the scope of an existing
3912 RELOAD_OTHER reload - leave these alone.
3914 In any case, anything needed to address this operand can remain
3915 however they were previously categorized. */
3917 if (goal_alternative_earlyclobber
[i
] && operand_type
[i
] != RELOAD_OTHER
)
3919 = (find_reg_note (insn
, REG_UNUSED
, recog_data
.operand
[i
])
3920 ? RELOAD_FOR_INSN
: RELOAD_OTHER
);
3923 /* Any constants that aren't allowed and can't be reloaded
3924 into registers are here changed into memory references. */
3925 for (i
= 0; i
< noperands
; i
++)
3926 if (! goal_alternative_win
[i
])
3928 rtx op
= recog_data
.operand
[i
];
3929 rtx subreg
= NULL_RTX
;
3930 rtx plus
= NULL_RTX
;
3931 machine_mode mode
= operand_mode
[i
];
3933 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3934 push_reload so we have to let them pass here. */
3935 if (GET_CODE (op
) == SUBREG
)
3938 op
= SUBREG_REG (op
);
3939 mode
= GET_MODE (op
);
3942 if (GET_CODE (op
) == PLUS
)
3948 if (CONST_POOL_OK_P (mode
, op
)
3949 && ((targetm
.preferred_reload_class (op
, goal_alternative
[i
])
3951 || no_input_reloads
))
3953 int this_address_reloaded
;
3954 rtx tem
= force_const_mem (mode
, op
);
3956 /* If we stripped a SUBREG or a PLUS above add it back. */
3957 if (plus
!= NULL_RTX
)
3958 tem
= gen_rtx_PLUS (mode
, XEXP (plus
, 0), tem
);
3960 if (subreg
!= NULL_RTX
)
3961 tem
= gen_rtx_SUBREG (operand_mode
[i
], tem
, SUBREG_BYTE (subreg
));
3963 this_address_reloaded
= 0;
3964 substed_operand
[i
] = recog_data
.operand
[i
]
3965 = find_reloads_toplev (tem
, i
, address_type
[i
], ind_levels
,
3966 0, insn
, &this_address_reloaded
);
3968 /* If the alternative accepts constant pool refs directly
3969 there will be no reload needed at all. */
3970 if (plus
== NULL_RTX
3971 && subreg
== NULL_RTX
3972 && alternative_allows_const_pool_ref (this_address_reloaded
!= 1
3973 ? substed_operand
[i
]
3975 recog_data
.constraints
[i
],
3976 goal_alternative_number
))
3977 goal_alternative_win
[i
] = 1;
3981 /* Record the values of the earlyclobber operands for the caller. */
3982 if (goal_earlyclobber
)
3983 for (i
= 0; i
< noperands
; i
++)
3984 if (goal_alternative_earlyclobber
[i
])
3985 reload_earlyclobbers
[n_earlyclobbers
++] = recog_data
.operand
[i
];
3987 /* Now record reloads for all the operands that need them. */
3988 for (i
= 0; i
< noperands
; i
++)
3989 if (! goal_alternative_win
[i
])
3991 /* Operands that match previous ones have already been handled. */
3992 if (goal_alternative_matches
[i
] >= 0)
3994 /* Handle an operand with a nonoffsettable address
3995 appearing where an offsettable address will do
3996 by reloading the address into a base register.
3998 ??? We can also do this when the operand is a register and
3999 reg_equiv_mem is not offsettable, but this is a bit tricky,
4000 so we don't bother with it. It may not be worth doing. */
4001 else if (goal_alternative_matched
[i
] == -1
4002 && goal_alternative_offmemok
[i
]
4003 && MEM_P (recog_data
.operand
[i
]))
4005 /* If the address to be reloaded is a VOIDmode constant,
4006 use the default address mode as mode of the reload register,
4007 as would have been done by find_reloads_address. */
4008 addr_space_t as
= MEM_ADDR_SPACE (recog_data
.operand
[i
]);
4009 machine_mode address_mode
;
4011 address_mode
= get_address_mode (recog_data
.operand
[i
]);
4012 operand_reloadnum
[i
]
4013 = push_reload (XEXP (recog_data
.operand
[i
], 0), NULL_RTX
,
4014 &XEXP (recog_data
.operand
[i
], 0), (rtx
*) 0,
4015 base_reg_class (VOIDmode
, as
, MEM
, SCRATCH
, insn
),
4017 VOIDmode
, 0, 0, i
, RELOAD_OTHER
);
4018 rld
[operand_reloadnum
[i
]].inc
4019 = GET_MODE_SIZE (GET_MODE (recog_data
.operand
[i
]));
4021 /* If this operand is an output, we will have made any
4022 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4023 now we are treating part of the operand as an input, so
4024 we must change these to RELOAD_FOR_OTHER_ADDRESS. */
4026 if (modified
[i
] == RELOAD_WRITE
)
4028 for (j
= 0; j
< n_reloads
; j
++)
4030 if (rld
[j
].opnum
== i
)
4032 if (rld
[j
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
)
4033 rld
[j
].when_needed
= RELOAD_FOR_OTHER_ADDRESS
;
4034 else if (rld
[j
].when_needed
4035 == RELOAD_FOR_OUTADDR_ADDRESS
)
4036 rld
[j
].when_needed
= RELOAD_FOR_OTHER_ADDRESS
;
4041 else if (goal_alternative_matched
[i
] == -1)
4043 operand_reloadnum
[i
]
4044 = push_reload ((modified
[i
] != RELOAD_WRITE
4045 ? recog_data
.operand
[i
] : 0),
4046 (modified
[i
] != RELOAD_READ
4047 ? recog_data
.operand
[i
] : 0),
4048 (modified
[i
] != RELOAD_WRITE
4049 ? recog_data
.operand_loc
[i
] : 0),
4050 (modified
[i
] != RELOAD_READ
4051 ? recog_data
.operand_loc
[i
] : 0),
4052 (enum reg_class
) goal_alternative
[i
],
4053 (modified
[i
] == RELOAD_WRITE
4054 ? VOIDmode
: operand_mode
[i
]),
4055 (modified
[i
] == RELOAD_READ
4056 ? VOIDmode
: operand_mode
[i
]),
4057 (insn_code_number
< 0 ? 0
4058 : insn_data
[insn_code_number
].operand
[i
].strict_low
),
4059 0, i
, operand_type
[i
]);
4061 /* In a matching pair of operands, one must be input only
4062 and the other must be output only.
4063 Pass the input operand as IN and the other as OUT. */
4064 else if (modified
[i
] == RELOAD_READ
4065 && modified
[goal_alternative_matched
[i
]] == RELOAD_WRITE
)
4067 operand_reloadnum
[i
]
4068 = push_reload (recog_data
.operand
[i
],
4069 recog_data
.operand
[goal_alternative_matched
[i
]],
4070 recog_data
.operand_loc
[i
],
4071 recog_data
.operand_loc
[goal_alternative_matched
[i
]],
4072 (enum reg_class
) goal_alternative
[i
],
4074 operand_mode
[goal_alternative_matched
[i
]],
4075 0, 0, i
, RELOAD_OTHER
);
4076 operand_reloadnum
[goal_alternative_matched
[i
]] = output_reloadnum
;
4078 else if (modified
[i
] == RELOAD_WRITE
4079 && modified
[goal_alternative_matched
[i
]] == RELOAD_READ
)
4081 operand_reloadnum
[goal_alternative_matched
[i
]]
4082 = push_reload (recog_data
.operand
[goal_alternative_matched
[i
]],
4083 recog_data
.operand
[i
],
4084 recog_data
.operand_loc
[goal_alternative_matched
[i
]],
4085 recog_data
.operand_loc
[i
],
4086 (enum reg_class
) goal_alternative
[i
],
4087 operand_mode
[goal_alternative_matched
[i
]],
4089 0, 0, i
, RELOAD_OTHER
);
4090 operand_reloadnum
[i
] = output_reloadnum
;
4094 gcc_assert (insn_code_number
< 0);
4095 error_for_asm (insn
, "inconsistent operand constraints "
4097 /* Avoid further trouble with this insn. */
4098 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
4103 else if (goal_alternative_matched
[i
] < 0
4104 && goal_alternative_matches
[i
] < 0
4105 && address_operand_reloaded
[i
] != 1
4108 /* For each non-matching operand that's a MEM or a pseudo-register
4109 that didn't get a hard register, make an optional reload.
4110 This may get done even if the insn needs no reloads otherwise. */
4112 rtx operand
= recog_data
.operand
[i
];
4114 while (GET_CODE (operand
) == SUBREG
)
4115 operand
= SUBREG_REG (operand
);
4116 if ((MEM_P (operand
)
4118 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
4119 /* If this is only for an output, the optional reload would not
4120 actually cause us to use a register now, just note that
4121 something is stored here. */
4122 && (goal_alternative
[i
] != NO_REGS
4123 || modified
[i
] == RELOAD_WRITE
)
4124 && ! no_input_reloads
4125 /* An optional output reload might allow to delete INSN later.
4126 We mustn't make in-out reloads on insns that are not permitted
4128 If this is an asm, we can't delete it; we must not even call
4129 push_reload for an optional output reload in this case,
4130 because we can't be sure that the constraint allows a register,
4131 and push_reload verifies the constraints for asms. */
4132 && (modified
[i
] == RELOAD_READ
4133 || (! no_output_reloads
&& ! this_insn_is_asm
)))
4134 operand_reloadnum
[i
]
4135 = push_reload ((modified
[i
] != RELOAD_WRITE
4136 ? recog_data
.operand
[i
] : 0),
4137 (modified
[i
] != RELOAD_READ
4138 ? recog_data
.operand
[i
] : 0),
4139 (modified
[i
] != RELOAD_WRITE
4140 ? recog_data
.operand_loc
[i
] : 0),
4141 (modified
[i
] != RELOAD_READ
4142 ? recog_data
.operand_loc
[i
] : 0),
4143 (enum reg_class
) goal_alternative
[i
],
4144 (modified
[i
] == RELOAD_WRITE
4145 ? VOIDmode
: operand_mode
[i
]),
4146 (modified
[i
] == RELOAD_READ
4147 ? VOIDmode
: operand_mode
[i
]),
4148 (insn_code_number
< 0 ? 0
4149 : insn_data
[insn_code_number
].operand
[i
].strict_low
),
4150 1, i
, operand_type
[i
]);
4151 /* If a memory reference remains (either as a MEM or a pseudo that
4152 did not get a hard register), yet we can't make an optional
4153 reload, check if this is actually a pseudo register reference;
4154 we then need to emit a USE and/or a CLOBBER so that reload
4155 inheritance will do the right thing. */
4159 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
4160 && reg_renumber
[REGNO (operand
)] < 0)))
4162 operand
= *recog_data
.operand_loc
[i
];
4164 while (GET_CODE (operand
) == SUBREG
)
4165 operand
= SUBREG_REG (operand
);
4166 if (REG_P (operand
))
4168 if (modified
[i
] != RELOAD_WRITE
)
4169 /* We mark the USE with QImode so that we recognize
4170 it as one that can be safely deleted at the end
4172 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
, operand
),
4174 if (modified
[i
] != RELOAD_READ
)
4175 emit_insn_after (gen_clobber (operand
), insn
);
4179 else if (goal_alternative_matches
[i
] >= 0
4180 && goal_alternative_win
[goal_alternative_matches
[i
]]
4181 && modified
[i
] == RELOAD_READ
4182 && modified
[goal_alternative_matches
[i
]] == RELOAD_WRITE
4183 && ! no_input_reloads
&& ! no_output_reloads
4186 /* Similarly, make an optional reload for a pair of matching
4187 objects that are in MEM or a pseudo that didn't get a hard reg. */
4189 rtx operand
= recog_data
.operand
[i
];
4191 while (GET_CODE (operand
) == SUBREG
)
4192 operand
= SUBREG_REG (operand
);
4193 if ((MEM_P (operand
)
4195 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
4196 && (goal_alternative
[goal_alternative_matches
[i
]] != NO_REGS
))
4197 operand_reloadnum
[i
] = operand_reloadnum
[goal_alternative_matches
[i
]]
4198 = push_reload (recog_data
.operand
[goal_alternative_matches
[i
]],
4199 recog_data
.operand
[i
],
4200 recog_data
.operand_loc
[goal_alternative_matches
[i
]],
4201 recog_data
.operand_loc
[i
],
4202 (enum reg_class
) goal_alternative
[goal_alternative_matches
[i
]],
4203 operand_mode
[goal_alternative_matches
[i
]],
4205 0, 1, goal_alternative_matches
[i
], RELOAD_OTHER
);
4208 /* Perform whatever substitutions on the operands we are supposed
4209 to make due to commutativity or replacement of registers
4210 with equivalent constants or memory slots. */
4212 for (i
= 0; i
< noperands
; i
++)
4214 /* We only do this on the last pass through reload, because it is
4215 possible for some data (like reg_equiv_address) to be changed during
4216 later passes. Moreover, we lose the opportunity to get a useful
4217 reload_{in,out}_reg when we do these replacements. */
4221 rtx substitution
= substed_operand
[i
];
4223 *recog_data
.operand_loc
[i
] = substitution
;
4225 /* If we're replacing an operand with a LABEL_REF, we need to
4226 make sure that there's a REG_LABEL_OPERAND note attached to
4227 this instruction. */
4228 if (GET_CODE (substitution
) == LABEL_REF
4229 && !find_reg_note (insn
, REG_LABEL_OPERAND
,
4230 label_ref_label (substitution
))
4231 /* For a JUMP_P, if it was a branch target it must have
4232 already been recorded as such. */
4234 || !label_is_jump_target_p (label_ref_label (substitution
),
4237 add_reg_note (insn
, REG_LABEL_OPERAND
,
4238 label_ref_label (substitution
));
4239 if (LABEL_P (label_ref_label (substitution
)))
4240 ++LABEL_NUSES (label_ref_label (substitution
));
4245 retval
|= (substed_operand
[i
] != *recog_data
.operand_loc
[i
]);
4248 /* If this insn pattern contains any MATCH_DUP's, make sure that
4249 they will be substituted if the operands they match are substituted.
4250 Also do now any substitutions we already did on the operands.
4252 Don't do this if we aren't making replacements because we might be
4253 propagating things allocated by frame pointer elimination into places
4254 it doesn't expect. */
4256 if (insn_code_number
>= 0 && replace
)
4257 for (i
= insn_data
[insn_code_number
].n_dups
- 1; i
>= 0; i
--)
4259 int opno
= recog_data
.dup_num
[i
];
4260 *recog_data
.dup_loc
[i
] = *recog_data
.operand_loc
[opno
];
4261 dup_replacements (recog_data
.dup_loc
[i
], recog_data
.operand_loc
[opno
]);
4265 /* This loses because reloading of prior insns can invalidate the equivalence
4266 (or at least find_equiv_reg isn't smart enough to find it any more),
4267 causing this insn to need more reload regs than it needed before.
4268 It may be too late to make the reload regs available.
4269 Now this optimization is done safely in choose_reload_regs. */
4271 /* For each reload of a reg into some other class of reg,
4272 search for an existing equivalent reg (same value now) in the right class.
4273 We can use it as long as we don't need to change its contents. */
4274 for (i
= 0; i
< n_reloads
; i
++)
4275 if (rld
[i
].reg_rtx
== 0
4277 && REG_P (rld
[i
].in
)
4281 = find_equiv_reg (rld
[i
].in
, insn
, rld
[i
].rclass
, -1,
4282 static_reload_reg_p
, 0, rld
[i
].inmode
);
4283 /* Prevent generation of insn to load the value
4284 because the one we found already has the value. */
4286 rld
[i
].in
= rld
[i
].reg_rtx
;
4290 /* If we detected error and replaced asm instruction by USE, forget about the
4292 if (GET_CODE (PATTERN (insn
)) == USE
4293 && CONST_INT_P (XEXP (PATTERN (insn
), 0)))
4296 /* Perhaps an output reload can be combined with another
4297 to reduce needs by one. */
4298 if (!goal_earlyclobber
)
4301 /* If we have a pair of reloads for parts of an address, they are reloading
4302 the same object, the operands themselves were not reloaded, and they
4303 are for two operands that are supposed to match, merge the reloads and
4304 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4306 for (i
= 0; i
< n_reloads
; i
++)
4310 for (j
= i
+ 1; j
< n_reloads
; j
++)
4311 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4312 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
4313 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4314 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4315 && (rld
[j
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4316 || rld
[j
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
4317 || rld
[j
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4318 || rld
[j
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4319 && rtx_equal_p (rld
[i
].in
, rld
[j
].in
)
4320 && (operand_reloadnum
[rld
[i
].opnum
] < 0
4321 || rld
[operand_reloadnum
[rld
[i
].opnum
]].optional
)
4322 && (operand_reloadnum
[rld
[j
].opnum
] < 0
4323 || rld
[operand_reloadnum
[rld
[j
].opnum
]].optional
)
4324 && (goal_alternative_matches
[rld
[i
].opnum
] == rld
[j
].opnum
4325 || (goal_alternative_matches
[rld
[j
].opnum
]
4328 for (k
= 0; k
< n_replacements
; k
++)
4329 if (replacements
[k
].what
== j
)
4330 replacements
[k
].what
= i
;
4332 if (rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4333 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4334 rld
[i
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
4336 rld
[i
].when_needed
= RELOAD_FOR_OPERAND_ADDRESS
;
4341 /* Scan all the reloads and update their type.
4342 If a reload is for the address of an operand and we didn't reload
4343 that operand, change the type. Similarly, change the operand number
4344 of a reload when two operands match. If a reload is optional, treat it
4345 as though the operand isn't reloaded.
4347 ??? This latter case is somewhat odd because if we do the optional
4348 reload, it means the object is hanging around. Thus we need only
4349 do the address reload if the optional reload was NOT done.
4351 Change secondary reloads to be the address type of their operand, not
4354 If an operand's reload is now RELOAD_OTHER, change any
4355 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4356 RELOAD_FOR_OTHER_ADDRESS. */
4358 for (i
= 0; i
< n_reloads
; i
++)
4360 if (rld
[i
].secondary_p
4361 && rld
[i
].when_needed
== operand_type
[rld
[i
].opnum
])
4362 rld
[i
].when_needed
= address_type
[rld
[i
].opnum
];
4364 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4365 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
4366 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4367 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4368 && (operand_reloadnum
[rld
[i
].opnum
] < 0
4369 || rld
[operand_reloadnum
[rld
[i
].opnum
]].optional
))
4371 /* If we have a secondary reload to go along with this reload,
4372 change its type to RELOAD_FOR_OPADDR_ADDR. */
4374 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4375 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
)
4376 && rld
[i
].secondary_in_reload
!= -1)
4378 int secondary_in_reload
= rld
[i
].secondary_in_reload
;
4380 rld
[secondary_in_reload
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
4382 /* If there's a tertiary reload we have to change it also. */
4383 if (secondary_in_reload
> 0
4384 && rld
[secondary_in_reload
].secondary_in_reload
!= -1)
4385 rld
[rld
[secondary_in_reload
].secondary_in_reload
].when_needed
4386 = RELOAD_FOR_OPADDR_ADDR
;
4389 if ((rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
4390 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4391 && rld
[i
].secondary_out_reload
!= -1)
4393 int secondary_out_reload
= rld
[i
].secondary_out_reload
;
4395 rld
[secondary_out_reload
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
4397 /* If there's a tertiary reload we have to change it also. */
4398 if (secondary_out_reload
4399 && rld
[secondary_out_reload
].secondary_out_reload
!= -1)
4400 rld
[rld
[secondary_out_reload
].secondary_out_reload
].when_needed
4401 = RELOAD_FOR_OPADDR_ADDR
;
4404 if (rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
4405 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
4406 rld
[i
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
4408 rld
[i
].when_needed
= RELOAD_FOR_OPERAND_ADDRESS
;
4411 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
4412 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
)
4413 && operand_reloadnum
[rld
[i
].opnum
] >= 0
4414 && (rld
[operand_reloadnum
[rld
[i
].opnum
]].when_needed
4416 rld
[i
].when_needed
= RELOAD_FOR_OTHER_ADDRESS
;
4418 if (goal_alternative_matches
[rld
[i
].opnum
] >= 0)
4419 rld
[i
].opnum
= goal_alternative_matches
[rld
[i
].opnum
];
4422 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4423 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4424 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4426 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4427 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4428 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4429 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4430 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4431 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4432 This is complicated by the fact that a single operand can have more
4433 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4434 choose_reload_regs without affecting code quality, and cases that
4435 actually fail are extremely rare, so it turns out to be better to fix
4436 the problem here by not generating cases that choose_reload_regs will
4438 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4439 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4441 We can reduce the register pressure by exploiting that a
4442 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4443 does not conflict with any of them, if it is only used for the first of
4444 the RELOAD_FOR_X_ADDRESS reloads. */
4446 int first_op_addr_num
= -2;
4447 int first_inpaddr_num
[MAX_RECOG_OPERANDS
];
4448 int first_outpaddr_num
[MAX_RECOG_OPERANDS
];
4449 int need_change
= 0;
4450 /* We use last_op_addr_reload and the contents of the above arrays
4451 first as flags - -2 means no instance encountered, -1 means exactly
4452 one instance encountered.
4453 If more than one instance has been encountered, we store the reload
4454 number of the first reload of the kind in question; reload numbers
4455 are known to be non-negative. */
4456 for (i
= 0; i
< noperands
; i
++)
4457 first_inpaddr_num
[i
] = first_outpaddr_num
[i
] = -2;
4458 for (i
= n_reloads
- 1; i
>= 0; i
--)
4460 switch (rld
[i
].when_needed
)
4462 case RELOAD_FOR_OPERAND_ADDRESS
:
4463 if (++first_op_addr_num
>= 0)
4465 first_op_addr_num
= i
;
4469 case RELOAD_FOR_INPUT_ADDRESS
:
4470 if (++first_inpaddr_num
[rld
[i
].opnum
] >= 0)
4472 first_inpaddr_num
[rld
[i
].opnum
] = i
;
4476 case RELOAD_FOR_OUTPUT_ADDRESS
:
4477 if (++first_outpaddr_num
[rld
[i
].opnum
] >= 0)
4479 first_outpaddr_num
[rld
[i
].opnum
] = i
;
4490 for (i
= 0; i
< n_reloads
; i
++)
4493 enum reload_type type
;
4495 switch (rld
[i
].when_needed
)
4497 case RELOAD_FOR_OPADDR_ADDR
:
4498 first_num
= first_op_addr_num
;
4499 type
= RELOAD_FOR_OPERAND_ADDRESS
;
4501 case RELOAD_FOR_INPADDR_ADDRESS
:
4502 first_num
= first_inpaddr_num
[rld
[i
].opnum
];
4503 type
= RELOAD_FOR_INPUT_ADDRESS
;
4505 case RELOAD_FOR_OUTADDR_ADDRESS
:
4506 first_num
= first_outpaddr_num
[rld
[i
].opnum
];
4507 type
= RELOAD_FOR_OUTPUT_ADDRESS
;
4514 else if (i
> first_num
)
4515 rld
[i
].when_needed
= type
;
4518 /* Check if the only TYPE reload that uses reload I is
4519 reload FIRST_NUM. */
4520 for (j
= n_reloads
- 1; j
> first_num
; j
--)
4522 if (rld
[j
].when_needed
== type
4523 && (rld
[i
].secondary_p
4524 ? rld
[j
].secondary_in_reload
== i
4525 : reg_mentioned_p (rld
[i
].in
, rld
[j
].in
)))
4527 rld
[i
].when_needed
= type
;
4536 /* See if we have any reloads that are now allowed to be merged
4537 because we've changed when the reload is needed to
4538 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4539 check for the most common cases. */
4541 for (i
= 0; i
< n_reloads
; i
++)
4542 if (rld
[i
].in
!= 0 && rld
[i
].out
== 0
4543 && (rld
[i
].when_needed
== RELOAD_FOR_OPERAND_ADDRESS
4544 || rld
[i
].when_needed
== RELOAD_FOR_OPADDR_ADDR
4545 || rld
[i
].when_needed
== RELOAD_FOR_OTHER_ADDRESS
))
4546 for (j
= 0; j
< n_reloads
; j
++)
4547 if (i
!= j
&& rld
[j
].in
!= 0 && rld
[j
].out
== 0
4548 && rld
[j
].when_needed
== rld
[i
].when_needed
4549 && MATCHES (rld
[i
].in
, rld
[j
].in
)
4550 && rld
[i
].rclass
== rld
[j
].rclass
4551 && !rld
[i
].nocombine
&& !rld
[j
].nocombine
4552 && rld
[i
].reg_rtx
== rld
[j
].reg_rtx
)
4554 rld
[i
].opnum
= MIN (rld
[i
].opnum
, rld
[j
].opnum
);
4555 transfer_replacements (i
, j
);
4559 /* Compute reload_mode and reload_nregs. */
4560 for (i
= 0; i
< n_reloads
; i
++)
4562 rld
[i
].mode
= rld
[i
].inmode
;
4563 if (rld
[i
].mode
== VOIDmode
4564 || partial_subreg_p (rld
[i
].mode
, rld
[i
].outmode
))
4565 rld
[i
].mode
= rld
[i
].outmode
;
4567 rld
[i
].nregs
= ira_reg_class_max_nregs
[rld
[i
].rclass
][rld
[i
].mode
];
4570 /* Special case a simple move with an input reload and a
4571 destination of a hard reg, if the hard reg is ok, use it. */
4572 for (i
= 0; i
< n_reloads
; i
++)
4573 if (rld
[i
].when_needed
== RELOAD_FOR_INPUT
4574 && GET_CODE (PATTERN (insn
)) == SET
4575 && REG_P (SET_DEST (PATTERN (insn
)))
4576 && (SET_SRC (PATTERN (insn
)) == rld
[i
].in
4577 || SET_SRC (PATTERN (insn
)) == rld
[i
].in_reg
)
4578 && !elimination_target_reg_p (SET_DEST (PATTERN (insn
))))
4580 rtx dest
= SET_DEST (PATTERN (insn
));
4581 unsigned int regno
= REGNO (dest
);
4583 if (regno
< FIRST_PSEUDO_REGISTER
4584 && TEST_HARD_REG_BIT (reg_class_contents
[rld
[i
].rclass
], regno
)
4585 && targetm
.hard_regno_mode_ok (regno
, rld
[i
].mode
))
4587 int nr
= hard_regno_nregs (regno
, rld
[i
].mode
);
4590 for (nri
= 1; nri
< nr
; nri
++)
4591 if (! TEST_HARD_REG_BIT (reg_class_contents
[rld
[i
].rclass
], regno
+ nri
))
4598 rld
[i
].reg_rtx
= dest
;
4605 /* Return true if alternative number ALTNUM in constraint-string
4606 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4607 MEM gives the reference if its address hasn't been fully reloaded,
4608 otherwise it is NULL. */
4611 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED
,
4612 const char *constraint
, int altnum
)
4616 /* Skip alternatives before the one requested. */
4619 while (*constraint
++ != ',')
4623 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4624 If one of them is present, this alternative accepts the result of
4625 passing a constant-pool reference through find_reloads_toplev.
4627 The same is true of extra memory constraints if the address
4628 was reloaded into a register. However, the target may elect
4629 to disallow the original constant address, forcing it to be
4630 reloaded into a register instead. */
4631 for (; (c
= *constraint
) && c
!= ',' && c
!= '#';
4632 constraint
+= CONSTRAINT_LEN (c
, constraint
))
4634 enum constraint_num cn
= lookup_constraint (constraint
);
4635 if (insn_extra_memory_constraint (cn
)
4636 && (mem
== NULL
|| constraint_satisfied_p (mem
, cn
)))
4642 /* Scan X for memory references and scan the addresses for reloading.
4643 Also checks for references to "constant" regs that we want to eliminate
4644 and replaces them with the values they stand for.
4645 We may alter X destructively if it contains a reference to such.
4646 If X is just a constant reg, we return the equivalent value
4649 IND_LEVELS says how many levels of indirect addressing this machine
4652 OPNUM and TYPE identify the purpose of the reload.
4654 IS_SET_DEST is true if X is the destination of a SET, which is not
4655 appropriate to be replaced by a constant.
4657 INSN, if nonzero, is the insn in which we do the reload. It is used
4658 to determine if we may generate output reloads, and where to put USEs
4659 for pseudos that we have to replace with stack slots.
4661 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4662 result of find_reloads_address. */
4665 find_reloads_toplev (rtx x
, int opnum
, enum reload_type type
,
4666 int ind_levels
, int is_set_dest
, rtx_insn
*insn
,
4667 int *address_reloaded
)
4669 RTX_CODE code
= GET_CODE (x
);
4671 const char *fmt
= GET_RTX_FORMAT (code
);
4677 /* This code is duplicated for speed in find_reloads. */
4678 int regno
= REGNO (x
);
4679 if (reg_equiv_constant (regno
) != 0 && !is_set_dest
)
4680 x
= reg_equiv_constant (regno
);
4682 /* This creates (subreg (mem...)) which would cause an unnecessary
4683 reload of the mem. */
4684 else if (reg_equiv_mem (regno
) != 0)
4685 x
= reg_equiv_mem (regno
);
4687 else if (reg_equiv_memory_loc (regno
)
4688 && (reg_equiv_address (regno
) != 0 || num_not_at_initial_offset
))
4690 rtx mem
= make_memloc (x
, regno
);
4691 if (reg_equiv_address (regno
)
4692 || ! rtx_equal_p (mem
, reg_equiv_mem (regno
)))
4694 /* If this is not a toplevel operand, find_reloads doesn't see
4695 this substitution. We have to emit a USE of the pseudo so
4696 that delete_output_reload can see it. */
4697 if (replace_reloads
&& recog_data
.operand
[opnum
] != x
)
4698 /* We mark the USE with QImode so that we recognize it
4699 as one that can be safely deleted at the end of
4701 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
, x
), insn
),
4704 i
= find_reloads_address (GET_MODE (x
), &x
, XEXP (x
, 0), &XEXP (x
, 0),
4705 opnum
, type
, ind_levels
, insn
);
4706 if (!rtx_equal_p (x
, mem
))
4707 push_reg_equiv_alt_mem (regno
, x
);
4708 if (address_reloaded
)
4709 *address_reloaded
= i
;
4718 i
= find_reloads_address (GET_MODE (x
), &tem
, XEXP (x
, 0), &XEXP (x
, 0),
4719 opnum
, type
, ind_levels
, insn
);
4720 if (address_reloaded
)
4721 *address_reloaded
= i
;
4726 if (code
== SUBREG
&& REG_P (SUBREG_REG (x
)))
4728 /* Check for SUBREG containing a REG that's equivalent to a
4729 constant. If the constant has a known value, truncate it
4730 right now. Similarly if we are extracting a single-word of a
4731 multi-word constant. If the constant is symbolic, allow it
4732 to be substituted normally. push_reload will strip the
4733 subreg later. The constant must not be VOIDmode, because we
4734 will lose the mode of the register (this should never happen
4735 because one of the cases above should handle it). */
4737 int regno
= REGNO (SUBREG_REG (x
));
4740 if (regno
>= FIRST_PSEUDO_REGISTER
4741 && reg_renumber
[regno
] < 0
4742 && reg_equiv_constant (regno
) != 0)
4745 simplify_gen_subreg (GET_MODE (x
), reg_equiv_constant (regno
),
4746 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
4748 if (CONSTANT_P (tem
)
4749 && !targetm
.legitimate_constant_p (GET_MODE (x
), tem
))
4751 tem
= force_const_mem (GET_MODE (x
), tem
);
4752 i
= find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
4753 &XEXP (tem
, 0), opnum
, type
,
4755 if (address_reloaded
)
4756 *address_reloaded
= i
;
4761 /* If the subreg contains a reg that will be converted to a mem,
4762 attempt to convert the whole subreg to a (narrower or wider)
4763 memory reference instead. If this succeeds, we're done --
4764 otherwise fall through to check whether the inner reg still
4765 needs address reloads anyway. */
4767 if (regno
>= FIRST_PSEUDO_REGISTER
4768 && reg_equiv_memory_loc (regno
) != 0)
4770 tem
= find_reloads_subreg_address (x
, opnum
, type
, ind_levels
,
4771 insn
, address_reloaded
);
4777 for (copied
= 0, i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4781 rtx new_part
= find_reloads_toplev (XEXP (x
, i
), opnum
, type
,
4782 ind_levels
, is_set_dest
, insn
,
4784 /* If we have replaced a reg with it's equivalent memory loc -
4785 that can still be handled here e.g. if it's in a paradoxical
4786 subreg - we must make the change in a copy, rather than using
4787 a destructive change. This way, find_reloads can still elect
4788 not to do the change. */
4789 if (new_part
!= XEXP (x
, i
) && ! CONSTANT_P (new_part
) && ! copied
)
4791 x
= shallow_copy_rtx (x
);
4794 XEXP (x
, i
) = new_part
;
4800 /* Return a mem ref for the memory equivalent of reg REGNO.
4801 This mem ref is not shared with anything. */
4804 make_memloc (rtx ad
, int regno
)
4806 /* We must rerun eliminate_regs, in case the elimination
4807 offsets have changed. */
4809 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno
), VOIDmode
, NULL_RTX
),
4812 /* If TEM might contain a pseudo, we must copy it to avoid
4813 modifying it when we do the substitution for the reload. */
4814 if (rtx_varies_p (tem
, 0))
4815 tem
= copy_rtx (tem
);
4817 tem
= replace_equiv_address_nv (reg_equiv_memory_loc (regno
), tem
);
4818 tem
= adjust_address_nv (tem
, GET_MODE (ad
), 0);
4820 /* Copy the result if it's still the same as the equivalence, to avoid
4821 modifying it when we do the substitution for the reload. */
4822 if (tem
== reg_equiv_memory_loc (regno
))
4823 tem
= copy_rtx (tem
);
4827 /* Returns true if AD could be turned into a valid memory reference
4828 to mode MODE in address space AS by reloading the part pointed to
4829 by PART into a register. */
4832 maybe_memory_address_addr_space_p (machine_mode mode
, rtx ad
,
4833 addr_space_t as
, rtx
*part
)
4837 rtx reg
= gen_rtx_REG (GET_MODE (tem
), max_reg_num ());
4840 retv
= memory_address_addr_space_p (mode
, ad
, as
);
4846 /* Record all reloads needed for handling memory address AD
4847 which appears in *LOC in a memory reference to mode MODE
4848 which itself is found in location *MEMREFLOC.
4849 Note that we take shortcuts assuming that no multi-reg machine mode
4850 occurs as part of an address.
4852 OPNUM and TYPE specify the purpose of this reload.
4854 IND_LEVELS says how many levels of indirect addressing this machine
4857 INSN, if nonzero, is the insn in which we do the reload. It is used
4858 to determine if we may generate output reloads, and where to put USEs
4859 for pseudos that we have to replace with stack slots.
4861 Value is one if this address is reloaded or replaced as a whole; it is
4862 zero if the top level of this address was not reloaded or replaced, and
4863 it is -1 if it may or may not have been reloaded or replaced.
4865 Note that there is no verification that the address will be valid after
4866 this routine does its work. Instead, we rely on the fact that the address
4867 was valid when reload started. So we need only undo things that reload
4868 could have broken. These are wrong register types, pseudos not allocated
4869 to a hard register, and frame pointer elimination. */
4872 find_reloads_address (machine_mode mode
, rtx
*memrefloc
, rtx ad
,
4873 rtx
*loc
, int opnum
, enum reload_type type
,
4874 int ind_levels
, rtx_insn
*insn
)
4876 addr_space_t as
= memrefloc
? MEM_ADDR_SPACE (*memrefloc
)
4877 : ADDR_SPACE_GENERIC
;
4879 int removed_and
= 0;
4883 /* If the address is a register, see if it is a legitimate address and
4884 reload if not. We first handle the cases where we need not reload
4885 or where we must reload in a non-standard way. */
4891 if (reg_equiv_constant (regno
) != 0)
4893 find_reloads_address_part (reg_equiv_constant (regno
), loc
,
4894 base_reg_class (mode
, as
, MEM
,
4896 GET_MODE (ad
), opnum
, type
, ind_levels
);
4900 tem
= reg_equiv_memory_loc (regno
);
4903 if (reg_equiv_address (regno
) != 0 || num_not_at_initial_offset
)
4905 tem
= make_memloc (ad
, regno
);
4906 if (! strict_memory_address_addr_space_p (GET_MODE (tem
),
4908 MEM_ADDR_SPACE (tem
)))
4912 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
4913 &XEXP (tem
, 0), opnum
,
4914 ADDR_TYPE (type
), ind_levels
, insn
);
4915 if (!rtx_equal_p (tem
, orig
))
4916 push_reg_equiv_alt_mem (regno
, tem
);
4918 /* We can avoid a reload if the register's equivalent memory
4919 expression is valid as an indirect memory address.
4920 But not all addresses are valid in a mem used as an indirect
4921 address: only reg or reg+constant. */
4924 && strict_memory_address_addr_space_p (mode
, tem
, as
)
4925 && (REG_P (XEXP (tem
, 0))
4926 || (GET_CODE (XEXP (tem
, 0)) == PLUS
4927 && REG_P (XEXP (XEXP (tem
, 0), 0))
4928 && CONSTANT_P (XEXP (XEXP (tem
, 0), 1)))))
4930 /* TEM is not the same as what we'll be replacing the
4931 pseudo with after reload, put a USE in front of INSN
4932 in the final reload pass. */
4934 && num_not_at_initial_offset
4935 && ! rtx_equal_p (tem
, reg_equiv_mem (regno
)))
4938 /* We mark the USE with QImode so that we
4939 recognize it as one that can be safely
4940 deleted at the end of reload. */
4941 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
, ad
),
4944 /* This doesn't really count as replacing the address
4945 as a whole, since it is still a memory access. */
4953 /* The only remaining case where we can avoid a reload is if this is a
4954 hard register that is valid as a base register and which is not the
4955 subject of a CLOBBER in this insn. */
4957 else if (regno
< FIRST_PSEUDO_REGISTER
4958 && regno_ok_for_base_p (regno
, mode
, as
, MEM
, SCRATCH
)
4959 && ! regno_clobbered_p (regno
, this_insn
, mode
, 0))
4962 /* If we do not have one of the cases above, we must do the reload. */
4963 push_reload (ad
, NULL_RTX
, loc
, (rtx
*) 0,
4964 base_reg_class (mode
, as
, MEM
, SCRATCH
, insn
),
4965 GET_MODE (ad
), VOIDmode
, 0, 0, opnum
, type
);
4969 if (strict_memory_address_addr_space_p (mode
, ad
, as
))
4971 /* The address appears valid, so reloads are not needed.
4972 But the address may contain an eliminable register.
4973 This can happen because a machine with indirect addressing
4974 may consider a pseudo register by itself a valid address even when
4975 it has failed to get a hard reg.
4976 So do a tree-walk to find and eliminate all such regs. */
4978 /* But first quickly dispose of a common case. */
4979 if (GET_CODE (ad
) == PLUS
4980 && CONST_INT_P (XEXP (ad
, 1))
4981 && REG_P (XEXP (ad
, 0))
4982 && reg_equiv_constant (REGNO (XEXP (ad
, 0))) == 0)
4985 subst_reg_equivs_changed
= 0;
4986 *loc
= subst_reg_equivs (ad
, insn
);
4988 if (! subst_reg_equivs_changed
)
4991 /* Check result for validity after substitution. */
4992 if (strict_memory_address_addr_space_p (mode
, ad
, as
))
4996 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4999 if (memrefloc
&& ADDR_SPACE_GENERIC_P (as
))
5001 LEGITIMIZE_RELOAD_ADDRESS (ad
, GET_MODE (*memrefloc
), opnum
, type
,
5006 *memrefloc
= copy_rtx (*memrefloc
);
5007 XEXP (*memrefloc
, 0) = ad
;
5008 move_replacements (&ad
, &XEXP (*memrefloc
, 0));
5014 /* The address is not valid. We have to figure out why. First see if
5015 we have an outer AND and remove it if so. Then analyze what's inside. */
5017 if (GET_CODE (ad
) == AND
)
5020 loc
= &XEXP (ad
, 0);
5024 /* One possibility for why the address is invalid is that it is itself
5025 a MEM. This can happen when the frame pointer is being eliminated, a
5026 pseudo is not allocated to a hard register, and the offset between the
5027 frame and stack pointers is not its initial value. In that case the
5028 pseudo will have been replaced by a MEM referring to the
5032 /* First ensure that the address in this MEM is valid. Then, unless
5033 indirect addresses are valid, reload the MEM into a register. */
5035 find_reloads_address (GET_MODE (ad
), &tem
, XEXP (ad
, 0), &XEXP (ad
, 0),
5036 opnum
, ADDR_TYPE (type
),
5037 ind_levels
== 0 ? 0 : ind_levels
- 1, insn
);
5039 /* If tem was changed, then we must create a new memory reference to
5040 hold it and store it back into memrefloc. */
5041 if (tem
!= ad
&& memrefloc
)
5043 *memrefloc
= copy_rtx (*memrefloc
);
5044 copy_replacements (tem
, XEXP (*memrefloc
, 0));
5045 loc
= &XEXP (*memrefloc
, 0);
5047 loc
= &XEXP (*loc
, 0);
5050 /* Check similar cases as for indirect addresses as above except
5051 that we can allow pseudos and a MEM since they should have been
5052 taken care of above. */
5055 || (GET_CODE (XEXP (tem
, 0)) == SYMBOL_REF
&& ! indirect_symref_ok
)
5056 || MEM_P (XEXP (tem
, 0))
5057 || ! (REG_P (XEXP (tem
, 0))
5058 || (GET_CODE (XEXP (tem
, 0)) == PLUS
5059 && REG_P (XEXP (XEXP (tem
, 0), 0))
5060 && CONST_INT_P (XEXP (XEXP (tem
, 0), 1)))))
5062 /* Must use TEM here, not AD, since it is the one that will
5063 have any subexpressions reloaded, if needed. */
5064 push_reload (tem
, NULL_RTX
, loc
, (rtx
*) 0,
5065 base_reg_class (mode
, as
, MEM
, SCRATCH
), GET_MODE (tem
),
5068 return ! removed_and
;
5074 /* If we have address of a stack slot but it's not valid because the
5075 displacement is too large, compute the sum in a register.
5076 Handle all base registers here, not just fp/ap/sp, because on some
5077 targets (namely SH) we can also get too large displacements from
5078 big-endian corrections. */
5079 else if (GET_CODE (ad
) == PLUS
5080 && REG_P (XEXP (ad
, 0))
5081 && REGNO (XEXP (ad
, 0)) < FIRST_PSEUDO_REGISTER
5082 && CONST_INT_P (XEXP (ad
, 1))
5083 && (regno_ok_for_base_p (REGNO (XEXP (ad
, 0)), mode
, as
, PLUS
,
5085 /* Similarly, if we were to reload the base register and the
5086 mem+offset address is still invalid, then we want to reload
5087 the whole address, not just the base register. */
5088 || ! maybe_memory_address_addr_space_p
5089 (mode
, ad
, as
, &(XEXP (ad
, 0)))))
5092 /* Unshare the MEM rtx so we can safely alter it. */
5095 *memrefloc
= copy_rtx (*memrefloc
);
5096 loc
= &XEXP (*memrefloc
, 0);
5098 loc
= &XEXP (*loc
, 0);
5101 if (double_reg_address_ok
[mode
]
5102 && regno_ok_for_base_p (REGNO (XEXP (ad
, 0)), mode
, as
,
5105 /* Unshare the sum as well. */
5106 *loc
= ad
= copy_rtx (ad
);
5108 /* Reload the displacement into an index reg.
5109 We assume the frame pointer or arg pointer is a base reg. */
5110 find_reloads_address_part (XEXP (ad
, 1), &XEXP (ad
, 1),
5111 index_reg_class (insn
), GET_MODE (ad
), opnum
,
5117 /* If the sum of two regs is not necessarily valid,
5118 reload the sum into a base reg.
5119 That will at least work. */
5120 find_reloads_address_part (ad
, loc
,
5121 base_reg_class (mode
, as
, MEM
,
5123 GET_MODE (ad
), opnum
, type
, ind_levels
);
5125 return ! removed_and
;
5128 /* If we have an indexed stack slot, there are three possible reasons why
5129 it might be invalid: The index might need to be reloaded, the address
5130 might have been made by frame pointer elimination and hence have a
5131 constant out of range, or both reasons might apply.
5133 We can easily check for an index needing reload, but even if that is the
5134 case, we might also have an invalid constant. To avoid making the
5135 conservative assumption and requiring two reloads, we see if this address
5136 is valid when not interpreted strictly. If it is, the only problem is
5137 that the index needs a reload and find_reloads_address_1 will take care
5140 Handle all base registers here, not just fp/ap/sp, because on some
5141 targets (namely SPARC) we can also get invalid addresses from preventive
5142 subreg big-endian corrections made by find_reloads_toplev. We
5143 can also get expressions involving LO_SUM (rather than PLUS) from
5144 find_reloads_subreg_address.
5146 If we decide to do something, it must be that `double_reg_address_ok'
5147 is true. We generate a reload of the base register + constant and
5148 rework the sum so that the reload register will be added to the index.
5149 This is safe because we know the address isn't shared.
5151 We check for the base register as both the first and second operand of
5152 the innermost PLUS and/or LO_SUM. */
5154 for (op_index
= 0; op_index
< 2; ++op_index
)
5156 rtx operand
, addend
;
5157 enum rtx_code inner_code
;
5159 if (GET_CODE (ad
) != PLUS
)
5162 inner_code
= GET_CODE (XEXP (ad
, 0));
5163 if (!(GET_CODE (ad
) == PLUS
5164 && CONST_INT_P (XEXP (ad
, 1))
5165 && (inner_code
== PLUS
|| inner_code
== LO_SUM
)))
5168 operand
= XEXP (XEXP (ad
, 0), op_index
);
5169 if (!REG_P (operand
) || REGNO (operand
) >= FIRST_PSEUDO_REGISTER
)
5172 addend
= XEXP (XEXP (ad
, 0), 1 - op_index
);
5174 if ((regno_ok_for_base_p (REGNO (operand
), mode
, as
, inner_code
,
5176 || operand
== frame_pointer_rtx
5177 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
5178 && operand
== hard_frame_pointer_rtx
)
5179 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
5180 && operand
== arg_pointer_rtx
)
5181 || operand
== stack_pointer_rtx
)
5182 && ! maybe_memory_address_addr_space_p
5183 (mode
, ad
, as
, &XEXP (XEXP (ad
, 0), 1 - op_index
)))
5188 offset_reg
= plus_constant (GET_MODE (ad
), operand
,
5189 INTVAL (XEXP (ad
, 1)));
5191 /* Form the adjusted address. */
5192 if (GET_CODE (XEXP (ad
, 0)) == PLUS
)
5193 ad
= gen_rtx_PLUS (GET_MODE (ad
),
5194 op_index
== 0 ? offset_reg
: addend
,
5195 op_index
== 0 ? addend
: offset_reg
);
5197 ad
= gen_rtx_LO_SUM (GET_MODE (ad
),
5198 op_index
== 0 ? offset_reg
: addend
,
5199 op_index
== 0 ? addend
: offset_reg
);
5202 cls
= base_reg_class (mode
, as
, MEM
, GET_CODE (addend
), insn
);
5203 find_reloads_address_part (XEXP (ad
, op_index
),
5204 &XEXP (ad
, op_index
), cls
,
5205 GET_MODE (ad
), opnum
, type
, ind_levels
);
5206 find_reloads_address_1 (mode
, as
,
5207 XEXP (ad
, 1 - op_index
), 1, GET_CODE (ad
),
5208 GET_CODE (XEXP (ad
, op_index
)),
5209 &XEXP (ad
, 1 - op_index
), opnum
,
5216 /* See if address becomes valid when an eliminable register
5217 in a sum is replaced. */
5220 if (GET_CODE (ad
) == PLUS
)
5221 tem
= subst_indexed_address (ad
);
5222 if (tem
!= ad
&& strict_memory_address_addr_space_p (mode
, tem
, as
))
5224 /* Ok, we win that way. Replace any additional eliminable
5227 subst_reg_equivs_changed
= 0;
5228 tem
= subst_reg_equivs (tem
, insn
);
5230 /* Make sure that didn't make the address invalid again. */
5232 if (! subst_reg_equivs_changed
5233 || strict_memory_address_addr_space_p (mode
, tem
, as
))
5240 /* If constants aren't valid addresses, reload the constant address
5242 if (CONSTANT_P (ad
) && ! strict_memory_address_addr_space_p (mode
, ad
, as
))
5244 machine_mode address_mode
= GET_MODE (ad
);
5245 if (address_mode
== VOIDmode
)
5246 address_mode
= targetm
.addr_space
.address_mode (as
);
5248 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5249 Unshare it so we can safely alter it. */
5250 if (memrefloc
&& GET_CODE (ad
) == SYMBOL_REF
5251 && CONSTANT_POOL_ADDRESS_P (ad
))
5253 *memrefloc
= copy_rtx (*memrefloc
);
5254 loc
= &XEXP (*memrefloc
, 0);
5256 loc
= &XEXP (*loc
, 0);
5259 find_reloads_address_part (ad
, loc
,
5260 base_reg_class (mode
, as
, MEM
,
5262 address_mode
, opnum
, type
, ind_levels
);
5263 return ! removed_and
;
5266 return find_reloads_address_1 (mode
, as
, ad
, 0, MEM
, SCRATCH
, loc
,
5267 opnum
, type
, ind_levels
, insn
);
5270 /* Find all pseudo regs appearing in AD
5271 that are eliminable in favor of equivalent values
5272 and do not have hard regs; replace them by their equivalents.
5273 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5274 front of it for pseudos that we have to replace with stack slots. */
5277 subst_reg_equivs (rtx ad
, rtx_insn
*insn
)
5279 RTX_CODE code
= GET_CODE (ad
);
5295 int regno
= REGNO (ad
);
5297 if (reg_equiv_constant (regno
) != 0)
5299 subst_reg_equivs_changed
= 1;
5300 return reg_equiv_constant (regno
);
5302 if (reg_equiv_memory_loc (regno
) && num_not_at_initial_offset
)
5304 rtx mem
= make_memloc (ad
, regno
);
5305 if (! rtx_equal_p (mem
, reg_equiv_mem (regno
)))
5307 subst_reg_equivs_changed
= 1;
5308 /* We mark the USE with QImode so that we recognize it
5309 as one that can be safely deleted at the end of
5311 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
, ad
), insn
),
5320 /* Quickly dispose of a common case. */
5321 if (XEXP (ad
, 0) == frame_pointer_rtx
5322 && CONST_INT_P (XEXP (ad
, 1)))
5330 fmt
= GET_RTX_FORMAT (code
);
5331 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5333 XEXP (ad
, i
) = subst_reg_equivs (XEXP (ad
, i
), insn
);
5337 /* Compute the sum of X and Y, making canonicalizations assumed in an
5338 address, namely: sum constant integers, surround the sum of two
5339 constants with a CONST, put the constant as the second operand, and
5340 group the constant on the outermost sum.
5342 This routine assumes both inputs are already in canonical form. */
5345 form_sum (machine_mode mode
, rtx x
, rtx y
)
5349 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
5350 gcc_assert (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
);
5352 if (CONST_INT_P (x
))
5353 return plus_constant (mode
, y
, INTVAL (x
));
5354 else if (CONST_INT_P (y
))
5355 return plus_constant (mode
, x
, INTVAL (y
));
5356 else if (CONSTANT_P (x
))
5357 tem
= x
, x
= y
, y
= tem
;
5359 if (GET_CODE (x
) == PLUS
&& CONSTANT_P (XEXP (x
, 1)))
5360 return form_sum (mode
, XEXP (x
, 0), form_sum (mode
, XEXP (x
, 1), y
));
5362 /* Note that if the operands of Y are specified in the opposite
5363 order in the recursive calls below, infinite recursion will occur. */
5364 if (GET_CODE (y
) == PLUS
&& CONSTANT_P (XEXP (y
, 1)))
5365 return form_sum (mode
, form_sum (mode
, x
, XEXP (y
, 0)), XEXP (y
, 1));
5367 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5368 constant will have been placed second. */
5369 if (CONSTANT_P (x
) && CONSTANT_P (y
))
5371 if (GET_CODE (x
) == CONST
)
5373 if (GET_CODE (y
) == CONST
)
5376 return gen_rtx_CONST (VOIDmode
, gen_rtx_PLUS (mode
, x
, y
));
5379 return gen_rtx_PLUS (mode
, x
, y
);
5382 /* If ADDR is a sum containing a pseudo register that should be
5383 replaced with a constant (from reg_equiv_constant),
5384 return the result of doing so, and also apply the associative
5385 law so that the result is more likely to be a valid address.
5386 (But it is not guaranteed to be one.)
5388 Note that at most one register is replaced, even if more are
5389 replaceable. Also, we try to put the result into a canonical form
5390 so it is more likely to be a valid address.
5392 In all other cases, return ADDR. */
5395 subst_indexed_address (rtx addr
)
5397 rtx op0
= 0, op1
= 0, op2
= 0;
5401 if (GET_CODE (addr
) == PLUS
)
5403 /* Try to find a register to replace. */
5404 op0
= XEXP (addr
, 0), op1
= XEXP (addr
, 1), op2
= 0;
5406 && (regno
= REGNO (op0
)) >= FIRST_PSEUDO_REGISTER
5407 && reg_renumber
[regno
] < 0
5408 && reg_equiv_constant (regno
) != 0)
5409 op0
= reg_equiv_constant (regno
);
5410 else if (REG_P (op1
)
5411 && (regno
= REGNO (op1
)) >= FIRST_PSEUDO_REGISTER
5412 && reg_renumber
[regno
] < 0
5413 && reg_equiv_constant (regno
) != 0)
5414 op1
= reg_equiv_constant (regno
);
5415 else if (GET_CODE (op0
) == PLUS
5416 && (tem
= subst_indexed_address (op0
)) != op0
)
5418 else if (GET_CODE (op1
) == PLUS
5419 && (tem
= subst_indexed_address (op1
)) != op1
)
5424 /* Pick out up to three things to add. */
5425 if (GET_CODE (op1
) == PLUS
)
5426 op2
= XEXP (op1
, 1), op1
= XEXP (op1
, 0);
5427 else if (GET_CODE (op0
) == PLUS
)
5428 op2
= op1
, op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
5430 /* Compute the sum. */
5432 op1
= form_sum (GET_MODE (addr
), op1
, op2
);
5434 op0
= form_sum (GET_MODE (addr
), op0
, op1
);
5441 /* Update the REG_INC notes for an insn. It updates all REG_INC
5442 notes for the instruction which refer to REGNO the to refer
5443 to the reload number.
5445 INSN is the insn for which any REG_INC notes need updating.
5447 REGNO is the register number which has been reloaded.
5449 RELOADNUM is the reload number. */
5452 update_auto_inc_notes (rtx_insn
*insn ATTRIBUTE_UNUSED
, int regno ATTRIBUTE_UNUSED
,
5453 int reloadnum ATTRIBUTE_UNUSED
)
5458 for (rtx link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5459 if (REG_NOTE_KIND (link
) == REG_INC
5460 && (int) REGNO (XEXP (link
, 0)) == regno
)
5461 push_replacement (&XEXP (link
, 0), reloadnum
, VOIDmode
);
5464 /* Record the pseudo registers we must reload into hard registers in a
5465 subexpression of a would-be memory address, X referring to a value
5466 in mode MODE. (This function is not called if the address we find
5469 CONTEXT = 1 means we are considering regs as index regs,
5470 = 0 means we are considering them as base regs.
5471 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5473 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5474 is the code of the index part of the address. Otherwise, pass SCRATCH
5476 OPNUM and TYPE specify the purpose of any reloads made.
5478 IND_LEVELS says how many levels of indirect addressing are
5479 supported at this point in the address.
5481 INSN, if nonzero, is the insn in which we do the reload. It is used
5482 to determine if we may generate output reloads.
5484 We return nonzero if X, as a whole, is reloaded or replaced. */
5486 /* Note that we take shortcuts assuming that no multi-reg machine mode
5487 occurs as part of an address.
5488 Also, this is not fully machine-customizable; it works for machines
5489 such as VAXen and 68000's and 32000's, but other possible machines
5490 could have addressing modes that this does not handle right.
5491 If you add push_reload calls here, you need to make sure gen_reload
5492 handles those cases gracefully. */
5495 find_reloads_address_1 (machine_mode mode
, addr_space_t as
,
5497 enum rtx_code outer_code
, enum rtx_code index_code
,
5498 rtx
*loc
, int opnum
, enum reload_type type
,
5499 int ind_levels
, rtx_insn
*insn
)
5501 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5503 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5504 : REGNO_OK_FOR_INDEX_P (REGNO))
5506 enum reg_class context_reg_class
;
5507 RTX_CODE code
= GET_CODE (x
);
5508 bool reloaded_inner_of_autoinc
= false;
5511 context_reg_class
= index_reg_class (insn
);
5513 context_reg_class
= base_reg_class (mode
, as
, outer_code
, index_code
,
5520 rtx orig_op0
= XEXP (x
, 0);
5521 rtx orig_op1
= XEXP (x
, 1);
5522 RTX_CODE code0
= GET_CODE (orig_op0
);
5523 RTX_CODE code1
= GET_CODE (orig_op1
);
5527 if (GET_CODE (op0
) == SUBREG
)
5529 op0
= SUBREG_REG (op0
);
5530 code0
= GET_CODE (op0
);
5531 if (code0
== REG
&& REGNO (op0
) < FIRST_PSEUDO_REGISTER
)
5532 op0
= gen_rtx_REG (word_mode
,
5534 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0
)),
5535 GET_MODE (SUBREG_REG (orig_op0
)),
5536 SUBREG_BYTE (orig_op0
),
5537 GET_MODE (orig_op0
))));
5540 if (GET_CODE (op1
) == SUBREG
)
5542 op1
= SUBREG_REG (op1
);
5543 code1
= GET_CODE (op1
);
5544 if (code1
== REG
&& REGNO (op1
) < FIRST_PSEUDO_REGISTER
)
5545 /* ??? Why is this given op1's mode and above for
5546 ??? op0 SUBREGs we use word_mode? */
5547 op1
= gen_rtx_REG (GET_MODE (op1
),
5549 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1
)),
5550 GET_MODE (SUBREG_REG (orig_op1
)),
5551 SUBREG_BYTE (orig_op1
),
5552 GET_MODE (orig_op1
))));
5554 /* Plus in the index register may be created only as a result of
5555 register rematerialization for expression like &localvar*4. Reload it.
5556 It may be possible to combine the displacement on the outer level,
5557 but it is probably not worthwhile to do so. */
5560 find_reloads_address (GET_MODE (x
), loc
, XEXP (x
, 0), &XEXP (x
, 0),
5561 opnum
, ADDR_TYPE (type
), ind_levels
, insn
);
5562 push_reload (*loc
, NULL_RTX
, loc
, (rtx
*) 0,
5564 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5568 if (code0
== MULT
|| code0
== ASHIFT
5569 || code0
== SIGN_EXTEND
|| code0
== TRUNCATE
5570 || code0
== ZERO_EXTEND
|| code1
== MEM
)
5572 find_reloads_address_1 (mode
, as
, orig_op0
, 1, PLUS
, SCRATCH
,
5573 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5575 find_reloads_address_1 (mode
, as
, orig_op1
, 0, PLUS
, code0
,
5576 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5580 else if (code1
== MULT
|| code1
== ASHIFT
5581 || code1
== SIGN_EXTEND
|| code1
== TRUNCATE
5582 || code1
== ZERO_EXTEND
|| code0
== MEM
)
5584 find_reloads_address_1 (mode
, as
, orig_op0
, 0, PLUS
, code1
,
5585 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5587 find_reloads_address_1 (mode
, as
, orig_op1
, 1, PLUS
, SCRATCH
,
5588 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5592 else if (code0
== CONST_INT
|| code0
== CONST
5593 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
5594 find_reloads_address_1 (mode
, as
, orig_op1
, 0, PLUS
, code0
,
5595 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5598 else if (code1
== CONST_INT
|| code1
== CONST
5599 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
5600 find_reloads_address_1 (mode
, as
, orig_op0
, 0, PLUS
, code1
,
5601 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5604 else if (code0
== REG
&& code1
== REG
)
5606 if (REGNO_OK_FOR_INDEX_P (REGNO (op1
))
5607 && regno_ok_for_base_p (REGNO (op0
), mode
, as
, PLUS
, REG
))
5609 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0
))
5610 && regno_ok_for_base_p (REGNO (op1
), mode
, as
, PLUS
, REG
))
5612 else if (regno_ok_for_base_p (REGNO (op0
), mode
, as
, PLUS
, REG
))
5613 find_reloads_address_1 (mode
, as
, orig_op1
, 1, PLUS
, SCRATCH
,
5614 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5616 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1
)))
5617 find_reloads_address_1 (mode
, as
, orig_op0
, 0, PLUS
, REG
,
5618 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5620 else if (regno_ok_for_base_p (REGNO (op1
), mode
, as
, PLUS
, REG
))
5621 find_reloads_address_1 (mode
, as
, orig_op0
, 1, PLUS
, SCRATCH
,
5622 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5624 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0
)))
5625 find_reloads_address_1 (mode
, as
, orig_op1
, 0, PLUS
, REG
,
5626 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5630 find_reloads_address_1 (mode
, as
, orig_op0
, 0, PLUS
, REG
,
5631 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5633 find_reloads_address_1 (mode
, as
, orig_op1
, 1, PLUS
, SCRATCH
,
5634 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5639 else if (code0
== REG
)
5641 find_reloads_address_1 (mode
, as
, orig_op0
, 1, PLUS
, SCRATCH
,
5642 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5644 find_reloads_address_1 (mode
, as
, orig_op1
, 0, PLUS
, REG
,
5645 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5649 else if (code1
== REG
)
5651 find_reloads_address_1 (mode
, as
, orig_op1
, 1, PLUS
, SCRATCH
,
5652 &XEXP (x
, 1), opnum
, type
, ind_levels
,
5654 find_reloads_address_1 (mode
, as
, orig_op0
, 0, PLUS
, REG
,
5655 &XEXP (x
, 0), opnum
, type
, ind_levels
,
5665 rtx op0
= XEXP (x
, 0);
5666 rtx op1
= XEXP (x
, 1);
5667 enum rtx_code index_code
;
5671 if (GET_CODE (op1
) != PLUS
&& GET_CODE (op1
) != MINUS
)
5674 /* Currently, we only support {PRE,POST}_MODIFY constructs
5675 where a base register is {inc,dec}remented by the contents
5676 of another register or by a constant value. Thus, these
5677 operands must match. */
5678 gcc_assert (op0
== XEXP (op1
, 0));
5680 /* Require index register (or constant). Let's just handle the
5681 register case in the meantime... If the target allows
5682 auto-modify by a constant then we could try replacing a pseudo
5683 register with its equivalent constant where applicable.
5685 We also handle the case where the register was eliminated
5686 resulting in a PLUS subexpression.
5688 If we later decide to reload the whole PRE_MODIFY or
5689 POST_MODIFY, inc_for_reload might clobber the reload register
5690 before reading the index. The index register might therefore
5691 need to live longer than a TYPE reload normally would, so be
5692 conservative and class it as RELOAD_OTHER. */
5693 if ((REG_P (XEXP (op1
, 1))
5694 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1
, 1))))
5695 || GET_CODE (XEXP (op1
, 1)) == PLUS
)
5696 find_reloads_address_1 (mode
, as
, XEXP (op1
, 1), 1, code
, SCRATCH
,
5697 &XEXP (op1
, 1), opnum
, RELOAD_OTHER
,
5700 gcc_assert (REG_P (XEXP (op1
, 0)));
5702 regno
= REGNO (XEXP (op1
, 0));
5703 index_code
= GET_CODE (XEXP (op1
, 1));
5705 /* A register that is incremented cannot be constant! */
5706 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
5707 || reg_equiv_constant (regno
) == 0);
5709 /* Handle a register that is equivalent to a memory location
5710 which cannot be addressed directly. */
5711 if (reg_equiv_memory_loc (regno
) != 0
5712 && (reg_equiv_address (regno
) != 0
5713 || num_not_at_initial_offset
))
5715 rtx tem
= make_memloc (XEXP (x
, 0), regno
);
5717 if (reg_equiv_address (regno
)
5718 || ! rtx_equal_p (tem
, reg_equiv_mem (regno
)))
5722 /* First reload the memory location's address.
5723 We can't use ADDR_TYPE (type) here, because we need to
5724 write back the value after reading it, hence we actually
5725 need two registers. */
5726 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
5727 &XEXP (tem
, 0), opnum
,
5731 if (!rtx_equal_p (tem
, orig
))
5732 push_reg_equiv_alt_mem (regno
, tem
);
5734 /* Then reload the memory location into a base
5736 reloadnum
= push_reload (tem
, tem
, &XEXP (x
, 0),
5738 base_reg_class (mode
, as
,
5741 GET_MODE (x
), GET_MODE (x
), 0,
5742 0, opnum
, RELOAD_OTHER
);
5744 update_auto_inc_notes (this_insn
, regno
, reloadnum
);
5749 if (reg_renumber
[regno
] >= 0)
5750 regno
= reg_renumber
[regno
];
5752 /* We require a base register here... */
5753 if (!regno_ok_for_base_p (regno
, GET_MODE (x
), as
, code
, index_code
))
5755 reloadnum
= push_reload (XEXP (op1
, 0), XEXP (x
, 0),
5756 &XEXP (op1
, 0), &XEXP (x
, 0),
5757 base_reg_class (mode
, as
,
5760 GET_MODE (x
), GET_MODE (x
), 0, 0,
5761 opnum
, RELOAD_OTHER
);
5763 update_auto_inc_notes (this_insn
, regno
, reloadnum
);
5773 if (REG_P (XEXP (x
, 0)))
5775 int regno
= REGNO (XEXP (x
, 0));
5779 /* A register that is incremented cannot be constant! */
5780 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
5781 || reg_equiv_constant (regno
) == 0);
5783 /* Handle a register that is equivalent to a memory location
5784 which cannot be addressed directly. */
5785 if (reg_equiv_memory_loc (regno
) != 0
5786 && (reg_equiv_address (regno
) != 0 || num_not_at_initial_offset
))
5788 rtx tem
= make_memloc (XEXP (x
, 0), regno
);
5789 if (reg_equiv_address (regno
)
5790 || ! rtx_equal_p (tem
, reg_equiv_mem (regno
)))
5794 /* First reload the memory location's address.
5795 We can't use ADDR_TYPE (type) here, because we need to
5796 write back the value after reading it, hence we actually
5797 need two registers. */
5798 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
5799 &XEXP (tem
, 0), opnum
, type
,
5801 reloaded_inner_of_autoinc
= true;
5802 if (!rtx_equal_p (tem
, orig
))
5803 push_reg_equiv_alt_mem (regno
, tem
);
5804 /* Put this inside a new increment-expression. */
5805 x
= gen_rtx_fmt_e (GET_CODE (x
), GET_MODE (x
), tem
);
5806 /* Proceed to reload that, as if it contained a register. */
5810 /* If we have a hard register that is ok in this incdec context,
5811 don't make a reload. If the register isn't nice enough for
5812 autoincdec, we can reload it. But, if an autoincrement of a
5813 register that we here verified as playing nice, still outside
5814 isn't "valid", it must be that no autoincrement is "valid".
5815 If that is true and something made an autoincrement anyway,
5816 this must be a special context where one is allowed.
5817 (For example, a "push" instruction.)
5818 We can't improve this address, so leave it alone. */
5820 /* Otherwise, reload the autoincrement into a suitable hard reg
5821 and record how much to increment by. */
5823 if (reg_renumber
[regno
] >= 0)
5824 regno
= reg_renumber
[regno
];
5825 if (regno
>= FIRST_PSEUDO_REGISTER
5826 || !REG_OK_FOR_CONTEXT (context
, regno
, mode
, as
, code
,
5831 /* If we can output the register afterwards, do so, this
5832 saves the extra update.
5833 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5835 But don't do this if we cannot directly address the
5836 memory location, since this will make it harder to
5837 reuse address reloads, and increases register pressure.
5838 Also don't do this if we can probably update x directly. */
5839 rtx equiv
= (MEM_P (XEXP (x
, 0))
5841 : reg_equiv_mem (regno
));
5842 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
5843 if (insn
&& NONJUMP_INSN_P (insn
)
5844 && (regno
< FIRST_PSEUDO_REGISTER
5846 && memory_operand (equiv
, GET_MODE (equiv
))
5847 && ! (icode
!= CODE_FOR_nothing
5848 && insn_operand_matches (icode
, 0, equiv
)
5849 && insn_operand_matches (icode
, 1, equiv
))))
5850 /* Using RELOAD_OTHER means we emit this and the reload we
5851 made earlier in the wrong order. */
5852 && !reloaded_inner_of_autoinc
)
5854 /* We use the original pseudo for loc, so that
5855 emit_reload_insns() knows which pseudo this
5856 reload refers to and updates the pseudo rtx, not
5857 its equivalent memory location, as well as the
5858 corresponding entry in reg_last_reload_reg. */
5859 loc
= &XEXP (x_orig
, 0);
5862 = push_reload (x
, x
, loc
, loc
,
5864 GET_MODE (x
), GET_MODE (x
), 0, 0,
5865 opnum
, RELOAD_OTHER
);
5870 = push_reload (x
, x
, loc
, (rtx
*) 0,
5872 GET_MODE (x
), GET_MODE (x
), 0, 0,
5875 = find_inc_amount (PATTERN (this_insn
), XEXP (x_orig
, 0));
5880 update_auto_inc_notes (this_insn
, REGNO (XEXP (x_orig
, 0)),
5890 /* Look for parts to reload in the inner expression and reload them
5891 too, in addition to this operation. Reloading all inner parts in
5892 addition to this one shouldn't be necessary, but at this point,
5893 we don't know if we can possibly omit any part that *can* be
5894 reloaded. Targets that are better off reloading just either part
5895 (or perhaps even a different part of an outer expression), should
5896 define LEGITIMIZE_RELOAD_ADDRESS. */
5897 find_reloads_address_1 (GET_MODE (XEXP (x
, 0)), as
, XEXP (x
, 0),
5898 context
, code
, SCRATCH
, &XEXP (x
, 0), opnum
,
5899 type
, ind_levels
, insn
);
5900 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0,
5902 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5906 /* This is probably the result of a substitution, by eliminate_regs, of
5907 an equivalent address for a pseudo that was not allocated to a hard
5908 register. Verify that the specified address is valid and reload it
5911 Since we know we are going to reload this item, don't decrement for
5912 the indirection level.
5914 Note that this is actually conservative: it would be slightly more
5915 efficient to use the value of SPILL_INDIRECT_LEVELS from
5918 find_reloads_address (GET_MODE (x
), loc
, XEXP (x
, 0), &XEXP (x
, 0),
5919 opnum
, ADDR_TYPE (type
), ind_levels
, insn
);
5920 push_reload (*loc
, NULL_RTX
, loc
, (rtx
*) 0,
5922 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5927 int regno
= REGNO (x
);
5929 if (reg_equiv_constant (regno
) != 0)
5931 find_reloads_address_part (reg_equiv_constant (regno
), loc
,
5933 GET_MODE (x
), opnum
, type
, ind_levels
);
5937 #if 0 /* This might screw code in reload1.cc to delete prior output-reload
5938 that feeds this insn. */
5939 if (reg_equiv_mem (regno
) != 0)
5941 push_reload (reg_equiv_mem (regno
), NULL_RTX
, loc
, (rtx
*) 0,
5943 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5948 if (reg_equiv_memory_loc (regno
)
5949 && (reg_equiv_address (regno
) != 0 || num_not_at_initial_offset
))
5951 rtx tem
= make_memloc (x
, regno
);
5952 if (reg_equiv_address (regno
) != 0
5953 || ! rtx_equal_p (tem
, reg_equiv_mem (regno
)))
5956 find_reloads_address (GET_MODE (x
), &x
, XEXP (x
, 0),
5957 &XEXP (x
, 0), opnum
, ADDR_TYPE (type
),
5959 if (!rtx_equal_p (x
, tem
))
5960 push_reg_equiv_alt_mem (regno
, x
);
5964 if (reg_renumber
[regno
] >= 0)
5965 regno
= reg_renumber
[regno
];
5967 if (regno
>= FIRST_PSEUDO_REGISTER
5968 || !REG_OK_FOR_CONTEXT (context
, regno
, mode
, as
, outer_code
,
5971 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0,
5973 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5977 /* If a register appearing in an address is the subject of a CLOBBER
5978 in this insn, reload it into some other register to be safe.
5979 The CLOBBER is supposed to make the register unavailable
5980 from before this insn to after it. */
5981 if (regno_clobbered_p (regno
, this_insn
, GET_MODE (x
), 0))
5983 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0,
5985 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5992 if (REG_P (SUBREG_REG (x
)))
5994 /* If this is a SUBREG of a hard register and the resulting register
5995 is of the wrong class, reload the whole SUBREG. This avoids
5996 needless copies if SUBREG_REG is multi-word. */
5997 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
5999 int regno ATTRIBUTE_UNUSED
= subreg_regno (x
);
6001 if (!REG_OK_FOR_CONTEXT (context
, regno
, mode
, as
, outer_code
,
6004 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0,
6006 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
6010 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6011 is larger than the class size, then reload the whole SUBREG. */
6014 enum reg_class rclass
= context_reg_class
;
6015 if (ira_reg_class_max_nregs
[rclass
][GET_MODE (SUBREG_REG (x
))]
6016 > reg_class_size
[(int) rclass
])
6018 /* If the inner register will be replaced by a memory
6019 reference, we can do this only if we can replace the
6020 whole subreg by a (narrower) memory reference. If
6021 this is not possible, fall through and reload just
6022 the inner register (including address reloads). */
6023 if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x
))) != 0)
6025 rtx tem
= find_reloads_subreg_address (x
, opnum
,
6031 push_reload (tem
, NULL_RTX
, loc
, (rtx
*) 0, rclass
,
6032 GET_MODE (tem
), VOIDmode
, 0, 0,
6039 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0, rclass
,
6040 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
6053 const char *fmt
= GET_RTX_FORMAT (code
);
6056 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6059 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6061 find_reloads_address_1 (mode
, as
, XEXP (x
, i
), context
,
6062 code
, SCRATCH
, &XEXP (x
, i
),
6063 opnum
, type
, ind_levels
, insn
);
6067 #undef REG_OK_FOR_CONTEXT
6071 /* X, which is found at *LOC, is a part of an address that needs to be
6072 reloaded into a register of class RCLASS. If X is a constant, or if
6073 X is a PLUS that contains a constant, check that the constant is a
6074 legitimate operand and that we are supposed to be able to load
6075 it into the register.
6077 If not, force the constant into memory and reload the MEM instead.
6079 MODE is the mode to use, in case X is an integer constant.
6081 OPNUM and TYPE describe the purpose of any reloads made.
6083 IND_LEVELS says how many levels of indirect addressing this machine
6087 find_reloads_address_part (rtx x
, rtx
*loc
, enum reg_class rclass
,
6088 machine_mode mode
, int opnum
,
6089 enum reload_type type
, int ind_levels
)
6092 && (!targetm
.legitimate_constant_p (mode
, x
)
6093 || targetm
.preferred_reload_class (x
, rclass
) == NO_REGS
))
6095 x
= force_const_mem (mode
, x
);
6096 find_reloads_address (mode
, &x
, XEXP (x
, 0), &XEXP (x
, 0),
6097 opnum
, type
, ind_levels
, 0);
6100 else if (GET_CODE (x
) == PLUS
6101 && CONSTANT_P (XEXP (x
, 1))
6102 && (!targetm
.legitimate_constant_p (GET_MODE (x
), XEXP (x
, 1))
6103 || targetm
.preferred_reload_class (XEXP (x
, 1), rclass
)
6108 tem
= force_const_mem (GET_MODE (x
), XEXP (x
, 1));
6109 x
= gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0), tem
);
6110 find_reloads_address (mode
, &XEXP (x
, 1), XEXP (tem
, 0), &XEXP (tem
, 0),
6111 opnum
, type
, ind_levels
, 0);
6114 push_reload (x
, NULL_RTX
, loc
, (rtx
*) 0, rclass
,
6115 mode
, VOIDmode
, 0, 0, opnum
, type
);
6118 /* X, a subreg of a pseudo, is a part of an address that needs to be
6119 reloaded, and the pseusdo is equivalent to a memory location.
6121 Attempt to replace the whole subreg by a (possibly narrower or wider)
6122 memory reference. If this is possible, return this new memory
6123 reference, and push all required address reloads. Otherwise,
6126 OPNUM and TYPE identify the purpose of the reload.
6128 IND_LEVELS says how many levels of indirect addressing are
6129 supported at this point in the address.
6131 INSN, if nonzero, is the insn in which we do the reload. It is used
6132 to determine where to put USEs for pseudos that we have to replace with
6136 find_reloads_subreg_address (rtx x
, int opnum
, enum reload_type type
,
6137 int ind_levels
, rtx_insn
*insn
,
6138 int *address_reloaded
)
6140 machine_mode outer_mode
= GET_MODE (x
);
6141 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
6142 int regno
= REGNO (SUBREG_REG (x
));
6147 gcc_assert (reg_equiv_memory_loc (regno
) != 0);
6149 /* We cannot replace the subreg with a modified memory reference if:
6151 - we have a paradoxical subreg that implicitly acts as a zero or
6152 sign extension operation due to LOAD_EXTEND_OP;
6154 - we have a subreg that is implicitly supposed to act on the full
6155 register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6157 - the address of the equivalent memory location is mode-dependent; or
6159 - we have a paradoxical subreg and the resulting memory is not
6160 sufficiently aligned to allow access in the wider mode.
6162 In addition, we choose not to perform the replacement for *any*
6163 paradoxical subreg, even if it were possible in principle. This
6164 is to avoid generating wider memory references than necessary.
6166 This corresponds to how previous versions of reload used to handle
6167 paradoxical subregs where no address reload was required. */
6169 if (paradoxical_subreg_p (x
))
6172 if (WORD_REGISTER_OPERATIONS
6173 && partial_subreg_p (outer_mode
, inner_mode
)
6174 && known_equal_after_align_down (GET_MODE_SIZE (outer_mode
) - 1,
6175 GET_MODE_SIZE (inner_mode
) - 1,
6179 /* Since we don't attempt to handle paradoxical subregs, we can just
6180 call into simplify_subreg, which will handle all remaining checks
6182 orig
= make_memloc (SUBREG_REG (x
), regno
);
6183 offset
= SUBREG_BYTE (x
);
6184 tem
= simplify_subreg (outer_mode
, orig
, inner_mode
, offset
);
6185 if (!tem
|| !MEM_P (tem
))
6188 /* Now push all required address reloads, if any. */
6189 reloaded
= find_reloads_address (GET_MODE (tem
), &tem
,
6190 XEXP (tem
, 0), &XEXP (tem
, 0),
6191 opnum
, type
, ind_levels
, insn
);
6192 /* ??? Do we need to handle nonzero offsets somehow? */
6193 if (known_eq (offset
, 0) && !rtx_equal_p (tem
, orig
))
6194 push_reg_equiv_alt_mem (regno
, tem
);
6196 /* For some processors an address may be valid in the original mode but
6197 not in a smaller mode. For example, ARM accepts a scaled index register
6198 in SImode but not in HImode. Note that this is only a problem if the
6199 address in reg_equiv_mem is already invalid in the new mode; other
6200 cases would be fixed by find_reloads_address as usual.
6202 ??? We attempt to handle such cases here by doing an additional reload
6203 of the full address after the usual processing by find_reloads_address.
6204 Note that this may not work in the general case, but it seems to cover
6205 the cases where this situation currently occurs. A more general fix
6206 might be to reload the *value* instead of the address, but this would
6207 not be expected by the callers of this routine as-is.
6209 If find_reloads_address already completed replaced the address, there
6210 is nothing further to do. */
6212 && reg_equiv_mem (regno
) != 0
6213 && !strict_memory_address_addr_space_p
6214 (GET_MODE (x
), XEXP (reg_equiv_mem (regno
), 0),
6215 MEM_ADDR_SPACE (reg_equiv_mem (regno
))))
6217 push_reload (XEXP (tem
, 0), NULL_RTX
, &XEXP (tem
, 0), (rtx
*) 0,
6218 base_reg_class (GET_MODE (tem
), MEM_ADDR_SPACE (tem
),
6219 MEM
, SCRATCH
, insn
),
6220 GET_MODE (XEXP (tem
, 0)), VOIDmode
, 0, 0, opnum
, type
);
6224 /* If this is not a toplevel operand, find_reloads doesn't see this
6225 substitution. We have to emit a USE of the pseudo so that
6226 delete_output_reload can see it. */
6227 if (replace_reloads
&& recog_data
.operand
[opnum
] != x
)
6228 /* We mark the USE with QImode so that we recognize it as one that
6229 can be safely deleted at the end of reload. */
6230 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode
, SUBREG_REG (x
)), insn
),
6233 if (address_reloaded
)
6234 *address_reloaded
= reloaded
;
6239 /* Substitute into the current INSN the registers into which we have reloaded
6240 the things that need reloading. The array `replacements'
6241 contains the locations of all pointers that must be changed
6242 and says what to replace them with.
6244 Return the rtx that X translates into; usually X, but modified. */
6247 subst_reloads (rtx_insn
*insn
)
6251 for (i
= 0; i
< n_replacements
; i
++)
6253 struct replacement
*r
= &replacements
[i
];
6254 rtx reloadreg
= rld
[r
->what
].reg_rtx
;
6258 /* This checking takes a very long time on some platforms
6259 causing the gcc.c-torture/compile/limits-fnargs.c test
6260 to time out during testing. See PR 31850.
6262 Internal consistency test. Check that we don't modify
6263 anything in the equivalence arrays. Whenever something from
6264 those arrays needs to be reloaded, it must be unshared before
6265 being substituted into; the equivalence must not be modified.
6266 Otherwise, if the equivalence is used after that, it will
6267 have been modified, and the thing substituted (probably a
6268 register) is likely overwritten and not a usable equivalence. */
6271 for (check_regno
= 0; check_regno
< max_regno
; check_regno
++)
6273 #define CHECK_MODF(ARRAY) \
6274 gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6275 || !loc_mentioned_in_p (r->where, \
6276 (*reg_equivs)[check_regno].ARRAY))
6278 CHECK_MODF (constant
);
6279 CHECK_MODF (memory_loc
);
6280 CHECK_MODF (address
);
6284 #endif /* DEBUG_RELOAD */
6286 /* If we're replacing a LABEL_REF with a register, there must
6287 already be an indication (to e.g. flow) which label this
6288 register refers to. */
6289 gcc_assert (GET_CODE (*r
->where
) != LABEL_REF
6291 || find_reg_note (insn
,
6293 XEXP (*r
->where
, 0))
6294 || label_is_jump_target_p (XEXP (*r
->where
, 0), insn
));
6296 /* Encapsulate RELOADREG so its machine mode matches what
6297 used to be there. Note that gen_lowpart_common will
6298 do the wrong thing if RELOADREG is multi-word. RELOADREG
6299 will always be a REG here. */
6300 if (GET_MODE (reloadreg
) != r
->mode
&& r
->mode
!= VOIDmode
)
6301 reloadreg
= reload_adjust_reg_for_mode (reloadreg
, r
->mode
);
6303 *r
->where
= reloadreg
;
6305 /* If reload got no reg and isn't optional, something's wrong. */
6307 gcc_assert (rld
[r
->what
].optional
);
6311 /* Make a copy of any replacements being done into X and move those
6312 copies to locations in Y, a copy of X. */
6315 copy_replacements (rtx x
, rtx y
)
6317 copy_replacements_1 (&x
, &y
, n_replacements
);
6321 copy_replacements_1 (rtx
*px
, rtx
*py
, int orig_replacements
)
6325 struct replacement
*r
;
6329 for (j
= 0; j
< orig_replacements
; j
++)
6330 if (replacements
[j
].where
== px
)
6332 r
= &replacements
[n_replacements
++];
6334 r
->what
= replacements
[j
].what
;
6335 r
->mode
= replacements
[j
].mode
;
6340 code
= GET_CODE (x
);
6341 fmt
= GET_RTX_FORMAT (code
);
6343 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6346 copy_replacements_1 (&XEXP (x
, i
), &XEXP (y
, i
), orig_replacements
);
6347 else if (fmt
[i
] == 'E')
6348 for (j
= XVECLEN (x
, i
); --j
>= 0; )
6349 copy_replacements_1 (&XVECEXP (x
, i
, j
), &XVECEXP (y
, i
, j
),
6354 /* Change any replacements being done to *X to be done to *Y. */
6357 move_replacements (rtx
*x
, rtx
*y
)
6361 for (i
= 0; i
< n_replacements
; i
++)
6362 if (replacements
[i
].where
== x
)
6363 replacements
[i
].where
= y
;
6366 /* If LOC was scheduled to be replaced by something, return the replacement.
6367 Otherwise, return *LOC. */
6370 find_replacement (rtx
*loc
)
6372 struct replacement
*r
;
6374 for (r
= &replacements
[0]; r
< &replacements
[n_replacements
]; r
++)
6376 rtx reloadreg
= rld
[r
->what
].reg_rtx
;
6378 if (reloadreg
&& r
->where
== loc
)
6380 if (r
->mode
!= VOIDmode
&& GET_MODE (reloadreg
) != r
->mode
)
6381 reloadreg
= reload_adjust_reg_for_mode (reloadreg
, r
->mode
);
6385 else if (reloadreg
&& GET_CODE (*loc
) == SUBREG
6386 && r
->where
== &SUBREG_REG (*loc
))
6388 if (r
->mode
!= VOIDmode
&& GET_MODE (reloadreg
) != r
->mode
)
6389 reloadreg
= reload_adjust_reg_for_mode (reloadreg
, r
->mode
);
6391 return simplify_gen_subreg (GET_MODE (*loc
), reloadreg
,
6392 GET_MODE (SUBREG_REG (*loc
)),
6393 SUBREG_BYTE (*loc
));
6397 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6398 what's inside and make a new rtl if so. */
6399 if (GET_CODE (*loc
) == PLUS
|| GET_CODE (*loc
) == MINUS
6400 || GET_CODE (*loc
) == MULT
)
6402 rtx x
= find_replacement (&XEXP (*loc
, 0));
6403 rtx y
= find_replacement (&XEXP (*loc
, 1));
6405 if (x
!= XEXP (*loc
, 0) || y
!= XEXP (*loc
, 1))
6406 return gen_rtx_fmt_ee (GET_CODE (*loc
), GET_MODE (*loc
), x
, y
);
6412 /* Return nonzero if register in range [REGNO, ENDREGNO)
6413 appears either explicitly or implicitly in X
6414 other than being stored into (except for earlyclobber operands).
6416 References contained within the substructure at LOC do not count.
6417 LOC may be zero, meaning don't ignore anything.
6419 This is similar to refers_to_regno_p in rtlanal.cc except that we
6420 look at equivalences for pseudos that didn't get hard registers. */
6423 refers_to_regno_for_reload_p (unsigned int regno
, unsigned int endregno
,
6435 code
= GET_CODE (x
);
6442 /* If this is a pseudo, a hard register must not have been allocated.
6443 X must therefore either be a constant or be in memory. */
6444 if (r
>= FIRST_PSEUDO_REGISTER
)
6446 if (reg_equiv_memory_loc (r
))
6447 return refers_to_regno_for_reload_p (regno
, endregno
,
6448 reg_equiv_memory_loc (r
),
6451 gcc_assert (reg_equiv_constant (r
) || reg_equiv_invariant (r
));
6455 return endregno
> r
&& regno
< END_REGNO (x
);
6458 /* If this is a SUBREG of a hard reg, we can see exactly which
6459 registers are being modified. Otherwise, handle normally. */
6460 if (REG_P (SUBREG_REG (x
))
6461 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
6463 unsigned int inner_regno
= subreg_regno (x
);
6464 unsigned int inner_endregno
6465 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
6466 ? subreg_nregs (x
) : 1);
6468 return endregno
> inner_regno
&& regno
< inner_endregno
;
6474 if (&SET_DEST (x
) != loc
6475 /* Note setting a SUBREG counts as referring to the REG it is in for
6476 a pseudo but not for hard registers since we can
6477 treat each word individually. */
6478 && ((GET_CODE (SET_DEST (x
)) == SUBREG
6479 && loc
!= &SUBREG_REG (SET_DEST (x
))
6480 && REG_P (SUBREG_REG (SET_DEST (x
)))
6481 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
6482 && refers_to_regno_for_reload_p (regno
, endregno
,
6483 SUBREG_REG (SET_DEST (x
)),
6485 /* If the output is an earlyclobber operand, this is
6487 || ((!REG_P (SET_DEST (x
))
6488 || earlyclobber_operand_p (SET_DEST (x
)))
6489 && refers_to_regno_for_reload_p (regno
, endregno
,
6490 SET_DEST (x
), loc
))))
6493 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
6502 /* X does not match, so try its subexpressions. */
6504 fmt
= GET_RTX_FORMAT (code
);
6505 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6507 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
6515 if (refers_to_regno_for_reload_p (regno
, endregno
,
6519 else if (fmt
[i
] == 'E')
6522 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6523 if (loc
!= &XVECEXP (x
, i
, j
)
6524 && refers_to_regno_for_reload_p (regno
, endregno
,
6525 XVECEXP (x
, i
, j
), loc
))
6532 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6533 we check if any register number in X conflicts with the relevant register
6534 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6535 contains a MEM (we don't bother checking for memory addresses that can't
6536 conflict because we expect this to be a rare case.
6538 This function is similar to reg_overlap_mentioned_p in rtlanal.cc except
6539 that we look at equivalences for pseudos that didn't get hard registers. */
6542 reg_overlap_mentioned_for_reload_p (rtx x
, rtx in
)
6544 int regno
, endregno
;
6546 /* Overly conservative. */
6547 if (GET_CODE (x
) == STRICT_LOW_PART
6548 || GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
)
6551 /* If either argument is a constant, then modifying X cannot affect IN. */
6552 if (CONSTANT_P (x
) || CONSTANT_P (in
))
6554 else if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
6555 return refers_to_mem_for_reload_p (in
);
6556 else if (GET_CODE (x
) == SUBREG
)
6558 regno
= REGNO (SUBREG_REG (x
));
6559 if (regno
< FIRST_PSEUDO_REGISTER
)
6560 regno
+= subreg_regno_offset (REGNO (SUBREG_REG (x
)),
6561 GET_MODE (SUBREG_REG (x
)),
6564 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
6565 ? subreg_nregs (x
) : 1);
6567 return refers_to_regno_for_reload_p (regno
, endregno
, in
, (rtx
*) 0);
6573 /* If this is a pseudo, it must not have been assigned a hard register.
6574 Therefore, it must either be in memory or be a constant. */
6576 if (regno
>= FIRST_PSEUDO_REGISTER
)
6578 if (reg_equiv_memory_loc (regno
))
6579 return refers_to_mem_for_reload_p (in
);
6580 gcc_assert (reg_equiv_constant (regno
));
6584 endregno
= END_REGNO (x
);
6586 return refers_to_regno_for_reload_p (regno
, endregno
, in
, (rtx
*) 0);
6589 return refers_to_mem_for_reload_p (in
);
6590 else if (GET_CODE (x
) == SCRATCH
|| GET_CODE (x
) == PC
)
6591 return reg_mentioned_p (x
, in
);
6594 gcc_assert (GET_CODE (x
) == PLUS
);
6596 /* We actually want to know if X is mentioned somewhere inside IN.
6597 We must not say that (plus (sp) (const_int 124)) is in
6598 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6599 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6600 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6605 else if (GET_CODE (in
) == PLUS
)
6606 return (rtx_equal_p (x
, in
)
6607 || reg_overlap_mentioned_for_reload_p (x
, XEXP (in
, 0))
6608 || reg_overlap_mentioned_for_reload_p (x
, XEXP (in
, 1)));
6610 return (reg_overlap_mentioned_for_reload_p (XEXP (x
, 0), in
)
6611 || reg_overlap_mentioned_for_reload_p (XEXP (x
, 1), in
));
6615 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6619 refers_to_mem_for_reload_p (rtx x
)
6628 return (REGNO (x
) >= FIRST_PSEUDO_REGISTER
6629 && reg_equiv_memory_loc (REGNO (x
)));
6631 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
6632 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
6634 && (MEM_P (XEXP (x
, i
))
6635 || refers_to_mem_for_reload_p (XEXP (x
, i
))))
6641 /* Check the insns before INSN to see if there is a suitable register
6642 containing the same value as GOAL.
6643 If OTHER is -1, look for a register in class RCLASS.
6644 Otherwise, just see if register number OTHER shares GOAL's value.
6646 Return an rtx for the register found, or zero if none is found.
6648 If RELOAD_REG_P is (short *)1,
6649 we reject any hard reg that appears in reload_reg_rtx
6650 because such a hard reg is also needed coming into this insn.
6652 If RELOAD_REG_P is any other nonzero value,
6653 it is a vector indexed by hard reg number
6654 and we reject any hard reg whose element in the vector is nonnegative
6655 as well as any that appears in reload_reg_rtx.
6657 If GOAL is zero, then GOALREG is a register number; we look
6658 for an equivalent for that register.
6660 MODE is the machine mode of the value we want an equivalence for.
6661 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6663 This function is used by jump.cc as well as in the reload pass.
6665 If GOAL is the sum of the stack pointer and a constant, we treat it
6666 as if it were a constant except that sp is required to be unchanging. */
6669 find_equiv_reg (rtx goal
, rtx_insn
*insn
, enum reg_class rclass
, int other
,
6670 short *reload_reg_p
, int goalreg
, machine_mode mode
)
6673 rtx goaltry
, valtry
, value
;
6680 int goal_mem_addr_varies
= 0;
6681 int need_stable_sp
= 0;
6688 else if (REG_P (goal
))
6689 regno
= REGNO (goal
);
6690 else if (MEM_P (goal
))
6692 enum rtx_code code
= GET_CODE (XEXP (goal
, 0));
6693 if (MEM_VOLATILE_P (goal
))
6695 if (flag_float_store
&& SCALAR_FLOAT_MODE_P (GET_MODE (goal
)))
6697 /* An address with side effects must be reexecuted. */
6712 else if (CONSTANT_P (goal
))
6714 else if (GET_CODE (goal
) == PLUS
6715 && XEXP (goal
, 0) == stack_pointer_rtx
6716 && CONSTANT_P (XEXP (goal
, 1)))
6717 goal_const
= need_stable_sp
= 1;
6718 else if (GET_CODE (goal
) == PLUS
6719 && XEXP (goal
, 0) == frame_pointer_rtx
6720 && CONSTANT_P (XEXP (goal
, 1)))
6726 /* Scan insns back from INSN, looking for one that copies
6727 a value into or out of GOAL.
6728 Stop and give up if we reach a label. */
6733 if (p
&& DEBUG_INSN_P (p
))
6736 if (p
== 0 || LABEL_P (p
)
6737 || num
> param_max_reload_search_insns
)
6740 /* Don't reuse register contents from before a setjmp-type
6741 function call; on the second return (from the longjmp) it
6742 might have been clobbered by a later reuse. It doesn't
6743 seem worthwhile to actually go and see if it is actually
6744 reused even if that information would be readily available;
6745 just don't reuse it across the setjmp call. */
6746 if (CALL_P (p
) && find_reg_note (p
, REG_SETJMP
, NULL_RTX
))
6749 if (NONJUMP_INSN_P (p
)
6750 /* If we don't want spill regs ... */
6751 && (! (reload_reg_p
!= 0
6752 && reload_reg_p
!= (short *) HOST_WIDE_INT_1
)
6753 /* ... then ignore insns introduced by reload; they aren't
6754 useful and can cause results in reload_as_needed to be
6755 different from what they were when calculating the need for
6756 spills. If we notice an input-reload insn here, we will
6757 reject it below, but it might hide a usable equivalent.
6758 That makes bad code. It may even fail: perhaps no reg was
6759 spilled for this insn because it was assumed we would find
6761 || INSN_UID (p
) < reload_first_uid
))
6764 pat
= single_set (p
);
6766 /* First check for something that sets some reg equal to GOAL. */
6769 && true_regnum (SET_SRC (pat
)) == regno
6770 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6773 && true_regnum (SET_DEST (pat
)) == regno
6774 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0)
6776 (goal_const
&& rtx_equal_p (SET_SRC (pat
), goal
)
6777 /* When looking for stack pointer + const,
6778 make sure we don't use a stack adjust. */
6779 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat
), goal
)
6780 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6782 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0
6783 && rtx_renumbered_equal_p (goal
, SET_SRC (pat
)))
6785 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0
6786 && rtx_renumbered_equal_p (goal
, SET_DEST (pat
)))
6787 /* If we are looking for a constant,
6788 and something equivalent to that constant was copied
6789 into a reg, we can use that reg. */
6790 || (goal_const
&& REG_NOTES (p
) != 0
6791 && (tem
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
))
6792 && ((rtx_equal_p (XEXP (tem
, 0), goal
)
6794 = true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6795 || (REG_P (SET_DEST (pat
))
6796 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem
, 0))
6797 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem
, 0)))
6798 && CONST_INT_P (goal
)
6799 && (goaltry
= operand_subword (XEXP (tem
, 0), 0,
6801 && rtx_equal_p (goal
, goaltry
)
6803 = operand_subword (SET_DEST (pat
), 0, 0,
6805 && (valueno
= true_regnum (valtry
)) >= 0)))
6806 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
6808 && REG_P (SET_DEST (pat
))
6809 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem
, 0))
6810 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem
, 0)))
6811 && CONST_INT_P (goal
)
6812 && (goaltry
= operand_subword (XEXP (tem
, 0), 1, 0,
6814 && rtx_equal_p (goal
, goaltry
)
6816 = operand_subword (SET_DEST (pat
), 1, 0, VOIDmode
))
6817 && (valueno
= true_regnum (valtry
)) >= 0)))
6821 if (valueno
!= other
)
6824 else if ((unsigned) valueno
>= FIRST_PSEUDO_REGISTER
)
6826 else if (!in_hard_reg_set_p (reg_class_contents
[(int) rclass
],
6836 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6837 (or copying VALUE into GOAL, if GOAL is also a register).
6838 Now verify that VALUE is really valid. */
6840 /* VALUENO is the register number of VALUE; a hard register. */
6842 /* Don't try to re-use something that is killed in this insn. We want
6843 to be able to trust REG_UNUSED notes. */
6844 if (REG_NOTES (where
) != 0 && find_reg_note (where
, REG_UNUSED
, value
))
6847 /* If we propose to get the value from the stack pointer or if GOAL is
6848 a MEM based on the stack pointer, we need a stable SP. */
6849 if (valueno
== STACK_POINTER_REGNUM
|| regno
== STACK_POINTER_REGNUM
6850 || (goal_mem
&& reg_overlap_mentioned_for_reload_p (stack_pointer_rtx
,
6854 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6855 if (GET_MODE (value
) != mode
)
6858 /* Reject VALUE if it was loaded from GOAL
6859 and is also a register that appears in the address of GOAL. */
6861 if (goal_mem
&& value
== SET_DEST (single_set (where
))
6862 && refers_to_regno_for_reload_p (valueno
, end_hard_regno (mode
, valueno
),
6866 /* Reject registers that overlap GOAL. */
6868 if (regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
)
6869 nregs
= hard_regno_nregs (regno
, mode
);
6872 valuenregs
= hard_regno_nregs (valueno
, mode
);
6874 if (!goal_mem
&& !goal_const
6875 && regno
+ nregs
> valueno
&& regno
< valueno
+ valuenregs
)
6878 /* Reject VALUE if it is one of the regs reserved for reloads.
6879 Reload1 knows how to reuse them anyway, and it would get
6880 confused if we allocated one without its knowledge.
6881 (Now that insns introduced by reload are ignored above,
6882 this case shouldn't happen, but I'm not positive.) */
6884 if (reload_reg_p
!= 0 && reload_reg_p
!= (short *) HOST_WIDE_INT_1
)
6887 for (i
= 0; i
< valuenregs
; ++i
)
6888 if (reload_reg_p
[valueno
+ i
] >= 0)
6892 /* Reject VALUE if it is a register being used for an input reload
6893 even if it is not one of those reserved. */
6895 if (reload_reg_p
!= 0)
6898 for (i
= 0; i
< n_reloads
; i
++)
6899 if (rld
[i
].reg_rtx
!= 0
6901 && (int) REGNO (rld
[i
].reg_rtx
) < valueno
+ valuenregs
6902 && (int) END_REGNO (rld
[i
].reg_rtx
) > valueno
)
6907 /* We must treat frame pointer as varying here,
6908 since it can vary--in a nonlocal goto as generated by expand_goto. */
6909 goal_mem_addr_varies
= !CONSTANT_ADDRESS_P (XEXP (goal
, 0));
6911 /* Now verify that the values of GOAL and VALUE remain unaltered
6912 until INSN is reached. */
6921 /* Don't trust the conversion past a function call
6922 if either of the two is in a call-clobbered register, or memory. */
6925 if (goal_mem
|| need_stable_sp
)
6928 function_abi callee_abi
= insn_callee_abi (p
);
6930 && regno
< FIRST_PSEUDO_REGISTER
6931 && callee_abi
.clobbers_reg_p (mode
, regno
))
6935 && valueno
< FIRST_PSEUDO_REGISTER
6936 && callee_abi
.clobbers_reg_p (mode
, valueno
))
6944 /* Watch out for unspec_volatile, and volatile asms. */
6945 if (volatile_insn_p (pat
))
6948 /* If this insn P stores in either GOAL or VALUE, return 0.
6949 If GOAL is a memory ref and this insn writes memory, return 0.
6950 If GOAL is a memory ref and its address is not constant,
6951 and this insn P changes a register used in GOAL, return 0. */
6953 if (GET_CODE (pat
) == COND_EXEC
)
6954 pat
= COND_EXEC_CODE (pat
);
6955 if (GET_CODE (pat
) == SET
|| GET_CODE (pat
) == CLOBBER
)
6957 rtx dest
= SET_DEST (pat
);
6958 while (GET_CODE (dest
) == SUBREG
6959 || GET_CODE (dest
) == ZERO_EXTRACT
6960 || GET_CODE (dest
) == STRICT_LOW_PART
)
6961 dest
= XEXP (dest
, 0);
6964 int xregno
= REGNO (dest
);
6965 int end_xregno
= END_REGNO (dest
);
6966 if (xregno
< regno
+ nregs
&& end_xregno
> regno
)
6968 if (xregno
< valueno
+ valuenregs
6969 && end_xregno
> valueno
)
6971 if (goal_mem_addr_varies
6972 && reg_overlap_mentioned_for_reload_p (dest
, goal
))
6974 if (xregno
== STACK_POINTER_REGNUM
&& need_stable_sp
)
6977 else if (goal_mem
&& MEM_P (dest
)
6978 && ! push_operand (dest
, GET_MODE (dest
)))
6980 else if (MEM_P (dest
) && regno
>= FIRST_PSEUDO_REGISTER
6981 && reg_equiv_memory_loc (regno
) != 0)
6983 else if (need_stable_sp
&& push_operand (dest
, GET_MODE (dest
)))
6986 else if (GET_CODE (pat
) == PARALLEL
)
6989 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
6991 rtx v1
= XVECEXP (pat
, 0, i
);
6992 if (GET_CODE (v1
) == COND_EXEC
)
6993 v1
= COND_EXEC_CODE (v1
);
6994 if (GET_CODE (v1
) == SET
|| GET_CODE (v1
) == CLOBBER
)
6996 rtx dest
= SET_DEST (v1
);
6997 while (GET_CODE (dest
) == SUBREG
6998 || GET_CODE (dest
) == ZERO_EXTRACT
6999 || GET_CODE (dest
) == STRICT_LOW_PART
)
7000 dest
= XEXP (dest
, 0);
7003 int xregno
= REGNO (dest
);
7004 int end_xregno
= END_REGNO (dest
);
7005 if (xregno
< regno
+ nregs
7006 && end_xregno
> regno
)
7008 if (xregno
< valueno
+ valuenregs
7009 && end_xregno
> valueno
)
7011 if (goal_mem_addr_varies
7012 && reg_overlap_mentioned_for_reload_p (dest
,
7015 if (xregno
== STACK_POINTER_REGNUM
&& need_stable_sp
)
7018 else if (goal_mem
&& MEM_P (dest
)
7019 && ! push_operand (dest
, GET_MODE (dest
)))
7021 else if (MEM_P (dest
) && regno
>= FIRST_PSEUDO_REGISTER
7022 && reg_equiv_memory_loc (regno
) != 0)
7024 else if (need_stable_sp
7025 && push_operand (dest
, GET_MODE (dest
)))
7031 if (CALL_P (p
) && CALL_INSN_FUNCTION_USAGE (p
))
7035 for (link
= CALL_INSN_FUNCTION_USAGE (p
); XEXP (link
, 1) != 0;
7036 link
= XEXP (link
, 1))
7038 pat
= XEXP (link
, 0);
7039 if (GET_CODE (pat
) == CLOBBER
)
7041 rtx dest
= SET_DEST (pat
);
7045 int xregno
= REGNO (dest
);
7046 int end_xregno
= END_REGNO (dest
);
7048 if (xregno
< regno
+ nregs
7049 && end_xregno
> regno
)
7051 else if (xregno
< valueno
+ valuenregs
7052 && end_xregno
> valueno
)
7054 else if (goal_mem_addr_varies
7055 && reg_overlap_mentioned_for_reload_p (dest
,
7060 else if (goal_mem
&& MEM_P (dest
)
7061 && ! push_operand (dest
, GET_MODE (dest
)))
7063 else if (need_stable_sp
7064 && push_operand (dest
, GET_MODE (dest
)))
7071 /* If this insn auto-increments or auto-decrements
7072 either regno or valueno, return 0 now.
7073 If GOAL is a memory ref and its address is not constant,
7074 and this insn P increments a register used in GOAL, return 0. */
7078 for (link
= REG_NOTES (p
); link
; link
= XEXP (link
, 1))
7079 if (REG_NOTE_KIND (link
) == REG_INC
7080 && REG_P (XEXP (link
, 0)))
7082 int incno
= REGNO (XEXP (link
, 0));
7083 if (incno
< regno
+ nregs
&& incno
>= regno
)
7085 if (incno
< valueno
+ valuenregs
&& incno
>= valueno
)
7087 if (goal_mem_addr_varies
7088 && reg_overlap_mentioned_for_reload_p (XEXP (link
, 0),
7098 /* Find a place where INCED appears in an increment or decrement operator
7099 within X, and return the amount INCED is incremented or decremented by.
7100 The value is always positive. */
7103 find_inc_amount (rtx x
, rtx inced
)
7105 enum rtx_code code
= GET_CODE (x
);
7111 rtx addr
= XEXP (x
, 0);
7112 if ((GET_CODE (addr
) == PRE_DEC
7113 || GET_CODE (addr
) == POST_DEC
7114 || GET_CODE (addr
) == PRE_INC
7115 || GET_CODE (addr
) == POST_INC
)
7116 && XEXP (addr
, 0) == inced
)
7117 return GET_MODE_SIZE (GET_MODE (x
));
7118 else if ((GET_CODE (addr
) == PRE_MODIFY
7119 || GET_CODE (addr
) == POST_MODIFY
)
7120 && GET_CODE (XEXP (addr
, 1)) == PLUS
7121 && XEXP (addr
, 0) == XEXP (XEXP (addr
, 1), 0)
7122 && XEXP (addr
, 0) == inced
7123 && CONST_INT_P (XEXP (XEXP (addr
, 1), 1)))
7125 i
= INTVAL (XEXP (XEXP (addr
, 1), 1));
7126 return i
< 0 ? -i
: i
;
7130 fmt
= GET_RTX_FORMAT (code
);
7131 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7135 poly_int64 tem
= find_inc_amount (XEXP (x
, i
), inced
);
7136 if (maybe_ne (tem
, 0))
7142 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7144 poly_int64 tem
= find_inc_amount (XVECEXP (x
, i
, j
), inced
);
7145 if (maybe_ne (tem
, 0))
7154 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7155 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7158 reg_inc_found_and_valid_p (unsigned int regno
, unsigned int endregno
,
7168 if (! INSN_P (insn
))
7171 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
7172 if (REG_NOTE_KIND (link
) == REG_INC
)
7174 unsigned int test
= (int) REGNO (XEXP (link
, 0));
7175 if (test
>= regno
&& test
< endregno
)
7181 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7182 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7183 REG_INC. REGNO must refer to a hard register. */
7186 regno_clobbered_p (unsigned int regno
, rtx_insn
*insn
, machine_mode mode
,
7189 /* regno must be a hard register. */
7190 gcc_assert (regno
< FIRST_PSEUDO_REGISTER
);
7192 unsigned int endregno
= end_hard_regno (mode
, regno
);
7194 if ((GET_CODE (PATTERN (insn
)) == CLOBBER
7195 || (sets
== 1 && GET_CODE (PATTERN (insn
)) == SET
))
7196 && REG_P (XEXP (PATTERN (insn
), 0)))
7198 unsigned int test
= REGNO (XEXP (PATTERN (insn
), 0));
7200 return test
>= regno
&& test
< endregno
;
7203 if (sets
== 2 && reg_inc_found_and_valid_p (regno
, endregno
, insn
))
7206 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
7208 int i
= XVECLEN (PATTERN (insn
), 0) - 1;
7212 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
7213 if ((GET_CODE (elt
) == CLOBBER
7214 || (sets
== 1 && GET_CODE (elt
) == SET
))
7215 && REG_P (XEXP (elt
, 0)))
7217 unsigned int test
= REGNO (XEXP (elt
, 0));
7219 if (test
>= regno
&& test
< endregno
)
7223 && reg_inc_found_and_valid_p (regno
, endregno
, elt
))
7231 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7233 reload_adjust_reg_for_mode (rtx reloadreg
, machine_mode mode
)
7237 if (GET_MODE (reloadreg
) == mode
)
7240 regno
= REGNO (reloadreg
);
7242 if (REG_WORDS_BIG_ENDIAN
)
7243 regno
+= ((int) REG_NREGS (reloadreg
)
7244 - (int) hard_regno_nregs (regno
, mode
));
7246 return gen_rtx_REG (mode
, regno
);
7249 static const char *const reload_when_needed_name
[] =
7252 "RELOAD_FOR_OUTPUT",
7254 "RELOAD_FOR_INPUT_ADDRESS",
7255 "RELOAD_FOR_INPADDR_ADDRESS",
7256 "RELOAD_FOR_OUTPUT_ADDRESS",
7257 "RELOAD_FOR_OUTADDR_ADDRESS",
7258 "RELOAD_FOR_OPERAND_ADDRESS",
7259 "RELOAD_FOR_OPADDR_ADDR",
7261 "RELOAD_FOR_OTHER_ADDRESS"
7264 /* These functions are used to print the variables set by 'find_reloads' */
7267 debug_reload_to_stream (FILE *f
)
7274 for (r
= 0; r
< n_reloads
; r
++)
7276 fprintf (f
, "Reload %d: ", r
);
7280 fprintf (f
, "reload_in (%s) = ",
7281 GET_MODE_NAME (rld
[r
].inmode
));
7282 print_inline_rtx (f
, rld
[r
].in
, 24);
7283 fprintf (f
, "\n\t");
7286 if (rld
[r
].out
!= 0)
7288 fprintf (f
, "reload_out (%s) = ",
7289 GET_MODE_NAME (rld
[r
].outmode
));
7290 print_inline_rtx (f
, rld
[r
].out
, 24);
7291 fprintf (f
, "\n\t");
7294 fprintf (f
, "%s, ", reg_class_names
[(int) rld
[r
].rclass
]);
7296 fprintf (f
, "%s (opnum = %d)",
7297 reload_when_needed_name
[(int) rld
[r
].when_needed
],
7300 if (rld
[r
].optional
)
7301 fprintf (f
, ", optional");
7303 if (rld
[r
].nongroup
)
7304 fprintf (f
, ", nongroup");
7306 if (maybe_ne (rld
[r
].inc
, 0))
7308 fprintf (f
, ", inc by ");
7309 print_dec (rld
[r
].inc
, f
, SIGNED
);
7312 if (rld
[r
].nocombine
)
7313 fprintf (f
, ", can't combine");
7315 if (rld
[r
].secondary_p
)
7316 fprintf (f
, ", secondary_reload_p");
7318 if (rld
[r
].in_reg
!= 0)
7320 fprintf (f
, "\n\treload_in_reg: ");
7321 print_inline_rtx (f
, rld
[r
].in_reg
, 24);
7324 if (rld
[r
].out_reg
!= 0)
7326 fprintf (f
, "\n\treload_out_reg: ");
7327 print_inline_rtx (f
, rld
[r
].out_reg
, 24);
7330 if (rld
[r
].reg_rtx
!= 0)
7332 fprintf (f
, "\n\treload_reg_rtx: ");
7333 print_inline_rtx (f
, rld
[r
].reg_rtx
, 24);
7337 if (rld
[r
].secondary_in_reload
!= -1)
7339 fprintf (f
, "%ssecondary_in_reload = %d",
7340 prefix
, rld
[r
].secondary_in_reload
);
7344 if (rld
[r
].secondary_out_reload
!= -1)
7345 fprintf (f
, "%ssecondary_out_reload = %d\n",
7346 prefix
, rld
[r
].secondary_out_reload
);
7349 if (rld
[r
].secondary_in_icode
!= CODE_FOR_nothing
)
7351 fprintf (f
, "%ssecondary_in_icode = %s", prefix
,
7352 insn_data
[rld
[r
].secondary_in_icode
].name
);
7356 if (rld
[r
].secondary_out_icode
!= CODE_FOR_nothing
)
7357 fprintf (f
, "%ssecondary_out_icode = %s", prefix
,
7358 insn_data
[rld
[r
].secondary_out_icode
].name
);
7367 debug_reload_to_stream (stderr
);