Bump dates.
[official-gcc.git] / gcc / haifa-sched.c
blob977b6ecd29738891f057a42d771d3036750ff37f
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
14 GNU CC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to the Free
21 the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 Function unit conflicts are resolved during forward list scheduling
58 by tracking the time when each insn is committed to the schedule
59 and from that, the time the function units it uses must be free.
60 As insns on the ready list are considered for scheduling, those
61 that would result in a blockage of the already committed insns are
62 queued until no blockage will result.
64 The following list shows the order in which we want to break ties
65 among insns in the ready list:
67 1. choose insn with the longest path to end of bb, ties
68 broken by
69 2. choose insn with least contribution to register pressure,
70 ties broken by
71 3. prefer in-block upon interblock motion, ties broken by
72 4. prefer useful upon speculative motion, ties broken by
73 5. choose insn with largest control flow probability, ties
74 broken by
75 6. choose insn with the least dependences upon the previously
76 scheduled insn, or finally
77 7 choose the insn which has the most insns dependent on it.
78 8. choose insn with lowest UID.
80 Memory references complicate matters. Only if we can be certain
81 that memory references are not part of the data dependency graph
82 (via true, anti, or output dependence), can we move operations past
83 memory references. To first approximation, reads can be done
84 independently, while writes introduce dependencies. Better
85 approximations will yield fewer dependencies.
87 Before reload, an extended analysis of interblock data dependences
88 is required for interblock scheduling. This is performed in
89 compute_block_backward_dependences ().
91 Dependencies set up by memory references are treated in exactly the
92 same way as other dependencies, by using LOG_LINKS backward
93 dependences. LOG_LINKS are translated into INSN_DEPEND forward
94 dependences for the purpose of forward list scheduling.
96 Having optimized the critical path, we may have also unduly
97 extended the lifetimes of some registers. If an operation requires
98 that constants be loaded into registers, it is certainly desirable
99 to load those constants as early as necessary, but no earlier.
100 I.e., it will not do to load up a bunch of registers at the
101 beginning of a basic block only to use them at the end, if they
102 could be loaded later, since this may result in excessive register
103 utilization.
105 Note that since branches are never in basic blocks, but only end
106 basic blocks, this pass will not move branches. But that is ok,
107 since we can use GNU's delayed branch scheduling pass to take care
108 of this case.
110 Also note that no further optimizations based on algebraic
111 identities are performed, so this pass would be a good one to
112 perform instruction splitting, such as breaking up a multiply
113 instruction into shifts and adds where that is profitable.
115 Given the memory aliasing analysis that this pass should perform,
116 it should be possible to remove redundant stores to memory, and to
117 load values from registers instead of hitting memory.
119 Before reload, speculative insns are moved only if a 'proof' exists
120 that no exception will be caused by this, and if no live registers
121 exist that inhibit the motion (live registers constraints are not
122 represented by data dependence edges).
124 This pass must update information that subsequent passes expect to
125 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
126 reg_n_calls_crossed, and reg_live_length. Also, BLOCK_HEAD,
127 BLOCK_END.
129 The information in the line number notes is carefully retained by
130 this pass. Notes that refer to the starting and ending of
131 exception regions are also carefully retained by this pass. All
132 other NOTE insns are grouped in their same relative order at the
133 beginning of basic blocks and regions that have been scheduled. */
135 #include "config.h"
136 #include "system.h"
137 #include "toplev.h"
138 #include "rtl.h"
139 #include "tm_p.h"
140 #include "hard-reg-set.h"
141 #include "basic-block.h"
142 #include "regs.h"
143 #include "function.h"
144 #include "flags.h"
145 #include "insn-config.h"
146 #include "insn-attr.h"
147 #include "insn-flags.h"
148 #include "except.h"
149 #include "toplev.h"
150 #include "recog.h"
151 #include "sched-int.h"
153 #ifdef INSN_SCHEDULING
155 /* issue_rate is the number of insns that can be scheduled in the same
156 machine cycle. It can be defined in the config/mach/mach.h file,
157 otherwise we set it to 1. */
159 static int issue_rate;
161 #ifndef ISSUE_RATE
162 #define ISSUE_RATE 1
163 #endif
165 /* sched-verbose controls the amount of debugging output the
166 scheduler prints. It is controlled by -fsched-verbose=N:
167 N>0 and no -DSR : the output is directed to stderr.
168 N>=10 will direct the printouts to stderr (regardless of -dSR).
169 N=1: same as -dSR.
170 N=2: bb's probabilities, detailed ready list info, unit/insn info.
171 N=3: rtl at abort point, control-flow, regions info.
172 N=5: dependences info. */
174 static int sched_verbose_param = 0;
175 int sched_verbose = 0;
177 /* Debugging file. All printouts are sent to dump, which is always set,
178 either to stderr, or to the dump listing file (-dRS). */
179 FILE *sched_dump = 0;
181 /* Highest uid before scheduling. */
182 static int old_max_uid;
184 /* fix_sched_param() is called from toplev.c upon detection
185 of the -fsched-verbose=N option. */
187 void
188 fix_sched_param (param, val)
189 const char *param, *val;
191 if (!strcmp (param, "verbose"))
192 sched_verbose_param = atoi (val);
193 else
194 warning ("fix_sched_param: unknown param: %s", param);
197 struct haifa_insn_data *h_i_d;
199 #define DONE_PRIORITY -1
200 #define MAX_PRIORITY 0x7fffffff
201 #define TAIL_PRIORITY 0x7ffffffe
202 #define LAUNCH_PRIORITY 0x7f000001
203 #define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
204 #define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
206 #define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
207 #define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
209 /* Vector indexed by basic block number giving the starting line-number
210 for each basic block. */
211 static rtx *line_note_head;
213 /* List of important notes we must keep around. This is a pointer to the
214 last element in the list. */
215 static rtx note_list;
217 /* Queues, etc. */
219 /* An instruction is ready to be scheduled when all insns preceding it
220 have already been scheduled. It is important to ensure that all
221 insns which use its result will not be executed until its result
222 has been computed. An insn is maintained in one of four structures:
224 (P) the "Pending" set of insns which cannot be scheduled until
225 their dependencies have been satisfied.
226 (Q) the "Queued" set of insns that can be scheduled when sufficient
227 time has passed.
228 (R) the "Ready" list of unscheduled, uncommitted insns.
229 (S) the "Scheduled" list of insns.
231 Initially, all insns are either "Pending" or "Ready" depending on
232 whether their dependencies are satisfied.
234 Insns move from the "Ready" list to the "Scheduled" list as they
235 are committed to the schedule. As this occurs, the insns in the
236 "Pending" list have their dependencies satisfied and move to either
237 the "Ready" list or the "Queued" set depending on whether
238 sufficient time has passed to make them ready. As time passes,
239 insns move from the "Queued" set to the "Ready" list. Insns may
240 move from the "Ready" list to the "Queued" set if they are blocked
241 due to a function unit conflict.
243 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
244 insns, i.e., those that are ready, queued, and pending.
245 The "Queued" set (Q) is implemented by the variable `insn_queue'.
246 The "Ready" list (R) is implemented by the variables `ready' and
247 `n_ready'.
248 The "Scheduled" list (S) is the new insn chain built by this pass.
250 The transition (R->S) is implemented in the scheduling loop in
251 `schedule_block' when the best insn to schedule is chosen.
252 The transition (R->Q) is implemented in `queue_insn' when an
253 insn is found to have a function unit conflict with the already
254 committed insns.
255 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
256 insns move from the ready list to the scheduled list.
257 The transition (Q->R) is implemented in 'queue_to_insn' as time
258 passes or stalls are introduced. */
260 /* Implement a circular buffer to delay instructions until sufficient
261 time has passed. INSN_QUEUE_SIZE is a power of two larger than
262 MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
263 longest time an isnsn may be queued. */
264 static rtx insn_queue[INSN_QUEUE_SIZE];
265 static int q_ptr = 0;
266 static int q_size = 0;
267 #define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
268 #define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
270 /* Describe the ready list of the scheduler.
271 VEC holds space enough for all insns in the current region. VECLEN
272 says how many exactly.
273 FIRST is the index of the element with the highest priority; i.e. the
274 last one in the ready list, since elements are ordered by ascending
275 priority.
276 N_READY determines how many insns are on the ready list. */
278 struct ready_list
280 rtx *vec;
281 int veclen;
282 int first;
283 int n_ready;
286 /* Forward declarations. */
287 static unsigned int blockage_range PARAMS ((int, rtx));
288 static void clear_units PARAMS ((void));
289 static void schedule_unit PARAMS ((int, rtx, int));
290 static int actual_hazard PARAMS ((int, rtx, int, int));
291 static int potential_hazard PARAMS ((int, rtx, int));
292 static int priority PARAMS ((rtx));
293 static int rank_for_schedule PARAMS ((const PTR, const PTR));
294 static void swap_sort PARAMS ((rtx *, int));
295 static void queue_insn PARAMS ((rtx, int));
296 static void schedule_insn PARAMS ((rtx, struct ready_list *, int));
297 static void find_insn_reg_weight PARAMS ((int));
298 static void adjust_priority PARAMS ((rtx));
300 /* Notes handling mechanism:
301 =========================
302 Generally, NOTES are saved before scheduling and restored after scheduling.
303 The scheduler distinguishes between three types of notes:
305 (1) LINE_NUMBER notes, generated and used for debugging. Here,
306 before scheduling a region, a pointer to the LINE_NUMBER note is
307 added to the insn following it (in save_line_notes()), and the note
308 is removed (in rm_line_notes() and unlink_line_notes()). After
309 scheduling the region, this pointer is used for regeneration of
310 the LINE_NUMBER note (in restore_line_notes()).
312 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
313 Before scheduling a region, a pointer to the note is added to the insn
314 that follows or precedes it. (This happens as part of the data dependence
315 computation). After scheduling an insn, the pointer contained in it is
316 used for regenerating the corresponding note (in reemit_notes).
318 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
319 these notes are put in a list (in rm_other_notes() and
320 unlink_other_notes ()). After scheduling the block, these notes are
321 inserted at the beginning of the block (in schedule_block()). */
323 static rtx unlink_other_notes PARAMS ((rtx, rtx));
324 static rtx unlink_line_notes PARAMS ((rtx, rtx));
325 static rtx reemit_notes PARAMS ((rtx, rtx));
327 static rtx *ready_lastpos PARAMS ((struct ready_list *));
328 static void ready_sort PARAMS ((struct ready_list *));
329 static rtx ready_remove_first PARAMS ((struct ready_list *));
331 static void queue_to_ready PARAMS ((struct ready_list *));
333 static void debug_ready_list PARAMS ((struct ready_list *));
335 static rtx move_insn1 PARAMS ((rtx, rtx));
336 static rtx move_insn PARAMS ((rtx, rtx));
338 #endif /* INSN_SCHEDULING */
340 /* Point to state used for the current scheduling pass. */
341 struct sched_info *current_sched_info;
343 #ifndef INSN_SCHEDULING
344 void
345 schedule_insns (dump_file)
346 FILE *dump_file ATTRIBUTE_UNUSED;
349 #else
351 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
352 so that insns independent of the last scheduled insn will be preferred
353 over dependent instructions. */
355 static rtx last_scheduled_insn;
357 /* Compute the function units used by INSN. This caches the value
358 returned by function_units_used. A function unit is encoded as the
359 unit number if the value is non-negative and the compliment of a
360 mask if the value is negative. A function unit index is the
361 non-negative encoding. */
363 HAIFA_INLINE int
364 insn_unit (insn)
365 rtx insn;
367 register int unit = INSN_UNIT (insn);
369 if (unit == 0)
371 recog_memoized (insn);
373 /* A USE insn, or something else we don't need to understand.
374 We can't pass these directly to function_units_used because it will
375 trigger a fatal error for unrecognizable insns. */
376 if (INSN_CODE (insn) < 0)
377 unit = -1;
378 else
380 unit = function_units_used (insn);
381 /* Increment non-negative values so we can cache zero. */
382 if (unit >= 0)
383 unit++;
385 /* We only cache 16 bits of the result, so if the value is out of
386 range, don't cache it. */
387 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
388 || unit >= 0
389 || (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
390 INSN_UNIT (insn) = unit;
392 return (unit > 0 ? unit - 1 : unit);
395 /* Compute the blockage range for executing INSN on UNIT. This caches
396 the value returned by the blockage_range_function for the unit.
397 These values are encoded in an int where the upper half gives the
398 minimum value and the lower half gives the maximum value. */
400 HAIFA_INLINE static unsigned int
401 blockage_range (unit, insn)
402 int unit;
403 rtx insn;
405 unsigned int blockage = INSN_BLOCKAGE (insn);
406 unsigned int range;
408 if ((int) UNIT_BLOCKED (blockage) != unit + 1)
410 range = function_units[unit].blockage_range_function (insn);
411 /* We only cache the blockage range for one unit and then only if
412 the values fit. */
413 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
414 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
416 else
417 range = BLOCKAGE_RANGE (blockage);
419 return range;
422 /* A vector indexed by function unit instance giving the last insn to use
423 the unit. The value of the function unit instance index for unit U
424 instance I is (U + I * FUNCTION_UNITS_SIZE). */
425 static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
427 /* A vector indexed by function unit instance giving the minimum time when
428 the unit will unblock based on the maximum blockage cost. */
429 static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
431 /* A vector indexed by function unit number giving the number of insns
432 that remain to use the unit. */
433 static int unit_n_insns[FUNCTION_UNITS_SIZE];
435 /* Access the unit_last_insn array. Used by the visualization code. */
438 get_unit_last_insn (instance)
439 int instance;
441 return unit_last_insn[instance];
444 /* Reset the function unit state to the null state. */
446 static void
447 clear_units ()
449 memset ((char *) unit_last_insn, 0, sizeof (unit_last_insn));
450 memset ((char *) unit_tick, 0, sizeof (unit_tick));
451 memset ((char *) unit_n_insns, 0, sizeof (unit_n_insns));
454 /* Return the issue-delay of an insn. */
456 HAIFA_INLINE int
457 insn_issue_delay (insn)
458 rtx insn;
460 int i, delay = 0;
461 int unit = insn_unit (insn);
463 /* Efficiency note: in fact, we are working 'hard' to compute a
464 value that was available in md file, and is not available in
465 function_units[] structure. It would be nice to have this
466 value there, too. */
467 if (unit >= 0)
469 if (function_units[unit].blockage_range_function &&
470 function_units[unit].blockage_function)
471 delay = function_units[unit].blockage_function (insn, insn);
473 else
474 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
475 if ((unit & 1) != 0 && function_units[i].blockage_range_function
476 && function_units[i].blockage_function)
477 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
479 return delay;
482 /* Return the actual hazard cost of executing INSN on the unit UNIT,
483 instance INSTANCE at time CLOCK if the previous actual hazard cost
484 was COST. */
486 HAIFA_INLINE int
487 actual_hazard_this_instance (unit, instance, insn, clock, cost)
488 int unit, instance, clock, cost;
489 rtx insn;
491 int tick = unit_tick[instance]; /* Issue time of the last issued insn. */
493 if (tick - clock > cost)
495 /* The scheduler is operating forward, so unit's last insn is the
496 executing insn and INSN is the candidate insn. We want a
497 more exact measure of the blockage if we execute INSN at CLOCK
498 given when we committed the execution of the unit's last insn.
500 The blockage value is given by either the unit's max blockage
501 constant, blockage range function, or blockage function. Use
502 the most exact form for the given unit. */
504 if (function_units[unit].blockage_range_function)
506 if (function_units[unit].blockage_function)
507 tick += (function_units[unit].blockage_function
508 (unit_last_insn[instance], insn)
509 - function_units[unit].max_blockage);
510 else
511 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
512 - function_units[unit].max_blockage);
514 if (tick - clock > cost)
515 cost = tick - clock;
517 return cost;
520 /* Record INSN as having begun execution on the units encoded by UNIT at
521 time CLOCK. */
523 HAIFA_INLINE static void
524 schedule_unit (unit, insn, clock)
525 int unit, clock;
526 rtx insn;
528 int i;
530 if (unit >= 0)
532 int instance = unit;
533 #if MAX_MULTIPLICITY > 1
534 /* Find the first free instance of the function unit and use that
535 one. We assume that one is free. */
536 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
538 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
539 break;
540 instance += FUNCTION_UNITS_SIZE;
542 #endif
543 unit_last_insn[instance] = insn;
544 unit_tick[instance] = (clock + function_units[unit].max_blockage);
546 else
547 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
548 if ((unit & 1) != 0)
549 schedule_unit (i, insn, clock);
552 /* Return the actual hazard cost of executing INSN on the units encoded by
553 UNIT at time CLOCK if the previous actual hazard cost was COST. */
555 HAIFA_INLINE static int
556 actual_hazard (unit, insn, clock, cost)
557 int unit, clock, cost;
558 rtx insn;
560 int i;
562 if (unit >= 0)
564 /* Find the instance of the function unit with the minimum hazard. */
565 int instance = unit;
566 int best_cost = actual_hazard_this_instance (unit, instance, insn,
567 clock, cost);
568 #if MAX_MULTIPLICITY > 1
569 int this_cost;
571 if (best_cost > cost)
573 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
575 instance += FUNCTION_UNITS_SIZE;
576 this_cost = actual_hazard_this_instance (unit, instance, insn,
577 clock, cost);
578 if (this_cost < best_cost)
580 best_cost = this_cost;
581 if (this_cost <= cost)
582 break;
586 #endif
587 cost = MAX (cost, best_cost);
589 else
590 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
591 if ((unit & 1) != 0)
592 cost = actual_hazard (i, insn, clock, cost);
594 return cost;
597 /* Return the potential hazard cost of executing an instruction on the
598 units encoded by UNIT if the previous potential hazard cost was COST.
599 An insn with a large blockage time is chosen in preference to one
600 with a smaller time; an insn that uses a unit that is more likely
601 to be used is chosen in preference to one with a unit that is less
602 used. We are trying to minimize a subsequent actual hazard. */
604 HAIFA_INLINE static int
605 potential_hazard (unit, insn, cost)
606 int unit, cost;
607 rtx insn;
609 int i, ncost;
610 unsigned int minb, maxb;
612 if (unit >= 0)
614 minb = maxb = function_units[unit].max_blockage;
615 if (maxb > 1)
617 if (function_units[unit].blockage_range_function)
619 maxb = minb = blockage_range (unit, insn);
620 maxb = MAX_BLOCKAGE_COST (maxb);
621 minb = MIN_BLOCKAGE_COST (minb);
624 if (maxb > 1)
626 /* Make the number of instructions left dominate. Make the
627 minimum delay dominate the maximum delay. If all these
628 are the same, use the unit number to add an arbitrary
629 ordering. Other terms can be added. */
630 ncost = minb * 0x40 + maxb;
631 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
632 if (ncost > cost)
633 cost = ncost;
637 else
638 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
639 if ((unit & 1) != 0)
640 cost = potential_hazard (i, insn, cost);
642 return cost;
645 /* Compute cost of executing INSN given the dependence LINK on the insn USED.
646 This is the number of cycles between instruction issue and
647 instruction results. */
649 HAIFA_INLINE int
650 insn_cost (insn, link, used)
651 rtx insn, link, used;
653 register int cost = INSN_COST (insn);
655 if (cost == 0)
657 recog_memoized (insn);
659 /* A USE insn, or something else we don't need to understand.
660 We can't pass these directly to result_ready_cost because it will
661 trigger a fatal error for unrecognizable insns. */
662 if (INSN_CODE (insn) < 0)
664 INSN_COST (insn) = 1;
665 return 1;
667 else
669 cost = result_ready_cost (insn);
671 if (cost < 1)
672 cost = 1;
674 INSN_COST (insn) = cost;
678 /* In this case estimate cost without caring how insn is used. */
679 if (link == 0 && used == 0)
680 return cost;
682 /* A USE insn should never require the value used to be computed. This
683 allows the computation of a function's result and parameter values to
684 overlap the return and call. */
685 recog_memoized (used);
686 if (INSN_CODE (used) < 0)
687 LINK_COST_FREE (link) = 1;
689 /* If some dependencies vary the cost, compute the adjustment. Most
690 commonly, the adjustment is complete: either the cost is ignored
691 (in the case of an output- or anti-dependence), or the cost is
692 unchanged. These values are cached in the link as LINK_COST_FREE
693 and LINK_COST_ZERO. */
695 if (LINK_COST_FREE (link))
696 cost = 0;
697 #ifdef ADJUST_COST
698 else if (!LINK_COST_ZERO (link))
700 int ncost = cost;
702 ADJUST_COST (used, link, insn, ncost);
703 if (ncost < 1)
705 LINK_COST_FREE (link) = 1;
706 ncost = 0;
708 if (cost == ncost)
709 LINK_COST_ZERO (link) = 1;
710 cost = ncost;
712 #endif
713 return cost;
716 /* Compute the priority number for INSN. */
718 static int
719 priority (insn)
720 rtx insn;
722 rtx link;
724 if (! INSN_P (insn))
725 return 0;
727 if (! INSN_PRIORITY_KNOWN (insn))
729 int this_priority = 0;
731 if (INSN_DEPEND (insn) == 0)
732 this_priority = insn_cost (insn, 0, 0);
733 else
735 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
737 rtx next;
738 int next_priority;
740 if (RTX_INTEGRATED_P (link))
741 continue;
743 next = XEXP (link, 0);
745 /* Critical path is meaningful in block boundaries only. */
746 if (! (*current_sched_info->contributes_to_priority) (next, insn))
747 continue;
749 next_priority = insn_cost (insn, link, next) + priority (next);
750 if (next_priority > this_priority)
751 this_priority = next_priority;
754 INSN_PRIORITY (insn) = this_priority;
755 INSN_PRIORITY_KNOWN (insn) = 1;
758 return INSN_PRIORITY (insn);
761 /* Macros and functions for keeping the priority queue sorted, and
762 dealing with queueing and dequeueing of instructions. */
764 #define SCHED_SORT(READY, N_READY) \
765 do { if ((N_READY) == 2) \
766 swap_sort (READY, N_READY); \
767 else if ((N_READY) > 2) \
768 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
769 while (0)
771 /* Returns a positive value if x is preferred; returns a negative value if
772 y is preferred. Should never return 0, since that will make the sort
773 unstable. */
775 static int
776 rank_for_schedule (x, y)
777 const PTR x;
778 const PTR y;
780 rtx tmp = *(const rtx *) y;
781 rtx tmp2 = *(const rtx *) x;
782 rtx link;
783 int tmp_class, tmp2_class, depend_count1, depend_count2;
784 int val, priority_val, weight_val, info_val;
786 /* Prefer insn with higher priority. */
787 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
788 if (priority_val)
789 return priority_val;
791 /* Prefer an insn with smaller contribution to registers-pressure. */
792 if (!reload_completed &&
793 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
794 return (weight_val);
796 info_val = (*current_sched_info->rank) (tmp, tmp2);
797 if (info_val)
798 return info_val;
800 /* Compare insns based on their relation to the last-scheduled-insn. */
801 if (last_scheduled_insn)
803 /* Classify the instructions into three classes:
804 1) Data dependent on last schedule insn.
805 2) Anti/Output dependent on last scheduled insn.
806 3) Independent of last scheduled insn, or has latency of one.
807 Choose the insn from the highest numbered class if different. */
808 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
809 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
810 tmp_class = 3;
811 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
812 tmp_class = 1;
813 else
814 tmp_class = 2;
816 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
817 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
818 tmp2_class = 3;
819 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
820 tmp2_class = 1;
821 else
822 tmp2_class = 2;
824 if ((val = tmp2_class - tmp_class))
825 return val;
828 /* Prefer the insn which has more later insns that depend on it.
829 This gives the scheduler more freedom when scheduling later
830 instructions at the expense of added register pressure. */
831 depend_count1 = 0;
832 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
833 depend_count1++;
835 depend_count2 = 0;
836 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
837 depend_count2++;
839 val = depend_count2 - depend_count1;
840 if (val)
841 return val;
843 /* If insns are equally good, sort by INSN_LUID (original insn order),
844 so that we make the sort stable. This minimizes instruction movement,
845 thus minimizing sched's effect on debugging and cross-jumping. */
846 return INSN_LUID (tmp) - INSN_LUID (tmp2);
849 /* Resort the array A in which only element at index N may be out of order. */
851 HAIFA_INLINE static void
852 swap_sort (a, n)
853 rtx *a;
854 int n;
856 rtx insn = a[n - 1];
857 int i = n - 2;
859 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
861 a[i + 1] = a[i];
862 i -= 1;
864 a[i + 1] = insn;
867 /* Add INSN to the insn queue so that it can be executed at least
868 N_CYCLES after the currently executing insn. Preserve insns
869 chain for debugging purposes. */
871 HAIFA_INLINE static void
872 queue_insn (insn, n_cycles)
873 rtx insn;
874 int n_cycles;
876 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
877 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
878 insn_queue[next_q] = link;
879 q_size += 1;
881 if (sched_verbose >= 2)
883 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
884 (*current_sched_info->print_insn) (insn, 0));
886 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
890 /* Return a pointer to the bottom of the ready list, i.e. the insn
891 with the lowest priority. */
893 HAIFA_INLINE static rtx *
894 ready_lastpos (ready)
895 struct ready_list *ready;
897 if (ready->n_ready == 0)
898 abort ();
899 return ready->vec + ready->first - ready->n_ready + 1;
902 /* Add an element INSN to the ready list so that it ends up with the lowest
903 priority. */
905 HAIFA_INLINE void
906 ready_add (ready, insn)
907 struct ready_list *ready;
908 rtx insn;
910 if (ready->first == ready->n_ready)
912 memmove (ready->vec + ready->veclen - ready->n_ready,
913 ready_lastpos (ready),
914 ready->n_ready * sizeof (rtx));
915 ready->first = ready->veclen - 1;
917 ready->vec[ready->first - ready->n_ready] = insn;
918 ready->n_ready++;
921 /* Remove the element with the highest priority from the ready list and
922 return it. */
924 HAIFA_INLINE static rtx
925 ready_remove_first (ready)
926 struct ready_list *ready;
928 rtx t;
929 if (ready->n_ready == 0)
930 abort ();
931 t = ready->vec[ready->first--];
932 ready->n_ready--;
933 /* If the queue becomes empty, reset it. */
934 if (ready->n_ready == 0)
935 ready->first = ready->veclen - 1;
936 return t;
939 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
940 macro. */
942 HAIFA_INLINE static void
943 ready_sort (ready)
944 struct ready_list *ready;
946 rtx *first = ready_lastpos (ready);
947 SCHED_SORT (first, ready->n_ready);
950 /* PREV is an insn that is ready to execute. Adjust its priority if that
951 will help shorten or lengthen register lifetimes as appropriate. Also
952 provide a hook for the target to tweek itself. */
954 HAIFA_INLINE static void
955 adjust_priority (prev)
956 rtx prev ATTRIBUTE_UNUSED;
958 /* ??? There used to be code here to try and estimate how an insn
959 affected register lifetimes, but it did it by looking at REG_DEAD
960 notes, which we removed in schedule_region. Nor did it try to
961 take into account register pressure or anything useful like that.
963 Revisit when we have a machine model to work with and not before. */
965 #ifdef ADJUST_PRIORITY
966 ADJUST_PRIORITY (prev);
967 #endif
970 /* Clock at which the previous instruction was issued. */
971 static int last_clock_var;
973 /* INSN is the "currently executing insn". Launch each insn which was
974 waiting on INSN. READY is the ready list which contains the insns
975 that are ready to fire. CLOCK is the current cycle.
978 static void
979 schedule_insn (insn, ready, clock)
980 rtx insn;
981 struct ready_list *ready;
982 int clock;
984 rtx link;
985 int unit;
987 unit = insn_unit (insn);
989 if (sched_verbose >= 2)
991 fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
992 INSN_UID (insn));
993 insn_print_units (insn);
994 fprintf (sched_dump, "\n");
997 if (sched_verbose && unit == -1)
998 visualize_no_unit (insn);
1000 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
1001 schedule_unit (unit, insn, clock);
1003 if (INSN_DEPEND (insn) == 0)
1004 return;
1006 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
1008 rtx next = XEXP (link, 0);
1009 int cost = insn_cost (insn, link, next);
1011 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
1013 if ((INSN_DEP_COUNT (next) -= 1) == 0)
1015 int effective_cost = INSN_TICK (next) - clock;
1017 if (! (*current_sched_info->new_ready) (next))
1018 continue;
1020 if (sched_verbose >= 2)
1022 fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
1023 (*current_sched_info->print_insn) (next, 0));
1025 if (effective_cost < 1)
1026 fprintf (sched_dump, "into ready\n");
1027 else
1028 fprintf (sched_dump, "into queue with cost=%d\n", effective_cost);
1031 /* Adjust the priority of NEXT and either put it on the ready
1032 list or queue it. */
1033 adjust_priority (next);
1034 if (effective_cost < 1)
1035 ready_add (ready, next);
1036 else
1037 queue_insn (next, effective_cost);
1041 /* Annotate the instruction with issue information -- TImode
1042 indicates that the instruction is expected not to be able
1043 to issue on the same cycle as the previous insn. A machine
1044 may use this information to decide how the instruction should
1045 be aligned. */
1046 if (reload_completed && issue_rate > 1)
1048 PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
1049 last_clock_var = clock;
1053 /* Functions for handling of notes. */
1055 /* Delete notes beginning with INSN and put them in the chain
1056 of notes ended by NOTE_LIST.
1057 Returns the insn following the notes. */
1059 static rtx
1060 unlink_other_notes (insn, tail)
1061 rtx insn, tail;
1063 rtx prev = PREV_INSN (insn);
1065 while (insn != tail && GET_CODE (insn) == NOTE)
1067 rtx next = NEXT_INSN (insn);
1068 /* Delete the note from its current position. */
1069 if (prev)
1070 NEXT_INSN (prev) = next;
1071 if (next)
1072 PREV_INSN (next) = prev;
1074 /* See sched_analyze to see how these are handled. */
1075 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
1076 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
1077 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
1078 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_BEG
1079 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
1080 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1081 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1083 /* Insert the note at the end of the notes list. */
1084 PREV_INSN (insn) = note_list;
1085 if (note_list)
1086 NEXT_INSN (note_list) = insn;
1087 note_list = insn;
1090 insn = next;
1092 return insn;
1095 /* Delete line notes beginning with INSN. Record line-number notes so
1096 they can be reused. Returns the insn following the notes. */
1098 static rtx
1099 unlink_line_notes (insn, tail)
1100 rtx insn, tail;
1102 rtx prev = PREV_INSN (insn);
1104 while (insn != tail && GET_CODE (insn) == NOTE)
1106 rtx next = NEXT_INSN (insn);
1108 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1110 /* Delete the note from its current position. */
1111 if (prev)
1112 NEXT_INSN (prev) = next;
1113 if (next)
1114 PREV_INSN (next) = prev;
1116 /* Record line-number notes so they can be reused. */
1117 LINE_NOTE (insn) = insn;
1119 else
1120 prev = insn;
1122 insn = next;
1124 return insn;
1127 /* Return the head and tail pointers of BB. */
1129 void
1130 get_block_head_tail (b, headp, tailp)
1131 int b;
1132 rtx *headp;
1133 rtx *tailp;
1135 /* HEAD and TAIL delimit the basic block being scheduled. */
1136 rtx head = BLOCK_HEAD (b);
1137 rtx tail = BLOCK_END (b);
1139 /* Don't include any notes or labels at the beginning of the
1140 basic block, or notes at the ends of basic blocks. */
1141 while (head != tail)
1143 if (GET_CODE (head) == NOTE)
1144 head = NEXT_INSN (head);
1145 else if (GET_CODE (tail) == NOTE)
1146 tail = PREV_INSN (tail);
1147 else if (GET_CODE (head) == CODE_LABEL)
1148 head = NEXT_INSN (head);
1149 else
1150 break;
1153 *headp = head;
1154 *tailp = tail;
1157 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1160 no_real_insns_p (head, tail)
1161 rtx head, tail;
1163 while (head != NEXT_INSN (tail))
1165 if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
1166 return 0;
1167 head = NEXT_INSN (head);
1169 return 1;
1172 /* Delete line notes from one block. Save them so they can be later restored
1173 (in restore_line_notes). HEAD and TAIL are the boundaries of the
1174 block in which notes should be processed. */
1176 void
1177 rm_line_notes (head, tail)
1178 rtx head, tail;
1180 rtx next_tail;
1181 rtx insn;
1183 next_tail = NEXT_INSN (tail);
1184 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1186 rtx prev;
1188 /* Farm out notes, and maybe save them in NOTE_LIST.
1189 This is needed to keep the debugger from
1190 getting completely deranged. */
1191 if (GET_CODE (insn) == NOTE)
1193 prev = insn;
1194 insn = unlink_line_notes (insn, next_tail);
1196 if (prev == tail)
1197 abort ();
1198 if (prev == head)
1199 abort ();
1200 if (insn == next_tail)
1201 abort ();
1206 /* Save line number notes for each insn in block B. HEAD and TAIL are
1207 the boundaries of the block in which notes should be processed.*/
1209 void
1210 save_line_notes (b, head, tail)
1211 int b;
1212 rtx head, tail;
1214 rtx next_tail;
1216 /* We must use the true line number for the first insn in the block
1217 that was computed and saved at the start of this pass. We can't
1218 use the current line number, because scheduling of the previous
1219 block may have changed the current line number. */
1221 rtx line = line_note_head[b];
1222 rtx insn;
1224 next_tail = NEXT_INSN (tail);
1226 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1227 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1228 line = insn;
1229 else
1230 LINE_NOTE (insn) = line;
1233 /* After a block was scheduled, insert line notes into the insns list.
1234 HEAD and TAIL are the boundaries of the block in which notes should
1235 be processed.*/
1237 void
1238 restore_line_notes (head, tail)
1239 rtx head, tail;
1241 rtx line, note, prev, new;
1242 int added_notes = 0;
1243 rtx next_tail, insn;
1245 head = head;
1246 next_tail = NEXT_INSN (tail);
1248 /* Determine the current line-number. We want to know the current
1249 line number of the first insn of the block here, in case it is
1250 different from the true line number that was saved earlier. If
1251 different, then we need a line number note before the first insn
1252 of this block. If it happens to be the same, then we don't want to
1253 emit another line number note here. */
1254 for (line = head; line; line = PREV_INSN (line))
1255 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1256 break;
1258 /* Walk the insns keeping track of the current line-number and inserting
1259 the line-number notes as needed. */
1260 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1261 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1262 line = insn;
1263 /* This used to emit line number notes before every non-deleted note.
1264 However, this confuses a debugger, because line notes not separated
1265 by real instructions all end up at the same address. I can find no
1266 use for line number notes before other notes, so none are emitted. */
1267 else if (GET_CODE (insn) != NOTE
1268 && INSN_UID (insn) < old_max_uid
1269 && (note = LINE_NOTE (insn)) != 0
1270 && note != line
1271 && (line == 0
1272 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
1273 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
1275 line = note;
1276 prev = PREV_INSN (insn);
1277 if (LINE_NOTE (note))
1279 /* Re-use the original line-number note. */
1280 LINE_NOTE (note) = 0;
1281 PREV_INSN (note) = prev;
1282 NEXT_INSN (prev) = note;
1283 PREV_INSN (insn) = note;
1284 NEXT_INSN (note) = insn;
1286 else
1288 added_notes++;
1289 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
1290 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
1291 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
1294 if (sched_verbose && added_notes)
1295 fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
1298 /* After scheduling the function, delete redundant line notes from the
1299 insns list. */
1301 void
1302 rm_redundant_line_notes ()
1304 rtx line = 0;
1305 rtx insn = get_insns ();
1306 int active_insn = 0;
1307 int notes = 0;
1309 /* Walk the insns deleting redundant line-number notes. Many of these
1310 are already present. The remainder tend to occur at basic
1311 block boundaries. */
1312 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1313 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1315 /* If there are no active insns following, INSN is redundant. */
1316 if (active_insn == 0)
1318 notes++;
1319 NOTE_SOURCE_FILE (insn) = 0;
1320 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1322 /* If the line number is unchanged, LINE is redundant. */
1323 else if (line
1324 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
1325 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
1327 notes++;
1328 NOTE_SOURCE_FILE (line) = 0;
1329 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
1330 line = insn;
1332 else
1333 line = insn;
1334 active_insn = 0;
1336 else if (!((GET_CODE (insn) == NOTE
1337 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
1338 || (GET_CODE (insn) == INSN
1339 && (GET_CODE (PATTERN (insn)) == USE
1340 || GET_CODE (PATTERN (insn)) == CLOBBER))))
1341 active_insn++;
1343 if (sched_verbose && notes)
1344 fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
1347 /* Delete notes between HEAD and TAIL and put them in the chain
1348 of notes ended by NOTE_LIST. */
1350 void
1351 rm_other_notes (head, tail)
1352 rtx head;
1353 rtx tail;
1355 rtx next_tail;
1356 rtx insn;
1358 note_list = 0;
1359 if (head == tail && (! INSN_P (head)))
1360 return;
1362 next_tail = NEXT_INSN (tail);
1363 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1365 rtx prev;
1367 /* Farm out notes, and maybe save them in NOTE_LIST.
1368 This is needed to keep the debugger from
1369 getting completely deranged. */
1370 if (GET_CODE (insn) == NOTE)
1372 prev = insn;
1374 insn = unlink_other_notes (insn, next_tail);
1376 if (prev == tail)
1377 abort ();
1378 if (prev == head)
1379 abort ();
1380 if (insn == next_tail)
1381 abort ();
1386 /* Functions for computation of registers live/usage info. */
1388 /* Calculate INSN_REG_WEIGHT for all insns of a block. */
1390 static void
1391 find_insn_reg_weight (b)
1392 int b;
1394 rtx insn, next_tail, head, tail;
1396 get_block_head_tail (b, &head, &tail);
1397 next_tail = NEXT_INSN (tail);
1399 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1401 int reg_weight = 0;
1402 rtx x;
1404 /* Handle register life information. */
1405 if (! INSN_P (insn))
1406 continue;
1408 /* Increment weight for each register born here. */
1409 x = PATTERN (insn);
1410 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1411 && register_operand (SET_DEST (x), VOIDmode))
1412 reg_weight++;
1413 else if (GET_CODE (x) == PARALLEL)
1415 int j;
1416 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1418 x = XVECEXP (PATTERN (insn), 0, j);
1419 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1420 && register_operand (SET_DEST (x), VOIDmode))
1421 reg_weight++;
1425 /* Decrement weight for each register that dies here. */
1426 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1428 if (REG_NOTE_KIND (x) == REG_DEAD
1429 || REG_NOTE_KIND (x) == REG_UNUSED)
1430 reg_weight--;
1433 INSN_REG_WEIGHT (insn) = reg_weight;
1437 /* Scheduling clock, modified in schedule_block() and queue_to_ready (). */
1438 static int clock_var;
1440 /* Move insns that became ready to fire from queue to ready list. */
1442 static void
1443 queue_to_ready (ready)
1444 struct ready_list *ready;
1446 rtx insn;
1447 rtx link;
1449 q_ptr = NEXT_Q (q_ptr);
1451 /* Add all pending insns that can be scheduled without stalls to the
1452 ready list. */
1453 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1455 insn = XEXP (link, 0);
1456 q_size -= 1;
1458 if (sched_verbose >= 2)
1459 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1460 (*current_sched_info->print_insn) (insn, 0));
1462 ready_add (ready, insn);
1463 if (sched_verbose >= 2)
1464 fprintf (sched_dump, "moving to ready without stalls\n");
1466 insn_queue[q_ptr] = 0;
1468 /* If there are no ready insns, stall until one is ready and add all
1469 of the pending insns at that point to the ready list. */
1470 if (ready->n_ready == 0)
1472 register int stalls;
1474 for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
1476 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1478 for (; link; link = XEXP (link, 1))
1480 insn = XEXP (link, 0);
1481 q_size -= 1;
1483 if (sched_verbose >= 2)
1484 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1485 (*current_sched_info->print_insn) (insn, 0));
1487 ready_add (ready, insn);
1488 if (sched_verbose >= 2)
1489 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1491 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
1493 if (ready->n_ready)
1494 break;
1498 if (sched_verbose && stalls)
1499 visualize_stall_cycles (stalls);
1500 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1501 clock_var += stalls;
1505 /* Print the ready list for debugging purposes. Callable from debugger. */
1507 static void
1508 debug_ready_list (ready)
1509 struct ready_list *ready;
1511 rtx *p;
1512 int i;
1514 if (ready->n_ready == 0)
1515 return;
1517 p = ready_lastpos (ready);
1518 for (i = 0; i < ready->n_ready; i++)
1519 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1520 fprintf (sched_dump, "\n");
1523 /* move_insn1: Remove INSN from insn chain, and link it after LAST insn. */
1525 static rtx
1526 move_insn1 (insn, last)
1527 rtx insn, last;
1529 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1530 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1532 NEXT_INSN (insn) = NEXT_INSN (last);
1533 PREV_INSN (NEXT_INSN (last)) = insn;
1535 NEXT_INSN (last) = insn;
1536 PREV_INSN (insn) = last;
1538 return insn;
1541 /* Search INSN for REG_SAVE_NOTE note pairs for NOTE_INSN_SETJMP,
1542 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
1543 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1544 saved value for NOTE_BLOCK_NUMBER which is useful for
1545 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
1546 output by the instruction scheduler. Return the new value of LAST. */
1548 static rtx
1549 reemit_notes (insn, last)
1550 rtx insn;
1551 rtx last;
1553 rtx note, retval;
1555 retval = last;
1556 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1558 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1560 enum insn_note note_type = INTVAL (XEXP (note, 0));
1562 if (note_type == NOTE_INSN_SETJMP)
1564 retval = emit_note_after (NOTE_INSN_SETJMP, insn);
1565 CONST_CALL_P (retval) = CONST_CALL_P (note);
1566 remove_note (insn, note);
1567 note = XEXP (note, 1);
1569 else if (note_type == NOTE_INSN_RANGE_BEG
1570 || note_type == NOTE_INSN_RANGE_END)
1572 last = emit_note_before (note_type, last);
1573 remove_note (insn, note);
1574 note = XEXP (note, 1);
1575 NOTE_RANGE_INFO (last) = XEXP (note, 0);
1577 else
1579 last = emit_note_before (note_type, last);
1580 remove_note (insn, note);
1581 note = XEXP (note, 1);
1582 if (note_type == NOTE_INSN_EH_REGION_BEG
1583 || note_type == NOTE_INSN_EH_REGION_END)
1584 NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
1586 remove_note (insn, note);
1589 return retval;
1592 /* Move INSN, and all insns which should be issued before it,
1593 due to SCHED_GROUP_P flag. Reemit notes if needed.
1595 Return the last insn emitted by the scheduler, which is the
1596 return value from the first call to reemit_notes. */
1598 static rtx
1599 move_insn (insn, last)
1600 rtx insn, last;
1602 rtx retval = NULL;
1604 /* If INSN has SCHED_GROUP_P set, then issue it and any other
1605 insns with SCHED_GROUP_P set first. */
1606 while (SCHED_GROUP_P (insn))
1608 rtx prev = PREV_INSN (insn);
1610 /* Move a SCHED_GROUP_P insn. */
1611 move_insn1 (insn, last);
1612 /* If this is the first call to reemit_notes, then record
1613 its return value. */
1614 if (retval == NULL_RTX)
1615 retval = reemit_notes (insn, insn);
1616 else
1617 reemit_notes (insn, insn);
1618 insn = prev;
1621 /* Now move the first non SCHED_GROUP_P insn. */
1622 move_insn1 (insn, last);
1624 /* If this is the first call to reemit_notes, then record
1625 its return value. */
1626 if (retval == NULL_RTX)
1627 retval = reemit_notes (insn, insn);
1628 else
1629 reemit_notes (insn, insn);
1631 return retval;
1634 /* Use forward list scheduling to rearrange insns of block B in region RGN,
1635 possibly bringing insns from subsequent blocks in the same region. */
1637 void
1638 schedule_block (b, rgn_n_insns)
1639 int b;
1640 int rgn_n_insns;
1642 rtx last;
1643 struct ready_list ready;
1644 int can_issue_more;
1646 /* Head/tail info for this block. */
1647 rtx prev_head = current_sched_info->prev_head;
1648 rtx next_tail = current_sched_info->next_tail;
1649 rtx head = NEXT_INSN (prev_head);
1650 rtx tail = PREV_INSN (next_tail);
1652 /* We used to have code to avoid getting parameters moved from hard
1653 argument registers into pseudos.
1655 However, it was removed when it proved to be of marginal benefit
1656 and caused problems because schedule_block and compute_forward_dependences
1657 had different notions of what the "head" insn was. */
1659 if (head == tail && (! INSN_P (head)))
1660 abort ();
1662 /* Debug info. */
1663 if (sched_verbose)
1665 fprintf (sched_dump, ";; ======================================================\n");
1666 fprintf (sched_dump,
1667 ";; -- basic block %d from %d to %d -- %s reload\n",
1668 b, INSN_UID (head), INSN_UID (tail),
1669 (reload_completed ? "after" : "before"));
1670 fprintf (sched_dump, ";; ======================================================\n");
1671 fprintf (sched_dump, "\n");
1673 visualize_alloc ();
1674 init_block_visualization ();
1677 clear_units ();
1679 /* Allocate the ready list. */
1680 ready.veclen = rgn_n_insns + 1 + ISSUE_RATE;
1681 ready.first = ready.veclen - 1;
1682 ready.vec = (rtx *) xmalloc (ready.veclen * sizeof (rtx));
1683 ready.n_ready = 0;
1685 (*current_sched_info->init_ready_list) (&ready);
1687 #ifdef MD_SCHED_INIT
1688 MD_SCHED_INIT (sched_dump, sched_verbose, ready.veclen);
1689 #endif
1691 /* No insns scheduled in this block yet. */
1692 last_scheduled_insn = 0;
1694 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
1695 queue. */
1696 q_ptr = 0;
1697 q_size = 0;
1698 last_clock_var = 0;
1699 memset ((char *) insn_queue, 0, sizeof (insn_queue));
1701 /* Start just before the beginning of time. */
1702 clock_var = -1;
1704 /* We start inserting insns after PREV_HEAD. */
1705 last = prev_head;
1707 /* Loop until all the insns in BB are scheduled. */
1708 while ((*current_sched_info->schedule_more_p) ())
1710 clock_var++;
1712 /* Add to the ready list all pending insns that can be issued now.
1713 If there are no ready insns, increment clock until one
1714 is ready and add all pending insns at that point to the ready
1715 list. */
1716 queue_to_ready (&ready);
1718 #ifdef HAVE_cycle_display
1719 if (HAVE_cycle_display)
1720 last = emit_insn_after (gen_cycle_display (GEN_INT (clock_var)), last);
1721 #endif
1723 if (ready.n_ready == 0)
1724 abort ();
1726 if (sched_verbose >= 2)
1728 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
1729 debug_ready_list (&ready);
1732 /* Sort the ready list based on priority. */
1733 ready_sort (&ready);
1735 /* Allow the target to reorder the list, typically for
1736 better instruction bundling. */
1737 #ifdef MD_SCHED_REORDER
1738 MD_SCHED_REORDER (sched_dump, sched_verbose, ready_lastpos (&ready),
1739 ready.n_ready, clock_var, can_issue_more);
1740 #else
1741 can_issue_more = issue_rate;
1742 #endif
1744 if (sched_verbose)
1746 fprintf (sched_dump, "\n;;\tReady list (t =%3d): ", clock_var);
1747 debug_ready_list (&ready);
1750 /* Issue insns from ready list. */
1751 while (ready.n_ready != 0
1752 && can_issue_more
1753 && (*current_sched_info->schedule_more_p) ())
1755 /* Select and remove the insn from the ready list. */
1756 rtx insn = ready_remove_first (&ready);
1757 int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
1759 if (cost >= 1)
1761 queue_insn (insn, cost);
1762 continue;
1765 if (! (*current_sched_info->can_schedule_ready_p) (insn))
1766 goto next;
1768 last_scheduled_insn = insn;
1769 last = move_insn (insn, last);
1771 #ifdef MD_SCHED_VARIABLE_ISSUE
1772 MD_SCHED_VARIABLE_ISSUE (sched_dump, sched_verbose, insn,
1773 can_issue_more);
1774 #else
1775 can_issue_more--;
1776 #endif
1778 schedule_insn (insn, &ready, clock_var);
1780 next:
1782 #ifdef MD_SCHED_REORDER2
1783 /* Sort the ready list based on priority. */
1784 if (ready.n_ready > 0)
1785 ready_sort (&ready);
1786 MD_SCHED_REORDER2 (sched_dump, sched_verbose,
1787 ready.n_ready ? ready_lastpos (&ready) : NULL,
1788 ready.n_ready, clock_var, can_issue_more);
1789 #endif
1792 /* Debug info. */
1793 if (sched_verbose)
1794 visualize_scheduled_insns (clock_var);
1797 #ifdef MD_SCHED_FINISH
1798 MD_SCHED_FINISH (sched_dump, sched_verbose);
1799 #endif
1801 /* Debug info. */
1802 if (sched_verbose)
1804 fprintf (sched_dump, ";;\tReady list (final): ");
1805 debug_ready_list (&ready);
1806 print_block_visualization ("");
1809 /* Sanity check -- queue must be empty now. Meaningless if region has
1810 multiple bbs. */
1811 if (current_sched_info->queue_must_finish_empty && q_size != 0)
1812 abort ();
1814 /* Update head/tail boundaries. */
1815 head = NEXT_INSN (prev_head);
1816 tail = last;
1818 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1819 previously found among the insns. Insert them at the beginning
1820 of the insns. */
1821 if (note_list != 0)
1823 rtx note_head = note_list;
1825 while (PREV_INSN (note_head))
1827 note_head = PREV_INSN (note_head);
1830 PREV_INSN (note_head) = PREV_INSN (head);
1831 NEXT_INSN (PREV_INSN (head)) = note_head;
1832 PREV_INSN (head) = note_list;
1833 NEXT_INSN (note_list) = head;
1834 head = note_head;
1837 /* Debugging. */
1838 if (sched_verbose)
1840 fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
1841 clock_var, INSN_UID (head));
1842 fprintf (sched_dump, ";; new tail = %d\n\n",
1843 INSN_UID (tail));
1844 visualize_free ();
1847 current_sched_info->head = head;
1848 current_sched_info->tail = tail;
1850 free (ready.vec);
1853 /* Set_priorities: compute priority of each insn in the block. */
1856 set_priorities (head, tail)
1857 rtx head, tail;
1859 rtx insn;
1860 int n_insn;
1862 rtx prev_head;
1864 prev_head = PREV_INSN (head);
1866 if (head == tail && (! INSN_P (head)))
1867 return 0;
1869 n_insn = 0;
1870 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
1872 if (GET_CODE (insn) == NOTE)
1873 continue;
1875 if (!(SCHED_GROUP_P (insn)))
1876 n_insn++;
1877 (void) priority (insn);
1880 return n_insn;
1883 /* Initialize some global state for the scheduler. DUMP_FILE is to be used
1884 for debugging output. */
1886 void
1887 sched_init (dump_file)
1888 FILE *dump_file;
1890 int luid, b;
1891 rtx insn;
1893 /* Disable speculative loads in their presence if cc0 defined. */
1894 #ifdef HAVE_cc0
1895 flag_schedule_speculative_load = 0;
1896 #endif
1898 /* Set dump and sched_verbose for the desired debugging output. If no
1899 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
1900 For -fsched-verbose=N, N>=10, print everything to stderr. */
1901 sched_verbose = sched_verbose_param;
1902 if (sched_verbose_param == 0 && dump_file)
1903 sched_verbose = 1;
1904 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
1905 ? stderr : dump_file);
1907 /* Initialize issue_rate. */
1908 issue_rate = ISSUE_RATE;
1910 split_all_insns (1);
1912 /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
1913 pseudos which do not cross calls. */
1914 old_max_uid = get_max_uid () + 1;
1916 h_i_d = (struct haifa_insn_data *) xcalloc (old_max_uid, sizeof (*h_i_d));
1918 h_i_d[0].luid = 0;
1919 luid = 1;
1920 for (b = 0; b < n_basic_blocks; b++)
1921 for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
1923 INSN_LUID (insn) = luid;
1925 /* Increment the next luid, unless this is a note. We don't
1926 really need separate IDs for notes and we don't want to
1927 schedule differently depending on whether or not there are
1928 line-number notes, i.e., depending on whether or not we're
1929 generating debugging information. */
1930 if (GET_CODE (insn) != NOTE)
1931 ++luid;
1933 if (insn == BLOCK_END (b))
1934 break;
1937 init_dependency_caches (luid);
1939 compute_bb_for_insn (old_max_uid);
1941 init_alias_analysis ();
1943 if (write_symbols != NO_DEBUG)
1945 rtx line;
1947 line_note_head = (rtx *) xcalloc (n_basic_blocks, sizeof (rtx));
1949 /* Save-line-note-head:
1950 Determine the line-number at the start of each basic block.
1951 This must be computed and saved now, because after a basic block's
1952 predecessor has been scheduled, it is impossible to accurately
1953 determine the correct line number for the first insn of the block. */
1955 for (b = 0; b < n_basic_blocks; b++)
1957 for (line = BLOCK_HEAD (b); line; line = PREV_INSN (line))
1958 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1960 line_note_head[b] = line;
1961 break;
1963 /* Do a forward search as well, since we won't get to see the first
1964 notes in a basic block. */
1965 for (line = BLOCK_HEAD (b); line; line = NEXT_INSN (line))
1967 if (INSN_P (line))
1968 break;
1969 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1970 line_note_head[b] = line;
1975 /* Find units used in this fuction, for visualization. */
1976 if (sched_verbose)
1977 init_target_units ();
1979 /* ??? Add a NOTE after the last insn of the last basic block. It is not
1980 known why this is done. */
1982 insn = BLOCK_END (n_basic_blocks - 1);
1983 if (NEXT_INSN (insn) == 0
1984 || (GET_CODE (insn) != NOTE
1985 && GET_CODE (insn) != CODE_LABEL
1986 /* Don't emit a NOTE if it would end up before a BARRIER. */
1987 && GET_CODE (NEXT_INSN (insn)) != BARRIER))
1988 emit_note_after (NOTE_INSN_DELETED, BLOCK_END (n_basic_blocks - 1));
1990 /* Compute INSN_REG_WEIGHT for all blocks. We must do this before
1991 removing death notes. */
1992 for (b = n_basic_blocks - 1; b >= 0; b--)
1993 find_insn_reg_weight (b);
1996 /* Free global data used during insn scheduling. */
1998 void
1999 sched_finish ()
2001 free (h_i_d);
2002 free_dependency_caches ();
2003 end_alias_analysis ();
2004 if (write_symbols != NO_DEBUG)
2005 free (line_note_head);
2007 #endif /* INSN_SCHEDULING */