* gcc.target/powerpc/pr85456.c: Require longdouble128.
[official-gcc.git] / gcc / tree-cfg.c
blob14d66b7a7283a84152d54664a031889f5e50155b
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 int location_line;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return item->location_line;
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return a->location_line == b->location_line;
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (const gcond *, tree);
174 static edge find_taken_edge_switch_expr (const gswitch *, tree);
175 static tree find_case_label_for_value (const gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 case annot_expr_parallel_kind:
351 break;
352 default:
353 gcc_unreachable ();
356 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
357 stmt = gimple_build_assign (gimple_call_lhs (stmt),
358 gimple_call_arg (stmt, 0));
359 gsi_replace (&gsi, stmt, true);
364 /* Lower internal PHI function from GIMPLE FE. */
366 static void
367 lower_phi_internal_fn ()
369 basic_block bb, pred = NULL;
370 gimple_stmt_iterator gsi;
371 tree lhs;
372 gphi *phi_node;
373 gimple *stmt;
375 /* After edge creation, handle __PHI function from GIMPLE FE. */
376 FOR_EACH_BB_FN (bb, cfun)
378 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
380 stmt = gsi_stmt (gsi);
381 if (! gimple_call_internal_p (stmt, IFN_PHI))
382 break;
384 lhs = gimple_call_lhs (stmt);
385 phi_node = create_phi_node (lhs, bb);
387 /* Add arguments to the PHI node. */
388 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
390 tree arg = gimple_call_arg (stmt, i);
391 if (TREE_CODE (arg) == LABEL_DECL)
392 pred = label_to_block (arg);
393 else
395 edge e = find_edge (pred, bb);
396 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
400 gsi_remove (&gsi, true);
405 static unsigned int
406 execute_build_cfg (void)
408 gimple_seq body = gimple_body (current_function_decl);
410 build_gimple_cfg (body);
411 gimple_set_body (current_function_decl, NULL);
412 if (dump_file && (dump_flags & TDF_DETAILS))
414 fprintf (dump_file, "Scope blocks:\n");
415 dump_scope_blocks (dump_file, dump_flags);
417 cleanup_tree_cfg ();
418 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
419 replace_loop_annotate ();
420 return 0;
423 namespace {
425 const pass_data pass_data_build_cfg =
427 GIMPLE_PASS, /* type */
428 "cfg", /* name */
429 OPTGROUP_NONE, /* optinfo_flags */
430 TV_TREE_CFG, /* tv_id */
431 PROP_gimple_leh, /* properties_required */
432 ( PROP_cfg | PROP_loops ), /* properties_provided */
433 0, /* properties_destroyed */
434 0, /* todo_flags_start */
435 0, /* todo_flags_finish */
438 class pass_build_cfg : public gimple_opt_pass
440 public:
441 pass_build_cfg (gcc::context *ctxt)
442 : gimple_opt_pass (pass_data_build_cfg, ctxt)
445 /* opt_pass methods: */
446 virtual unsigned int execute (function *) { return execute_build_cfg (); }
448 }; // class pass_build_cfg
450 } // anon namespace
452 gimple_opt_pass *
453 make_pass_build_cfg (gcc::context *ctxt)
455 return new pass_build_cfg (ctxt);
459 /* Return true if T is a computed goto. */
461 bool
462 computed_goto_p (gimple *t)
464 return (gimple_code (t) == GIMPLE_GOTO
465 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
468 /* Returns true if the sequence of statements STMTS only contains
469 a call to __builtin_unreachable (). */
471 bool
472 gimple_seq_unreachable_p (gimple_seq stmts)
474 if (stmts == NULL
475 /* Return false if -fsanitize=unreachable, we don't want to
476 optimize away those calls, but rather turn them into
477 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
478 later. */
479 || sanitize_flags_p (SANITIZE_UNREACHABLE))
480 return false;
482 gimple_stmt_iterator gsi = gsi_last (stmts);
484 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
485 return false;
487 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
489 gimple *stmt = gsi_stmt (gsi);
490 if (gimple_code (stmt) != GIMPLE_LABEL
491 && !is_gimple_debug (stmt)
492 && !gimple_clobber_p (stmt))
493 return false;
495 return true;
498 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
499 the other edge points to a bb with just __builtin_unreachable ().
500 I.e. return true for C->M edge in:
501 <bb C>:
503 if (something)
504 goto <bb N>;
505 else
506 goto <bb M>;
507 <bb N>:
508 __builtin_unreachable ();
509 <bb M>: */
511 bool
512 assert_unreachable_fallthru_edge_p (edge e)
514 basic_block pred_bb = e->src;
515 gimple *last = last_stmt (pred_bb);
516 if (last && gimple_code (last) == GIMPLE_COND)
518 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
519 if (other_bb == e->dest)
520 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
521 if (EDGE_COUNT (other_bb->succs) == 0)
522 return gimple_seq_unreachable_p (bb_seq (other_bb));
524 return false;
528 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
529 could alter control flow except via eh. We initialize the flag at
530 CFG build time and only ever clear it later. */
532 static void
533 gimple_call_initialize_ctrl_altering (gimple *stmt)
535 int flags = gimple_call_flags (stmt);
537 /* A call alters control flow if it can make an abnormal goto. */
538 if (call_can_make_abnormal_goto (stmt)
539 /* A call also alters control flow if it does not return. */
540 || flags & ECF_NORETURN
541 /* TM ending statements have backedges out of the transaction.
542 Return true so we split the basic block containing them.
543 Note that the TM_BUILTIN test is merely an optimization. */
544 || ((flags & ECF_TM_BUILTIN)
545 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
546 /* BUILT_IN_RETURN call is same as return statement. */
547 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
548 /* IFN_UNIQUE should be the last insn, to make checking for it
549 as cheap as possible. */
550 || (gimple_call_internal_p (stmt)
551 && gimple_call_internal_unique_p (stmt)))
552 gimple_call_set_ctrl_altering (stmt, true);
553 else
554 gimple_call_set_ctrl_altering (stmt, false);
558 /* Insert SEQ after BB and build a flowgraph. */
560 static basic_block
561 make_blocks_1 (gimple_seq seq, basic_block bb)
563 gimple_stmt_iterator i = gsi_start (seq);
564 gimple *stmt = NULL;
565 gimple *prev_stmt = NULL;
566 bool start_new_block = true;
567 bool first_stmt_of_seq = true;
569 while (!gsi_end_p (i))
571 /* PREV_STMT should only be set to a debug stmt if the debug
572 stmt is before nondebug stmts. Once stmt reaches a nondebug
573 nonlabel, prev_stmt will be set to it, so that
574 stmt_starts_bb_p will know to start a new block if a label is
575 found. However, if stmt was a label after debug stmts only,
576 keep the label in prev_stmt even if we find further debug
577 stmts, for there may be other labels after them, and they
578 should land in the same block. */
579 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
580 prev_stmt = stmt;
581 stmt = gsi_stmt (i);
583 if (stmt && is_gimple_call (stmt))
584 gimple_call_initialize_ctrl_altering (stmt);
586 /* If the statement starts a new basic block or if we have determined
587 in a previous pass that we need to create a new block for STMT, do
588 so now. */
589 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
591 if (!first_stmt_of_seq)
592 gsi_split_seq_before (&i, &seq);
593 bb = create_basic_block (seq, bb);
594 start_new_block = false;
595 prev_stmt = NULL;
598 /* Now add STMT to BB and create the subgraphs for special statement
599 codes. */
600 gimple_set_bb (stmt, bb);
602 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
603 next iteration. */
604 if (stmt_ends_bb_p (stmt))
606 /* If the stmt can make abnormal goto use a new temporary
607 for the assignment to the LHS. This makes sure the old value
608 of the LHS is available on the abnormal edge. Otherwise
609 we will end up with overlapping life-ranges for abnormal
610 SSA names. */
611 if (gimple_has_lhs (stmt)
612 && stmt_can_make_abnormal_goto (stmt)
613 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
615 tree lhs = gimple_get_lhs (stmt);
616 tree tmp = create_tmp_var (TREE_TYPE (lhs));
617 gimple *s = gimple_build_assign (lhs, tmp);
618 gimple_set_location (s, gimple_location (stmt));
619 gimple_set_block (s, gimple_block (stmt));
620 gimple_set_lhs (stmt, tmp);
621 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
622 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
623 DECL_GIMPLE_REG_P (tmp) = 1;
624 gsi_insert_after (&i, s, GSI_SAME_STMT);
626 start_new_block = true;
629 gsi_next (&i);
630 first_stmt_of_seq = false;
632 return bb;
635 /* Build a flowgraph for the sequence of stmts SEQ. */
637 static void
638 make_blocks (gimple_seq seq)
640 /* Look for debug markers right before labels, and move the debug
641 stmts after the labels. Accepting labels among debug markers
642 adds no value, just complexity; if we wanted to annotate labels
643 with view numbers (so sequencing among markers would matter) or
644 somesuch, we're probably better off still moving the labels, but
645 adding other debug annotations in their original positions or
646 emitting nonbind or bind markers associated with the labels in
647 the original position of the labels.
649 Moving labels would probably be simpler, but we can't do that:
650 moving labels assigns label ids to them, and doing so because of
651 debug markers makes for -fcompare-debug and possibly even codegen
652 differences. So, we have to move the debug stmts instead. To
653 that end, we scan SEQ backwards, marking the position of the
654 latest (earliest we find) label, and moving debug stmts that are
655 not separated from it by nondebug nonlabel stmts after the
656 label. */
657 if (MAY_HAVE_DEBUG_MARKER_STMTS)
659 gimple_stmt_iterator label = gsi_none ();
661 for (gimple_stmt_iterator i = gsi_last (seq); !gsi_end_p (i); gsi_prev (&i))
663 gimple *stmt = gsi_stmt (i);
665 /* If this is the first label we encounter (latest in SEQ)
666 before nondebug stmts, record its position. */
667 if (is_a <glabel *> (stmt))
669 if (gsi_end_p (label))
670 label = i;
671 continue;
674 /* Without a recorded label position to move debug stmts to,
675 there's nothing to do. */
676 if (gsi_end_p (label))
677 continue;
679 /* Move the debug stmt at I after LABEL. */
680 if (is_gimple_debug (stmt))
682 gcc_assert (gimple_debug_nonbind_marker_p (stmt));
683 /* As STMT is removed, I advances to the stmt after
684 STMT, so the gsi_prev in the for "increment"
685 expression gets us to the stmt we're to visit after
686 STMT. LABEL, however, would advance to the moved
687 stmt if we passed it to gsi_move_after, so pass it a
688 copy instead, so as to keep LABEL pointing to the
689 LABEL. */
690 gimple_stmt_iterator copy = label;
691 gsi_move_after (&i, &copy);
692 continue;
695 /* There aren't any (more?) debug stmts before label, so
696 there isn't anything else to move after it. */
697 label = gsi_none ();
701 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
704 /* Create and return a new empty basic block after bb AFTER. */
706 static basic_block
707 create_bb (void *h, void *e, basic_block after)
709 basic_block bb;
711 gcc_assert (!e);
713 /* Create and initialize a new basic block. Since alloc_block uses
714 GC allocation that clears memory to allocate a basic block, we do
715 not have to clear the newly allocated basic block here. */
716 bb = alloc_block ();
718 bb->index = last_basic_block_for_fn (cfun);
719 bb->flags = BB_NEW;
720 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
722 /* Add the new block to the linked list of blocks. */
723 link_block (bb, after);
725 /* Grow the basic block array if needed. */
726 if ((size_t) last_basic_block_for_fn (cfun)
727 == basic_block_info_for_fn (cfun)->length ())
729 size_t new_size =
730 (last_basic_block_for_fn (cfun)
731 + (last_basic_block_for_fn (cfun) + 3) / 4);
732 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
735 /* Add the newly created block to the array. */
736 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
738 n_basic_blocks_for_fn (cfun)++;
739 last_basic_block_for_fn (cfun)++;
741 return bb;
745 /*---------------------------------------------------------------------------
746 Edge creation
747 ---------------------------------------------------------------------------*/
749 /* If basic block BB has an abnormal edge to a basic block
750 containing IFN_ABNORMAL_DISPATCHER internal call, return
751 that the dispatcher's basic block, otherwise return NULL. */
753 basic_block
754 get_abnormal_succ_dispatcher (basic_block bb)
756 edge e;
757 edge_iterator ei;
759 FOR_EACH_EDGE (e, ei, bb->succs)
760 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
762 gimple_stmt_iterator gsi
763 = gsi_start_nondebug_after_labels_bb (e->dest);
764 gimple *g = gsi_stmt (gsi);
765 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
766 return e->dest;
768 return NULL;
771 /* Helper function for make_edges. Create a basic block with
772 with ABNORMAL_DISPATCHER internal call in it if needed, and
773 create abnormal edges from BBS to it and from it to FOR_BB
774 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
776 static void
777 handle_abnormal_edges (basic_block *dispatcher_bbs,
778 basic_block for_bb, int *bb_to_omp_idx,
779 auto_vec<basic_block> *bbs, bool computed_goto)
781 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
782 unsigned int idx = 0;
783 basic_block bb;
784 bool inner = false;
786 if (bb_to_omp_idx)
788 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
789 if (bb_to_omp_idx[for_bb->index] != 0)
790 inner = true;
793 /* If the dispatcher has been created already, then there are basic
794 blocks with abnormal edges to it, so just make a new edge to
795 for_bb. */
796 if (*dispatcher == NULL)
798 /* Check if there are any basic blocks that need to have
799 abnormal edges to this dispatcher. If there are none, return
800 early. */
801 if (bb_to_omp_idx == NULL)
803 if (bbs->is_empty ())
804 return;
806 else
808 FOR_EACH_VEC_ELT (*bbs, idx, bb)
809 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
810 break;
811 if (bb == NULL)
812 return;
815 /* Create the dispatcher bb. */
816 *dispatcher = create_basic_block (NULL, for_bb);
817 if (computed_goto)
819 /* Factor computed gotos into a common computed goto site. Also
820 record the location of that site so that we can un-factor the
821 gotos after we have converted back to normal form. */
822 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
824 /* Create the destination of the factored goto. Each original
825 computed goto will put its desired destination into this
826 variable and jump to the label we create immediately below. */
827 tree var = create_tmp_var (ptr_type_node, "gotovar");
829 /* Build a label for the new block which will contain the
830 factored computed goto. */
831 tree factored_label_decl
832 = create_artificial_label (UNKNOWN_LOCATION);
833 gimple *factored_computed_goto_label
834 = gimple_build_label (factored_label_decl);
835 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
837 /* Build our new computed goto. */
838 gimple *factored_computed_goto = gimple_build_goto (var);
839 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
841 FOR_EACH_VEC_ELT (*bbs, idx, bb)
843 if (bb_to_omp_idx
844 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
845 continue;
847 gsi = gsi_last_bb (bb);
848 gimple *last = gsi_stmt (gsi);
850 gcc_assert (computed_goto_p (last));
852 /* Copy the original computed goto's destination into VAR. */
853 gimple *assignment
854 = gimple_build_assign (var, gimple_goto_dest (last));
855 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
857 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
858 e->goto_locus = gimple_location (last);
859 gsi_remove (&gsi, true);
862 else
864 tree arg = inner ? boolean_true_node : boolean_false_node;
865 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
866 1, arg);
867 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
868 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
870 /* Create predecessor edges of the dispatcher. */
871 FOR_EACH_VEC_ELT (*bbs, idx, bb)
873 if (bb_to_omp_idx
874 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
875 continue;
876 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
881 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
884 /* Creates outgoing edges for BB. Returns 1 when it ends with an
885 computed goto, returns 2 when it ends with a statement that
886 might return to this function via an nonlocal goto, otherwise
887 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
889 static int
890 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
892 gimple *last = last_stmt (bb);
893 bool fallthru = false;
894 int ret = 0;
896 if (!last)
897 return ret;
899 switch (gimple_code (last))
901 case GIMPLE_GOTO:
902 if (make_goto_expr_edges (bb))
903 ret = 1;
904 fallthru = false;
905 break;
906 case GIMPLE_RETURN:
908 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
909 e->goto_locus = gimple_location (last);
910 fallthru = false;
912 break;
913 case GIMPLE_COND:
914 make_cond_expr_edges (bb);
915 fallthru = false;
916 break;
917 case GIMPLE_SWITCH:
918 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
919 fallthru = false;
920 break;
921 case GIMPLE_RESX:
922 make_eh_edges (last);
923 fallthru = false;
924 break;
925 case GIMPLE_EH_DISPATCH:
926 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
927 break;
929 case GIMPLE_CALL:
930 /* If this function receives a nonlocal goto, then we need to
931 make edges from this call site to all the nonlocal goto
932 handlers. */
933 if (stmt_can_make_abnormal_goto (last))
934 ret = 2;
936 /* If this statement has reachable exception handlers, then
937 create abnormal edges to them. */
938 make_eh_edges (last);
940 /* BUILTIN_RETURN is really a return statement. */
941 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
943 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
944 fallthru = false;
946 /* Some calls are known not to return. */
947 else
948 fallthru = !gimple_call_noreturn_p (last);
949 break;
951 case GIMPLE_ASSIGN:
952 /* A GIMPLE_ASSIGN may throw internally and thus be considered
953 control-altering. */
954 if (is_ctrl_altering_stmt (last))
955 make_eh_edges (last);
956 fallthru = true;
957 break;
959 case GIMPLE_ASM:
960 make_gimple_asm_edges (bb);
961 fallthru = true;
962 break;
964 CASE_GIMPLE_OMP:
965 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
966 break;
968 case GIMPLE_TRANSACTION:
970 gtransaction *txn = as_a <gtransaction *> (last);
971 tree label1 = gimple_transaction_label_norm (txn);
972 tree label2 = gimple_transaction_label_uninst (txn);
974 if (label1)
975 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
976 if (label2)
977 make_edge (bb, label_to_block (label2),
978 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
980 tree label3 = gimple_transaction_label_over (txn);
981 if (gimple_transaction_subcode (txn)
982 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
983 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
985 fallthru = false;
987 break;
989 default:
990 gcc_assert (!stmt_ends_bb_p (last));
991 fallthru = true;
992 break;
995 if (fallthru)
996 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
998 return ret;
1001 /* Join all the blocks in the flowgraph. */
1003 static void
1004 make_edges (void)
1006 basic_block bb;
1007 struct omp_region *cur_region = NULL;
1008 auto_vec<basic_block> ab_edge_goto;
1009 auto_vec<basic_block> ab_edge_call;
1010 int *bb_to_omp_idx = NULL;
1011 int cur_omp_region_idx = 0;
1013 /* Create an edge from entry to the first block with executable
1014 statements in it. */
1015 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
1016 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
1017 EDGE_FALLTHRU);
1019 /* Traverse the basic block array placing edges. */
1020 FOR_EACH_BB_FN (bb, cfun)
1022 int mer;
1024 if (bb_to_omp_idx)
1025 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
1027 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1028 if (mer == 1)
1029 ab_edge_goto.safe_push (bb);
1030 else if (mer == 2)
1031 ab_edge_call.safe_push (bb);
1033 if (cur_region && bb_to_omp_idx == NULL)
1034 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
1037 /* Computed gotos are hell to deal with, especially if there are
1038 lots of them with a large number of destinations. So we factor
1039 them to a common computed goto location before we build the
1040 edge list. After we convert back to normal form, we will un-factor
1041 the computed gotos since factoring introduces an unwanted jump.
1042 For non-local gotos and abnormal edges from calls to calls that return
1043 twice or forced labels, factor the abnormal edges too, by having all
1044 abnormal edges from the calls go to a common artificial basic block
1045 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1046 basic block to all forced labels and calls returning twice.
1047 We do this per-OpenMP structured block, because those regions
1048 are guaranteed to be single entry single exit by the standard,
1049 so it is not allowed to enter or exit such regions abnormally this way,
1050 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1051 must not transfer control across SESE region boundaries. */
1052 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
1054 gimple_stmt_iterator gsi;
1055 basic_block dispatcher_bb_array[2] = { NULL, NULL };
1056 basic_block *dispatcher_bbs = dispatcher_bb_array;
1057 int count = n_basic_blocks_for_fn (cfun);
1059 if (bb_to_omp_idx)
1060 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1062 FOR_EACH_BB_FN (bb, cfun)
1064 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1066 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1067 tree target;
1069 if (!label_stmt)
1070 break;
1072 target = gimple_label_label (label_stmt);
1074 /* Make an edge to every label block that has been marked as a
1075 potential target for a computed goto or a non-local goto. */
1076 if (FORCED_LABEL (target))
1077 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1078 &ab_edge_goto, true);
1079 if (DECL_NONLOCAL (target))
1081 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1082 &ab_edge_call, false);
1083 break;
1087 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1088 gsi_next_nondebug (&gsi);
1089 if (!gsi_end_p (gsi))
1091 /* Make an edge to every setjmp-like call. */
1092 gimple *call_stmt = gsi_stmt (gsi);
1093 if (is_gimple_call (call_stmt)
1094 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1095 || gimple_call_builtin_p (call_stmt,
1096 BUILT_IN_SETJMP_RECEIVER)))
1097 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1098 &ab_edge_call, false);
1102 if (bb_to_omp_idx)
1103 XDELETE (dispatcher_bbs);
1106 XDELETE (bb_to_omp_idx);
1108 omp_free_regions ();
1111 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1112 needed. Returns true if new bbs were created.
1113 Note: This is transitional code, and should not be used for new code. We
1114 should be able to get rid of this by rewriting all target va-arg
1115 gimplification hooks to use an interface gimple_build_cond_value as described
1116 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1118 bool
1119 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1121 gimple *stmt = gsi_stmt (*gsi);
1122 basic_block bb = gimple_bb (stmt);
1123 basic_block lastbb, afterbb;
1124 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1125 edge e;
1126 lastbb = make_blocks_1 (seq, bb);
1127 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1128 return false;
1129 e = split_block (bb, stmt);
1130 /* Move e->dest to come after the new basic blocks. */
1131 afterbb = e->dest;
1132 unlink_block (afterbb);
1133 link_block (afterbb, lastbb);
1134 redirect_edge_succ (e, bb->next_bb);
1135 bb = bb->next_bb;
1136 while (bb != afterbb)
1138 struct omp_region *cur_region = NULL;
1139 profile_count cnt = profile_count::zero ();
1140 bool all = true;
1142 int cur_omp_region_idx = 0;
1143 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1144 gcc_assert (!mer && !cur_region);
1145 add_bb_to_loop (bb, afterbb->loop_father);
1147 edge e;
1148 edge_iterator ei;
1149 FOR_EACH_EDGE (e, ei, bb->preds)
1151 if (e->count ().initialized_p ())
1152 cnt += e->count ();
1153 else
1154 all = false;
1156 tree_guess_outgoing_edge_probabilities (bb);
1157 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1158 bb->count = cnt;
1160 bb = bb->next_bb;
1162 return true;
1165 /* Find the next available discriminator value for LOCUS. The
1166 discriminator distinguishes among several basic blocks that
1167 share a common locus, allowing for more accurate sample-based
1168 profiling. */
1170 static int
1171 next_discriminator_for_locus (int line)
1173 struct locus_discrim_map item;
1174 struct locus_discrim_map **slot;
1176 item.location_line = line;
1177 item.discriminator = 0;
1178 slot = discriminator_per_locus->find_slot_with_hash (&item, line, INSERT);
1179 gcc_assert (slot);
1180 if (*slot == HTAB_EMPTY_ENTRY)
1182 *slot = XNEW (struct locus_discrim_map);
1183 gcc_assert (*slot);
1184 (*slot)->location_line = line;
1185 (*slot)->discriminator = 0;
1187 (*slot)->discriminator++;
1188 return (*slot)->discriminator;
1191 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1193 static bool
1194 same_line_p (location_t locus1, expanded_location *from, location_t locus2)
1196 expanded_location to;
1198 if (locus1 == locus2)
1199 return true;
1201 to = expand_location (locus2);
1203 if (from->line != to.line)
1204 return false;
1205 if (from->file == to.file)
1206 return true;
1207 return (from->file != NULL
1208 && to.file != NULL
1209 && filename_cmp (from->file, to.file) == 0);
1212 /* Assign discriminators to each basic block. */
1214 static void
1215 assign_discriminators (void)
1217 basic_block bb;
1219 FOR_EACH_BB_FN (bb, cfun)
1221 edge e;
1222 edge_iterator ei;
1223 gimple *last = last_stmt (bb);
1224 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1226 if (locus == UNKNOWN_LOCATION)
1227 continue;
1229 expanded_location locus_e = expand_location (locus);
1231 FOR_EACH_EDGE (e, ei, bb->succs)
1233 gimple *first = first_non_label_stmt (e->dest);
1234 gimple *last = last_stmt (e->dest);
1235 if ((first && same_line_p (locus, &locus_e,
1236 gimple_location (first)))
1237 || (last && same_line_p (locus, &locus_e,
1238 gimple_location (last))))
1240 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1241 bb->discriminator
1242 = next_discriminator_for_locus (locus_e.line);
1243 else
1244 e->dest->discriminator
1245 = next_discriminator_for_locus (locus_e.line);
1251 /* Create the edges for a GIMPLE_COND starting at block BB. */
1253 static void
1254 make_cond_expr_edges (basic_block bb)
1256 gcond *entry = as_a <gcond *> (last_stmt (bb));
1257 gimple *then_stmt, *else_stmt;
1258 basic_block then_bb, else_bb;
1259 tree then_label, else_label;
1260 edge e;
1262 gcc_assert (entry);
1263 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1265 /* Entry basic blocks for each component. */
1266 then_label = gimple_cond_true_label (entry);
1267 else_label = gimple_cond_false_label (entry);
1268 then_bb = label_to_block (then_label);
1269 else_bb = label_to_block (else_label);
1270 then_stmt = first_stmt (then_bb);
1271 else_stmt = first_stmt (else_bb);
1273 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1274 e->goto_locus = gimple_location (then_stmt);
1275 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1276 if (e)
1277 e->goto_locus = gimple_location (else_stmt);
1279 /* We do not need the labels anymore. */
1280 gimple_cond_set_true_label (entry, NULL_TREE);
1281 gimple_cond_set_false_label (entry, NULL_TREE);
1285 /* Called for each element in the hash table (P) as we delete the
1286 edge to cases hash table.
1288 Clear all the CASE_CHAINs to prevent problems with copying of
1289 SWITCH_EXPRs and structure sharing rules, then free the hash table
1290 element. */
1292 bool
1293 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1295 tree t, next;
1297 for (t = value; t; t = next)
1299 next = CASE_CHAIN (t);
1300 CASE_CHAIN (t) = NULL;
1303 return true;
1306 /* Start recording information mapping edges to case labels. */
1308 void
1309 start_recording_case_labels (void)
1311 gcc_assert (edge_to_cases == NULL);
1312 edge_to_cases = new hash_map<edge, tree>;
1313 touched_switch_bbs = BITMAP_ALLOC (NULL);
1316 /* Return nonzero if we are recording information for case labels. */
1318 static bool
1319 recording_case_labels_p (void)
1321 return (edge_to_cases != NULL);
1324 /* Stop recording information mapping edges to case labels and
1325 remove any information we have recorded. */
1326 void
1327 end_recording_case_labels (void)
1329 bitmap_iterator bi;
1330 unsigned i;
1331 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1332 delete edge_to_cases;
1333 edge_to_cases = NULL;
1334 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1336 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1337 if (bb)
1339 gimple *stmt = last_stmt (bb);
1340 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1341 group_case_labels_stmt (as_a <gswitch *> (stmt));
1344 BITMAP_FREE (touched_switch_bbs);
1347 /* If we are inside a {start,end}_recording_cases block, then return
1348 a chain of CASE_LABEL_EXPRs from T which reference E.
1350 Otherwise return NULL. */
1352 static tree
1353 get_cases_for_edge (edge e, gswitch *t)
1355 tree *slot;
1356 size_t i, n;
1358 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1359 chains available. Return NULL so the caller can detect this case. */
1360 if (!recording_case_labels_p ())
1361 return NULL;
1363 slot = edge_to_cases->get (e);
1364 if (slot)
1365 return *slot;
1367 /* If we did not find E in the hash table, then this must be the first
1368 time we have been queried for information about E & T. Add all the
1369 elements from T to the hash table then perform the query again. */
1371 n = gimple_switch_num_labels (t);
1372 for (i = 0; i < n; i++)
1374 tree elt = gimple_switch_label (t, i);
1375 tree lab = CASE_LABEL (elt);
1376 basic_block label_bb = label_to_block (lab);
1377 edge this_edge = find_edge (e->src, label_bb);
1379 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1380 a new chain. */
1381 tree &s = edge_to_cases->get_or_insert (this_edge);
1382 CASE_CHAIN (elt) = s;
1383 s = elt;
1386 return *edge_to_cases->get (e);
1389 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1391 static void
1392 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1394 size_t i, n;
1396 n = gimple_switch_num_labels (entry);
1398 for (i = 0; i < n; ++i)
1400 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1401 basic_block label_bb = label_to_block (lab);
1402 make_edge (bb, label_bb, 0);
1407 /* Return the basic block holding label DEST. */
1409 basic_block
1410 label_to_block_fn (struct function *ifun, tree dest)
1412 int uid = LABEL_DECL_UID (dest);
1414 /* We would die hard when faced by an undefined label. Emit a label to
1415 the very first basic block. This will hopefully make even the dataflow
1416 and undefined variable warnings quite right. */
1417 if (seen_error () && uid < 0)
1419 gimple_stmt_iterator gsi =
1420 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1421 gimple *stmt;
1423 stmt = gimple_build_label (dest);
1424 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1425 uid = LABEL_DECL_UID (dest);
1427 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1428 return NULL;
1429 return (*ifun->cfg->x_label_to_block_map)[uid];
1432 /* Create edges for a goto statement at block BB. Returns true
1433 if abnormal edges should be created. */
1435 static bool
1436 make_goto_expr_edges (basic_block bb)
1438 gimple_stmt_iterator last = gsi_last_bb (bb);
1439 gimple *goto_t = gsi_stmt (last);
1441 /* A simple GOTO creates normal edges. */
1442 if (simple_goto_p (goto_t))
1444 tree dest = gimple_goto_dest (goto_t);
1445 basic_block label_bb = label_to_block (dest);
1446 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1447 e->goto_locus = gimple_location (goto_t);
1448 gsi_remove (&last, true);
1449 return false;
1452 /* A computed GOTO creates abnormal edges. */
1453 return true;
1456 /* Create edges for an asm statement with labels at block BB. */
1458 static void
1459 make_gimple_asm_edges (basic_block bb)
1461 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1462 int i, n = gimple_asm_nlabels (stmt);
1464 for (i = 0; i < n; ++i)
1466 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1467 basic_block label_bb = label_to_block (label);
1468 make_edge (bb, label_bb, 0);
1472 /*---------------------------------------------------------------------------
1473 Flowgraph analysis
1474 ---------------------------------------------------------------------------*/
1476 /* Cleanup useless labels in basic blocks. This is something we wish
1477 to do early because it allows us to group case labels before creating
1478 the edges for the CFG, and it speeds up block statement iterators in
1479 all passes later on.
1480 We rerun this pass after CFG is created, to get rid of the labels that
1481 are no longer referenced. After then we do not run it any more, since
1482 (almost) no new labels should be created. */
1484 /* A map from basic block index to the leading label of that block. */
1485 static struct label_record
1487 /* The label. */
1488 tree label;
1490 /* True if the label is referenced from somewhere. */
1491 bool used;
1492 } *label_for_bb;
1494 /* Given LABEL return the first label in the same basic block. */
1496 static tree
1497 main_block_label (tree label)
1499 basic_block bb = label_to_block (label);
1500 tree main_label = label_for_bb[bb->index].label;
1502 /* label_to_block possibly inserted undefined label into the chain. */
1503 if (!main_label)
1505 label_for_bb[bb->index].label = label;
1506 main_label = label;
1509 label_for_bb[bb->index].used = true;
1510 return main_label;
1513 /* Clean up redundant labels within the exception tree. */
1515 static void
1516 cleanup_dead_labels_eh (void)
1518 eh_landing_pad lp;
1519 eh_region r;
1520 tree lab;
1521 int i;
1523 if (cfun->eh == NULL)
1524 return;
1526 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1527 if (lp && lp->post_landing_pad)
1529 lab = main_block_label (lp->post_landing_pad);
1530 if (lab != lp->post_landing_pad)
1532 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1533 EH_LANDING_PAD_NR (lab) = lp->index;
1537 FOR_ALL_EH_REGION (r)
1538 switch (r->type)
1540 case ERT_CLEANUP:
1541 case ERT_MUST_NOT_THROW:
1542 break;
1544 case ERT_TRY:
1546 eh_catch c;
1547 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1549 lab = c->label;
1550 if (lab)
1551 c->label = main_block_label (lab);
1554 break;
1556 case ERT_ALLOWED_EXCEPTIONS:
1557 lab = r->u.allowed.label;
1558 if (lab)
1559 r->u.allowed.label = main_block_label (lab);
1560 break;
1565 /* Cleanup redundant labels. This is a three-step process:
1566 1) Find the leading label for each block.
1567 2) Redirect all references to labels to the leading labels.
1568 3) Cleanup all useless labels. */
1570 void
1571 cleanup_dead_labels (void)
1573 basic_block bb;
1574 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1576 /* Find a suitable label for each block. We use the first user-defined
1577 label if there is one, or otherwise just the first label we see. */
1578 FOR_EACH_BB_FN (bb, cfun)
1580 gimple_stmt_iterator i;
1582 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1584 tree label;
1585 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1587 if (!label_stmt)
1588 break;
1590 label = gimple_label_label (label_stmt);
1592 /* If we have not yet seen a label for the current block,
1593 remember this one and see if there are more labels. */
1594 if (!label_for_bb[bb->index].label)
1596 label_for_bb[bb->index].label = label;
1597 continue;
1600 /* If we did see a label for the current block already, but it
1601 is an artificially created label, replace it if the current
1602 label is a user defined label. */
1603 if (!DECL_ARTIFICIAL (label)
1604 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1606 label_for_bb[bb->index].label = label;
1607 break;
1612 /* Now redirect all jumps/branches to the selected label.
1613 First do so for each block ending in a control statement. */
1614 FOR_EACH_BB_FN (bb, cfun)
1616 gimple *stmt = last_stmt (bb);
1617 tree label, new_label;
1619 if (!stmt)
1620 continue;
1622 switch (gimple_code (stmt))
1624 case GIMPLE_COND:
1626 gcond *cond_stmt = as_a <gcond *> (stmt);
1627 label = gimple_cond_true_label (cond_stmt);
1628 if (label)
1630 new_label = main_block_label (label);
1631 if (new_label != label)
1632 gimple_cond_set_true_label (cond_stmt, new_label);
1635 label = gimple_cond_false_label (cond_stmt);
1636 if (label)
1638 new_label = main_block_label (label);
1639 if (new_label != label)
1640 gimple_cond_set_false_label (cond_stmt, new_label);
1643 break;
1645 case GIMPLE_SWITCH:
1647 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1648 size_t i, n = gimple_switch_num_labels (switch_stmt);
1650 /* Replace all destination labels. */
1651 for (i = 0; i < n; ++i)
1653 tree case_label = gimple_switch_label (switch_stmt, i);
1654 label = CASE_LABEL (case_label);
1655 new_label = main_block_label (label);
1656 if (new_label != label)
1657 CASE_LABEL (case_label) = new_label;
1659 break;
1662 case GIMPLE_ASM:
1664 gasm *asm_stmt = as_a <gasm *> (stmt);
1665 int i, n = gimple_asm_nlabels (asm_stmt);
1667 for (i = 0; i < n; ++i)
1669 tree cons = gimple_asm_label_op (asm_stmt, i);
1670 tree label = main_block_label (TREE_VALUE (cons));
1671 TREE_VALUE (cons) = label;
1673 break;
1676 /* We have to handle gotos until they're removed, and we don't
1677 remove them until after we've created the CFG edges. */
1678 case GIMPLE_GOTO:
1679 if (!computed_goto_p (stmt))
1681 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1682 label = gimple_goto_dest (goto_stmt);
1683 new_label = main_block_label (label);
1684 if (new_label != label)
1685 gimple_goto_set_dest (goto_stmt, new_label);
1687 break;
1689 case GIMPLE_TRANSACTION:
1691 gtransaction *txn = as_a <gtransaction *> (stmt);
1693 label = gimple_transaction_label_norm (txn);
1694 if (label)
1696 new_label = main_block_label (label);
1697 if (new_label != label)
1698 gimple_transaction_set_label_norm (txn, new_label);
1701 label = gimple_transaction_label_uninst (txn);
1702 if (label)
1704 new_label = main_block_label (label);
1705 if (new_label != label)
1706 gimple_transaction_set_label_uninst (txn, new_label);
1709 label = gimple_transaction_label_over (txn);
1710 if (label)
1712 new_label = main_block_label (label);
1713 if (new_label != label)
1714 gimple_transaction_set_label_over (txn, new_label);
1717 break;
1719 default:
1720 break;
1724 /* Do the same for the exception region tree labels. */
1725 cleanup_dead_labels_eh ();
1727 /* Finally, purge dead labels. All user-defined labels and labels that
1728 can be the target of non-local gotos and labels which have their
1729 address taken are preserved. */
1730 FOR_EACH_BB_FN (bb, cfun)
1732 gimple_stmt_iterator i;
1733 tree label_for_this_bb = label_for_bb[bb->index].label;
1735 if (!label_for_this_bb)
1736 continue;
1738 /* If the main label of the block is unused, we may still remove it. */
1739 if (!label_for_bb[bb->index].used)
1740 label_for_this_bb = NULL;
1742 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1744 tree label;
1745 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1747 if (!label_stmt)
1748 break;
1750 label = gimple_label_label (label_stmt);
1752 if (label == label_for_this_bb
1753 || !DECL_ARTIFICIAL (label)
1754 || DECL_NONLOCAL (label)
1755 || FORCED_LABEL (label))
1756 gsi_next (&i);
1757 else
1758 gsi_remove (&i, true);
1762 free (label_for_bb);
1765 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1766 the ones jumping to the same label.
1767 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1769 bool
1770 group_case_labels_stmt (gswitch *stmt)
1772 int old_size = gimple_switch_num_labels (stmt);
1773 int i, next_index, new_size;
1774 basic_block default_bb = NULL;
1776 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1778 /* Look for possible opportunities to merge cases. */
1779 new_size = i = 1;
1780 while (i < old_size)
1782 tree base_case, base_high;
1783 basic_block base_bb;
1785 base_case = gimple_switch_label (stmt, i);
1787 gcc_assert (base_case);
1788 base_bb = label_to_block (CASE_LABEL (base_case));
1790 /* Discard cases that have the same destination as the default case or
1791 whose destiniation blocks have already been removed as unreachable. */
1792 if (base_bb == NULL || base_bb == default_bb)
1794 i++;
1795 continue;
1798 base_high = CASE_HIGH (base_case)
1799 ? CASE_HIGH (base_case)
1800 : CASE_LOW (base_case);
1801 next_index = i + 1;
1803 /* Try to merge case labels. Break out when we reach the end
1804 of the label vector or when we cannot merge the next case
1805 label with the current one. */
1806 while (next_index < old_size)
1808 tree merge_case = gimple_switch_label (stmt, next_index);
1809 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1810 wide_int bhp1 = wi::to_wide (base_high) + 1;
1812 /* Merge the cases if they jump to the same place,
1813 and their ranges are consecutive. */
1814 if (merge_bb == base_bb
1815 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1817 base_high = CASE_HIGH (merge_case) ?
1818 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1819 CASE_HIGH (base_case) = base_high;
1820 next_index++;
1822 else
1823 break;
1826 /* Discard cases that have an unreachable destination block. */
1827 if (EDGE_COUNT (base_bb->succs) == 0
1828 && gimple_seq_unreachable_p (bb_seq (base_bb))
1829 /* Don't optimize this if __builtin_unreachable () is the
1830 implicitly added one by the C++ FE too early, before
1831 -Wreturn-type can be diagnosed. We'll optimize it later
1832 during switchconv pass or any other cfg cleanup. */
1833 && (gimple_in_ssa_p (cfun)
1834 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1835 != BUILTINS_LOCATION)))
1837 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1838 if (base_edge != NULL)
1839 remove_edge_and_dominated_blocks (base_edge);
1840 i = next_index;
1841 continue;
1844 if (new_size < i)
1845 gimple_switch_set_label (stmt, new_size,
1846 gimple_switch_label (stmt, i));
1847 i = next_index;
1848 new_size++;
1851 gcc_assert (new_size <= old_size);
1853 if (new_size < old_size)
1854 gimple_switch_set_num_labels (stmt, new_size);
1856 return new_size < old_size;
1859 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1860 and scan the sorted vector of cases. Combine the ones jumping to the
1861 same label. */
1863 bool
1864 group_case_labels (void)
1866 basic_block bb;
1867 bool changed = false;
1869 FOR_EACH_BB_FN (bb, cfun)
1871 gimple *stmt = last_stmt (bb);
1872 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1873 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1876 return changed;
1879 /* Checks whether we can merge block B into block A. */
1881 static bool
1882 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1884 gimple *stmt;
1886 if (!single_succ_p (a))
1887 return false;
1889 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1890 return false;
1892 if (single_succ (a) != b)
1893 return false;
1895 if (!single_pred_p (b))
1896 return false;
1898 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1899 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1900 return false;
1902 /* If A ends by a statement causing exceptions or something similar, we
1903 cannot merge the blocks. */
1904 stmt = last_stmt (a);
1905 if (stmt && stmt_ends_bb_p (stmt))
1906 return false;
1908 /* Do not allow a block with only a non-local label to be merged. */
1909 if (stmt)
1910 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1911 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1912 return false;
1914 /* Examine the labels at the beginning of B. */
1915 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1916 gsi_next (&gsi))
1918 tree lab;
1919 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1920 if (!label_stmt)
1921 break;
1922 lab = gimple_label_label (label_stmt);
1924 /* Do not remove user forced labels or for -O0 any user labels. */
1925 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1926 return false;
1929 /* Protect simple loop latches. We only want to avoid merging
1930 the latch with the loop header or with a block in another
1931 loop in this case. */
1932 if (current_loops
1933 && b->loop_father->latch == b
1934 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1935 && (b->loop_father->header == a
1936 || b->loop_father != a->loop_father))
1937 return false;
1939 /* It must be possible to eliminate all phi nodes in B. If ssa form
1940 is not up-to-date and a name-mapping is registered, we cannot eliminate
1941 any phis. Symbols marked for renaming are never a problem though. */
1942 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1943 gsi_next (&gsi))
1945 gphi *phi = gsi.phi ();
1946 /* Technically only new names matter. */
1947 if (name_registered_for_update_p (PHI_RESULT (phi)))
1948 return false;
1951 /* When not optimizing, don't merge if we'd lose goto_locus. */
1952 if (!optimize
1953 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1955 location_t goto_locus = single_succ_edge (a)->goto_locus;
1956 gimple_stmt_iterator prev, next;
1957 prev = gsi_last_nondebug_bb (a);
1958 next = gsi_after_labels (b);
1959 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1960 gsi_next_nondebug (&next);
1961 if ((gsi_end_p (prev)
1962 || gimple_location (gsi_stmt (prev)) != goto_locus)
1963 && (gsi_end_p (next)
1964 || gimple_location (gsi_stmt (next)) != goto_locus))
1965 return false;
1968 return true;
1971 /* Replaces all uses of NAME by VAL. */
1973 void
1974 replace_uses_by (tree name, tree val)
1976 imm_use_iterator imm_iter;
1977 use_operand_p use;
1978 gimple *stmt;
1979 edge e;
1981 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1983 /* Mark the block if we change the last stmt in it. */
1984 if (cfgcleanup_altered_bbs
1985 && stmt_ends_bb_p (stmt))
1986 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1988 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1990 replace_exp (use, val);
1992 if (gimple_code (stmt) == GIMPLE_PHI)
1994 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1995 PHI_ARG_INDEX_FROM_USE (use));
1996 if (e->flags & EDGE_ABNORMAL
1997 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1999 /* This can only occur for virtual operands, since
2000 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2001 would prevent replacement. */
2002 gcc_checking_assert (virtual_operand_p (name));
2003 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
2008 if (gimple_code (stmt) != GIMPLE_PHI)
2010 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2011 gimple *orig_stmt = stmt;
2012 size_t i;
2014 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
2015 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
2016 only change sth from non-invariant to invariant, and only
2017 when propagating constants. */
2018 if (is_gimple_min_invariant (val))
2019 for (i = 0; i < gimple_num_ops (stmt); i++)
2021 tree op = gimple_op (stmt, i);
2022 /* Operands may be empty here. For example, the labels
2023 of a GIMPLE_COND are nulled out following the creation
2024 of the corresponding CFG edges. */
2025 if (op && TREE_CODE (op) == ADDR_EXPR)
2026 recompute_tree_invariant_for_addr_expr (op);
2029 if (fold_stmt (&gsi))
2030 stmt = gsi_stmt (gsi);
2032 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
2033 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2035 update_stmt (stmt);
2039 gcc_checking_assert (has_zero_uses (name));
2041 /* Also update the trees stored in loop structures. */
2042 if (current_loops)
2044 struct loop *loop;
2046 FOR_EACH_LOOP (loop, 0)
2048 substitute_in_loop_info (loop, name, val);
2053 /* Merge block B into block A. */
2055 static void
2056 gimple_merge_blocks (basic_block a, basic_block b)
2058 gimple_stmt_iterator last, gsi;
2059 gphi_iterator psi;
2061 if (dump_file)
2062 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2064 /* Remove all single-valued PHI nodes from block B of the form
2065 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2066 gsi = gsi_last_bb (a);
2067 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2069 gimple *phi = gsi_stmt (psi);
2070 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2071 gimple *copy;
2072 bool may_replace_uses = (virtual_operand_p (def)
2073 || may_propagate_copy (def, use));
2075 /* In case we maintain loop closed ssa form, do not propagate arguments
2076 of loop exit phi nodes. */
2077 if (current_loops
2078 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2079 && !virtual_operand_p (def)
2080 && TREE_CODE (use) == SSA_NAME
2081 && a->loop_father != b->loop_father)
2082 may_replace_uses = false;
2084 if (!may_replace_uses)
2086 gcc_assert (!virtual_operand_p (def));
2088 /* Note that just emitting the copies is fine -- there is no problem
2089 with ordering of phi nodes. This is because A is the single
2090 predecessor of B, therefore results of the phi nodes cannot
2091 appear as arguments of the phi nodes. */
2092 copy = gimple_build_assign (def, use);
2093 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2094 remove_phi_node (&psi, false);
2096 else
2098 /* If we deal with a PHI for virtual operands, we can simply
2099 propagate these without fussing with folding or updating
2100 the stmt. */
2101 if (virtual_operand_p (def))
2103 imm_use_iterator iter;
2104 use_operand_p use_p;
2105 gimple *stmt;
2107 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2108 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2109 SET_USE (use_p, use);
2111 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2112 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2114 else
2115 replace_uses_by (def, use);
2117 remove_phi_node (&psi, true);
2121 /* Ensure that B follows A. */
2122 move_block_after (b, a);
2124 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2125 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2127 /* Remove labels from B and set gimple_bb to A for other statements. */
2128 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2130 gimple *stmt = gsi_stmt (gsi);
2131 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2133 tree label = gimple_label_label (label_stmt);
2134 int lp_nr;
2136 gsi_remove (&gsi, false);
2138 /* Now that we can thread computed gotos, we might have
2139 a situation where we have a forced label in block B
2140 However, the label at the start of block B might still be
2141 used in other ways (think about the runtime checking for
2142 Fortran assigned gotos). So we can not just delete the
2143 label. Instead we move the label to the start of block A. */
2144 if (FORCED_LABEL (label))
2146 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2147 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2149 /* Other user labels keep around in a form of a debug stmt. */
2150 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2152 gimple *dbg = gimple_build_debug_bind (label,
2153 integer_zero_node,
2154 stmt);
2155 gimple_debug_bind_reset_value (dbg);
2156 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2159 lp_nr = EH_LANDING_PAD_NR (label);
2160 if (lp_nr)
2162 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2163 lp->post_landing_pad = NULL;
2166 else
2168 gimple_set_bb (stmt, a);
2169 gsi_next (&gsi);
2173 /* When merging two BBs, if their counts are different, the larger count
2174 is selected as the new bb count. This is to handle inconsistent
2175 profiles. */
2176 if (a->loop_father == b->loop_father)
2178 a->count = a->count.merge (b->count);
2181 /* Merge the sequences. */
2182 last = gsi_last_bb (a);
2183 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2184 set_bb_seq (b, NULL);
2186 if (cfgcleanup_altered_bbs)
2187 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2191 /* Return the one of two successors of BB that is not reachable by a
2192 complex edge, if there is one. Else, return BB. We use
2193 this in optimizations that use post-dominators for their heuristics,
2194 to catch the cases in C++ where function calls are involved. */
2196 basic_block
2197 single_noncomplex_succ (basic_block bb)
2199 edge e0, e1;
2200 if (EDGE_COUNT (bb->succs) != 2)
2201 return bb;
2203 e0 = EDGE_SUCC (bb, 0);
2204 e1 = EDGE_SUCC (bb, 1);
2205 if (e0->flags & EDGE_COMPLEX)
2206 return e1->dest;
2207 if (e1->flags & EDGE_COMPLEX)
2208 return e0->dest;
2210 return bb;
2213 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2215 void
2216 notice_special_calls (gcall *call)
2218 int flags = gimple_call_flags (call);
2220 if (flags & ECF_MAY_BE_ALLOCA)
2221 cfun->calls_alloca = true;
2222 if (flags & ECF_RETURNS_TWICE)
2223 cfun->calls_setjmp = true;
2227 /* Clear flags set by notice_special_calls. Used by dead code removal
2228 to update the flags. */
2230 void
2231 clear_special_calls (void)
2233 cfun->calls_alloca = false;
2234 cfun->calls_setjmp = false;
2237 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2239 static void
2240 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2242 /* Since this block is no longer reachable, we can just delete all
2243 of its PHI nodes. */
2244 remove_phi_nodes (bb);
2246 /* Remove edges to BB's successors. */
2247 while (EDGE_COUNT (bb->succs) > 0)
2248 remove_edge (EDGE_SUCC (bb, 0));
2252 /* Remove statements of basic block BB. */
2254 static void
2255 remove_bb (basic_block bb)
2257 gimple_stmt_iterator i;
2259 if (dump_file)
2261 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2262 if (dump_flags & TDF_DETAILS)
2264 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2265 fprintf (dump_file, "\n");
2269 if (current_loops)
2271 struct loop *loop = bb->loop_father;
2273 /* If a loop gets removed, clean up the information associated
2274 with it. */
2275 if (loop->latch == bb
2276 || loop->header == bb)
2277 free_numbers_of_iterations_estimates (loop);
2280 /* Remove all the instructions in the block. */
2281 if (bb_seq (bb) != NULL)
2283 /* Walk backwards so as to get a chance to substitute all
2284 released DEFs into debug stmts. See
2285 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2286 details. */
2287 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2289 gimple *stmt = gsi_stmt (i);
2290 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2291 if (label_stmt
2292 && (FORCED_LABEL (gimple_label_label (label_stmt))
2293 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2295 basic_block new_bb;
2296 gimple_stmt_iterator new_gsi;
2298 /* A non-reachable non-local label may still be referenced.
2299 But it no longer needs to carry the extra semantics of
2300 non-locality. */
2301 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2303 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2304 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2307 new_bb = bb->prev_bb;
2308 /* Don't move any labels into ENTRY block. */
2309 if (new_bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2311 new_bb = single_succ (new_bb);
2312 gcc_assert (new_bb != bb);
2314 new_gsi = gsi_start_bb (new_bb);
2315 gsi_remove (&i, false);
2316 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2318 else
2320 /* Release SSA definitions. */
2321 release_defs (stmt);
2322 gsi_remove (&i, true);
2325 if (gsi_end_p (i))
2326 i = gsi_last_bb (bb);
2327 else
2328 gsi_prev (&i);
2332 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2333 bb->il.gimple.seq = NULL;
2334 bb->il.gimple.phi_nodes = NULL;
2338 /* Given a basic block BB and a value VAL for use in the final statement
2339 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2340 the edge that will be taken out of the block.
2341 If VAL is NULL_TREE, then the current value of the final statement's
2342 predicate or index is used.
2343 If the value does not match a unique edge, NULL is returned. */
2345 edge
2346 find_taken_edge (basic_block bb, tree val)
2348 gimple *stmt;
2350 stmt = last_stmt (bb);
2352 /* Handle ENTRY and EXIT. */
2353 if (!stmt)
2354 return NULL;
2356 if (gimple_code (stmt) == GIMPLE_COND)
2357 return find_taken_edge_cond_expr (as_a <gcond *> (stmt), val);
2359 if (gimple_code (stmt) == GIMPLE_SWITCH)
2360 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), val);
2362 if (computed_goto_p (stmt))
2364 /* Only optimize if the argument is a label, if the argument is
2365 not a label then we can not construct a proper CFG.
2367 It may be the case that we only need to allow the LABEL_REF to
2368 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2369 appear inside a LABEL_EXPR just to be safe. */
2370 if (val
2371 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2372 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2373 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2376 /* Otherwise we only know the taken successor edge if it's unique. */
2377 return single_succ_p (bb) ? single_succ_edge (bb) : NULL;
2380 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2381 statement, determine which of the outgoing edges will be taken out of the
2382 block. Return NULL if either edge may be taken. */
2384 static edge
2385 find_taken_edge_computed_goto (basic_block bb, tree val)
2387 basic_block dest;
2388 edge e = NULL;
2390 dest = label_to_block (val);
2391 if (dest)
2392 e = find_edge (bb, dest);
2394 /* It's possible for find_edge to return NULL here on invalid code
2395 that abuses the labels-as-values extension (e.g. code that attempts to
2396 jump *between* functions via stored labels-as-values; PR 84136).
2397 If so, then we simply return that NULL for the edge.
2398 We don't currently have a way of detecting such invalid code, so we
2399 can't assert that it was the case when a NULL edge occurs here. */
2401 return e;
2404 /* Given COND_STMT and a constant value VAL for use as the predicate,
2405 determine which of the two edges will be taken out of
2406 the statement's block. Return NULL if either edge may be taken.
2407 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2408 is used. */
2410 static edge
2411 find_taken_edge_cond_expr (const gcond *cond_stmt, tree val)
2413 edge true_edge, false_edge;
2415 if (val == NULL_TREE)
2417 /* Use the current value of the predicate. */
2418 if (gimple_cond_true_p (cond_stmt))
2419 val = integer_one_node;
2420 else if (gimple_cond_false_p (cond_stmt))
2421 val = integer_zero_node;
2422 else
2423 return NULL;
2425 else if (TREE_CODE (val) != INTEGER_CST)
2426 return NULL;
2428 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
2429 &true_edge, &false_edge);
2431 return (integer_zerop (val) ? false_edge : true_edge);
2434 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2435 which edge will be taken out of the statement's block. Return NULL if any
2436 edge may be taken.
2437 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2438 is used. */
2440 static edge
2441 find_taken_edge_switch_expr (const gswitch *switch_stmt, tree val)
2443 basic_block dest_bb;
2444 edge e;
2445 tree taken_case;
2447 if (gimple_switch_num_labels (switch_stmt) == 1)
2448 taken_case = gimple_switch_default_label (switch_stmt);
2449 else
2451 if (val == NULL_TREE)
2452 val = gimple_switch_index (switch_stmt);
2453 if (TREE_CODE (val) != INTEGER_CST)
2454 return NULL;
2455 else
2456 taken_case = find_case_label_for_value (switch_stmt, val);
2458 dest_bb = label_to_block (CASE_LABEL (taken_case));
2460 e = find_edge (gimple_bb (switch_stmt), dest_bb);
2461 gcc_assert (e);
2462 return e;
2466 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2467 We can make optimal use here of the fact that the case labels are
2468 sorted: We can do a binary search for a case matching VAL. */
2470 static tree
2471 find_case_label_for_value (const gswitch *switch_stmt, tree val)
2473 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2474 tree default_case = gimple_switch_default_label (switch_stmt);
2476 for (low = 0, high = n; high - low > 1; )
2478 size_t i = (high + low) / 2;
2479 tree t = gimple_switch_label (switch_stmt, i);
2480 int cmp;
2482 /* Cache the result of comparing CASE_LOW and val. */
2483 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2485 if (cmp > 0)
2486 high = i;
2487 else
2488 low = i;
2490 if (CASE_HIGH (t) == NULL)
2492 /* A singe-valued case label. */
2493 if (cmp == 0)
2494 return t;
2496 else
2498 /* A case range. We can only handle integer ranges. */
2499 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2500 return t;
2504 return default_case;
2508 /* Dump a basic block on stderr. */
2510 void
2511 gimple_debug_bb (basic_block bb)
2513 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2517 /* Dump basic block with index N on stderr. */
2519 basic_block
2520 gimple_debug_bb_n (int n)
2522 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2523 return BASIC_BLOCK_FOR_FN (cfun, n);
2527 /* Dump the CFG on stderr.
2529 FLAGS are the same used by the tree dumping functions
2530 (see TDF_* in dumpfile.h). */
2532 void
2533 gimple_debug_cfg (dump_flags_t flags)
2535 gimple_dump_cfg (stderr, flags);
2539 /* Dump the program showing basic block boundaries on the given FILE.
2541 FLAGS are the same used by the tree dumping functions (see TDF_* in
2542 tree.h). */
2544 void
2545 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2547 if (flags & TDF_DETAILS)
2549 dump_function_header (file, current_function_decl, flags);
2550 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2551 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2552 last_basic_block_for_fn (cfun));
2554 brief_dump_cfg (file, flags);
2555 fprintf (file, "\n");
2558 if (flags & TDF_STATS)
2559 dump_cfg_stats (file);
2561 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2565 /* Dump CFG statistics on FILE. */
2567 void
2568 dump_cfg_stats (FILE *file)
2570 static long max_num_merged_labels = 0;
2571 unsigned long size, total = 0;
2572 long num_edges;
2573 basic_block bb;
2574 const char * const fmt_str = "%-30s%-13s%12s\n";
2575 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2576 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2577 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2578 const char *funcname = current_function_name ();
2580 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2582 fprintf (file, "---------------------------------------------------------\n");
2583 fprintf (file, fmt_str, "", " Number of ", "Memory");
2584 fprintf (file, fmt_str, "", " instances ", "used ");
2585 fprintf (file, "---------------------------------------------------------\n");
2587 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2588 total += size;
2589 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2590 SCALE (size), LABEL (size));
2592 num_edges = 0;
2593 FOR_EACH_BB_FN (bb, cfun)
2594 num_edges += EDGE_COUNT (bb->succs);
2595 size = num_edges * sizeof (struct edge_def);
2596 total += size;
2597 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2599 fprintf (file, "---------------------------------------------------------\n");
2600 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2601 LABEL (total));
2602 fprintf (file, "---------------------------------------------------------\n");
2603 fprintf (file, "\n");
2605 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2606 max_num_merged_labels = cfg_stats.num_merged_labels;
2608 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2609 cfg_stats.num_merged_labels, max_num_merged_labels);
2611 fprintf (file, "\n");
2615 /* Dump CFG statistics on stderr. Keep extern so that it's always
2616 linked in the final executable. */
2618 DEBUG_FUNCTION void
2619 debug_cfg_stats (void)
2621 dump_cfg_stats (stderr);
2624 /*---------------------------------------------------------------------------
2625 Miscellaneous helpers
2626 ---------------------------------------------------------------------------*/
2628 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2629 flow. Transfers of control flow associated with EH are excluded. */
2631 static bool
2632 call_can_make_abnormal_goto (gimple *t)
2634 /* If the function has no non-local labels, then a call cannot make an
2635 abnormal transfer of control. */
2636 if (!cfun->has_nonlocal_label
2637 && !cfun->calls_setjmp)
2638 return false;
2640 /* Likewise if the call has no side effects. */
2641 if (!gimple_has_side_effects (t))
2642 return false;
2644 /* Likewise if the called function is leaf. */
2645 if (gimple_call_flags (t) & ECF_LEAF)
2646 return false;
2648 return true;
2652 /* Return true if T can make an abnormal transfer of control flow.
2653 Transfers of control flow associated with EH are excluded. */
2655 bool
2656 stmt_can_make_abnormal_goto (gimple *t)
2658 if (computed_goto_p (t))
2659 return true;
2660 if (is_gimple_call (t))
2661 return call_can_make_abnormal_goto (t);
2662 return false;
2666 /* Return true if T represents a stmt that always transfers control. */
2668 bool
2669 is_ctrl_stmt (gimple *t)
2671 switch (gimple_code (t))
2673 case GIMPLE_COND:
2674 case GIMPLE_SWITCH:
2675 case GIMPLE_GOTO:
2676 case GIMPLE_RETURN:
2677 case GIMPLE_RESX:
2678 return true;
2679 default:
2680 return false;
2685 /* Return true if T is a statement that may alter the flow of control
2686 (e.g., a call to a non-returning function). */
2688 bool
2689 is_ctrl_altering_stmt (gimple *t)
2691 gcc_assert (t);
2693 switch (gimple_code (t))
2695 case GIMPLE_CALL:
2696 /* Per stmt call flag indicates whether the call could alter
2697 controlflow. */
2698 if (gimple_call_ctrl_altering_p (t))
2699 return true;
2700 break;
2702 case GIMPLE_EH_DISPATCH:
2703 /* EH_DISPATCH branches to the individual catch handlers at
2704 this level of a try or allowed-exceptions region. It can
2705 fallthru to the next statement as well. */
2706 return true;
2708 case GIMPLE_ASM:
2709 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2710 return true;
2711 break;
2713 CASE_GIMPLE_OMP:
2714 /* OpenMP directives alter control flow. */
2715 return true;
2717 case GIMPLE_TRANSACTION:
2718 /* A transaction start alters control flow. */
2719 return true;
2721 default:
2722 break;
2725 /* If a statement can throw, it alters control flow. */
2726 return stmt_can_throw_internal (t);
2730 /* Return true if T is a simple local goto. */
2732 bool
2733 simple_goto_p (gimple *t)
2735 return (gimple_code (t) == GIMPLE_GOTO
2736 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2740 /* Return true if STMT should start a new basic block. PREV_STMT is
2741 the statement preceding STMT. It is used when STMT is a label or a
2742 case label. Labels should only start a new basic block if their
2743 previous statement wasn't a label. Otherwise, sequence of labels
2744 would generate unnecessary basic blocks that only contain a single
2745 label. */
2747 static inline bool
2748 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2750 if (stmt == NULL)
2751 return false;
2753 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2754 any nondebug stmts in the block. We don't want to start another
2755 block in this case: the debug stmt will already have started the
2756 one STMT would start if we weren't outputting debug stmts. */
2757 if (prev_stmt && is_gimple_debug (prev_stmt))
2758 return false;
2760 /* Labels start a new basic block only if the preceding statement
2761 wasn't a label of the same type. This prevents the creation of
2762 consecutive blocks that have nothing but a single label. */
2763 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2765 /* Nonlocal and computed GOTO targets always start a new block. */
2766 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2767 || FORCED_LABEL (gimple_label_label (label_stmt)))
2768 return true;
2770 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2772 if (DECL_NONLOCAL (gimple_label_label (
2773 as_a <glabel *> (prev_stmt))))
2774 return true;
2776 cfg_stats.num_merged_labels++;
2777 return false;
2779 else
2780 return true;
2782 else if (gimple_code (stmt) == GIMPLE_CALL)
2784 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2785 /* setjmp acts similar to a nonlocal GOTO target and thus should
2786 start a new block. */
2787 return true;
2788 if (gimple_call_internal_p (stmt, IFN_PHI)
2789 && prev_stmt
2790 && gimple_code (prev_stmt) != GIMPLE_LABEL
2791 && (gimple_code (prev_stmt) != GIMPLE_CALL
2792 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2793 /* PHI nodes start a new block unless preceeded by a label
2794 or another PHI. */
2795 return true;
2798 return false;
2802 /* Return true if T should end a basic block. */
2804 bool
2805 stmt_ends_bb_p (gimple *t)
2807 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2810 /* Remove block annotations and other data structures. */
2812 void
2813 delete_tree_cfg_annotations (struct function *fn)
2815 vec_free (label_to_block_map_for_fn (fn));
2818 /* Return the virtual phi in BB. */
2820 gphi *
2821 get_virtual_phi (basic_block bb)
2823 for (gphi_iterator gsi = gsi_start_phis (bb);
2824 !gsi_end_p (gsi);
2825 gsi_next (&gsi))
2827 gphi *phi = gsi.phi ();
2829 if (virtual_operand_p (PHI_RESULT (phi)))
2830 return phi;
2833 return NULL;
2836 /* Return the first statement in basic block BB. */
2838 gimple *
2839 first_stmt (basic_block bb)
2841 gimple_stmt_iterator i = gsi_start_bb (bb);
2842 gimple *stmt = NULL;
2844 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2846 gsi_next (&i);
2847 stmt = NULL;
2849 return stmt;
2852 /* Return the first non-label statement in basic block BB. */
2854 static gimple *
2855 first_non_label_stmt (basic_block bb)
2857 gimple_stmt_iterator i = gsi_start_bb (bb);
2858 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2859 gsi_next (&i);
2860 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2863 /* Return the last statement in basic block BB. */
2865 gimple *
2866 last_stmt (basic_block bb)
2868 gimple_stmt_iterator i = gsi_last_bb (bb);
2869 gimple *stmt = NULL;
2871 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2873 gsi_prev (&i);
2874 stmt = NULL;
2876 return stmt;
2879 /* Return the last statement of an otherwise empty block. Return NULL
2880 if the block is totally empty, or if it contains more than one
2881 statement. */
2883 gimple *
2884 last_and_only_stmt (basic_block bb)
2886 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2887 gimple *last, *prev;
2889 if (gsi_end_p (i))
2890 return NULL;
2892 last = gsi_stmt (i);
2893 gsi_prev_nondebug (&i);
2894 if (gsi_end_p (i))
2895 return last;
2897 /* Empty statements should no longer appear in the instruction stream.
2898 Everything that might have appeared before should be deleted by
2899 remove_useless_stmts, and the optimizers should just gsi_remove
2900 instead of smashing with build_empty_stmt.
2902 Thus the only thing that should appear here in a block containing
2903 one executable statement is a label. */
2904 prev = gsi_stmt (i);
2905 if (gimple_code (prev) == GIMPLE_LABEL)
2906 return last;
2907 else
2908 return NULL;
2911 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2913 static void
2914 reinstall_phi_args (edge new_edge, edge old_edge)
2916 edge_var_map *vm;
2917 int i;
2918 gphi_iterator phis;
2920 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2921 if (!v)
2922 return;
2924 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2925 v->iterate (i, &vm) && !gsi_end_p (phis);
2926 i++, gsi_next (&phis))
2928 gphi *phi = phis.phi ();
2929 tree result = redirect_edge_var_map_result (vm);
2930 tree arg = redirect_edge_var_map_def (vm);
2932 gcc_assert (result == gimple_phi_result (phi));
2934 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2937 redirect_edge_var_map_clear (old_edge);
2940 /* Returns the basic block after which the new basic block created
2941 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2942 near its "logical" location. This is of most help to humans looking
2943 at debugging dumps. */
2945 basic_block
2946 split_edge_bb_loc (edge edge_in)
2948 basic_block dest = edge_in->dest;
2949 basic_block dest_prev = dest->prev_bb;
2951 if (dest_prev)
2953 edge e = find_edge (dest_prev, dest);
2954 if (e && !(e->flags & EDGE_COMPLEX))
2955 return edge_in->src;
2957 return dest_prev;
2960 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2961 Abort on abnormal edges. */
2963 static basic_block
2964 gimple_split_edge (edge edge_in)
2966 basic_block new_bb, after_bb, dest;
2967 edge new_edge, e;
2969 /* Abnormal edges cannot be split. */
2970 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2972 dest = edge_in->dest;
2974 after_bb = split_edge_bb_loc (edge_in);
2976 new_bb = create_empty_bb (after_bb);
2977 new_bb->count = edge_in->count ();
2979 e = redirect_edge_and_branch (edge_in, new_bb);
2980 gcc_assert (e == edge_in);
2982 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2983 reinstall_phi_args (new_edge, e);
2985 return new_bb;
2989 /* Verify properties of the address expression T whose base should be
2990 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2992 static bool
2993 verify_address (tree t, bool verify_addressable)
2995 bool old_constant;
2996 bool old_side_effects;
2997 bool new_constant;
2998 bool new_side_effects;
3000 old_constant = TREE_CONSTANT (t);
3001 old_side_effects = TREE_SIDE_EFFECTS (t);
3003 recompute_tree_invariant_for_addr_expr (t);
3004 new_side_effects = TREE_SIDE_EFFECTS (t);
3005 new_constant = TREE_CONSTANT (t);
3007 if (old_constant != new_constant)
3009 error ("constant not recomputed when ADDR_EXPR changed");
3010 return true;
3012 if (old_side_effects != new_side_effects)
3014 error ("side effects not recomputed when ADDR_EXPR changed");
3015 return true;
3018 tree base = TREE_OPERAND (t, 0);
3019 while (handled_component_p (base))
3020 base = TREE_OPERAND (base, 0);
3022 if (!(VAR_P (base)
3023 || TREE_CODE (base) == PARM_DECL
3024 || TREE_CODE (base) == RESULT_DECL))
3025 return false;
3027 if (DECL_GIMPLE_REG_P (base))
3029 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
3030 return true;
3033 if (verify_addressable && !TREE_ADDRESSABLE (base))
3035 error ("address taken, but ADDRESSABLE bit not set");
3036 return true;
3039 return false;
3043 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3044 Returns true if there is an error, otherwise false. */
3046 static bool
3047 verify_types_in_gimple_min_lval (tree expr)
3049 tree op;
3051 if (is_gimple_id (expr))
3052 return false;
3054 if (TREE_CODE (expr) != TARGET_MEM_REF
3055 && TREE_CODE (expr) != MEM_REF)
3057 error ("invalid expression for min lvalue");
3058 return true;
3061 /* TARGET_MEM_REFs are strange beasts. */
3062 if (TREE_CODE (expr) == TARGET_MEM_REF)
3063 return false;
3065 op = TREE_OPERAND (expr, 0);
3066 if (!is_gimple_val (op))
3068 error ("invalid operand in indirect reference");
3069 debug_generic_stmt (op);
3070 return true;
3072 /* Memory references now generally can involve a value conversion. */
3074 return false;
3077 /* Verify if EXPR is a valid GIMPLE reference expression. If
3078 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3079 if there is an error, otherwise false. */
3081 static bool
3082 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3084 if (TREE_CODE (expr) == REALPART_EXPR
3085 || TREE_CODE (expr) == IMAGPART_EXPR
3086 || TREE_CODE (expr) == BIT_FIELD_REF)
3088 tree op = TREE_OPERAND (expr, 0);
3089 if (!is_gimple_reg_type (TREE_TYPE (expr)))
3091 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3092 return true;
3095 if (TREE_CODE (expr) == BIT_FIELD_REF)
3097 tree t1 = TREE_OPERAND (expr, 1);
3098 tree t2 = TREE_OPERAND (expr, 2);
3099 poly_uint64 size, bitpos;
3100 if (!poly_int_tree_p (t1, &size)
3101 || !poly_int_tree_p (t2, &bitpos)
3102 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3103 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3105 error ("invalid position or size operand to BIT_FIELD_REF");
3106 return true;
3108 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
3109 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr)), size))
3111 error ("integral result type precision does not match "
3112 "field size of BIT_FIELD_REF");
3113 return true;
3115 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
3116 && TYPE_MODE (TREE_TYPE (expr)) != BLKmode
3117 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr))),
3118 size))
3120 error ("mode size of non-integral result does not "
3121 "match field size of BIT_FIELD_REF");
3122 return true;
3124 if (!AGGREGATE_TYPE_P (TREE_TYPE (op))
3125 && maybe_gt (size + bitpos,
3126 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op)))))
3128 error ("position plus size exceeds size of referenced object in "
3129 "BIT_FIELD_REF");
3130 return true;
3134 if ((TREE_CODE (expr) == REALPART_EXPR
3135 || TREE_CODE (expr) == IMAGPART_EXPR)
3136 && !useless_type_conversion_p (TREE_TYPE (expr),
3137 TREE_TYPE (TREE_TYPE (op))))
3139 error ("type mismatch in real/imagpart reference");
3140 debug_generic_stmt (TREE_TYPE (expr));
3141 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3142 return true;
3144 expr = op;
3147 while (handled_component_p (expr))
3149 if (TREE_CODE (expr) == REALPART_EXPR
3150 || TREE_CODE (expr) == IMAGPART_EXPR
3151 || TREE_CODE (expr) == BIT_FIELD_REF)
3153 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3154 return true;
3157 tree op = TREE_OPERAND (expr, 0);
3159 if (TREE_CODE (expr) == ARRAY_REF
3160 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3162 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3163 || (TREE_OPERAND (expr, 2)
3164 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3165 || (TREE_OPERAND (expr, 3)
3166 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3168 error ("invalid operands to array reference");
3169 debug_generic_stmt (expr);
3170 return true;
3174 /* Verify if the reference array element types are compatible. */
3175 if (TREE_CODE (expr) == ARRAY_REF
3176 && !useless_type_conversion_p (TREE_TYPE (expr),
3177 TREE_TYPE (TREE_TYPE (op))))
3179 error ("type mismatch in array reference");
3180 debug_generic_stmt (TREE_TYPE (expr));
3181 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3182 return true;
3184 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3185 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3186 TREE_TYPE (TREE_TYPE (op))))
3188 error ("type mismatch in array range reference");
3189 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3190 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3191 return true;
3194 if (TREE_CODE (expr) == COMPONENT_REF)
3196 if (TREE_OPERAND (expr, 2)
3197 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3199 error ("invalid COMPONENT_REF offset operator");
3200 return true;
3202 if (!useless_type_conversion_p (TREE_TYPE (expr),
3203 TREE_TYPE (TREE_OPERAND (expr, 1))))
3205 error ("type mismatch in component reference");
3206 debug_generic_stmt (TREE_TYPE (expr));
3207 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3208 return true;
3212 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3214 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3215 that their operand is not an SSA name or an invariant when
3216 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3217 bug). Otherwise there is nothing to verify, gross mismatches at
3218 most invoke undefined behavior. */
3219 if (require_lvalue
3220 && (TREE_CODE (op) == SSA_NAME
3221 || is_gimple_min_invariant (op)))
3223 error ("conversion of an SSA_NAME on the left hand side");
3224 debug_generic_stmt (expr);
3225 return true;
3227 else if (TREE_CODE (op) == SSA_NAME
3228 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3230 error ("conversion of register to a different size");
3231 debug_generic_stmt (expr);
3232 return true;
3234 else if (!handled_component_p (op))
3235 return false;
3238 expr = op;
3241 if (TREE_CODE (expr) == MEM_REF)
3243 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0))
3244 || (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
3245 && verify_address (TREE_OPERAND (expr, 0), false)))
3247 error ("invalid address operand in MEM_REF");
3248 debug_generic_stmt (expr);
3249 return true;
3251 if (!poly_int_tree_p (TREE_OPERAND (expr, 1))
3252 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3254 error ("invalid offset operand in MEM_REF");
3255 debug_generic_stmt (expr);
3256 return true;
3259 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3261 if (!TMR_BASE (expr)
3262 || !is_gimple_mem_ref_addr (TMR_BASE (expr))
3263 || (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
3264 && verify_address (TMR_BASE (expr), false)))
3266 error ("invalid address operand in TARGET_MEM_REF");
3267 return true;
3269 if (!TMR_OFFSET (expr)
3270 || !poly_int_tree_p (TMR_OFFSET (expr))
3271 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3273 error ("invalid offset operand in TARGET_MEM_REF");
3274 debug_generic_stmt (expr);
3275 return true;
3278 else if (TREE_CODE (expr) == INDIRECT_REF)
3280 error ("INDIRECT_REF in gimple IL");
3281 debug_generic_stmt (expr);
3282 return true;
3285 return ((require_lvalue || !is_gimple_min_invariant (expr))
3286 && verify_types_in_gimple_min_lval (expr));
3289 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3290 list of pointer-to types that is trivially convertible to DEST. */
3292 static bool
3293 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3295 tree src;
3297 if (!TYPE_POINTER_TO (src_obj))
3298 return true;
3300 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3301 if (useless_type_conversion_p (dest, src))
3302 return true;
3304 return false;
3307 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3308 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3310 static bool
3311 valid_fixed_convert_types_p (tree type1, tree type2)
3313 return (FIXED_POINT_TYPE_P (type1)
3314 && (INTEGRAL_TYPE_P (type2)
3315 || SCALAR_FLOAT_TYPE_P (type2)
3316 || FIXED_POINT_TYPE_P (type2)));
3319 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3320 is a problem, otherwise false. */
3322 static bool
3323 verify_gimple_call (gcall *stmt)
3325 tree fn = gimple_call_fn (stmt);
3326 tree fntype, fndecl;
3327 unsigned i;
3329 if (gimple_call_internal_p (stmt))
3331 if (fn)
3333 error ("gimple call has two targets");
3334 debug_generic_stmt (fn);
3335 return true;
3337 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3338 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3340 return false;
3343 else
3345 if (!fn)
3347 error ("gimple call has no target");
3348 return true;
3352 if (fn && !is_gimple_call_addr (fn))
3354 error ("invalid function in gimple call");
3355 debug_generic_stmt (fn);
3356 return true;
3359 if (fn
3360 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3361 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3362 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3364 error ("non-function in gimple call");
3365 return true;
3368 fndecl = gimple_call_fndecl (stmt);
3369 if (fndecl
3370 && TREE_CODE (fndecl) == FUNCTION_DECL
3371 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3372 && !DECL_PURE_P (fndecl)
3373 && !TREE_READONLY (fndecl))
3375 error ("invalid pure const state for function");
3376 return true;
3379 tree lhs = gimple_call_lhs (stmt);
3380 if (lhs
3381 && (!is_gimple_lvalue (lhs)
3382 || verify_types_in_gimple_reference (lhs, true)))
3384 error ("invalid LHS in gimple call");
3385 return true;
3388 if (gimple_call_ctrl_altering_p (stmt)
3389 && gimple_call_noreturn_p (stmt)
3390 && should_remove_lhs_p (lhs))
3392 error ("LHS in noreturn call");
3393 return true;
3396 fntype = gimple_call_fntype (stmt);
3397 if (fntype
3398 && lhs
3399 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3400 /* ??? At least C++ misses conversions at assignments from
3401 void * call results.
3402 For now simply allow arbitrary pointer type conversions. */
3403 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3404 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3406 error ("invalid conversion in gimple call");
3407 debug_generic_stmt (TREE_TYPE (lhs));
3408 debug_generic_stmt (TREE_TYPE (fntype));
3409 return true;
3412 if (gimple_call_chain (stmt)
3413 && !is_gimple_val (gimple_call_chain (stmt)))
3415 error ("invalid static chain in gimple call");
3416 debug_generic_stmt (gimple_call_chain (stmt));
3417 return true;
3420 /* If there is a static chain argument, the call should either be
3421 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3422 if (gimple_call_chain (stmt)
3423 && fndecl
3424 && !DECL_STATIC_CHAIN (fndecl))
3426 error ("static chain with function that doesn%'t use one");
3427 return true;
3430 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3432 switch (DECL_FUNCTION_CODE (fndecl))
3434 case BUILT_IN_UNREACHABLE:
3435 case BUILT_IN_TRAP:
3436 if (gimple_call_num_args (stmt) > 0)
3438 /* Built-in unreachable with parameters might not be caught by
3439 undefined behavior sanitizer. Front-ends do check users do not
3440 call them that way but we also produce calls to
3441 __builtin_unreachable internally, for example when IPA figures
3442 out a call cannot happen in a legal program. In such cases,
3443 we must make sure arguments are stripped off. */
3444 error ("__builtin_unreachable or __builtin_trap call with "
3445 "arguments");
3446 return true;
3448 break;
3449 default:
3450 break;
3454 /* ??? The C frontend passes unpromoted arguments in case it
3455 didn't see a function declaration before the call. So for now
3456 leave the call arguments mostly unverified. Once we gimplify
3457 unit-at-a-time we have a chance to fix this. */
3459 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3461 tree arg = gimple_call_arg (stmt, i);
3462 if ((is_gimple_reg_type (TREE_TYPE (arg))
3463 && !is_gimple_val (arg))
3464 || (!is_gimple_reg_type (TREE_TYPE (arg))
3465 && !is_gimple_lvalue (arg)))
3467 error ("invalid argument to gimple call");
3468 debug_generic_expr (arg);
3469 return true;
3473 return false;
3476 /* Verifies the gimple comparison with the result type TYPE and
3477 the operands OP0 and OP1, comparison code is CODE. */
3479 static bool
3480 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3482 tree op0_type = TREE_TYPE (op0);
3483 tree op1_type = TREE_TYPE (op1);
3485 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3487 error ("invalid operands in gimple comparison");
3488 return true;
3491 /* For comparisons we do not have the operations type as the
3492 effective type the comparison is carried out in. Instead
3493 we require that either the first operand is trivially
3494 convertible into the second, or the other way around.
3495 Because we special-case pointers to void we allow
3496 comparisons of pointers with the same mode as well. */
3497 if (!useless_type_conversion_p (op0_type, op1_type)
3498 && !useless_type_conversion_p (op1_type, op0_type)
3499 && (!POINTER_TYPE_P (op0_type)
3500 || !POINTER_TYPE_P (op1_type)
3501 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3503 error ("mismatching comparison operand types");
3504 debug_generic_expr (op0_type);
3505 debug_generic_expr (op1_type);
3506 return true;
3509 /* The resulting type of a comparison may be an effective boolean type. */
3510 if (INTEGRAL_TYPE_P (type)
3511 && (TREE_CODE (type) == BOOLEAN_TYPE
3512 || TYPE_PRECISION (type) == 1))
3514 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3515 || TREE_CODE (op1_type) == VECTOR_TYPE)
3516 && code != EQ_EXPR && code != NE_EXPR
3517 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3518 && !VECTOR_INTEGER_TYPE_P (op0_type))
3520 error ("unsupported operation or type for vector comparison"
3521 " returning a boolean");
3522 debug_generic_expr (op0_type);
3523 debug_generic_expr (op1_type);
3524 return true;
3527 /* Or a boolean vector type with the same element count
3528 as the comparison operand types. */
3529 else if (TREE_CODE (type) == VECTOR_TYPE
3530 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3532 if (TREE_CODE (op0_type) != VECTOR_TYPE
3533 || TREE_CODE (op1_type) != VECTOR_TYPE)
3535 error ("non-vector operands in vector comparison");
3536 debug_generic_expr (op0_type);
3537 debug_generic_expr (op1_type);
3538 return true;
3541 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type),
3542 TYPE_VECTOR_SUBPARTS (op0_type)))
3544 error ("invalid vector comparison resulting type");
3545 debug_generic_expr (type);
3546 return true;
3549 else
3551 error ("bogus comparison result type");
3552 debug_generic_expr (type);
3553 return true;
3556 return false;
3559 /* Verify a gimple assignment statement STMT with an unary rhs.
3560 Returns true if anything is wrong. */
3562 static bool
3563 verify_gimple_assign_unary (gassign *stmt)
3565 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3566 tree lhs = gimple_assign_lhs (stmt);
3567 tree lhs_type = TREE_TYPE (lhs);
3568 tree rhs1 = gimple_assign_rhs1 (stmt);
3569 tree rhs1_type = TREE_TYPE (rhs1);
3571 if (!is_gimple_reg (lhs))
3573 error ("non-register as LHS of unary operation");
3574 return true;
3577 if (!is_gimple_val (rhs1))
3579 error ("invalid operand in unary operation");
3580 return true;
3583 /* First handle conversions. */
3584 switch (rhs_code)
3586 CASE_CONVERT:
3588 /* Allow conversions from pointer type to integral type only if
3589 there is no sign or zero extension involved.
3590 For targets were the precision of ptrofftype doesn't match that
3591 of pointers we need to allow arbitrary conversions to ptrofftype. */
3592 if ((POINTER_TYPE_P (lhs_type)
3593 && INTEGRAL_TYPE_P (rhs1_type))
3594 || (POINTER_TYPE_P (rhs1_type)
3595 && INTEGRAL_TYPE_P (lhs_type)
3596 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3597 || ptrofftype_p (lhs_type))))
3598 return false;
3600 /* Allow conversion from integral to offset type and vice versa. */
3601 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3602 && INTEGRAL_TYPE_P (rhs1_type))
3603 || (INTEGRAL_TYPE_P (lhs_type)
3604 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3605 return false;
3607 /* Otherwise assert we are converting between types of the
3608 same kind. */
3609 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3611 error ("invalid types in nop conversion");
3612 debug_generic_expr (lhs_type);
3613 debug_generic_expr (rhs1_type);
3614 return true;
3617 return false;
3620 case ADDR_SPACE_CONVERT_EXPR:
3622 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3623 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3624 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3626 error ("invalid types in address space conversion");
3627 debug_generic_expr (lhs_type);
3628 debug_generic_expr (rhs1_type);
3629 return true;
3632 return false;
3635 case FIXED_CONVERT_EXPR:
3637 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3638 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3640 error ("invalid types in fixed-point conversion");
3641 debug_generic_expr (lhs_type);
3642 debug_generic_expr (rhs1_type);
3643 return true;
3646 return false;
3649 case FLOAT_EXPR:
3651 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3652 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3653 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3655 error ("invalid types in conversion to floating point");
3656 debug_generic_expr (lhs_type);
3657 debug_generic_expr (rhs1_type);
3658 return true;
3661 return false;
3664 case FIX_TRUNC_EXPR:
3666 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3667 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3668 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3670 error ("invalid types in conversion to integer");
3671 debug_generic_expr (lhs_type);
3672 debug_generic_expr (rhs1_type);
3673 return true;
3676 return false;
3679 case VEC_UNPACK_HI_EXPR:
3680 case VEC_UNPACK_LO_EXPR:
3681 case VEC_UNPACK_FLOAT_HI_EXPR:
3682 case VEC_UNPACK_FLOAT_LO_EXPR:
3683 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
3684 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
3685 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3686 || TREE_CODE (lhs_type) != VECTOR_TYPE
3687 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3688 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type)))
3689 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3690 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3691 || ((rhs_code == VEC_UNPACK_HI_EXPR
3692 || rhs_code == VEC_UNPACK_LO_EXPR)
3693 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3694 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3695 || ((rhs_code == VEC_UNPACK_FLOAT_HI_EXPR
3696 || rhs_code == VEC_UNPACK_FLOAT_LO_EXPR)
3697 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3698 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))))
3699 || ((rhs_code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
3700 || rhs_code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
3701 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3702 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))))
3703 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
3704 2 * GET_MODE_SIZE (element_mode (rhs1_type)))
3705 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type)
3706 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type)))
3707 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type),
3708 TYPE_VECTOR_SUBPARTS (rhs1_type)))
3710 error ("type mismatch in vector unpack expression");
3711 debug_generic_expr (lhs_type);
3712 debug_generic_expr (rhs1_type);
3713 return true;
3716 return false;
3718 case NEGATE_EXPR:
3719 case ABS_EXPR:
3720 case BIT_NOT_EXPR:
3721 case PAREN_EXPR:
3722 case CONJ_EXPR:
3723 break;
3725 case ABSU_EXPR:
3726 if (!ANY_INTEGRAL_TYPE_P (lhs_type)
3727 || !TYPE_UNSIGNED (lhs_type)
3728 || !ANY_INTEGRAL_TYPE_P (rhs1_type)
3729 || TYPE_UNSIGNED (rhs1_type)
3730 || element_precision (lhs_type) != element_precision (rhs1_type))
3732 error ("invalid types for ABSU_EXPR");
3733 debug_generic_expr (lhs_type);
3734 debug_generic_expr (rhs1_type);
3735 return true;
3737 return false;
3739 case VEC_DUPLICATE_EXPR:
3740 if (TREE_CODE (lhs_type) != VECTOR_TYPE
3741 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
3743 error ("vec_duplicate should be from a scalar to a like vector");
3744 debug_generic_expr (lhs_type);
3745 debug_generic_expr (rhs1_type);
3746 return true;
3748 return false;
3750 default:
3751 gcc_unreachable ();
3754 /* For the remaining codes assert there is no conversion involved. */
3755 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3757 error ("non-trivial conversion in unary operation");
3758 debug_generic_expr (lhs_type);
3759 debug_generic_expr (rhs1_type);
3760 return true;
3763 return false;
3766 /* Verify a gimple assignment statement STMT with a binary rhs.
3767 Returns true if anything is wrong. */
3769 static bool
3770 verify_gimple_assign_binary (gassign *stmt)
3772 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3773 tree lhs = gimple_assign_lhs (stmt);
3774 tree lhs_type = TREE_TYPE (lhs);
3775 tree rhs1 = gimple_assign_rhs1 (stmt);
3776 tree rhs1_type = TREE_TYPE (rhs1);
3777 tree rhs2 = gimple_assign_rhs2 (stmt);
3778 tree rhs2_type = TREE_TYPE (rhs2);
3780 if (!is_gimple_reg (lhs))
3782 error ("non-register as LHS of binary operation");
3783 return true;
3786 if (!is_gimple_val (rhs1)
3787 || !is_gimple_val (rhs2))
3789 error ("invalid operands in binary operation");
3790 return true;
3793 /* First handle operations that involve different types. */
3794 switch (rhs_code)
3796 case COMPLEX_EXPR:
3798 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3799 || !(INTEGRAL_TYPE_P (rhs1_type)
3800 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3801 || !(INTEGRAL_TYPE_P (rhs2_type)
3802 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3804 error ("type mismatch in complex expression");
3805 debug_generic_expr (lhs_type);
3806 debug_generic_expr (rhs1_type);
3807 debug_generic_expr (rhs2_type);
3808 return true;
3811 return false;
3814 case LSHIFT_EXPR:
3815 case RSHIFT_EXPR:
3816 case LROTATE_EXPR:
3817 case RROTATE_EXPR:
3819 /* Shifts and rotates are ok on integral types, fixed point
3820 types and integer vector types. */
3821 if ((!INTEGRAL_TYPE_P (rhs1_type)
3822 && !FIXED_POINT_TYPE_P (rhs1_type)
3823 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3824 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3825 || (!INTEGRAL_TYPE_P (rhs2_type)
3826 /* Vector shifts of vectors are also ok. */
3827 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3828 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3829 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3830 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3831 || !useless_type_conversion_p (lhs_type, rhs1_type))
3833 error ("type mismatch in shift expression");
3834 debug_generic_expr (lhs_type);
3835 debug_generic_expr (rhs1_type);
3836 debug_generic_expr (rhs2_type);
3837 return true;
3840 return false;
3843 case WIDEN_LSHIFT_EXPR:
3845 if (!INTEGRAL_TYPE_P (lhs_type)
3846 || !INTEGRAL_TYPE_P (rhs1_type)
3847 || TREE_CODE (rhs2) != INTEGER_CST
3848 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3850 error ("type mismatch in widening vector shift expression");
3851 debug_generic_expr (lhs_type);
3852 debug_generic_expr (rhs1_type);
3853 debug_generic_expr (rhs2_type);
3854 return true;
3857 return false;
3860 case VEC_WIDEN_LSHIFT_HI_EXPR:
3861 case VEC_WIDEN_LSHIFT_LO_EXPR:
3863 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3864 || TREE_CODE (lhs_type) != VECTOR_TYPE
3865 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3866 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3867 || TREE_CODE (rhs2) != INTEGER_CST
3868 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3869 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3871 error ("type mismatch in widening vector shift expression");
3872 debug_generic_expr (lhs_type);
3873 debug_generic_expr (rhs1_type);
3874 debug_generic_expr (rhs2_type);
3875 return true;
3878 return false;
3881 case PLUS_EXPR:
3882 case MINUS_EXPR:
3884 tree lhs_etype = lhs_type;
3885 tree rhs1_etype = rhs1_type;
3886 tree rhs2_etype = rhs2_type;
3887 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3889 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3890 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3892 error ("invalid non-vector operands to vector valued plus");
3893 return true;
3895 lhs_etype = TREE_TYPE (lhs_type);
3896 rhs1_etype = TREE_TYPE (rhs1_type);
3897 rhs2_etype = TREE_TYPE (rhs2_type);
3899 if (POINTER_TYPE_P (lhs_etype)
3900 || POINTER_TYPE_P (rhs1_etype)
3901 || POINTER_TYPE_P (rhs2_etype))
3903 error ("invalid (pointer) operands to plus/minus");
3904 return true;
3907 /* Continue with generic binary expression handling. */
3908 break;
3911 case POINTER_PLUS_EXPR:
3913 if (!POINTER_TYPE_P (rhs1_type)
3914 || !useless_type_conversion_p (lhs_type, rhs1_type)
3915 || !ptrofftype_p (rhs2_type))
3917 error ("type mismatch in pointer plus expression");
3918 debug_generic_stmt (lhs_type);
3919 debug_generic_stmt (rhs1_type);
3920 debug_generic_stmt (rhs2_type);
3921 return true;
3924 return false;
3927 case POINTER_DIFF_EXPR:
3929 if (!POINTER_TYPE_P (rhs1_type)
3930 || !POINTER_TYPE_P (rhs2_type)
3931 /* Because we special-case pointers to void we allow difference
3932 of arbitrary pointers with the same mode. */
3933 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
3934 || TREE_CODE (lhs_type) != INTEGER_TYPE
3935 || TYPE_UNSIGNED (lhs_type)
3936 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
3938 error ("type mismatch in pointer diff expression");
3939 debug_generic_stmt (lhs_type);
3940 debug_generic_stmt (rhs1_type);
3941 debug_generic_stmt (rhs2_type);
3942 return true;
3945 return false;
3948 case TRUTH_ANDIF_EXPR:
3949 case TRUTH_ORIF_EXPR:
3950 case TRUTH_AND_EXPR:
3951 case TRUTH_OR_EXPR:
3952 case TRUTH_XOR_EXPR:
3954 gcc_unreachable ();
3956 case LT_EXPR:
3957 case LE_EXPR:
3958 case GT_EXPR:
3959 case GE_EXPR:
3960 case EQ_EXPR:
3961 case NE_EXPR:
3962 case UNORDERED_EXPR:
3963 case ORDERED_EXPR:
3964 case UNLT_EXPR:
3965 case UNLE_EXPR:
3966 case UNGT_EXPR:
3967 case UNGE_EXPR:
3968 case UNEQ_EXPR:
3969 case LTGT_EXPR:
3970 /* Comparisons are also binary, but the result type is not
3971 connected to the operand types. */
3972 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
3974 case WIDEN_MULT_EXPR:
3975 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3976 return true;
3977 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3978 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3980 case WIDEN_SUM_EXPR:
3982 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
3983 || TREE_CODE (lhs_type) != VECTOR_TYPE)
3984 && ((!INTEGRAL_TYPE_P (rhs1_type)
3985 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
3986 || (!INTEGRAL_TYPE_P (lhs_type)
3987 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
3988 || !useless_type_conversion_p (lhs_type, rhs2_type)
3989 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type)),
3990 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
3992 error ("type mismatch in widening sum reduction");
3993 debug_generic_expr (lhs_type);
3994 debug_generic_expr (rhs1_type);
3995 debug_generic_expr (rhs2_type);
3996 return true;
3998 return false;
4001 case VEC_WIDEN_MULT_HI_EXPR:
4002 case VEC_WIDEN_MULT_LO_EXPR:
4003 case VEC_WIDEN_MULT_EVEN_EXPR:
4004 case VEC_WIDEN_MULT_ODD_EXPR:
4006 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4007 || TREE_CODE (lhs_type) != VECTOR_TYPE
4008 || !types_compatible_p (rhs1_type, rhs2_type)
4009 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type)),
4010 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4012 error ("type mismatch in vector widening multiplication");
4013 debug_generic_expr (lhs_type);
4014 debug_generic_expr (rhs1_type);
4015 debug_generic_expr (rhs2_type);
4016 return true;
4018 return false;
4021 case VEC_PACK_TRUNC_EXPR:
4022 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4023 vector boolean types. */
4024 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4025 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4026 && types_compatible_p (rhs1_type, rhs2_type)
4027 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type),
4028 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4029 return false;
4031 /* Fallthru. */
4032 case VEC_PACK_SAT_EXPR:
4033 case VEC_PACK_FIX_TRUNC_EXPR:
4035 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4036 || TREE_CODE (lhs_type) != VECTOR_TYPE
4037 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4038 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4039 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4040 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4041 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4042 || !types_compatible_p (rhs1_type, rhs2_type)
4043 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4044 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4045 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4046 TYPE_VECTOR_SUBPARTS (lhs_type)))
4048 error ("type mismatch in vector pack expression");
4049 debug_generic_expr (lhs_type);
4050 debug_generic_expr (rhs1_type);
4051 debug_generic_expr (rhs2_type);
4052 return true;
4055 return false;
4058 case VEC_PACK_FLOAT_EXPR:
4059 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4060 || TREE_CODE (lhs_type) != VECTOR_TYPE
4061 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4062 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type))
4063 || !types_compatible_p (rhs1_type, rhs2_type)
4064 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type)),
4065 2 * GET_MODE_SIZE (element_mode (lhs_type)))
4066 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type),
4067 TYPE_VECTOR_SUBPARTS (lhs_type)))
4069 error ("type mismatch in vector pack expression");
4070 debug_generic_expr (lhs_type);
4071 debug_generic_expr (rhs1_type);
4072 debug_generic_expr (rhs2_type);
4073 return true;
4076 return false;
4078 case MULT_EXPR:
4079 case MULT_HIGHPART_EXPR:
4080 case TRUNC_DIV_EXPR:
4081 case CEIL_DIV_EXPR:
4082 case FLOOR_DIV_EXPR:
4083 case ROUND_DIV_EXPR:
4084 case TRUNC_MOD_EXPR:
4085 case CEIL_MOD_EXPR:
4086 case FLOOR_MOD_EXPR:
4087 case ROUND_MOD_EXPR:
4088 case RDIV_EXPR:
4089 case EXACT_DIV_EXPR:
4090 case MIN_EXPR:
4091 case MAX_EXPR:
4092 case BIT_IOR_EXPR:
4093 case BIT_XOR_EXPR:
4094 case BIT_AND_EXPR:
4095 /* Continue with generic binary expression handling. */
4096 break;
4098 case VEC_SERIES_EXPR:
4099 if (!useless_type_conversion_p (rhs1_type, rhs2_type))
4101 error ("type mismatch in series expression");
4102 debug_generic_expr (rhs1_type);
4103 debug_generic_expr (rhs2_type);
4104 return true;
4106 if (TREE_CODE (lhs_type) != VECTOR_TYPE
4107 || !useless_type_conversion_p (TREE_TYPE (lhs_type), rhs1_type))
4109 error ("vector type expected in series expression");
4110 debug_generic_expr (lhs_type);
4111 return true;
4113 return false;
4115 default:
4116 gcc_unreachable ();
4119 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4120 || !useless_type_conversion_p (lhs_type, rhs2_type))
4122 error ("type mismatch in binary expression");
4123 debug_generic_stmt (lhs_type);
4124 debug_generic_stmt (rhs1_type);
4125 debug_generic_stmt (rhs2_type);
4126 return true;
4129 return false;
4132 /* Verify a gimple assignment statement STMT with a ternary rhs.
4133 Returns true if anything is wrong. */
4135 static bool
4136 verify_gimple_assign_ternary (gassign *stmt)
4138 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4139 tree lhs = gimple_assign_lhs (stmt);
4140 tree lhs_type = TREE_TYPE (lhs);
4141 tree rhs1 = gimple_assign_rhs1 (stmt);
4142 tree rhs1_type = TREE_TYPE (rhs1);
4143 tree rhs2 = gimple_assign_rhs2 (stmt);
4144 tree rhs2_type = TREE_TYPE (rhs2);
4145 tree rhs3 = gimple_assign_rhs3 (stmt);
4146 tree rhs3_type = TREE_TYPE (rhs3);
4148 if (!is_gimple_reg (lhs))
4150 error ("non-register as LHS of ternary operation");
4151 return true;
4154 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4155 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4156 || !is_gimple_val (rhs2)
4157 || !is_gimple_val (rhs3))
4159 error ("invalid operands in ternary operation");
4160 return true;
4163 /* First handle operations that involve different types. */
4164 switch (rhs_code)
4166 case WIDEN_MULT_PLUS_EXPR:
4167 case WIDEN_MULT_MINUS_EXPR:
4168 if ((!INTEGRAL_TYPE_P (rhs1_type)
4169 && !FIXED_POINT_TYPE_P (rhs1_type))
4170 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4171 || !useless_type_conversion_p (lhs_type, rhs3_type)
4172 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4173 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4175 error ("type mismatch in widening multiply-accumulate expression");
4176 debug_generic_expr (lhs_type);
4177 debug_generic_expr (rhs1_type);
4178 debug_generic_expr (rhs2_type);
4179 debug_generic_expr (rhs3_type);
4180 return true;
4182 break;
4184 case VEC_COND_EXPR:
4185 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4186 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4187 TYPE_VECTOR_SUBPARTS (lhs_type)))
4189 error ("the first argument of a VEC_COND_EXPR must be of a "
4190 "boolean vector type of the same number of elements "
4191 "as the result");
4192 debug_generic_expr (lhs_type);
4193 debug_generic_expr (rhs1_type);
4194 return true;
4196 /* Fallthrough. */
4197 case COND_EXPR:
4198 if (!is_gimple_val (rhs1)
4199 && verify_gimple_comparison (TREE_TYPE (rhs1),
4200 TREE_OPERAND (rhs1, 0),
4201 TREE_OPERAND (rhs1, 1),
4202 TREE_CODE (rhs1)))
4203 return true;
4204 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4205 || !useless_type_conversion_p (lhs_type, rhs3_type))
4207 error ("type mismatch in conditional expression");
4208 debug_generic_expr (lhs_type);
4209 debug_generic_expr (rhs2_type);
4210 debug_generic_expr (rhs3_type);
4211 return true;
4213 break;
4215 case VEC_PERM_EXPR:
4216 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4217 || !useless_type_conversion_p (lhs_type, rhs2_type))
4219 error ("type mismatch in vector permute expression");
4220 debug_generic_expr (lhs_type);
4221 debug_generic_expr (rhs1_type);
4222 debug_generic_expr (rhs2_type);
4223 debug_generic_expr (rhs3_type);
4224 return true;
4227 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4228 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4229 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4231 error ("vector types expected in vector permute expression");
4232 debug_generic_expr (lhs_type);
4233 debug_generic_expr (rhs1_type);
4234 debug_generic_expr (rhs2_type);
4235 debug_generic_expr (rhs3_type);
4236 return true;
4239 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type),
4240 TYPE_VECTOR_SUBPARTS (rhs2_type))
4241 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type),
4242 TYPE_VECTOR_SUBPARTS (rhs3_type))
4243 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type),
4244 TYPE_VECTOR_SUBPARTS (lhs_type)))
4246 error ("vectors with different element number found "
4247 "in vector permute expression");
4248 debug_generic_expr (lhs_type);
4249 debug_generic_expr (rhs1_type);
4250 debug_generic_expr (rhs2_type);
4251 debug_generic_expr (rhs3_type);
4252 return true;
4255 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4256 || (TREE_CODE (rhs3) != VECTOR_CST
4257 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4258 (TREE_TYPE (rhs3_type)))
4259 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4260 (TREE_TYPE (rhs1_type))))))
4262 error ("invalid mask type in vector permute expression");
4263 debug_generic_expr (lhs_type);
4264 debug_generic_expr (rhs1_type);
4265 debug_generic_expr (rhs2_type);
4266 debug_generic_expr (rhs3_type);
4267 return true;
4270 return false;
4272 case SAD_EXPR:
4273 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4274 || !useless_type_conversion_p (lhs_type, rhs3_type)
4275 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4276 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4278 error ("type mismatch in sad expression");
4279 debug_generic_expr (lhs_type);
4280 debug_generic_expr (rhs1_type);
4281 debug_generic_expr (rhs2_type);
4282 debug_generic_expr (rhs3_type);
4283 return true;
4286 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4287 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4288 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4290 error ("vector types expected in sad expression");
4291 debug_generic_expr (lhs_type);
4292 debug_generic_expr (rhs1_type);
4293 debug_generic_expr (rhs2_type);
4294 debug_generic_expr (rhs3_type);
4295 return true;
4298 return false;
4300 case BIT_INSERT_EXPR:
4301 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4303 error ("type mismatch in BIT_INSERT_EXPR");
4304 debug_generic_expr (lhs_type);
4305 debug_generic_expr (rhs1_type);
4306 return true;
4308 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4309 && INTEGRAL_TYPE_P (rhs2_type))
4310 || (VECTOR_TYPE_P (rhs1_type)
4311 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4313 error ("not allowed type combination in BIT_INSERT_EXPR");
4314 debug_generic_expr (rhs1_type);
4315 debug_generic_expr (rhs2_type);
4316 return true;
4318 if (! tree_fits_uhwi_p (rhs3)
4319 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4320 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4322 error ("invalid position or size in BIT_INSERT_EXPR");
4323 return true;
4325 if (INTEGRAL_TYPE_P (rhs1_type))
4327 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4328 if (bitpos >= TYPE_PRECISION (rhs1_type)
4329 || (bitpos + TYPE_PRECISION (rhs2_type)
4330 > TYPE_PRECISION (rhs1_type)))
4332 error ("insertion out of range in BIT_INSERT_EXPR");
4333 return true;
4336 else if (VECTOR_TYPE_P (rhs1_type))
4338 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4339 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4340 if (bitpos % bitsize != 0)
4342 error ("vector insertion not at element boundary");
4343 return true;
4346 return false;
4348 case DOT_PROD_EXPR:
4350 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4351 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4352 && ((!INTEGRAL_TYPE_P (rhs1_type)
4353 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4354 || (!INTEGRAL_TYPE_P (lhs_type)
4355 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4356 || !types_compatible_p (rhs1_type, rhs2_type)
4357 || !useless_type_conversion_p (lhs_type, rhs3_type)
4358 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type)),
4359 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4361 error ("type mismatch in dot product reduction");
4362 debug_generic_expr (lhs_type);
4363 debug_generic_expr (rhs1_type);
4364 debug_generic_expr (rhs2_type);
4365 return true;
4367 return false;
4370 case REALIGN_LOAD_EXPR:
4371 /* FIXME. */
4372 return false;
4374 default:
4375 gcc_unreachable ();
4377 return false;
4380 /* Verify a gimple assignment statement STMT with a single rhs.
4381 Returns true if anything is wrong. */
4383 static bool
4384 verify_gimple_assign_single (gassign *stmt)
4386 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4387 tree lhs = gimple_assign_lhs (stmt);
4388 tree lhs_type = TREE_TYPE (lhs);
4389 tree rhs1 = gimple_assign_rhs1 (stmt);
4390 tree rhs1_type = TREE_TYPE (rhs1);
4391 bool res = false;
4393 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4395 error ("non-trivial conversion at assignment");
4396 debug_generic_expr (lhs_type);
4397 debug_generic_expr (rhs1_type);
4398 return true;
4401 if (gimple_clobber_p (stmt)
4402 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4404 error ("non-decl/MEM_REF LHS in clobber statement");
4405 debug_generic_expr (lhs);
4406 return true;
4409 if (handled_component_p (lhs)
4410 || TREE_CODE (lhs) == MEM_REF
4411 || TREE_CODE (lhs) == TARGET_MEM_REF)
4412 res |= verify_types_in_gimple_reference (lhs, true);
4414 /* Special codes we cannot handle via their class. */
4415 switch (rhs_code)
4417 case ADDR_EXPR:
4419 tree op = TREE_OPERAND (rhs1, 0);
4420 if (!is_gimple_addressable (op))
4422 error ("invalid operand in unary expression");
4423 return true;
4426 /* Technically there is no longer a need for matching types, but
4427 gimple hygiene asks for this check. In LTO we can end up
4428 combining incompatible units and thus end up with addresses
4429 of globals that change their type to a common one. */
4430 if (!in_lto_p
4431 && !types_compatible_p (TREE_TYPE (op),
4432 TREE_TYPE (TREE_TYPE (rhs1)))
4433 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4434 TREE_TYPE (op)))
4436 error ("type mismatch in address expression");
4437 debug_generic_stmt (TREE_TYPE (rhs1));
4438 debug_generic_stmt (TREE_TYPE (op));
4439 return true;
4442 return (verify_address (rhs1, true)
4443 || verify_types_in_gimple_reference (op, true));
4446 /* tcc_reference */
4447 case INDIRECT_REF:
4448 error ("INDIRECT_REF in gimple IL");
4449 return true;
4451 case COMPONENT_REF:
4452 case BIT_FIELD_REF:
4453 case ARRAY_REF:
4454 case ARRAY_RANGE_REF:
4455 case VIEW_CONVERT_EXPR:
4456 case REALPART_EXPR:
4457 case IMAGPART_EXPR:
4458 case TARGET_MEM_REF:
4459 case MEM_REF:
4460 if (!is_gimple_reg (lhs)
4461 && is_gimple_reg_type (TREE_TYPE (lhs)))
4463 error ("invalid rhs for gimple memory store");
4464 debug_generic_stmt (lhs);
4465 debug_generic_stmt (rhs1);
4466 return true;
4468 return res || verify_types_in_gimple_reference (rhs1, false);
4470 /* tcc_constant */
4471 case SSA_NAME:
4472 case INTEGER_CST:
4473 case REAL_CST:
4474 case FIXED_CST:
4475 case COMPLEX_CST:
4476 case VECTOR_CST:
4477 case STRING_CST:
4478 return res;
4480 /* tcc_declaration */
4481 case CONST_DECL:
4482 return res;
4483 case VAR_DECL:
4484 case PARM_DECL:
4485 if (!is_gimple_reg (lhs)
4486 && !is_gimple_reg (rhs1)
4487 && is_gimple_reg_type (TREE_TYPE (lhs)))
4489 error ("invalid rhs for gimple memory store");
4490 debug_generic_stmt (lhs);
4491 debug_generic_stmt (rhs1);
4492 return true;
4494 return res;
4496 case CONSTRUCTOR:
4497 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4499 unsigned int i;
4500 tree elt_i, elt_v, elt_t = NULL_TREE;
4502 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4503 return res;
4504 /* For vector CONSTRUCTORs we require that either it is empty
4505 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4506 (then the element count must be correct to cover the whole
4507 outer vector and index must be NULL on all elements, or it is
4508 a CONSTRUCTOR of scalar elements, where we as an exception allow
4509 smaller number of elements (assuming zero filling) and
4510 consecutive indexes as compared to NULL indexes (such
4511 CONSTRUCTORs can appear in the IL from FEs). */
4512 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4514 if (elt_t == NULL_TREE)
4516 elt_t = TREE_TYPE (elt_v);
4517 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4519 tree elt_t = TREE_TYPE (elt_v);
4520 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4521 TREE_TYPE (elt_t)))
4523 error ("incorrect type of vector CONSTRUCTOR"
4524 " elements");
4525 debug_generic_stmt (rhs1);
4526 return true;
4528 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1)
4529 * TYPE_VECTOR_SUBPARTS (elt_t),
4530 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4532 error ("incorrect number of vector CONSTRUCTOR"
4533 " elements");
4534 debug_generic_stmt (rhs1);
4535 return true;
4538 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4539 elt_t))
4541 error ("incorrect type of vector CONSTRUCTOR elements");
4542 debug_generic_stmt (rhs1);
4543 return true;
4545 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1),
4546 TYPE_VECTOR_SUBPARTS (rhs1_type)))
4548 error ("incorrect number of vector CONSTRUCTOR elements");
4549 debug_generic_stmt (rhs1);
4550 return true;
4553 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4555 error ("incorrect type of vector CONSTRUCTOR elements");
4556 debug_generic_stmt (rhs1);
4557 return true;
4559 if (elt_i != NULL_TREE
4560 && (TREE_CODE (elt_t) == VECTOR_TYPE
4561 || TREE_CODE (elt_i) != INTEGER_CST
4562 || compare_tree_int (elt_i, i) != 0))
4564 error ("vector CONSTRUCTOR with non-NULL element index");
4565 debug_generic_stmt (rhs1);
4566 return true;
4568 if (!is_gimple_val (elt_v))
4570 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4571 debug_generic_stmt (rhs1);
4572 return true;
4576 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4578 error ("non-vector CONSTRUCTOR with elements");
4579 debug_generic_stmt (rhs1);
4580 return true;
4582 return res;
4584 case ASSERT_EXPR:
4585 /* FIXME. */
4586 rhs1 = fold (ASSERT_EXPR_COND (rhs1));
4587 if (rhs1 == boolean_false_node)
4589 error ("ASSERT_EXPR with an always-false condition");
4590 debug_generic_stmt (rhs1);
4591 return true;
4593 break;
4595 case OBJ_TYPE_REF:
4596 case WITH_SIZE_EXPR:
4597 /* FIXME. */
4598 return res;
4600 default:;
4603 return res;
4606 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4607 is a problem, otherwise false. */
4609 static bool
4610 verify_gimple_assign (gassign *stmt)
4612 switch (gimple_assign_rhs_class (stmt))
4614 case GIMPLE_SINGLE_RHS:
4615 return verify_gimple_assign_single (stmt);
4617 case GIMPLE_UNARY_RHS:
4618 return verify_gimple_assign_unary (stmt);
4620 case GIMPLE_BINARY_RHS:
4621 return verify_gimple_assign_binary (stmt);
4623 case GIMPLE_TERNARY_RHS:
4624 return verify_gimple_assign_ternary (stmt);
4626 default:
4627 gcc_unreachable ();
4631 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4632 is a problem, otherwise false. */
4634 static bool
4635 verify_gimple_return (greturn *stmt)
4637 tree op = gimple_return_retval (stmt);
4638 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4640 /* We cannot test for present return values as we do not fix up missing
4641 return values from the original source. */
4642 if (op == NULL)
4643 return false;
4645 if (!is_gimple_val (op)
4646 && TREE_CODE (op) != RESULT_DECL)
4648 error ("invalid operand in return statement");
4649 debug_generic_stmt (op);
4650 return true;
4653 if ((TREE_CODE (op) == RESULT_DECL
4654 && DECL_BY_REFERENCE (op))
4655 || (TREE_CODE (op) == SSA_NAME
4656 && SSA_NAME_VAR (op)
4657 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4658 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4659 op = TREE_TYPE (op);
4661 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4663 error ("invalid conversion in return statement");
4664 debug_generic_stmt (restype);
4665 debug_generic_stmt (TREE_TYPE (op));
4666 return true;
4669 return false;
4673 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4674 is a problem, otherwise false. */
4676 static bool
4677 verify_gimple_goto (ggoto *stmt)
4679 tree dest = gimple_goto_dest (stmt);
4681 /* ??? We have two canonical forms of direct goto destinations, a
4682 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4683 if (TREE_CODE (dest) != LABEL_DECL
4684 && (!is_gimple_val (dest)
4685 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4687 error ("goto destination is neither a label nor a pointer");
4688 return true;
4691 return false;
4694 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4695 is a problem, otherwise false. */
4697 static bool
4698 verify_gimple_switch (gswitch *stmt)
4700 unsigned int i, n;
4701 tree elt, prev_upper_bound = NULL_TREE;
4702 tree index_type, elt_type = NULL_TREE;
4704 if (!is_gimple_val (gimple_switch_index (stmt)))
4706 error ("invalid operand to switch statement");
4707 debug_generic_stmt (gimple_switch_index (stmt));
4708 return true;
4711 index_type = TREE_TYPE (gimple_switch_index (stmt));
4712 if (! INTEGRAL_TYPE_P (index_type))
4714 error ("non-integral type switch statement");
4715 debug_generic_expr (index_type);
4716 return true;
4719 elt = gimple_switch_label (stmt, 0);
4720 if (CASE_LOW (elt) != NULL_TREE
4721 || CASE_HIGH (elt) != NULL_TREE
4722 || CASE_CHAIN (elt) != NULL_TREE)
4724 error ("invalid default case label in switch statement");
4725 debug_generic_expr (elt);
4726 return true;
4729 n = gimple_switch_num_labels (stmt);
4730 for (i = 1; i < n; i++)
4732 elt = gimple_switch_label (stmt, i);
4734 if (CASE_CHAIN (elt))
4736 error ("invalid CASE_CHAIN");
4737 debug_generic_expr (elt);
4738 return true;
4740 if (! CASE_LOW (elt))
4742 error ("invalid case label in switch statement");
4743 debug_generic_expr (elt);
4744 return true;
4746 if (CASE_HIGH (elt)
4747 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4749 error ("invalid case range in switch statement");
4750 debug_generic_expr (elt);
4751 return true;
4754 if (elt_type)
4756 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4757 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4759 error ("type mismatch for case label in switch statement");
4760 debug_generic_expr (elt);
4761 return true;
4764 else
4766 elt_type = TREE_TYPE (CASE_LOW (elt));
4767 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4769 error ("type precision mismatch in switch statement");
4770 return true;
4774 if (prev_upper_bound)
4776 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4778 error ("case labels not sorted in switch statement");
4779 return true;
4783 prev_upper_bound = CASE_HIGH (elt);
4784 if (! prev_upper_bound)
4785 prev_upper_bound = CASE_LOW (elt);
4788 return false;
4791 /* Verify a gimple debug statement STMT.
4792 Returns true if anything is wrong. */
4794 static bool
4795 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4797 /* There isn't much that could be wrong in a gimple debug stmt. A
4798 gimple debug bind stmt, for example, maps a tree, that's usually
4799 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4800 component or member of an aggregate type, to another tree, that
4801 can be an arbitrary expression. These stmts expand into debug
4802 insns, and are converted to debug notes by var-tracking.c. */
4803 return false;
4806 /* Verify a gimple label statement STMT.
4807 Returns true if anything is wrong. */
4809 static bool
4810 verify_gimple_label (glabel *stmt)
4812 tree decl = gimple_label_label (stmt);
4813 int uid;
4814 bool err = false;
4816 if (TREE_CODE (decl) != LABEL_DECL)
4817 return true;
4818 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4819 && DECL_CONTEXT (decl) != current_function_decl)
4821 error ("label's context is not the current function decl");
4822 err |= true;
4825 uid = LABEL_DECL_UID (decl);
4826 if (cfun->cfg
4827 && (uid == -1
4828 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4830 error ("incorrect entry in label_to_block_map");
4831 err |= true;
4834 uid = EH_LANDING_PAD_NR (decl);
4835 if (uid)
4837 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4838 if (decl != lp->post_landing_pad)
4840 error ("incorrect setting of landing pad number");
4841 err |= true;
4845 return err;
4848 /* Verify a gimple cond statement STMT.
4849 Returns true if anything is wrong. */
4851 static bool
4852 verify_gimple_cond (gcond *stmt)
4854 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4856 error ("invalid comparison code in gimple cond");
4857 return true;
4859 if (!(!gimple_cond_true_label (stmt)
4860 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4861 || !(!gimple_cond_false_label (stmt)
4862 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4864 error ("invalid labels in gimple cond");
4865 return true;
4868 return verify_gimple_comparison (boolean_type_node,
4869 gimple_cond_lhs (stmt),
4870 gimple_cond_rhs (stmt),
4871 gimple_cond_code (stmt));
4874 /* Verify the GIMPLE statement STMT. Returns true if there is an
4875 error, otherwise false. */
4877 static bool
4878 verify_gimple_stmt (gimple *stmt)
4880 switch (gimple_code (stmt))
4882 case GIMPLE_ASSIGN:
4883 return verify_gimple_assign (as_a <gassign *> (stmt));
4885 case GIMPLE_LABEL:
4886 return verify_gimple_label (as_a <glabel *> (stmt));
4888 case GIMPLE_CALL:
4889 return verify_gimple_call (as_a <gcall *> (stmt));
4891 case GIMPLE_COND:
4892 return verify_gimple_cond (as_a <gcond *> (stmt));
4894 case GIMPLE_GOTO:
4895 return verify_gimple_goto (as_a <ggoto *> (stmt));
4897 case GIMPLE_SWITCH:
4898 return verify_gimple_switch (as_a <gswitch *> (stmt));
4900 case GIMPLE_RETURN:
4901 return verify_gimple_return (as_a <greturn *> (stmt));
4903 case GIMPLE_ASM:
4904 return false;
4906 case GIMPLE_TRANSACTION:
4907 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4909 /* Tuples that do not have tree operands. */
4910 case GIMPLE_NOP:
4911 case GIMPLE_PREDICT:
4912 case GIMPLE_RESX:
4913 case GIMPLE_EH_DISPATCH:
4914 case GIMPLE_EH_MUST_NOT_THROW:
4915 return false;
4917 CASE_GIMPLE_OMP:
4918 /* OpenMP directives are validated by the FE and never operated
4919 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4920 non-gimple expressions when the main index variable has had
4921 its address taken. This does not affect the loop itself
4922 because the header of an GIMPLE_OMP_FOR is merely used to determine
4923 how to setup the parallel iteration. */
4924 return false;
4926 case GIMPLE_DEBUG:
4927 return verify_gimple_debug (stmt);
4929 default:
4930 gcc_unreachable ();
4934 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4935 and false otherwise. */
4937 static bool
4938 verify_gimple_phi (gphi *phi)
4940 bool err = false;
4941 unsigned i;
4942 tree phi_result = gimple_phi_result (phi);
4943 bool virtual_p;
4945 if (!phi_result)
4947 error ("invalid PHI result");
4948 return true;
4951 virtual_p = virtual_operand_p (phi_result);
4952 if (TREE_CODE (phi_result) != SSA_NAME
4953 || (virtual_p
4954 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4956 error ("invalid PHI result");
4957 err = true;
4960 for (i = 0; i < gimple_phi_num_args (phi); i++)
4962 tree t = gimple_phi_arg_def (phi, i);
4964 if (!t)
4966 error ("missing PHI def");
4967 err |= true;
4968 continue;
4970 /* Addressable variables do have SSA_NAMEs but they
4971 are not considered gimple values. */
4972 else if ((TREE_CODE (t) == SSA_NAME
4973 && virtual_p != virtual_operand_p (t))
4974 || (virtual_p
4975 && (TREE_CODE (t) != SSA_NAME
4976 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4977 || (!virtual_p
4978 && !is_gimple_val (t)))
4980 error ("invalid PHI argument");
4981 debug_generic_expr (t);
4982 err |= true;
4984 #ifdef ENABLE_TYPES_CHECKING
4985 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4987 error ("incompatible types in PHI argument %u", i);
4988 debug_generic_stmt (TREE_TYPE (phi_result));
4989 debug_generic_stmt (TREE_TYPE (t));
4990 err |= true;
4992 #endif
4995 return err;
4998 /* Verify the GIMPLE statements inside the sequence STMTS. */
5000 static bool
5001 verify_gimple_in_seq_2 (gimple_seq stmts)
5003 gimple_stmt_iterator ittr;
5004 bool err = false;
5006 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5008 gimple *stmt = gsi_stmt (ittr);
5010 switch (gimple_code (stmt))
5012 case GIMPLE_BIND:
5013 err |= verify_gimple_in_seq_2 (
5014 gimple_bind_body (as_a <gbind *> (stmt)));
5015 break;
5017 case GIMPLE_TRY:
5018 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5019 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5020 break;
5022 case GIMPLE_EH_FILTER:
5023 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5024 break;
5026 case GIMPLE_EH_ELSE:
5028 geh_else *eh_else = as_a <geh_else *> (stmt);
5029 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5030 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5032 break;
5034 case GIMPLE_CATCH:
5035 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5036 as_a <gcatch *> (stmt)));
5037 break;
5039 case GIMPLE_TRANSACTION:
5040 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5041 break;
5043 default:
5045 bool err2 = verify_gimple_stmt (stmt);
5046 if (err2)
5047 debug_gimple_stmt (stmt);
5048 err |= err2;
5053 return err;
5056 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5057 is a problem, otherwise false. */
5059 static bool
5060 verify_gimple_transaction (gtransaction *stmt)
5062 tree lab;
5064 lab = gimple_transaction_label_norm (stmt);
5065 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5066 return true;
5067 lab = gimple_transaction_label_uninst (stmt);
5068 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5069 return true;
5070 lab = gimple_transaction_label_over (stmt);
5071 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5072 return true;
5074 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5078 /* Verify the GIMPLE statements inside the statement list STMTS. */
5080 DEBUG_FUNCTION void
5081 verify_gimple_in_seq (gimple_seq stmts)
5083 timevar_push (TV_TREE_STMT_VERIFY);
5084 if (verify_gimple_in_seq_2 (stmts))
5085 internal_error ("verify_gimple failed");
5086 timevar_pop (TV_TREE_STMT_VERIFY);
5089 /* Return true when the T can be shared. */
5091 static bool
5092 tree_node_can_be_shared (tree t)
5094 if (IS_TYPE_OR_DECL_P (t)
5095 || TREE_CODE (t) == SSA_NAME
5096 || TREE_CODE (t) == IDENTIFIER_NODE
5097 || TREE_CODE (t) == CASE_LABEL_EXPR
5098 || is_gimple_min_invariant (t))
5099 return true;
5101 if (t == error_mark_node)
5102 return true;
5104 return false;
5107 /* Called via walk_tree. Verify tree sharing. */
5109 static tree
5110 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5112 hash_set<void *> *visited = (hash_set<void *> *) data;
5114 if (tree_node_can_be_shared (*tp))
5116 *walk_subtrees = false;
5117 return NULL;
5120 if (visited->add (*tp))
5121 return *tp;
5123 return NULL;
5126 /* Called via walk_gimple_stmt. Verify tree sharing. */
5128 static tree
5129 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5131 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5132 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5135 static bool eh_error_found;
5136 bool
5137 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5138 hash_set<gimple *> *visited)
5140 if (!visited->contains (stmt))
5142 error ("dead STMT in EH table");
5143 debug_gimple_stmt (stmt);
5144 eh_error_found = true;
5146 return true;
5149 /* Verify if the location LOCs block is in BLOCKS. */
5151 static bool
5152 verify_location (hash_set<tree> *blocks, location_t loc)
5154 tree block = LOCATION_BLOCK (loc);
5155 if (block != NULL_TREE
5156 && !blocks->contains (block))
5158 error ("location references block not in block tree");
5159 return true;
5161 if (block != NULL_TREE)
5162 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5163 return false;
5166 /* Called via walk_tree. Verify that expressions have no blocks. */
5168 static tree
5169 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5171 if (!EXPR_P (*tp))
5173 *walk_subtrees = false;
5174 return NULL;
5177 location_t loc = EXPR_LOCATION (*tp);
5178 if (LOCATION_BLOCK (loc) != NULL)
5179 return *tp;
5181 return NULL;
5184 /* Called via walk_tree. Verify locations of expressions. */
5186 static tree
5187 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5189 hash_set<tree> *blocks = (hash_set<tree> *) data;
5190 tree t = *tp;
5192 /* ??? This doesn't really belong here but there's no good place to
5193 stick this remainder of old verify_expr. */
5194 /* ??? This barfs on debug stmts which contain binds to vars with
5195 different function context. */
5196 #if 0
5197 if (VAR_P (t)
5198 || TREE_CODE (t) == PARM_DECL
5199 || TREE_CODE (t) == RESULT_DECL)
5201 tree context = decl_function_context (t);
5202 if (context != cfun->decl
5203 && !SCOPE_FILE_SCOPE_P (context)
5204 && !TREE_STATIC (t)
5205 && !DECL_EXTERNAL (t))
5207 error ("local declaration from a different function");
5208 return t;
5211 #endif
5213 if (VAR_P (t) && DECL_HAS_DEBUG_EXPR_P (t))
5215 tree x = DECL_DEBUG_EXPR (t);
5216 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5217 if (addr)
5218 return addr;
5220 if ((VAR_P (t)
5221 || TREE_CODE (t) == PARM_DECL
5222 || TREE_CODE (t) == RESULT_DECL)
5223 && DECL_HAS_VALUE_EXPR_P (t))
5225 tree x = DECL_VALUE_EXPR (t);
5226 tree addr = walk_tree (&x, verify_expr_no_block, NULL, NULL);
5227 if (addr)
5228 return addr;
5231 if (!EXPR_P (t))
5233 *walk_subtrees = false;
5234 return NULL;
5237 location_t loc = EXPR_LOCATION (t);
5238 if (verify_location (blocks, loc))
5239 return t;
5241 return NULL;
5244 /* Called via walk_gimple_op. Verify locations of expressions. */
5246 static tree
5247 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5249 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5250 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5253 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5255 static void
5256 collect_subblocks (hash_set<tree> *blocks, tree block)
5258 tree t;
5259 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5261 blocks->add (t);
5262 collect_subblocks (blocks, t);
5266 /* Verify the GIMPLE statements in the CFG of FN. */
5268 DEBUG_FUNCTION void
5269 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5271 basic_block bb;
5272 bool err = false;
5274 timevar_push (TV_TREE_STMT_VERIFY);
5275 hash_set<void *> visited;
5276 hash_set<gimple *> visited_throwing_stmts;
5278 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5279 hash_set<tree> blocks;
5280 if (DECL_INITIAL (fn->decl))
5282 blocks.add (DECL_INITIAL (fn->decl));
5283 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5286 FOR_EACH_BB_FN (bb, fn)
5288 gimple_stmt_iterator gsi;
5289 edge_iterator ei;
5290 edge e;
5292 for (gphi_iterator gpi = gsi_start_phis (bb);
5293 !gsi_end_p (gpi);
5294 gsi_next (&gpi))
5296 gphi *phi = gpi.phi ();
5297 bool err2 = false;
5298 unsigned i;
5300 if (gimple_bb (phi) != bb)
5302 error ("gimple_bb (phi) is set to a wrong basic block");
5303 err2 = true;
5306 err2 |= verify_gimple_phi (phi);
5308 /* Only PHI arguments have locations. */
5309 if (gimple_location (phi) != UNKNOWN_LOCATION)
5311 error ("PHI node with location");
5312 err2 = true;
5315 for (i = 0; i < gimple_phi_num_args (phi); i++)
5317 tree arg = gimple_phi_arg_def (phi, i);
5318 tree addr = walk_tree (&arg, verify_node_sharing_1,
5319 &visited, NULL);
5320 if (addr)
5322 error ("incorrect sharing of tree nodes");
5323 debug_generic_expr (addr);
5324 err2 |= true;
5326 location_t loc = gimple_phi_arg_location (phi, i);
5327 if (virtual_operand_p (gimple_phi_result (phi))
5328 && loc != UNKNOWN_LOCATION)
5330 error ("virtual PHI with argument locations");
5331 err2 = true;
5333 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5334 if (addr)
5336 debug_generic_expr (addr);
5337 err2 = true;
5339 err2 |= verify_location (&blocks, loc);
5342 if (err2)
5343 debug_gimple_stmt (phi);
5344 err |= err2;
5347 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5349 gimple *stmt = gsi_stmt (gsi);
5350 bool err2 = false;
5351 struct walk_stmt_info wi;
5352 tree addr;
5353 int lp_nr;
5355 if (gimple_bb (stmt) != bb)
5357 error ("gimple_bb (stmt) is set to a wrong basic block");
5358 err2 = true;
5361 err2 |= verify_gimple_stmt (stmt);
5362 err2 |= verify_location (&blocks, gimple_location (stmt));
5364 memset (&wi, 0, sizeof (wi));
5365 wi.info = (void *) &visited;
5366 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5367 if (addr)
5369 error ("incorrect sharing of tree nodes");
5370 debug_generic_expr (addr);
5371 err2 |= true;
5374 memset (&wi, 0, sizeof (wi));
5375 wi.info = (void *) &blocks;
5376 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5377 if (addr)
5379 debug_generic_expr (addr);
5380 err2 |= true;
5383 /* If the statement is marked as part of an EH region, then it is
5384 expected that the statement could throw. Verify that when we
5385 have optimizations that simplify statements such that we prove
5386 that they cannot throw, that we update other data structures
5387 to match. */
5388 lp_nr = lookup_stmt_eh_lp (stmt);
5389 if (lp_nr != 0)
5390 visited_throwing_stmts.add (stmt);
5391 if (lp_nr > 0)
5393 if (!stmt_could_throw_p (stmt))
5395 if (verify_nothrow)
5397 error ("statement marked for throw, but doesn%'t");
5398 err2 |= true;
5401 else if (!gsi_one_before_end_p (gsi))
5403 error ("statement marked for throw in middle of block");
5404 err2 |= true;
5408 if (err2)
5409 debug_gimple_stmt (stmt);
5410 err |= err2;
5413 FOR_EACH_EDGE (e, ei, bb->succs)
5414 if (e->goto_locus != UNKNOWN_LOCATION)
5415 err |= verify_location (&blocks, e->goto_locus);
5418 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5419 eh_error_found = false;
5420 if (eh_table)
5421 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5422 (&visited_throwing_stmts);
5424 if (err || eh_error_found)
5425 internal_error ("verify_gimple failed");
5427 verify_histograms ();
5428 timevar_pop (TV_TREE_STMT_VERIFY);
5432 /* Verifies that the flow information is OK. */
5434 static int
5435 gimple_verify_flow_info (void)
5437 int err = 0;
5438 basic_block bb;
5439 gimple_stmt_iterator gsi;
5440 gimple *stmt;
5441 edge e;
5442 edge_iterator ei;
5444 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5445 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5447 error ("ENTRY_BLOCK has IL associated with it");
5448 err = 1;
5451 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5452 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5454 error ("EXIT_BLOCK has IL associated with it");
5455 err = 1;
5458 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5459 if (e->flags & EDGE_FALLTHRU)
5461 error ("fallthru to exit from bb %d", e->src->index);
5462 err = 1;
5465 FOR_EACH_BB_FN (bb, cfun)
5467 bool found_ctrl_stmt = false;
5469 stmt = NULL;
5471 /* Skip labels on the start of basic block. */
5472 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5474 tree label;
5475 gimple *prev_stmt = stmt;
5477 stmt = gsi_stmt (gsi);
5479 if (gimple_code (stmt) != GIMPLE_LABEL)
5480 break;
5482 label = gimple_label_label (as_a <glabel *> (stmt));
5483 if (prev_stmt && DECL_NONLOCAL (label))
5485 error ("nonlocal label ");
5486 print_generic_expr (stderr, label);
5487 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5488 bb->index);
5489 err = 1;
5492 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5494 error ("EH landing pad label ");
5495 print_generic_expr (stderr, label);
5496 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5497 bb->index);
5498 err = 1;
5501 if (label_to_block (label) != bb)
5503 error ("label ");
5504 print_generic_expr (stderr, label);
5505 fprintf (stderr, " to block does not match in bb %d",
5506 bb->index);
5507 err = 1;
5510 if (decl_function_context (label) != current_function_decl)
5512 error ("label ");
5513 print_generic_expr (stderr, label);
5514 fprintf (stderr, " has incorrect context in bb %d",
5515 bb->index);
5516 err = 1;
5520 /* Verify that body of basic block BB is free of control flow. */
5521 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5523 gimple *stmt = gsi_stmt (gsi);
5525 if (found_ctrl_stmt)
5527 error ("control flow in the middle of basic block %d",
5528 bb->index);
5529 err = 1;
5532 if (stmt_ends_bb_p (stmt))
5533 found_ctrl_stmt = true;
5535 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5537 error ("label ");
5538 print_generic_expr (stderr, gimple_label_label (label_stmt));
5539 fprintf (stderr, " in the middle of basic block %d", bb->index);
5540 err = 1;
5544 gsi = gsi_last_nondebug_bb (bb);
5545 if (gsi_end_p (gsi))
5546 continue;
5548 stmt = gsi_stmt (gsi);
5550 if (gimple_code (stmt) == GIMPLE_LABEL)
5551 continue;
5553 err |= verify_eh_edges (stmt);
5555 if (is_ctrl_stmt (stmt))
5557 FOR_EACH_EDGE (e, ei, bb->succs)
5558 if (e->flags & EDGE_FALLTHRU)
5560 error ("fallthru edge after a control statement in bb %d",
5561 bb->index);
5562 err = 1;
5566 if (gimple_code (stmt) != GIMPLE_COND)
5568 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5569 after anything else but if statement. */
5570 FOR_EACH_EDGE (e, ei, bb->succs)
5571 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5573 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5574 bb->index);
5575 err = 1;
5579 switch (gimple_code (stmt))
5581 case GIMPLE_COND:
5583 edge true_edge;
5584 edge false_edge;
5586 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5588 if (!true_edge
5589 || !false_edge
5590 || !(true_edge->flags & EDGE_TRUE_VALUE)
5591 || !(false_edge->flags & EDGE_FALSE_VALUE)
5592 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5593 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5594 || EDGE_COUNT (bb->succs) >= 3)
5596 error ("wrong outgoing edge flags at end of bb %d",
5597 bb->index);
5598 err = 1;
5601 break;
5603 case GIMPLE_GOTO:
5604 if (simple_goto_p (stmt))
5606 error ("explicit goto at end of bb %d", bb->index);
5607 err = 1;
5609 else
5611 /* FIXME. We should double check that the labels in the
5612 destination blocks have their address taken. */
5613 FOR_EACH_EDGE (e, ei, bb->succs)
5614 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5615 | EDGE_FALSE_VALUE))
5616 || !(e->flags & EDGE_ABNORMAL))
5618 error ("wrong outgoing edge flags at end of bb %d",
5619 bb->index);
5620 err = 1;
5623 break;
5625 case GIMPLE_CALL:
5626 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5627 break;
5628 /* fallthru */
5629 case GIMPLE_RETURN:
5630 if (!single_succ_p (bb)
5631 || (single_succ_edge (bb)->flags
5632 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5633 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5635 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5636 err = 1;
5638 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5640 error ("return edge does not point to exit in bb %d",
5641 bb->index);
5642 err = 1;
5644 break;
5646 case GIMPLE_SWITCH:
5648 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5649 tree prev;
5650 edge e;
5651 size_t i, n;
5653 n = gimple_switch_num_labels (switch_stmt);
5655 /* Mark all the destination basic blocks. */
5656 for (i = 0; i < n; ++i)
5658 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5659 basic_block label_bb = label_to_block (lab);
5660 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5661 label_bb->aux = (void *)1;
5664 /* Verify that the case labels are sorted. */
5665 prev = gimple_switch_label (switch_stmt, 0);
5666 for (i = 1; i < n; ++i)
5668 tree c = gimple_switch_label (switch_stmt, i);
5669 if (!CASE_LOW (c))
5671 error ("found default case not at the start of "
5672 "case vector");
5673 err = 1;
5674 continue;
5676 if (CASE_LOW (prev)
5677 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5679 error ("case labels not sorted: ");
5680 print_generic_expr (stderr, prev);
5681 fprintf (stderr," is greater than ");
5682 print_generic_expr (stderr, c);
5683 fprintf (stderr," but comes before it.\n");
5684 err = 1;
5686 prev = c;
5688 /* VRP will remove the default case if it can prove it will
5689 never be executed. So do not verify there always exists
5690 a default case here. */
5692 FOR_EACH_EDGE (e, ei, bb->succs)
5694 if (!e->dest->aux)
5696 error ("extra outgoing edge %d->%d",
5697 bb->index, e->dest->index);
5698 err = 1;
5701 e->dest->aux = (void *)2;
5702 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5703 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5705 error ("wrong outgoing edge flags at end of bb %d",
5706 bb->index);
5707 err = 1;
5711 /* Check that we have all of them. */
5712 for (i = 0; i < n; ++i)
5714 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5715 basic_block label_bb = label_to_block (lab);
5717 if (label_bb->aux != (void *)2)
5719 error ("missing edge %i->%i", bb->index, label_bb->index);
5720 err = 1;
5724 FOR_EACH_EDGE (e, ei, bb->succs)
5725 e->dest->aux = (void *)0;
5727 break;
5729 case GIMPLE_EH_DISPATCH:
5730 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5731 break;
5733 default:
5734 break;
5738 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5739 verify_dominators (CDI_DOMINATORS);
5741 return err;
5745 /* Updates phi nodes after creating a forwarder block joined
5746 by edge FALLTHRU. */
5748 static void
5749 gimple_make_forwarder_block (edge fallthru)
5751 edge e;
5752 edge_iterator ei;
5753 basic_block dummy, bb;
5754 tree var;
5755 gphi_iterator gsi;
5757 dummy = fallthru->src;
5758 bb = fallthru->dest;
5760 if (single_pred_p (bb))
5761 return;
5763 /* If we redirected a branch we must create new PHI nodes at the
5764 start of BB. */
5765 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5767 gphi *phi, *new_phi;
5769 phi = gsi.phi ();
5770 var = gimple_phi_result (phi);
5771 new_phi = create_phi_node (var, bb);
5772 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5773 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5774 UNKNOWN_LOCATION);
5777 /* Add the arguments we have stored on edges. */
5778 FOR_EACH_EDGE (e, ei, bb->preds)
5780 if (e == fallthru)
5781 continue;
5783 flush_pending_stmts (e);
5788 /* Return a non-special label in the head of basic block BLOCK.
5789 Create one if it doesn't exist. */
5791 tree
5792 gimple_block_label (basic_block bb)
5794 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5795 bool first = true;
5796 tree label;
5797 glabel *stmt;
5799 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5801 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5802 if (!stmt)
5803 break;
5804 label = gimple_label_label (stmt);
5805 if (!DECL_NONLOCAL (label))
5807 if (!first)
5808 gsi_move_before (&i, &s);
5809 return label;
5813 label = create_artificial_label (UNKNOWN_LOCATION);
5814 stmt = gimple_build_label (label);
5815 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5816 return label;
5820 /* Attempt to perform edge redirection by replacing a possibly complex
5821 jump instruction by a goto or by removing the jump completely.
5822 This can apply only if all edges now point to the same block. The
5823 parameters and return values are equivalent to
5824 redirect_edge_and_branch. */
5826 static edge
5827 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5829 basic_block src = e->src;
5830 gimple_stmt_iterator i;
5831 gimple *stmt;
5833 /* We can replace or remove a complex jump only when we have exactly
5834 two edges. */
5835 if (EDGE_COUNT (src->succs) != 2
5836 /* Verify that all targets will be TARGET. Specifically, the
5837 edge that is not E must also go to TARGET. */
5838 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5839 return NULL;
5841 i = gsi_last_bb (src);
5842 if (gsi_end_p (i))
5843 return NULL;
5845 stmt = gsi_stmt (i);
5847 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5849 gsi_remove (&i, true);
5850 e = ssa_redirect_edge (e, target);
5851 e->flags = EDGE_FALLTHRU;
5852 return e;
5855 return NULL;
5859 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5860 edge representing the redirected branch. */
5862 static edge
5863 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5865 basic_block bb = e->src;
5866 gimple_stmt_iterator gsi;
5867 edge ret;
5868 gimple *stmt;
5870 if (e->flags & EDGE_ABNORMAL)
5871 return NULL;
5873 if (e->dest == dest)
5874 return NULL;
5876 if (e->flags & EDGE_EH)
5877 return redirect_eh_edge (e, dest);
5879 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5881 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5882 if (ret)
5883 return ret;
5886 gsi = gsi_last_nondebug_bb (bb);
5887 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5889 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5891 case GIMPLE_COND:
5892 /* For COND_EXPR, we only need to redirect the edge. */
5893 break;
5895 case GIMPLE_GOTO:
5896 /* No non-abnormal edges should lead from a non-simple goto, and
5897 simple ones should be represented implicitly. */
5898 gcc_unreachable ();
5900 case GIMPLE_SWITCH:
5902 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5903 tree label = gimple_block_label (dest);
5904 tree cases = get_cases_for_edge (e, switch_stmt);
5906 /* If we have a list of cases associated with E, then use it
5907 as it's a lot faster than walking the entire case vector. */
5908 if (cases)
5910 edge e2 = find_edge (e->src, dest);
5911 tree last, first;
5913 first = cases;
5914 while (cases)
5916 last = cases;
5917 CASE_LABEL (cases) = label;
5918 cases = CASE_CHAIN (cases);
5921 /* If there was already an edge in the CFG, then we need
5922 to move all the cases associated with E to E2. */
5923 if (e2)
5925 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5927 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5928 CASE_CHAIN (cases2) = first;
5930 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5932 else
5934 size_t i, n = gimple_switch_num_labels (switch_stmt);
5936 for (i = 0; i < n; i++)
5938 tree elt = gimple_switch_label (switch_stmt, i);
5939 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5940 CASE_LABEL (elt) = label;
5944 break;
5946 case GIMPLE_ASM:
5948 gasm *asm_stmt = as_a <gasm *> (stmt);
5949 int i, n = gimple_asm_nlabels (asm_stmt);
5950 tree label = NULL;
5952 for (i = 0; i < n; ++i)
5954 tree cons = gimple_asm_label_op (asm_stmt, i);
5955 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5957 if (!label)
5958 label = gimple_block_label (dest);
5959 TREE_VALUE (cons) = label;
5963 /* If we didn't find any label matching the former edge in the
5964 asm labels, we must be redirecting the fallthrough
5965 edge. */
5966 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5968 break;
5970 case GIMPLE_RETURN:
5971 gsi_remove (&gsi, true);
5972 e->flags |= EDGE_FALLTHRU;
5973 break;
5975 case GIMPLE_OMP_RETURN:
5976 case GIMPLE_OMP_CONTINUE:
5977 case GIMPLE_OMP_SECTIONS_SWITCH:
5978 case GIMPLE_OMP_FOR:
5979 /* The edges from OMP constructs can be simply redirected. */
5980 break;
5982 case GIMPLE_EH_DISPATCH:
5983 if (!(e->flags & EDGE_FALLTHRU))
5984 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5985 break;
5987 case GIMPLE_TRANSACTION:
5988 if (e->flags & EDGE_TM_ABORT)
5989 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5990 gimple_block_label (dest));
5991 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5992 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5993 gimple_block_label (dest));
5994 else
5995 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5996 gimple_block_label (dest));
5997 break;
5999 default:
6000 /* Otherwise it must be a fallthru edge, and we don't need to
6001 do anything besides redirecting it. */
6002 gcc_assert (e->flags & EDGE_FALLTHRU);
6003 break;
6006 /* Update/insert PHI nodes as necessary. */
6008 /* Now update the edges in the CFG. */
6009 e = ssa_redirect_edge (e, dest);
6011 return e;
6014 /* Returns true if it is possible to remove edge E by redirecting
6015 it to the destination of the other edge from E->src. */
6017 static bool
6018 gimple_can_remove_branch_p (const_edge e)
6020 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6021 return false;
6023 return true;
6026 /* Simple wrapper, as we can always redirect fallthru edges. */
6028 static basic_block
6029 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6031 e = gimple_redirect_edge_and_branch (e, dest);
6032 gcc_assert (e);
6034 return NULL;
6038 /* Splits basic block BB after statement STMT (but at least after the
6039 labels). If STMT is NULL, BB is split just after the labels. */
6041 static basic_block
6042 gimple_split_block (basic_block bb, void *stmt)
6044 gimple_stmt_iterator gsi;
6045 gimple_stmt_iterator gsi_tgt;
6046 gimple_seq list;
6047 basic_block new_bb;
6048 edge e;
6049 edge_iterator ei;
6051 new_bb = create_empty_bb (bb);
6053 /* Redirect the outgoing edges. */
6054 new_bb->succs = bb->succs;
6055 bb->succs = NULL;
6056 FOR_EACH_EDGE (e, ei, new_bb->succs)
6057 e->src = new_bb;
6059 /* Get a stmt iterator pointing to the first stmt to move. */
6060 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6061 gsi = gsi_after_labels (bb);
6062 else
6064 gsi = gsi_for_stmt ((gimple *) stmt);
6065 gsi_next (&gsi);
6068 /* Move everything from GSI to the new basic block. */
6069 if (gsi_end_p (gsi))
6070 return new_bb;
6072 /* Split the statement list - avoid re-creating new containers as this
6073 brings ugly quadratic memory consumption in the inliner.
6074 (We are still quadratic since we need to update stmt BB pointers,
6075 sadly.) */
6076 gsi_split_seq_before (&gsi, &list);
6077 set_bb_seq (new_bb, list);
6078 for (gsi_tgt = gsi_start (list);
6079 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6080 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6082 return new_bb;
6086 /* Moves basic block BB after block AFTER. */
6088 static bool
6089 gimple_move_block_after (basic_block bb, basic_block after)
6091 if (bb->prev_bb == after)
6092 return true;
6094 unlink_block (bb);
6095 link_block (bb, after);
6097 return true;
6101 /* Return TRUE if block BB has no executable statements, otherwise return
6102 FALSE. */
6104 static bool
6105 gimple_empty_block_p (basic_block bb)
6107 /* BB must have no executable statements. */
6108 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6109 if (phi_nodes (bb))
6110 return false;
6111 if (gsi_end_p (gsi))
6112 return true;
6113 if (is_gimple_debug (gsi_stmt (gsi)))
6114 gsi_next_nondebug (&gsi);
6115 return gsi_end_p (gsi);
6119 /* Split a basic block if it ends with a conditional branch and if the
6120 other part of the block is not empty. */
6122 static basic_block
6123 gimple_split_block_before_cond_jump (basic_block bb)
6125 gimple *last, *split_point;
6126 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6127 if (gsi_end_p (gsi))
6128 return NULL;
6129 last = gsi_stmt (gsi);
6130 if (gimple_code (last) != GIMPLE_COND
6131 && gimple_code (last) != GIMPLE_SWITCH)
6132 return NULL;
6133 gsi_prev (&gsi);
6134 split_point = gsi_stmt (gsi);
6135 return split_block (bb, split_point)->dest;
6139 /* Return true if basic_block can be duplicated. */
6141 static bool
6142 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6144 return true;
6147 /* Create a duplicate of the basic block BB. NOTE: This does not
6148 preserve SSA form. */
6150 static basic_block
6151 gimple_duplicate_bb (basic_block bb)
6153 basic_block new_bb;
6154 gimple_stmt_iterator gsi_tgt;
6156 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6158 /* Copy the PHI nodes. We ignore PHI node arguments here because
6159 the incoming edges have not been setup yet. */
6160 for (gphi_iterator gpi = gsi_start_phis (bb);
6161 !gsi_end_p (gpi);
6162 gsi_next (&gpi))
6164 gphi *phi, *copy;
6165 phi = gpi.phi ();
6166 copy = create_phi_node (NULL_TREE, new_bb);
6167 create_new_def_for (gimple_phi_result (phi), copy,
6168 gimple_phi_result_ptr (copy));
6169 gimple_set_uid (copy, gimple_uid (phi));
6172 gsi_tgt = gsi_start_bb (new_bb);
6173 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6174 !gsi_end_p (gsi);
6175 gsi_next (&gsi))
6177 def_operand_p def_p;
6178 ssa_op_iter op_iter;
6179 tree lhs;
6180 gimple *stmt, *copy;
6182 stmt = gsi_stmt (gsi);
6183 if (gimple_code (stmt) == GIMPLE_LABEL)
6184 continue;
6186 /* Don't duplicate label debug stmts. */
6187 if (gimple_debug_bind_p (stmt)
6188 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6189 == LABEL_DECL)
6190 continue;
6192 /* Create a new copy of STMT and duplicate STMT's virtual
6193 operands. */
6194 copy = gimple_copy (stmt);
6195 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6197 maybe_duplicate_eh_stmt (copy, stmt);
6198 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6200 /* When copying around a stmt writing into a local non-user
6201 aggregate, make sure it won't share stack slot with other
6202 vars. */
6203 lhs = gimple_get_lhs (stmt);
6204 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6206 tree base = get_base_address (lhs);
6207 if (base
6208 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6209 && DECL_IGNORED_P (base)
6210 && !TREE_STATIC (base)
6211 && !DECL_EXTERNAL (base)
6212 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6213 DECL_NONSHAREABLE (base) = 1;
6216 /* Create new names for all the definitions created by COPY and
6217 add replacement mappings for each new name. */
6218 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6219 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6222 return new_bb;
6225 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6227 static void
6228 add_phi_args_after_copy_edge (edge e_copy)
6230 basic_block bb, bb_copy = e_copy->src, dest;
6231 edge e;
6232 edge_iterator ei;
6233 gphi *phi, *phi_copy;
6234 tree def;
6235 gphi_iterator psi, psi_copy;
6237 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6238 return;
6240 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6242 if (e_copy->dest->flags & BB_DUPLICATED)
6243 dest = get_bb_original (e_copy->dest);
6244 else
6245 dest = e_copy->dest;
6247 e = find_edge (bb, dest);
6248 if (!e)
6250 /* During loop unrolling the target of the latch edge is copied.
6251 In this case we are not looking for edge to dest, but to
6252 duplicated block whose original was dest. */
6253 FOR_EACH_EDGE (e, ei, bb->succs)
6255 if ((e->dest->flags & BB_DUPLICATED)
6256 && get_bb_original (e->dest) == dest)
6257 break;
6260 gcc_assert (e != NULL);
6263 for (psi = gsi_start_phis (e->dest),
6264 psi_copy = gsi_start_phis (e_copy->dest);
6265 !gsi_end_p (psi);
6266 gsi_next (&psi), gsi_next (&psi_copy))
6268 phi = psi.phi ();
6269 phi_copy = psi_copy.phi ();
6270 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6271 add_phi_arg (phi_copy, def, e_copy,
6272 gimple_phi_arg_location_from_edge (phi, e));
6277 /* Basic block BB_COPY was created by code duplication. Add phi node
6278 arguments for edges going out of BB_COPY. The blocks that were
6279 duplicated have BB_DUPLICATED set. */
6281 void
6282 add_phi_args_after_copy_bb (basic_block bb_copy)
6284 edge e_copy;
6285 edge_iterator ei;
6287 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6289 add_phi_args_after_copy_edge (e_copy);
6293 /* Blocks in REGION_COPY array of length N_REGION were created by
6294 duplication of basic blocks. Add phi node arguments for edges
6295 going from these blocks. If E_COPY is not NULL, also add
6296 phi node arguments for its destination.*/
6298 void
6299 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6300 edge e_copy)
6302 unsigned i;
6304 for (i = 0; i < n_region; i++)
6305 region_copy[i]->flags |= BB_DUPLICATED;
6307 for (i = 0; i < n_region; i++)
6308 add_phi_args_after_copy_bb (region_copy[i]);
6309 if (e_copy)
6310 add_phi_args_after_copy_edge (e_copy);
6312 for (i = 0; i < n_region; i++)
6313 region_copy[i]->flags &= ~BB_DUPLICATED;
6316 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6317 important exit edge EXIT. By important we mean that no SSA name defined
6318 inside region is live over the other exit edges of the region. All entry
6319 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6320 to the duplicate of the region. Dominance and loop information is
6321 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6322 UPDATE_DOMINANCE is false then we assume that the caller will update the
6323 dominance information after calling this function. The new basic
6324 blocks are stored to REGION_COPY in the same order as they had in REGION,
6325 provided that REGION_COPY is not NULL.
6326 The function returns false if it is unable to copy the region,
6327 true otherwise. */
6329 bool
6330 gimple_duplicate_sese_region (edge entry, edge exit,
6331 basic_block *region, unsigned n_region,
6332 basic_block *region_copy,
6333 bool update_dominance)
6335 unsigned i;
6336 bool free_region_copy = false, copying_header = false;
6337 struct loop *loop = entry->dest->loop_father;
6338 edge exit_copy;
6339 vec<basic_block> doms = vNULL;
6340 edge redirected;
6341 profile_count total_count = profile_count::uninitialized ();
6342 profile_count entry_count = profile_count::uninitialized ();
6344 if (!can_copy_bbs_p (region, n_region))
6345 return false;
6347 /* Some sanity checking. Note that we do not check for all possible
6348 missuses of the functions. I.e. if you ask to copy something weird,
6349 it will work, but the state of structures probably will not be
6350 correct. */
6351 for (i = 0; i < n_region; i++)
6353 /* We do not handle subloops, i.e. all the blocks must belong to the
6354 same loop. */
6355 if (region[i]->loop_father != loop)
6356 return false;
6358 if (region[i] != entry->dest
6359 && region[i] == loop->header)
6360 return false;
6363 /* In case the function is used for loop header copying (which is the primary
6364 use), ensure that EXIT and its copy will be new latch and entry edges. */
6365 if (loop->header == entry->dest)
6367 copying_header = true;
6369 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6370 return false;
6372 for (i = 0; i < n_region; i++)
6373 if (region[i] != exit->src
6374 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6375 return false;
6378 initialize_original_copy_tables ();
6380 if (copying_header)
6381 set_loop_copy (loop, loop_outer (loop));
6382 else
6383 set_loop_copy (loop, loop);
6385 if (!region_copy)
6387 region_copy = XNEWVEC (basic_block, n_region);
6388 free_region_copy = true;
6391 /* Record blocks outside the region that are dominated by something
6392 inside. */
6393 if (update_dominance)
6395 doms.create (0);
6396 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6399 if (entry->dest->count.initialized_p ())
6401 total_count = entry->dest->count;
6402 entry_count = entry->count ();
6403 /* Fix up corner cases, to avoid division by zero or creation of negative
6404 frequencies. */
6405 if (entry_count > total_count)
6406 entry_count = total_count;
6409 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6410 split_edge_bb_loc (entry), update_dominance);
6411 if (total_count.initialized_p () && entry_count.initialized_p ())
6413 scale_bbs_frequencies_profile_count (region, n_region,
6414 total_count - entry_count,
6415 total_count);
6416 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6417 total_count);
6420 if (copying_header)
6422 loop->header = exit->dest;
6423 loop->latch = exit->src;
6426 /* Redirect the entry and add the phi node arguments. */
6427 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6428 gcc_assert (redirected != NULL);
6429 flush_pending_stmts (entry);
6431 /* Concerning updating of dominators: We must recount dominators
6432 for entry block and its copy. Anything that is outside of the
6433 region, but was dominated by something inside needs recounting as
6434 well. */
6435 if (update_dominance)
6437 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6438 doms.safe_push (get_bb_original (entry->dest));
6439 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6440 doms.release ();
6443 /* Add the other PHI node arguments. */
6444 add_phi_args_after_copy (region_copy, n_region, NULL);
6446 if (free_region_copy)
6447 free (region_copy);
6449 free_original_copy_tables ();
6450 return true;
6453 /* Checks if BB is part of the region defined by N_REGION BBS. */
6454 static bool
6455 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6457 unsigned int n;
6459 for (n = 0; n < n_region; n++)
6461 if (bb == bbs[n])
6462 return true;
6464 return false;
6467 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6468 are stored to REGION_COPY in the same order in that they appear
6469 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6470 the region, EXIT an exit from it. The condition guarding EXIT
6471 is moved to ENTRY. Returns true if duplication succeeds, false
6472 otherwise.
6474 For example,
6476 some_code;
6477 if (cond)
6479 else
6482 is transformed to
6484 if (cond)
6486 some_code;
6489 else
6491 some_code;
6496 bool
6497 gimple_duplicate_sese_tail (edge entry, edge exit,
6498 basic_block *region, unsigned n_region,
6499 basic_block *region_copy)
6501 unsigned i;
6502 bool free_region_copy = false;
6503 struct loop *loop = exit->dest->loop_father;
6504 struct loop *orig_loop = entry->dest->loop_father;
6505 basic_block switch_bb, entry_bb, nentry_bb;
6506 vec<basic_block> doms;
6507 profile_count total_count = profile_count::uninitialized (),
6508 exit_count = profile_count::uninitialized ();
6509 edge exits[2], nexits[2], e;
6510 gimple_stmt_iterator gsi;
6511 gimple *cond_stmt;
6512 edge sorig, snew;
6513 basic_block exit_bb;
6514 gphi_iterator psi;
6515 gphi *phi;
6516 tree def;
6517 struct loop *target, *aloop, *cloop;
6519 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6520 exits[0] = exit;
6521 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6523 if (!can_copy_bbs_p (region, n_region))
6524 return false;
6526 initialize_original_copy_tables ();
6527 set_loop_copy (orig_loop, loop);
6529 target= loop;
6530 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6532 if (bb_part_of_region_p (aloop->header, region, n_region))
6534 cloop = duplicate_loop (aloop, target);
6535 duplicate_subloops (aloop, cloop);
6539 if (!region_copy)
6541 region_copy = XNEWVEC (basic_block, n_region);
6542 free_region_copy = true;
6545 gcc_assert (!need_ssa_update_p (cfun));
6547 /* Record blocks outside the region that are dominated by something
6548 inside. */
6549 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6551 total_count = exit->src->count;
6552 exit_count = exit->count ();
6553 /* Fix up corner cases, to avoid division by zero or creation of negative
6554 frequencies. */
6555 if (exit_count > total_count)
6556 exit_count = total_count;
6558 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6559 split_edge_bb_loc (exit), true);
6560 if (total_count.initialized_p () && exit_count.initialized_p ())
6562 scale_bbs_frequencies_profile_count (region, n_region,
6563 total_count - exit_count,
6564 total_count);
6565 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6566 total_count);
6569 /* Create the switch block, and put the exit condition to it. */
6570 entry_bb = entry->dest;
6571 nentry_bb = get_bb_copy (entry_bb);
6572 if (!last_stmt (entry->src)
6573 || !stmt_ends_bb_p (last_stmt (entry->src)))
6574 switch_bb = entry->src;
6575 else
6576 switch_bb = split_edge (entry);
6577 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6579 gsi = gsi_last_bb (switch_bb);
6580 cond_stmt = last_stmt (exit->src);
6581 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6582 cond_stmt = gimple_copy (cond_stmt);
6584 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6586 sorig = single_succ_edge (switch_bb);
6587 sorig->flags = exits[1]->flags;
6588 sorig->probability = exits[1]->probability;
6589 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6590 snew->probability = exits[0]->probability;
6593 /* Register the new edge from SWITCH_BB in loop exit lists. */
6594 rescan_loop_exit (snew, true, false);
6596 /* Add the PHI node arguments. */
6597 add_phi_args_after_copy (region_copy, n_region, snew);
6599 /* Get rid of now superfluous conditions and associated edges (and phi node
6600 arguments). */
6601 exit_bb = exit->dest;
6603 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6604 PENDING_STMT (e) = NULL;
6606 /* The latch of ORIG_LOOP was copied, and so was the backedge
6607 to the original header. We redirect this backedge to EXIT_BB. */
6608 for (i = 0; i < n_region; i++)
6609 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6611 gcc_assert (single_succ_edge (region_copy[i]));
6612 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6613 PENDING_STMT (e) = NULL;
6614 for (psi = gsi_start_phis (exit_bb);
6615 !gsi_end_p (psi);
6616 gsi_next (&psi))
6618 phi = psi.phi ();
6619 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6620 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6623 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6624 PENDING_STMT (e) = NULL;
6626 /* Anything that is outside of the region, but was dominated by something
6627 inside needs to update dominance info. */
6628 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6629 doms.release ();
6630 /* Update the SSA web. */
6631 update_ssa (TODO_update_ssa);
6633 if (free_region_copy)
6634 free (region_copy);
6636 free_original_copy_tables ();
6637 return true;
6640 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6641 adding blocks when the dominator traversal reaches EXIT. This
6642 function silently assumes that ENTRY strictly dominates EXIT. */
6644 void
6645 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6646 vec<basic_block> *bbs_p)
6648 basic_block son;
6650 for (son = first_dom_son (CDI_DOMINATORS, entry);
6651 son;
6652 son = next_dom_son (CDI_DOMINATORS, son))
6654 bbs_p->safe_push (son);
6655 if (son != exit)
6656 gather_blocks_in_sese_region (son, exit, bbs_p);
6660 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6661 The duplicates are recorded in VARS_MAP. */
6663 static void
6664 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6665 tree to_context)
6667 tree t = *tp, new_t;
6668 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6670 if (DECL_CONTEXT (t) == to_context)
6671 return;
6673 bool existed;
6674 tree &loc = vars_map->get_or_insert (t, &existed);
6676 if (!existed)
6678 if (SSA_VAR_P (t))
6680 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6681 add_local_decl (f, new_t);
6683 else
6685 gcc_assert (TREE_CODE (t) == CONST_DECL);
6686 new_t = copy_node (t);
6688 DECL_CONTEXT (new_t) = to_context;
6690 loc = new_t;
6692 else
6693 new_t = loc;
6695 *tp = new_t;
6699 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6700 VARS_MAP maps old ssa names and var_decls to the new ones. */
6702 static tree
6703 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6704 tree to_context)
6706 tree new_name;
6708 gcc_assert (!virtual_operand_p (name));
6710 tree *loc = vars_map->get (name);
6712 if (!loc)
6714 tree decl = SSA_NAME_VAR (name);
6715 if (decl)
6717 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6718 replace_by_duplicate_decl (&decl, vars_map, to_context);
6719 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6720 decl, SSA_NAME_DEF_STMT (name));
6722 else
6723 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6724 name, SSA_NAME_DEF_STMT (name));
6726 /* Now that we've used the def stmt to define new_name, make sure it
6727 doesn't define name anymore. */
6728 SSA_NAME_DEF_STMT (name) = NULL;
6730 vars_map->put (name, new_name);
6732 else
6733 new_name = *loc;
6735 return new_name;
6738 struct move_stmt_d
6740 tree orig_block;
6741 tree new_block;
6742 tree from_context;
6743 tree to_context;
6744 hash_map<tree, tree> *vars_map;
6745 htab_t new_label_map;
6746 hash_map<void *, void *> *eh_map;
6747 bool remap_decls_p;
6750 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6751 contained in *TP if it has been ORIG_BLOCK previously and change the
6752 DECL_CONTEXT of every local variable referenced in *TP. */
6754 static tree
6755 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6757 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6758 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6759 tree t = *tp;
6761 if (EXPR_P (t))
6763 tree block = TREE_BLOCK (t);
6764 if (block == NULL_TREE)
6766 else if (block == p->orig_block
6767 || p->orig_block == NULL_TREE)
6769 /* tree_node_can_be_shared says we can share invariant
6770 addresses but unshare_expr copies them anyways. Make sure
6771 to unshare before adjusting the block in place - we do not
6772 always see a copy here. */
6773 if (TREE_CODE (t) == ADDR_EXPR
6774 && is_gimple_min_invariant (t))
6775 *tp = t = unshare_expr (t);
6776 TREE_SET_BLOCK (t, p->new_block);
6778 else if (flag_checking)
6780 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6781 block = BLOCK_SUPERCONTEXT (block);
6782 gcc_assert (block == p->orig_block);
6785 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6787 if (TREE_CODE (t) == SSA_NAME)
6788 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6789 else if (TREE_CODE (t) == PARM_DECL
6790 && gimple_in_ssa_p (cfun))
6791 *tp = *(p->vars_map->get (t));
6792 else if (TREE_CODE (t) == LABEL_DECL)
6794 if (p->new_label_map)
6796 struct tree_map in, *out;
6797 in.base.from = t;
6798 out = (struct tree_map *)
6799 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6800 if (out)
6801 *tp = t = out->to;
6804 /* For FORCED_LABELs we can end up with references from other
6805 functions if some SESE regions are outlined. It is UB to
6806 jump in between them, but they could be used just for printing
6807 addresses etc. In that case, DECL_CONTEXT on the label should
6808 be the function containing the glabel stmt with that LABEL_DECL,
6809 rather than whatever function a reference to the label was seen
6810 last time. */
6811 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6812 DECL_CONTEXT (t) = p->to_context;
6814 else if (p->remap_decls_p)
6816 /* Replace T with its duplicate. T should no longer appear in the
6817 parent function, so this looks wasteful; however, it may appear
6818 in referenced_vars, and more importantly, as virtual operands of
6819 statements, and in alias lists of other variables. It would be
6820 quite difficult to expunge it from all those places. ??? It might
6821 suffice to do this for addressable variables. */
6822 if ((VAR_P (t) && !is_global_var (t))
6823 || TREE_CODE (t) == CONST_DECL)
6824 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6826 *walk_subtrees = 0;
6828 else if (TYPE_P (t))
6829 *walk_subtrees = 0;
6831 return NULL_TREE;
6834 /* Helper for move_stmt_r. Given an EH region number for the source
6835 function, map that to the duplicate EH regio number in the dest. */
6837 static int
6838 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6840 eh_region old_r, new_r;
6842 old_r = get_eh_region_from_number (old_nr);
6843 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6845 return new_r->index;
6848 /* Similar, but operate on INTEGER_CSTs. */
6850 static tree
6851 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6853 int old_nr, new_nr;
6855 old_nr = tree_to_shwi (old_t_nr);
6856 new_nr = move_stmt_eh_region_nr (old_nr, p);
6858 return build_int_cst (integer_type_node, new_nr);
6861 /* Like move_stmt_op, but for gimple statements.
6863 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6864 contained in the current statement in *GSI_P and change the
6865 DECL_CONTEXT of every local variable referenced in the current
6866 statement. */
6868 static tree
6869 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6870 struct walk_stmt_info *wi)
6872 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6873 gimple *stmt = gsi_stmt (*gsi_p);
6874 tree block = gimple_block (stmt);
6876 if (block == p->orig_block
6877 || (p->orig_block == NULL_TREE
6878 && block != NULL_TREE))
6879 gimple_set_block (stmt, p->new_block);
6881 switch (gimple_code (stmt))
6883 case GIMPLE_CALL:
6884 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6886 tree r, fndecl = gimple_call_fndecl (stmt);
6887 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6888 switch (DECL_FUNCTION_CODE (fndecl))
6890 case BUILT_IN_EH_COPY_VALUES:
6891 r = gimple_call_arg (stmt, 1);
6892 r = move_stmt_eh_region_tree_nr (r, p);
6893 gimple_call_set_arg (stmt, 1, r);
6894 /* FALLTHRU */
6896 case BUILT_IN_EH_POINTER:
6897 case BUILT_IN_EH_FILTER:
6898 r = gimple_call_arg (stmt, 0);
6899 r = move_stmt_eh_region_tree_nr (r, p);
6900 gimple_call_set_arg (stmt, 0, r);
6901 break;
6903 default:
6904 break;
6907 break;
6909 case GIMPLE_RESX:
6911 gresx *resx_stmt = as_a <gresx *> (stmt);
6912 int r = gimple_resx_region (resx_stmt);
6913 r = move_stmt_eh_region_nr (r, p);
6914 gimple_resx_set_region (resx_stmt, r);
6916 break;
6918 case GIMPLE_EH_DISPATCH:
6920 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6921 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6922 r = move_stmt_eh_region_nr (r, p);
6923 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6925 break;
6927 case GIMPLE_OMP_RETURN:
6928 case GIMPLE_OMP_CONTINUE:
6929 break;
6931 case GIMPLE_LABEL:
6933 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6934 so that such labels can be referenced from other regions.
6935 Make sure to update it when seeing a GIMPLE_LABEL though,
6936 that is the owner of the label. */
6937 walk_gimple_op (stmt, move_stmt_op, wi);
6938 *handled_ops_p = true;
6939 tree label = gimple_label_label (as_a <glabel *> (stmt));
6940 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
6941 DECL_CONTEXT (label) = p->to_context;
6943 break;
6945 default:
6946 if (is_gimple_omp (stmt))
6948 /* Do not remap variables inside OMP directives. Variables
6949 referenced in clauses and directive header belong to the
6950 parent function and should not be moved into the child
6951 function. */
6952 bool save_remap_decls_p = p->remap_decls_p;
6953 p->remap_decls_p = false;
6954 *handled_ops_p = true;
6956 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6957 move_stmt_op, wi);
6959 p->remap_decls_p = save_remap_decls_p;
6961 break;
6964 return NULL_TREE;
6967 /* Move basic block BB from function CFUN to function DEST_FN. The
6968 block is moved out of the original linked list and placed after
6969 block AFTER in the new list. Also, the block is removed from the
6970 original array of blocks and placed in DEST_FN's array of blocks.
6971 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6972 updated to reflect the moved edges.
6974 The local variables are remapped to new instances, VARS_MAP is used
6975 to record the mapping. */
6977 static void
6978 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6979 basic_block after, bool update_edge_count_p,
6980 struct move_stmt_d *d)
6982 struct control_flow_graph *cfg;
6983 edge_iterator ei;
6984 edge e;
6985 gimple_stmt_iterator si;
6986 unsigned old_len, new_len;
6988 /* Remove BB from dominance structures. */
6989 delete_from_dominance_info (CDI_DOMINATORS, bb);
6991 /* Move BB from its current loop to the copy in the new function. */
6992 if (current_loops)
6994 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6995 if (new_loop)
6996 bb->loop_father = new_loop;
6999 /* Link BB to the new linked list. */
7000 move_block_after (bb, after);
7002 /* Update the edge count in the corresponding flowgraphs. */
7003 if (update_edge_count_p)
7004 FOR_EACH_EDGE (e, ei, bb->succs)
7006 cfun->cfg->x_n_edges--;
7007 dest_cfun->cfg->x_n_edges++;
7010 /* Remove BB from the original basic block array. */
7011 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7012 cfun->cfg->x_n_basic_blocks--;
7014 /* Grow DEST_CFUN's basic block array if needed. */
7015 cfg = dest_cfun->cfg;
7016 cfg->x_n_basic_blocks++;
7017 if (bb->index >= cfg->x_last_basic_block)
7018 cfg->x_last_basic_block = bb->index + 1;
7020 old_len = vec_safe_length (cfg->x_basic_block_info);
7021 if ((unsigned) cfg->x_last_basic_block >= old_len)
7023 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
7024 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
7027 (*cfg->x_basic_block_info)[bb->index] = bb;
7029 /* Remap the variables in phi nodes. */
7030 for (gphi_iterator psi = gsi_start_phis (bb);
7031 !gsi_end_p (psi); )
7033 gphi *phi = psi.phi ();
7034 use_operand_p use;
7035 tree op = PHI_RESULT (phi);
7036 ssa_op_iter oi;
7037 unsigned i;
7039 if (virtual_operand_p (op))
7041 /* Remove the phi nodes for virtual operands (alias analysis will be
7042 run for the new function, anyway). */
7043 remove_phi_node (&psi, true);
7044 continue;
7047 SET_PHI_RESULT (phi,
7048 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7049 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7051 op = USE_FROM_PTR (use);
7052 if (TREE_CODE (op) == SSA_NAME)
7053 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7056 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7058 location_t locus = gimple_phi_arg_location (phi, i);
7059 tree block = LOCATION_BLOCK (locus);
7061 if (locus == UNKNOWN_LOCATION)
7062 continue;
7063 if (d->orig_block == NULL_TREE || block == d->orig_block)
7065 locus = set_block (locus, d->new_block);
7066 gimple_phi_arg_set_location (phi, i, locus);
7070 gsi_next (&psi);
7073 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7075 gimple *stmt = gsi_stmt (si);
7076 struct walk_stmt_info wi;
7078 memset (&wi, 0, sizeof (wi));
7079 wi.info = d;
7080 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7082 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7084 tree label = gimple_label_label (label_stmt);
7085 int uid = LABEL_DECL_UID (label);
7087 gcc_assert (uid > -1);
7089 old_len = vec_safe_length (cfg->x_label_to_block_map);
7090 if (old_len <= (unsigned) uid)
7092 new_len = 3 * uid / 2 + 1;
7093 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7096 (*cfg->x_label_to_block_map)[uid] = bb;
7097 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7099 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7101 if (uid >= dest_cfun->cfg->last_label_uid)
7102 dest_cfun->cfg->last_label_uid = uid + 1;
7105 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7106 remove_stmt_from_eh_lp_fn (cfun, stmt);
7108 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7109 gimple_remove_stmt_histograms (cfun, stmt);
7111 /* We cannot leave any operands allocated from the operand caches of
7112 the current function. */
7113 free_stmt_operands (cfun, stmt);
7114 push_cfun (dest_cfun);
7115 update_stmt (stmt);
7116 pop_cfun ();
7119 FOR_EACH_EDGE (e, ei, bb->succs)
7120 if (e->goto_locus != UNKNOWN_LOCATION)
7122 tree block = LOCATION_BLOCK (e->goto_locus);
7123 if (d->orig_block == NULL_TREE
7124 || block == d->orig_block)
7125 e->goto_locus = set_block (e->goto_locus, d->new_block);
7129 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7130 the outermost EH region. Use REGION as the incoming base EH region. */
7132 static eh_region
7133 find_outermost_region_in_block (struct function *src_cfun,
7134 basic_block bb, eh_region region)
7136 gimple_stmt_iterator si;
7138 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7140 gimple *stmt = gsi_stmt (si);
7141 eh_region stmt_region;
7142 int lp_nr;
7144 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7145 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7146 if (stmt_region)
7148 if (region == NULL)
7149 region = stmt_region;
7150 else if (stmt_region != region)
7152 region = eh_region_outermost (src_cfun, stmt_region, region);
7153 gcc_assert (region != NULL);
7158 return region;
7161 static tree
7162 new_label_mapper (tree decl, void *data)
7164 htab_t hash = (htab_t) data;
7165 struct tree_map *m;
7166 void **slot;
7168 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7170 m = XNEW (struct tree_map);
7171 m->hash = DECL_UID (decl);
7172 m->base.from = decl;
7173 m->to = create_artificial_label (UNKNOWN_LOCATION);
7174 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7175 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7176 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7178 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7179 gcc_assert (*slot == NULL);
7181 *slot = m;
7183 return m->to;
7186 /* Tree walker to replace the decls used inside value expressions by
7187 duplicates. */
7189 static tree
7190 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7192 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7194 switch (TREE_CODE (*tp))
7196 case VAR_DECL:
7197 case PARM_DECL:
7198 case RESULT_DECL:
7199 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7200 break;
7201 default:
7202 break;
7205 if (IS_TYPE_OR_DECL_P (*tp))
7206 *walk_subtrees = false;
7208 return NULL;
7211 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7212 subblocks. */
7214 static void
7215 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7216 tree to_context)
7218 tree *tp, t;
7220 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7222 t = *tp;
7223 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7224 continue;
7225 replace_by_duplicate_decl (&t, vars_map, to_context);
7226 if (t != *tp)
7228 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7230 tree x = DECL_VALUE_EXPR (*tp);
7231 struct replace_decls_d rd = { vars_map, to_context };
7232 unshare_expr (x);
7233 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7234 SET_DECL_VALUE_EXPR (t, x);
7235 DECL_HAS_VALUE_EXPR_P (t) = 1;
7237 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7238 *tp = t;
7242 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7243 replace_block_vars_by_duplicates (block, vars_map, to_context);
7246 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7247 from FN1 to FN2. */
7249 static void
7250 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7251 struct loop *loop)
7253 /* Discard it from the old loop array. */
7254 (*get_loops (fn1))[loop->num] = NULL;
7256 /* Place it in the new loop array, assigning it a new number. */
7257 loop->num = number_of_loops (fn2);
7258 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7260 /* Recurse to children. */
7261 for (loop = loop->inner; loop; loop = loop->next)
7262 fixup_loop_arrays_after_move (fn1, fn2, loop);
7265 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7266 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7268 DEBUG_FUNCTION void
7269 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7271 basic_block bb;
7272 edge_iterator ei;
7273 edge e;
7274 bitmap bbs = BITMAP_ALLOC (NULL);
7275 int i;
7277 gcc_assert (entry != NULL);
7278 gcc_assert (entry != exit);
7279 gcc_assert (bbs_p != NULL);
7281 gcc_assert (bbs_p->length () > 0);
7283 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7284 bitmap_set_bit (bbs, bb->index);
7286 gcc_assert (bitmap_bit_p (bbs, entry->index));
7287 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7289 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7291 if (bb == entry)
7293 gcc_assert (single_pred_p (entry));
7294 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7296 else
7297 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7299 e = ei_edge (ei);
7300 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7303 if (bb == exit)
7305 gcc_assert (single_succ_p (exit));
7306 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7308 else
7309 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7311 e = ei_edge (ei);
7312 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7316 BITMAP_FREE (bbs);
7319 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7321 bool
7322 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7324 bitmap release_names = (bitmap)data;
7326 if (TREE_CODE (from) != SSA_NAME)
7327 return true;
7329 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7330 return true;
7333 /* Return LOOP_DIST_ALIAS call if present in BB. */
7335 static gimple *
7336 find_loop_dist_alias (basic_block bb)
7338 gimple *g = last_stmt (bb);
7339 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7340 return NULL;
7342 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7343 gsi_prev (&gsi);
7344 if (gsi_end_p (gsi))
7345 return NULL;
7347 g = gsi_stmt (gsi);
7348 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7349 return g;
7350 return NULL;
7353 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7354 to VALUE and update any immediate uses of it's LHS. */
7356 void
7357 fold_loop_internal_call (gimple *g, tree value)
7359 tree lhs = gimple_call_lhs (g);
7360 use_operand_p use_p;
7361 imm_use_iterator iter;
7362 gimple *use_stmt;
7363 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7365 update_call_from_tree (&gsi, value);
7366 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7368 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7369 SET_USE (use_p, value);
7370 update_stmt (use_stmt);
7374 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7375 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7376 single basic block in the original CFG and the new basic block is
7377 returned. DEST_CFUN must not have a CFG yet.
7379 Note that the region need not be a pure SESE region. Blocks inside
7380 the region may contain calls to abort/exit. The only restriction
7381 is that ENTRY_BB should be the only entry point and it must
7382 dominate EXIT_BB.
7384 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7385 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7386 to the new function.
7388 All local variables referenced in the region are assumed to be in
7389 the corresponding BLOCK_VARS and unexpanded variable lists
7390 associated with DEST_CFUN.
7392 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7393 reimplement move_sese_region_to_fn by duplicating the region rather than
7394 moving it. */
7396 basic_block
7397 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7398 basic_block exit_bb, tree orig_block)
7400 vec<basic_block> bbs, dom_bbs;
7401 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7402 basic_block after, bb, *entry_pred, *exit_succ, abb;
7403 struct function *saved_cfun = cfun;
7404 int *entry_flag, *exit_flag;
7405 profile_probability *entry_prob, *exit_prob;
7406 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7407 edge e;
7408 edge_iterator ei;
7409 htab_t new_label_map;
7410 hash_map<void *, void *> *eh_map;
7411 struct loop *loop = entry_bb->loop_father;
7412 struct loop *loop0 = get_loop (saved_cfun, 0);
7413 struct move_stmt_d d;
7415 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7416 region. */
7417 gcc_assert (entry_bb != exit_bb
7418 && (!exit_bb
7419 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7421 /* Collect all the blocks in the region. Manually add ENTRY_BB
7422 because it won't be added by dfs_enumerate_from. */
7423 bbs.create (0);
7424 bbs.safe_push (entry_bb);
7425 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7427 if (flag_checking)
7428 verify_sese (entry_bb, exit_bb, &bbs);
7430 /* The blocks that used to be dominated by something in BBS will now be
7431 dominated by the new block. */
7432 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7433 bbs.address (),
7434 bbs.length ());
7436 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7437 the predecessor edges to ENTRY_BB and the successor edges to
7438 EXIT_BB so that we can re-attach them to the new basic block that
7439 will replace the region. */
7440 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7441 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7442 entry_flag = XNEWVEC (int, num_entry_edges);
7443 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7444 i = 0;
7445 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7447 entry_prob[i] = e->probability;
7448 entry_flag[i] = e->flags;
7449 entry_pred[i++] = e->src;
7450 remove_edge (e);
7453 if (exit_bb)
7455 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7456 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7457 exit_flag = XNEWVEC (int, num_exit_edges);
7458 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7459 i = 0;
7460 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7462 exit_prob[i] = e->probability;
7463 exit_flag[i] = e->flags;
7464 exit_succ[i++] = e->dest;
7465 remove_edge (e);
7468 else
7470 num_exit_edges = 0;
7471 exit_succ = NULL;
7472 exit_flag = NULL;
7473 exit_prob = NULL;
7476 /* Switch context to the child function to initialize DEST_FN's CFG. */
7477 gcc_assert (dest_cfun->cfg == NULL);
7478 push_cfun (dest_cfun);
7480 init_empty_tree_cfg ();
7482 /* Initialize EH information for the new function. */
7483 eh_map = NULL;
7484 new_label_map = NULL;
7485 if (saved_cfun->eh)
7487 eh_region region = NULL;
7489 FOR_EACH_VEC_ELT (bbs, i, bb)
7490 region = find_outermost_region_in_block (saved_cfun, bb, region);
7492 init_eh_for_function ();
7493 if (region != NULL)
7495 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7496 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7497 new_label_mapper, new_label_map);
7501 /* Initialize an empty loop tree. */
7502 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7503 init_loops_structure (dest_cfun, loops, 1);
7504 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7505 set_loops_for_fn (dest_cfun, loops);
7507 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7509 /* Move the outlined loop tree part. */
7510 num_nodes = bbs.length ();
7511 FOR_EACH_VEC_ELT (bbs, i, bb)
7513 if (bb->loop_father->header == bb)
7515 struct loop *this_loop = bb->loop_father;
7516 struct loop *outer = loop_outer (this_loop);
7517 if (outer == loop
7518 /* If the SESE region contains some bbs ending with
7519 a noreturn call, those are considered to belong
7520 to the outermost loop in saved_cfun, rather than
7521 the entry_bb's loop_father. */
7522 || outer == loop0)
7524 if (outer != loop)
7525 num_nodes -= this_loop->num_nodes;
7526 flow_loop_tree_node_remove (bb->loop_father);
7527 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7528 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7531 else if (bb->loop_father == loop0 && loop0 != loop)
7532 num_nodes--;
7534 /* Remove loop exits from the outlined region. */
7535 if (loops_for_fn (saved_cfun)->exits)
7536 FOR_EACH_EDGE (e, ei, bb->succs)
7538 struct loops *l = loops_for_fn (saved_cfun);
7539 loop_exit **slot
7540 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7541 NO_INSERT);
7542 if (slot)
7543 l->exits->clear_slot (slot);
7547 /* Adjust the number of blocks in the tree root of the outlined part. */
7548 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7550 /* Setup a mapping to be used by move_block_to_fn. */
7551 loop->aux = current_loops->tree_root;
7552 loop0->aux = current_loops->tree_root;
7554 /* Fix up orig_loop_num. If the block referenced in it has been moved
7555 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7556 struct loop *dloop;
7557 signed char *moved_orig_loop_num = NULL;
7558 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7559 if (dloop->orig_loop_num)
7561 if (moved_orig_loop_num == NULL)
7562 moved_orig_loop_num
7563 = XCNEWVEC (signed char, vec_safe_length (larray));
7564 if ((*larray)[dloop->orig_loop_num] != NULL
7565 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7567 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7568 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7569 moved_orig_loop_num[dloop->orig_loop_num]++;
7570 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7572 else
7574 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7575 dloop->orig_loop_num = 0;
7578 pop_cfun ();
7580 if (moved_orig_loop_num)
7582 FOR_EACH_VEC_ELT (bbs, i, bb)
7584 gimple *g = find_loop_dist_alias (bb);
7585 if (g == NULL)
7586 continue;
7588 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7589 gcc_assert (orig_loop_num
7590 && (unsigned) orig_loop_num < vec_safe_length (larray));
7591 if (moved_orig_loop_num[orig_loop_num] == 2)
7593 /* If we have moved both loops with this orig_loop_num into
7594 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7595 too, update the first argument. */
7596 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7597 && (get_loop (saved_cfun, dloop->orig_loop_num)
7598 == NULL));
7599 tree t = build_int_cst (integer_type_node,
7600 (*larray)[dloop->orig_loop_num]->num);
7601 gimple_call_set_arg (g, 0, t);
7602 update_stmt (g);
7603 /* Make sure the following loop will not update it. */
7604 moved_orig_loop_num[orig_loop_num] = 0;
7606 else
7607 /* Otherwise at least one of the loops stayed in saved_cfun.
7608 Remove the LOOP_DIST_ALIAS call. */
7609 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7611 FOR_EACH_BB_FN (bb, saved_cfun)
7613 gimple *g = find_loop_dist_alias (bb);
7614 if (g == NULL)
7615 continue;
7616 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7617 gcc_assert (orig_loop_num
7618 && (unsigned) orig_loop_num < vec_safe_length (larray));
7619 if (moved_orig_loop_num[orig_loop_num])
7620 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7621 of the corresponding loops was moved, remove it. */
7622 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7624 XDELETEVEC (moved_orig_loop_num);
7626 ggc_free (larray);
7628 /* Move blocks from BBS into DEST_CFUN. */
7629 gcc_assert (bbs.length () >= 2);
7630 after = dest_cfun->cfg->x_entry_block_ptr;
7631 hash_map<tree, tree> vars_map;
7633 memset (&d, 0, sizeof (d));
7634 d.orig_block = orig_block;
7635 d.new_block = DECL_INITIAL (dest_cfun->decl);
7636 d.from_context = cfun->decl;
7637 d.to_context = dest_cfun->decl;
7638 d.vars_map = &vars_map;
7639 d.new_label_map = new_label_map;
7640 d.eh_map = eh_map;
7641 d.remap_decls_p = true;
7643 if (gimple_in_ssa_p (cfun))
7644 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7646 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7647 set_ssa_default_def (dest_cfun, arg, narg);
7648 vars_map.put (arg, narg);
7651 FOR_EACH_VEC_ELT (bbs, i, bb)
7653 /* No need to update edge counts on the last block. It has
7654 already been updated earlier when we detached the region from
7655 the original CFG. */
7656 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7657 after = bb;
7660 loop->aux = NULL;
7661 loop0->aux = NULL;
7662 /* Loop sizes are no longer correct, fix them up. */
7663 loop->num_nodes -= num_nodes;
7664 for (struct loop *outer = loop_outer (loop);
7665 outer; outer = loop_outer (outer))
7666 outer->num_nodes -= num_nodes;
7667 loop0->num_nodes -= bbs.length () - num_nodes;
7669 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7671 struct loop *aloop;
7672 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7673 if (aloop != NULL)
7675 if (aloop->simduid)
7677 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7678 d.to_context);
7679 dest_cfun->has_simduid_loops = true;
7681 if (aloop->force_vectorize)
7682 dest_cfun->has_force_vectorize_loops = true;
7686 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7687 if (orig_block)
7689 tree block;
7690 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7691 == NULL_TREE);
7692 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7693 = BLOCK_SUBBLOCKS (orig_block);
7694 for (block = BLOCK_SUBBLOCKS (orig_block);
7695 block; block = BLOCK_CHAIN (block))
7696 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7697 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7700 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7701 &vars_map, dest_cfun->decl);
7703 if (new_label_map)
7704 htab_delete (new_label_map);
7705 if (eh_map)
7706 delete eh_map;
7708 if (gimple_in_ssa_p (cfun))
7710 /* We need to release ssa-names in a defined order, so first find them,
7711 and then iterate in ascending version order. */
7712 bitmap release_names = BITMAP_ALLOC (NULL);
7713 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7714 bitmap_iterator bi;
7715 unsigned i;
7716 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7717 release_ssa_name (ssa_name (i));
7718 BITMAP_FREE (release_names);
7721 /* Rewire the entry and exit blocks. The successor to the entry
7722 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7723 the child function. Similarly, the predecessor of DEST_FN's
7724 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7725 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7726 various CFG manipulation function get to the right CFG.
7728 FIXME, this is silly. The CFG ought to become a parameter to
7729 these helpers. */
7730 push_cfun (dest_cfun);
7731 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7732 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7733 if (exit_bb)
7735 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7736 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7738 else
7739 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7740 pop_cfun ();
7742 /* Back in the original function, the SESE region has disappeared,
7743 create a new basic block in its place. */
7744 bb = create_empty_bb (entry_pred[0]);
7745 if (current_loops)
7746 add_bb_to_loop (bb, loop);
7747 for (i = 0; i < num_entry_edges; i++)
7749 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7750 e->probability = entry_prob[i];
7753 for (i = 0; i < num_exit_edges; i++)
7755 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7756 e->probability = exit_prob[i];
7759 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7760 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7761 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7762 dom_bbs.release ();
7764 if (exit_bb)
7766 free (exit_prob);
7767 free (exit_flag);
7768 free (exit_succ);
7770 free (entry_prob);
7771 free (entry_flag);
7772 free (entry_pred);
7773 bbs.release ();
7775 return bb;
7778 /* Dump default def DEF to file FILE using FLAGS and indentation
7779 SPC. */
7781 static void
7782 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7784 for (int i = 0; i < spc; ++i)
7785 fprintf (file, " ");
7786 dump_ssaname_info_to_file (file, def, spc);
7788 print_generic_expr (file, TREE_TYPE (def), flags);
7789 fprintf (file, " ");
7790 print_generic_expr (file, def, flags);
7791 fprintf (file, " = ");
7792 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7793 fprintf (file, ";\n");
7796 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7798 static void
7799 print_no_sanitize_attr_value (FILE *file, tree value)
7801 unsigned int flags = tree_to_uhwi (value);
7802 bool first = true;
7803 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7805 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7807 if (!first)
7808 fprintf (file, " | ");
7809 fprintf (file, "%s", sanitizer_opts[i].name);
7810 first = false;
7815 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7818 void
7819 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7821 tree arg, var, old_current_fndecl = current_function_decl;
7822 struct function *dsf;
7823 bool ignore_topmost_bind = false, any_var = false;
7824 basic_block bb;
7825 tree chain;
7826 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7827 && decl_is_tm_clone (fndecl));
7828 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7830 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7832 fprintf (file, "__attribute__((");
7834 bool first = true;
7835 tree chain;
7836 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7837 first = false, chain = TREE_CHAIN (chain))
7839 if (!first)
7840 fprintf (file, ", ");
7842 tree name = get_attribute_name (chain);
7843 print_generic_expr (file, name, dump_flags);
7844 if (TREE_VALUE (chain) != NULL_TREE)
7846 fprintf (file, " (");
7848 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7849 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7850 else
7851 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7852 fprintf (file, ")");
7856 fprintf (file, "))\n");
7859 current_function_decl = fndecl;
7860 if (flags & TDF_GIMPLE)
7862 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7863 dump_flags | TDF_SLIM);
7864 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7866 else
7867 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7869 arg = DECL_ARGUMENTS (fndecl);
7870 while (arg)
7872 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7873 fprintf (file, " ");
7874 print_generic_expr (file, arg, dump_flags);
7875 if (DECL_CHAIN (arg))
7876 fprintf (file, ", ");
7877 arg = DECL_CHAIN (arg);
7879 fprintf (file, ")\n");
7881 dsf = DECL_STRUCT_FUNCTION (fndecl);
7882 if (dsf && (flags & TDF_EH))
7883 dump_eh_tree (file, dsf);
7885 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7887 dump_node (fndecl, TDF_SLIM | flags, file);
7888 current_function_decl = old_current_fndecl;
7889 return;
7892 /* When GIMPLE is lowered, the variables are no longer available in
7893 BIND_EXPRs, so display them separately. */
7894 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7896 unsigned ix;
7897 ignore_topmost_bind = true;
7899 fprintf (file, "{\n");
7900 if (gimple_in_ssa_p (fun)
7901 && (flags & TDF_ALIAS))
7903 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7904 arg = DECL_CHAIN (arg))
7906 tree def = ssa_default_def (fun, arg);
7907 if (def)
7908 dump_default_def (file, def, 2, flags);
7911 tree res = DECL_RESULT (fun->decl);
7912 if (res != NULL_TREE
7913 && DECL_BY_REFERENCE (res))
7915 tree def = ssa_default_def (fun, res);
7916 if (def)
7917 dump_default_def (file, def, 2, flags);
7920 tree static_chain = fun->static_chain_decl;
7921 if (static_chain != NULL_TREE)
7923 tree def = ssa_default_def (fun, static_chain);
7924 if (def)
7925 dump_default_def (file, def, 2, flags);
7929 if (!vec_safe_is_empty (fun->local_decls))
7930 FOR_EACH_LOCAL_DECL (fun, ix, var)
7932 print_generic_decl (file, var, flags);
7933 fprintf (file, "\n");
7935 any_var = true;
7938 tree name;
7940 if (gimple_in_ssa_p (cfun))
7941 FOR_EACH_SSA_NAME (ix, name, cfun)
7943 if (!SSA_NAME_VAR (name))
7945 fprintf (file, " ");
7946 print_generic_expr (file, TREE_TYPE (name), flags);
7947 fprintf (file, " ");
7948 print_generic_expr (file, name, flags);
7949 fprintf (file, ";\n");
7951 any_var = true;
7956 if (fun && fun->decl == fndecl
7957 && fun->cfg
7958 && basic_block_info_for_fn (fun))
7960 /* If the CFG has been built, emit a CFG-based dump. */
7961 if (!ignore_topmost_bind)
7962 fprintf (file, "{\n");
7964 if (any_var && n_basic_blocks_for_fn (fun))
7965 fprintf (file, "\n");
7967 FOR_EACH_BB_FN (bb, fun)
7968 dump_bb (file, bb, 2, flags);
7970 fprintf (file, "}\n");
7972 else if (fun->curr_properties & PROP_gimple_any)
7974 /* The function is now in GIMPLE form but the CFG has not been
7975 built yet. Emit the single sequence of GIMPLE statements
7976 that make up its body. */
7977 gimple_seq body = gimple_body (fndecl);
7979 if (gimple_seq_first_stmt (body)
7980 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7981 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7982 print_gimple_seq (file, body, 0, flags);
7983 else
7985 if (!ignore_topmost_bind)
7986 fprintf (file, "{\n");
7988 if (any_var)
7989 fprintf (file, "\n");
7991 print_gimple_seq (file, body, 2, flags);
7992 fprintf (file, "}\n");
7995 else
7997 int indent;
7999 /* Make a tree based dump. */
8000 chain = DECL_SAVED_TREE (fndecl);
8001 if (chain && TREE_CODE (chain) == BIND_EXPR)
8003 if (ignore_topmost_bind)
8005 chain = BIND_EXPR_BODY (chain);
8006 indent = 2;
8008 else
8009 indent = 0;
8011 else
8013 if (!ignore_topmost_bind)
8015 fprintf (file, "{\n");
8016 /* No topmost bind, pretend it's ignored for later. */
8017 ignore_topmost_bind = true;
8019 indent = 2;
8022 if (any_var)
8023 fprintf (file, "\n");
8025 print_generic_stmt_indented (file, chain, flags, indent);
8026 if (ignore_topmost_bind)
8027 fprintf (file, "}\n");
8030 if (flags & TDF_ENUMERATE_LOCALS)
8031 dump_enumerated_decls (file, flags);
8032 fprintf (file, "\n\n");
8034 current_function_decl = old_current_fndecl;
8037 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8039 DEBUG_FUNCTION void
8040 debug_function (tree fn, dump_flags_t flags)
8042 dump_function_to_file (fn, stderr, flags);
8046 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8048 static void
8049 print_pred_bbs (FILE *file, basic_block bb)
8051 edge e;
8052 edge_iterator ei;
8054 FOR_EACH_EDGE (e, ei, bb->preds)
8055 fprintf (file, "bb_%d ", e->src->index);
8059 /* Print on FILE the indexes for the successors of basic_block BB. */
8061 static void
8062 print_succ_bbs (FILE *file, basic_block bb)
8064 edge e;
8065 edge_iterator ei;
8067 FOR_EACH_EDGE (e, ei, bb->succs)
8068 fprintf (file, "bb_%d ", e->dest->index);
8071 /* Print to FILE the basic block BB following the VERBOSITY level. */
8073 void
8074 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8076 char *s_indent = (char *) alloca ((size_t) indent + 1);
8077 memset ((void *) s_indent, ' ', (size_t) indent);
8078 s_indent[indent] = '\0';
8080 /* Print basic_block's header. */
8081 if (verbosity >= 2)
8083 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8084 print_pred_bbs (file, bb);
8085 fprintf (file, "}, succs = {");
8086 print_succ_bbs (file, bb);
8087 fprintf (file, "})\n");
8090 /* Print basic_block's body. */
8091 if (verbosity >= 3)
8093 fprintf (file, "%s {\n", s_indent);
8094 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8095 fprintf (file, "%s }\n", s_indent);
8099 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8101 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8102 VERBOSITY level this outputs the contents of the loop, or just its
8103 structure. */
8105 static void
8106 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8108 char *s_indent;
8109 basic_block bb;
8111 if (loop == NULL)
8112 return;
8114 s_indent = (char *) alloca ((size_t) indent + 1);
8115 memset ((void *) s_indent, ' ', (size_t) indent);
8116 s_indent[indent] = '\0';
8118 /* Print loop's header. */
8119 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8120 if (loop->header)
8121 fprintf (file, "header = %d", loop->header->index);
8122 else
8124 fprintf (file, "deleted)\n");
8125 return;
8127 if (loop->latch)
8128 fprintf (file, ", latch = %d", loop->latch->index);
8129 else
8130 fprintf (file, ", multiple latches");
8131 fprintf (file, ", niter = ");
8132 print_generic_expr (file, loop->nb_iterations);
8134 if (loop->any_upper_bound)
8136 fprintf (file, ", upper_bound = ");
8137 print_decu (loop->nb_iterations_upper_bound, file);
8139 if (loop->any_likely_upper_bound)
8141 fprintf (file, ", likely_upper_bound = ");
8142 print_decu (loop->nb_iterations_likely_upper_bound, file);
8145 if (loop->any_estimate)
8147 fprintf (file, ", estimate = ");
8148 print_decu (loop->nb_iterations_estimate, file);
8150 if (loop->unroll)
8151 fprintf (file, ", unroll = %d", loop->unroll);
8152 fprintf (file, ")\n");
8154 /* Print loop's body. */
8155 if (verbosity >= 1)
8157 fprintf (file, "%s{\n", s_indent);
8158 FOR_EACH_BB_FN (bb, cfun)
8159 if (bb->loop_father == loop)
8160 print_loops_bb (file, bb, indent, verbosity);
8162 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8163 fprintf (file, "%s}\n", s_indent);
8167 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8168 spaces. Following VERBOSITY level this outputs the contents of the
8169 loop, or just its structure. */
8171 static void
8172 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8173 int verbosity)
8175 if (loop == NULL)
8176 return;
8178 print_loop (file, loop, indent, verbosity);
8179 print_loop_and_siblings (file, loop->next, indent, verbosity);
8182 /* Follow a CFG edge from the entry point of the program, and on entry
8183 of a loop, pretty print the loop structure on FILE. */
8185 void
8186 print_loops (FILE *file, int verbosity)
8188 basic_block bb;
8190 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8191 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8192 if (bb && bb->loop_father)
8193 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8196 /* Dump a loop. */
8198 DEBUG_FUNCTION void
8199 debug (struct loop &ref)
8201 print_loop (stderr, &ref, 0, /*verbosity*/0);
8204 DEBUG_FUNCTION void
8205 debug (struct loop *ptr)
8207 if (ptr)
8208 debug (*ptr);
8209 else
8210 fprintf (stderr, "<nil>\n");
8213 /* Dump a loop verbosely. */
8215 DEBUG_FUNCTION void
8216 debug_verbose (struct loop &ref)
8218 print_loop (stderr, &ref, 0, /*verbosity*/3);
8221 DEBUG_FUNCTION void
8222 debug_verbose (struct loop *ptr)
8224 if (ptr)
8225 debug (*ptr);
8226 else
8227 fprintf (stderr, "<nil>\n");
8231 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8233 DEBUG_FUNCTION void
8234 debug_loops (int verbosity)
8236 print_loops (stderr, verbosity);
8239 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8241 DEBUG_FUNCTION void
8242 debug_loop (struct loop *loop, int verbosity)
8244 print_loop (stderr, loop, 0, verbosity);
8247 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8248 level. */
8250 DEBUG_FUNCTION void
8251 debug_loop_num (unsigned num, int verbosity)
8253 debug_loop (get_loop (cfun, num), verbosity);
8256 /* Return true if BB ends with a call, possibly followed by some
8257 instructions that must stay with the call. Return false,
8258 otherwise. */
8260 static bool
8261 gimple_block_ends_with_call_p (basic_block bb)
8263 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8264 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8268 /* Return true if BB ends with a conditional branch. Return false,
8269 otherwise. */
8271 static bool
8272 gimple_block_ends_with_condjump_p (const_basic_block bb)
8274 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8275 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8279 /* Return true if statement T may terminate execution of BB in ways not
8280 explicitly represtented in the CFG. */
8282 bool
8283 stmt_can_terminate_bb_p (gimple *t)
8285 tree fndecl = NULL_TREE;
8286 int call_flags = 0;
8288 /* Eh exception not handled internally terminates execution of the whole
8289 function. */
8290 if (stmt_can_throw_external (t))
8291 return true;
8293 /* NORETURN and LONGJMP calls already have an edge to exit.
8294 CONST and PURE calls do not need one.
8295 We don't currently check for CONST and PURE here, although
8296 it would be a good idea, because those attributes are
8297 figured out from the RTL in mark_constant_function, and
8298 the counter incrementation code from -fprofile-arcs
8299 leads to different results from -fbranch-probabilities. */
8300 if (is_gimple_call (t))
8302 fndecl = gimple_call_fndecl (t);
8303 call_flags = gimple_call_flags (t);
8306 if (is_gimple_call (t)
8307 && fndecl
8308 && DECL_BUILT_IN (fndecl)
8309 && (call_flags & ECF_NOTHROW)
8310 && !(call_flags & ECF_RETURNS_TWICE)
8311 /* fork() doesn't really return twice, but the effect of
8312 wrapping it in __gcov_fork() which calls __gcov_flush()
8313 and clears the counters before forking has the same
8314 effect as returning twice. Force a fake edge. */
8315 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8316 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8317 return false;
8319 if (is_gimple_call (t))
8321 edge_iterator ei;
8322 edge e;
8323 basic_block bb;
8325 if (call_flags & (ECF_PURE | ECF_CONST)
8326 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8327 return false;
8329 /* Function call may do longjmp, terminate program or do other things.
8330 Special case noreturn that have non-abnormal edges out as in this case
8331 the fact is sufficiently represented by lack of edges out of T. */
8332 if (!(call_flags & ECF_NORETURN))
8333 return true;
8335 bb = gimple_bb (t);
8336 FOR_EACH_EDGE (e, ei, bb->succs)
8337 if ((e->flags & EDGE_FAKE) == 0)
8338 return true;
8341 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8342 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8343 return true;
8345 return false;
8349 /* Add fake edges to the function exit for any non constant and non
8350 noreturn calls (or noreturn calls with EH/abnormal edges),
8351 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8352 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8353 that were split.
8355 The goal is to expose cases in which entering a basic block does
8356 not imply that all subsequent instructions must be executed. */
8358 static int
8359 gimple_flow_call_edges_add (sbitmap blocks)
8361 int i;
8362 int blocks_split = 0;
8363 int last_bb = last_basic_block_for_fn (cfun);
8364 bool check_last_block = false;
8366 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8367 return 0;
8369 if (! blocks)
8370 check_last_block = true;
8371 else
8372 check_last_block = bitmap_bit_p (blocks,
8373 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8375 /* In the last basic block, before epilogue generation, there will be
8376 a fallthru edge to EXIT. Special care is required if the last insn
8377 of the last basic block is a call because make_edge folds duplicate
8378 edges, which would result in the fallthru edge also being marked
8379 fake, which would result in the fallthru edge being removed by
8380 remove_fake_edges, which would result in an invalid CFG.
8382 Moreover, we can't elide the outgoing fake edge, since the block
8383 profiler needs to take this into account in order to solve the minimal
8384 spanning tree in the case that the call doesn't return.
8386 Handle this by adding a dummy instruction in a new last basic block. */
8387 if (check_last_block)
8389 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8390 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8391 gimple *t = NULL;
8393 if (!gsi_end_p (gsi))
8394 t = gsi_stmt (gsi);
8396 if (t && stmt_can_terminate_bb_p (t))
8398 edge e;
8400 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8401 if (e)
8403 gsi_insert_on_edge (e, gimple_build_nop ());
8404 gsi_commit_edge_inserts ();
8409 /* Now add fake edges to the function exit for any non constant
8410 calls since there is no way that we can determine if they will
8411 return or not... */
8412 for (i = 0; i < last_bb; i++)
8414 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8415 gimple_stmt_iterator gsi;
8416 gimple *stmt, *last_stmt;
8418 if (!bb)
8419 continue;
8421 if (blocks && !bitmap_bit_p (blocks, i))
8422 continue;
8424 gsi = gsi_last_nondebug_bb (bb);
8425 if (!gsi_end_p (gsi))
8427 last_stmt = gsi_stmt (gsi);
8430 stmt = gsi_stmt (gsi);
8431 if (stmt_can_terminate_bb_p (stmt))
8433 edge e;
8435 /* The handling above of the final block before the
8436 epilogue should be enough to verify that there is
8437 no edge to the exit block in CFG already.
8438 Calling make_edge in such case would cause us to
8439 mark that edge as fake and remove it later. */
8440 if (flag_checking && stmt == last_stmt)
8442 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8443 gcc_assert (e == NULL);
8446 /* Note that the following may create a new basic block
8447 and renumber the existing basic blocks. */
8448 if (stmt != last_stmt)
8450 e = split_block (bb, stmt);
8451 if (e)
8452 blocks_split++;
8454 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8455 e->probability = profile_probability::guessed_never ();
8457 gsi_prev (&gsi);
8459 while (!gsi_end_p (gsi));
8463 if (blocks_split)
8464 checking_verify_flow_info ();
8466 return blocks_split;
8469 /* Removes edge E and all the blocks dominated by it, and updates dominance
8470 information. The IL in E->src needs to be updated separately.
8471 If dominance info is not available, only the edge E is removed.*/
8473 void
8474 remove_edge_and_dominated_blocks (edge e)
8476 vec<basic_block> bbs_to_remove = vNULL;
8477 vec<basic_block> bbs_to_fix_dom = vNULL;
8478 edge f;
8479 edge_iterator ei;
8480 bool none_removed = false;
8481 unsigned i;
8482 basic_block bb, dbb;
8483 bitmap_iterator bi;
8485 /* If we are removing a path inside a non-root loop that may change
8486 loop ownership of blocks or remove loops. Mark loops for fixup. */
8487 if (current_loops
8488 && loop_outer (e->src->loop_father) != NULL
8489 && e->src->loop_father == e->dest->loop_father)
8490 loops_state_set (LOOPS_NEED_FIXUP);
8492 if (!dom_info_available_p (CDI_DOMINATORS))
8494 remove_edge (e);
8495 return;
8498 /* No updating is needed for edges to exit. */
8499 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8501 if (cfgcleanup_altered_bbs)
8502 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8503 remove_edge (e);
8504 return;
8507 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8508 that is not dominated by E->dest, then this set is empty. Otherwise,
8509 all the basic blocks dominated by E->dest are removed.
8511 Also, to DF_IDOM we store the immediate dominators of the blocks in
8512 the dominance frontier of E (i.e., of the successors of the
8513 removed blocks, if there are any, and of E->dest otherwise). */
8514 FOR_EACH_EDGE (f, ei, e->dest->preds)
8516 if (f == e)
8517 continue;
8519 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8521 none_removed = true;
8522 break;
8526 auto_bitmap df, df_idom;
8527 if (none_removed)
8528 bitmap_set_bit (df_idom,
8529 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8530 else
8532 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8533 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8535 FOR_EACH_EDGE (f, ei, bb->succs)
8537 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8538 bitmap_set_bit (df, f->dest->index);
8541 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8542 bitmap_clear_bit (df, bb->index);
8544 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8546 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8547 bitmap_set_bit (df_idom,
8548 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8552 if (cfgcleanup_altered_bbs)
8554 /* Record the set of the altered basic blocks. */
8555 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8556 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8559 /* Remove E and the cancelled blocks. */
8560 if (none_removed)
8561 remove_edge (e);
8562 else
8564 /* Walk backwards so as to get a chance to substitute all
8565 released DEFs into debug stmts. See
8566 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8567 details. */
8568 for (i = bbs_to_remove.length (); i-- > 0; )
8569 delete_basic_block (bbs_to_remove[i]);
8572 /* Update the dominance information. The immediate dominator may change only
8573 for blocks whose immediate dominator belongs to DF_IDOM:
8575 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8576 removal. Let Z the arbitrary block such that idom(Z) = Y and
8577 Z dominates X after the removal. Before removal, there exists a path P
8578 from Y to X that avoids Z. Let F be the last edge on P that is
8579 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8580 dominates W, and because of P, Z does not dominate W), and W belongs to
8581 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8582 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8584 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8585 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8586 dbb;
8587 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8588 bbs_to_fix_dom.safe_push (dbb);
8591 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8593 bbs_to_remove.release ();
8594 bbs_to_fix_dom.release ();
8597 /* Purge dead EH edges from basic block BB. */
8599 bool
8600 gimple_purge_dead_eh_edges (basic_block bb)
8602 bool changed = false;
8603 edge e;
8604 edge_iterator ei;
8605 gimple *stmt = last_stmt (bb);
8607 if (stmt && stmt_can_throw_internal (stmt))
8608 return false;
8610 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8612 if (e->flags & EDGE_EH)
8614 remove_edge_and_dominated_blocks (e);
8615 changed = true;
8617 else
8618 ei_next (&ei);
8621 return changed;
8624 /* Purge dead EH edges from basic block listed in BLOCKS. */
8626 bool
8627 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8629 bool changed = false;
8630 unsigned i;
8631 bitmap_iterator bi;
8633 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8635 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8637 /* Earlier gimple_purge_dead_eh_edges could have removed
8638 this basic block already. */
8639 gcc_assert (bb || changed);
8640 if (bb != NULL)
8641 changed |= gimple_purge_dead_eh_edges (bb);
8644 return changed;
8647 /* Purge dead abnormal call edges from basic block BB. */
8649 bool
8650 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8652 bool changed = false;
8653 edge e;
8654 edge_iterator ei;
8655 gimple *stmt = last_stmt (bb);
8657 if (!cfun->has_nonlocal_label
8658 && !cfun->calls_setjmp)
8659 return false;
8661 if (stmt && stmt_can_make_abnormal_goto (stmt))
8662 return false;
8664 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8666 if (e->flags & EDGE_ABNORMAL)
8668 if (e->flags & EDGE_FALLTHRU)
8669 e->flags &= ~EDGE_ABNORMAL;
8670 else
8671 remove_edge_and_dominated_blocks (e);
8672 changed = true;
8674 else
8675 ei_next (&ei);
8678 return changed;
8681 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8683 bool
8684 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8686 bool changed = false;
8687 unsigned i;
8688 bitmap_iterator bi;
8690 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8692 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8694 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8695 this basic block already. */
8696 gcc_assert (bb || changed);
8697 if (bb != NULL)
8698 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8701 return changed;
8704 /* This function is called whenever a new edge is created or
8705 redirected. */
8707 static void
8708 gimple_execute_on_growing_pred (edge e)
8710 basic_block bb = e->dest;
8712 if (!gimple_seq_empty_p (phi_nodes (bb)))
8713 reserve_phi_args_for_new_edge (bb);
8716 /* This function is called immediately before edge E is removed from
8717 the edge vector E->dest->preds. */
8719 static void
8720 gimple_execute_on_shrinking_pred (edge e)
8722 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8723 remove_phi_args (e);
8726 /*---------------------------------------------------------------------------
8727 Helper functions for Loop versioning
8728 ---------------------------------------------------------------------------*/
8730 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8731 of 'first'. Both of them are dominated by 'new_head' basic block. When
8732 'new_head' was created by 'second's incoming edge it received phi arguments
8733 on the edge by split_edge(). Later, additional edge 'e' was created to
8734 connect 'new_head' and 'first'. Now this routine adds phi args on this
8735 additional edge 'e' that new_head to second edge received as part of edge
8736 splitting. */
8738 static void
8739 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8740 basic_block new_head, edge e)
8742 gphi *phi1, *phi2;
8743 gphi_iterator psi1, psi2;
8744 tree def;
8745 edge e2 = find_edge (new_head, second);
8747 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8748 edge, we should always have an edge from NEW_HEAD to SECOND. */
8749 gcc_assert (e2 != NULL);
8751 /* Browse all 'second' basic block phi nodes and add phi args to
8752 edge 'e' for 'first' head. PHI args are always in correct order. */
8754 for (psi2 = gsi_start_phis (second),
8755 psi1 = gsi_start_phis (first);
8756 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8757 gsi_next (&psi2), gsi_next (&psi1))
8759 phi1 = psi1.phi ();
8760 phi2 = psi2.phi ();
8761 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8762 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8767 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8768 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8769 the destination of the ELSE part. */
8771 static void
8772 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8773 basic_block second_head ATTRIBUTE_UNUSED,
8774 basic_block cond_bb, void *cond_e)
8776 gimple_stmt_iterator gsi;
8777 gimple *new_cond_expr;
8778 tree cond_expr = (tree) cond_e;
8779 edge e0;
8781 /* Build new conditional expr */
8782 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8783 NULL_TREE, NULL_TREE);
8785 /* Add new cond in cond_bb. */
8786 gsi = gsi_last_bb (cond_bb);
8787 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8789 /* Adjust edges appropriately to connect new head with first head
8790 as well as second head. */
8791 e0 = single_succ_edge (cond_bb);
8792 e0->flags &= ~EDGE_FALLTHRU;
8793 e0->flags |= EDGE_FALSE_VALUE;
8797 /* Do book-keeping of basic block BB for the profile consistency checker.
8798 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8799 then do post-pass accounting. Store the counting in RECORD. */
8800 static void
8801 gimple_account_profile_record (basic_block bb, int after_pass,
8802 struct profile_record *record)
8804 gimple_stmt_iterator i;
8805 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8807 record->size[after_pass]
8808 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8809 if (bb->count.initialized_p ())
8810 record->time[after_pass]
8811 += estimate_num_insns (gsi_stmt (i),
8812 &eni_time_weights) * bb->count.to_gcov_type ();
8813 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8814 record->time[after_pass]
8815 += estimate_num_insns (gsi_stmt (i),
8816 &eni_time_weights) * bb->count.to_frequency (cfun);
8820 struct cfg_hooks gimple_cfg_hooks = {
8821 "gimple",
8822 gimple_verify_flow_info,
8823 gimple_dump_bb, /* dump_bb */
8824 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8825 create_bb, /* create_basic_block */
8826 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8827 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8828 gimple_can_remove_branch_p, /* can_remove_branch_p */
8829 remove_bb, /* delete_basic_block */
8830 gimple_split_block, /* split_block */
8831 gimple_move_block_after, /* move_block_after */
8832 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8833 gimple_merge_blocks, /* merge_blocks */
8834 gimple_predict_edge, /* predict_edge */
8835 gimple_predicted_by_p, /* predicted_by_p */
8836 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8837 gimple_duplicate_bb, /* duplicate_block */
8838 gimple_split_edge, /* split_edge */
8839 gimple_make_forwarder_block, /* make_forward_block */
8840 NULL, /* tidy_fallthru_edge */
8841 NULL, /* force_nonfallthru */
8842 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8843 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8844 gimple_flow_call_edges_add, /* flow_call_edges_add */
8845 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8846 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8847 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8848 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8849 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8850 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8851 flush_pending_stmts, /* flush_pending_stmts */
8852 gimple_empty_block_p, /* block_empty_p */
8853 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8854 gimple_account_profile_record,
8858 /* Split all critical edges. */
8860 unsigned int
8861 split_critical_edges (void)
8863 basic_block bb;
8864 edge e;
8865 edge_iterator ei;
8867 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8868 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8869 mappings around the calls to split_edge. */
8870 start_recording_case_labels ();
8871 FOR_ALL_BB_FN (bb, cfun)
8873 FOR_EACH_EDGE (e, ei, bb->succs)
8875 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8876 split_edge (e);
8877 /* PRE inserts statements to edges and expects that
8878 since split_critical_edges was done beforehand, committing edge
8879 insertions will not split more edges. In addition to critical
8880 edges we must split edges that have multiple successors and
8881 end by control flow statements, such as RESX.
8882 Go ahead and split them too. This matches the logic in
8883 gimple_find_edge_insert_loc. */
8884 else if ((!single_pred_p (e->dest)
8885 || !gimple_seq_empty_p (phi_nodes (e->dest))
8886 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8887 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8888 && !(e->flags & EDGE_ABNORMAL))
8890 gimple_stmt_iterator gsi;
8892 gsi = gsi_last_bb (e->src);
8893 if (!gsi_end_p (gsi)
8894 && stmt_ends_bb_p (gsi_stmt (gsi))
8895 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8896 && !gimple_call_builtin_p (gsi_stmt (gsi),
8897 BUILT_IN_RETURN)))
8898 split_edge (e);
8902 end_recording_case_labels ();
8903 return 0;
8906 namespace {
8908 const pass_data pass_data_split_crit_edges =
8910 GIMPLE_PASS, /* type */
8911 "crited", /* name */
8912 OPTGROUP_NONE, /* optinfo_flags */
8913 TV_TREE_SPLIT_EDGES, /* tv_id */
8914 PROP_cfg, /* properties_required */
8915 PROP_no_crit_edges, /* properties_provided */
8916 0, /* properties_destroyed */
8917 0, /* todo_flags_start */
8918 0, /* todo_flags_finish */
8921 class pass_split_crit_edges : public gimple_opt_pass
8923 public:
8924 pass_split_crit_edges (gcc::context *ctxt)
8925 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8928 /* opt_pass methods: */
8929 virtual unsigned int execute (function *) { return split_critical_edges (); }
8931 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8932 }; // class pass_split_crit_edges
8934 } // anon namespace
8936 gimple_opt_pass *
8937 make_pass_split_crit_edges (gcc::context *ctxt)
8939 return new pass_split_crit_edges (ctxt);
8943 /* Insert COND expression which is GIMPLE_COND after STMT
8944 in basic block BB with appropriate basic block split
8945 and creation of a new conditionally executed basic block.
8946 Update profile so the new bb is visited with probability PROB.
8947 Return created basic block. */
8948 basic_block
8949 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
8950 profile_probability prob)
8952 edge fall = split_block (bb, stmt);
8953 gimple_stmt_iterator iter = gsi_last_bb (bb);
8954 basic_block new_bb;
8956 /* Insert cond statement. */
8957 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8958 if (gsi_end_p (iter))
8959 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8960 else
8961 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8963 /* Create conditionally executed block. */
8964 new_bb = create_empty_bb (bb);
8965 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8966 e->probability = prob;
8967 new_bb->count = e->count ();
8968 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8970 /* Fix edge for split bb. */
8971 fall->flags = EDGE_FALSE_VALUE;
8972 fall->probability -= e->probability;
8974 /* Update dominance info. */
8975 if (dom_info_available_p (CDI_DOMINATORS))
8977 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8978 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8981 /* Update loop info. */
8982 if (current_loops)
8983 add_bb_to_loop (new_bb, bb->loop_father);
8985 return new_bb;
8988 /* Build a ternary operation and gimplify it. Emit code before GSI.
8989 Return the gimple_val holding the result. */
8991 tree
8992 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8993 tree type, tree a, tree b, tree c)
8995 tree ret;
8996 location_t loc = gimple_location (gsi_stmt (*gsi));
8998 ret = fold_build3_loc (loc, code, type, a, b, c);
8999 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9000 GSI_SAME_STMT);
9003 /* Build a binary operation and gimplify it. Emit code before GSI.
9004 Return the gimple_val holding the result. */
9006 tree
9007 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
9008 tree type, tree a, tree b)
9010 tree ret;
9012 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
9013 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9014 GSI_SAME_STMT);
9017 /* Build a unary operation and gimplify it. Emit code before GSI.
9018 Return the gimple_val holding the result. */
9020 tree
9021 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
9022 tree a)
9024 tree ret;
9026 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9027 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9028 GSI_SAME_STMT);
9033 /* Given a basic block B which ends with a conditional and has
9034 precisely two successors, determine which of the edges is taken if
9035 the conditional is true and which is taken if the conditional is
9036 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9038 void
9039 extract_true_false_edges_from_block (basic_block b,
9040 edge *true_edge,
9041 edge *false_edge)
9043 edge e = EDGE_SUCC (b, 0);
9045 if (e->flags & EDGE_TRUE_VALUE)
9047 *true_edge = e;
9048 *false_edge = EDGE_SUCC (b, 1);
9050 else
9052 *false_edge = e;
9053 *true_edge = EDGE_SUCC (b, 1);
9058 /* From a controlling predicate in the immediate dominator DOM of
9059 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9060 predicate evaluates to true and false and store them to
9061 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9062 they are non-NULL. Returns true if the edges can be determined,
9063 else return false. */
9065 bool
9066 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9067 edge *true_controlled_edge,
9068 edge *false_controlled_edge)
9070 basic_block bb = phiblock;
9071 edge true_edge, false_edge, tem;
9072 edge e0 = NULL, e1 = NULL;
9074 /* We have to verify that one edge into the PHI node is dominated
9075 by the true edge of the predicate block and the other edge
9076 dominated by the false edge. This ensures that the PHI argument
9077 we are going to take is completely determined by the path we
9078 take from the predicate block.
9079 We can only use BB dominance checks below if the destination of
9080 the true/false edges are dominated by their edge, thus only
9081 have a single predecessor. */
9082 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9083 tem = EDGE_PRED (bb, 0);
9084 if (tem == true_edge
9085 || (single_pred_p (true_edge->dest)
9086 && (tem->src == true_edge->dest
9087 || dominated_by_p (CDI_DOMINATORS,
9088 tem->src, true_edge->dest))))
9089 e0 = tem;
9090 else if (tem == false_edge
9091 || (single_pred_p (false_edge->dest)
9092 && (tem->src == false_edge->dest
9093 || dominated_by_p (CDI_DOMINATORS,
9094 tem->src, false_edge->dest))))
9095 e1 = tem;
9096 else
9097 return false;
9098 tem = EDGE_PRED (bb, 1);
9099 if (tem == true_edge
9100 || (single_pred_p (true_edge->dest)
9101 && (tem->src == true_edge->dest
9102 || dominated_by_p (CDI_DOMINATORS,
9103 tem->src, true_edge->dest))))
9104 e0 = tem;
9105 else if (tem == false_edge
9106 || (single_pred_p (false_edge->dest)
9107 && (tem->src == false_edge->dest
9108 || dominated_by_p (CDI_DOMINATORS,
9109 tem->src, false_edge->dest))))
9110 e1 = tem;
9111 else
9112 return false;
9113 if (!e0 || !e1)
9114 return false;
9116 if (true_controlled_edge)
9117 *true_controlled_edge = e0;
9118 if (false_controlled_edge)
9119 *false_controlled_edge = e1;
9121 return true;
9124 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9125 range [low, high]. Place associated stmts before *GSI. */
9127 void
9128 generate_range_test (basic_block bb, tree index, tree low, tree high,
9129 tree *lhs, tree *rhs)
9131 tree type = TREE_TYPE (index);
9132 tree utype = unsigned_type_for (type);
9134 low = fold_convert (type, low);
9135 high = fold_convert (type, high);
9137 tree tmp = make_ssa_name (type);
9138 gassign *sub1
9139 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9141 *lhs = make_ssa_name (utype);
9142 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9144 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9145 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9146 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9147 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9150 /* Emit return warnings. */
9152 namespace {
9154 const pass_data pass_data_warn_function_return =
9156 GIMPLE_PASS, /* type */
9157 "*warn_function_return", /* name */
9158 OPTGROUP_NONE, /* optinfo_flags */
9159 TV_NONE, /* tv_id */
9160 PROP_cfg, /* properties_required */
9161 0, /* properties_provided */
9162 0, /* properties_destroyed */
9163 0, /* todo_flags_start */
9164 0, /* todo_flags_finish */
9167 class pass_warn_function_return : public gimple_opt_pass
9169 public:
9170 pass_warn_function_return (gcc::context *ctxt)
9171 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9174 /* opt_pass methods: */
9175 virtual unsigned int execute (function *);
9177 }; // class pass_warn_function_return
9179 unsigned int
9180 pass_warn_function_return::execute (function *fun)
9182 source_location location;
9183 gimple *last;
9184 edge e;
9185 edge_iterator ei;
9187 if (!targetm.warn_func_return (fun->decl))
9188 return 0;
9190 /* If we have a path to EXIT, then we do return. */
9191 if (TREE_THIS_VOLATILE (fun->decl)
9192 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9194 location = UNKNOWN_LOCATION;
9195 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9196 (e = ei_safe_edge (ei)); )
9198 last = last_stmt (e->src);
9199 if ((gimple_code (last) == GIMPLE_RETURN
9200 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9201 && location == UNKNOWN_LOCATION
9202 && ((location = LOCATION_LOCUS (gimple_location (last)))
9203 != UNKNOWN_LOCATION)
9204 && !optimize)
9205 break;
9206 /* When optimizing, replace return stmts in noreturn functions
9207 with __builtin_unreachable () call. */
9208 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9210 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9211 gimple *new_stmt = gimple_build_call (fndecl, 0);
9212 gimple_set_location (new_stmt, gimple_location (last));
9213 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9214 gsi_replace (&gsi, new_stmt, true);
9215 remove_edge (e);
9217 else
9218 ei_next (&ei);
9220 if (location == UNKNOWN_LOCATION)
9221 location = cfun->function_end_locus;
9222 warning_at (location, 0, "%<noreturn%> function does return");
9225 /* If we see "return;" in some basic block, then we do reach the end
9226 without returning a value. */
9227 else if (warn_return_type > 0
9228 && !TREE_NO_WARNING (fun->decl)
9229 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9231 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9233 gimple *last = last_stmt (e->src);
9234 greturn *return_stmt = dyn_cast <greturn *> (last);
9235 if (return_stmt
9236 && gimple_return_retval (return_stmt) == NULL
9237 && !gimple_no_warning_p (last))
9239 location = gimple_location (last);
9240 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9241 location = fun->function_end_locus;
9242 warning_at (location, OPT_Wreturn_type,
9243 "control reaches end of non-void function");
9244 TREE_NO_WARNING (fun->decl) = 1;
9245 break;
9248 /* The C++ FE turns fallthrough from the end of non-void function
9249 into __builtin_unreachable () call with BUILTINS_LOCATION.
9250 Recognize those too. */
9251 basic_block bb;
9252 if (!TREE_NO_WARNING (fun->decl))
9253 FOR_EACH_BB_FN (bb, fun)
9254 if (EDGE_COUNT (bb->succs) == 0)
9256 gimple *last = last_stmt (bb);
9257 const enum built_in_function ubsan_missing_ret
9258 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9259 if (last
9260 && ((LOCATION_LOCUS (gimple_location (last))
9261 == BUILTINS_LOCATION
9262 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9263 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9265 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9266 gsi_prev_nondebug (&gsi);
9267 gimple *prev = gsi_stmt (gsi);
9268 if (prev == NULL)
9269 location = UNKNOWN_LOCATION;
9270 else
9271 location = gimple_location (prev);
9272 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9273 location = fun->function_end_locus;
9274 warning_at (location, OPT_Wreturn_type,
9275 "control reaches end of non-void function");
9276 TREE_NO_WARNING (fun->decl) = 1;
9277 break;
9281 return 0;
9284 } // anon namespace
9286 gimple_opt_pass *
9287 make_pass_warn_function_return (gcc::context *ctxt)
9289 return new pass_warn_function_return (ctxt);
9292 /* Walk a gimplified function and warn for functions whose return value is
9293 ignored and attribute((warn_unused_result)) is set. This is done before
9294 inlining, so we don't have to worry about that. */
9296 static void
9297 do_warn_unused_result (gimple_seq seq)
9299 tree fdecl, ftype;
9300 gimple_stmt_iterator i;
9302 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9304 gimple *g = gsi_stmt (i);
9306 switch (gimple_code (g))
9308 case GIMPLE_BIND:
9309 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9310 break;
9311 case GIMPLE_TRY:
9312 do_warn_unused_result (gimple_try_eval (g));
9313 do_warn_unused_result (gimple_try_cleanup (g));
9314 break;
9315 case GIMPLE_CATCH:
9316 do_warn_unused_result (gimple_catch_handler (
9317 as_a <gcatch *> (g)));
9318 break;
9319 case GIMPLE_EH_FILTER:
9320 do_warn_unused_result (gimple_eh_filter_failure (g));
9321 break;
9323 case GIMPLE_CALL:
9324 if (gimple_call_lhs (g))
9325 break;
9326 if (gimple_call_internal_p (g))
9327 break;
9329 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9330 LHS. All calls whose value is ignored should be
9331 represented like this. Look for the attribute. */
9332 fdecl = gimple_call_fndecl (g);
9333 ftype = gimple_call_fntype (g);
9335 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9337 location_t loc = gimple_location (g);
9339 if (fdecl)
9340 warning_at (loc, OPT_Wunused_result,
9341 "ignoring return value of %qD, "
9342 "declared with attribute warn_unused_result",
9343 fdecl);
9344 else
9345 warning_at (loc, OPT_Wunused_result,
9346 "ignoring return value of function "
9347 "declared with attribute warn_unused_result");
9349 break;
9351 default:
9352 /* Not a container, not a call, or a call whose value is used. */
9353 break;
9358 namespace {
9360 const pass_data pass_data_warn_unused_result =
9362 GIMPLE_PASS, /* type */
9363 "*warn_unused_result", /* name */
9364 OPTGROUP_NONE, /* optinfo_flags */
9365 TV_NONE, /* tv_id */
9366 PROP_gimple_any, /* properties_required */
9367 0, /* properties_provided */
9368 0, /* properties_destroyed */
9369 0, /* todo_flags_start */
9370 0, /* todo_flags_finish */
9373 class pass_warn_unused_result : public gimple_opt_pass
9375 public:
9376 pass_warn_unused_result (gcc::context *ctxt)
9377 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9380 /* opt_pass methods: */
9381 virtual bool gate (function *) { return flag_warn_unused_result; }
9382 virtual unsigned int execute (function *)
9384 do_warn_unused_result (gimple_body (current_function_decl));
9385 return 0;
9388 }; // class pass_warn_unused_result
9390 } // anon namespace
9392 gimple_opt_pass *
9393 make_pass_warn_unused_result (gcc::context *ctxt)
9395 return new pass_warn_unused_result (ctxt);
9398 /* IPA passes, compilation of earlier functions or inlining
9399 might have changed some properties, such as marked functions nothrow,
9400 pure, const or noreturn.
9401 Remove redundant edges and basic blocks, and create new ones if necessary.
9403 This pass can't be executed as stand alone pass from pass manager, because
9404 in between inlining and this fixup the verify_flow_info would fail. */
9406 unsigned int
9407 execute_fixup_cfg (void)
9409 basic_block bb;
9410 gimple_stmt_iterator gsi;
9411 int todo = 0;
9412 cgraph_node *node = cgraph_node::get (current_function_decl);
9413 profile_count num = node->count;
9414 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9415 bool scale = num.initialized_p () && !(num == den);
9417 if (scale)
9419 profile_count::adjust_for_ipa_scaling (&num, &den);
9420 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9421 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9422 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9425 FOR_EACH_BB_FN (bb, cfun)
9427 if (scale)
9428 bb->count = bb->count.apply_scale (num, den);
9429 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9431 gimple *stmt = gsi_stmt (gsi);
9432 tree decl = is_gimple_call (stmt)
9433 ? gimple_call_fndecl (stmt)
9434 : NULL;
9435 if (decl)
9437 int flags = gimple_call_flags (stmt);
9438 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9440 if (gimple_purge_dead_abnormal_call_edges (bb))
9441 todo |= TODO_cleanup_cfg;
9443 if (gimple_in_ssa_p (cfun))
9445 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9446 update_stmt (stmt);
9450 if (flags & ECF_NORETURN
9451 && fixup_noreturn_call (stmt))
9452 todo |= TODO_cleanup_cfg;
9455 /* Remove stores to variables we marked write-only.
9456 Keep access when store has side effect, i.e. in case when source
9457 is volatile. */
9458 if (gimple_store_p (stmt)
9459 && !gimple_has_side_effects (stmt))
9461 tree lhs = get_base_address (gimple_get_lhs (stmt));
9463 if (VAR_P (lhs)
9464 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9465 && varpool_node::get (lhs)->writeonly)
9467 unlink_stmt_vdef (stmt);
9468 gsi_remove (&gsi, true);
9469 release_defs (stmt);
9470 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9471 continue;
9474 /* For calls we can simply remove LHS when it is known
9475 to be write-only. */
9476 if (is_gimple_call (stmt)
9477 && gimple_get_lhs (stmt))
9479 tree lhs = get_base_address (gimple_get_lhs (stmt));
9481 if (VAR_P (lhs)
9482 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9483 && varpool_node::get (lhs)->writeonly)
9485 gimple_call_set_lhs (stmt, NULL);
9486 update_stmt (stmt);
9487 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9491 if (maybe_clean_eh_stmt (stmt)
9492 && gimple_purge_dead_eh_edges (bb))
9493 todo |= TODO_cleanup_cfg;
9494 gsi_next (&gsi);
9497 /* If we have a basic block with no successors that does not
9498 end with a control statement or a noreturn call end it with
9499 a call to __builtin_unreachable. This situation can occur
9500 when inlining a noreturn call that does in fact return. */
9501 if (EDGE_COUNT (bb->succs) == 0)
9503 gimple *stmt = last_stmt (bb);
9504 if (!stmt
9505 || (!is_ctrl_stmt (stmt)
9506 && (!is_gimple_call (stmt)
9507 || !gimple_call_noreturn_p (stmt))))
9509 if (stmt && is_gimple_call (stmt))
9510 gimple_call_set_ctrl_altering (stmt, false);
9511 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9512 stmt = gimple_build_call (fndecl, 0);
9513 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9514 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9515 if (!cfun->after_inlining)
9517 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9518 node->create_edge (cgraph_node::get_create (fndecl),
9519 call_stmt, bb->count);
9524 if (scale)
9525 compute_function_frequency ();
9527 if (current_loops
9528 && (todo & TODO_cleanup_cfg))
9529 loops_state_set (LOOPS_NEED_FIXUP);
9531 return todo;
9534 namespace {
9536 const pass_data pass_data_fixup_cfg =
9538 GIMPLE_PASS, /* type */
9539 "fixup_cfg", /* name */
9540 OPTGROUP_NONE, /* optinfo_flags */
9541 TV_NONE, /* tv_id */
9542 PROP_cfg, /* properties_required */
9543 0, /* properties_provided */
9544 0, /* properties_destroyed */
9545 0, /* todo_flags_start */
9546 0, /* todo_flags_finish */
9549 class pass_fixup_cfg : public gimple_opt_pass
9551 public:
9552 pass_fixup_cfg (gcc::context *ctxt)
9553 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9556 /* opt_pass methods: */
9557 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9558 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9560 }; // class pass_fixup_cfg
9562 } // anon namespace
9564 gimple_opt_pass *
9565 make_pass_fixup_cfg (gcc::context *ctxt)
9567 return new pass_fixup_cfg (ctxt);
9570 /* Garbage collection support for edge_def. */
9572 extern void gt_ggc_mx (tree&);
9573 extern void gt_ggc_mx (gimple *&);
9574 extern void gt_ggc_mx (rtx&);
9575 extern void gt_ggc_mx (basic_block&);
9577 static void
9578 gt_ggc_mx (rtx_insn *& x)
9580 if (x)
9581 gt_ggc_mx_rtx_def ((void *) x);
9584 void
9585 gt_ggc_mx (edge_def *e)
9587 tree block = LOCATION_BLOCK (e->goto_locus);
9588 gt_ggc_mx (e->src);
9589 gt_ggc_mx (e->dest);
9590 if (current_ir_type () == IR_GIMPLE)
9591 gt_ggc_mx (e->insns.g);
9592 else
9593 gt_ggc_mx (e->insns.r);
9594 gt_ggc_mx (block);
9597 /* PCH support for edge_def. */
9599 extern void gt_pch_nx (tree&);
9600 extern void gt_pch_nx (gimple *&);
9601 extern void gt_pch_nx (rtx&);
9602 extern void gt_pch_nx (basic_block&);
9604 static void
9605 gt_pch_nx (rtx_insn *& x)
9607 if (x)
9608 gt_pch_nx_rtx_def ((void *) x);
9611 void
9612 gt_pch_nx (edge_def *e)
9614 tree block = LOCATION_BLOCK (e->goto_locus);
9615 gt_pch_nx (e->src);
9616 gt_pch_nx (e->dest);
9617 if (current_ir_type () == IR_GIMPLE)
9618 gt_pch_nx (e->insns.g);
9619 else
9620 gt_pch_nx (e->insns.r);
9621 gt_pch_nx (block);
9624 void
9625 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9627 tree block = LOCATION_BLOCK (e->goto_locus);
9628 op (&(e->src), cookie);
9629 op (&(e->dest), cookie);
9630 if (current_ir_type () == IR_GIMPLE)
9631 op (&(e->insns.g), cookie);
9632 else
9633 op (&(e->insns.r), cookie);
9634 op (&(block), cookie);
9637 #if CHECKING_P
9639 namespace selftest {
9641 /* Helper function for CFG selftests: create a dummy function decl
9642 and push it as cfun. */
9644 static tree
9645 push_fndecl (const char *name)
9647 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9648 /* FIXME: this uses input_location: */
9649 tree fndecl = build_fn_decl (name, fn_type);
9650 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9651 NULL_TREE, integer_type_node);
9652 DECL_RESULT (fndecl) = retval;
9653 push_struct_function (fndecl);
9654 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9655 ASSERT_TRUE (fun != NULL);
9656 init_empty_tree_cfg_for_function (fun);
9657 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9658 ASSERT_EQ (0, n_edges_for_fn (fun));
9659 return fndecl;
9662 /* These tests directly create CFGs.
9663 Compare with the static fns within tree-cfg.c:
9664 - build_gimple_cfg
9665 - make_blocks: calls create_basic_block (seq, bb);
9666 - make_edges. */
9668 /* Verify a simple cfg of the form:
9669 ENTRY -> A -> B -> C -> EXIT. */
9671 static void
9672 test_linear_chain ()
9674 gimple_register_cfg_hooks ();
9676 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9677 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9679 /* Create some empty blocks. */
9680 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9681 basic_block bb_b = create_empty_bb (bb_a);
9682 basic_block bb_c = create_empty_bb (bb_b);
9684 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9685 ASSERT_EQ (0, n_edges_for_fn (fun));
9687 /* Create some edges: a simple linear chain of BBs. */
9688 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9689 make_edge (bb_a, bb_b, 0);
9690 make_edge (bb_b, bb_c, 0);
9691 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9693 /* Verify the edges. */
9694 ASSERT_EQ (4, n_edges_for_fn (fun));
9695 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9696 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9697 ASSERT_EQ (1, bb_a->preds->length ());
9698 ASSERT_EQ (1, bb_a->succs->length ());
9699 ASSERT_EQ (1, bb_b->preds->length ());
9700 ASSERT_EQ (1, bb_b->succs->length ());
9701 ASSERT_EQ (1, bb_c->preds->length ());
9702 ASSERT_EQ (1, bb_c->succs->length ());
9703 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9704 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9706 /* Verify the dominance information
9707 Each BB in our simple chain should be dominated by the one before
9708 it. */
9709 calculate_dominance_info (CDI_DOMINATORS);
9710 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9711 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9712 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9713 ASSERT_EQ (1, dom_by_b.length ());
9714 ASSERT_EQ (bb_c, dom_by_b[0]);
9715 free_dominance_info (CDI_DOMINATORS);
9716 dom_by_b.release ();
9718 /* Similarly for post-dominance: each BB in our chain is post-dominated
9719 by the one after it. */
9720 calculate_dominance_info (CDI_POST_DOMINATORS);
9721 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9722 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9723 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9724 ASSERT_EQ (1, postdom_by_b.length ());
9725 ASSERT_EQ (bb_a, postdom_by_b[0]);
9726 free_dominance_info (CDI_POST_DOMINATORS);
9727 postdom_by_b.release ();
9729 pop_cfun ();
9732 /* Verify a simple CFG of the form:
9733 ENTRY
9737 /t \f
9743 EXIT. */
9745 static void
9746 test_diamond ()
9748 gimple_register_cfg_hooks ();
9750 tree fndecl = push_fndecl ("cfg_test_diamond");
9751 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9753 /* Create some empty blocks. */
9754 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9755 basic_block bb_b = create_empty_bb (bb_a);
9756 basic_block bb_c = create_empty_bb (bb_a);
9757 basic_block bb_d = create_empty_bb (bb_b);
9759 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9760 ASSERT_EQ (0, n_edges_for_fn (fun));
9762 /* Create the edges. */
9763 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9764 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9765 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9766 make_edge (bb_b, bb_d, 0);
9767 make_edge (bb_c, bb_d, 0);
9768 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9770 /* Verify the edges. */
9771 ASSERT_EQ (6, n_edges_for_fn (fun));
9772 ASSERT_EQ (1, bb_a->preds->length ());
9773 ASSERT_EQ (2, bb_a->succs->length ());
9774 ASSERT_EQ (1, bb_b->preds->length ());
9775 ASSERT_EQ (1, bb_b->succs->length ());
9776 ASSERT_EQ (1, bb_c->preds->length ());
9777 ASSERT_EQ (1, bb_c->succs->length ());
9778 ASSERT_EQ (2, bb_d->preds->length ());
9779 ASSERT_EQ (1, bb_d->succs->length ());
9781 /* Verify the dominance information. */
9782 calculate_dominance_info (CDI_DOMINATORS);
9783 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9784 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9785 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9786 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9787 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9788 dom_by_a.release ();
9789 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9790 ASSERT_EQ (0, dom_by_b.length ());
9791 dom_by_b.release ();
9792 free_dominance_info (CDI_DOMINATORS);
9794 /* Similarly for post-dominance. */
9795 calculate_dominance_info (CDI_POST_DOMINATORS);
9796 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9797 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9798 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9799 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9800 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9801 postdom_by_d.release ();
9802 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9803 ASSERT_EQ (0, postdom_by_b.length ());
9804 postdom_by_b.release ();
9805 free_dominance_info (CDI_POST_DOMINATORS);
9807 pop_cfun ();
9810 /* Verify that we can handle a CFG containing a "complete" aka
9811 fully-connected subgraph (where A B C D below all have edges
9812 pointing to each other node, also to themselves).
9813 e.g.:
9814 ENTRY EXIT
9820 A<--->B
9821 ^^ ^^
9822 | \ / |
9823 | X |
9824 | / \ |
9825 VV VV
9826 C<--->D
9829 static void
9830 test_fully_connected ()
9832 gimple_register_cfg_hooks ();
9834 tree fndecl = push_fndecl ("cfg_fully_connected");
9835 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9837 const int n = 4;
9839 /* Create some empty blocks. */
9840 auto_vec <basic_block> subgraph_nodes;
9841 for (int i = 0; i < n; i++)
9842 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9844 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9845 ASSERT_EQ (0, n_edges_for_fn (fun));
9847 /* Create the edges. */
9848 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9849 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9850 for (int i = 0; i < n; i++)
9851 for (int j = 0; j < n; j++)
9852 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9854 /* Verify the edges. */
9855 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9856 /* The first one is linked to ENTRY/EXIT as well as itself and
9857 everything else. */
9858 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9859 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9860 /* The other ones in the subgraph are linked to everything in
9861 the subgraph (including themselves). */
9862 for (int i = 1; i < n; i++)
9864 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9865 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9868 /* Verify the dominance information. */
9869 calculate_dominance_info (CDI_DOMINATORS);
9870 /* The initial block in the subgraph should be dominated by ENTRY. */
9871 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9872 get_immediate_dominator (CDI_DOMINATORS,
9873 subgraph_nodes[0]));
9874 /* Every other block in the subgraph should be dominated by the
9875 initial block. */
9876 for (int i = 1; i < n; i++)
9877 ASSERT_EQ (subgraph_nodes[0],
9878 get_immediate_dominator (CDI_DOMINATORS,
9879 subgraph_nodes[i]));
9880 free_dominance_info (CDI_DOMINATORS);
9882 /* Similarly for post-dominance. */
9883 calculate_dominance_info (CDI_POST_DOMINATORS);
9884 /* The initial block in the subgraph should be postdominated by EXIT. */
9885 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
9886 get_immediate_dominator (CDI_POST_DOMINATORS,
9887 subgraph_nodes[0]));
9888 /* Every other block in the subgraph should be postdominated by the
9889 initial block, since that leads to EXIT. */
9890 for (int i = 1; i < n; i++)
9891 ASSERT_EQ (subgraph_nodes[0],
9892 get_immediate_dominator (CDI_POST_DOMINATORS,
9893 subgraph_nodes[i]));
9894 free_dominance_info (CDI_POST_DOMINATORS);
9896 pop_cfun ();
9899 /* Run all of the selftests within this file. */
9901 void
9902 tree_cfg_c_tests ()
9904 test_linear_chain ();
9905 test_diamond ();
9906 test_fully_connected ();
9909 } // namespace selftest
9911 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9912 - loop
9913 - nested loops
9914 - switch statement (a block with many out-edges)
9915 - something that jumps to itself
9916 - etc */
9918 #endif /* CHECKING_P */