1 //=-- lsan_common.cc ------------------------------------------------------===//
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
6 //===----------------------------------------------------------------------===//
8 // This file is a part of LeakSanitizer.
9 // Implementation of common leak checking functionality.
11 //===----------------------------------------------------------------------===//
13 #include "lsan_common.h"
15 #include "sanitizer_common/sanitizer_common.h"
16 #include "sanitizer_common/sanitizer_flags.h"
17 #include "sanitizer_common/sanitizer_flag_parser.h"
18 #include "sanitizer_common/sanitizer_placement_new.h"
19 #include "sanitizer_common/sanitizer_procmaps.h"
20 #include "sanitizer_common/sanitizer_stackdepot.h"
21 #include "sanitizer_common/sanitizer_stacktrace.h"
22 #include "sanitizer_common/sanitizer_suppressions.h"
23 #include "sanitizer_common/sanitizer_report_decorator.h"
24 #include "sanitizer_common/sanitizer_tls_get_addr.h"
26 #if CAN_SANITIZE_LEAKS
29 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
30 // also to protect the global list of root regions.
31 BlockingMutex
global_mutex(LINKER_INITIALIZED
);
35 void DisableCounterUnderflow() {
36 if (common_flags()->detect_leaks
) {
37 Report("Unmatched call to __lsan_enable().\n");
42 void Flags::SetDefaults() {
43 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
44 #include "lsan_flags.inc"
48 void RegisterLsanFlags(FlagParser
*parser
, Flags
*f
) {
49 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
50 RegisterFlag(parser, #Name, Description, &f->Name);
51 #include "lsan_flags.inc"
55 #define LOG_POINTERS(...) \
57 if (flags()->log_pointers) Report(__VA_ARGS__); \
60 #define LOG_THREADS(...) \
62 if (flags()->log_threads) Report(__VA_ARGS__); \
65 ALIGNED(64) static char suppression_placeholder
[sizeof(SuppressionContext
)];
66 static SuppressionContext
*suppression_ctx
= nullptr;
67 static const char kSuppressionLeak
[] = "leak";
68 static const char *kSuppressionTypes
[] = { kSuppressionLeak
};
69 static const char kStdSuppressions
[] =
70 #if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
71 // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
73 "leak:*pthread_exit*\n"
74 #endif // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
76 // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
79 // TLS leak in some glibc versions, described in
80 // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
81 "leak:*tls_get_addr*\n";
83 void InitializeSuppressions() {
84 CHECK_EQ(nullptr, suppression_ctx
);
85 suppression_ctx
= new (suppression_placeholder
) // NOLINT
86 SuppressionContext(kSuppressionTypes
, ARRAY_SIZE(kSuppressionTypes
));
87 suppression_ctx
->ParseFromFile(flags()->suppressions
);
88 if (&__lsan_default_suppressions
)
89 suppression_ctx
->Parse(__lsan_default_suppressions());
90 suppression_ctx
->Parse(kStdSuppressions
);
93 static SuppressionContext
*GetSuppressionContext() {
94 CHECK(suppression_ctx
);
95 return suppression_ctx
;
98 static InternalMmapVector
<RootRegion
> *root_regions
;
100 InternalMmapVector
<RootRegion
> const *GetRootRegions() { return root_regions
; }
102 void InitializeRootRegions() {
103 CHECK(!root_regions
);
104 ALIGNED(64) static char placeholder
[sizeof(InternalMmapVector
<RootRegion
>)];
105 root_regions
= new(placeholder
) InternalMmapVector
<RootRegion
>(1);
108 const char *MaybeCallLsanDefaultOptions() {
109 return (&__lsan_default_options
) ? __lsan_default_options() : "";
112 void InitCommonLsan() {
113 InitializeRootRegions();
114 if (common_flags()->detect_leaks
) {
115 // Initialization which can fail or print warnings should only be done if
116 // LSan is actually enabled.
117 InitializeSuppressions();
118 InitializePlatformSpecificModules();
122 class Decorator
: public __sanitizer::SanitizerCommonDecorator
{
124 Decorator() : SanitizerCommonDecorator() { }
125 const char *Error() { return Red(); }
126 const char *Leak() { return Blue(); }
129 static inline bool CanBeAHeapPointer(uptr p
) {
130 // Since our heap is located in mmap-ed memory, we can assume a sensible lower
131 // bound on heap addresses.
132 const uptr kMinAddress
= 4 * 4096;
133 if (p
< kMinAddress
) return false;
134 #if defined(__x86_64__)
135 // Accept only canonical form user-space addresses.
136 return ((p
>> 47) == 0);
137 #elif defined(__mips64)
138 return ((p
>> 40) == 0);
139 #elif defined(__aarch64__)
140 unsigned runtimeVMA
=
141 (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
142 return ((p
>> runtimeVMA
) == 0);
148 // Scans the memory range, looking for byte patterns that point into allocator
149 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
150 // There are two usage modes for this function: finding reachable chunks
151 // (|tag| = kReachable) and finding indirectly leaked chunks
152 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
153 // so |frontier| = 0.
154 void ScanRangeForPointers(uptr begin
, uptr end
,
156 const char *region_type
, ChunkTag tag
) {
157 CHECK(tag
== kReachable
|| tag
== kIndirectlyLeaked
);
158 const uptr alignment
= flags()->pointer_alignment();
159 LOG_POINTERS("Scanning %s range %p-%p.\n", region_type
, begin
, end
);
162 pp
= pp
+ alignment
- pp
% alignment
;
163 for (; pp
+ sizeof(void *) <= end
; pp
+= alignment
) { // NOLINT
164 void *p
= *reinterpret_cast<void **>(pp
);
165 if (!CanBeAHeapPointer(reinterpret_cast<uptr
>(p
))) continue;
166 uptr chunk
= PointsIntoChunk(p
);
167 if (!chunk
) continue;
168 // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
169 if (chunk
== begin
) continue;
170 LsanMetadata
m(chunk
);
171 if (m
.tag() == kReachable
|| m
.tag() == kIgnored
) continue;
173 // Do this check relatively late so we can log only the interesting cases.
174 if (!flags()->use_poisoned
&& WordIsPoisoned(pp
)) {
176 "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
178 pp
, p
, chunk
, chunk
+ m
.requested_size(), m
.requested_size());
183 LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp
, p
,
184 chunk
, chunk
+ m
.requested_size(), m
.requested_size());
186 frontier
->push_back(chunk
);
190 // Scans a global range for pointers
191 void ScanGlobalRange(uptr begin
, uptr end
, Frontier
*frontier
) {
192 uptr allocator_begin
= 0, allocator_end
= 0;
193 GetAllocatorGlobalRange(&allocator_begin
, &allocator_end
);
194 if (begin
<= allocator_begin
&& allocator_begin
< end
) {
195 CHECK_LE(allocator_begin
, allocator_end
);
196 CHECK_LE(allocator_end
, end
);
197 if (begin
< allocator_begin
)
198 ScanRangeForPointers(begin
, allocator_begin
, frontier
, "GLOBAL",
200 if (allocator_end
< end
)
201 ScanRangeForPointers(allocator_end
, end
, frontier
, "GLOBAL", kReachable
);
203 ScanRangeForPointers(begin
, end
, frontier
, "GLOBAL", kReachable
);
207 void ForEachExtraStackRangeCb(uptr begin
, uptr end
, void* arg
) {
208 Frontier
*frontier
= reinterpret_cast<Frontier
*>(arg
);
209 ScanRangeForPointers(begin
, end
, frontier
, "FAKE STACK", kReachable
);
212 // Scans thread data (stacks and TLS) for heap pointers.
213 static void ProcessThreads(SuspendedThreadsList
const &suspended_threads
,
214 Frontier
*frontier
) {
215 InternalScopedBuffer
<uptr
> registers(suspended_threads
.RegisterCount());
216 uptr registers_begin
= reinterpret_cast<uptr
>(registers
.data());
217 uptr registers_end
= registers_begin
+ registers
.size();
218 for (uptr i
= 0; i
< suspended_threads
.ThreadCount(); i
++) {
219 tid_t os_id
= static_cast<tid_t
>(suspended_threads
.GetThreadID(i
));
220 LOG_THREADS("Processing thread %d.\n", os_id
);
221 uptr stack_begin
, stack_end
, tls_begin
, tls_end
, cache_begin
, cache_end
;
223 bool thread_found
= GetThreadRangesLocked(os_id
, &stack_begin
, &stack_end
,
224 &tls_begin
, &tls_end
,
225 &cache_begin
, &cache_end
, &dtls
);
227 // If a thread can't be found in the thread registry, it's probably in the
228 // process of destruction. Log this event and move on.
229 LOG_THREADS("Thread %d not found in registry.\n", os_id
);
233 PtraceRegistersStatus have_registers
=
234 suspended_threads
.GetRegistersAndSP(i
, registers
.data(), &sp
);
235 if (have_registers
!= REGISTERS_AVAILABLE
) {
236 Report("Unable to get registers from thread %d.\n", os_id
);
237 // If unable to get SP, consider the entire stack to be reachable unless
238 // GetRegistersAndSP failed with ESRCH.
239 if (have_registers
== REGISTERS_UNAVAILABLE_FATAL
) continue;
243 if (flags()->use_registers
&& have_registers
)
244 ScanRangeForPointers(registers_begin
, registers_end
, frontier
,
245 "REGISTERS", kReachable
);
247 if (flags()->use_stacks
) {
248 LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin
, stack_end
, sp
);
249 if (sp
< stack_begin
|| sp
>= stack_end
) {
250 // SP is outside the recorded stack range (e.g. the thread is running a
251 // signal handler on alternate stack, or swapcontext was used).
252 // Again, consider the entire stack range to be reachable.
253 LOG_THREADS("WARNING: stack pointer not in stack range.\n");
254 uptr page_size
= GetPageSizeCached();
256 while (stack_begin
< stack_end
&&
257 !IsAccessibleMemoryRange(stack_begin
, 1)) {
259 stack_begin
+= page_size
;
261 LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
262 skipped
, stack_begin
, stack_end
);
264 // Shrink the stack range to ignore out-of-scope values.
267 ScanRangeForPointers(stack_begin
, stack_end
, frontier
, "STACK",
269 ForEachExtraStackRange(os_id
, ForEachExtraStackRangeCb
, frontier
);
272 if (flags()->use_tls
) {
274 LOG_THREADS("TLS at %p-%p.\n", tls_begin
, tls_end
);
275 // If the tls and cache ranges don't overlap, scan full tls range,
276 // otherwise, only scan the non-overlapping portions
277 if (cache_begin
== cache_end
|| tls_end
< cache_begin
||
278 tls_begin
> cache_end
) {
279 ScanRangeForPointers(tls_begin
, tls_end
, frontier
, "TLS", kReachable
);
281 if (tls_begin
< cache_begin
)
282 ScanRangeForPointers(tls_begin
, cache_begin
, frontier
, "TLS",
284 if (tls_end
> cache_end
)
285 ScanRangeForPointers(cache_end
, tls_end
, frontier
, "TLS",
289 if (dtls
&& !DTLSInDestruction(dtls
)) {
290 for (uptr j
= 0; j
< dtls
->dtv_size
; ++j
) {
291 uptr dtls_beg
= dtls
->dtv
[j
].beg
;
292 uptr dtls_end
= dtls_beg
+ dtls
->dtv
[j
].size
;
293 if (dtls_beg
< dtls_end
) {
294 LOG_THREADS("DTLS %zu at %p-%p.\n", j
, dtls_beg
, dtls_end
);
295 ScanRangeForPointers(dtls_beg
, dtls_end
, frontier
, "DTLS",
300 // We are handling a thread with DTLS under destruction. Log about
301 // this and continue.
302 LOG_THREADS("Thread %d has DTLS under destruction.\n", os_id
);
308 void ScanRootRegion(Frontier
*frontier
, const RootRegion
&root_region
,
309 uptr region_begin
, uptr region_end
, bool is_readable
) {
310 uptr intersection_begin
= Max(root_region
.begin
, region_begin
);
311 uptr intersection_end
= Min(region_end
, root_region
.begin
+ root_region
.size
);
312 if (intersection_begin
>= intersection_end
) return;
313 LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
314 root_region
.begin
, root_region
.begin
+ root_region
.size
,
315 region_begin
, region_end
,
316 is_readable
? "readable" : "unreadable");
318 ScanRangeForPointers(intersection_begin
, intersection_end
, frontier
, "ROOT",
322 static void ProcessRootRegion(Frontier
*frontier
,
323 const RootRegion
&root_region
) {
324 MemoryMappingLayout
proc_maps(/*cache_enabled*/ true);
325 MemoryMappedSegment segment
;
326 while (proc_maps
.Next(&segment
)) {
327 ScanRootRegion(frontier
, root_region
, segment
.start
, segment
.end
,
328 segment
.IsReadable());
332 // Scans root regions for heap pointers.
333 static void ProcessRootRegions(Frontier
*frontier
) {
334 if (!flags()->use_root_regions
) return;
336 for (uptr i
= 0; i
< root_regions
->size(); i
++) {
337 ProcessRootRegion(frontier
, (*root_regions
)[i
]);
341 static void FloodFillTag(Frontier
*frontier
, ChunkTag tag
) {
342 while (frontier
->size()) {
343 uptr next_chunk
= frontier
->back();
344 frontier
->pop_back();
345 LsanMetadata
m(next_chunk
);
346 ScanRangeForPointers(next_chunk
, next_chunk
+ m
.requested_size(), frontier
,
351 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
352 // which are reachable from it as indirectly leaked.
353 static void MarkIndirectlyLeakedCb(uptr chunk
, void *arg
) {
354 chunk
= GetUserBegin(chunk
);
355 LsanMetadata
m(chunk
);
356 if (m
.allocated() && m
.tag() != kReachable
) {
357 ScanRangeForPointers(chunk
, chunk
+ m
.requested_size(),
358 /* frontier */ nullptr, "HEAP", kIndirectlyLeaked
);
362 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
364 static void CollectIgnoredCb(uptr chunk
, void *arg
) {
366 chunk
= GetUserBegin(chunk
);
367 LsanMetadata
m(chunk
);
368 if (m
.allocated() && m
.tag() == kIgnored
) {
369 LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
370 chunk
, chunk
+ m
.requested_size(), m
.requested_size());
371 reinterpret_cast<Frontier
*>(arg
)->push_back(chunk
);
375 static uptr
GetCallerPC(u32 stack_id
, StackDepotReverseMap
*map
) {
377 StackTrace stack
= map
->Get(stack_id
);
378 // The top frame is our malloc/calloc/etc. The next frame is the caller.
380 return stack
.trace
[1];
384 struct InvalidPCParam
{
386 StackDepotReverseMap
*stack_depot_reverse_map
;
387 bool skip_linker_allocations
;
390 // ForEachChunk callback. If the caller pc is invalid or is within the linker,
391 // mark as reachable. Called by ProcessPlatformSpecificAllocations.
392 static void MarkInvalidPCCb(uptr chunk
, void *arg
) {
394 InvalidPCParam
*param
= reinterpret_cast<InvalidPCParam
*>(arg
);
395 chunk
= GetUserBegin(chunk
);
396 LsanMetadata
m(chunk
);
397 if (m
.allocated() && m
.tag() != kReachable
&& m
.tag() != kIgnored
) {
398 u32 stack_id
= m
.stack_trace_id();
401 caller_pc
= GetCallerPC(stack_id
, param
->stack_depot_reverse_map
);
402 // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
403 // it as reachable, as we can't properly report its allocation stack anyway.
404 if (caller_pc
== 0 || (param
->skip_linker_allocations
&&
405 GetLinker()->containsAddress(caller_pc
))) {
406 m
.set_tag(kReachable
);
407 param
->frontier
->push_back(chunk
);
412 // On Linux, handles dynamically allocated TLS blocks by treating all chunks
413 // allocated from ld-linux.so as reachable.
414 // Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
415 // They are allocated with a __libc_memalign() call in allocate_and_init()
416 // (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
417 // blocks, but we can make sure they come from our own allocator by intercepting
418 // __libc_memalign(). On top of that, there is no easy way to reach them. Their
419 // addresses are stored in a dynamically allocated array (the DTV) which is
420 // referenced from the static TLS. Unfortunately, we can't just rely on the DTV
421 // being reachable from the static TLS, and the dynamic TLS being reachable from
422 // the DTV. This is because the initial DTV is allocated before our interception
423 // mechanism kicks in, and thus we don't recognize it as allocated memory. We
424 // can't special-case it either, since we don't know its size.
425 // Our solution is to include in the root set all allocations made from
426 // ld-linux.so (which is where allocate_and_init() is implemented). This is
427 // guaranteed to include all dynamic TLS blocks (and possibly other allocations
428 // which we don't care about).
429 // On all other platforms, this simply checks to ensure that the caller pc is
430 // valid before reporting chunks as leaked.
431 void ProcessPC(Frontier
*frontier
) {
432 StackDepotReverseMap stack_depot_reverse_map
;
434 arg
.frontier
= frontier
;
435 arg
.stack_depot_reverse_map
= &stack_depot_reverse_map
;
436 arg
.skip_linker_allocations
=
437 flags()->use_tls
&& flags()->use_ld_allocations
&& GetLinker() != nullptr;
438 ForEachChunk(MarkInvalidPCCb
, &arg
);
441 // Sets the appropriate tag on each chunk.
442 static void ClassifyAllChunks(SuspendedThreadsList
const &suspended_threads
) {
443 // Holds the flood fill frontier.
444 Frontier
frontier(1);
446 ForEachChunk(CollectIgnoredCb
, &frontier
);
447 ProcessGlobalRegions(&frontier
);
448 ProcessThreads(suspended_threads
, &frontier
);
449 ProcessRootRegions(&frontier
);
450 FloodFillTag(&frontier
, kReachable
);
452 CHECK_EQ(0, frontier
.size());
453 ProcessPC(&frontier
);
455 // The check here is relatively expensive, so we do this in a separate flood
456 // fill. That way we can skip the check for chunks that are reachable
458 LOG_POINTERS("Processing platform-specific allocations.\n");
459 ProcessPlatformSpecificAllocations(&frontier
);
460 FloodFillTag(&frontier
, kReachable
);
462 // Iterate over leaked chunks and mark those that are reachable from other
464 LOG_POINTERS("Scanning leaked chunks.\n");
465 ForEachChunk(MarkIndirectlyLeakedCb
, nullptr);
468 // ForEachChunk callback. Resets the tags to pre-leak-check state.
469 static void ResetTagsCb(uptr chunk
, void *arg
) {
471 chunk
= GetUserBegin(chunk
);
472 LsanMetadata
m(chunk
);
473 if (m
.allocated() && m
.tag() != kIgnored
)
474 m
.set_tag(kDirectlyLeaked
);
477 static void PrintStackTraceById(u32 stack_trace_id
) {
478 CHECK(stack_trace_id
);
479 StackDepotGet(stack_trace_id
).Print();
482 // ForEachChunk callback. Aggregates information about unreachable chunks into
484 static void CollectLeaksCb(uptr chunk
, void *arg
) {
486 LeakReport
*leak_report
= reinterpret_cast<LeakReport
*>(arg
);
487 chunk
= GetUserBegin(chunk
);
488 LsanMetadata
m(chunk
);
489 if (!m
.allocated()) return;
490 if (m
.tag() == kDirectlyLeaked
|| m
.tag() == kIndirectlyLeaked
) {
491 u32 resolution
= flags()->resolution
;
492 u32 stack_trace_id
= 0;
493 if (resolution
> 0) {
494 StackTrace stack
= StackDepotGet(m
.stack_trace_id());
495 stack
.size
= Min(stack
.size
, resolution
);
496 stack_trace_id
= StackDepotPut(stack
);
498 stack_trace_id
= m
.stack_trace_id();
500 leak_report
->AddLeakedChunk(chunk
, stack_trace_id
, m
.requested_size(),
505 static void PrintMatchedSuppressions() {
506 InternalMmapVector
<Suppression
*> matched(1);
507 GetSuppressionContext()->GetMatched(&matched
);
510 const char *line
= "-----------------------------------------------------";
511 Printf("%s\n", line
);
512 Printf("Suppressions used:\n");
513 Printf(" count bytes template\n");
514 for (uptr i
= 0; i
< matched
.size(); i
++)
515 Printf("%7zu %10zu %s\n", static_cast<uptr
>(atomic_load_relaxed(
516 &matched
[i
]->hit_count
)), matched
[i
]->weight
, matched
[i
]->templ
);
517 Printf("%s\n\n", line
);
520 struct CheckForLeaksParam
{
522 LeakReport leak_report
;
525 static void CheckForLeaksCallback(const SuspendedThreadsList
&suspended_threads
,
527 CheckForLeaksParam
*param
= reinterpret_cast<CheckForLeaksParam
*>(arg
);
529 CHECK(!param
->success
);
530 ClassifyAllChunks(suspended_threads
);
531 ForEachChunk(CollectLeaksCb
, ¶m
->leak_report
);
532 // Clean up for subsequent leak checks. This assumes we did not overwrite any
534 ForEachChunk(ResetTagsCb
, nullptr);
535 param
->success
= true;
538 static bool CheckForLeaks() {
539 if (&__lsan_is_turned_off
&& __lsan_is_turned_off())
541 EnsureMainThreadIDIsCorrect();
542 CheckForLeaksParam param
;
543 param
.success
= false;
544 LockThreadRegistry();
546 DoStopTheWorld(CheckForLeaksCallback
, ¶m
);
548 UnlockThreadRegistry();
550 if (!param
.success
) {
551 Report("LeakSanitizer has encountered a fatal error.\n");
553 "HINT: For debugging, try setting environment variable "
554 "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
556 "HINT: LeakSanitizer does not work under ptrace (strace, gdb, etc)\n");
559 param
.leak_report
.ApplySuppressions();
560 uptr unsuppressed_count
= param
.leak_report
.UnsuppressedLeakCount();
561 if (unsuppressed_count
> 0) {
564 "================================================================="
566 Printf("%s", d
.Error());
567 Report("ERROR: LeakSanitizer: detected memory leaks\n");
568 Printf("%s", d
.Default());
569 param
.leak_report
.ReportTopLeaks(flags()->max_leaks
);
571 if (common_flags()->print_suppressions
)
572 PrintMatchedSuppressions();
573 if (unsuppressed_count
> 0) {
574 param
.leak_report
.PrintSummary();
580 static bool has_reported_leaks
= false;
581 bool HasReportedLeaks() { return has_reported_leaks
; }
584 BlockingMutexLock
l(&global_mutex
);
585 static bool already_done
;
586 if (already_done
) return;
588 has_reported_leaks
= CheckForLeaks();
589 if (has_reported_leaks
) HandleLeaks();
592 static int DoRecoverableLeakCheck() {
593 BlockingMutexLock
l(&global_mutex
);
594 bool have_leaks
= CheckForLeaks();
595 return have_leaks
? 1 : 0;
598 void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
600 static Suppression
*GetSuppressionForAddr(uptr addr
) {
601 Suppression
*s
= nullptr;
603 // Suppress by module name.
604 SuppressionContext
*suppressions
= GetSuppressionContext();
605 if (const char *module_name
=
606 Symbolizer::GetOrInit()->GetModuleNameForPc(addr
))
607 if (suppressions
->Match(module_name
, kSuppressionLeak
, &s
))
610 // Suppress by file or function name.
611 SymbolizedStack
*frames
= Symbolizer::GetOrInit()->SymbolizePC(addr
);
612 for (SymbolizedStack
*cur
= frames
; cur
; cur
= cur
->next
) {
613 if (suppressions
->Match(cur
->info
.function
, kSuppressionLeak
, &s
) ||
614 suppressions
->Match(cur
->info
.file
, kSuppressionLeak
, &s
)) {
622 static Suppression
*GetSuppressionForStack(u32 stack_trace_id
) {
623 StackTrace stack
= StackDepotGet(stack_trace_id
);
624 for (uptr i
= 0; i
< stack
.size
; i
++) {
625 Suppression
*s
= GetSuppressionForAddr(
626 StackTrace::GetPreviousInstructionPc(stack
.trace
[i
]));
632 ///// LeakReport implementation. /////
634 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
635 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
636 // in real-world applications.
637 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
639 const uptr kMaxLeaksConsidered
= 5000;
641 void LeakReport::AddLeakedChunk(uptr chunk
, u32 stack_trace_id
,
642 uptr leaked_size
, ChunkTag tag
) {
643 CHECK(tag
== kDirectlyLeaked
|| tag
== kIndirectlyLeaked
);
644 bool is_directly_leaked
= (tag
== kDirectlyLeaked
);
646 for (i
= 0; i
< leaks_
.size(); i
++) {
647 if (leaks_
[i
].stack_trace_id
== stack_trace_id
&&
648 leaks_
[i
].is_directly_leaked
== is_directly_leaked
) {
649 leaks_
[i
].hit_count
++;
650 leaks_
[i
].total_size
+= leaked_size
;
654 if (i
== leaks_
.size()) {
655 if (leaks_
.size() == kMaxLeaksConsidered
) return;
656 Leak leak
= { next_id_
++, /* hit_count */ 1, leaked_size
, stack_trace_id
,
657 is_directly_leaked
, /* is_suppressed */ false };
658 leaks_
.push_back(leak
);
660 if (flags()->report_objects
) {
661 LeakedObject obj
= {leaks_
[i
].id
, chunk
, leaked_size
};
662 leaked_objects_
.push_back(obj
);
666 static bool LeakComparator(const Leak
&leak1
, const Leak
&leak2
) {
667 if (leak1
.is_directly_leaked
== leak2
.is_directly_leaked
)
668 return leak1
.total_size
> leak2
.total_size
;
670 return leak1
.is_directly_leaked
;
673 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report
) {
674 CHECK(leaks_
.size() <= kMaxLeaksConsidered
);
676 if (leaks_
.size() == kMaxLeaksConsidered
)
677 Printf("Too many leaks! Only the first %zu leaks encountered will be "
679 kMaxLeaksConsidered
);
681 uptr unsuppressed_count
= UnsuppressedLeakCount();
682 if (num_leaks_to_report
> 0 && num_leaks_to_report
< unsuppressed_count
)
683 Printf("The %zu top leak(s):\n", num_leaks_to_report
);
684 InternalSort(&leaks_
, leaks_
.size(), LeakComparator
);
685 uptr leaks_reported
= 0;
686 for (uptr i
= 0; i
< leaks_
.size(); i
++) {
687 if (leaks_
[i
].is_suppressed
) continue;
688 PrintReportForLeak(i
);
690 if (leaks_reported
== num_leaks_to_report
) break;
692 if (leaks_reported
< unsuppressed_count
) {
693 uptr remaining
= unsuppressed_count
- leaks_reported
;
694 Printf("Omitting %zu more leak(s).\n", remaining
);
698 void LeakReport::PrintReportForLeak(uptr index
) {
700 Printf("%s", d
.Leak());
701 Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
702 leaks_
[index
].is_directly_leaked
? "Direct" : "Indirect",
703 leaks_
[index
].total_size
, leaks_
[index
].hit_count
);
704 Printf("%s", d
.Default());
706 PrintStackTraceById(leaks_
[index
].stack_trace_id
);
708 if (flags()->report_objects
) {
709 Printf("Objects leaked above:\n");
710 PrintLeakedObjectsForLeak(index
);
715 void LeakReport::PrintLeakedObjectsForLeak(uptr index
) {
716 u32 leak_id
= leaks_
[index
].id
;
717 for (uptr j
= 0; j
< leaked_objects_
.size(); j
++) {
718 if (leaked_objects_
[j
].leak_id
== leak_id
)
719 Printf("%p (%zu bytes)\n", leaked_objects_
[j
].addr
,
720 leaked_objects_
[j
].size
);
724 void LeakReport::PrintSummary() {
725 CHECK(leaks_
.size() <= kMaxLeaksConsidered
);
726 uptr bytes
= 0, allocations
= 0;
727 for (uptr i
= 0; i
< leaks_
.size(); i
++) {
728 if (leaks_
[i
].is_suppressed
) continue;
729 bytes
+= leaks_
[i
].total_size
;
730 allocations
+= leaks_
[i
].hit_count
;
732 InternalScopedString
summary(kMaxSummaryLength
);
733 summary
.append("%zu byte(s) leaked in %zu allocation(s).", bytes
,
735 ReportErrorSummary(summary
.data());
738 void LeakReport::ApplySuppressions() {
739 for (uptr i
= 0; i
< leaks_
.size(); i
++) {
740 Suppression
*s
= GetSuppressionForStack(leaks_
[i
].stack_trace_id
);
742 s
->weight
+= leaks_
[i
].total_size
;
743 atomic_store_relaxed(&s
->hit_count
, atomic_load_relaxed(&s
->hit_count
) +
744 leaks_
[i
].hit_count
);
745 leaks_
[i
].is_suppressed
= true;
750 uptr
LeakReport::UnsuppressedLeakCount() {
752 for (uptr i
= 0; i
< leaks_
.size(); i
++)
753 if (!leaks_
[i
].is_suppressed
) result
++;
757 } // namespace __lsan
758 #else // CAN_SANITIZE_LEAKS
760 void InitCommonLsan() { }
761 void DoLeakCheck() { }
762 void DoRecoverableLeakCheckVoid() { }
763 void DisableInThisThread() { }
764 void EnableInThisThread() { }
766 #endif // CAN_SANITIZE_LEAKS
768 using namespace __lsan
; // NOLINT
771 SANITIZER_INTERFACE_ATTRIBUTE
772 void __lsan_ignore_object(const void *p
) {
773 #if CAN_SANITIZE_LEAKS
774 if (!common_flags()->detect_leaks
)
776 // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
778 BlockingMutexLock
l(&global_mutex
);
779 IgnoreObjectResult res
= IgnoreObjectLocked(p
);
780 if (res
== kIgnoreObjectInvalid
)
781 VReport(1, "__lsan_ignore_object(): no heap object found at %p", p
);
782 if (res
== kIgnoreObjectAlreadyIgnored
)
783 VReport(1, "__lsan_ignore_object(): "
784 "heap object at %p is already being ignored\n", p
);
785 if (res
== kIgnoreObjectSuccess
)
786 VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p
);
787 #endif // CAN_SANITIZE_LEAKS
790 SANITIZER_INTERFACE_ATTRIBUTE
791 void __lsan_register_root_region(const void *begin
, uptr size
) {
792 #if CAN_SANITIZE_LEAKS
793 BlockingMutexLock
l(&global_mutex
);
795 RootRegion region
= {reinterpret_cast<uptr
>(begin
), size
};
796 root_regions
->push_back(region
);
797 VReport(1, "Registered root region at %p of size %llu\n", begin
, size
);
798 #endif // CAN_SANITIZE_LEAKS
801 SANITIZER_INTERFACE_ATTRIBUTE
802 void __lsan_unregister_root_region(const void *begin
, uptr size
) {
803 #if CAN_SANITIZE_LEAKS
804 BlockingMutexLock
l(&global_mutex
);
806 bool removed
= false;
807 for (uptr i
= 0; i
< root_regions
->size(); i
++) {
808 RootRegion region
= (*root_regions
)[i
];
809 if (region
.begin
== reinterpret_cast<uptr
>(begin
) && region
.size
== size
) {
811 uptr last_index
= root_regions
->size() - 1;
812 (*root_regions
)[i
] = (*root_regions
)[last_index
];
813 root_regions
->pop_back();
814 VReport(1, "Unregistered root region at %p of size %llu\n", begin
, size
);
820 "__lsan_unregister_root_region(): region at %p of size %llu has not "
821 "been registered.\n",
825 #endif // CAN_SANITIZE_LEAKS
828 SANITIZER_INTERFACE_ATTRIBUTE
829 void __lsan_disable() {
830 #if CAN_SANITIZE_LEAKS
831 __lsan::DisableInThisThread();
835 SANITIZER_INTERFACE_ATTRIBUTE
836 void __lsan_enable() {
837 #if CAN_SANITIZE_LEAKS
838 __lsan::EnableInThisThread();
842 SANITIZER_INTERFACE_ATTRIBUTE
843 void __lsan_do_leak_check() {
844 #if CAN_SANITIZE_LEAKS
845 if (common_flags()->detect_leaks
)
846 __lsan::DoLeakCheck();
847 #endif // CAN_SANITIZE_LEAKS
850 SANITIZER_INTERFACE_ATTRIBUTE
851 int __lsan_do_recoverable_leak_check() {
852 #if CAN_SANITIZE_LEAKS
853 if (common_flags()->detect_leaks
)
854 return __lsan::DoRecoverableLeakCheck();
855 #endif // CAN_SANITIZE_LEAKS
859 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
860 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
861 const char * __lsan_default_options() {
865 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
866 int __lsan_is_turned_off() {
870 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
871 const char *__lsan_default_suppressions() {