GCCPY: * README added
[official-gcc.git] / gcc / graphite-sese-to-poly.c
blob34057e948dafc65e5c3fcb91413031b04ba2f986
1 /* Conversion of SESE regions to Polyhedra.
2 Copyright (C) 2009-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
23 #ifdef HAVE_cloog
24 #include <isl/set.h>
25 #include <isl/map.h>
26 #include <isl/union_map.h>
27 #include <isl/constraint.h>
28 #include <isl/aff.h>
29 #include <cloog/cloog.h>
30 #include <cloog/cloog.h>
31 #include <cloog/isl/domain.h>
32 #endif
34 #include "system.h"
35 #include "coretypes.h"
36 #include "tree-flow.h"
37 #include "tree-pass.h"
38 #include "cfgloop.h"
39 #include "tree-chrec.h"
40 #include "tree-data-ref.h"
41 #include "tree-scalar-evolution.h"
42 #include "domwalk.h"
43 #include "sese.h"
45 #ifdef HAVE_cloog
46 #include "graphite-poly.h"
47 #include "graphite-sese-to-poly.h"
50 /* Assigns to RES the value of the INTEGER_CST T. */
52 static inline void
53 tree_int_to_gmp (tree t, mpz_t res)
55 double_int di = tree_to_double_int (t);
56 mpz_set_double_int (res, di, TYPE_UNSIGNED (TREE_TYPE (t)));
59 /* Returns the index of the PHI argument defined in the outermost
60 loop. */
62 static size_t
63 phi_arg_in_outermost_loop (gimple phi)
65 loop_p loop = gimple_bb (phi)->loop_father;
66 size_t i, res = 0;
68 for (i = 0; i < gimple_phi_num_args (phi); i++)
69 if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
71 loop = gimple_phi_arg_edge (phi, i)->src->loop_father;
72 res = i;
75 return res;
78 /* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
79 PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
81 static void
82 remove_simple_copy_phi (gimple_stmt_iterator *psi)
84 gimple phi = gsi_stmt (*psi);
85 tree res = gimple_phi_result (phi);
86 size_t entry = phi_arg_in_outermost_loop (phi);
87 tree init = gimple_phi_arg_def (phi, entry);
88 gimple stmt = gimple_build_assign (res, init);
89 edge e = gimple_phi_arg_edge (phi, entry);
91 remove_phi_node (psi, false);
92 gsi_insert_on_edge_immediate (e, stmt);
93 SSA_NAME_DEF_STMT (res) = stmt;
96 /* Removes an invariant phi node at position PSI by inserting on the
97 loop ENTRY edge the assignment RES = INIT. */
99 static void
100 remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
102 gimple phi = gsi_stmt (*psi);
103 loop_p loop = loop_containing_stmt (phi);
104 tree res = gimple_phi_result (phi);
105 tree scev = scalar_evolution_in_region (region, loop, res);
106 size_t entry = phi_arg_in_outermost_loop (phi);
107 edge e = gimple_phi_arg_edge (phi, entry);
108 tree var;
109 gimple stmt;
110 gimple_seq stmts = NULL;
112 if (tree_contains_chrecs (scev, NULL))
113 scev = gimple_phi_arg_def (phi, entry);
115 var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
116 stmt = gimple_build_assign (res, var);
117 remove_phi_node (psi, false);
119 gimple_seq_add_stmt (&stmts, stmt);
120 gsi_insert_seq_on_edge (e, stmts);
121 gsi_commit_edge_inserts ();
122 SSA_NAME_DEF_STMT (res) = stmt;
125 /* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
127 static inline bool
128 simple_copy_phi_p (gimple phi)
130 tree res;
132 if (gimple_phi_num_args (phi) != 2)
133 return false;
135 res = gimple_phi_result (phi);
136 return (res == gimple_phi_arg_def (phi, 0)
137 || res == gimple_phi_arg_def (phi, 1));
140 /* Returns true when the phi node at position PSI is a reduction phi
141 node in REGION. Otherwise moves the pointer PSI to the next phi to
142 be considered. */
144 static bool
145 reduction_phi_p (sese region, gimple_stmt_iterator *psi)
147 loop_p loop;
148 gimple phi = gsi_stmt (*psi);
149 tree res = gimple_phi_result (phi);
151 loop = loop_containing_stmt (phi);
153 if (simple_copy_phi_p (phi))
155 /* PRE introduces phi nodes like these, for an example,
156 see id-5.f in the fortran graphite testsuite:
158 # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
160 remove_simple_copy_phi (psi);
161 return false;
164 if (scev_analyzable_p (res, region))
166 tree scev = scalar_evolution_in_region (region, loop, res);
168 if (evolution_function_is_invariant_p (scev, loop->num))
169 remove_invariant_phi (region, psi);
170 else
171 gsi_next (psi);
173 return false;
176 /* All the other cases are considered reductions. */
177 return true;
180 /* Store the GRAPHITE representation of BB. */
182 static gimple_bb_p
183 new_gimple_bb (basic_block bb, vec<data_reference_p> drs)
185 struct gimple_bb *gbb;
187 gbb = XNEW (struct gimple_bb);
188 bb->aux = gbb;
189 GBB_BB (gbb) = bb;
190 GBB_DATA_REFS (gbb) = drs;
191 GBB_CONDITIONS (gbb).create (0);
192 GBB_CONDITION_CASES (gbb).create (0);
194 return gbb;
197 static void
198 free_data_refs_aux (vec<data_reference_p> datarefs)
200 unsigned int i;
201 struct data_reference *dr;
203 FOR_EACH_VEC_ELT (datarefs, i, dr)
204 if (dr->aux)
206 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
208 free (bap->alias_set);
210 free (bap);
211 dr->aux = NULL;
214 /* Frees GBB. */
216 static void
217 free_gimple_bb (struct gimple_bb *gbb)
219 free_data_refs_aux (GBB_DATA_REFS (gbb));
220 free_data_refs (GBB_DATA_REFS (gbb));
222 GBB_CONDITIONS (gbb).release ();
223 GBB_CONDITION_CASES (gbb).release ();
224 GBB_BB (gbb)->aux = 0;
225 XDELETE (gbb);
228 /* Deletes all gimple bbs in SCOP. */
230 static void
231 remove_gbbs_in_scop (scop_p scop)
233 int i;
234 poly_bb_p pbb;
236 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
237 free_gimple_bb (PBB_BLACK_BOX (pbb));
240 /* Deletes all scops in SCOPS. */
242 void
243 free_scops (vec<scop_p> scops)
245 int i;
246 scop_p scop;
248 FOR_EACH_VEC_ELT (scops, i, scop)
250 remove_gbbs_in_scop (scop);
251 free_sese (SCOP_REGION (scop));
252 free_scop (scop);
255 scops.release ();
258 /* Same as outermost_loop_in_sese, returns the outermost loop
259 containing BB in REGION, but makes sure that the returned loop
260 belongs to the REGION, and so this returns the first loop in the
261 REGION when the loop containing BB does not belong to REGION. */
263 static loop_p
264 outermost_loop_in_sese_1 (sese region, basic_block bb)
266 loop_p nest = outermost_loop_in_sese (region, bb);
268 if (loop_in_sese_p (nest, region))
269 return nest;
271 /* When the basic block BB does not belong to a loop in the region,
272 return the first loop in the region. */
273 nest = nest->inner;
274 while (nest)
275 if (loop_in_sese_p (nest, region))
276 break;
277 else
278 nest = nest->next;
280 gcc_assert (nest);
281 return nest;
284 /* Generates a polyhedral black box only if the bb contains interesting
285 information. */
287 static gimple_bb_p
288 try_generate_gimple_bb (scop_p scop, basic_block bb)
290 vec<data_reference_p> drs;
291 drs.create (5);
292 sese region = SCOP_REGION (scop);
293 loop_p nest = outermost_loop_in_sese_1 (region, bb);
294 gimple_stmt_iterator gsi;
296 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
298 gimple stmt = gsi_stmt (gsi);
299 loop_p loop;
301 if (is_gimple_debug (stmt))
302 continue;
304 loop = loop_containing_stmt (stmt);
305 if (!loop_in_sese_p (loop, region))
306 loop = nest;
308 graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
311 return new_gimple_bb (bb, drs);
314 /* Returns true if all predecessors of BB, that are not dominated by BB, are
315 marked in MAP. The predecessors dominated by BB are loop latches and will
316 be handled after BB. */
318 static bool
319 all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
321 edge e;
322 edge_iterator ei;
324 FOR_EACH_EDGE (e, ei, bb->preds)
325 if (!bitmap_bit_p (map, e->src->index)
326 && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
327 return false;
329 return true;
332 /* Compare the depth of two basic_block's P1 and P2. */
334 static int
335 compare_bb_depths (const void *p1, const void *p2)
337 const_basic_block const bb1 = *(const_basic_block const*)p1;
338 const_basic_block const bb2 = *(const_basic_block const*)p2;
339 int d1 = loop_depth (bb1->loop_father);
340 int d2 = loop_depth (bb2->loop_father);
342 if (d1 < d2)
343 return 1;
345 if (d1 > d2)
346 return -1;
348 return 0;
351 /* Sort the basic blocks from DOM such that the first are the ones at
352 a deepest loop level. */
354 static void
355 graphite_sort_dominated_info (vec<basic_block> dom)
357 dom.qsort (compare_bb_depths);
360 /* Recursive helper function for build_scops_bbs. */
362 static void
363 build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb)
365 sese region = SCOP_REGION (scop);
366 vec<basic_block> dom;
367 poly_bb_p pbb;
369 if (bitmap_bit_p (visited, bb->index)
370 || !bb_in_sese_p (bb, region))
371 return;
373 pbb = new_poly_bb (scop, try_generate_gimple_bb (scop, bb));
374 SCOP_BBS (scop).safe_push (pbb);
375 bitmap_set_bit (visited, bb->index);
377 dom = get_dominated_by (CDI_DOMINATORS, bb);
379 if (!dom.exists ())
380 return;
382 graphite_sort_dominated_info (dom);
384 while (!dom.is_empty ())
386 int i;
387 basic_block dom_bb;
389 FOR_EACH_VEC_ELT (dom, i, dom_bb)
390 if (all_non_dominated_preds_marked_p (dom_bb, visited))
392 build_scop_bbs_1 (scop, visited, dom_bb);
393 dom.unordered_remove (i);
394 break;
398 dom.release ();
401 /* Gather the basic blocks belonging to the SCOP. */
403 static void
404 build_scop_bbs (scop_p scop)
406 sbitmap visited = sbitmap_alloc (last_basic_block);
407 sese region = SCOP_REGION (scop);
409 bitmap_clear (visited);
410 build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region));
411 sbitmap_free (visited);
414 /* Return an ISL identifier for the polyhedral basic block PBB. */
416 static isl_id *
417 isl_id_for_pbb (scop_p s, poly_bb_p pbb)
419 char name[50];
420 snprintf (name, sizeof (name), "S_%d", pbb_index (pbb));
421 return isl_id_alloc (s->ctx, name, pbb);
424 /* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
425 We generate SCATTERING_DIMENSIONS scattering dimensions.
427 CLooG 0.15.0 and previous versions require, that all
428 scattering functions of one CloogProgram have the same number of
429 scattering dimensions, therefore we allow to specify it. This
430 should be removed in future versions of CLooG.
432 The scattering polyhedron consists of these dimensions: scattering,
433 loop_iterators, parameters.
435 Example:
437 | scattering_dimensions = 5
438 | used_scattering_dimensions = 3
439 | nb_iterators = 1
440 | scop_nb_params = 2
442 | Schedule:
444 | 4 5
446 | Scattering polyhedron:
448 | scattering: {s1, s2, s3, s4, s5}
449 | loop_iterators: {i}
450 | parameters: {p1, p2}
452 | s1 s2 s3 s4 s5 i p1 p2 1
453 | 1 0 0 0 0 0 0 0 -4 = 0
454 | 0 1 0 0 0 -1 0 0 0 = 0
455 | 0 0 1 0 0 0 0 0 -5 = 0 */
457 static void
458 build_pbb_scattering_polyhedrons (isl_aff *static_sched,
459 poly_bb_p pbb, int scattering_dimensions)
461 int i;
462 int nb_iterators = pbb_dim_iter_domain (pbb);
463 int used_scattering_dimensions = nb_iterators * 2 + 1;
464 isl_int val;
465 isl_space *dc, *dm;
467 gcc_assert (scattering_dimensions >= used_scattering_dimensions);
469 isl_int_init (val);
471 dc = isl_set_get_space (pbb->domain);
472 dm = isl_space_add_dims (isl_space_from_domain (dc),
473 isl_dim_out, scattering_dimensions);
474 pbb->schedule = isl_map_universe (dm);
476 for (i = 0; i < scattering_dimensions; i++)
478 /* Textual order inside this loop. */
479 if ((i % 2) == 0)
481 isl_constraint *c = isl_equality_alloc
482 (isl_local_space_from_space (isl_map_get_space (pbb->schedule)));
484 if (0 != isl_aff_get_coefficient (static_sched, isl_dim_in,
485 i / 2, &val))
486 gcc_unreachable ();
488 isl_int_neg (val, val);
489 c = isl_constraint_set_constant (c, val);
490 c = isl_constraint_set_coefficient_si (c, isl_dim_out, i, 1);
491 pbb->schedule = isl_map_add_constraint (pbb->schedule, c);
494 /* Iterations of this loop. */
495 else /* if ((i % 2) == 1) */
497 int loop = (i - 1) / 2;
498 pbb->schedule = isl_map_equate (pbb->schedule, isl_dim_in, loop,
499 isl_dim_out, i);
503 isl_int_clear (val);
505 pbb->transformed = isl_map_copy (pbb->schedule);
508 /* Build for BB the static schedule.
510 The static schedule is a Dewey numbering of the abstract syntax
511 tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
513 The following example informally defines the static schedule:
516 for (i: ...)
518 for (j: ...)
524 for (k: ...)
532 Static schedules for A to F:
534 DEPTH
535 0 1 2
537 B 1 0 0
538 C 1 0 1
539 D 1 1 0
540 E 1 1 1
544 static void
545 build_scop_scattering (scop_p scop)
547 int i;
548 poly_bb_p pbb;
549 gimple_bb_p previous_gbb = NULL;
550 isl_space *dc = isl_set_get_space (scop->context);
551 isl_aff *static_sched;
553 dc = isl_space_add_dims (dc, isl_dim_set, number_of_loops());
554 static_sched = isl_aff_zero_on_domain (isl_local_space_from_space (dc));
556 /* We have to start schedules at 0 on the first component and
557 because we cannot compare_prefix_loops against a previous loop,
558 prefix will be equal to zero, and that index will be
559 incremented before copying. */
560 static_sched = isl_aff_add_coefficient_si (static_sched, isl_dim_in, 0, -1);
562 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
564 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
565 int prefix;
566 int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
568 if (previous_gbb)
569 prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
570 else
571 prefix = 0;
573 previous_gbb = gbb;
575 static_sched = isl_aff_add_coefficient_si (static_sched, isl_dim_in,
576 prefix, 1);
577 build_pbb_scattering_polyhedrons (static_sched, pbb, nb_scat_dims);
580 isl_aff_free (static_sched);
583 static isl_pw_aff *extract_affine (scop_p, tree, __isl_take isl_space *space);
585 /* Extract an affine expression from the chain of recurrence E. */
587 static isl_pw_aff *
588 extract_affine_chrec (scop_p s, tree e, __isl_take isl_space *space)
590 isl_pw_aff *lhs = extract_affine (s, CHREC_LEFT (e), isl_space_copy (space));
591 isl_pw_aff *rhs = extract_affine (s, CHREC_RIGHT (e), isl_space_copy (space));
592 isl_local_space *ls = isl_local_space_from_space (space);
593 unsigned pos = sese_loop_depth ((sese) s->region,
594 get_loop (CHREC_VARIABLE (e))) - 1;
595 isl_aff *loop = isl_aff_set_coefficient_si
596 (isl_aff_zero_on_domain (ls), isl_dim_in, pos, 1);
597 isl_pw_aff *l = isl_pw_aff_from_aff (loop);
599 /* Before multiplying, make sure that the result is affine. */
600 gcc_assert (isl_pw_aff_is_cst (rhs)
601 || isl_pw_aff_is_cst (l));
603 return isl_pw_aff_add (lhs, isl_pw_aff_mul (rhs, l));
606 /* Extract an affine expression from the mult_expr E. */
608 static isl_pw_aff *
609 extract_affine_mul (scop_p s, tree e, __isl_take isl_space *space)
611 isl_pw_aff *lhs = extract_affine (s, TREE_OPERAND (e, 0),
612 isl_space_copy (space));
613 isl_pw_aff *rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
615 if (!isl_pw_aff_is_cst (lhs)
616 && !isl_pw_aff_is_cst (rhs))
618 isl_pw_aff_free (lhs);
619 isl_pw_aff_free (rhs);
620 return NULL;
623 return isl_pw_aff_mul (lhs, rhs);
626 /* Return an ISL identifier from the name of the ssa_name E. */
628 static isl_id *
629 isl_id_for_ssa_name (scop_p s, tree e)
631 const char *name = get_name (e);
632 isl_id *id;
634 if (name)
635 id = isl_id_alloc (s->ctx, name, e);
636 else
638 char name1[50];
639 snprintf (name1, sizeof (name1), "P_%d", SSA_NAME_VERSION (e));
640 id = isl_id_alloc (s->ctx, name1, e);
643 return id;
646 /* Return an ISL identifier for the data reference DR. */
648 static isl_id *
649 isl_id_for_dr (scop_p s, data_reference_p dr ATTRIBUTE_UNUSED)
651 /* Data references all get the same isl_id. They need to be comparable
652 and are distinguished through the first dimension, which contains the
653 alias set number. */
654 return isl_id_alloc (s->ctx, "", 0);
657 /* Extract an affine expression from the ssa_name E. */
659 static isl_pw_aff *
660 extract_affine_name (scop_p s, tree e, __isl_take isl_space *space)
662 isl_aff *aff;
663 isl_set *dom;
664 isl_id *id;
665 int dimension;
667 id = isl_id_for_ssa_name (s, e);
668 dimension = isl_space_find_dim_by_id (space, isl_dim_param, id);
669 isl_id_free(id);
670 dom = isl_set_universe (isl_space_copy (space));
671 aff = isl_aff_zero_on_domain (isl_local_space_from_space (space));
672 aff = isl_aff_add_coefficient_si (aff, isl_dim_param, dimension, 1);
673 return isl_pw_aff_alloc (dom, aff);
676 /* Extract an affine expression from the gmp constant G. */
678 static isl_pw_aff *
679 extract_affine_gmp (mpz_t g, __isl_take isl_space *space)
681 isl_local_space *ls = isl_local_space_from_space (isl_space_copy (space));
682 isl_aff *aff = isl_aff_zero_on_domain (ls);
683 isl_set *dom = isl_set_universe (space);
684 isl_int v;
686 isl_int_init (v);
687 isl_int_set_gmp (v, g);
688 aff = isl_aff_add_constant (aff, v);
689 isl_int_clear (v);
691 return isl_pw_aff_alloc (dom, aff);
694 /* Extract an affine expression from the integer_cst E. */
696 static isl_pw_aff *
697 extract_affine_int (tree e, __isl_take isl_space *space)
699 isl_pw_aff *res;
700 mpz_t g;
702 mpz_init (g);
703 tree_int_to_gmp (e, g);
704 res = extract_affine_gmp (g, space);
705 mpz_clear (g);
707 return res;
710 /* Compute pwaff mod 2^width. */
712 static isl_pw_aff *
713 wrap (isl_pw_aff *pwaff, unsigned width)
715 isl_int mod;
717 isl_int_init (mod);
718 isl_int_set_si (mod, 1);
719 isl_int_mul_2exp (mod, mod, width);
721 pwaff = isl_pw_aff_mod (pwaff, mod);
723 isl_int_clear (mod);
725 return pwaff;
728 /* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
729 Otherwise returns -1. */
731 static inline int
732 parameter_index_in_region_1 (tree name, sese region)
734 int i;
735 tree p;
737 gcc_assert (TREE_CODE (name) == SSA_NAME);
739 FOR_EACH_VEC_ELT (SESE_PARAMS (region), i, p)
740 if (p == name)
741 return i;
743 return -1;
746 /* When the parameter NAME is in REGION, returns its index in
747 SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
748 and returns the index of NAME. */
750 static int
751 parameter_index_in_region (tree name, sese region)
753 int i;
755 gcc_assert (TREE_CODE (name) == SSA_NAME);
757 i = parameter_index_in_region_1 (name, region);
758 if (i != -1)
759 return i;
761 gcc_assert (SESE_ADD_PARAMS (region));
763 i = SESE_PARAMS (region).length ();
764 SESE_PARAMS (region).safe_push (name);
765 return i;
768 /* Extract an affine expression from the tree E in the scop S. */
770 static isl_pw_aff *
771 extract_affine (scop_p s, tree e, __isl_take isl_space *space)
773 isl_pw_aff *lhs, *rhs, *res;
774 tree type;
776 if (e == chrec_dont_know) {
777 isl_space_free (space);
778 return NULL;
781 switch (TREE_CODE (e))
783 case POLYNOMIAL_CHREC:
784 res = extract_affine_chrec (s, e, space);
785 break;
787 case MULT_EXPR:
788 res = extract_affine_mul (s, e, space);
789 break;
791 case PLUS_EXPR:
792 case POINTER_PLUS_EXPR:
793 lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
794 rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
795 res = isl_pw_aff_add (lhs, rhs);
796 break;
798 case MINUS_EXPR:
799 lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
800 rhs = extract_affine (s, TREE_OPERAND (e, 1), space);
801 res = isl_pw_aff_sub (lhs, rhs);
802 break;
804 case NEGATE_EXPR:
805 case BIT_NOT_EXPR:
806 lhs = extract_affine (s, TREE_OPERAND (e, 0), isl_space_copy (space));
807 rhs = extract_affine (s, integer_minus_one_node, space);
808 res = isl_pw_aff_mul (lhs, rhs);
809 break;
811 case SSA_NAME:
812 gcc_assert (-1 != parameter_index_in_region_1 (e, SCOP_REGION (s)));
813 res = extract_affine_name (s, e, space);
814 break;
816 case INTEGER_CST:
817 res = extract_affine_int (e, space);
818 /* No need to wrap a single integer. */
819 return res;
821 CASE_CONVERT:
822 case NON_LVALUE_EXPR:
823 res = extract_affine (s, TREE_OPERAND (e, 0), space);
824 break;
826 default:
827 gcc_unreachable ();
828 break;
831 type = TREE_TYPE (e);
832 if (TYPE_UNSIGNED (type))
833 res = wrap (res, TYPE_PRECISION (type));
835 return res;
838 /* In the context of sese S, scan the expression E and translate it to
839 a linear expression C. When parsing a symbolic multiplication, K
840 represents the constant multiplier of an expression containing
841 parameters. */
843 static void
844 scan_tree_for_params (sese s, tree e)
846 if (e == chrec_dont_know)
847 return;
849 switch (TREE_CODE (e))
851 case POLYNOMIAL_CHREC:
852 scan_tree_for_params (s, CHREC_LEFT (e));
853 break;
855 case MULT_EXPR:
856 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
857 scan_tree_for_params (s, TREE_OPERAND (e, 0));
858 else
859 scan_tree_for_params (s, TREE_OPERAND (e, 1));
860 break;
862 case PLUS_EXPR:
863 case POINTER_PLUS_EXPR:
864 case MINUS_EXPR:
865 scan_tree_for_params (s, TREE_OPERAND (e, 0));
866 scan_tree_for_params (s, TREE_OPERAND (e, 1));
867 break;
869 case NEGATE_EXPR:
870 case BIT_NOT_EXPR:
871 CASE_CONVERT:
872 case NON_LVALUE_EXPR:
873 scan_tree_for_params (s, TREE_OPERAND (e, 0));
874 break;
876 case SSA_NAME:
877 parameter_index_in_region (e, s);
878 break;
880 case INTEGER_CST:
881 case ADDR_EXPR:
882 break;
884 default:
885 gcc_unreachable ();
886 break;
890 /* Find parameters with respect to REGION in BB. We are looking in memory
891 access functions, conditions and loop bounds. */
893 static void
894 find_params_in_bb (sese region, gimple_bb_p gbb)
896 int i;
897 unsigned j;
898 data_reference_p dr;
899 gimple stmt;
900 loop_p loop = GBB_BB (gbb)->loop_father;
902 /* Find parameters in the access functions of data references. */
903 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
904 for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
905 scan_tree_for_params (region, DR_ACCESS_FN (dr, j));
907 /* Find parameters in conditional statements. */
908 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
910 tree lhs = scalar_evolution_in_region (region, loop,
911 gimple_cond_lhs (stmt));
912 tree rhs = scalar_evolution_in_region (region, loop,
913 gimple_cond_rhs (stmt));
915 scan_tree_for_params (region, lhs);
916 scan_tree_for_params (region, rhs);
920 /* Record the parameters used in the SCOP. A variable is a parameter
921 in a scop if it does not vary during the execution of that scop. */
923 static void
924 find_scop_parameters (scop_p scop)
926 poly_bb_p pbb;
927 unsigned i;
928 sese region = SCOP_REGION (scop);
929 struct loop *loop;
930 int nbp;
932 /* Find the parameters used in the loop bounds. */
933 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), i, loop)
935 tree nb_iters = number_of_latch_executions (loop);
937 if (!chrec_contains_symbols (nb_iters))
938 continue;
940 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
941 scan_tree_for_params (region, nb_iters);
944 /* Find the parameters used in data accesses. */
945 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
946 find_params_in_bb (region, PBB_BLACK_BOX (pbb));
948 nbp = sese_nb_params (region);
949 scop_set_nb_params (scop, nbp);
950 SESE_ADD_PARAMS (region) = false;
953 tree e;
954 isl_space *space = isl_space_set_alloc (scop->ctx, nbp, 0);
956 FOR_EACH_VEC_ELT (SESE_PARAMS (region), i, e)
957 space = isl_space_set_dim_id (space, isl_dim_param, i,
958 isl_id_for_ssa_name (scop, e));
960 scop->context = isl_set_universe (space);
964 /* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
965 the constraints for the surrounding loops. */
967 static void
968 build_loop_iteration_domains (scop_p scop, struct loop *loop,
969 int nb,
970 isl_set *outer, isl_set **doms)
972 tree nb_iters = number_of_latch_executions (loop);
973 sese region = SCOP_REGION (scop);
975 isl_set *inner = isl_set_copy (outer);
976 isl_space *space;
977 isl_constraint *c;
978 int pos = isl_set_dim (outer, isl_dim_set);
979 isl_int v;
980 mpz_t g;
982 mpz_init (g);
983 isl_int_init (v);
985 inner = isl_set_add_dims (inner, isl_dim_set, 1);
986 space = isl_set_get_space (inner);
988 /* 0 <= loop_i */
989 c = isl_inequality_alloc
990 (isl_local_space_from_space (isl_space_copy (space)));
991 c = isl_constraint_set_coefficient_si (c, isl_dim_set, pos, 1);
992 inner = isl_set_add_constraint (inner, c);
994 /* loop_i <= cst_nb_iters */
995 if (TREE_CODE (nb_iters) == INTEGER_CST)
997 c = isl_inequality_alloc
998 (isl_local_space_from_space(isl_space_copy (space)));
999 c = isl_constraint_set_coefficient_si (c, isl_dim_set, pos, -1);
1000 tree_int_to_gmp (nb_iters, g);
1001 isl_int_set_gmp (v, g);
1002 c = isl_constraint_set_constant (c, v);
1003 inner = isl_set_add_constraint (inner, c);
1006 /* loop_i <= expr_nb_iters */
1007 else if (!chrec_contains_undetermined (nb_iters))
1009 double_int nit;
1010 isl_pw_aff *aff;
1011 isl_set *valid;
1012 isl_local_space *ls;
1013 isl_aff *al;
1014 isl_set *le;
1016 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
1018 aff = extract_affine (scop, nb_iters, isl_set_get_space (inner));
1019 valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (aff));
1020 valid = isl_set_project_out (valid, isl_dim_set, 0,
1021 isl_set_dim (valid, isl_dim_set));
1022 scop->context = isl_set_intersect (scop->context, valid);
1024 ls = isl_local_space_from_space (isl_space_copy (space));
1025 al = isl_aff_set_coefficient_si (isl_aff_zero_on_domain (ls),
1026 isl_dim_in, pos, 1);
1027 le = isl_pw_aff_le_set (isl_pw_aff_from_aff (al),
1028 isl_pw_aff_copy (aff));
1029 inner = isl_set_intersect (inner, le);
1031 if (max_stmt_executions (loop, &nit))
1033 /* Insert in the context the constraints from the
1034 estimation of the number of iterations NIT and the
1035 symbolic number of iterations (involving parameter
1036 names) NB_ITERS. First, build the affine expression
1037 "NIT - NB_ITERS" and then say that it is positive,
1038 i.e., NIT approximates NB_ITERS: "NIT >= NB_ITERS". */
1039 isl_pw_aff *approx;
1040 mpz_t g;
1041 isl_set *x;
1042 isl_constraint *c;
1044 mpz_init (g);
1045 mpz_set_double_int (g, nit, false);
1046 mpz_sub_ui (g, g, 1);
1047 approx = extract_affine_gmp (g, isl_set_get_space (inner));
1048 x = isl_pw_aff_ge_set (approx, aff);
1049 x = isl_set_project_out (x, isl_dim_set, 0,
1050 isl_set_dim (x, isl_dim_set));
1051 scop->context = isl_set_intersect (scop->context, x);
1053 c = isl_inequality_alloc
1054 (isl_local_space_from_space (isl_space_copy (space)));
1055 c = isl_constraint_set_coefficient_si (c, isl_dim_set, pos, -1);
1056 isl_int_set_gmp (v, g);
1057 mpz_clear (g);
1058 c = isl_constraint_set_constant (c, v);
1059 inner = isl_set_add_constraint (inner, c);
1061 else
1062 isl_pw_aff_free (aff);
1064 else
1065 gcc_unreachable ();
1067 if (loop->inner && loop_in_sese_p (loop->inner, region))
1068 build_loop_iteration_domains (scop, loop->inner, nb + 1,
1069 isl_set_copy (inner), doms);
1071 if (nb != 0
1072 && loop->next
1073 && loop_in_sese_p (loop->next, region))
1074 build_loop_iteration_domains (scop, loop->next, nb,
1075 isl_set_copy (outer), doms);
1077 doms[loop->num] = inner;
1079 isl_set_free (outer);
1080 isl_space_free (space);
1081 isl_int_clear (v);
1082 mpz_clear (g);
1085 /* Returns a linear expression for tree T evaluated in PBB. */
1087 static isl_pw_aff *
1088 create_pw_aff_from_tree (poly_bb_p pbb, tree t)
1090 scop_p scop = PBB_SCOP (pbb);
1092 t = scalar_evolution_in_region (SCOP_REGION (scop), pbb_loop (pbb), t);
1093 gcc_assert (!automatically_generated_chrec_p (t));
1095 return extract_affine (scop, t, isl_set_get_space (pbb->domain));
1098 /* Add conditional statement STMT to pbb. CODE is used as the comparison
1099 operator. This allows us to invert the condition or to handle
1100 inequalities. */
1102 static void
1103 add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
1105 isl_pw_aff *lhs = create_pw_aff_from_tree (pbb, gimple_cond_lhs (stmt));
1106 isl_pw_aff *rhs = create_pw_aff_from_tree (pbb, gimple_cond_rhs (stmt));
1107 isl_set *cond;
1109 switch (code)
1111 case LT_EXPR:
1112 cond = isl_pw_aff_lt_set (lhs, rhs);
1113 break;
1115 case GT_EXPR:
1116 cond = isl_pw_aff_gt_set (lhs, rhs);
1117 break;
1119 case LE_EXPR:
1120 cond = isl_pw_aff_le_set (lhs, rhs);
1121 break;
1123 case GE_EXPR:
1124 cond = isl_pw_aff_ge_set (lhs, rhs);
1125 break;
1127 case EQ_EXPR:
1128 cond = isl_pw_aff_eq_set (lhs, rhs);
1129 break;
1131 case NE_EXPR:
1132 cond = isl_pw_aff_ne_set (lhs, rhs);
1133 break;
1135 default:
1136 isl_pw_aff_free(lhs);
1137 isl_pw_aff_free(rhs);
1138 return;
1141 cond = isl_set_coalesce (cond);
1142 cond = isl_set_set_tuple_id (cond, isl_set_get_tuple_id (pbb->domain));
1143 pbb->domain = isl_set_intersect (pbb->domain, cond);
1146 /* Add conditions to the domain of PBB. */
1148 static void
1149 add_conditions_to_domain (poly_bb_p pbb)
1151 unsigned int i;
1152 gimple stmt;
1153 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
1155 if (GBB_CONDITIONS (gbb).is_empty ())
1156 return;
1158 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
1159 switch (gimple_code (stmt))
1161 case GIMPLE_COND:
1163 enum tree_code code = gimple_cond_code (stmt);
1165 /* The conditions for ELSE-branches are inverted. */
1166 if (!GBB_CONDITION_CASES (gbb)[i])
1167 code = invert_tree_comparison (code, false);
1169 add_condition_to_pbb (pbb, stmt, code);
1170 break;
1173 case GIMPLE_SWITCH:
1174 /* Switch statements are not supported right now - fall through. */
1176 default:
1177 gcc_unreachable ();
1178 break;
1182 /* Traverses all the GBBs of the SCOP and add their constraints to the
1183 iteration domains. */
1185 static void
1186 add_conditions_to_constraints (scop_p scop)
1188 int i;
1189 poly_bb_p pbb;
1191 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
1192 add_conditions_to_domain (pbb);
1195 /* Structure used to pass data to dom_walk. */
1197 struct bsc
1199 vec<gimple> *conditions, *cases;
1200 sese region;
1203 /* Returns a COND_EXPR statement when BB has a single predecessor, the
1204 edge between BB and its predecessor is not a loop exit edge, and
1205 the last statement of the single predecessor is a COND_EXPR. */
1207 static gimple
1208 single_pred_cond_non_loop_exit (basic_block bb)
1210 if (single_pred_p (bb))
1212 edge e = single_pred_edge (bb);
1213 basic_block pred = e->src;
1214 gimple stmt;
1216 if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
1217 return NULL;
1219 stmt = last_stmt (pred);
1221 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1222 return stmt;
1225 return NULL;
1228 /* Call-back for dom_walk executed before visiting the dominated
1229 blocks. */
1231 static void
1232 build_sese_conditions_before (struct dom_walk_data *dw_data,
1233 basic_block bb)
1235 struct bsc *data = (struct bsc *) dw_data->global_data;
1236 vec<gimple> *conditions = data->conditions;
1237 vec<gimple> *cases = data->cases;
1238 gimple_bb_p gbb;
1239 gimple stmt;
1241 if (!bb_in_sese_p (bb, data->region))
1242 return;
1244 stmt = single_pred_cond_non_loop_exit (bb);
1246 if (stmt)
1248 edge e = single_pred_edge (bb);
1250 conditions->safe_push (stmt);
1252 if (e->flags & EDGE_TRUE_VALUE)
1253 cases->safe_push (stmt);
1254 else
1255 cases->safe_push (NULL);
1258 gbb = gbb_from_bb (bb);
1260 if (gbb)
1262 GBB_CONDITIONS (gbb) = conditions->copy ();
1263 GBB_CONDITION_CASES (gbb) = cases->copy ();
1267 /* Call-back for dom_walk executed after visiting the dominated
1268 blocks. */
1270 static void
1271 build_sese_conditions_after (struct dom_walk_data *dw_data,
1272 basic_block bb)
1274 struct bsc *data = (struct bsc *) dw_data->global_data;
1275 vec<gimple> *conditions = data->conditions;
1276 vec<gimple> *cases = data->cases;
1278 if (!bb_in_sese_p (bb, data->region))
1279 return;
1281 if (single_pred_cond_non_loop_exit (bb))
1283 conditions->pop ();
1284 cases->pop ();
1288 /* Record all conditions in REGION. */
1290 static void
1291 build_sese_conditions (sese region)
1293 struct dom_walk_data walk_data;
1294 vec<gimple> conditions;
1295 conditions.create (3);
1296 vec<gimple> cases;
1297 cases.create (3);
1298 struct bsc data;
1300 data.conditions = &conditions;
1301 data.cases = &cases;
1302 data.region = region;
1304 walk_data.dom_direction = CDI_DOMINATORS;
1305 walk_data.initialize_block_local_data = NULL;
1306 walk_data.before_dom_children = build_sese_conditions_before;
1307 walk_data.after_dom_children = build_sese_conditions_after;
1308 walk_data.global_data = &data;
1309 walk_data.block_local_data_size = 0;
1311 init_walk_dominator_tree (&walk_data);
1312 walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
1313 fini_walk_dominator_tree (&walk_data);
1315 conditions.release ();
1316 cases.release ();
1319 /* Add constraints on the possible values of parameter P from the type
1320 of P. */
1322 static void
1323 add_param_constraints (scop_p scop, graphite_dim_t p)
1325 tree parameter = SESE_PARAMS (SCOP_REGION (scop))[p];
1326 tree type = TREE_TYPE (parameter);
1327 tree lb = NULL_TREE;
1328 tree ub = NULL_TREE;
1330 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
1331 lb = lower_bound_in_type (type, type);
1332 else
1333 lb = TYPE_MIN_VALUE (type);
1335 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
1336 ub = upper_bound_in_type (type, type);
1337 else
1338 ub = TYPE_MAX_VALUE (type);
1340 if (lb)
1342 isl_space *space = isl_set_get_space (scop->context);
1343 isl_constraint *c;
1344 mpz_t g;
1345 isl_int v;
1347 c = isl_inequality_alloc (isl_local_space_from_space (space));
1348 mpz_init (g);
1349 isl_int_init (v);
1350 tree_int_to_gmp (lb, g);
1351 isl_int_set_gmp (v, g);
1352 isl_int_neg (v, v);
1353 mpz_clear (g);
1354 c = isl_constraint_set_constant (c, v);
1355 isl_int_clear (v);
1356 c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, 1);
1358 scop->context = isl_set_add_constraint (scop->context, c);
1361 if (ub)
1363 isl_space *space = isl_set_get_space (scop->context);
1364 isl_constraint *c;
1365 mpz_t g;
1366 isl_int v;
1368 c = isl_inequality_alloc (isl_local_space_from_space (space));
1370 mpz_init (g);
1371 isl_int_init (v);
1372 tree_int_to_gmp (ub, g);
1373 isl_int_set_gmp (v, g);
1374 mpz_clear (g);
1375 c = isl_constraint_set_constant (c, v);
1376 isl_int_clear (v);
1377 c = isl_constraint_set_coefficient_si (c, isl_dim_param, p, -1);
1379 scop->context = isl_set_add_constraint (scop->context, c);
1383 /* Build the context of the SCOP. The context usually contains extra
1384 constraints that are added to the iteration domains that constrain
1385 some parameters. */
1387 static void
1388 build_scop_context (scop_p scop)
1390 graphite_dim_t p, n = scop_nb_params (scop);
1392 for (p = 0; p < n; p++)
1393 add_param_constraints (scop, p);
1396 /* Build the iteration domains: the loops belonging to the current
1397 SCOP, and that vary for the execution of the current basic block.
1398 Returns false if there is no loop in SCOP. */
1400 static void
1401 build_scop_iteration_domain (scop_p scop)
1403 struct loop *loop;
1404 sese region = SCOP_REGION (scop);
1405 int i;
1406 poly_bb_p pbb;
1407 int nb_loops = number_of_loops ();
1408 isl_set **doms = XCNEWVEC (isl_set *, nb_loops);
1410 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), i, loop)
1411 if (!loop_in_sese_p (loop_outer (loop), region))
1412 build_loop_iteration_domains (scop, loop, 0,
1413 isl_set_copy (scop->context), doms);
1415 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
1417 loop = pbb_loop (pbb);
1419 if (doms[loop->num])
1420 pbb->domain = isl_set_copy (doms[loop->num]);
1421 else
1422 pbb->domain = isl_set_copy (scop->context);
1424 pbb->domain = isl_set_set_tuple_id (pbb->domain,
1425 isl_id_for_pbb (scop, pbb));
1428 for (i = 0; i < nb_loops; i++)
1429 if (doms[i])
1430 isl_set_free (doms[i]);
1432 free (doms);
1435 /* Add a constrain to the ACCESSES polyhedron for the alias set of
1436 data reference DR. ACCESSP_NB_DIMS is the dimension of the
1437 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1438 domain. */
1440 static isl_map *
1441 pdr_add_alias_set (isl_map *acc, data_reference_p dr)
1443 isl_constraint *c;
1444 int alias_set_num = 0;
1445 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
1447 if (bap && bap->alias_set)
1448 alias_set_num = *(bap->alias_set);
1450 c = isl_equality_alloc
1451 (isl_local_space_from_space (isl_map_get_space (acc)));
1452 c = isl_constraint_set_constant_si (c, -alias_set_num);
1453 c = isl_constraint_set_coefficient_si (c, isl_dim_out, 0, 1);
1455 return isl_map_add_constraint (acc, c);
1458 /* Assign the affine expression INDEX to the output dimension POS of
1459 MAP and return the result. */
1461 static isl_map *
1462 set_index (isl_map *map, int pos, isl_pw_aff *index)
1464 isl_map *index_map;
1465 int len = isl_map_dim (map, isl_dim_out);
1466 isl_id *id;
1468 index_map = isl_map_from_pw_aff (index);
1469 index_map = isl_map_insert_dims (index_map, isl_dim_out, 0, pos);
1470 index_map = isl_map_add_dims (index_map, isl_dim_out, len - pos - 1);
1472 id = isl_map_get_tuple_id (map, isl_dim_out);
1473 index_map = isl_map_set_tuple_id (index_map, isl_dim_out, id);
1474 id = isl_map_get_tuple_id (map, isl_dim_in);
1475 index_map = isl_map_set_tuple_id (index_map, isl_dim_in, id);
1477 return isl_map_intersect (map, index_map);
1480 /* Add to ACCESSES polyhedron equalities defining the access functions
1481 to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
1482 polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
1483 PBB is the poly_bb_p that contains the data reference DR. */
1485 static isl_map *
1486 pdr_add_memory_accesses (isl_map *acc, data_reference_p dr, poly_bb_p pbb)
1488 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
1489 scop_p scop = PBB_SCOP (pbb);
1491 for (i = 0; i < nb_subscripts; i++)
1493 isl_pw_aff *aff;
1494 tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
1496 aff = extract_affine (scop, afn,
1497 isl_space_domain (isl_map_get_space (acc)));
1498 acc = set_index (acc, i + 1, aff);
1501 return acc;
1504 /* Add constrains representing the size of the accessed data to the
1505 ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
1506 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1507 domain. */
1509 static isl_set *
1510 pdr_add_data_dimensions (isl_set *extent, scop_p scop, data_reference_p dr)
1512 tree ref = DR_REF (dr);
1513 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
1515 for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
1517 tree low, high;
1519 if (TREE_CODE (ref) != ARRAY_REF)
1520 break;
1522 low = array_ref_low_bound (ref);
1523 high = array_ref_up_bound (ref);
1525 /* XXX The PPL code dealt separately with
1526 subscript - low >= 0 and high - subscript >= 0 in case one of
1527 the two bounds isn't known. Do the same here? */
1529 if (host_integerp (low, 0)
1530 && high
1531 && host_integerp (high, 0)
1532 /* 1-element arrays at end of structures may extend over
1533 their declared size. */
1534 && !(array_at_struct_end_p (ref)
1535 && operand_equal_p (low, high, 0)))
1537 isl_id *id;
1538 isl_aff *aff;
1539 isl_set *univ, *lbs, *ubs;
1540 isl_pw_aff *index;
1541 isl_space *space;
1542 isl_set *valid;
1543 isl_pw_aff *lb = extract_affine_int (low, isl_set_get_space (extent));
1544 isl_pw_aff *ub = extract_affine_int (high, isl_set_get_space (extent));
1546 /* high >= 0 */
1547 valid = isl_pw_aff_nonneg_set (isl_pw_aff_copy (ub));
1548 valid = isl_set_project_out (valid, isl_dim_set, 0,
1549 isl_set_dim (valid, isl_dim_set));
1550 scop->context = isl_set_intersect (scop->context, valid);
1552 space = isl_set_get_space (extent);
1553 aff = isl_aff_zero_on_domain (isl_local_space_from_space (space));
1554 aff = isl_aff_add_coefficient_si (aff, isl_dim_in, i + 1, 1);
1555 univ = isl_set_universe (isl_space_domain (isl_aff_get_space (aff)));
1556 index = isl_pw_aff_alloc (univ, aff);
1558 id = isl_set_get_tuple_id (extent);
1559 lb = isl_pw_aff_set_tuple_id (lb, isl_dim_in, isl_id_copy (id));
1560 ub = isl_pw_aff_set_tuple_id (ub, isl_dim_in, id);
1562 /* low <= sub_i <= high */
1563 lbs = isl_pw_aff_ge_set (isl_pw_aff_copy (index), lb);
1564 ubs = isl_pw_aff_le_set (index, ub);
1565 extent = isl_set_intersect (extent, lbs);
1566 extent = isl_set_intersect (extent, ubs);
1570 return extent;
1573 /* Build data accesses for DR in PBB. */
1575 static void
1576 build_poly_dr (data_reference_p dr, poly_bb_p pbb)
1578 int dr_base_object_set;
1579 isl_map *acc;
1580 isl_set *extent;
1581 scop_p scop = PBB_SCOP (pbb);
1584 isl_space *dc = isl_set_get_space (pbb->domain);
1585 int nb_out = 1 + DR_NUM_DIMENSIONS (dr);
1586 isl_space *space = isl_space_add_dims (isl_space_from_domain (dc),
1587 isl_dim_out, nb_out);
1589 acc = isl_map_universe (space);
1590 acc = isl_map_set_tuple_id (acc, isl_dim_out, isl_id_for_dr (scop, dr));
1593 acc = pdr_add_alias_set (acc, dr);
1594 acc = pdr_add_memory_accesses (acc, dr, pbb);
1597 isl_id *id = isl_id_for_dr (scop, dr);
1598 int nb = 1 + DR_NUM_DIMENSIONS (dr);
1599 isl_space *space = isl_space_set_alloc (scop->ctx, 0, nb);
1600 int alias_set_num = 0;
1601 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
1603 if (bap && bap->alias_set)
1604 alias_set_num = *(bap->alias_set);
1606 space = isl_space_set_tuple_id (space, isl_dim_set, id);
1607 extent = isl_set_nat_universe (space);
1608 extent = isl_set_fix_si (extent, isl_dim_set, 0, alias_set_num);
1609 extent = pdr_add_data_dimensions (extent, scop, dr);
1612 gcc_assert (dr->aux);
1613 dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
1615 new_poly_dr (pbb, dr_base_object_set,
1616 DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
1617 dr, DR_NUM_DIMENSIONS (dr), acc, extent);
1620 /* Write to FILE the alias graph of data references in DIMACS format. */
1622 static inline bool
1623 write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
1624 vec<data_reference_p> drs)
1626 int num_vertex = drs.length ();
1627 int edge_num = 0;
1628 data_reference_p dr1, dr2;
1629 int i, j;
1631 if (num_vertex == 0)
1632 return true;
1634 FOR_EACH_VEC_ELT (drs, i, dr1)
1635 for (j = i + 1; drs.iterate (j, &dr2); j++)
1636 if (dr_may_alias_p (dr1, dr2, true))
1637 edge_num++;
1639 fprintf (file, "$\n");
1641 if (comment)
1642 fprintf (file, "c %s\n", comment);
1644 fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
1646 FOR_EACH_VEC_ELT (drs, i, dr1)
1647 for (j = i + 1; drs.iterate (j, &dr2); j++)
1648 if (dr_may_alias_p (dr1, dr2, true))
1649 fprintf (file, "e %d %d\n", i + 1, j + 1);
1651 return true;
1654 /* Write to FILE the alias graph of data references in DOT format. */
1656 static inline bool
1657 write_alias_graph_to_ascii_dot (FILE *file, char *comment,
1658 vec<data_reference_p> drs)
1660 int num_vertex = drs.length ();
1661 data_reference_p dr1, dr2;
1662 int i, j;
1664 if (num_vertex == 0)
1665 return true;
1667 fprintf (file, "$\n");
1669 if (comment)
1670 fprintf (file, "c %s\n", comment);
1672 /* First print all the vertices. */
1673 FOR_EACH_VEC_ELT (drs, i, dr1)
1674 fprintf (file, "n%d;\n", i);
1676 FOR_EACH_VEC_ELT (drs, i, dr1)
1677 for (j = i + 1; drs.iterate (j, &dr2); j++)
1678 if (dr_may_alias_p (dr1, dr2, true))
1679 fprintf (file, "n%d n%d\n", i, j);
1681 return true;
1684 /* Write to FILE the alias graph of data references in ECC format. */
1686 static inline bool
1687 write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
1688 vec<data_reference_p> drs)
1690 int num_vertex = drs.length ();
1691 data_reference_p dr1, dr2;
1692 int i, j;
1694 if (num_vertex == 0)
1695 return true;
1697 fprintf (file, "$\n");
1699 if (comment)
1700 fprintf (file, "c %s\n", comment);
1702 FOR_EACH_VEC_ELT (drs, i, dr1)
1703 for (j = i + 1; drs.iterate (j, &dr2); j++)
1704 if (dr_may_alias_p (dr1, dr2, true))
1705 fprintf (file, "%d %d\n", i, j);
1707 return true;
1710 /* Check if DR1 and DR2 are in the same object set. */
1712 static bool
1713 dr_same_base_object_p (const struct data_reference *dr1,
1714 const struct data_reference *dr2)
1716 return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
1719 /* Uses DFS component number as representative of alias-sets. Also tests for
1720 optimality by verifying if every connected component is a clique. Returns
1721 true (1) if the above test is true, and false (0) otherwise. */
1723 static int
1724 build_alias_set_optimal_p (vec<data_reference_p> drs)
1726 int num_vertices = drs.length ();
1727 struct graph *g = new_graph (num_vertices);
1728 data_reference_p dr1, dr2;
1729 int i, j;
1730 int num_connected_components;
1731 int v_indx1, v_indx2, num_vertices_in_component;
1732 int *all_vertices;
1733 int *vertices;
1734 struct graph_edge *e;
1735 int this_component_is_clique;
1736 int all_components_are_cliques = 1;
1738 FOR_EACH_VEC_ELT (drs, i, dr1)
1739 for (j = i+1; drs.iterate (j, &dr2); j++)
1740 if (dr_may_alias_p (dr1, dr2, true))
1742 add_edge (g, i, j);
1743 add_edge (g, j, i);
1746 all_vertices = XNEWVEC (int, num_vertices);
1747 vertices = XNEWVEC (int, num_vertices);
1748 for (i = 0; i < num_vertices; i++)
1749 all_vertices[i] = i;
1751 num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
1752 NULL, true, NULL);
1753 for (i = 0; i < g->n_vertices; i++)
1755 data_reference_p dr = drs[i];
1756 base_alias_pair *bap;
1758 gcc_assert (dr->aux);
1759 bap = (base_alias_pair *)(dr->aux);
1761 bap->alias_set = XNEW (int);
1762 *(bap->alias_set) = g->vertices[i].component + 1;
1765 /* Verify if the DFS numbering results in optimal solution. */
1766 for (i = 0; i < num_connected_components; i++)
1768 num_vertices_in_component = 0;
1769 /* Get all vertices whose DFS component number is the same as i. */
1770 for (j = 0; j < num_vertices; j++)
1771 if (g->vertices[j].component == i)
1772 vertices[num_vertices_in_component++] = j;
1774 /* Now test if the vertices in 'vertices' form a clique, by testing
1775 for edges among each pair. */
1776 this_component_is_clique = 1;
1777 for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
1779 for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
1781 /* Check if the two vertices are connected by iterating
1782 through all the edges which have one of these are source. */
1783 e = g->vertices[vertices[v_indx2]].pred;
1784 while (e)
1786 if (e->src == vertices[v_indx1])
1787 break;
1788 e = e->pred_next;
1790 if (!e)
1792 this_component_is_clique = 0;
1793 break;
1796 if (!this_component_is_clique)
1797 all_components_are_cliques = 0;
1801 free (all_vertices);
1802 free (vertices);
1803 free_graph (g);
1804 return all_components_are_cliques;
1807 /* Group each data reference in DRS with its base object set num. */
1809 static void
1810 build_base_obj_set_for_drs (vec<data_reference_p> drs)
1812 int num_vertex = drs.length ();
1813 struct graph *g = new_graph (num_vertex);
1814 data_reference_p dr1, dr2;
1815 int i, j;
1816 int *queue;
1818 FOR_EACH_VEC_ELT (drs, i, dr1)
1819 for (j = i + 1; drs.iterate (j, &dr2); j++)
1820 if (dr_same_base_object_p (dr1, dr2))
1822 add_edge (g, i, j);
1823 add_edge (g, j, i);
1826 queue = XNEWVEC (int, num_vertex);
1827 for (i = 0; i < num_vertex; i++)
1828 queue[i] = i;
1830 graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
1832 for (i = 0; i < g->n_vertices; i++)
1834 data_reference_p dr = drs[i];
1835 base_alias_pair *bap;
1837 gcc_assert (dr->aux);
1838 bap = (base_alias_pair *)(dr->aux);
1840 bap->base_obj_set = g->vertices[i].component + 1;
1843 free (queue);
1844 free_graph (g);
1847 /* Build the data references for PBB. */
1849 static void
1850 build_pbb_drs (poly_bb_p pbb)
1852 int j;
1853 data_reference_p dr;
1854 vec<data_reference_p> gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
1856 FOR_EACH_VEC_ELT (gbb_drs, j, dr)
1857 build_poly_dr (dr, pbb);
1860 /* Dump to file the alias graphs for the data references in DRS. */
1862 static void
1863 dump_alias_graphs (vec<data_reference_p> drs)
1865 char comment[100];
1866 FILE *file_dimacs, *file_ecc, *file_dot;
1868 file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
1869 if (file_dimacs)
1871 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
1872 current_function_name ());
1873 write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
1874 fclose (file_dimacs);
1877 file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
1878 if (file_ecc)
1880 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
1881 current_function_name ());
1882 write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
1883 fclose (file_ecc);
1886 file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
1887 if (file_dot)
1889 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
1890 current_function_name ());
1891 write_alias_graph_to_ascii_dot (file_dot, comment, drs);
1892 fclose (file_dot);
1896 /* Build data references in SCOP. */
1898 static void
1899 build_scop_drs (scop_p scop)
1901 int i, j;
1902 poly_bb_p pbb;
1903 data_reference_p dr;
1904 vec<data_reference_p> drs;
1905 drs.create (3);
1907 /* Remove all the PBBs that do not have data references: these basic
1908 blocks are not handled in the polyhedral representation. */
1909 for (i = 0; SCOP_BBS (scop).iterate (i, &pbb); i++)
1910 if (GBB_DATA_REFS (PBB_BLACK_BOX (pbb)).is_empty ())
1912 free_gimple_bb (PBB_BLACK_BOX (pbb));
1913 free_poly_bb (pbb);
1914 SCOP_BBS (scop).ordered_remove (i);
1915 i--;
1918 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
1919 for (j = 0; GBB_DATA_REFS (PBB_BLACK_BOX (pbb)).iterate (j, &dr); j++)
1920 drs.safe_push (dr);
1922 FOR_EACH_VEC_ELT (drs, i, dr)
1923 dr->aux = XNEW (base_alias_pair);
1925 if (!build_alias_set_optimal_p (drs))
1927 /* TODO: Add support when building alias set is not optimal. */
1931 build_base_obj_set_for_drs (drs);
1933 /* When debugging, enable the following code. This cannot be used
1934 in production compilers. */
1935 if (0)
1936 dump_alias_graphs (drs);
1938 drs.release ();
1940 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
1941 build_pbb_drs (pbb);
1944 /* Return a gsi at the position of the phi node STMT. */
1946 static gimple_stmt_iterator
1947 gsi_for_phi_node (gimple stmt)
1949 gimple_stmt_iterator psi;
1950 basic_block bb = gimple_bb (stmt);
1952 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
1953 if (stmt == gsi_stmt (psi))
1954 return psi;
1956 gcc_unreachable ();
1957 return psi;
1960 /* Analyze all the data references of STMTS and add them to the
1961 GBB_DATA_REFS vector of BB. */
1963 static void
1964 analyze_drs_in_stmts (scop_p scop, basic_block bb, vec<gimple> stmts)
1966 loop_p nest;
1967 gimple_bb_p gbb;
1968 gimple stmt;
1969 int i;
1970 sese region = SCOP_REGION (scop);
1972 if (!bb_in_sese_p (bb, region))
1973 return;
1975 nest = outermost_loop_in_sese_1 (region, bb);
1976 gbb = gbb_from_bb (bb);
1978 FOR_EACH_VEC_ELT (stmts, i, stmt)
1980 loop_p loop;
1982 if (is_gimple_debug (stmt))
1983 continue;
1985 loop = loop_containing_stmt (stmt);
1986 if (!loop_in_sese_p (loop, region))
1987 loop = nest;
1989 graphite_find_data_references_in_stmt (nest, loop, stmt,
1990 &GBB_DATA_REFS (gbb));
1994 /* Insert STMT at the end of the STMTS sequence and then insert the
1995 statements from STMTS at INSERT_GSI and call analyze_drs_in_stmts
1996 on STMTS. */
1998 static void
1999 insert_stmts (scop_p scop, gimple stmt, gimple_seq stmts,
2000 gimple_stmt_iterator insert_gsi)
2002 gimple_stmt_iterator gsi;
2003 vec<gimple> x;
2004 x.create (3);
2006 gimple_seq_add_stmt (&stmts, stmt);
2007 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
2008 x.safe_push (gsi_stmt (gsi));
2010 gsi_insert_seq_before (&insert_gsi, stmts, GSI_SAME_STMT);
2011 analyze_drs_in_stmts (scop, gsi_bb (insert_gsi), x);
2012 x.release ();
2015 /* Insert the assignment "RES := EXPR" just after AFTER_STMT. */
2017 static void
2018 insert_out_of_ssa_copy (scop_p scop, tree res, tree expr, gimple after_stmt)
2020 gimple_seq stmts;
2021 gimple_stmt_iterator gsi;
2022 tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
2023 gimple stmt = gimple_build_assign (unshare_expr (res), var);
2024 vec<gimple> x;
2025 x.create (3);
2027 gimple_seq_add_stmt (&stmts, stmt);
2028 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
2029 x.safe_push (gsi_stmt (gsi));
2031 if (gimple_code (after_stmt) == GIMPLE_PHI)
2033 gsi = gsi_after_labels (gimple_bb (after_stmt));
2034 gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
2036 else
2038 gsi = gsi_for_stmt (after_stmt);
2039 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
2042 analyze_drs_in_stmts (scop, gimple_bb (after_stmt), x);
2043 x.release ();
2046 /* Creates a poly_bb_p for basic_block BB from the existing PBB. */
2048 static void
2049 new_pbb_from_pbb (scop_p scop, poly_bb_p pbb, basic_block bb)
2051 vec<data_reference_p> drs;
2052 drs.create (3);
2053 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
2054 gimple_bb_p gbb1 = new_gimple_bb (bb, drs);
2055 poly_bb_p pbb1 = new_poly_bb (scop, gbb1);
2056 int index, n = SCOP_BBS (scop).length ();
2058 /* The INDEX of PBB in SCOP_BBS. */
2059 for (index = 0; index < n; index++)
2060 if (SCOP_BBS (scop)[index] == pbb)
2061 break;
2063 pbb1->domain = isl_set_copy (pbb->domain);
2065 GBB_PBB (gbb1) = pbb1;
2066 GBB_CONDITIONS (gbb1) = GBB_CONDITIONS (gbb).copy ();
2067 GBB_CONDITION_CASES (gbb1) = GBB_CONDITION_CASES (gbb).copy ();
2068 SCOP_BBS (scop).safe_insert (index + 1, pbb1);
2071 /* Insert on edge E the assignment "RES := EXPR". */
2073 static void
2074 insert_out_of_ssa_copy_on_edge (scop_p scop, edge e, tree res, tree expr)
2076 gimple_stmt_iterator gsi;
2077 gimple_seq stmts = NULL;
2078 tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
2079 gimple stmt = gimple_build_assign (unshare_expr (res), var);
2080 basic_block bb;
2081 vec<gimple> x;
2082 x.create (3);
2084 gimple_seq_add_stmt (&stmts, stmt);
2085 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
2086 x.safe_push (gsi_stmt (gsi));
2088 gsi_insert_seq_on_edge (e, stmts);
2089 gsi_commit_edge_inserts ();
2090 bb = gimple_bb (stmt);
2092 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
2093 return;
2095 if (!gbb_from_bb (bb))
2096 new_pbb_from_pbb (scop, pbb_from_bb (e->src), bb);
2098 analyze_drs_in_stmts (scop, bb, x);
2099 x.release ();
2102 /* Creates a zero dimension array of the same type as VAR. */
2104 static tree
2105 create_zero_dim_array (tree var, const char *base_name)
2107 tree index_type = build_index_type (integer_zero_node);
2108 tree elt_type = TREE_TYPE (var);
2109 tree array_type = build_array_type (elt_type, index_type);
2110 tree base = create_tmp_var (array_type, base_name);
2112 return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
2113 NULL_TREE);
2116 /* Returns true when PHI is a loop close phi node. */
2118 static bool
2119 scalar_close_phi_node_p (gimple phi)
2121 if (gimple_code (phi) != GIMPLE_PHI
2122 || virtual_operand_p (gimple_phi_result (phi)))
2123 return false;
2125 /* Note that loop close phi nodes should have a single argument
2126 because we translated the representation into a canonical form
2127 before Graphite: see canonicalize_loop_closed_ssa_form. */
2128 return (gimple_phi_num_args (phi) == 1);
2131 /* For a definition DEF in REGION, propagates the expression EXPR in
2132 all the uses of DEF outside REGION. */
2134 static void
2135 propagate_expr_outside_region (tree def, tree expr, sese region)
2137 imm_use_iterator imm_iter;
2138 gimple use_stmt;
2139 gimple_seq stmts;
2140 bool replaced_once = false;
2142 gcc_assert (TREE_CODE (def) == SSA_NAME);
2144 expr = force_gimple_operand (unshare_expr (expr), &stmts, true,
2145 NULL_TREE);
2147 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2148 if (!is_gimple_debug (use_stmt)
2149 && !bb_in_sese_p (gimple_bb (use_stmt), region))
2151 ssa_op_iter iter;
2152 use_operand_p use_p;
2154 FOR_EACH_PHI_OR_STMT_USE (use_p, use_stmt, iter, SSA_OP_ALL_USES)
2155 if (operand_equal_p (def, USE_FROM_PTR (use_p), 0)
2156 && (replaced_once = true))
2157 replace_exp (use_p, expr);
2159 update_stmt (use_stmt);
2162 if (replaced_once)
2164 gsi_insert_seq_on_edge (SESE_ENTRY (region), stmts);
2165 gsi_commit_edge_inserts ();
2169 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2170 dimension array for it. */
2172 static void
2173 rewrite_close_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
2175 sese region = SCOP_REGION (scop);
2176 gimple phi = gsi_stmt (*psi);
2177 tree res = gimple_phi_result (phi);
2178 basic_block bb = gimple_bb (phi);
2179 gimple_stmt_iterator gsi = gsi_after_labels (bb);
2180 tree arg = gimple_phi_arg_def (phi, 0);
2181 gimple stmt;
2183 /* Note that loop close phi nodes should have a single argument
2184 because we translated the representation into a canonical form
2185 before Graphite: see canonicalize_loop_closed_ssa_form. */
2186 gcc_assert (gimple_phi_num_args (phi) == 1);
2188 /* The phi node can be a non close phi node, when its argument is
2189 invariant, or a default definition. */
2190 if (is_gimple_min_invariant (arg)
2191 || SSA_NAME_IS_DEFAULT_DEF (arg))
2193 propagate_expr_outside_region (res, arg, region);
2194 gsi_next (psi);
2195 return;
2198 else if (gimple_bb (SSA_NAME_DEF_STMT (arg))->loop_father == bb->loop_father)
2200 propagate_expr_outside_region (res, arg, region);
2201 stmt = gimple_build_assign (res, arg);
2202 remove_phi_node (psi, false);
2203 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2204 SSA_NAME_DEF_STMT (res) = stmt;
2205 return;
2208 /* If res is scev analyzable and is not a scalar value, it is safe
2209 to ignore the close phi node: it will be code generated in the
2210 out of Graphite pass. */
2211 else if (scev_analyzable_p (res, region))
2213 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (res));
2214 tree scev;
2216 if (!loop_in_sese_p (loop, region))
2218 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
2219 scev = scalar_evolution_in_region (region, loop, arg);
2220 scev = compute_overall_effect_of_inner_loop (loop, scev);
2222 else
2223 scev = scalar_evolution_in_region (region, loop, res);
2225 if (tree_does_not_contain_chrecs (scev))
2226 propagate_expr_outside_region (res, scev, region);
2228 gsi_next (psi);
2229 return;
2231 else
2233 tree zero_dim_array = create_zero_dim_array (res, "Close_Phi");
2235 stmt = gimple_build_assign (res, unshare_expr (zero_dim_array));
2237 if (TREE_CODE (arg) == SSA_NAME)
2238 insert_out_of_ssa_copy (scop, zero_dim_array, arg,
2239 SSA_NAME_DEF_STMT (arg));
2240 else
2241 insert_out_of_ssa_copy_on_edge (scop, single_pred_edge (bb),
2242 zero_dim_array, arg);
2245 remove_phi_node (psi, false);
2246 SSA_NAME_DEF_STMT (res) = stmt;
2248 insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
2251 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2252 dimension array for it. */
2254 static void
2255 rewrite_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
2257 size_t i;
2258 gimple phi = gsi_stmt (*psi);
2259 basic_block bb = gimple_bb (phi);
2260 tree res = gimple_phi_result (phi);
2261 tree zero_dim_array = create_zero_dim_array (res, "phi_out_of_ssa");
2262 gimple stmt;
2264 for (i = 0; i < gimple_phi_num_args (phi); i++)
2266 tree arg = gimple_phi_arg_def (phi, i);
2267 edge e = gimple_phi_arg_edge (phi, i);
2269 /* Avoid the insertion of code in the loop latch to please the
2270 pattern matching of the vectorizer. */
2271 if (TREE_CODE (arg) == SSA_NAME
2272 && e->src == bb->loop_father->latch)
2273 insert_out_of_ssa_copy (scop, zero_dim_array, arg,
2274 SSA_NAME_DEF_STMT (arg));
2275 else
2276 insert_out_of_ssa_copy_on_edge (scop, e, zero_dim_array, arg);
2279 stmt = gimple_build_assign (res, unshare_expr (zero_dim_array));
2280 remove_phi_node (psi, false);
2281 SSA_NAME_DEF_STMT (res) = stmt;
2282 insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
2285 /* Rewrite the degenerate phi node at position PSI from the degenerate
2286 form "x = phi (y, y, ..., y)" to "x = y". */
2288 static void
2289 rewrite_degenerate_phi (gimple_stmt_iterator *psi)
2291 tree rhs;
2292 gimple stmt;
2293 gimple_stmt_iterator gsi;
2294 gimple phi = gsi_stmt (*psi);
2295 tree res = gimple_phi_result (phi);
2296 basic_block bb;
2298 bb = gimple_bb (phi);
2299 rhs = degenerate_phi_result (phi);
2300 gcc_assert (rhs);
2302 stmt = gimple_build_assign (res, rhs);
2303 remove_phi_node (psi, false);
2304 SSA_NAME_DEF_STMT (res) = stmt;
2306 gsi = gsi_after_labels (bb);
2307 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2310 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2312 static void
2313 rewrite_reductions_out_of_ssa (scop_p scop)
2315 basic_block bb;
2316 gimple_stmt_iterator psi;
2317 sese region = SCOP_REGION (scop);
2319 FOR_EACH_BB (bb)
2320 if (bb_in_sese_p (bb, region))
2321 for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
2323 gimple phi = gsi_stmt (psi);
2325 if (virtual_operand_p (gimple_phi_result (phi)))
2327 gsi_next (&psi);
2328 continue;
2331 if (gimple_phi_num_args (phi) > 1
2332 && degenerate_phi_result (phi))
2333 rewrite_degenerate_phi (&psi);
2335 else if (scalar_close_phi_node_p (phi))
2336 rewrite_close_phi_out_of_ssa (scop, &psi);
2338 else if (reduction_phi_p (region, &psi))
2339 rewrite_phi_out_of_ssa (scop, &psi);
2342 update_ssa (TODO_update_ssa);
2343 #ifdef ENABLE_CHECKING
2344 verify_loop_closed_ssa (true);
2345 #endif
2348 /* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
2349 read from ZERO_DIM_ARRAY. */
2351 static void
2352 rewrite_cross_bb_scalar_dependence (scop_p scop, tree zero_dim_array,
2353 tree def, gimple use_stmt)
2355 gimple name_stmt;
2356 tree name;
2357 ssa_op_iter iter;
2358 use_operand_p use_p;
2360 gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
2362 name = copy_ssa_name (def, NULL);
2363 name_stmt = gimple_build_assign (name, zero_dim_array);
2365 gimple_assign_set_lhs (name_stmt, name);
2366 insert_stmts (scop, name_stmt, NULL, gsi_for_stmt (use_stmt));
2368 FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
2369 if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
2370 replace_exp (use_p, name);
2372 update_stmt (use_stmt);
2375 /* For every definition DEF in the SCOP that is used outside the scop,
2376 insert a closing-scop definition in the basic block just after this
2377 SCOP. */
2379 static void
2380 handle_scalar_deps_crossing_scop_limits (scop_p scop, tree def, gimple stmt)
2382 tree var = create_tmp_reg (TREE_TYPE (def), NULL);
2383 tree new_name = make_ssa_name (var, stmt);
2384 bool needs_copy = false;
2385 use_operand_p use_p;
2386 imm_use_iterator imm_iter;
2387 gimple use_stmt;
2388 sese region = SCOP_REGION (scop);
2390 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2392 if (!bb_in_sese_p (gimple_bb (use_stmt), region))
2394 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
2396 SET_USE (use_p, new_name);
2398 update_stmt (use_stmt);
2399 needs_copy = true;
2403 /* Insert in the empty BB just after the scop a use of DEF such
2404 that the rewrite of cross_bb_scalar_dependences won't insert
2405 arrays everywhere else. */
2406 if (needs_copy)
2408 gimple assign = gimple_build_assign (new_name, def);
2409 gimple_stmt_iterator psi = gsi_after_labels (SESE_EXIT (region)->dest);
2411 SSA_NAME_DEF_STMT (new_name) = assign;
2412 update_stmt (assign);
2413 gsi_insert_before (&psi, assign, GSI_SAME_STMT);
2417 /* Rewrite the scalar dependences crossing the boundary of the BB
2418 containing STMT with an array. Return true when something has been
2419 changed. */
2421 static bool
2422 rewrite_cross_bb_scalar_deps (scop_p scop, gimple_stmt_iterator *gsi)
2424 sese region = SCOP_REGION (scop);
2425 gimple stmt = gsi_stmt (*gsi);
2426 imm_use_iterator imm_iter;
2427 tree def;
2428 basic_block def_bb;
2429 tree zero_dim_array = NULL_TREE;
2430 gimple use_stmt;
2431 bool res = false;
2433 switch (gimple_code (stmt))
2435 case GIMPLE_ASSIGN:
2436 def = gimple_assign_lhs (stmt);
2437 break;
2439 case GIMPLE_CALL:
2440 def = gimple_call_lhs (stmt);
2441 break;
2443 default:
2444 return false;
2447 if (!def
2448 || !is_gimple_reg (def))
2449 return false;
2451 if (scev_analyzable_p (def, region))
2453 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
2454 tree scev = scalar_evolution_in_region (region, loop, def);
2456 if (tree_contains_chrecs (scev, NULL))
2457 return false;
2459 propagate_expr_outside_region (def, scev, region);
2460 return true;
2463 def_bb = gimple_bb (stmt);
2465 handle_scalar_deps_crossing_scop_limits (scop, def, stmt);
2467 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2468 if (gimple_code (use_stmt) == GIMPLE_PHI
2469 && (res = true))
2471 gimple_stmt_iterator psi = gsi_for_stmt (use_stmt);
2473 if (scalar_close_phi_node_p (gsi_stmt (psi)))
2474 rewrite_close_phi_out_of_ssa (scop, &psi);
2475 else
2476 rewrite_phi_out_of_ssa (scop, &psi);
2479 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2480 if (gimple_code (use_stmt) != GIMPLE_PHI
2481 && def_bb != gimple_bb (use_stmt)
2482 && !is_gimple_debug (use_stmt)
2483 && (res = true))
2485 if (!zero_dim_array)
2487 zero_dim_array = create_zero_dim_array
2488 (def, "Cross_BB_scalar_dependence");
2489 insert_out_of_ssa_copy (scop, zero_dim_array, def,
2490 SSA_NAME_DEF_STMT (def));
2491 gsi_next (gsi);
2494 rewrite_cross_bb_scalar_dependence (scop, zero_dim_array,
2495 def, use_stmt);
2498 return res;
2501 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2503 static void
2504 rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop)
2506 basic_block bb;
2507 gimple_stmt_iterator psi;
2508 sese region = SCOP_REGION (scop);
2509 bool changed = false;
2511 /* Create an extra empty BB after the scop. */
2512 split_edge (SESE_EXIT (region));
2514 FOR_EACH_BB (bb)
2515 if (bb_in_sese_p (bb, region))
2516 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
2517 changed |= rewrite_cross_bb_scalar_deps (scop, &psi);
2519 if (changed)
2521 scev_reset_htab ();
2522 update_ssa (TODO_update_ssa);
2523 #ifdef ENABLE_CHECKING
2524 verify_loop_closed_ssa (true);
2525 #endif
2529 /* Returns the number of pbbs that are in loops contained in SCOP. */
2531 static int
2532 nb_pbbs_in_loops (scop_p scop)
2534 int i;
2535 poly_bb_p pbb;
2536 int res = 0;
2538 FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb)
2539 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
2540 res++;
2542 return res;
2545 /* Return the number of data references in BB that write in
2546 memory. */
2548 static int
2549 nb_data_writes_in_bb (basic_block bb)
2551 int res = 0;
2552 gimple_stmt_iterator gsi;
2554 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2555 if (gimple_vdef (gsi_stmt (gsi)))
2556 res++;
2558 return res;
2561 /* Splits at STMT the basic block BB represented as PBB in the
2562 polyhedral form. */
2564 static edge
2565 split_pbb (scop_p scop, poly_bb_p pbb, basic_block bb, gimple stmt)
2567 edge e1 = split_block (bb, stmt);
2568 new_pbb_from_pbb (scop, pbb, e1->dest);
2569 return e1;
2572 /* Splits STMT out of its current BB. This is done for reduction
2573 statements for which we want to ignore data dependences. */
2575 static basic_block
2576 split_reduction_stmt (scop_p scop, gimple stmt)
2578 basic_block bb = gimple_bb (stmt);
2579 poly_bb_p pbb = pbb_from_bb (bb);
2580 gimple_bb_p gbb = gbb_from_bb (bb);
2581 edge e1;
2582 int i;
2583 data_reference_p dr;
2585 /* Do not split basic blocks with no writes to memory: the reduction
2586 will be the only write to memory. */
2587 if (nb_data_writes_in_bb (bb) == 0
2588 /* Or if we have already marked BB as a reduction. */
2589 || PBB_IS_REDUCTION (pbb_from_bb (bb)))
2590 return bb;
2592 e1 = split_pbb (scop, pbb, bb, stmt);
2594 /* Split once more only when the reduction stmt is not the only one
2595 left in the original BB. */
2596 if (!gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
2598 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2599 gsi_prev (&gsi);
2600 e1 = split_pbb (scop, pbb, bb, gsi_stmt (gsi));
2603 /* A part of the data references will end in a different basic block
2604 after the split: move the DRs from the original GBB to the newly
2605 created GBB1. */
2606 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
2608 basic_block bb1 = gimple_bb (DR_STMT (dr));
2610 if (bb1 != bb)
2612 gimple_bb_p gbb1 = gbb_from_bb (bb1);
2613 GBB_DATA_REFS (gbb1).safe_push (dr);
2614 GBB_DATA_REFS (gbb).ordered_remove (i);
2615 i--;
2619 return e1->dest;
2622 /* Return true when stmt is a reduction operation. */
2624 static inline bool
2625 is_reduction_operation_p (gimple stmt)
2627 enum tree_code code;
2629 gcc_assert (is_gimple_assign (stmt));
2630 code = gimple_assign_rhs_code (stmt);
2632 return flag_associative_math
2633 && commutative_tree_code (code)
2634 && associative_tree_code (code);
2637 /* Returns true when PHI contains an argument ARG. */
2639 static bool
2640 phi_contains_arg (gimple phi, tree arg)
2642 size_t i;
2644 for (i = 0; i < gimple_phi_num_args (phi); i++)
2645 if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
2646 return true;
2648 return false;
2651 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2653 static gimple
2654 follow_ssa_with_commutative_ops (tree arg, tree lhs)
2656 gimple stmt;
2658 if (TREE_CODE (arg) != SSA_NAME)
2659 return NULL;
2661 stmt = SSA_NAME_DEF_STMT (arg);
2663 if (gimple_code (stmt) == GIMPLE_NOP
2664 || gimple_code (stmt) == GIMPLE_CALL)
2665 return NULL;
2667 if (gimple_code (stmt) == GIMPLE_PHI)
2669 if (phi_contains_arg (stmt, lhs))
2670 return stmt;
2671 return NULL;
2674 if (!is_gimple_assign (stmt))
2675 return NULL;
2677 if (gimple_num_ops (stmt) == 2)
2678 return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2680 if (is_reduction_operation_p (stmt))
2682 gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2684 return res ? res :
2685 follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
2688 return NULL;
2691 /* Detect commutative and associative scalar reductions starting at
2692 the STMT. Return the phi node of the reduction cycle, or NULL. */
2694 static gimple
2695 detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
2696 vec<gimple> *in,
2697 vec<gimple> *out)
2699 gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
2701 if (!phi)
2702 return NULL;
2704 in->safe_push (stmt);
2705 out->safe_push (stmt);
2706 return phi;
2709 /* Detect commutative and associative scalar reductions starting at
2710 STMT. Return the phi node of the reduction cycle, or NULL. */
2712 static gimple
2713 detect_commutative_reduction_assign (gimple stmt, vec<gimple> *in,
2714 vec<gimple> *out)
2716 tree lhs = gimple_assign_lhs (stmt);
2718 if (gimple_num_ops (stmt) == 2)
2719 return detect_commutative_reduction_arg (lhs, stmt,
2720 gimple_assign_rhs1 (stmt),
2721 in, out);
2723 if (is_reduction_operation_p (stmt))
2725 gimple res = detect_commutative_reduction_arg (lhs, stmt,
2726 gimple_assign_rhs1 (stmt),
2727 in, out);
2728 return res ? res
2729 : detect_commutative_reduction_arg (lhs, stmt,
2730 gimple_assign_rhs2 (stmt),
2731 in, out);
2734 return NULL;
2737 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2739 static gimple
2740 follow_inital_value_to_phi (tree arg, tree lhs)
2742 gimple stmt;
2744 if (!arg || TREE_CODE (arg) != SSA_NAME)
2745 return NULL;
2747 stmt = SSA_NAME_DEF_STMT (arg);
2749 if (gimple_code (stmt) == GIMPLE_PHI
2750 && phi_contains_arg (stmt, lhs))
2751 return stmt;
2753 return NULL;
2757 /* Return the argument of the loop PHI that is the initial value coming
2758 from outside the loop. */
2760 static edge
2761 edge_initial_value_for_loop_phi (gimple phi)
2763 size_t i;
2765 for (i = 0; i < gimple_phi_num_args (phi); i++)
2767 edge e = gimple_phi_arg_edge (phi, i);
2769 if (loop_depth (e->src->loop_father)
2770 < loop_depth (e->dest->loop_father))
2771 return e;
2774 return NULL;
2777 /* Return the argument of the loop PHI that is the initial value coming
2778 from outside the loop. */
2780 static tree
2781 initial_value_for_loop_phi (gimple phi)
2783 size_t i;
2785 for (i = 0; i < gimple_phi_num_args (phi); i++)
2787 edge e = gimple_phi_arg_edge (phi, i);
2789 if (loop_depth (e->src->loop_father)
2790 < loop_depth (e->dest->loop_father))
2791 return gimple_phi_arg_def (phi, i);
2794 return NULL_TREE;
2797 /* Returns true when DEF is used outside the reduction cycle of
2798 LOOP_PHI. */
2800 static bool
2801 used_outside_reduction (tree def, gimple loop_phi)
2803 use_operand_p use_p;
2804 imm_use_iterator imm_iter;
2805 loop_p loop = loop_containing_stmt (loop_phi);
2807 /* In LOOP, DEF should be used only in LOOP_PHI. */
2808 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
2810 gimple stmt = USE_STMT (use_p);
2812 if (stmt != loop_phi
2813 && !is_gimple_debug (stmt)
2814 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
2815 return true;
2818 return false;
2821 /* Detect commutative and associative scalar reductions belonging to
2822 the SCOP starting at the loop closed phi node STMT. Return the phi
2823 node of the reduction cycle, or NULL. */
2825 static gimple
2826 detect_commutative_reduction (scop_p scop, gimple stmt, vec<gimple> *in,
2827 vec<gimple> *out)
2829 if (scalar_close_phi_node_p (stmt))
2831 gimple def, loop_phi, phi, close_phi = stmt;
2832 tree init, lhs, arg = gimple_phi_arg_def (close_phi, 0);
2834 if (TREE_CODE (arg) != SSA_NAME)
2835 return NULL;
2837 /* Note that loop close phi nodes should have a single argument
2838 because we translated the representation into a canonical form
2839 before Graphite: see canonicalize_loop_closed_ssa_form. */
2840 gcc_assert (gimple_phi_num_args (close_phi) == 1);
2842 def = SSA_NAME_DEF_STMT (arg);
2843 if (!stmt_in_sese_p (def, SCOP_REGION (scop))
2844 || !(loop_phi = detect_commutative_reduction (scop, def, in, out)))
2845 return NULL;
2847 lhs = gimple_phi_result (close_phi);
2848 init = initial_value_for_loop_phi (loop_phi);
2849 phi = follow_inital_value_to_phi (init, lhs);
2851 if (phi && (used_outside_reduction (lhs, phi)
2852 || !has_single_use (gimple_phi_result (phi))))
2853 return NULL;
2855 in->safe_push (loop_phi);
2856 out->safe_push (close_phi);
2857 return phi;
2860 if (gimple_code (stmt) == GIMPLE_ASSIGN)
2861 return detect_commutative_reduction_assign (stmt, in, out);
2863 return NULL;
2866 /* Translate the scalar reduction statement STMT to an array RED
2867 knowing that its recursive phi node is LOOP_PHI. */
2869 static void
2870 translate_scalar_reduction_to_array_for_stmt (scop_p scop, tree red,
2871 gimple stmt, gimple loop_phi)
2873 tree res = gimple_phi_result (loop_phi);
2874 gimple assign = gimple_build_assign (res, unshare_expr (red));
2875 gimple_stmt_iterator gsi;
2877 insert_stmts (scop, assign, NULL, gsi_after_labels (gimple_bb (loop_phi)));
2879 assign = gimple_build_assign (unshare_expr (red), gimple_assign_lhs (stmt));
2880 gsi = gsi_for_stmt (stmt);
2881 gsi_next (&gsi);
2882 insert_stmts (scop, assign, NULL, gsi);
2885 /* Removes the PHI node and resets all the debug stmts that are using
2886 the PHI_RESULT. */
2888 static void
2889 remove_phi (gimple phi)
2891 imm_use_iterator imm_iter;
2892 tree def;
2893 use_operand_p use_p;
2894 gimple_stmt_iterator gsi;
2895 vec<gimple> update;
2896 update.create (3);
2897 unsigned int i;
2898 gimple stmt;
2900 def = PHI_RESULT (phi);
2901 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
2903 stmt = USE_STMT (use_p);
2905 if (is_gimple_debug (stmt))
2907 gimple_debug_bind_reset_value (stmt);
2908 update.safe_push (stmt);
2912 FOR_EACH_VEC_ELT (update, i, stmt)
2913 update_stmt (stmt);
2915 update.release ();
2917 gsi = gsi_for_phi_node (phi);
2918 remove_phi_node (&gsi, false);
2921 /* Helper function for for_each_index. For each INDEX of the data
2922 reference REF, returns true when its indices are valid in the loop
2923 nest LOOP passed in as DATA. */
2925 static bool
2926 dr_indices_valid_in_loop (tree ref ATTRIBUTE_UNUSED, tree *index, void *data)
2928 loop_p loop;
2929 basic_block header, def_bb;
2930 gimple stmt;
2932 if (TREE_CODE (*index) != SSA_NAME)
2933 return true;
2935 loop = *((loop_p *) data);
2936 header = loop->header;
2937 stmt = SSA_NAME_DEF_STMT (*index);
2939 if (!stmt)
2940 return true;
2942 def_bb = gimple_bb (stmt);
2944 if (!def_bb)
2945 return true;
2947 return dominated_by_p (CDI_DOMINATORS, header, def_bb);
2950 /* When the result of a CLOSE_PHI is written to a memory location,
2951 return a pointer to that memory reference, otherwise return
2952 NULL_TREE. */
2954 static tree
2955 close_phi_written_to_memory (gimple close_phi)
2957 imm_use_iterator imm_iter;
2958 use_operand_p use_p;
2959 gimple stmt;
2960 tree res, def = gimple_phi_result (close_phi);
2962 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
2963 if ((stmt = USE_STMT (use_p))
2964 && gimple_code (stmt) == GIMPLE_ASSIGN
2965 && (res = gimple_assign_lhs (stmt)))
2967 switch (TREE_CODE (res))
2969 case VAR_DECL:
2970 case PARM_DECL:
2971 case RESULT_DECL:
2972 return res;
2974 case ARRAY_REF:
2975 case MEM_REF:
2977 tree arg = gimple_phi_arg_def (close_phi, 0);
2978 loop_p nest = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
2980 /* FIXME: this restriction is for id-{24,25}.f and
2981 could be handled by duplicating the computation of
2982 array indices before the loop of the close_phi. */
2983 if (for_each_index (&res, dr_indices_valid_in_loop, &nest))
2984 return res;
2986 /* Fallthru. */
2988 default:
2989 continue;
2992 return NULL_TREE;
2995 /* Rewrite out of SSA the reduction described by the loop phi nodes
2996 IN, and the close phi nodes OUT. IN and OUT are structured by loop
2997 levels like this:
2999 IN: stmt, loop_n, ..., loop_0
3000 OUT: stmt, close_n, ..., close_0
3002 the first element is the reduction statement, and the next elements
3003 are the loop and close phi nodes of each of the outer loops. */
3005 static void
3006 translate_scalar_reduction_to_array (scop_p scop,
3007 vec<gimple> in,
3008 vec<gimple> out)
3010 gimple loop_phi;
3011 unsigned int i = out.length () - 1;
3012 tree red = close_phi_written_to_memory (out[i]);
3014 FOR_EACH_VEC_ELT (in, i, loop_phi)
3016 gimple close_phi = out[i];
3018 if (i == 0)
3020 gimple stmt = loop_phi;
3021 basic_block bb = split_reduction_stmt (scop, stmt);
3022 poly_bb_p pbb = pbb_from_bb (bb);
3023 PBB_IS_REDUCTION (pbb) = true;
3024 gcc_assert (close_phi == loop_phi);
3026 if (!red)
3027 red = create_zero_dim_array
3028 (gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
3030 translate_scalar_reduction_to_array_for_stmt (scop, red, stmt, in[1]);
3031 continue;
3034 if (i == in.length () - 1)
3036 insert_out_of_ssa_copy (scop, gimple_phi_result (close_phi),
3037 unshare_expr (red), close_phi);
3038 insert_out_of_ssa_copy_on_edge
3039 (scop, edge_initial_value_for_loop_phi (loop_phi),
3040 unshare_expr (red), initial_value_for_loop_phi (loop_phi));
3043 remove_phi (loop_phi);
3044 remove_phi (close_phi);
3048 /* Rewrites out of SSA a commutative reduction at CLOSE_PHI. Returns
3049 true when something has been changed. */
3051 static bool
3052 rewrite_commutative_reductions_out_of_ssa_close_phi (scop_p scop,
3053 gimple close_phi)
3055 bool res;
3056 vec<gimple> in;
3057 in.create (10);
3058 vec<gimple> out;
3059 out.create (10);
3061 detect_commutative_reduction (scop, close_phi, &in, &out);
3062 res = in.length () > 1;
3063 if (res)
3064 translate_scalar_reduction_to_array (scop, in, out);
3066 in.release ();
3067 out.release ();
3068 return res;
3071 /* Rewrites all the commutative reductions from LOOP out of SSA.
3072 Returns true when something has been changed. */
3074 static bool
3075 rewrite_commutative_reductions_out_of_ssa_loop (scop_p scop,
3076 loop_p loop)
3078 gimple_stmt_iterator gsi;
3079 edge exit = single_exit (loop);
3080 tree res;
3081 bool changed = false;
3083 if (!exit)
3084 return false;
3086 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3087 if ((res = gimple_phi_result (gsi_stmt (gsi)))
3088 && !virtual_operand_p (res)
3089 && !scev_analyzable_p (res, SCOP_REGION (scop)))
3090 changed |= rewrite_commutative_reductions_out_of_ssa_close_phi
3091 (scop, gsi_stmt (gsi));
3093 return changed;
3096 /* Rewrites all the commutative reductions from SCOP out of SSA. */
3098 static void
3099 rewrite_commutative_reductions_out_of_ssa (scop_p scop)
3101 loop_iterator li;
3102 loop_p loop;
3103 bool changed = false;
3104 sese region = SCOP_REGION (scop);
3106 FOR_EACH_LOOP (li, loop, 0)
3107 if (loop_in_sese_p (loop, region))
3108 changed |= rewrite_commutative_reductions_out_of_ssa_loop (scop, loop);
3110 if (changed)
3112 scev_reset_htab ();
3113 gsi_commit_edge_inserts ();
3114 update_ssa (TODO_update_ssa);
3115 #ifdef ENABLE_CHECKING
3116 verify_loop_closed_ssa (true);
3117 #endif
3121 /* Can all ivs be represented by a signed integer?
3122 As CLooG might generate negative values in its expressions, signed loop ivs
3123 are required in the backend. */
3125 static bool
3126 scop_ivs_can_be_represented (scop_p scop)
3128 loop_iterator li;
3129 loop_p loop;
3130 gimple_stmt_iterator psi;
3131 bool result = true;
3133 FOR_EACH_LOOP (li, loop, 0)
3135 if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
3136 continue;
3138 for (psi = gsi_start_phis (loop->header);
3139 !gsi_end_p (psi); gsi_next (&psi))
3141 gimple phi = gsi_stmt (psi);
3142 tree res = PHI_RESULT (phi);
3143 tree type = TREE_TYPE (res);
3145 if (TYPE_UNSIGNED (type)
3146 && TYPE_PRECISION (type) >= TYPE_PRECISION (long_long_integer_type_node))
3148 result = false;
3149 break;
3152 if (!result)
3153 FOR_EACH_LOOP_BREAK (li);
3156 return result;
3159 /* Builds the polyhedral representation for a SESE region. */
3161 void
3162 build_poly_scop (scop_p scop)
3164 sese region = SCOP_REGION (scop);
3165 graphite_dim_t max_dim;
3167 build_scop_bbs (scop);
3169 /* FIXME: This restriction is needed to avoid a problem in CLooG.
3170 Once CLooG is fixed, remove this guard. Anyways, it makes no
3171 sense to optimize a scop containing only PBBs that do not belong
3172 to any loops. */
3173 if (nb_pbbs_in_loops (scop) == 0)
3174 return;
3176 if (!scop_ivs_can_be_represented (scop))
3177 return;
3179 if (flag_associative_math)
3180 rewrite_commutative_reductions_out_of_ssa (scop);
3182 build_sese_loop_nests (region);
3183 build_sese_conditions (region);
3184 find_scop_parameters (scop);
3186 max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
3187 if (scop_nb_params (scop) > max_dim)
3188 return;
3190 build_scop_iteration_domain (scop);
3191 build_scop_context (scop);
3192 add_conditions_to_constraints (scop);
3194 /* Rewrite out of SSA only after having translated the
3195 representation to the polyhedral representation to avoid scev
3196 analysis failures. That means that these functions will insert
3197 new data references that they create in the right place. */
3198 rewrite_reductions_out_of_ssa (scop);
3199 rewrite_cross_bb_scalar_deps_out_of_ssa (scop);
3201 build_scop_drs (scop);
3202 scop_to_lst (scop);
3203 build_scop_scattering (scop);
3205 /* This SCoP has been translated to the polyhedral
3206 representation. */
3207 POLY_SCOP_P (scop) = true;
3209 #endif