2005-12-05 Jan Beulich <jbeulich@novell.com>
[official-gcc.git] / gcc / tree-ssa-dse.c
blobfa3ba960a289a4f4bae5d76b60578b8942841f86
1 /* Dead store elimination
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-pass.h"
34 #include "tree-dump.h"
35 #include "domwalk.h"
36 #include "flags.h"
38 /* This file implements dead store elimination.
40 A dead store is a store into a memory location which will later be
41 overwritten by another store without any intervening loads. In this
42 case the earlier store can be deleted.
44 In our SSA + virtual operand world we use immediate uses of virtual
45 operands to detect dead stores. If a store's virtual definition
46 is used precisely once by a later store to the same location which
47 post dominates the first store, then the first store is dead.
49 The single use of the store's virtual definition ensures that
50 there are no intervening aliased loads and the requirement that
51 the second load post dominate the first ensures that if the earlier
52 store executes, then the later stores will execute before the function
53 exits.
55 It may help to think of this as first moving the earlier store to
56 the point immediately before the later store. Again, the single
57 use of the virtual definition and the post-dominance relationship
58 ensure that such movement would be safe. Clearly if there are
59 back to back stores, then the second is redundant.
61 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
62 may also help in understanding this code since it discusses the
63 relationship between dead store and redundant load elimination. In
64 fact, they are the same transformation applied to different views of
65 the CFG. */
68 struct dse_global_data
70 /* This is the global bitmap for store statements.
72 Each statement has a unique ID. When we encounter a store statement
73 that we want to record, set the bit corresponding to the statement's
74 unique ID in this bitmap. */
75 bitmap stores;
78 /* We allocate a bitmap-per-block for stores which are encountered
79 during the scan of that block. This allows us to restore the
80 global bitmap of stores when we finish processing a block. */
81 struct dse_block_local_data
83 bitmap stores;
86 /* Basic blocks of the potentially dead store and the following
87 store, for memory_address_same. */
88 struct address_walk_data
90 basic_block store1_bb, store2_bb;
93 static bool gate_dse (void);
94 static void tree_ssa_dse (void);
95 static void dse_initialize_block_local_data (struct dom_walk_data *,
96 basic_block,
97 bool);
98 static void dse_optimize_stmt (struct dom_walk_data *,
99 basic_block,
100 block_stmt_iterator);
101 static void dse_record_phis (struct dom_walk_data *, basic_block);
102 static void dse_finalize_block (struct dom_walk_data *, basic_block);
103 static void record_voperand_set (bitmap, bitmap *, unsigned int);
105 static unsigned max_stmt_uid; /* Maximal uid of a statement. Uids to phi
106 nodes are assigned using the versions of
107 ssa names they define. */
109 /* Returns uid of statement STMT. */
111 static unsigned
112 get_stmt_uid (tree stmt)
114 if (TREE_CODE (stmt) == PHI_NODE)
115 return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid;
117 return stmt_ann (stmt)->uid;
120 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
122 static void
123 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
125 /* Lazily allocate the bitmap. Note that we do not get a notification
126 when the block local data structures die, so we allocate the local
127 bitmap backed by the GC system. */
128 if (*local == NULL)
129 *local = BITMAP_GGC_ALLOC ();
131 /* Set the bit in the local and global bitmaps. */
132 bitmap_set_bit (*local, uid);
133 bitmap_set_bit (global, uid);
136 /* Initialize block local data structures. */
138 static void
139 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
140 basic_block bb ATTRIBUTE_UNUSED,
141 bool recycled)
143 struct dse_block_local_data *bd
144 = VEC_last (void_p, walk_data->block_data_stack);
146 /* If we are given a recycled block local data structure, ensure any
147 bitmap associated with the block is cleared. */
148 if (recycled)
150 if (bd->stores)
151 bitmap_clear (bd->stores);
155 /* Helper function for memory_address_same via walk_tree. Returns
156 non-NULL if it finds an SSA_NAME which is part of the address,
157 such that the definition of the SSA_NAME post-dominates the store
158 we want to delete but not the store that we believe makes it
159 redundant. This indicates that the address may change between
160 the two stores. */
162 static tree
163 memory_ssa_name_same (tree *expr_p, int *walk_subtrees ATTRIBUTE_UNUSED,
164 void *data)
166 struct address_walk_data *walk_data = data;
167 tree expr = *expr_p;
168 tree def_stmt;
169 basic_block def_bb;
171 if (TREE_CODE (expr) != SSA_NAME)
172 return NULL_TREE;
174 /* If we've found a default definition, then there's no problem. Both
175 stores will post-dominate it. And def_bb will be NULL. */
176 if (expr == default_def (SSA_NAME_VAR (expr)))
177 return NULL_TREE;
179 def_stmt = SSA_NAME_DEF_STMT (expr);
180 def_bb = bb_for_stmt (def_stmt);
182 /* DEF_STMT must dominate both stores. So if it is in the same
183 basic block as one, it does not post-dominate that store. */
184 if (walk_data->store1_bb != def_bb
185 && dominated_by_p (CDI_POST_DOMINATORS, walk_data->store1_bb, def_bb))
187 if (walk_data->store2_bb == def_bb
188 || !dominated_by_p (CDI_POST_DOMINATORS, walk_data->store2_bb,
189 def_bb))
190 /* Return non-NULL to stop the walk. */
191 return def_stmt;
194 return NULL_TREE;
197 /* Return TRUE if the destination memory address in STORE1 and STORE2
198 might be modified after STORE1, before control reaches STORE2. */
200 static bool
201 memory_address_same (tree store1, tree store2)
203 struct address_walk_data walk_data;
205 walk_data.store1_bb = bb_for_stmt (store1);
206 walk_data.store2_bb = bb_for_stmt (store2);
208 return (walk_tree (&TREE_OPERAND (store1, 0), memory_ssa_name_same,
209 &walk_data, NULL)
210 == NULL);
213 /* Attempt to eliminate dead stores in the statement referenced by BSI.
215 A dead store is a store into a memory location which will later be
216 overwritten by another store without any intervening loads. In this
217 case the earlier store can be deleted.
219 In our SSA + virtual operand world we use immediate uses of virtual
220 operands to detect dead stores. If a store's virtual definition
221 is used precisely once by a later store to the same location which
222 post dominates the first store, then the first store is dead. */
224 static void
225 dse_optimize_stmt (struct dom_walk_data *walk_data,
226 basic_block bb ATTRIBUTE_UNUSED,
227 block_stmt_iterator bsi)
229 struct dse_block_local_data *bd
230 = VEC_last (void_p, walk_data->block_data_stack);
231 struct dse_global_data *dse_gd = walk_data->global_data;
232 tree stmt = bsi_stmt (bsi);
233 stmt_ann_t ann = stmt_ann (stmt);
235 /* If this statement has no virtual defs, then there is nothing
236 to do. */
237 if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF)))
238 return;
240 /* We know we have virtual definitions. If this is a MODIFY_EXPR that's
241 not also a function call, then record it into our table. */
242 if (get_call_expr_in (stmt))
243 return;
245 if (ann->has_volatile_ops)
246 return;
248 if (TREE_CODE (stmt) == MODIFY_EXPR)
250 use_operand_p first_use_p = NULL_USE_OPERAND_P;
251 use_operand_p use_p = NULL;
252 tree use, use_stmt, temp;
253 tree defvar = NULL_TREE, usevar = NULL_TREE;
254 bool fail = false;
255 use_operand_p var2;
256 def_operand_p var1;
257 ssa_op_iter op_iter;
259 /* We want to verify that each virtual definition in STMT has
260 precisely one use and that all the virtual definitions are
261 used by the same single statement. When complete, we
262 want USE_STMT to refer to the one statement which uses
263 all of the virtual definitions from STMT. */
264 use_stmt = NULL;
265 FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
267 defvar = DEF_FROM_PTR (var1);
268 usevar = USE_FROM_PTR (var2);
270 /* If this virtual def does not have precisely one use, then
271 we will not be able to eliminate STMT. */
272 if (num_imm_uses (defvar) != 1)
274 fail = true;
275 break;
278 /* Get the one and only immediate use of DEFVAR. */
279 single_imm_use (defvar, &use_p, &temp);
280 gcc_assert (use_p != NULL_USE_OPERAND_P);
281 first_use_p = use_p;
282 use = USE_FROM_PTR (use_p);
284 /* If the immediate use of DEF_VAR is not the same as the
285 previously find immediate uses, then we will not be able
286 to eliminate STMT. */
287 if (use_stmt == NULL)
288 use_stmt = temp;
289 else if (temp != use_stmt)
291 fail = true;
292 break;
296 if (fail)
298 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
299 return;
302 /* Skip through any PHI nodes we have already seen if the PHI
303 represents the only use of this store.
305 Note this does not handle the case where the store has
306 multiple V_{MAY,MUST}_DEFs which all reach a set of PHI nodes in the
307 same block. */
308 while (use_p != NULL_USE_OPERAND_P
309 && TREE_CODE (use_stmt) == PHI_NODE
310 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt)))
312 /* Skip past this PHI and loop again in case we had a PHI
313 chain. */
314 if (single_imm_use (PHI_RESULT (use_stmt), &use_p, &use_stmt))
315 use = USE_FROM_PTR (use_p);
318 /* If we have precisely one immediate use at this point, then we may
319 have found redundant store. Make sure that the stores are to
320 the same memory location. This includes checking that any
321 SSA-form variables in the address will have the same values. */
322 if (use_p != NULL_USE_OPERAND_P
323 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
324 && operand_equal_p (TREE_OPERAND (stmt, 0),
325 TREE_OPERAND (use_stmt, 0), 0)
326 && memory_address_same (stmt, use_stmt))
328 /* Make sure we propagate the ABNORMAL bit setting. */
329 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (first_use_p)))
330 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
332 if (dump_file && (dump_flags & TDF_DETAILS))
334 fprintf (dump_file, " Deleted dead store '");
335 print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
336 fprintf (dump_file, "'\n");
338 /* Then we need to fix the operand of the consuming stmt. */
339 FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
341 single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
342 SET_USE (use_p, USE_FROM_PTR (var2));
344 /* Remove the dead store. */
345 bsi_remove (&bsi);
347 /* And release any SSA_NAMEs set in this statement back to the
348 SSA_NAME manager. */
349 release_defs (stmt);
352 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
356 /* Record that we have seen the PHIs at the start of BB which correspond
357 to virtual operands. */
358 static void
359 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
361 struct dse_block_local_data *bd
362 = VEC_last (void_p, walk_data->block_data_stack);
363 struct dse_global_data *dse_gd = walk_data->global_data;
364 tree phi;
366 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
367 if (!is_gimple_reg (PHI_RESULT (phi)))
368 record_voperand_set (dse_gd->stores,
369 &bd->stores,
370 get_stmt_uid (phi));
373 static void
374 dse_finalize_block (struct dom_walk_data *walk_data,
375 basic_block bb ATTRIBUTE_UNUSED)
377 struct dse_block_local_data *bd
378 = VEC_last (void_p, walk_data->block_data_stack);
379 struct dse_global_data *dse_gd = walk_data->global_data;
380 bitmap stores = dse_gd->stores;
381 unsigned int i;
382 bitmap_iterator bi;
384 /* Unwind the stores noted in this basic block. */
385 if (bd->stores)
386 EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
388 bitmap_clear_bit (stores, i);
392 static void
393 tree_ssa_dse (void)
395 struct dom_walk_data walk_data;
396 struct dse_global_data dse_gd;
397 basic_block bb;
399 /* Create a UID for each statement in the function. Ordering of the
400 UIDs is not important for this pass. */
401 max_stmt_uid = 0;
402 FOR_EACH_BB (bb)
404 block_stmt_iterator bsi;
406 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
407 stmt_ann (bsi_stmt (bsi))->uid = max_stmt_uid++;
410 /* We might consider making this a property of each pass so that it
411 can be [re]computed on an as-needed basis. Particularly since
412 this pass could be seen as an extension of DCE which needs post
413 dominators. */
414 calculate_dominance_info (CDI_POST_DOMINATORS);
416 /* Dead store elimination is fundamentally a walk of the post-dominator
417 tree and a backwards walk of statements within each block. */
418 walk_data.walk_stmts_backward = true;
419 walk_data.dom_direction = CDI_POST_DOMINATORS;
420 walk_data.initialize_block_local_data = dse_initialize_block_local_data;
421 walk_data.before_dom_children_before_stmts = NULL;
422 walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
423 walk_data.before_dom_children_after_stmts = dse_record_phis;
424 walk_data.after_dom_children_before_stmts = NULL;
425 walk_data.after_dom_children_walk_stmts = NULL;
426 walk_data.after_dom_children_after_stmts = dse_finalize_block;
427 walk_data.interesting_blocks = NULL;
429 walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
431 /* This is the main hash table for the dead store elimination pass. */
432 dse_gd.stores = BITMAP_ALLOC (NULL);
433 walk_data.global_data = &dse_gd;
435 /* Initialize the dominator walker. */
436 init_walk_dominator_tree (&walk_data);
438 /* Recursively walk the dominator tree. */
439 walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
441 /* Finalize the dominator walker. */
442 fini_walk_dominator_tree (&walk_data);
444 /* Release the main bitmap. */
445 BITMAP_FREE (dse_gd.stores);
447 /* For now, just wipe the post-dominator information. */
448 free_dominance_info (CDI_POST_DOMINATORS);
451 static bool
452 gate_dse (void)
454 return flag_tree_dse != 0;
457 struct tree_opt_pass pass_dse = {
458 "dse", /* name */
459 gate_dse, /* gate */
460 tree_ssa_dse, /* execute */
461 NULL, /* sub */
462 NULL, /* next */
463 0, /* static_pass_number */
464 TV_TREE_DSE, /* tv_id */
465 PROP_cfg
466 | PROP_ssa
467 | PROP_alias, /* properties_required */
468 0, /* properties_provided */
469 0, /* properties_destroyed */
470 0, /* todo_flags_start */
471 TODO_dump_func
472 | TODO_ggc_collect
473 | TODO_verify_ssa, /* todo_flags_finish */
474 0 /* letter */