2005-12-05 Jan Beulich <jbeulich@novell.com>
[official-gcc.git] / gcc / loop-unroll.c
blob69b1eb675c0bfa3d611f921dad8ac69f56ca5f79
1 /* Loop unrolling and peeling.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "params.h"
32 #include "output.h"
33 #include "expr.h"
34 #include "hashtab.h"
35 #include "recog.h"
36 #include "varray.h"
38 /* This pass performs loop unrolling and peeling. We only perform these
39 optimizations on innermost loops (with single exception) because
40 the impact on performance is greatest here, and we want to avoid
41 unnecessary code size growth. The gain is caused by greater sequentiality
42 of code, better code to optimize for further passes and in some cases
43 by fewer testings of exit conditions. The main problem is code growth,
44 that impacts performance negatively due to effect of caches.
46 What we do:
48 -- complete peeling of once-rolling loops; this is the above mentioned
49 exception, as this causes loop to be cancelled completely and
50 does not cause code growth
51 -- complete peeling of loops that roll (small) constant times.
52 -- simple peeling of first iterations of loops that do not roll much
53 (according to profile feedback)
54 -- unrolling of loops that roll constant times; this is almost always
55 win, as we get rid of exit condition tests.
56 -- unrolling of loops that roll number of times that we can compute
57 in runtime; we also get rid of exit condition tests here, but there
58 is the extra expense for calculating the number of iterations
59 -- simple unrolling of remaining loops; this is performed only if we
60 are asked to, as the gain is questionable in this case and often
61 it may even slow down the code
62 For more detailed descriptions of each of those, see comments at
63 appropriate function below.
65 There is a lot of parameters (defined and described in params.def) that
66 control how much we unroll/peel.
68 ??? A great problem is that we don't have a good way how to determine
69 how many times we should unroll the loop; the experiments I have made
70 showed that this choice may affect performance in order of several %.
73 /* Information about induction variables to split. */
75 struct iv_to_split
77 rtx insn; /* The insn in that the induction variable occurs. */
78 rtx base_var; /* The variable on that the values in the further
79 iterations are based. */
80 rtx step; /* Step of the induction variable. */
81 unsigned n_loc;
82 unsigned loc[3]; /* Location where the definition of the induction
83 variable occurs in the insn. For example if
84 N_LOC is 2, the expression is located at
85 XEXP (XEXP (single_set, loc[0]), loc[1]). */
88 DEF_VEC_P(rtx);
89 DEF_VEC_ALLOC_P(rtx,heap);
91 /* Information about accumulators to expand. */
93 struct var_to_expand
95 rtx insn; /* The insn in that the variable expansion occurs. */
96 rtx reg; /* The accumulator which is expanded. */
97 VEC(rtx,heap) *var_expansions; /* The copies of the accumulator which is expanded. */
98 enum rtx_code op; /* The type of the accumulation - addition, subtraction
99 or multiplication. */
100 int expansion_count; /* Count the number of expansions generated so far. */
101 int reuse_expansion; /* The expansion we intend to reuse to expand
102 the accumulator. If REUSE_EXPANSION is 0 reuse
103 the original accumulator. Else use
104 var_expansions[REUSE_EXPANSION - 1]. */
107 /* Information about optimization applied in
108 the unrolled loop. */
110 struct opt_info
112 htab_t insns_to_split; /* A hashtable of insns to split. */
113 htab_t insns_with_var_to_expand; /* A hashtable of insns with accumulators
114 to expand. */
115 unsigned first_new_block; /* The first basic block that was
116 duplicated. */
117 basic_block loop_exit; /* The loop exit basic block. */
118 basic_block loop_preheader; /* The loop preheader basic block. */
121 static void decide_unrolling_and_peeling (struct loops *, int);
122 static void peel_loops_completely (struct loops *, int);
123 static void decide_peel_simple (struct loop *, int);
124 static void decide_peel_once_rolling (struct loop *, int);
125 static void decide_peel_completely (struct loop *, int);
126 static void decide_unroll_stupid (struct loop *, int);
127 static void decide_unroll_constant_iterations (struct loop *, int);
128 static void decide_unroll_runtime_iterations (struct loop *, int);
129 static void peel_loop_simple (struct loops *, struct loop *);
130 static void peel_loop_completely (struct loops *, struct loop *);
131 static void unroll_loop_stupid (struct loops *, struct loop *);
132 static void unroll_loop_constant_iterations (struct loops *, struct loop *);
133 static void unroll_loop_runtime_iterations (struct loops *, struct loop *);
134 static struct opt_info *analyze_insns_in_loop (struct loop *);
135 static void opt_info_start_duplication (struct opt_info *);
136 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
137 static void free_opt_info (struct opt_info *);
138 static struct var_to_expand *analyze_insn_to_expand_var (struct loop*, rtx);
139 static bool referenced_in_one_insn_in_loop_p (struct loop *, rtx);
140 static struct iv_to_split *analyze_iv_to_split_insn (rtx);
141 static void expand_var_during_unrolling (struct var_to_expand *, rtx);
142 static int insert_var_expansion_initialization (void **, void *);
143 static int combine_var_copies_in_loop_exit (void **, void *);
144 static int release_var_copies (void **, void *);
145 static rtx get_expansion (struct var_to_expand *);
147 /* Unroll and/or peel (depending on FLAGS) LOOPS. */
148 void
149 unroll_and_peel_loops (struct loops *loops, int flags)
151 struct loop *loop, *next;
152 bool check;
154 /* First perform complete loop peeling (it is almost surely a win,
155 and affects parameters for further decision a lot). */
156 peel_loops_completely (loops, flags);
158 /* Now decide rest of unrolling and peeling. */
159 decide_unrolling_and_peeling (loops, flags);
161 loop = loops->tree_root;
162 while (loop->inner)
163 loop = loop->inner;
165 /* Scan the loops, inner ones first. */
166 while (loop != loops->tree_root)
168 if (loop->next)
170 next = loop->next;
171 while (next->inner)
172 next = next->inner;
174 else
175 next = loop->outer;
177 check = true;
178 /* And perform the appropriate transformations. */
179 switch (loop->lpt_decision.decision)
181 case LPT_PEEL_COMPLETELY:
182 /* Already done. */
183 gcc_unreachable ();
184 case LPT_PEEL_SIMPLE:
185 peel_loop_simple (loops, loop);
186 break;
187 case LPT_UNROLL_CONSTANT:
188 unroll_loop_constant_iterations (loops, loop);
189 break;
190 case LPT_UNROLL_RUNTIME:
191 unroll_loop_runtime_iterations (loops, loop);
192 break;
193 case LPT_UNROLL_STUPID:
194 unroll_loop_stupid (loops, loop);
195 break;
196 case LPT_NONE:
197 check = false;
198 break;
199 default:
200 gcc_unreachable ();
202 if (check)
204 #ifdef ENABLE_CHECKING
205 verify_dominators (CDI_DOMINATORS);
206 verify_loop_structure (loops);
207 #endif
209 loop = next;
212 iv_analysis_done ();
215 /* Check whether exit of the LOOP is at the end of loop body. */
217 static bool
218 loop_exit_at_end_p (struct loop *loop)
220 struct niter_desc *desc = get_simple_loop_desc (loop);
221 rtx insn;
223 if (desc->in_edge->dest != loop->latch)
224 return false;
226 /* Check that the latch is empty. */
227 FOR_BB_INSNS (loop->latch, insn)
229 if (INSN_P (insn))
230 return false;
233 return true;
236 /* Check whether to peel LOOPS (depending on FLAGS) completely and do so. */
237 static void
238 peel_loops_completely (struct loops *loops, int flags)
240 struct loop *loop, *next;
242 loop = loops->tree_root;
243 while (loop->inner)
244 loop = loop->inner;
246 while (loop != loops->tree_root)
248 if (loop->next)
250 next = loop->next;
251 while (next->inner)
252 next = next->inner;
254 else
255 next = loop->outer;
257 loop->lpt_decision.decision = LPT_NONE;
259 if (dump_file)
260 fprintf (dump_file,
261 "\n;; *** Considering loop %d for complete peeling ***\n",
262 loop->num);
264 loop->ninsns = num_loop_insns (loop);
266 decide_peel_once_rolling (loop, flags);
267 if (loop->lpt_decision.decision == LPT_NONE)
268 decide_peel_completely (loop, flags);
270 if (loop->lpt_decision.decision == LPT_PEEL_COMPLETELY)
272 peel_loop_completely (loops, loop);
273 #ifdef ENABLE_CHECKING
274 verify_dominators (CDI_DOMINATORS);
275 verify_loop_structure (loops);
276 #endif
278 loop = next;
282 /* Decide whether unroll or peel LOOPS (depending on FLAGS) and how much. */
283 static void
284 decide_unrolling_and_peeling (struct loops *loops, int flags)
286 struct loop *loop = loops->tree_root, *next;
288 while (loop->inner)
289 loop = loop->inner;
291 /* Scan the loops, inner ones first. */
292 while (loop != loops->tree_root)
294 if (loop->next)
296 next = loop->next;
297 while (next->inner)
298 next = next->inner;
300 else
301 next = loop->outer;
303 loop->lpt_decision.decision = LPT_NONE;
305 if (dump_file)
306 fprintf (dump_file, "\n;; *** Considering loop %d ***\n", loop->num);
308 /* Do not peel cold areas. */
309 if (!maybe_hot_bb_p (loop->header))
311 if (dump_file)
312 fprintf (dump_file, ";; Not considering loop, cold area\n");
313 loop = next;
314 continue;
317 /* Can the loop be manipulated? */
318 if (!can_duplicate_loop_p (loop))
320 if (dump_file)
321 fprintf (dump_file,
322 ";; Not considering loop, cannot duplicate\n");
323 loop = next;
324 continue;
327 /* Skip non-innermost loops. */
328 if (loop->inner)
330 if (dump_file)
331 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
332 loop = next;
333 continue;
336 loop->ninsns = num_loop_insns (loop);
337 loop->av_ninsns = average_num_loop_insns (loop);
339 /* Try transformations one by one in decreasing order of
340 priority. */
342 decide_unroll_constant_iterations (loop, flags);
343 if (loop->lpt_decision.decision == LPT_NONE)
344 decide_unroll_runtime_iterations (loop, flags);
345 if (loop->lpt_decision.decision == LPT_NONE)
346 decide_unroll_stupid (loop, flags);
347 if (loop->lpt_decision.decision == LPT_NONE)
348 decide_peel_simple (loop, flags);
350 loop = next;
354 /* Decide whether the LOOP is once rolling and suitable for complete
355 peeling. */
356 static void
357 decide_peel_once_rolling (struct loop *loop, int flags ATTRIBUTE_UNUSED)
359 struct niter_desc *desc;
361 if (dump_file)
362 fprintf (dump_file, "\n;; Considering peeling once rolling loop\n");
364 /* Is the loop small enough? */
365 if ((unsigned) PARAM_VALUE (PARAM_MAX_ONCE_PEELED_INSNS) < loop->ninsns)
367 if (dump_file)
368 fprintf (dump_file, ";; Not considering loop, is too big\n");
369 return;
372 /* Check for simple loops. */
373 desc = get_simple_loop_desc (loop);
375 /* Check number of iterations. */
376 if (!desc->simple_p
377 || desc->assumptions
378 || desc->infinite
379 || !desc->const_iter
380 || desc->niter != 0)
382 if (dump_file)
383 fprintf (dump_file,
384 ";; Unable to prove that the loop rolls exactly once\n");
385 return;
388 /* Success. */
389 if (dump_file)
390 fprintf (dump_file, ";; Decided to peel exactly once rolling loop\n");
391 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
394 /* Decide whether the LOOP is suitable for complete peeling. */
395 static void
396 decide_peel_completely (struct loop *loop, int flags ATTRIBUTE_UNUSED)
398 unsigned npeel;
399 struct niter_desc *desc;
401 if (dump_file)
402 fprintf (dump_file, "\n;; Considering peeling completely\n");
404 /* Skip non-innermost loops. */
405 if (loop->inner)
407 if (dump_file)
408 fprintf (dump_file, ";; Not considering loop, is not innermost\n");
409 return;
412 /* Do not peel cold areas. */
413 if (!maybe_hot_bb_p (loop->header))
415 if (dump_file)
416 fprintf (dump_file, ";; Not considering loop, cold area\n");
417 return;
420 /* Can the loop be manipulated? */
421 if (!can_duplicate_loop_p (loop))
423 if (dump_file)
424 fprintf (dump_file,
425 ";; Not considering loop, cannot duplicate\n");
426 return;
429 /* npeel = number of iterations to peel. */
430 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS) / loop->ninsns;
431 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
432 npeel = PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES);
434 /* Is the loop small enough? */
435 if (!npeel)
437 if (dump_file)
438 fprintf (dump_file, ";; Not considering loop, is too big\n");
439 return;
442 /* Check for simple loops. */
443 desc = get_simple_loop_desc (loop);
445 /* Check number of iterations. */
446 if (!desc->simple_p
447 || desc->assumptions
448 || !desc->const_iter
449 || desc->infinite)
451 if (dump_file)
452 fprintf (dump_file,
453 ";; Unable to prove that the loop iterates constant times\n");
454 return;
457 if (desc->niter > npeel - 1)
459 if (dump_file)
461 fprintf (dump_file,
462 ";; Not peeling loop completely, rolls too much (");
463 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
464 fprintf (dump_file, " iterations > %d [maximum peelings])\n", npeel);
466 return;
469 /* Success. */
470 if (dump_file)
471 fprintf (dump_file, ";; Decided to peel loop completely\n");
472 loop->lpt_decision.decision = LPT_PEEL_COMPLETELY;
475 /* Peel all iterations of LOOP, remove exit edges and cancel the loop
476 completely. The transformation done:
478 for (i = 0; i < 4; i++)
479 body;
483 i = 0;
484 body; i++;
485 body; i++;
486 body; i++;
487 body; i++;
489 static void
490 peel_loop_completely (struct loops *loops, struct loop *loop)
492 sbitmap wont_exit;
493 unsigned HOST_WIDE_INT npeel;
494 unsigned n_remove_edges, i;
495 edge *remove_edges, ein;
496 struct niter_desc *desc = get_simple_loop_desc (loop);
497 struct opt_info *opt_info = NULL;
499 npeel = desc->niter;
501 if (npeel)
503 bool ok;
505 wont_exit = sbitmap_alloc (npeel + 1);
506 sbitmap_ones (wont_exit);
507 RESET_BIT (wont_exit, 0);
508 if (desc->noloop_assumptions)
509 RESET_BIT (wont_exit, 1);
511 remove_edges = xcalloc (npeel, sizeof (edge));
512 n_remove_edges = 0;
514 if (flag_split_ivs_in_unroller)
515 opt_info = analyze_insns_in_loop (loop);
517 opt_info_start_duplication (opt_info);
518 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
519 loops, npeel,
520 wont_exit, desc->out_edge,
521 remove_edges, &n_remove_edges,
522 DLTHE_FLAG_UPDATE_FREQ
523 | DLTHE_FLAG_COMPLETTE_PEEL
524 | (opt_info
525 ? DLTHE_RECORD_COPY_NUMBER : 0));
526 gcc_assert (ok);
528 free (wont_exit);
530 if (opt_info)
532 apply_opt_in_copies (opt_info, npeel, false, true);
533 free_opt_info (opt_info);
536 /* Remove the exit edges. */
537 for (i = 0; i < n_remove_edges; i++)
538 remove_path (loops, remove_edges[i]);
539 free (remove_edges);
542 ein = desc->in_edge;
543 free_simple_loop_desc (loop);
545 /* Now remove the unreachable part of the last iteration and cancel
546 the loop. */
547 remove_path (loops, ein);
549 if (dump_file)
550 fprintf (dump_file, ";; Peeled loop completely, %d times\n", (int) npeel);
553 /* Decide whether to unroll LOOP iterating constant number of times
554 and how much. */
556 static void
557 decide_unroll_constant_iterations (struct loop *loop, int flags)
559 unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
560 struct niter_desc *desc;
562 if (!(flags & UAP_UNROLL))
564 /* We were not asked to, just return back silently. */
565 return;
568 if (dump_file)
569 fprintf (dump_file,
570 "\n;; Considering unrolling loop with constant "
571 "number of iterations\n");
573 /* nunroll = total number of copies of the original loop body in
574 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
575 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
576 nunroll_by_av
577 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
578 if (nunroll > nunroll_by_av)
579 nunroll = nunroll_by_av;
580 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
581 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
583 /* Skip big loops. */
584 if (nunroll <= 1)
586 if (dump_file)
587 fprintf (dump_file, ";; Not considering loop, is too big\n");
588 return;
591 /* Check for simple loops. */
592 desc = get_simple_loop_desc (loop);
594 /* Check number of iterations. */
595 if (!desc->simple_p || !desc->const_iter || desc->assumptions)
597 if (dump_file)
598 fprintf (dump_file,
599 ";; Unable to prove that the loop iterates constant times\n");
600 return;
603 /* Check whether the loop rolls enough to consider. */
604 if (desc->niter < 2 * nunroll)
606 if (dump_file)
607 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
608 return;
611 /* Success; now compute number of iterations to unroll. We alter
612 nunroll so that as few as possible copies of loop body are
613 necessary, while still not decreasing the number of unrollings
614 too much (at most by 1). */
615 best_copies = 2 * nunroll + 10;
617 i = 2 * nunroll + 2;
618 if (i - 1 >= desc->niter)
619 i = desc->niter - 2;
621 for (; i >= nunroll - 1; i--)
623 unsigned exit_mod = desc->niter % (i + 1);
625 if (!loop_exit_at_end_p (loop))
626 n_copies = exit_mod + i + 1;
627 else if (exit_mod != (unsigned) i
628 || desc->noloop_assumptions != NULL_RTX)
629 n_copies = exit_mod + i + 2;
630 else
631 n_copies = i + 1;
633 if (n_copies < best_copies)
635 best_copies = n_copies;
636 best_unroll = i;
640 if (dump_file)
641 fprintf (dump_file, ";; max_unroll %d (%d copies, initial %d).\n",
642 best_unroll + 1, best_copies, nunroll);
644 loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
645 loop->lpt_decision.times = best_unroll;
647 if (dump_file)
648 fprintf (dump_file,
649 ";; Decided to unroll the constant times rolling loop, %d times.\n",
650 loop->lpt_decision.times);
653 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES + 1
654 times. The transformation does this:
656 for (i = 0; i < 102; i++)
657 body;
661 i = 0;
662 body; i++;
663 body; i++;
664 while (i < 102)
666 body; i++;
667 body; i++;
668 body; i++;
669 body; i++;
672 static void
673 unroll_loop_constant_iterations (struct loops *loops, struct loop *loop)
675 unsigned HOST_WIDE_INT niter;
676 unsigned exit_mod;
677 sbitmap wont_exit;
678 unsigned n_remove_edges, i;
679 edge *remove_edges;
680 unsigned max_unroll = loop->lpt_decision.times;
681 struct niter_desc *desc = get_simple_loop_desc (loop);
682 bool exit_at_end = loop_exit_at_end_p (loop);
683 struct opt_info *opt_info = NULL;
684 bool ok;
686 niter = desc->niter;
688 /* Should not get here (such loop should be peeled instead). */
689 gcc_assert (niter > max_unroll + 1);
691 exit_mod = niter % (max_unroll + 1);
693 wont_exit = sbitmap_alloc (max_unroll + 1);
694 sbitmap_ones (wont_exit);
696 remove_edges = xcalloc (max_unroll + exit_mod + 1, sizeof (edge));
697 n_remove_edges = 0;
698 if (flag_split_ivs_in_unroller
699 || flag_variable_expansion_in_unroller)
700 opt_info = analyze_insns_in_loop (loop);
702 if (!exit_at_end)
704 /* The exit is not at the end of the loop; leave exit test
705 in the first copy, so that the loops that start with test
706 of exit condition have continuous body after unrolling. */
708 if (dump_file)
709 fprintf (dump_file, ";; Condition on beginning of loop.\n");
711 /* Peel exit_mod iterations. */
712 RESET_BIT (wont_exit, 0);
713 if (desc->noloop_assumptions)
714 RESET_BIT (wont_exit, 1);
716 if (exit_mod)
718 opt_info_start_duplication (opt_info);
719 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
720 loops, exit_mod,
721 wont_exit, desc->out_edge,
722 remove_edges, &n_remove_edges,
723 DLTHE_FLAG_UPDATE_FREQ
724 | (opt_info && exit_mod > 1
725 ? DLTHE_RECORD_COPY_NUMBER
726 : 0));
727 gcc_assert (ok);
729 if (opt_info && exit_mod > 1)
730 apply_opt_in_copies (opt_info, exit_mod, false, false);
732 desc->noloop_assumptions = NULL_RTX;
733 desc->niter -= exit_mod;
734 desc->niter_max -= exit_mod;
737 SET_BIT (wont_exit, 1);
739 else
741 /* Leave exit test in last copy, for the same reason as above if
742 the loop tests the condition at the end of loop body. */
744 if (dump_file)
745 fprintf (dump_file, ";; Condition on end of loop.\n");
747 /* We know that niter >= max_unroll + 2; so we do not need to care of
748 case when we would exit before reaching the loop. So just peel
749 exit_mod + 1 iterations. */
750 if (exit_mod != max_unroll
751 || desc->noloop_assumptions)
753 RESET_BIT (wont_exit, 0);
754 if (desc->noloop_assumptions)
755 RESET_BIT (wont_exit, 1);
757 opt_info_start_duplication (opt_info);
758 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
759 loops, exit_mod + 1,
760 wont_exit, desc->out_edge,
761 remove_edges, &n_remove_edges,
762 DLTHE_FLAG_UPDATE_FREQ
763 | (opt_info && exit_mod > 0
764 ? DLTHE_RECORD_COPY_NUMBER
765 : 0));
766 gcc_assert (ok);
768 if (opt_info && exit_mod > 0)
769 apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
771 desc->niter -= exit_mod + 1;
772 desc->niter_max -= exit_mod + 1;
773 desc->noloop_assumptions = NULL_RTX;
775 SET_BIT (wont_exit, 0);
776 SET_BIT (wont_exit, 1);
779 RESET_BIT (wont_exit, max_unroll);
782 /* Now unroll the loop. */
784 opt_info_start_duplication (opt_info);
785 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
786 loops, max_unroll,
787 wont_exit, desc->out_edge,
788 remove_edges, &n_remove_edges,
789 DLTHE_FLAG_UPDATE_FREQ
790 | (opt_info
791 ? DLTHE_RECORD_COPY_NUMBER
792 : 0));
793 gcc_assert (ok);
795 if (opt_info)
797 apply_opt_in_copies (opt_info, max_unroll, true, true);
798 free_opt_info (opt_info);
801 free (wont_exit);
803 if (exit_at_end)
805 basic_block exit_block = get_bb_copy (desc->in_edge->src);
806 /* Find a new in and out edge; they are in the last copy we have made. */
808 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
810 desc->out_edge = EDGE_SUCC (exit_block, 0);
811 desc->in_edge = EDGE_SUCC (exit_block, 1);
813 else
815 desc->out_edge = EDGE_SUCC (exit_block, 1);
816 desc->in_edge = EDGE_SUCC (exit_block, 0);
820 desc->niter /= max_unroll + 1;
821 desc->niter_max /= max_unroll + 1;
822 desc->niter_expr = GEN_INT (desc->niter);
824 /* Remove the edges. */
825 for (i = 0; i < n_remove_edges; i++)
826 remove_path (loops, remove_edges[i]);
827 free (remove_edges);
829 if (dump_file)
830 fprintf (dump_file,
831 ";; Unrolled loop %d times, constant # of iterations %i insns\n",
832 max_unroll, num_loop_insns (loop));
835 /* Decide whether to unroll LOOP iterating runtime computable number of times
836 and how much. */
837 static void
838 decide_unroll_runtime_iterations (struct loop *loop, int flags)
840 unsigned nunroll, nunroll_by_av, i;
841 struct niter_desc *desc;
843 if (!(flags & UAP_UNROLL))
845 /* We were not asked to, just return back silently. */
846 return;
849 if (dump_file)
850 fprintf (dump_file,
851 "\n;; Considering unrolling loop with runtime "
852 "computable number of iterations\n");
854 /* nunroll = total number of copies of the original loop body in
855 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
856 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
857 nunroll_by_av = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
858 if (nunroll > nunroll_by_av)
859 nunroll = nunroll_by_av;
860 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
861 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
863 /* Skip big loops. */
864 if (nunroll <= 1)
866 if (dump_file)
867 fprintf (dump_file, ";; Not considering loop, is too big\n");
868 return;
871 /* Check for simple loops. */
872 desc = get_simple_loop_desc (loop);
874 /* Check simpleness. */
875 if (!desc->simple_p || desc->assumptions)
877 if (dump_file)
878 fprintf (dump_file,
879 ";; Unable to prove that the number of iterations "
880 "can be counted in runtime\n");
881 return;
884 if (desc->const_iter)
886 if (dump_file)
887 fprintf (dump_file, ";; Loop iterates constant times\n");
888 return;
891 /* If we have profile feedback, check whether the loop rolls. */
892 if (loop->header->count && expected_loop_iterations (loop) < 2 * nunroll)
894 if (dump_file)
895 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
896 return;
899 /* Success; now force nunroll to be power of 2, as we are unable to
900 cope with overflows in computation of number of iterations. */
901 for (i = 1; 2 * i <= nunroll; i *= 2)
902 continue;
904 loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
905 loop->lpt_decision.times = i - 1;
907 if (dump_file)
908 fprintf (dump_file,
909 ";; Decided to unroll the runtime computable "
910 "times rolling loop, %d times.\n",
911 loop->lpt_decision.times);
914 /* Unroll LOOP for that we are able to count number of iterations in runtime
915 LOOP->LPT_DECISION.TIMES + 1 times. The transformation does this (with some
916 extra care for case n < 0):
918 for (i = 0; i < n; i++)
919 body;
923 i = 0;
924 mod = n % 4;
926 switch (mod)
928 case 3:
929 body; i++;
930 case 2:
931 body; i++;
932 case 1:
933 body; i++;
934 case 0: ;
937 while (i < n)
939 body; i++;
940 body; i++;
941 body; i++;
942 body; i++;
945 static void
946 unroll_loop_runtime_iterations (struct loops *loops, struct loop *loop)
948 rtx old_niter, niter, init_code, branch_code, tmp;
949 unsigned i, j, p;
950 basic_block preheader, *body, *dom_bbs, swtch, ezc_swtch;
951 unsigned n_dom_bbs;
952 sbitmap wont_exit;
953 int may_exit_copy;
954 unsigned n_peel, n_remove_edges;
955 edge *remove_edges, e;
956 bool extra_zero_check, last_may_exit;
957 unsigned max_unroll = loop->lpt_decision.times;
958 struct niter_desc *desc = get_simple_loop_desc (loop);
959 bool exit_at_end = loop_exit_at_end_p (loop);
960 struct opt_info *opt_info = NULL;
961 bool ok;
963 if (flag_split_ivs_in_unroller
964 || flag_variable_expansion_in_unroller)
965 opt_info = analyze_insns_in_loop (loop);
967 /* Remember blocks whose dominators will have to be updated. */
968 dom_bbs = xcalloc (n_basic_blocks, sizeof (basic_block));
969 n_dom_bbs = 0;
971 body = get_loop_body (loop);
972 for (i = 0; i < loop->num_nodes; i++)
974 unsigned nldom;
975 basic_block *ldom;
977 nldom = get_dominated_by (CDI_DOMINATORS, body[i], &ldom);
978 for (j = 0; j < nldom; j++)
979 if (!flow_bb_inside_loop_p (loop, ldom[j]))
980 dom_bbs[n_dom_bbs++] = ldom[j];
982 free (ldom);
984 free (body);
986 if (!exit_at_end)
988 /* Leave exit in first copy (for explanation why see comment in
989 unroll_loop_constant_iterations). */
990 may_exit_copy = 0;
991 n_peel = max_unroll - 1;
992 extra_zero_check = true;
993 last_may_exit = false;
995 else
997 /* Leave exit in last copy (for explanation why see comment in
998 unroll_loop_constant_iterations). */
999 may_exit_copy = max_unroll;
1000 n_peel = max_unroll;
1001 extra_zero_check = false;
1002 last_may_exit = true;
1005 /* Get expression for number of iterations. */
1006 start_sequence ();
1007 old_niter = niter = gen_reg_rtx (desc->mode);
1008 tmp = force_operand (copy_rtx (desc->niter_expr), niter);
1009 if (tmp != niter)
1010 emit_move_insn (niter, tmp);
1012 /* Count modulo by ANDing it with max_unroll; we use the fact that
1013 the number of unrollings is a power of two, and thus this is correct
1014 even if there is overflow in the computation. */
1015 niter = expand_simple_binop (desc->mode, AND,
1016 niter,
1017 GEN_INT (max_unroll),
1018 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1020 init_code = get_insns ();
1021 end_sequence ();
1023 /* Precondition the loop. */
1024 loop_split_edge_with (loop_preheader_edge (loop), init_code);
1026 remove_edges = xcalloc (max_unroll + n_peel + 1, sizeof (edge));
1027 n_remove_edges = 0;
1029 wont_exit = sbitmap_alloc (max_unroll + 2);
1031 /* Peel the first copy of loop body (almost always we must leave exit test
1032 here; the only exception is when we have extra zero check and the number
1033 of iterations is reliable. Also record the place of (possible) extra
1034 zero check. */
1035 sbitmap_zero (wont_exit);
1036 if (extra_zero_check
1037 && !desc->noloop_assumptions)
1038 SET_BIT (wont_exit, 1);
1039 ezc_swtch = loop_preheader_edge (loop)->src;
1040 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1041 loops, 1,
1042 wont_exit, desc->out_edge,
1043 remove_edges, &n_remove_edges,
1044 DLTHE_FLAG_UPDATE_FREQ);
1045 gcc_assert (ok);
1047 /* Record the place where switch will be built for preconditioning. */
1048 swtch = loop_split_edge_with (loop_preheader_edge (loop),
1049 NULL_RTX);
1051 for (i = 0; i < n_peel; i++)
1053 /* Peel the copy. */
1054 sbitmap_zero (wont_exit);
1055 if (i != n_peel - 1 || !last_may_exit)
1056 SET_BIT (wont_exit, 1);
1057 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1058 loops, 1,
1059 wont_exit, desc->out_edge,
1060 remove_edges, &n_remove_edges,
1061 DLTHE_FLAG_UPDATE_FREQ);
1062 gcc_assert (ok);
1064 /* Create item for switch. */
1065 j = n_peel - i - (extra_zero_check ? 0 : 1);
1066 p = REG_BR_PROB_BASE / (i + 2);
1068 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1069 branch_code = compare_and_jump_seq (copy_rtx (niter), GEN_INT (j), EQ,
1070 block_label (preheader), p,
1071 NULL_RTX);
1073 swtch = loop_split_edge_with (single_pred_edge (swtch), branch_code);
1074 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1075 single_pred_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1076 e = make_edge (swtch, preheader,
1077 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1078 e->probability = p;
1081 if (extra_zero_check)
1083 /* Add branch for zero iterations. */
1084 p = REG_BR_PROB_BASE / (max_unroll + 1);
1085 swtch = ezc_swtch;
1086 preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1087 branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1088 block_label (preheader), p,
1089 NULL_RTX);
1091 swtch = loop_split_edge_with (single_succ_edge (swtch), branch_code);
1092 set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1093 single_succ_edge (swtch)->probability = REG_BR_PROB_BASE - p;
1094 e = make_edge (swtch, preheader,
1095 single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1096 e->probability = p;
1099 /* Recount dominators for outer blocks. */
1100 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, n_dom_bbs);
1102 /* And unroll loop. */
1104 sbitmap_ones (wont_exit);
1105 RESET_BIT (wont_exit, may_exit_copy);
1106 opt_info_start_duplication (opt_info);
1108 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1109 loops, max_unroll,
1110 wont_exit, desc->out_edge,
1111 remove_edges, &n_remove_edges,
1112 DLTHE_FLAG_UPDATE_FREQ
1113 | (opt_info
1114 ? DLTHE_RECORD_COPY_NUMBER
1115 : 0));
1116 gcc_assert (ok);
1118 if (opt_info)
1120 apply_opt_in_copies (opt_info, max_unroll, true, true);
1121 free_opt_info (opt_info);
1124 free (wont_exit);
1126 if (exit_at_end)
1128 basic_block exit_block = get_bb_copy (desc->in_edge->src);
1129 /* Find a new in and out edge; they are in the last copy we have
1130 made. */
1132 if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1134 desc->out_edge = EDGE_SUCC (exit_block, 0);
1135 desc->in_edge = EDGE_SUCC (exit_block, 1);
1137 else
1139 desc->out_edge = EDGE_SUCC (exit_block, 1);
1140 desc->in_edge = EDGE_SUCC (exit_block, 0);
1144 /* Remove the edges. */
1145 for (i = 0; i < n_remove_edges; i++)
1146 remove_path (loops, remove_edges[i]);
1147 free (remove_edges);
1149 /* We must be careful when updating the number of iterations due to
1150 preconditioning and the fact that the value must be valid at entry
1151 of the loop. After passing through the above code, we see that
1152 the correct new number of iterations is this: */
1153 gcc_assert (!desc->const_iter);
1154 desc->niter_expr =
1155 simplify_gen_binary (UDIV, desc->mode, old_niter,
1156 GEN_INT (max_unroll + 1));
1157 desc->niter_max /= max_unroll + 1;
1158 if (exit_at_end)
1160 desc->niter_expr =
1161 simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1162 desc->noloop_assumptions = NULL_RTX;
1163 desc->niter_max--;
1166 if (dump_file)
1167 fprintf (dump_file,
1168 ";; Unrolled loop %d times, counting # of iterations "
1169 "in runtime, %i insns\n",
1170 max_unroll, num_loop_insns (loop));
1173 /* Decide whether to simply peel LOOP and how much. */
1174 static void
1175 decide_peel_simple (struct loop *loop, int flags)
1177 unsigned npeel;
1178 struct niter_desc *desc;
1180 if (!(flags & UAP_PEEL))
1182 /* We were not asked to, just return back silently. */
1183 return;
1186 if (dump_file)
1187 fprintf (dump_file, "\n;; Considering simply peeling loop\n");
1189 /* npeel = number of iterations to peel. */
1190 npeel = PARAM_VALUE (PARAM_MAX_PEELED_INSNS) / loop->ninsns;
1191 if (npeel > (unsigned) PARAM_VALUE (PARAM_MAX_PEEL_TIMES))
1192 npeel = PARAM_VALUE (PARAM_MAX_PEEL_TIMES);
1194 /* Skip big loops. */
1195 if (!npeel)
1197 if (dump_file)
1198 fprintf (dump_file, ";; Not considering loop, is too big\n");
1199 return;
1202 /* Check for simple loops. */
1203 desc = get_simple_loop_desc (loop);
1205 /* Check number of iterations. */
1206 if (desc->simple_p && !desc->assumptions && desc->const_iter)
1208 if (dump_file)
1209 fprintf (dump_file, ";; Loop iterates constant times\n");
1210 return;
1213 /* Do not simply peel loops with branches inside -- it increases number
1214 of mispredicts. */
1215 if (num_loop_branches (loop) > 1)
1217 if (dump_file)
1218 fprintf (dump_file, ";; Not peeling, contains branches\n");
1219 return;
1222 if (loop->header->count)
1224 unsigned niter = expected_loop_iterations (loop);
1225 if (niter + 1 > npeel)
1227 if (dump_file)
1229 fprintf (dump_file, ";; Not peeling loop, rolls too much (");
1230 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
1231 (HOST_WIDEST_INT) (niter + 1));
1232 fprintf (dump_file, " iterations > %d [maximum peelings])\n",
1233 npeel);
1235 return;
1237 npeel = niter + 1;
1239 else
1241 /* For now we have no good heuristics to decide whether loop peeling
1242 will be effective, so disable it. */
1243 if (dump_file)
1244 fprintf (dump_file,
1245 ";; Not peeling loop, no evidence it will be profitable\n");
1246 return;
1249 /* Success. */
1250 loop->lpt_decision.decision = LPT_PEEL_SIMPLE;
1251 loop->lpt_decision.times = npeel;
1253 if (dump_file)
1254 fprintf (dump_file, ";; Decided to simply peel the loop, %d times.\n",
1255 loop->lpt_decision.times);
1258 /* Peel a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1259 while (cond)
1260 body;
1264 if (!cond) goto end;
1265 body;
1266 if (!cond) goto end;
1267 body;
1268 while (cond)
1269 body;
1270 end: ;
1272 static void
1273 peel_loop_simple (struct loops *loops, struct loop *loop)
1275 sbitmap wont_exit;
1276 unsigned npeel = loop->lpt_decision.times;
1277 struct niter_desc *desc = get_simple_loop_desc (loop);
1278 struct opt_info *opt_info = NULL;
1279 bool ok;
1281 if (flag_split_ivs_in_unroller && npeel > 1)
1282 opt_info = analyze_insns_in_loop (loop);
1284 wont_exit = sbitmap_alloc (npeel + 1);
1285 sbitmap_zero (wont_exit);
1287 opt_info_start_duplication (opt_info);
1289 ok = duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1290 loops, npeel, wont_exit,
1291 NULL, NULL,
1292 NULL, DLTHE_FLAG_UPDATE_FREQ
1293 | (opt_info
1294 ? DLTHE_RECORD_COPY_NUMBER
1295 : 0));
1296 gcc_assert (ok);
1298 free (wont_exit);
1300 if (opt_info)
1302 apply_opt_in_copies (opt_info, npeel, false, false);
1303 free_opt_info (opt_info);
1306 if (desc->simple_p)
1308 if (desc->const_iter)
1310 desc->niter -= npeel;
1311 desc->niter_expr = GEN_INT (desc->niter);
1312 desc->noloop_assumptions = NULL_RTX;
1314 else
1316 /* We cannot just update niter_expr, as its value might be clobbered
1317 inside loop. We could handle this by counting the number into
1318 temporary just like we do in runtime unrolling, but it does not
1319 seem worthwhile. */
1320 free_simple_loop_desc (loop);
1323 if (dump_file)
1324 fprintf (dump_file, ";; Peeling loop %d times\n", npeel);
1327 /* Decide whether to unroll LOOP stupidly and how much. */
1328 static void
1329 decide_unroll_stupid (struct loop *loop, int flags)
1331 unsigned nunroll, nunroll_by_av, i;
1332 struct niter_desc *desc;
1334 if (!(flags & UAP_UNROLL_ALL))
1336 /* We were not asked to, just return back silently. */
1337 return;
1340 if (dump_file)
1341 fprintf (dump_file, "\n;; Considering unrolling loop stupidly\n");
1343 /* nunroll = total number of copies of the original loop body in
1344 unrolled loop (i.e. if it is 2, we have to duplicate loop body once. */
1345 nunroll = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / loop->ninsns;
1346 nunroll_by_av
1347 = PARAM_VALUE (PARAM_MAX_AVERAGE_UNROLLED_INSNS) / loop->av_ninsns;
1348 if (nunroll > nunroll_by_av)
1349 nunroll = nunroll_by_av;
1350 if (nunroll > (unsigned) PARAM_VALUE (PARAM_MAX_UNROLL_TIMES))
1351 nunroll = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1353 /* Skip big loops. */
1354 if (nunroll <= 1)
1356 if (dump_file)
1357 fprintf (dump_file, ";; Not considering loop, is too big\n");
1358 return;
1361 /* Check for simple loops. */
1362 desc = get_simple_loop_desc (loop);
1364 /* Check simpleness. */
1365 if (desc->simple_p && !desc->assumptions)
1367 if (dump_file)
1368 fprintf (dump_file, ";; The loop is simple\n");
1369 return;
1372 /* Do not unroll loops with branches inside -- it increases number
1373 of mispredicts. */
1374 if (num_loop_branches (loop) > 1)
1376 if (dump_file)
1377 fprintf (dump_file, ";; Not unrolling, contains branches\n");
1378 return;
1381 /* If we have profile feedback, check whether the loop rolls. */
1382 if (loop->header->count
1383 && expected_loop_iterations (loop) < 2 * nunroll)
1385 if (dump_file)
1386 fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1387 return;
1390 /* Success. Now force nunroll to be power of 2, as it seems that this
1391 improves results (partially because of better alignments, partially
1392 because of some dark magic). */
1393 for (i = 1; 2 * i <= nunroll; i *= 2)
1394 continue;
1396 loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1397 loop->lpt_decision.times = i - 1;
1399 if (dump_file)
1400 fprintf (dump_file,
1401 ";; Decided to unroll the loop stupidly, %d times.\n",
1402 loop->lpt_decision.times);
1405 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times. The transformation:
1406 while (cond)
1407 body;
1411 while (cond)
1413 body;
1414 if (!cond) break;
1415 body;
1416 if (!cond) break;
1417 body;
1418 if (!cond) break;
1419 body;
1422 static void
1423 unroll_loop_stupid (struct loops *loops, struct loop *loop)
1425 sbitmap wont_exit;
1426 unsigned nunroll = loop->lpt_decision.times;
1427 struct niter_desc *desc = get_simple_loop_desc (loop);
1428 struct opt_info *opt_info = NULL;
1429 bool ok;
1431 if (flag_split_ivs_in_unroller
1432 || flag_variable_expansion_in_unroller)
1433 opt_info = analyze_insns_in_loop (loop);
1436 wont_exit = sbitmap_alloc (nunroll + 1);
1437 sbitmap_zero (wont_exit);
1438 opt_info_start_duplication (opt_info);
1440 ok = duplicate_loop_to_header_edge (loop, loop_latch_edge (loop),
1441 loops, nunroll, wont_exit,
1442 NULL, NULL, NULL,
1443 DLTHE_FLAG_UPDATE_FREQ
1444 | (opt_info
1445 ? DLTHE_RECORD_COPY_NUMBER
1446 : 0));
1447 gcc_assert (ok);
1449 if (opt_info)
1451 apply_opt_in_copies (opt_info, nunroll, true, true);
1452 free_opt_info (opt_info);
1455 free (wont_exit);
1457 if (desc->simple_p)
1459 /* We indeed may get here provided that there are nontrivial assumptions
1460 for a loop to be really simple. We could update the counts, but the
1461 problem is that we are unable to decide which exit will be taken
1462 (not really true in case the number of iterations is constant,
1463 but noone will do anything with this information, so we do not
1464 worry about it). */
1465 desc->simple_p = false;
1468 if (dump_file)
1469 fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1470 nunroll, num_loop_insns (loop));
1473 /* A hash function for information about insns to split. */
1475 static hashval_t
1476 si_info_hash (const void *ivts)
1478 return htab_hash_pointer (((struct iv_to_split *) ivts)->insn);
1481 /* An equality functions for information about insns to split. */
1483 static int
1484 si_info_eq (const void *ivts1, const void *ivts2)
1486 const struct iv_to_split *i1 = ivts1;
1487 const struct iv_to_split *i2 = ivts2;
1489 return i1->insn == i2->insn;
1492 /* Return a hash for VES, which is really a "var_to_expand *". */
1494 static hashval_t
1495 ve_info_hash (const void *ves)
1497 return htab_hash_pointer (((struct var_to_expand *) ves)->insn);
1500 /* Return true if IVTS1 and IVTS2 (which are really both of type
1501 "var_to_expand *") refer to the same instruction. */
1503 static int
1504 ve_info_eq (const void *ivts1, const void *ivts2)
1506 const struct var_to_expand *i1 = ivts1;
1507 const struct var_to_expand *i2 = ivts2;
1509 return i1->insn == i2->insn;
1512 /* Returns true if REG is referenced in one insn in LOOP. */
1514 bool
1515 referenced_in_one_insn_in_loop_p (struct loop *loop, rtx reg)
1517 basic_block *body, bb;
1518 unsigned i;
1519 int count_ref = 0;
1520 rtx insn;
1522 body = get_loop_body (loop);
1523 for (i = 0; i < loop->num_nodes; i++)
1525 bb = body[i];
1527 FOR_BB_INSNS (bb, insn)
1529 if (rtx_referenced_p (reg, insn))
1530 count_ref++;
1533 return (count_ref == 1);
1536 /* Determine whether INSN contains an accumulator
1537 which can be expanded into separate copies,
1538 one for each copy of the LOOP body.
1540 for (i = 0 ; i < n; i++)
1541 sum += a[i];
1545 sum += a[i]
1546 ....
1547 i = i+1;
1548 sum1 += a[i]
1549 ....
1550 i = i+1
1551 sum2 += a[i];
1552 ....
1554 Return NULL if INSN contains no opportunity for expansion of accumulator.
1555 Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1556 information and return a pointer to it.
1559 static struct var_to_expand *
1560 analyze_insn_to_expand_var (struct loop *loop, rtx insn)
1562 rtx set, dest, src, op1;
1563 struct var_to_expand *ves;
1564 enum machine_mode mode1, mode2;
1566 set = single_set (insn);
1567 if (!set)
1568 return NULL;
1570 dest = SET_DEST (set);
1571 src = SET_SRC (set);
1573 if (GET_CODE (src) != PLUS
1574 && GET_CODE (src) != MINUS
1575 && GET_CODE (src) != MULT)
1576 return NULL;
1578 /* Hmm, this is a bit paradoxical. We know that INSN is a valid insn
1579 in MD. But if there is no optab to generate the insn, we can not
1580 perform the variable expansion. This can happen if an MD provides
1581 an insn but not a named pattern to generate it, for example to avoid
1582 producing code that needs additional mode switches like for x87/mmx.
1584 So we check have_insn_for which looks for an optab for the operation
1585 in SRC. If it doesn't exist, we can't perform the expansion even
1586 though INSN is valid. */
1587 if (!have_insn_for (GET_CODE (src), GET_MODE (src)))
1588 return NULL;
1590 if (!XEXP (src, 0))
1591 return NULL;
1593 op1 = XEXP (src, 0);
1595 if (!REG_P (dest)
1596 && !(GET_CODE (dest) == SUBREG
1597 && REG_P (SUBREG_REG (dest))))
1598 return NULL;
1600 if (!rtx_equal_p (dest, op1))
1601 return NULL;
1603 if (!referenced_in_one_insn_in_loop_p (loop, dest))
1604 return NULL;
1606 if (rtx_referenced_p (dest, XEXP (src, 1)))
1607 return NULL;
1609 mode1 = GET_MODE (dest);
1610 mode2 = GET_MODE (XEXP (src, 1));
1611 if ((FLOAT_MODE_P (mode1)
1612 || FLOAT_MODE_P (mode2))
1613 && !flag_unsafe_math_optimizations)
1614 return NULL;
1616 /* Record the accumulator to expand. */
1617 ves = xmalloc (sizeof (struct var_to_expand));
1618 ves->insn = insn;
1619 ves->var_expansions = VEC_alloc (rtx, heap, 1);
1620 ves->reg = copy_rtx (dest);
1621 ves->op = GET_CODE (src);
1622 ves->expansion_count = 0;
1623 ves->reuse_expansion = 0;
1624 return ves;
1627 /* Determine whether there is an induction variable in INSN that
1628 we would like to split during unrolling.
1630 I.e. replace
1632 i = i + 1;
1634 i = i + 1;
1636 i = i + 1;
1639 type chains by
1641 i0 = i + 1
1643 i = i0 + 1
1645 i = i0 + 2
1648 Return NULL if INSN contains no interesting IVs. Otherwise, allocate
1649 an IV_TO_SPLIT structure, fill it with the relevant information and return a
1650 pointer to it. */
1652 static struct iv_to_split *
1653 analyze_iv_to_split_insn (rtx insn)
1655 rtx set, dest;
1656 struct rtx_iv iv;
1657 struct iv_to_split *ivts;
1658 bool ok;
1660 /* For now we just split the basic induction variables. Later this may be
1661 extended for example by selecting also addresses of memory references. */
1662 set = single_set (insn);
1663 if (!set)
1664 return NULL;
1666 dest = SET_DEST (set);
1667 if (!REG_P (dest))
1668 return NULL;
1670 if (!biv_p (insn, dest))
1671 return NULL;
1673 ok = iv_analyze (insn, dest, &iv);
1674 gcc_assert (ok);
1676 if (iv.step == const0_rtx
1677 || iv.mode != iv.extend_mode)
1678 return NULL;
1680 /* Record the insn to split. */
1681 ivts = xmalloc (sizeof (struct iv_to_split));
1682 ivts->insn = insn;
1683 ivts->base_var = NULL_RTX;
1684 ivts->step = iv.step;
1685 ivts->n_loc = 1;
1686 ivts->loc[0] = 1;
1688 return ivts;
1691 /* Determines which of insns in LOOP can be optimized.
1692 Return a OPT_INFO struct with the relevant hash tables filled
1693 with all insns to be optimized. The FIRST_NEW_BLOCK field
1694 is undefined for the return value. */
1696 static struct opt_info *
1697 analyze_insns_in_loop (struct loop *loop)
1699 basic_block *body, bb;
1700 unsigned i, num_edges = 0;
1701 struct opt_info *opt_info = xcalloc (1, sizeof (struct opt_info));
1702 rtx insn;
1703 struct iv_to_split *ivts = NULL;
1704 struct var_to_expand *ves = NULL;
1705 PTR *slot1;
1706 PTR *slot2;
1707 edge *edges = get_loop_exit_edges (loop, &num_edges);
1708 bool can_apply = false;
1710 iv_analysis_loop_init (loop);
1712 body = get_loop_body (loop);
1714 if (flag_split_ivs_in_unroller)
1715 opt_info->insns_to_split = htab_create (5 * loop->num_nodes,
1716 si_info_hash, si_info_eq, free);
1718 /* Record the loop exit bb and loop preheader before the unrolling. */
1719 if (!loop_preheader_edge (loop)->src)
1721 loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1722 opt_info->loop_preheader = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
1724 else
1725 opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1727 if (num_edges == 1
1728 && !(edges[0]->flags & EDGE_COMPLEX))
1730 opt_info->loop_exit = loop_split_edge_with (edges[0], NULL_RTX);
1731 can_apply = true;
1734 if (flag_variable_expansion_in_unroller
1735 && can_apply)
1736 opt_info->insns_with_var_to_expand = htab_create (5 * loop->num_nodes,
1737 ve_info_hash, ve_info_eq, free);
1739 for (i = 0; i < loop->num_nodes; i++)
1741 bb = body[i];
1742 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1743 continue;
1745 FOR_BB_INSNS (bb, insn)
1747 if (!INSN_P (insn))
1748 continue;
1750 if (opt_info->insns_to_split)
1751 ivts = analyze_iv_to_split_insn (insn);
1753 if (ivts)
1755 slot1 = htab_find_slot (opt_info->insns_to_split, ivts, INSERT);
1756 *slot1 = ivts;
1757 continue;
1760 if (opt_info->insns_with_var_to_expand)
1761 ves = analyze_insn_to_expand_var (loop, insn);
1763 if (ves)
1765 slot2 = htab_find_slot (opt_info->insns_with_var_to_expand, ves, INSERT);
1766 *slot2 = ves;
1771 free (edges);
1772 free (body);
1773 return opt_info;
1776 /* Called just before loop duplication. Records start of duplicated area
1777 to OPT_INFO. */
1779 static void
1780 opt_info_start_duplication (struct opt_info *opt_info)
1782 if (opt_info)
1783 opt_info->first_new_block = last_basic_block;
1786 /* Determine the number of iterations between initialization of the base
1787 variable and the current copy (N_COPY). N_COPIES is the total number
1788 of newly created copies. UNROLLING is true if we are unrolling
1789 (not peeling) the loop. */
1791 static unsigned
1792 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1794 if (unrolling)
1796 /* If we are unrolling, initialization is done in the original loop
1797 body (number 0). */
1798 return n_copy;
1800 else
1802 /* If we are peeling, the copy in that the initialization occurs has
1803 number 1. The original loop (number 0) is the last. */
1804 if (n_copy)
1805 return n_copy - 1;
1806 else
1807 return n_copies;
1811 /* Locate in EXPR the expression corresponding to the location recorded
1812 in IVTS, and return a pointer to the RTX for this location. */
1814 static rtx *
1815 get_ivts_expr (rtx expr, struct iv_to_split *ivts)
1817 unsigned i;
1818 rtx *ret = &expr;
1820 for (i = 0; i < ivts->n_loc; i++)
1821 ret = &XEXP (*ret, ivts->loc[i]);
1823 return ret;
1826 /* Allocate basic variable for the induction variable chain. Callback for
1827 htab_traverse. */
1829 static int
1830 allocate_basic_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1832 struct iv_to_split *ivts = *slot;
1833 rtx expr = *get_ivts_expr (single_set (ivts->insn), ivts);
1835 ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1837 return 1;
1840 /* Insert initialization of basic variable of IVTS before INSN, taking
1841 the initial value from INSN. */
1843 static void
1844 insert_base_initialization (struct iv_to_split *ivts, rtx insn)
1846 rtx expr = copy_rtx (*get_ivts_expr (single_set (insn), ivts));
1847 rtx seq;
1849 start_sequence ();
1850 expr = force_operand (expr, ivts->base_var);
1851 if (expr != ivts->base_var)
1852 emit_move_insn (ivts->base_var, expr);
1853 seq = get_insns ();
1854 end_sequence ();
1856 emit_insn_before (seq, insn);
1859 /* Replace the use of induction variable described in IVTS in INSN
1860 by base variable + DELTA * step. */
1862 static void
1863 split_iv (struct iv_to_split *ivts, rtx insn, unsigned delta)
1865 rtx expr, *loc, seq, incr, var;
1866 enum machine_mode mode = GET_MODE (ivts->base_var);
1867 rtx src, dest, set;
1869 /* Construct base + DELTA * step. */
1870 if (!delta)
1871 expr = ivts->base_var;
1872 else
1874 incr = simplify_gen_binary (MULT, mode,
1875 ivts->step, gen_int_mode (delta, mode));
1876 expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1877 ivts->base_var, incr);
1880 /* Figure out where to do the replacement. */
1881 loc = get_ivts_expr (single_set (insn), ivts);
1883 /* If we can make the replacement right away, we're done. */
1884 if (validate_change (insn, loc, expr, 0))
1885 return;
1887 /* Otherwise, force EXPR into a register and try again. */
1888 start_sequence ();
1889 var = gen_reg_rtx (mode);
1890 expr = force_operand (expr, var);
1891 if (expr != var)
1892 emit_move_insn (var, expr);
1893 seq = get_insns ();
1894 end_sequence ();
1895 emit_insn_before (seq, insn);
1897 if (validate_change (insn, loc, var, 0))
1898 return;
1900 /* The last chance. Try recreating the assignment in insn
1901 completely from scratch. */
1902 set = single_set (insn);
1903 gcc_assert (set);
1905 start_sequence ();
1906 *loc = var;
1907 src = copy_rtx (SET_SRC (set));
1908 dest = copy_rtx (SET_DEST (set));
1909 src = force_operand (src, dest);
1910 if (src != dest)
1911 emit_move_insn (dest, src);
1912 seq = get_insns ();
1913 end_sequence ();
1915 emit_insn_before (seq, insn);
1916 delete_insn (insn);
1920 /* Return one expansion of the accumulator recorded in struct VE. */
1922 static rtx
1923 get_expansion (struct var_to_expand *ve)
1925 rtx reg;
1927 if (ve->reuse_expansion == 0)
1928 reg = ve->reg;
1929 else
1930 reg = VEC_index (rtx, ve->var_expansions, ve->reuse_expansion - 1);
1932 if (VEC_length (rtx, ve->var_expansions) == (unsigned) ve->reuse_expansion)
1933 ve->reuse_expansion = 0;
1934 else
1935 ve->reuse_expansion++;
1937 return reg;
1941 /* Given INSN replace the uses of the accumulator recorded in VE
1942 with a new register. */
1944 static void
1945 expand_var_during_unrolling (struct var_to_expand *ve, rtx insn)
1947 rtx new_reg, set;
1948 bool really_new_expansion = false;
1950 set = single_set (insn);
1951 gcc_assert (set);
1953 /* Generate a new register only if the expansion limit has not been
1954 reached. Else reuse an already existing expansion. */
1955 if (PARAM_VALUE (PARAM_MAX_VARIABLE_EXPANSIONS) > ve->expansion_count)
1957 really_new_expansion = true;
1958 new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1960 else
1961 new_reg = get_expansion (ve);
1963 validate_change (insn, &SET_DEST (set), new_reg, 1);
1964 validate_change (insn, &XEXP (SET_SRC (set), 0), new_reg, 1);
1966 if (apply_change_group ())
1967 if (really_new_expansion)
1969 VEC_safe_push (rtx, heap, ve->var_expansions, new_reg);
1970 ve->expansion_count++;
1974 /* Initialize the variable expansions in loop preheader.
1975 Callbacks for htab_traverse. PLACE_P is the loop-preheader
1976 basic block where the initialization of the expansions
1977 should take place. */
1979 static int
1980 insert_var_expansion_initialization (void **slot, void *place_p)
1982 struct var_to_expand *ve = *slot;
1983 basic_block place = (basic_block)place_p;
1984 rtx seq, var, zero_init, insn;
1985 unsigned i;
1987 if (VEC_length (rtx, ve->var_expansions) == 0)
1988 return 1;
1990 start_sequence ();
1991 if (ve->op == PLUS || ve->op == MINUS)
1992 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
1994 zero_init = CONST0_RTX (GET_MODE (var));
1995 emit_move_insn (var, zero_init);
1997 else if (ve->op == MULT)
1998 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2000 zero_init = CONST1_RTX (GET_MODE (var));
2001 emit_move_insn (var, zero_init);
2004 seq = get_insns ();
2005 end_sequence ();
2007 insn = BB_HEAD (place);
2008 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2009 insn = NEXT_INSN (insn);
2011 emit_insn_after (seq, insn);
2012 /* Continue traversing the hash table. */
2013 return 1;
2016 /* Combine the variable expansions at the loop exit.
2017 Callbacks for htab_traverse. PLACE_P is the loop exit
2018 basic block where the summation of the expansions should
2019 take place. */
2021 static int
2022 combine_var_copies_in_loop_exit (void **slot, void *place_p)
2024 struct var_to_expand *ve = *slot;
2025 basic_block place = (basic_block)place_p;
2026 rtx sum = ve->reg;
2027 rtx expr, seq, var, insn;
2028 unsigned i;
2030 if (VEC_length (rtx, ve->var_expansions) == 0)
2031 return 1;
2033 start_sequence ();
2034 if (ve->op == PLUS || ve->op == MINUS)
2035 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2037 sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg),
2038 var, sum);
2040 else if (ve->op == MULT)
2041 for (i = 0; VEC_iterate (rtx, ve->var_expansions, i, var); i++)
2043 sum = simplify_gen_binary (MULT, GET_MODE (ve->reg),
2044 var, sum);
2047 expr = force_operand (sum, ve->reg);
2048 if (expr != ve->reg)
2049 emit_move_insn (ve->reg, expr);
2050 seq = get_insns ();
2051 end_sequence ();
2053 insn = BB_HEAD (place);
2054 while (!NOTE_INSN_BASIC_BLOCK_P (insn))
2055 insn = NEXT_INSN (insn);
2057 emit_insn_after (seq, insn);
2059 /* Continue traversing the hash table. */
2060 return 1;
2063 /* Apply loop optimizations in loop copies using the
2064 data which gathered during the unrolling. Structure
2065 OPT_INFO record that data.
2067 UNROLLING is true if we unrolled (not peeled) the loop.
2068 REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
2069 the loop (as it should happen in complete unrolling, but not in ordinary
2070 peeling of the loop). */
2072 static void
2073 apply_opt_in_copies (struct opt_info *opt_info,
2074 unsigned n_copies, bool unrolling,
2075 bool rewrite_original_loop)
2077 unsigned i, delta;
2078 basic_block bb, orig_bb;
2079 rtx insn, orig_insn, next;
2080 struct iv_to_split ivts_templ, *ivts;
2081 struct var_to_expand ve_templ, *ves;
2083 /* Sanity check -- we need to put initialization in the original loop
2084 body. */
2085 gcc_assert (!unrolling || rewrite_original_loop);
2087 /* Allocate the basic variables (i0). */
2088 if (opt_info->insns_to_split)
2089 htab_traverse (opt_info->insns_to_split, allocate_basic_variable, NULL);
2091 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2093 bb = BASIC_BLOCK (i);
2094 orig_bb = get_bb_original (bb);
2096 /* bb->aux holds position in copy sequence initialized by
2097 duplicate_loop_to_header_edge. */
2098 delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2099 unrolling);
2100 bb->aux = 0;
2101 orig_insn = BB_HEAD (orig_bb);
2102 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
2104 next = NEXT_INSN (insn);
2105 if (!INSN_P (insn))
2106 continue;
2108 while (!INSN_P (orig_insn))
2109 orig_insn = NEXT_INSN (orig_insn);
2111 ivts_templ.insn = orig_insn;
2112 ve_templ.insn = orig_insn;
2114 /* Apply splitting iv optimization. */
2115 if (opt_info->insns_to_split)
2117 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2119 if (ivts)
2121 gcc_assert (GET_CODE (PATTERN (insn))
2122 == GET_CODE (PATTERN (orig_insn)));
2124 if (!delta)
2125 insert_base_initialization (ivts, insn);
2126 split_iv (ivts, insn, delta);
2129 /* Apply variable expansion optimization. */
2130 if (unrolling && opt_info->insns_with_var_to_expand)
2132 ves = htab_find (opt_info->insns_with_var_to_expand, &ve_templ);
2133 if (ves)
2135 gcc_assert (GET_CODE (PATTERN (insn))
2136 == GET_CODE (PATTERN (orig_insn)));
2137 expand_var_during_unrolling (ves, insn);
2140 orig_insn = NEXT_INSN (orig_insn);
2144 if (!rewrite_original_loop)
2145 return;
2147 /* Initialize the variable expansions in the loop preheader
2148 and take care of combining them at the loop exit. */
2149 if (opt_info->insns_with_var_to_expand)
2151 htab_traverse (opt_info->insns_with_var_to_expand,
2152 insert_var_expansion_initialization,
2153 opt_info->loop_preheader);
2154 htab_traverse (opt_info->insns_with_var_to_expand,
2155 combine_var_copies_in_loop_exit,
2156 opt_info->loop_exit);
2159 /* Rewrite also the original loop body. Find them as originals of the blocks
2160 in the last copied iteration, i.e. those that have
2161 get_bb_copy (get_bb_original (bb)) == bb. */
2162 for (i = opt_info->first_new_block; i < (unsigned) last_basic_block; i++)
2164 bb = BASIC_BLOCK (i);
2165 orig_bb = get_bb_original (bb);
2166 if (get_bb_copy (orig_bb) != bb)
2167 continue;
2169 delta = determine_split_iv_delta (0, n_copies, unrolling);
2170 for (orig_insn = BB_HEAD (orig_bb);
2171 orig_insn != NEXT_INSN (BB_END (bb));
2172 orig_insn = next)
2174 next = NEXT_INSN (orig_insn);
2176 if (!INSN_P (orig_insn))
2177 continue;
2179 ivts_templ.insn = orig_insn;
2180 if (opt_info->insns_to_split)
2182 ivts = htab_find (opt_info->insns_to_split, &ivts_templ);
2183 if (ivts)
2185 if (!delta)
2186 insert_base_initialization (ivts, orig_insn);
2187 split_iv (ivts, orig_insn, delta);
2188 continue;
2196 /* Release the data structures used for the variable expansion
2197 optimization. Callbacks for htab_traverse. */
2199 static int
2200 release_var_copies (void **slot, void *data ATTRIBUTE_UNUSED)
2202 struct var_to_expand *ve = *slot;
2204 VEC_free (rtx, heap, ve->var_expansions);
2206 /* Continue traversing the hash table. */
2207 return 1;
2210 /* Release OPT_INFO. */
2212 static void
2213 free_opt_info (struct opt_info *opt_info)
2215 if (opt_info->insns_to_split)
2216 htab_delete (opt_info->insns_to_split);
2217 if (opt_info->insns_with_var_to_expand)
2219 htab_traverse (opt_info->insns_with_var_to_expand,
2220 release_var_copies, NULL);
2221 htab_delete (opt_info->insns_with_var_to_expand);
2223 free (opt_info);