1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
43 Global Optimization by Suppression of Partial Redundancies
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
115 Rice University Ph.D. thesis, Apr. 1996
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
125 Advanced Compiler Design and Implementation
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
148 #include "coretypes.h"
156 #include "hard-reg-set.h"
159 #include "insn-config.h"
161 #include "basic-block.h"
163 #include "function.h"
172 #include "tree-pass.h"
175 /* Propagate flow information through back edges and thus enable PRE's
176 moving loop invariant calculations out of loops.
178 Originally this tended to create worse overall code, but several
179 improvements during the development of PRE seem to have made following
180 back edges generally a win.
182 Note much of the loop invariant code motion done here would normally
183 be done by loop.c, which has more heuristics for when to move invariants
184 out of loops. At some point we might need to move some of those
185 heuristics into gcse.c. */
187 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
188 are a superset of those done by GCSE.
190 We perform the following steps:
192 1) Compute basic block information.
194 2) Compute table of places where registers are set.
196 3) Perform copy/constant propagation.
198 4) Perform global cse using lazy code motion if not optimizing
199 for size, or code hoisting if we are.
201 5) Perform another pass of copy/constant propagation.
203 Two passes of copy/constant propagation are done because the first one
204 enables more GCSE and the second one helps to clean up the copies that
205 GCSE creates. This is needed more for PRE than for Classic because Classic
206 GCSE will try to use an existing register containing the common
207 subexpression rather than create a new one. This is harder to do for PRE
208 because of the code motion (which Classic GCSE doesn't do).
210 Expressions we are interested in GCSE-ing are of the form
211 (set (pseudo-reg) (expression)).
212 Function want_to_gcse_p says what these are.
214 PRE handles moving invariant expressions out of loops (by treating them as
215 partially redundant).
217 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
218 assignment) based GVN (global value numbering). L. T. Simpson's paper
219 (Rice University) on value numbering is a useful reference for this.
221 **********************
223 We used to support multiple passes but there are diminishing returns in
224 doing so. The first pass usually makes 90% of the changes that are doable.
225 A second pass can make a few more changes made possible by the first pass.
226 Experiments show any further passes don't make enough changes to justify
229 A study of spec92 using an unlimited number of passes:
230 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
231 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
232 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
234 It was found doing copy propagation between each pass enables further
237 PRE is quite expensive in complicated functions because the DFA can take
238 a while to converge. Hence we only perform one pass. The parameter
239 max-gcse-passes can be modified if one wants to experiment.
241 **********************
243 The steps for PRE are:
245 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
247 2) Perform the data flow analysis for PRE.
249 3) Delete the redundant instructions
251 4) Insert the required copies [if any] that make the partially
252 redundant instructions fully redundant.
254 5) For other reaching expressions, insert an instruction to copy the value
255 to a newly created pseudo that will reach the redundant instruction.
257 The deletion is done first so that when we do insertions we
258 know which pseudo reg to use.
260 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
261 argue it is not. The number of iterations for the algorithm to converge
262 is typically 2-4 so I don't view it as that expensive (relatively speaking).
264 PRE GCSE depends heavily on the second CSE pass to clean up the copies
265 we create. To make an expression reach the place where it's redundant,
266 the result of the expression is copied to a new register, and the redundant
267 expression is deleted by replacing it with this new register. Classic GCSE
268 doesn't have this problem as much as it computes the reaching defs of
269 each register in each block and thus can try to use an existing
272 /* GCSE global vars. */
275 static FILE *gcse_file
;
277 /* Note whether or not we should run jump optimization after gcse. We
278 want to do this for two cases.
280 * If we changed any jumps via cprop.
282 * If we added any labels via edge splitting. */
283 static int run_jump_opt_after_gcse
;
285 /* Bitmaps are normally not included in debugging dumps.
286 However it's useful to be able to print them from GDB.
287 We could create special functions for this, but it's simpler to
288 just allow passing stderr to the dump_foo fns. Since stderr can
289 be a macro, we store a copy here. */
290 static FILE *debug_stderr
;
292 /* An obstack for our working variables. */
293 static struct obstack gcse_obstack
;
295 struct reg_use
{rtx reg_rtx
; };
297 /* Hash table of expressions. */
301 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
303 /* Index in the available expression bitmaps. */
305 /* Next entry with the same hash. */
306 struct expr
*next_same_hash
;
307 /* List of anticipatable occurrences in basic blocks in the function.
308 An "anticipatable occurrence" is one that is the first occurrence in the
309 basic block, the operands are not modified in the basic block prior
310 to the occurrence and the output is not used between the start of
311 the block and the occurrence. */
312 struct occr
*antic_occr
;
313 /* List of available occurrence in basic blocks in the function.
314 An "available occurrence" is one that is the last occurrence in the
315 basic block and the operands are not modified by following statements in
316 the basic block [including this insn]. */
317 struct occr
*avail_occr
;
318 /* Non-null if the computation is PRE redundant.
319 The value is the newly created pseudo-reg to record a copy of the
320 expression in all the places that reach the redundant copy. */
324 /* Occurrence of an expression.
325 There is one per basic block. If a pattern appears more than once the
326 last appearance is used [or first for anticipatable expressions]. */
330 /* Next occurrence of this expression. */
332 /* The insn that computes the expression. */
334 /* Nonzero if this [anticipatable] occurrence has been deleted. */
336 /* Nonzero if this [available] occurrence has been copied to
338 /* ??? This is mutually exclusive with deleted_p, so they could share
343 /* Expression and copy propagation hash tables.
344 Each hash table is an array of buckets.
345 ??? It is known that if it were an array of entries, structure elements
346 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
347 not clear whether in the final analysis a sufficient amount of memory would
348 be saved as the size of the available expression bitmaps would be larger
349 [one could build a mapping table without holes afterwards though].
350 Someday I'll perform the computation and figure it out. */
355 This is an array of `expr_hash_table_size' elements. */
358 /* Size of the hash table, in elements. */
361 /* Number of hash table elements. */
362 unsigned int n_elems
;
364 /* Whether the table is expression of copy propagation one. */
368 /* Expression hash table. */
369 static struct hash_table expr_hash_table
;
371 /* Copy propagation hash table. */
372 static struct hash_table set_hash_table
;
374 /* Mapping of uids to cuids.
375 Only real insns get cuids. */
376 static int *uid_cuid
;
378 /* Highest UID in UID_CUID. */
381 /* Get the cuid of an insn. */
382 #ifdef ENABLE_CHECKING
383 #define INSN_CUID(INSN) \
384 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
386 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
389 /* Number of cuids. */
392 /* Mapping of cuids to insns. */
393 static rtx
*cuid_insn
;
395 /* Get insn from cuid. */
396 #define CUID_INSN(CUID) (cuid_insn[CUID])
398 /* Maximum register number in function prior to doing gcse + 1.
399 Registers created during this pass have regno >= max_gcse_regno.
400 This is named with "gcse" to not collide with global of same name. */
401 static unsigned int max_gcse_regno
;
403 /* Table of registers that are modified.
405 For each register, each element is a list of places where the pseudo-reg
408 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
409 requires knowledge of which blocks kill which regs [and thus could use
410 a bitmap instead of the lists `reg_set_table' uses].
412 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
413 num-regs) [however perhaps it may be useful to keep the data as is]. One
414 advantage of recording things this way is that `reg_set_table' is fairly
415 sparse with respect to pseudo regs but for hard regs could be fairly dense
416 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
417 up functions like compute_transp since in the case of pseudo-regs we only
418 need to iterate over the number of times a pseudo-reg is set, not over the
419 number of basic blocks [clearly there is a bit of a slow down in the cases
420 where a pseudo is set more than once in a block, however it is believed
421 that the net effect is to speed things up]. This isn't done for hard-regs
422 because recording call-clobbered hard-regs in `reg_set_table' at each
423 function call can consume a fair bit of memory, and iterating over
424 hard-regs stored this way in compute_transp will be more expensive. */
426 typedef struct reg_set
428 /* The next setting of this register. */
429 struct reg_set
*next
;
430 /* The index of the block where it was set. */
434 static reg_set
**reg_set_table
;
436 /* Size of `reg_set_table'.
437 The table starts out at max_gcse_regno + slop, and is enlarged as
439 static int reg_set_table_size
;
441 /* Amount to grow `reg_set_table' by when it's full. */
442 #define REG_SET_TABLE_SLOP 100
444 /* This is a list of expressions which are MEMs and will be used by load
446 Load motion tracks MEMs which aren't killed by
447 anything except itself. (i.e., loads and stores to a single location).
448 We can then allow movement of these MEM refs with a little special
449 allowance. (all stores copy the same value to the reaching reg used
450 for the loads). This means all values used to store into memory must have
451 no side effects so we can re-issue the setter value.
452 Store Motion uses this structure as an expression table to track stores
453 which look interesting, and might be moveable towards the exit block. */
457 struct expr
* expr
; /* Gcse expression reference for LM. */
458 rtx pattern
; /* Pattern of this mem. */
459 rtx pattern_regs
; /* List of registers mentioned by the mem. */
460 rtx loads
; /* INSN list of loads seen. */
461 rtx stores
; /* INSN list of stores seen. */
462 struct ls_expr
* next
; /* Next in the list. */
463 int invalid
; /* Invalid for some reason. */
464 int index
; /* If it maps to a bitmap index. */
465 unsigned int hash_index
; /* Index when in a hash table. */
466 rtx reaching_reg
; /* Register to use when re-writing. */
469 /* Array of implicit set patterns indexed by basic block index. */
470 static rtx
*implicit_sets
;
472 /* Head of the list of load/store memory refs. */
473 static struct ls_expr
* pre_ldst_mems
= NULL
;
475 /* Hashtable for the load/store memory refs. */
476 static htab_t pre_ldst_table
= NULL
;
478 /* Bitmap containing one bit for each register in the program.
479 Used when performing GCSE to track which registers have been set since
480 the start of the basic block. */
481 static regset reg_set_bitmap
;
483 /* For each block, a bitmap of registers set in the block.
484 This is used by compute_transp.
485 It is computed during hash table computation and not by compute_sets
486 as it includes registers added since the last pass (or between cprop and
487 gcse) and it's currently not easy to realloc sbitmap vectors. */
488 static sbitmap
*reg_set_in_block
;
490 /* Array, indexed by basic block number for a list of insns which modify
491 memory within that block. */
492 static rtx
* modify_mem_list
;
493 static bitmap modify_mem_list_set
;
495 /* This array parallels modify_mem_list, but is kept canonicalized. */
496 static rtx
* canon_modify_mem_list
;
498 /* Bitmap indexed by block numbers to record which blocks contain
500 static bitmap blocks_with_calls
;
502 /* Various variables for statistics gathering. */
504 /* Memory used in a pass.
505 This isn't intended to be absolutely precise. Its intent is only
506 to keep an eye on memory usage. */
507 static int bytes_used
;
509 /* GCSE substitutions made. */
510 static int gcse_subst_count
;
511 /* Number of copy instructions created. */
512 static int gcse_create_count
;
513 /* Number of local constants propagated. */
514 static int local_const_prop_count
;
515 /* Number of local copies propagated. */
516 static int local_copy_prop_count
;
517 /* Number of global constants propagated. */
518 static int global_const_prop_count
;
519 /* Number of global copies propagated. */
520 static int global_copy_prop_count
;
522 /* For available exprs */
523 static sbitmap
*ae_kill
, *ae_gen
;
525 static void compute_can_copy (void);
526 static void *gmalloc (size_t) ATTRIBUTE_MALLOC
;
527 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC
;
528 static void *grealloc (void *, size_t);
529 static void *gcse_alloc (unsigned long);
530 static void alloc_gcse_mem (void);
531 static void free_gcse_mem (void);
532 static void alloc_reg_set_mem (int);
533 static void free_reg_set_mem (void);
534 static void record_one_set (int, rtx
);
535 static void record_set_info (rtx
, rtx
, void *);
536 static void compute_sets (void);
537 static void hash_scan_insn (rtx
, struct hash_table
*, int);
538 static void hash_scan_set (rtx
, rtx
, struct hash_table
*);
539 static void hash_scan_clobber (rtx
, rtx
, struct hash_table
*);
540 static void hash_scan_call (rtx
, rtx
, struct hash_table
*);
541 static int want_to_gcse_p (rtx
);
542 static bool can_assign_to_reg_p (rtx
);
543 static bool gcse_constant_p (rtx
);
544 static int oprs_unchanged_p (rtx
, rtx
, int);
545 static int oprs_anticipatable_p (rtx
, rtx
);
546 static int oprs_available_p (rtx
, rtx
);
547 static void insert_expr_in_table (rtx
, enum machine_mode
, rtx
, int, int,
548 struct hash_table
*);
549 static void insert_set_in_table (rtx
, rtx
, struct hash_table
*);
550 static unsigned int hash_expr (rtx
, enum machine_mode
, int *, int);
551 static unsigned int hash_set (int, int);
552 static int expr_equiv_p (rtx
, rtx
);
553 static void record_last_reg_set_info (rtx
, int);
554 static void record_last_mem_set_info (rtx
);
555 static void record_last_set_info (rtx
, rtx
, void *);
556 static void compute_hash_table (struct hash_table
*);
557 static void alloc_hash_table (int, struct hash_table
*, int);
558 static void free_hash_table (struct hash_table
*);
559 static void compute_hash_table_work (struct hash_table
*);
560 static void dump_hash_table (FILE *, const char *, struct hash_table
*);
561 static struct expr
*lookup_set (unsigned int, struct hash_table
*);
562 static struct expr
*next_set (unsigned int, struct expr
*);
563 static void reset_opr_set_tables (void);
564 static int oprs_not_set_p (rtx
, rtx
);
565 static void mark_call (rtx
);
566 static void mark_set (rtx
, rtx
);
567 static void mark_clobber (rtx
, rtx
);
568 static void mark_oprs_set (rtx
);
569 static void alloc_cprop_mem (int, int);
570 static void free_cprop_mem (void);
571 static void compute_transp (rtx
, int, sbitmap
*, int);
572 static void compute_transpout (void);
573 static void compute_local_properties (sbitmap
*, sbitmap
*, sbitmap
*,
574 struct hash_table
*);
575 static void compute_cprop_data (void);
576 static void find_used_regs (rtx
*, void *);
577 static int try_replace_reg (rtx
, rtx
, rtx
);
578 static struct expr
*find_avail_set (int, rtx
);
579 static int cprop_jump (basic_block
, rtx
, rtx
, rtx
, rtx
);
580 static void mems_conflict_for_gcse_p (rtx
, rtx
, void *);
581 static int load_killed_in_block_p (basic_block
, int, rtx
, int);
582 static void canon_list_insert (rtx
, rtx
, void *);
583 static int cprop_insn (rtx
, int);
584 static int cprop (int);
585 static void find_implicit_sets (void);
586 static int one_cprop_pass (int, bool, bool);
587 static bool constprop_register (rtx
, rtx
, rtx
, bool);
588 static struct expr
*find_bypass_set (int, int);
589 static bool reg_killed_on_edge (rtx
, edge
);
590 static int bypass_block (basic_block
, rtx
, rtx
);
591 static int bypass_conditional_jumps (void);
592 static void alloc_pre_mem (int, int);
593 static void free_pre_mem (void);
594 static void compute_pre_data (void);
595 static int pre_expr_reaches_here_p (basic_block
, struct expr
*,
597 static void insert_insn_end_bb (struct expr
*, basic_block
, int);
598 static void pre_insert_copy_insn (struct expr
*, rtx
);
599 static void pre_insert_copies (void);
600 static int pre_delete (void);
601 static int pre_gcse (void);
602 static int one_pre_gcse_pass (int);
603 static void add_label_notes (rtx
, rtx
);
604 static void alloc_code_hoist_mem (int, int);
605 static void free_code_hoist_mem (void);
606 static void compute_code_hoist_vbeinout (void);
607 static void compute_code_hoist_data (void);
608 static int hoist_expr_reaches_here_p (basic_block
, int, basic_block
, char *);
609 static void hoist_code (void);
610 static int one_code_hoisting_pass (void);
611 static rtx
process_insert_insn (struct expr
*);
612 static int pre_edge_insert (struct edge_list
*, struct expr
**);
613 static int pre_expr_reaches_here_p_work (basic_block
, struct expr
*,
614 basic_block
, char *);
615 static struct ls_expr
* ldst_entry (rtx
);
616 static void free_ldst_entry (struct ls_expr
*);
617 static void free_ldst_mems (void);
618 static void print_ldst_list (FILE *);
619 static struct ls_expr
* find_rtx_in_ldst (rtx
);
620 static int enumerate_ldsts (void);
621 static inline struct ls_expr
* first_ls_expr (void);
622 static inline struct ls_expr
* next_ls_expr (struct ls_expr
*);
623 static int simple_mem (rtx
);
624 static void invalidate_any_buried_refs (rtx
);
625 static void compute_ld_motion_mems (void);
626 static void trim_ld_motion_mems (void);
627 static void update_ld_motion_stores (struct expr
*);
628 static void reg_set_info (rtx
, rtx
, void *);
629 static void reg_clear_last_set (rtx
, rtx
, void *);
630 static bool store_ops_ok (rtx
, int *);
631 static rtx
extract_mentioned_regs (rtx
);
632 static rtx
extract_mentioned_regs_helper (rtx
, rtx
);
633 static void find_moveable_store (rtx
, int *, int *);
634 static int compute_store_table (void);
635 static bool load_kills_store (rtx
, rtx
, int);
636 static bool find_loads (rtx
, rtx
, int);
637 static bool store_killed_in_insn (rtx
, rtx
, rtx
, int);
638 static bool store_killed_after (rtx
, rtx
, rtx
, basic_block
, int *, rtx
*);
639 static bool store_killed_before (rtx
, rtx
, rtx
, basic_block
, int *);
640 static void build_store_vectors (void);
641 static void insert_insn_start_bb (rtx
, basic_block
);
642 static int insert_store (struct ls_expr
*, edge
);
643 static void remove_reachable_equiv_notes (basic_block
, struct ls_expr
*);
644 static void replace_store_insn (rtx
, rtx
, basic_block
, struct ls_expr
*);
645 static void delete_store (struct ls_expr
*, basic_block
);
646 static void free_store_memory (void);
647 static void store_motion (void);
648 static void free_insn_expr_list_list (rtx
*);
649 static void clear_modify_mem_tables (void);
650 static void free_modify_mem_tables (void);
651 static rtx
gcse_emit_move_after (rtx
, rtx
, rtx
);
652 static void local_cprop_find_used_regs (rtx
*, void *);
653 static bool do_local_cprop (rtx
, rtx
, bool, rtx
*);
654 static bool adjust_libcall_notes (rtx
, rtx
, rtx
, rtx
*);
655 static void local_cprop_pass (bool);
656 static bool is_too_expensive (const char *);
659 /* Entry point for global common subexpression elimination.
660 F is the first instruction in the function. Return nonzero if a
664 gcse_main (rtx f ATTRIBUTE_UNUSED
, FILE *file
)
667 /* Bytes used at start of pass. */
668 int initial_bytes_used
;
669 /* Maximum number of bytes used by a pass. */
671 /* Point to release obstack data from for each pass. */
672 char *gcse_obstack_bottom
;
674 /* We do not construct an accurate cfg in functions which call
675 setjmp, so just punt to be safe. */
676 if (current_function_calls_setjmp
)
679 /* Assume that we do not need to run jump optimizations after gcse. */
680 run_jump_opt_after_gcse
= 0;
682 /* For calling dump_foo fns from gdb. */
683 debug_stderr
= stderr
;
686 /* Identify the basic block information for this function, including
687 successors and predecessors. */
688 max_gcse_regno
= max_reg_num ();
691 dump_flow_info (file
);
693 /* Return if there's nothing to do, or it is too expensive. */
694 if (n_basic_blocks
<= 1 || is_too_expensive (_("GCSE disabled")))
697 gcc_obstack_init (&gcse_obstack
);
701 init_alias_analysis ();
702 /* Record where pseudo-registers are set. This data is kept accurate
703 during each pass. ??? We could also record hard-reg information here
704 [since it's unchanging], however it is currently done during hash table
707 It may be tempting to compute MEM set information here too, but MEM sets
708 will be subject to code motion one day and thus we need to compute
709 information about memory sets when we build the hash tables. */
711 alloc_reg_set_mem (max_gcse_regno
);
715 initial_bytes_used
= bytes_used
;
717 gcse_obstack_bottom
= gcse_alloc (1);
719 while (changed
&& pass
< MAX_GCSE_PASSES
)
723 fprintf (file
, "GCSE pass %d\n\n", pass
+ 1);
725 /* Initialize bytes_used to the space for the pred/succ lists,
726 and the reg_set_table data. */
727 bytes_used
= initial_bytes_used
;
729 /* Each pass may create new registers, so recalculate each time. */
730 max_gcse_regno
= max_reg_num ();
734 /* Don't allow constant propagation to modify jumps
736 timevar_push (TV_CPROP1
);
737 changed
= one_cprop_pass (pass
+ 1, false, false);
738 timevar_pop (TV_CPROP1
);
744 timevar_push (TV_PRE
);
745 changed
|= one_pre_gcse_pass (pass
+ 1);
746 /* We may have just created new basic blocks. Release and
747 recompute various things which are sized on the number of
751 free_modify_mem_tables ();
752 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
753 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
756 alloc_reg_set_mem (max_reg_num ());
758 run_jump_opt_after_gcse
= 1;
759 timevar_pop (TV_PRE
);
762 if (max_pass_bytes
< bytes_used
)
763 max_pass_bytes
= bytes_used
;
765 /* Free up memory, then reallocate for code hoisting. We can
766 not re-use the existing allocated memory because the tables
767 will not have info for the insns or registers created by
768 partial redundancy elimination. */
771 /* It does not make sense to run code hoisting unless we are optimizing
772 for code size -- it rarely makes programs faster, and can make
773 them bigger if we did partial redundancy elimination (when optimizing
774 for space, we don't run the partial redundancy algorithms). */
777 timevar_push (TV_HOIST
);
778 max_gcse_regno
= max_reg_num ();
780 changed
|= one_code_hoisting_pass ();
783 if (max_pass_bytes
< bytes_used
)
784 max_pass_bytes
= bytes_used
;
785 timevar_pop (TV_HOIST
);
790 fprintf (file
, "\n");
794 obstack_free (&gcse_obstack
, gcse_obstack_bottom
);
798 /* Do one last pass of copy propagation, including cprop into
799 conditional jumps. */
801 max_gcse_regno
= max_reg_num ();
803 /* This time, go ahead and allow cprop to alter jumps. */
804 timevar_push (TV_CPROP2
);
805 one_cprop_pass (pass
+ 1, true, false);
806 timevar_pop (TV_CPROP2
);
811 fprintf (file
, "GCSE of %s: %d basic blocks, ",
812 current_function_name (), n_basic_blocks
);
813 fprintf (file
, "%d pass%s, %d bytes\n\n",
814 pass
, pass
> 1 ? "es" : "", max_pass_bytes
);
817 obstack_free (&gcse_obstack
, NULL
);
820 /* We are finished with alias. */
821 end_alias_analysis ();
822 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
824 if (!optimize_size
&& flag_gcse_sm
)
826 timevar_push (TV_LSM
);
828 timevar_pop (TV_LSM
);
831 /* Record where pseudo-registers are set. */
832 return run_jump_opt_after_gcse
;
835 /* Misc. utilities. */
837 /* Nonzero for each mode that supports (set (reg) (reg)).
838 This is trivially true for integer and floating point values.
839 It may or may not be true for condition codes. */
840 static char can_copy
[(int) NUM_MACHINE_MODES
];
842 /* Compute which modes support reg/reg copy operations. */
845 compute_can_copy (void)
848 #ifndef AVOID_CCMODE_COPIES
851 memset (can_copy
, 0, NUM_MACHINE_MODES
);
854 for (i
= 0; i
< NUM_MACHINE_MODES
; i
++)
855 if (GET_MODE_CLASS (i
) == MODE_CC
)
857 #ifdef AVOID_CCMODE_COPIES
860 reg
= gen_rtx_REG ((enum machine_mode
) i
, LAST_VIRTUAL_REGISTER
+ 1);
861 insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, reg
));
862 if (recog (PATTERN (insn
), insn
, NULL
) >= 0)
872 /* Returns whether the mode supports reg/reg copy operations. */
875 can_copy_p (enum machine_mode mode
)
877 static bool can_copy_init_p
= false;
879 if (! can_copy_init_p
)
882 can_copy_init_p
= true;
885 return can_copy
[mode
] != 0;
888 /* Cover function to xmalloc to record bytes allocated. */
891 gmalloc (size_t size
)
894 return xmalloc (size
);
897 /* Cover function to xcalloc to record bytes allocated. */
900 gcalloc (size_t nelem
, size_t elsize
)
902 bytes_used
+= nelem
* elsize
;
903 return xcalloc (nelem
, elsize
);
906 /* Cover function to xrealloc.
907 We don't record the additional size since we don't know it.
908 It won't affect memory usage stats much anyway. */
911 grealloc (void *ptr
, size_t size
)
913 return xrealloc (ptr
, size
);
916 /* Cover function to obstack_alloc. */
919 gcse_alloc (unsigned long size
)
922 return obstack_alloc (&gcse_obstack
, size
);
925 /* Allocate memory for the cuid mapping array,
926 and reg/memory set tracking tables.
928 This is called at the start of each pass. */
931 alloc_gcse_mem (void)
937 /* Find the largest UID and create a mapping from UIDs to CUIDs.
938 CUIDs are like UIDs except they increase monotonically, have no gaps,
939 and only apply to real insns.
940 (Actually, there are gaps, for insn that are not inside a basic block.
941 but we should never see those anyway, so this is OK.) */
943 max_uid
= get_max_uid ();
944 uid_cuid
= gcalloc (max_uid
+ 1, sizeof (int));
947 FOR_BB_INSNS (bb
, insn
)
950 uid_cuid
[INSN_UID (insn
)] = i
++;
952 uid_cuid
[INSN_UID (insn
)] = i
;
955 /* Create a table mapping cuids to insns. */
958 cuid_insn
= gcalloc (max_cuid
+ 1, sizeof (rtx
));
961 FOR_BB_INSNS (bb
, insn
)
963 CUID_INSN (i
++) = insn
;
965 /* Allocate vars to track sets of regs. */
966 reg_set_bitmap
= BITMAP_ALLOC (NULL
);
968 /* Allocate vars to track sets of regs, memory per block. */
969 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
, max_gcse_regno
);
970 /* Allocate array to keep a list of insns which modify memory in each
972 modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
973 canon_modify_mem_list
= gcalloc (last_basic_block
, sizeof (rtx
));
974 modify_mem_list_set
= BITMAP_ALLOC (NULL
);
975 blocks_with_calls
= BITMAP_ALLOC (NULL
);
978 /* Free memory allocated by alloc_gcse_mem. */
986 BITMAP_FREE (reg_set_bitmap
);
988 sbitmap_vector_free (reg_set_in_block
);
989 free_modify_mem_tables ();
990 BITMAP_FREE (modify_mem_list_set
);
991 BITMAP_FREE (blocks_with_calls
);
994 /* Compute the local properties of each recorded expression.
996 Local properties are those that are defined by the block, irrespective of
999 An expression is transparent in a block if its operands are not modified
1002 An expression is computed (locally available) in a block if it is computed
1003 at least once and expression would contain the same value if the
1004 computation was moved to the end of the block.
1006 An expression is locally anticipatable in a block if it is computed at
1007 least once and expression would contain the same value if the computation
1008 was moved to the beginning of the block.
1010 We call this routine for cprop, pre and code hoisting. They all compute
1011 basically the same information and thus can easily share this code.
1013 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1014 properties. If NULL, then it is not necessary to compute or record that
1015 particular property.
1017 TABLE controls which hash table to look at. If it is set hash table,
1018 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1022 compute_local_properties (sbitmap
*transp
, sbitmap
*comp
, sbitmap
*antloc
,
1023 struct hash_table
*table
)
1027 /* Initialize any bitmaps that were passed in. */
1031 sbitmap_vector_zero (transp
, last_basic_block
);
1033 sbitmap_vector_ones (transp
, last_basic_block
);
1037 sbitmap_vector_zero (comp
, last_basic_block
);
1039 sbitmap_vector_zero (antloc
, last_basic_block
);
1041 for (i
= 0; i
< table
->size
; i
++)
1045 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1047 int indx
= expr
->bitmap_index
;
1050 /* The expression is transparent in this block if it is not killed.
1051 We start by assuming all are transparent [none are killed], and
1052 then reset the bits for those that are. */
1054 compute_transp (expr
->expr
, indx
, transp
, table
->set_p
);
1056 /* The occurrences recorded in antic_occr are exactly those that
1057 we want to set to nonzero in ANTLOC. */
1059 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
1061 SET_BIT (antloc
[BLOCK_NUM (occr
->insn
)], indx
);
1063 /* While we're scanning the table, this is a good place to
1065 occr
->deleted_p
= 0;
1068 /* The occurrences recorded in avail_occr are exactly those that
1069 we want to set to nonzero in COMP. */
1071 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1073 SET_BIT (comp
[BLOCK_NUM (occr
->insn
)], indx
);
1075 /* While we're scanning the table, this is a good place to
1080 /* While we're scanning the table, this is a good place to
1082 expr
->reaching_reg
= 0;
1087 /* Register set information.
1089 `reg_set_table' records where each register is set or otherwise
1092 static struct obstack reg_set_obstack
;
1095 alloc_reg_set_mem (int n_regs
)
1097 reg_set_table_size
= n_regs
+ REG_SET_TABLE_SLOP
;
1098 reg_set_table
= gcalloc (reg_set_table_size
, sizeof (struct reg_set
*));
1100 gcc_obstack_init (®_set_obstack
);
1104 free_reg_set_mem (void)
1106 free (reg_set_table
);
1107 obstack_free (®_set_obstack
, NULL
);
1110 /* Record REGNO in the reg_set table. */
1113 record_one_set (int regno
, rtx insn
)
1115 /* Allocate a new reg_set element and link it onto the list. */
1116 struct reg_set
*new_reg_info
;
1118 /* If the table isn't big enough, enlarge it. */
1119 if (regno
>= reg_set_table_size
)
1121 int new_size
= regno
+ REG_SET_TABLE_SLOP
;
1123 reg_set_table
= grealloc (reg_set_table
,
1124 new_size
* sizeof (struct reg_set
*));
1125 memset (reg_set_table
+ reg_set_table_size
, 0,
1126 (new_size
- reg_set_table_size
) * sizeof (struct reg_set
*));
1127 reg_set_table_size
= new_size
;
1130 new_reg_info
= obstack_alloc (®_set_obstack
, sizeof (struct reg_set
));
1131 bytes_used
+= sizeof (struct reg_set
);
1132 new_reg_info
->bb_index
= BLOCK_NUM (insn
);
1133 new_reg_info
->next
= reg_set_table
[regno
];
1134 reg_set_table
[regno
] = new_reg_info
;
1137 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1138 an insn. The DATA is really the instruction in which the SET is
1142 record_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
1144 rtx record_set_insn
= (rtx
) data
;
1146 if (REG_P (dest
) && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
)
1147 record_one_set (REGNO (dest
), record_set_insn
);
1150 /* Scan the function and record each set of each pseudo-register.
1152 This is called once, at the start of the gcse pass. See the comments for
1153 `reg_set_table' for further documentation. */
1162 FOR_BB_INSNS (bb
, insn
)
1164 note_stores (PATTERN (insn
), record_set_info
, insn
);
1167 /* Hash table support. */
1169 struct reg_avail_info
1171 basic_block last_bb
;
1176 static struct reg_avail_info
*reg_avail_info
;
1177 static basic_block current_bb
;
1180 /* See whether X, the source of a set, is something we want to consider for
1184 want_to_gcse_p (rtx x
)
1186 switch (GET_CODE (x
))
1197 return can_assign_to_reg_p (x
);
1201 /* Used internally by can_assign_to_reg_p. */
1203 static GTY(()) rtx test_insn
;
1205 /* Return true if we can assign X to a pseudo register. */
1208 can_assign_to_reg_p (rtx x
)
1210 int num_clobbers
= 0;
1213 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1214 if (general_operand (x
, GET_MODE (x
)))
1216 else if (GET_MODE (x
) == VOIDmode
)
1219 /* Otherwise, check if we can make a valid insn from it. First initialize
1220 our test insn if we haven't already. */
1224 = make_insn_raw (gen_rtx_SET (VOIDmode
,
1225 gen_rtx_REG (word_mode
,
1226 FIRST_PSEUDO_REGISTER
* 2),
1228 NEXT_INSN (test_insn
) = PREV_INSN (test_insn
) = 0;
1231 /* Now make an insn like the one we would make when GCSE'ing and see if
1233 PUT_MODE (SET_DEST (PATTERN (test_insn
)), GET_MODE (x
));
1234 SET_SRC (PATTERN (test_insn
)) = x
;
1235 return ((icode
= recog (PATTERN (test_insn
), test_insn
, &num_clobbers
)) >= 0
1236 && (num_clobbers
== 0 || ! added_clobbers_hard_reg_p (icode
)));
1239 /* Return nonzero if the operands of expression X are unchanged from the
1240 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1241 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1244 oprs_unchanged_p (rtx x
, rtx insn
, int avail_p
)
1253 code
= GET_CODE (x
);
1258 struct reg_avail_info
*info
= ®_avail_info
[REGNO (x
)];
1260 if (info
->last_bb
!= current_bb
)
1263 return info
->last_set
< INSN_CUID (insn
);
1265 return info
->first_set
>= INSN_CUID (insn
);
1269 if (load_killed_in_block_p (current_bb
, INSN_CUID (insn
),
1273 return oprs_unchanged_p (XEXP (x
, 0), insn
, avail_p
);
1299 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
1303 /* If we are about to do the last recursive call needed at this
1304 level, change it into iteration. This function is called enough
1307 return oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
);
1309 else if (! oprs_unchanged_p (XEXP (x
, i
), insn
, avail_p
))
1312 else if (fmt
[i
] == 'E')
1313 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1314 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, avail_p
))
1321 /* Used for communication between mems_conflict_for_gcse_p and
1322 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1323 conflict between two memory references. */
1324 static int gcse_mems_conflict_p
;
1326 /* Used for communication between mems_conflict_for_gcse_p and
1327 load_killed_in_block_p. A memory reference for a load instruction,
1328 mems_conflict_for_gcse_p will see if a memory store conflicts with
1329 this memory load. */
1330 static rtx gcse_mem_operand
;
1332 /* DEST is the output of an instruction. If it is a memory reference, and
1333 possibly conflicts with the load found in gcse_mem_operand, then set
1334 gcse_mems_conflict_p to a nonzero value. */
1337 mems_conflict_for_gcse_p (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
1338 void *data ATTRIBUTE_UNUSED
)
1340 while (GET_CODE (dest
) == SUBREG
1341 || GET_CODE (dest
) == ZERO_EXTRACT
1342 || GET_CODE (dest
) == STRICT_LOW_PART
)
1343 dest
= XEXP (dest
, 0);
1345 /* If DEST is not a MEM, then it will not conflict with the load. Note
1346 that function calls are assumed to clobber memory, but are handled
1351 /* If we are setting a MEM in our list of specially recognized MEMs,
1352 don't mark as killed this time. */
1354 if (expr_equiv_p (dest
, gcse_mem_operand
) && pre_ldst_mems
!= NULL
)
1356 if (!find_rtx_in_ldst (dest
))
1357 gcse_mems_conflict_p
= 1;
1361 if (true_dependence (dest
, GET_MODE (dest
), gcse_mem_operand
,
1363 gcse_mems_conflict_p
= 1;
1366 /* Return nonzero if the expression in X (a memory reference) is killed
1367 in block BB before or after the insn with the CUID in UID_LIMIT.
1368 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1371 To check the entire block, set UID_LIMIT to max_uid + 1 and
1375 load_killed_in_block_p (basic_block bb
, int uid_limit
, rtx x
, int avail_p
)
1377 rtx list_entry
= modify_mem_list
[bb
->index
];
1379 /* If this is a readonly then we aren't going to be changing it. */
1380 if (MEM_READONLY_P (x
))
1386 /* Ignore entries in the list that do not apply. */
1388 && INSN_CUID (XEXP (list_entry
, 0)) < uid_limit
)
1390 && INSN_CUID (XEXP (list_entry
, 0)) > uid_limit
))
1392 list_entry
= XEXP (list_entry
, 1);
1396 setter
= XEXP (list_entry
, 0);
1398 /* If SETTER is a call everything is clobbered. Note that calls
1399 to pure functions are never put on the list, so we need not
1400 worry about them. */
1401 if (CALL_P (setter
))
1404 /* SETTER must be an INSN of some kind that sets memory. Call
1405 note_stores to examine each hunk of memory that is modified.
1407 The note_stores interface is pretty limited, so we have to
1408 communicate via global variables. Yuk. */
1409 gcse_mem_operand
= x
;
1410 gcse_mems_conflict_p
= 0;
1411 note_stores (PATTERN (setter
), mems_conflict_for_gcse_p
, NULL
);
1412 if (gcse_mems_conflict_p
)
1414 list_entry
= XEXP (list_entry
, 1);
1419 /* Return nonzero if the operands of expression X are unchanged from
1420 the start of INSN's basic block up to but not including INSN. */
1423 oprs_anticipatable_p (rtx x
, rtx insn
)
1425 return oprs_unchanged_p (x
, insn
, 0);
1428 /* Return nonzero if the operands of expression X are unchanged from
1429 INSN to the end of INSN's basic block. */
1432 oprs_available_p (rtx x
, rtx insn
)
1434 return oprs_unchanged_p (x
, insn
, 1);
1437 /* Hash expression X.
1439 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1440 indicating if a volatile operand is found or if the expression contains
1441 something we don't want to insert in the table. HASH_TABLE_SIZE is
1442 the current size of the hash table to be probed. */
1445 hash_expr (rtx x
, enum machine_mode mode
, int *do_not_record_p
,
1446 int hash_table_size
)
1450 *do_not_record_p
= 0;
1452 hash
= hash_rtx (x
, mode
, do_not_record_p
,
1453 NULL
, /*have_reg_qty=*/false);
1454 return hash
% hash_table_size
;
1457 /* Hash a set of register REGNO.
1459 Sets are hashed on the register that is set. This simplifies the PRE copy
1462 ??? May need to make things more elaborate. Later, as necessary. */
1465 hash_set (int regno
, int hash_table_size
)
1470 return hash
% hash_table_size
;
1473 /* Return nonzero if exp1 is equivalent to exp2. */
1476 expr_equiv_p (rtx x
, rtx y
)
1478 return exp_equiv_p (x
, y
, 0, true);
1481 /* Insert expression X in INSN in the hash TABLE.
1482 If it is already present, record it as the last occurrence in INSN's
1485 MODE is the mode of the value X is being stored into.
1486 It is only used if X is a CONST_INT.
1488 ANTIC_P is nonzero if X is an anticipatable expression.
1489 AVAIL_P is nonzero if X is an available expression. */
1492 insert_expr_in_table (rtx x
, enum machine_mode mode
, rtx insn
, int antic_p
,
1493 int avail_p
, struct hash_table
*table
)
1495 int found
, do_not_record_p
;
1497 struct expr
*cur_expr
, *last_expr
= NULL
;
1498 struct occr
*antic_occr
, *avail_occr
;
1500 hash
= hash_expr (x
, mode
, &do_not_record_p
, table
->size
);
1502 /* Do not insert expression in table if it contains volatile operands,
1503 or if hash_expr determines the expression is something we don't want
1504 to or can't handle. */
1505 if (do_not_record_p
)
1508 cur_expr
= table
->table
[hash
];
1511 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1513 /* If the expression isn't found, save a pointer to the end of
1515 last_expr
= cur_expr
;
1516 cur_expr
= cur_expr
->next_same_hash
;
1521 cur_expr
= gcse_alloc (sizeof (struct expr
));
1522 bytes_used
+= sizeof (struct expr
);
1523 if (table
->table
[hash
] == NULL
)
1524 /* This is the first pattern that hashed to this index. */
1525 table
->table
[hash
] = cur_expr
;
1527 /* Add EXPR to end of this hash chain. */
1528 last_expr
->next_same_hash
= cur_expr
;
1530 /* Set the fields of the expr element. */
1532 cur_expr
->bitmap_index
= table
->n_elems
++;
1533 cur_expr
->next_same_hash
= NULL
;
1534 cur_expr
->antic_occr
= NULL
;
1535 cur_expr
->avail_occr
= NULL
;
1538 /* Now record the occurrence(s). */
1541 antic_occr
= cur_expr
->antic_occr
;
1543 if (antic_occr
&& BLOCK_NUM (antic_occr
->insn
) != BLOCK_NUM (insn
))
1547 /* Found another instance of the expression in the same basic block.
1548 Prefer the currently recorded one. We want the first one in the
1549 block and the block is scanned from start to end. */
1550 ; /* nothing to do */
1553 /* First occurrence of this expression in this basic block. */
1554 antic_occr
= gcse_alloc (sizeof (struct occr
));
1555 bytes_used
+= sizeof (struct occr
);
1556 antic_occr
->insn
= insn
;
1557 antic_occr
->next
= cur_expr
->antic_occr
;
1558 antic_occr
->deleted_p
= 0;
1559 cur_expr
->antic_occr
= antic_occr
;
1565 avail_occr
= cur_expr
->avail_occr
;
1567 if (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) == BLOCK_NUM (insn
))
1569 /* Found another instance of the expression in the same basic block.
1570 Prefer this occurrence to the currently recorded one. We want
1571 the last one in the block and the block is scanned from start
1573 avail_occr
->insn
= insn
;
1577 /* First occurrence of this expression in this basic block. */
1578 avail_occr
= gcse_alloc (sizeof (struct occr
));
1579 bytes_used
+= sizeof (struct occr
);
1580 avail_occr
->insn
= insn
;
1581 avail_occr
->next
= cur_expr
->avail_occr
;
1582 avail_occr
->deleted_p
= 0;
1583 cur_expr
->avail_occr
= avail_occr
;
1588 /* Insert pattern X in INSN in the hash table.
1589 X is a SET of a reg to either another reg or a constant.
1590 If it is already present, record it as the last occurrence in INSN's
1594 insert_set_in_table (rtx x
, rtx insn
, struct hash_table
*table
)
1598 struct expr
*cur_expr
, *last_expr
= NULL
;
1599 struct occr
*cur_occr
;
1601 gcc_assert (GET_CODE (x
) == SET
&& REG_P (SET_DEST (x
)));
1603 hash
= hash_set (REGNO (SET_DEST (x
)), table
->size
);
1605 cur_expr
= table
->table
[hash
];
1608 while (cur_expr
&& 0 == (found
= expr_equiv_p (cur_expr
->expr
, x
)))
1610 /* If the expression isn't found, save a pointer to the end of
1612 last_expr
= cur_expr
;
1613 cur_expr
= cur_expr
->next_same_hash
;
1618 cur_expr
= gcse_alloc (sizeof (struct expr
));
1619 bytes_used
+= sizeof (struct expr
);
1620 if (table
->table
[hash
] == NULL
)
1621 /* This is the first pattern that hashed to this index. */
1622 table
->table
[hash
] = cur_expr
;
1624 /* Add EXPR to end of this hash chain. */
1625 last_expr
->next_same_hash
= cur_expr
;
1627 /* Set the fields of the expr element.
1628 We must copy X because it can be modified when copy propagation is
1629 performed on its operands. */
1630 cur_expr
->expr
= copy_rtx (x
);
1631 cur_expr
->bitmap_index
= table
->n_elems
++;
1632 cur_expr
->next_same_hash
= NULL
;
1633 cur_expr
->antic_occr
= NULL
;
1634 cur_expr
->avail_occr
= NULL
;
1637 /* Now record the occurrence. */
1638 cur_occr
= cur_expr
->avail_occr
;
1640 if (cur_occr
&& BLOCK_NUM (cur_occr
->insn
) == BLOCK_NUM (insn
))
1642 /* Found another instance of the expression in the same basic block.
1643 Prefer this occurrence to the currently recorded one. We want
1644 the last one in the block and the block is scanned from start
1646 cur_occr
->insn
= insn
;
1650 /* First occurrence of this expression in this basic block. */
1651 cur_occr
= gcse_alloc (sizeof (struct occr
));
1652 bytes_used
+= sizeof (struct occr
);
1654 cur_occr
->insn
= insn
;
1655 cur_occr
->next
= cur_expr
->avail_occr
;
1656 cur_occr
->deleted_p
= 0;
1657 cur_expr
->avail_occr
= cur_occr
;
1661 /* Determine whether the rtx X should be treated as a constant for
1662 the purposes of GCSE's constant propagation. */
1665 gcse_constant_p (rtx x
)
1667 /* Consider a COMPARE of two integers constant. */
1668 if (GET_CODE (x
) == COMPARE
1669 && GET_CODE (XEXP (x
, 0)) == CONST_INT
1670 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1673 /* Consider a COMPARE of the same registers is a constant
1674 if they are not floating point registers. */
1675 if (GET_CODE(x
) == COMPARE
1676 && REG_P (XEXP (x
, 0)) && REG_P (XEXP (x
, 1))
1677 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (x
, 1))
1678 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
1679 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 1))))
1682 return CONSTANT_P (x
);
1685 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1689 hash_scan_set (rtx pat
, rtx insn
, struct hash_table
*table
)
1691 rtx src
= SET_SRC (pat
);
1692 rtx dest
= SET_DEST (pat
);
1695 if (GET_CODE (src
) == CALL
)
1696 hash_scan_call (src
, insn
, table
);
1698 else if (REG_P (dest
))
1700 unsigned int regno
= REGNO (dest
);
1703 /* See if a REG_NOTE shows this equivalent to a simpler expression.
1704 This allows us to do a single GCSE pass and still eliminate
1705 redundant constants, addresses or other expressions that are
1706 constructed with multiple instructions. */
1707 note
= find_reg_equal_equiv_note (insn
);
1710 ? gcse_constant_p (XEXP (note
, 0))
1711 : want_to_gcse_p (XEXP (note
, 0))))
1712 src
= XEXP (note
, 0), pat
= gen_rtx_SET (VOIDmode
, dest
, src
);
1714 /* Only record sets of pseudo-regs in the hash table. */
1716 && regno
>= FIRST_PSEUDO_REGISTER
1717 /* Don't GCSE something if we can't do a reg/reg copy. */
1718 && can_copy_p (GET_MODE (dest
))
1719 /* GCSE commonly inserts instruction after the insn. We can't
1720 do that easily for EH_REGION notes so disable GCSE on these
1722 && !find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1723 /* Is SET_SRC something we want to gcse? */
1724 && want_to_gcse_p (src
)
1725 /* Don't CSE a nop. */
1726 && ! set_noop_p (pat
)
1727 /* Don't GCSE if it has attached REG_EQUIV note.
1728 At this point this only function parameters should have
1729 REG_EQUIV notes and if the argument slot is used somewhere
1730 explicitly, it means address of parameter has been taken,
1731 so we should not extend the lifetime of the pseudo. */
1732 && (note
== NULL_RTX
|| ! MEM_P (XEXP (note
, 0))))
1734 /* An expression is not anticipatable if its operands are
1735 modified before this insn or if this is not the only SET in
1737 int antic_p
= oprs_anticipatable_p (src
, insn
) && single_set (insn
);
1738 /* An expression is not available if its operands are
1739 subsequently modified, including this insn. It's also not
1740 available if this is a branch, because we can't insert
1741 a set after the branch. */
1742 int avail_p
= (oprs_available_p (src
, insn
)
1743 && ! JUMP_P (insn
));
1745 insert_expr_in_table (src
, GET_MODE (dest
), insn
, antic_p
, avail_p
, table
);
1748 /* Record sets for constant/copy propagation. */
1749 else if (table
->set_p
1750 && regno
>= FIRST_PSEUDO_REGISTER
1752 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
1753 && can_copy_p (GET_MODE (dest
))
1754 && REGNO (src
) != regno
)
1755 || gcse_constant_p (src
))
1756 /* A copy is not available if its src or dest is subsequently
1757 modified. Here we want to search from INSN+1 on, but
1758 oprs_available_p searches from INSN on. */
1759 && (insn
== BB_END (BLOCK_FOR_INSN (insn
))
1760 || ((tmp
= next_nonnote_insn (insn
)) != NULL_RTX
1761 && oprs_available_p (pat
, tmp
))))
1762 insert_set_in_table (pat
, insn
, table
);
1764 /* In case of store we want to consider the memory value as available in
1765 the REG stored in that memory. This makes it possible to remove
1766 redundant loads from due to stores to the same location. */
1767 else if (flag_gcse_las
&& REG_P (src
) && MEM_P (dest
))
1769 unsigned int regno
= REGNO (src
);
1771 /* Do not do this for constant/copy propagation. */
1773 /* Only record sets of pseudo-regs in the hash table. */
1774 && regno
>= FIRST_PSEUDO_REGISTER
1775 /* Don't GCSE something if we can't do a reg/reg copy. */
1776 && can_copy_p (GET_MODE (src
))
1777 /* GCSE commonly inserts instruction after the insn. We can't
1778 do that easily for EH_REGION notes so disable GCSE on these
1780 && ! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
1781 /* Is SET_DEST something we want to gcse? */
1782 && want_to_gcse_p (dest
)
1783 /* Don't CSE a nop. */
1784 && ! set_noop_p (pat
)
1785 /* Don't GCSE if it has attached REG_EQUIV note.
1786 At this point this only function parameters should have
1787 REG_EQUIV notes and if the argument slot is used somewhere
1788 explicitly, it means address of parameter has been taken,
1789 so we should not extend the lifetime of the pseudo. */
1790 && ((note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) == 0
1791 || ! MEM_P (XEXP (note
, 0))))
1793 /* Stores are never anticipatable. */
1795 /* An expression is not available if its operands are
1796 subsequently modified, including this insn. It's also not
1797 available if this is a branch, because we can't insert
1798 a set after the branch. */
1799 int avail_p
= oprs_available_p (dest
, insn
)
1802 /* Record the memory expression (DEST) in the hash table. */
1803 insert_expr_in_table (dest
, GET_MODE (dest
), insn
,
1804 antic_p
, avail_p
, table
);
1810 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1811 struct hash_table
*table ATTRIBUTE_UNUSED
)
1813 /* Currently nothing to do. */
1817 hash_scan_call (rtx x ATTRIBUTE_UNUSED
, rtx insn ATTRIBUTE_UNUSED
,
1818 struct hash_table
*table ATTRIBUTE_UNUSED
)
1820 /* Currently nothing to do. */
1823 /* Process INSN and add hash table entries as appropriate.
1825 Only available expressions that set a single pseudo-reg are recorded.
1827 Single sets in a PARALLEL could be handled, but it's an extra complication
1828 that isn't dealt with right now. The trick is handling the CLOBBERs that
1829 are also in the PARALLEL. Later.
1831 If SET_P is nonzero, this is for the assignment hash table,
1832 otherwise it is for the expression hash table.
1833 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1834 not record any expressions. */
1837 hash_scan_insn (rtx insn
, struct hash_table
*table
, int in_libcall_block
)
1839 rtx pat
= PATTERN (insn
);
1842 if (in_libcall_block
)
1845 /* Pick out the sets of INSN and for other forms of instructions record
1846 what's been modified. */
1848 if (GET_CODE (pat
) == SET
)
1849 hash_scan_set (pat
, insn
, table
);
1850 else if (GET_CODE (pat
) == PARALLEL
)
1851 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1853 rtx x
= XVECEXP (pat
, 0, i
);
1855 if (GET_CODE (x
) == SET
)
1856 hash_scan_set (x
, insn
, table
);
1857 else if (GET_CODE (x
) == CLOBBER
)
1858 hash_scan_clobber (x
, insn
, table
);
1859 else if (GET_CODE (x
) == CALL
)
1860 hash_scan_call (x
, insn
, table
);
1863 else if (GET_CODE (pat
) == CLOBBER
)
1864 hash_scan_clobber (pat
, insn
, table
);
1865 else if (GET_CODE (pat
) == CALL
)
1866 hash_scan_call (pat
, insn
, table
);
1870 dump_hash_table (FILE *file
, const char *name
, struct hash_table
*table
)
1873 /* Flattened out table, so it's printed in proper order. */
1874 struct expr
**flat_table
;
1875 unsigned int *hash_val
;
1878 flat_table
= xcalloc (table
->n_elems
, sizeof (struct expr
*));
1879 hash_val
= xmalloc (table
->n_elems
* sizeof (unsigned int));
1881 for (i
= 0; i
< (int) table
->size
; i
++)
1882 for (expr
= table
->table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
1884 flat_table
[expr
->bitmap_index
] = expr
;
1885 hash_val
[expr
->bitmap_index
] = i
;
1888 fprintf (file
, "%s hash table (%d buckets, %d entries)\n",
1889 name
, table
->size
, table
->n_elems
);
1891 for (i
= 0; i
< (int) table
->n_elems
; i
++)
1892 if (flat_table
[i
] != 0)
1894 expr
= flat_table
[i
];
1895 fprintf (file
, "Index %d (hash value %d)\n ",
1896 expr
->bitmap_index
, hash_val
[i
]);
1897 print_rtl (file
, expr
->expr
);
1898 fprintf (file
, "\n");
1901 fprintf (file
, "\n");
1907 /* Record register first/last/block set information for REGNO in INSN.
1909 first_set records the first place in the block where the register
1910 is set and is used to compute "anticipatability".
1912 last_set records the last place in the block where the register
1913 is set and is used to compute "availability".
1915 last_bb records the block for which first_set and last_set are
1916 valid, as a quick test to invalidate them.
1918 reg_set_in_block records whether the register is set in the block
1919 and is used to compute "transparency". */
1922 record_last_reg_set_info (rtx insn
, int regno
)
1924 struct reg_avail_info
*info
= ®_avail_info
[regno
];
1925 int cuid
= INSN_CUID (insn
);
1927 info
->last_set
= cuid
;
1928 if (info
->last_bb
!= current_bb
)
1930 info
->last_bb
= current_bb
;
1931 info
->first_set
= cuid
;
1932 SET_BIT (reg_set_in_block
[current_bb
->index
], regno
);
1937 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1938 Note we store a pair of elements in the list, so they have to be
1939 taken off pairwise. */
1942 canon_list_insert (rtx dest ATTRIBUTE_UNUSED
, rtx unused1 ATTRIBUTE_UNUSED
,
1945 rtx dest_addr
, insn
;
1948 while (GET_CODE (dest
) == SUBREG
1949 || GET_CODE (dest
) == ZERO_EXTRACT
1950 || GET_CODE (dest
) == STRICT_LOW_PART
)
1951 dest
= XEXP (dest
, 0);
1953 /* If DEST is not a MEM, then it will not conflict with a load. Note
1954 that function calls are assumed to clobber memory, but are handled
1960 dest_addr
= get_addr (XEXP (dest
, 0));
1961 dest_addr
= canon_rtx (dest_addr
);
1962 insn
= (rtx
) v_insn
;
1963 bb
= BLOCK_NUM (insn
);
1965 canon_modify_mem_list
[bb
] =
1966 alloc_EXPR_LIST (VOIDmode
, dest_addr
, canon_modify_mem_list
[bb
]);
1967 canon_modify_mem_list
[bb
] =
1968 alloc_EXPR_LIST (VOIDmode
, dest
, canon_modify_mem_list
[bb
]);
1971 /* Record memory modification information for INSN. We do not actually care
1972 about the memory location(s) that are set, or even how they are set (consider
1973 a CALL_INSN). We merely need to record which insns modify memory. */
1976 record_last_mem_set_info (rtx insn
)
1978 int bb
= BLOCK_NUM (insn
);
1980 /* load_killed_in_block_p will handle the case of calls clobbering
1982 modify_mem_list
[bb
] = alloc_INSN_LIST (insn
, modify_mem_list
[bb
]);
1983 bitmap_set_bit (modify_mem_list_set
, bb
);
1987 /* Note that traversals of this loop (other than for free-ing)
1988 will break after encountering a CALL_INSN. So, there's no
1989 need to insert a pair of items, as canon_list_insert does. */
1990 canon_modify_mem_list
[bb
] =
1991 alloc_INSN_LIST (insn
, canon_modify_mem_list
[bb
]);
1992 bitmap_set_bit (blocks_with_calls
, bb
);
1995 note_stores (PATTERN (insn
), canon_list_insert
, (void*) insn
);
1998 /* Called from compute_hash_table via note_stores to handle one
1999 SET or CLOBBER in an insn. DATA is really the instruction in which
2000 the SET is taking place. */
2003 record_last_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
2005 rtx last_set_insn
= (rtx
) data
;
2007 if (GET_CODE (dest
) == SUBREG
)
2008 dest
= SUBREG_REG (dest
);
2011 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
2012 else if (MEM_P (dest
)
2013 /* Ignore pushes, they clobber nothing. */
2014 && ! push_operand (dest
, GET_MODE (dest
)))
2015 record_last_mem_set_info (last_set_insn
);
2018 /* Top level function to create an expression or assignment hash table.
2020 Expression entries are placed in the hash table if
2021 - they are of the form (set (pseudo-reg) src),
2022 - src is something we want to perform GCSE on,
2023 - none of the operands are subsequently modified in the block
2025 Assignment entries are placed in the hash table if
2026 - they are of the form (set (pseudo-reg) src),
2027 - src is something we want to perform const/copy propagation on,
2028 - none of the operands or target are subsequently modified in the block
2030 Currently src must be a pseudo-reg or a const_int.
2032 TABLE is the table computed. */
2035 compute_hash_table_work (struct hash_table
*table
)
2039 /* While we compute the hash table we also compute a bit array of which
2040 registers are set in which blocks.
2041 ??? This isn't needed during const/copy propagation, but it's cheap to
2043 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
2045 /* re-Cache any INSN_LIST nodes we have allocated. */
2046 clear_modify_mem_tables ();
2047 /* Some working arrays used to track first and last set in each block. */
2048 reg_avail_info
= gmalloc (max_gcse_regno
* sizeof (struct reg_avail_info
));
2050 for (i
= 0; i
< max_gcse_regno
; ++i
)
2051 reg_avail_info
[i
].last_bb
= NULL
;
2053 FOR_EACH_BB (current_bb
)
2057 int in_libcall_block
;
2059 /* First pass over the instructions records information used to
2060 determine when registers and memory are first and last set.
2061 ??? hard-reg reg_set_in_block computation
2062 could be moved to compute_sets since they currently don't change. */
2064 FOR_BB_INSNS (current_bb
, insn
)
2066 if (! INSN_P (insn
))
2071 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
2072 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
2073 record_last_reg_set_info (insn
, regno
);
2078 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
2081 /* Insert implicit sets in the hash table. */
2083 && implicit_sets
[current_bb
->index
] != NULL_RTX
)
2084 hash_scan_set (implicit_sets
[current_bb
->index
],
2085 BB_HEAD (current_bb
), table
);
2087 /* The next pass builds the hash table. */
2088 in_libcall_block
= 0;
2089 FOR_BB_INSNS (current_bb
, insn
)
2092 if (find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
2093 in_libcall_block
= 1;
2094 else if (table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2095 in_libcall_block
= 0;
2096 hash_scan_insn (insn
, table
, in_libcall_block
);
2097 if (!table
->set_p
&& find_reg_note (insn
, REG_RETVAL
, NULL_RTX
))
2098 in_libcall_block
= 0;
2102 free (reg_avail_info
);
2103 reg_avail_info
= NULL
;
2106 /* Allocate space for the set/expr hash TABLE.
2107 N_INSNS is the number of instructions in the function.
2108 It is used to determine the number of buckets to use.
2109 SET_P determines whether set or expression table will
2113 alloc_hash_table (int n_insns
, struct hash_table
*table
, int set_p
)
2117 table
->size
= n_insns
/ 4;
2118 if (table
->size
< 11)
2121 /* Attempt to maintain efficient use of hash table.
2122 Making it an odd number is simplest for now.
2123 ??? Later take some measurements. */
2125 n
= table
->size
* sizeof (struct expr
*);
2126 table
->table
= gmalloc (n
);
2127 table
->set_p
= set_p
;
2130 /* Free things allocated by alloc_hash_table. */
2133 free_hash_table (struct hash_table
*table
)
2135 free (table
->table
);
2138 /* Compute the hash TABLE for doing copy/const propagation or
2139 expression hash table. */
2142 compute_hash_table (struct hash_table
*table
)
2144 /* Initialize count of number of entries in hash table. */
2146 memset (table
->table
, 0, table
->size
* sizeof (struct expr
*));
2148 compute_hash_table_work (table
);
2151 /* Expression tracking support. */
2153 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2154 table entry, or NULL if not found. */
2156 static struct expr
*
2157 lookup_set (unsigned int regno
, struct hash_table
*table
)
2159 unsigned int hash
= hash_set (regno
, table
->size
);
2162 expr
= table
->table
[hash
];
2164 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
)
2165 expr
= expr
->next_same_hash
;
2170 /* Return the next entry for REGNO in list EXPR. */
2172 static struct expr
*
2173 next_set (unsigned int regno
, struct expr
*expr
)
2176 expr
= expr
->next_same_hash
;
2177 while (expr
&& REGNO (SET_DEST (expr
->expr
)) != regno
);
2182 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2183 types may be mixed. */
2186 free_insn_expr_list_list (rtx
*listp
)
2190 for (list
= *listp
; list
; list
= next
)
2192 next
= XEXP (list
, 1);
2193 if (GET_CODE (list
) == EXPR_LIST
)
2194 free_EXPR_LIST_node (list
);
2196 free_INSN_LIST_node (list
);
2202 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2204 clear_modify_mem_tables (void)
2209 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set
, 0, i
, bi
)
2211 free_INSN_LIST_list (modify_mem_list
+ i
);
2212 free_insn_expr_list_list (canon_modify_mem_list
+ i
);
2214 bitmap_clear (modify_mem_list_set
);
2215 bitmap_clear (blocks_with_calls
);
2218 /* Release memory used by modify_mem_list_set. */
2221 free_modify_mem_tables (void)
2223 clear_modify_mem_tables ();
2224 free (modify_mem_list
);
2225 free (canon_modify_mem_list
);
2226 modify_mem_list
= 0;
2227 canon_modify_mem_list
= 0;
2230 /* Reset tables used to keep track of what's still available [since the
2231 start of the block]. */
2234 reset_opr_set_tables (void)
2236 /* Maintain a bitmap of which regs have been set since beginning of
2238 CLEAR_REG_SET (reg_set_bitmap
);
2240 /* Also keep a record of the last instruction to modify memory.
2241 For now this is very trivial, we only record whether any memory
2242 location has been modified. */
2243 clear_modify_mem_tables ();
2246 /* Return nonzero if the operands of X are not set before INSN in
2247 INSN's basic block. */
2250 oprs_not_set_p (rtx x
, rtx insn
)
2259 code
= GET_CODE (x
);
2275 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn
),
2276 INSN_CUID (insn
), x
, 0))
2279 return oprs_not_set_p (XEXP (x
, 0), insn
);
2282 return ! REGNO_REG_SET_P (reg_set_bitmap
, REGNO (x
));
2288 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2292 /* If we are about to do the last recursive call
2293 needed at this level, change it into iteration.
2294 This function is called enough to be worth it. */
2296 return oprs_not_set_p (XEXP (x
, i
), insn
);
2298 if (! oprs_not_set_p (XEXP (x
, i
), insn
))
2301 else if (fmt
[i
] == 'E')
2302 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2303 if (! oprs_not_set_p (XVECEXP (x
, i
, j
), insn
))
2310 /* Mark things set by a CALL. */
2313 mark_call (rtx insn
)
2315 if (! CONST_OR_PURE_CALL_P (insn
))
2316 record_last_mem_set_info (insn
);
2319 /* Mark things set by a SET. */
2322 mark_set (rtx pat
, rtx insn
)
2324 rtx dest
= SET_DEST (pat
);
2326 while (GET_CODE (dest
) == SUBREG
2327 || GET_CODE (dest
) == ZERO_EXTRACT
2328 || GET_CODE (dest
) == STRICT_LOW_PART
)
2329 dest
= XEXP (dest
, 0);
2332 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (dest
));
2333 else if (MEM_P (dest
))
2334 record_last_mem_set_info (insn
);
2336 if (GET_CODE (SET_SRC (pat
)) == CALL
)
2340 /* Record things set by a CLOBBER. */
2343 mark_clobber (rtx pat
, rtx insn
)
2345 rtx clob
= XEXP (pat
, 0);
2347 while (GET_CODE (clob
) == SUBREG
|| GET_CODE (clob
) == STRICT_LOW_PART
)
2348 clob
= XEXP (clob
, 0);
2351 SET_REGNO_REG_SET (reg_set_bitmap
, REGNO (clob
));
2353 record_last_mem_set_info (insn
);
2356 /* Record things set by INSN.
2357 This data is used by oprs_not_set_p. */
2360 mark_oprs_set (rtx insn
)
2362 rtx pat
= PATTERN (insn
);
2365 if (GET_CODE (pat
) == SET
)
2366 mark_set (pat
, insn
);
2367 else if (GET_CODE (pat
) == PARALLEL
)
2368 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
2370 rtx x
= XVECEXP (pat
, 0, i
);
2372 if (GET_CODE (x
) == SET
)
2374 else if (GET_CODE (x
) == CLOBBER
)
2375 mark_clobber (x
, insn
);
2376 else if (GET_CODE (x
) == CALL
)
2380 else if (GET_CODE (pat
) == CLOBBER
)
2381 mark_clobber (pat
, insn
);
2382 else if (GET_CODE (pat
) == CALL
)
2387 /* Compute copy/constant propagation working variables. */
2389 /* Local properties of assignments. */
2390 static sbitmap
*cprop_pavloc
;
2391 static sbitmap
*cprop_absaltered
;
2393 /* Global properties of assignments (computed from the local properties). */
2394 static sbitmap
*cprop_avin
;
2395 static sbitmap
*cprop_avout
;
2397 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2398 basic blocks. N_SETS is the number of sets. */
2401 alloc_cprop_mem (int n_blocks
, int n_sets
)
2403 cprop_pavloc
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2404 cprop_absaltered
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2406 cprop_avin
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2407 cprop_avout
= sbitmap_vector_alloc (n_blocks
, n_sets
);
2410 /* Free vars used by copy/const propagation. */
2413 free_cprop_mem (void)
2415 sbitmap_vector_free (cprop_pavloc
);
2416 sbitmap_vector_free (cprop_absaltered
);
2417 sbitmap_vector_free (cprop_avin
);
2418 sbitmap_vector_free (cprop_avout
);
2421 /* For each block, compute whether X is transparent. X is either an
2422 expression or an assignment [though we don't care which, for this context
2423 an assignment is treated as an expression]. For each block where an
2424 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2428 compute_transp (rtx x
, int indx
, sbitmap
*bmap
, int set_p
)
2436 /* repeat is used to turn tail-recursion into iteration since GCC
2437 can't do it when there's no return value. */
2443 code
= GET_CODE (x
);
2449 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2452 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2453 SET_BIT (bmap
[bb
->index
], indx
);
2457 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2458 SET_BIT (bmap
[r
->bb_index
], indx
);
2463 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2466 if (TEST_BIT (reg_set_in_block
[bb
->index
], REGNO (x
)))
2467 RESET_BIT (bmap
[bb
->index
], indx
);
2471 for (r
= reg_set_table
[REGNO (x
)]; r
!= NULL
; r
= r
->next
)
2472 RESET_BIT (bmap
[r
->bb_index
], indx
);
2479 if (! MEM_READONLY_P (x
))
2484 /* First handle all the blocks with calls. We don't need to
2485 do any list walking for them. */
2486 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls
, 0, bb_index
, bi
)
2489 SET_BIT (bmap
[bb_index
], indx
);
2491 RESET_BIT (bmap
[bb_index
], indx
);
2494 /* Now iterate over the blocks which have memory modifications
2495 but which do not have any calls. */
2496 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set
,
2500 rtx list_entry
= canon_modify_mem_list
[bb_index
];
2504 rtx dest
, dest_addr
;
2506 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2507 Examine each hunk of memory that is modified. */
2509 dest
= XEXP (list_entry
, 0);
2510 list_entry
= XEXP (list_entry
, 1);
2511 dest_addr
= XEXP (list_entry
, 0);
2513 if (canon_true_dependence (dest
, GET_MODE (dest
), dest_addr
,
2514 x
, rtx_addr_varies_p
))
2517 SET_BIT (bmap
[bb_index
], indx
);
2519 RESET_BIT (bmap
[bb_index
], indx
);
2522 list_entry
= XEXP (list_entry
, 1);
2546 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2550 /* If we are about to do the last recursive call
2551 needed at this level, change it into iteration.
2552 This function is called enough to be worth it. */
2559 compute_transp (XEXP (x
, i
), indx
, bmap
, set_p
);
2561 else if (fmt
[i
] == 'E')
2562 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2563 compute_transp (XVECEXP (x
, i
, j
), indx
, bmap
, set_p
);
2567 /* Top level routine to do the dataflow analysis needed by copy/const
2571 compute_cprop_data (void)
2573 compute_local_properties (cprop_absaltered
, cprop_pavloc
, NULL
, &set_hash_table
);
2574 compute_available (cprop_pavloc
, cprop_absaltered
,
2575 cprop_avout
, cprop_avin
);
2578 /* Copy/constant propagation. */
2580 /* Maximum number of register uses in an insn that we handle. */
2583 /* Table of uses found in an insn.
2584 Allocated statically to avoid alloc/free complexity and overhead. */
2585 static struct reg_use reg_use_table
[MAX_USES
];
2587 /* Index into `reg_use_table' while building it. */
2588 static int reg_use_count
;
2590 /* Set up a list of register numbers used in INSN. The found uses are stored
2591 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2592 and contains the number of uses in the table upon exit.
2594 ??? If a register appears multiple times we will record it multiple times.
2595 This doesn't hurt anything but it will slow things down. */
2598 find_used_regs (rtx
*xptr
, void *data ATTRIBUTE_UNUSED
)
2605 /* repeat is used to turn tail-recursion into iteration since GCC
2606 can't do it when there's no return value. */
2611 code
= GET_CODE (x
);
2614 if (reg_use_count
== MAX_USES
)
2617 reg_use_table
[reg_use_count
].reg_rtx
= x
;
2621 /* Recursively scan the operands of this expression. */
2623 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
2627 /* If we are about to do the last recursive call
2628 needed at this level, change it into iteration.
2629 This function is called enough to be worth it. */
2636 find_used_regs (&XEXP (x
, i
), data
);
2638 else if (fmt
[i
] == 'E')
2639 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2640 find_used_regs (&XVECEXP (x
, i
, j
), data
);
2644 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2645 Returns nonzero is successful. */
2648 try_replace_reg (rtx from
, rtx to
, rtx insn
)
2650 rtx note
= find_reg_equal_equiv_note (insn
);
2653 rtx set
= single_set (insn
);
2655 validate_replace_src_group (from
, to
, insn
);
2656 if (num_changes_pending () && apply_change_group ())
2659 /* Try to simplify SET_SRC if we have substituted a constant. */
2660 if (success
&& set
&& CONSTANT_P (to
))
2662 src
= simplify_rtx (SET_SRC (set
));
2665 validate_change (insn
, &SET_SRC (set
), src
, 0);
2668 /* If there is already a NOTE, update the expression in it with our
2671 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), from
, to
);
2673 if (!success
&& set
&& reg_mentioned_p (from
, SET_SRC (set
)))
2675 /* If above failed and this is a single set, try to simplify the source of
2676 the set given our substitution. We could perhaps try this for multiple
2677 SETs, but it probably won't buy us anything. */
2678 src
= simplify_replace_rtx (SET_SRC (set
), from
, to
);
2680 if (!rtx_equal_p (src
, SET_SRC (set
))
2681 && validate_change (insn
, &SET_SRC (set
), src
, 0))
2684 /* If we've failed to do replacement, have a single SET, don't already
2685 have a note, and have no special SET, add a REG_EQUAL note to not
2686 lose information. */
2687 if (!success
&& note
== 0 && set
!= 0
2688 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
2689 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
2690 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (src
));
2693 /* REG_EQUAL may get simplified into register.
2694 We don't allow that. Remove that note. This code ought
2695 not to happen, because previous code ought to synthesize
2696 reg-reg move, but be on the safe side. */
2697 if (note
&& REG_P (XEXP (note
, 0)))
2698 remove_note (insn
, note
);
2703 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2704 NULL no such set is found. */
2706 static struct expr
*
2707 find_avail_set (int regno
, rtx insn
)
2709 /* SET1 contains the last set found that can be returned to the caller for
2710 use in a substitution. */
2711 struct expr
*set1
= 0;
2713 /* Loops are not possible here. To get a loop we would need two sets
2714 available at the start of the block containing INSN. i.e. we would
2715 need two sets like this available at the start of the block:
2717 (set (reg X) (reg Y))
2718 (set (reg Y) (reg X))
2720 This can not happen since the set of (reg Y) would have killed the
2721 set of (reg X) making it unavailable at the start of this block. */
2725 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
2727 /* Find a set that is available at the start of the block
2728 which contains INSN. */
2731 if (TEST_BIT (cprop_avin
[BLOCK_NUM (insn
)], set
->bitmap_index
))
2733 set
= next_set (regno
, set
);
2736 /* If no available set was found we've reached the end of the
2737 (possibly empty) copy chain. */
2741 gcc_assert (GET_CODE (set
->expr
) == SET
);
2743 src
= SET_SRC (set
->expr
);
2745 /* We know the set is available.
2746 Now check that SRC is ANTLOC (i.e. none of the source operands
2747 have changed since the start of the block).
2749 If the source operand changed, we may still use it for the next
2750 iteration of this loop, but we may not use it for substitutions. */
2752 if (gcse_constant_p (src
) || oprs_not_set_p (src
, insn
))
2755 /* If the source of the set is anything except a register, then
2756 we have reached the end of the copy chain. */
2760 /* Follow the copy chain, i.e. start another iteration of the loop
2761 and see if we have an available copy into SRC. */
2762 regno
= REGNO (src
);
2765 /* SET1 holds the last set that was available and anticipatable at
2770 /* Subroutine of cprop_insn that tries to propagate constants into
2771 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2772 it is the instruction that immediately precedes JUMP, and must be a
2773 single SET of a register. FROM is what we will try to replace,
2774 SRC is the constant we will try to substitute for it. Returns nonzero
2775 if a change was made. */
2778 cprop_jump (basic_block bb
, rtx setcc
, rtx jump
, rtx from
, rtx src
)
2780 rtx
new, set_src
, note_src
;
2781 rtx set
= pc_set (jump
);
2782 rtx note
= find_reg_equal_equiv_note (jump
);
2786 note_src
= XEXP (note
, 0);
2787 if (GET_CODE (note_src
) == EXPR_LIST
)
2788 note_src
= NULL_RTX
;
2790 else note_src
= NULL_RTX
;
2792 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2793 set_src
= note_src
? note_src
: SET_SRC (set
);
2795 /* First substitute the SETCC condition into the JUMP instruction,
2796 then substitute that given values into this expanded JUMP. */
2797 if (setcc
!= NULL_RTX
2798 && !modified_between_p (from
, setcc
, jump
)
2799 && !modified_between_p (src
, setcc
, jump
))
2802 rtx setcc_set
= single_set (setcc
);
2803 rtx setcc_note
= find_reg_equal_equiv_note (setcc
);
2804 setcc_src
= (setcc_note
&& GET_CODE (XEXP (setcc_note
, 0)) != EXPR_LIST
)
2805 ? XEXP (setcc_note
, 0) : SET_SRC (setcc_set
);
2806 set_src
= simplify_replace_rtx (set_src
, SET_DEST (setcc_set
),
2812 new = simplify_replace_rtx (set_src
, from
, src
);
2814 /* If no simplification can be made, then try the next register. */
2815 if (rtx_equal_p (new, SET_SRC (set
)))
2818 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2823 /* Ensure the value computed inside the jump insn to be equivalent
2824 to one computed by setcc. */
2825 if (setcc
&& modified_in_p (new, setcc
))
2827 if (! validate_change (jump
, &SET_SRC (set
), new, 0))
2829 /* When (some) constants are not valid in a comparison, and there
2830 are two registers to be replaced by constants before the entire
2831 comparison can be folded into a constant, we need to keep
2832 intermediate information in REG_EQUAL notes. For targets with
2833 separate compare insns, such notes are added by try_replace_reg.
2834 When we have a combined compare-and-branch instruction, however,
2835 we need to attach a note to the branch itself to make this
2836 optimization work. */
2838 if (!rtx_equal_p (new, note_src
))
2839 set_unique_reg_note (jump
, REG_EQUAL
, copy_rtx (new));
2843 /* Remove REG_EQUAL note after simplification. */
2845 remove_note (jump
, note
);
2847 /* If this has turned into an unconditional jump,
2848 then put a barrier after it so that the unreachable
2849 code will be deleted. */
2850 if (GET_CODE (SET_SRC (set
)) == LABEL_REF
)
2851 emit_barrier_after (jump
);
2855 /* Delete the cc0 setter. */
2856 if (setcc
!= NULL
&& CC0_P (SET_DEST (single_set (setcc
))))
2857 delete_insn (setcc
);
2860 run_jump_opt_after_gcse
= 1;
2862 global_const_prop_count
++;
2863 if (gcse_file
!= NULL
)
2866 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2867 REGNO (from
), INSN_UID (jump
));
2868 print_rtl (gcse_file
, src
);
2869 fprintf (gcse_file
, "\n");
2871 purge_dead_edges (bb
);
2877 constprop_register (rtx insn
, rtx from
, rtx to
, bool alter_jumps
)
2881 /* Check for reg or cc0 setting instructions followed by
2882 conditional branch instructions first. */
2884 && (sset
= single_set (insn
)) != NULL
2886 && any_condjump_p (NEXT_INSN (insn
)) && onlyjump_p (NEXT_INSN (insn
)))
2888 rtx dest
= SET_DEST (sset
);
2889 if ((REG_P (dest
) || CC0_P (dest
))
2890 && cprop_jump (BLOCK_FOR_INSN (insn
), insn
, NEXT_INSN (insn
), from
, to
))
2894 /* Handle normal insns next. */
2895 if (NONJUMP_INSN_P (insn
)
2896 && try_replace_reg (from
, to
, insn
))
2899 /* Try to propagate a CONST_INT into a conditional jump.
2900 We're pretty specific about what we will handle in this
2901 code, we can extend this as necessary over time.
2903 Right now the insn in question must look like
2904 (set (pc) (if_then_else ...)) */
2905 else if (alter_jumps
&& any_condjump_p (insn
) && onlyjump_p (insn
))
2906 return cprop_jump (BLOCK_FOR_INSN (insn
), NULL
, insn
, from
, to
);
2910 /* Perform constant and copy propagation on INSN.
2911 The result is nonzero if a change was made. */
2914 cprop_insn (rtx insn
, int alter_jumps
)
2916 struct reg_use
*reg_used
;
2924 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
2926 note
= find_reg_equal_equiv_note (insn
);
2928 /* We may win even when propagating constants into notes. */
2930 find_used_regs (&XEXP (note
, 0), NULL
);
2932 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
2933 reg_used
++, reg_use_count
--)
2935 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
2939 /* Ignore registers created by GCSE.
2940 We do this because ... */
2941 if (regno
>= max_gcse_regno
)
2944 /* If the register has already been set in this block, there's
2945 nothing we can do. */
2946 if (! oprs_not_set_p (reg_used
->reg_rtx
, insn
))
2949 /* Find an assignment that sets reg_used and is available
2950 at the start of the block. */
2951 set
= find_avail_set (regno
, insn
);
2956 /* ??? We might be able to handle PARALLELs. Later. */
2957 gcc_assert (GET_CODE (pat
) == SET
);
2959 src
= SET_SRC (pat
);
2961 /* Constant propagation. */
2962 if (gcse_constant_p (src
))
2964 if (constprop_register (insn
, reg_used
->reg_rtx
, src
, alter_jumps
))
2967 global_const_prop_count
++;
2968 if (gcse_file
!= NULL
)
2970 fprintf (gcse_file
, "GLOBAL CONST-PROP: Replacing reg %d in ", regno
);
2971 fprintf (gcse_file
, "insn %d with constant ", INSN_UID (insn
));
2972 print_rtl (gcse_file
, src
);
2973 fprintf (gcse_file
, "\n");
2975 if (INSN_DELETED_P (insn
))
2979 else if (REG_P (src
)
2980 && REGNO (src
) >= FIRST_PSEUDO_REGISTER
2981 && REGNO (src
) != regno
)
2983 if (try_replace_reg (reg_used
->reg_rtx
, src
, insn
))
2986 global_copy_prop_count
++;
2987 if (gcse_file
!= NULL
)
2989 fprintf (gcse_file
, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2990 regno
, INSN_UID (insn
));
2991 fprintf (gcse_file
, " with reg %d\n", REGNO (src
));
2994 /* The original insn setting reg_used may or may not now be
2995 deletable. We leave the deletion to flow. */
2996 /* FIXME: If it turns out that the insn isn't deletable,
2997 then we may have unnecessarily extended register lifetimes
2998 and made things worse. */
3006 /* Like find_used_regs, but avoid recording uses that appear in
3007 input-output contexts such as zero_extract or pre_dec. This
3008 restricts the cases we consider to those for which local cprop
3009 can legitimately make replacements. */
3012 local_cprop_find_used_regs (rtx
*xptr
, void *data
)
3019 switch (GET_CODE (x
))
3023 case STRICT_LOW_PART
:
3032 /* Can only legitimately appear this early in the context of
3033 stack pushes for function arguments, but handle all of the
3034 codes nonetheless. */
3038 /* Setting a subreg of a register larger than word_mode leaves
3039 the non-written words unchanged. */
3040 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) > BITS_PER_WORD
)
3048 find_used_regs (xptr
, data
);
3051 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3052 their REG_EQUAL notes need updating. */
3055 do_local_cprop (rtx x
, rtx insn
, bool alter_jumps
, rtx
*libcall_sp
)
3057 rtx newreg
= NULL
, newcnst
= NULL
;
3059 /* Rule out USE instructions and ASM statements as we don't want to
3060 change the hard registers mentioned. */
3062 && (REGNO (x
) >= FIRST_PSEUDO_REGISTER
3063 || (GET_CODE (PATTERN (insn
)) != USE
3064 && asm_noperands (PATTERN (insn
)) < 0)))
3066 cselib_val
*val
= cselib_lookup (x
, GET_MODE (x
), 0);
3067 struct elt_loc_list
*l
;
3071 for (l
= val
->locs
; l
; l
= l
->next
)
3073 rtx this_rtx
= l
->loc
;
3076 /* Don't CSE non-constant values out of libcall blocks. */
3077 if (l
->in_libcall
&& ! CONSTANT_P (this_rtx
))
3080 if (gcse_constant_p (this_rtx
))
3082 if (REG_P (this_rtx
) && REGNO (this_rtx
) >= FIRST_PSEUDO_REGISTER
3083 /* Don't copy propagate if it has attached REG_EQUIV note.
3084 At this point this only function parameters should have
3085 REG_EQUIV notes and if the argument slot is used somewhere
3086 explicitly, it means address of parameter has been taken,
3087 so we should not extend the lifetime of the pseudo. */
3088 && (!(note
= find_reg_note (l
->setting_insn
, REG_EQUIV
, NULL_RTX
))
3089 || ! MEM_P (XEXP (note
, 0))))
3092 if (newcnst
&& constprop_register (insn
, x
, newcnst
, alter_jumps
))
3094 /* If we find a case where we can't fix the retval REG_EQUAL notes
3095 match the new register, we either have to abandon this replacement
3096 or fix delete_trivially_dead_insns to preserve the setting insn,
3097 or make it delete the REG_EUAQL note, and fix up all passes that
3098 require the REG_EQUAL note there. */
3101 adjusted
= adjust_libcall_notes (x
, newcnst
, insn
, libcall_sp
);
3102 gcc_assert (adjusted
);
3104 if (gcse_file
!= NULL
)
3106 fprintf (gcse_file
, "LOCAL CONST-PROP: Replacing reg %d in ",
3108 fprintf (gcse_file
, "insn %d with constant ",
3110 print_rtl (gcse_file
, newcnst
);
3111 fprintf (gcse_file
, "\n");
3113 local_const_prop_count
++;
3116 else if (newreg
&& newreg
!= x
&& try_replace_reg (x
, newreg
, insn
))
3118 adjust_libcall_notes (x
, newreg
, insn
, libcall_sp
);
3119 if (gcse_file
!= NULL
)
3122 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3123 REGNO (x
), INSN_UID (insn
));
3124 fprintf (gcse_file
, " with reg %d\n", REGNO (newreg
));
3126 local_copy_prop_count
++;
3133 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3134 their REG_EQUAL notes need updating to reflect that OLDREG has been
3135 replaced with NEWVAL in INSN. Return true if all substitutions could
3138 adjust_libcall_notes (rtx oldreg
, rtx newval
, rtx insn
, rtx
*libcall_sp
)
3142 while ((end
= *libcall_sp
++))
3144 rtx note
= find_reg_equal_equiv_note (end
);
3151 if (reg_set_between_p (newval
, PREV_INSN (insn
), end
))
3155 note
= find_reg_equal_equiv_note (end
);
3158 if (reg_mentioned_p (newval
, XEXP (note
, 0)))
3161 while ((end
= *libcall_sp
++));
3165 XEXP (note
, 0) = simplify_replace_rtx (XEXP (note
, 0), oldreg
, newval
);
3171 #define MAX_NESTED_LIBCALLS 9
3173 /* Do local const/copy propagation (i.e. within each basic block).
3174 If ALTER_JUMPS is true, allow propagating into jump insns, which
3175 could modify the CFG. */
3178 local_cprop_pass (bool alter_jumps
)
3182 struct reg_use
*reg_used
;
3183 rtx libcall_stack
[MAX_NESTED_LIBCALLS
+ 1], *libcall_sp
;
3184 bool changed
= false;
3186 cselib_init (false);
3187 libcall_sp
= &libcall_stack
[MAX_NESTED_LIBCALLS
];
3191 FOR_BB_INSNS (bb
, insn
)
3195 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
3199 gcc_assert (libcall_sp
!= libcall_stack
);
3200 *--libcall_sp
= XEXP (note
, 0);
3202 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
3205 note
= find_reg_equal_equiv_note (insn
);
3209 note_uses (&PATTERN (insn
), local_cprop_find_used_regs
,
3212 local_cprop_find_used_regs (&XEXP (note
, 0), NULL
);
3214 for (reg_used
= ®_use_table
[0]; reg_use_count
> 0;
3215 reg_used
++, reg_use_count
--)
3216 if (do_local_cprop (reg_used
->reg_rtx
, insn
, alter_jumps
,
3222 if (INSN_DELETED_P (insn
))
3225 while (reg_use_count
);
3227 cselib_process_insn (insn
);
3230 /* Forget everything at the end of a basic block. Make sure we are
3231 not inside a libcall, they should never cross basic blocks. */
3232 cselib_clear_table ();
3233 gcc_assert (libcall_sp
== &libcall_stack
[MAX_NESTED_LIBCALLS
]);
3238 /* Global analysis may get into infinite loops for unreachable blocks. */
3239 if (changed
&& alter_jumps
)
3241 delete_unreachable_blocks ();
3242 free_reg_set_mem ();
3243 alloc_reg_set_mem (max_reg_num ());
3248 /* Forward propagate copies. This includes copies and constants. Return
3249 nonzero if a change was made. */
3252 cprop (int alter_jumps
)
3258 /* Note we start at block 1. */
3259 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3261 if (gcse_file
!= NULL
)
3262 fprintf (gcse_file
, "\n");
3267 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
, EXIT_BLOCK_PTR
, next_bb
)
3269 /* Reset tables used to keep track of what's still valid [since the
3270 start of the block]. */
3271 reset_opr_set_tables ();
3273 FOR_BB_INSNS (bb
, insn
)
3276 changed
|= cprop_insn (insn
, alter_jumps
);
3278 /* Keep track of everything modified by this insn. */
3279 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3280 call mark_oprs_set if we turned the insn into a NOTE. */
3281 if (! NOTE_P (insn
))
3282 mark_oprs_set (insn
);
3286 if (gcse_file
!= NULL
)
3287 fprintf (gcse_file
, "\n");
3292 /* Similar to get_condition, only the resulting condition must be
3293 valid at JUMP, instead of at EARLIEST.
3295 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3296 settle for the condition variable in the jump instruction being integral.
3297 We prefer to be able to record the value of a user variable, rather than
3298 the value of a temporary used in a condition. This could be solved by
3299 recording the value of *every* register scanned by canonicalize_condition,
3300 but this would require some code reorganization. */
3303 fis_get_condition (rtx jump
)
3305 return get_condition (jump
, NULL
, false, true);
3308 /* Check the comparison COND to see if we can safely form an implicit set from
3309 it. COND is either an EQ or NE comparison. */
3312 implicit_set_cond_p (rtx cond
)
3314 enum machine_mode mode
= GET_MODE (XEXP (cond
, 0));
3315 rtx cst
= XEXP (cond
, 1);
3317 /* We can't perform this optimization if either operand might be or might
3318 contain a signed zero. */
3319 if (HONOR_SIGNED_ZEROS (mode
))
3321 /* It is sufficient to check if CST is or contains a zero. We must
3322 handle float, complex, and vector. If any subpart is a zero, then
3323 the optimization can't be performed. */
3324 /* ??? The complex and vector checks are not implemented yet. We just
3325 always return zero for them. */
3326 if (GET_CODE (cst
) == CONST_DOUBLE
)
3329 REAL_VALUE_FROM_CONST_DOUBLE (d
, cst
);
3330 if (REAL_VALUES_EQUAL (d
, dconst0
))
3337 return gcse_constant_p (cst
);
3340 /* Find the implicit sets of a function. An "implicit set" is a constraint
3341 on the value of a variable, implied by a conditional jump. For example,
3342 following "if (x == 2)", the then branch may be optimized as though the
3343 conditional performed an "explicit set", in this example, "x = 2". This
3344 function records the set patterns that are implicit at the start of each
3348 find_implicit_sets (void)
3350 basic_block bb
, dest
;
3356 /* Check for more than one successor. */
3357 if (EDGE_COUNT (bb
->succs
) > 1)
3359 cond
= fis_get_condition (BB_END (bb
));
3362 && (GET_CODE (cond
) == EQ
|| GET_CODE (cond
) == NE
)
3363 && REG_P (XEXP (cond
, 0))
3364 && REGNO (XEXP (cond
, 0)) >= FIRST_PSEUDO_REGISTER
3365 && implicit_set_cond_p (cond
))
3367 dest
= GET_CODE (cond
) == EQ
? BRANCH_EDGE (bb
)->dest
3368 : FALLTHRU_EDGE (bb
)->dest
;
3370 if (dest
&& single_pred_p (dest
)
3371 && dest
!= EXIT_BLOCK_PTR
)
3373 new = gen_rtx_SET (VOIDmode
, XEXP (cond
, 0),
3375 implicit_sets
[dest
->index
] = new;
3378 fprintf(gcse_file
, "Implicit set of reg %d in ",
3379 REGNO (XEXP (cond
, 0)));
3380 fprintf(gcse_file
, "basic block %d\n", dest
->index
);
3388 fprintf (gcse_file
, "Found %d implicit sets\n", count
);
3391 /* Perform one copy/constant propagation pass.
3392 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3393 propagation into conditional jumps. If BYPASS_JUMPS is true,
3394 perform conditional jump bypassing optimizations. */
3397 one_cprop_pass (int pass
, bool cprop_jumps
, bool bypass_jumps
)
3401 global_const_prop_count
= local_const_prop_count
= 0;
3402 global_copy_prop_count
= local_copy_prop_count
= 0;
3404 local_cprop_pass (cprop_jumps
);
3406 /* Determine implicit sets. */
3407 implicit_sets
= xcalloc (last_basic_block
, sizeof (rtx
));
3408 find_implicit_sets ();
3410 alloc_hash_table (max_cuid
, &set_hash_table
, 1);
3411 compute_hash_table (&set_hash_table
);
3413 /* Free implicit_sets before peak usage. */
3414 free (implicit_sets
);
3415 implicit_sets
= NULL
;
3418 dump_hash_table (gcse_file
, "SET", &set_hash_table
);
3419 if (set_hash_table
.n_elems
> 0)
3421 alloc_cprop_mem (last_basic_block
, set_hash_table
.n_elems
);
3422 compute_cprop_data ();
3423 changed
= cprop (cprop_jumps
);
3425 changed
|= bypass_conditional_jumps ();
3429 free_hash_table (&set_hash_table
);
3433 fprintf (gcse_file
, "CPROP of %s, pass %d: %d bytes needed, ",
3434 current_function_name (), pass
, bytes_used
);
3435 fprintf (gcse_file
, "%d local const props, %d local copy props, ",
3436 local_const_prop_count
, local_copy_prop_count
);
3437 fprintf (gcse_file
, "%d global const props, %d global copy props\n\n",
3438 global_const_prop_count
, global_copy_prop_count
);
3440 /* Global analysis may get into infinite loops for unreachable blocks. */
3441 if (changed
&& cprop_jumps
)
3442 delete_unreachable_blocks ();
3447 /* Bypass conditional jumps. */
3449 /* The value of last_basic_block at the beginning of the jump_bypass
3450 pass. The use of redirect_edge_and_branch_force may introduce new
3451 basic blocks, but the data flow analysis is only valid for basic
3452 block indices less than bypass_last_basic_block. */
3454 static int bypass_last_basic_block
;
3456 /* Find a set of REGNO to a constant that is available at the end of basic
3457 block BB. Returns NULL if no such set is found. Based heavily upon
3460 static struct expr
*
3461 find_bypass_set (int regno
, int bb
)
3463 struct expr
*result
= 0;
3468 struct expr
*set
= lookup_set (regno
, &set_hash_table
);
3472 if (TEST_BIT (cprop_avout
[bb
], set
->bitmap_index
))
3474 set
= next_set (regno
, set
);
3480 gcc_assert (GET_CODE (set
->expr
) == SET
);
3482 src
= SET_SRC (set
->expr
);
3483 if (gcse_constant_p (src
))
3489 regno
= REGNO (src
);
3495 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3496 any of the instructions inserted on an edge. Jump bypassing places
3497 condition code setters on CFG edges using insert_insn_on_edge. This
3498 function is required to check that our data flow analysis is still
3499 valid prior to commit_edge_insertions. */
3502 reg_killed_on_edge (rtx reg
, edge e
)
3506 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
3507 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
3513 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3514 basic block BB which has more than one predecessor. If not NULL, SETCC
3515 is the first instruction of BB, which is immediately followed by JUMP_INSN
3516 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3517 Returns nonzero if a change was made.
3519 During the jump bypassing pass, we may place copies of SETCC instructions
3520 on CFG edges. The following routine must be careful to pay attention to
3521 these inserted insns when performing its transformations. */
3524 bypass_block (basic_block bb
, rtx setcc
, rtx jump
)
3529 int may_be_loop_header
;
3533 insn
= (setcc
!= NULL
) ? setcc
: jump
;
3535 /* Determine set of register uses in INSN. */
3537 note_uses (&PATTERN (insn
), find_used_regs
, NULL
);
3538 note
= find_reg_equal_equiv_note (insn
);
3540 find_used_regs (&XEXP (note
, 0), NULL
);
3542 may_be_loop_header
= false;
3543 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3544 if (e
->flags
& EDGE_DFS_BACK
)
3546 may_be_loop_header
= true;
3551 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
3555 if (e
->flags
& EDGE_COMPLEX
)
3561 /* We can't redirect edges from new basic blocks. */
3562 if (e
->src
->index
>= bypass_last_basic_block
)
3568 /* The irreducible loops created by redirecting of edges entering the
3569 loop from outside would decrease effectiveness of some of the following
3570 optimizations, so prevent this. */
3571 if (may_be_loop_header
3572 && !(e
->flags
& EDGE_DFS_BACK
))
3578 for (i
= 0; i
< reg_use_count
; i
++)
3580 struct reg_use
*reg_used
= ®_use_table
[i
];
3581 unsigned int regno
= REGNO (reg_used
->reg_rtx
);
3582 basic_block dest
, old_dest
;
3586 if (regno
>= max_gcse_regno
)
3589 set
= find_bypass_set (regno
, e
->src
->index
);
3594 /* Check the data flow is valid after edge insertions. */
3595 if (e
->insns
.r
&& reg_killed_on_edge (reg_used
->reg_rtx
, e
))
3598 src
= SET_SRC (pc_set (jump
));
3601 src
= simplify_replace_rtx (src
,
3602 SET_DEST (PATTERN (setcc
)),
3603 SET_SRC (PATTERN (setcc
)));
3605 new = simplify_replace_rtx (src
, reg_used
->reg_rtx
,
3606 SET_SRC (set
->expr
));
3608 /* Jump bypassing may have already placed instructions on
3609 edges of the CFG. We can't bypass an outgoing edge that
3610 has instructions associated with it, as these insns won't
3611 get executed if the incoming edge is redirected. */
3615 edest
= FALLTHRU_EDGE (bb
);
3616 dest
= edest
->insns
.r
? NULL
: edest
->dest
;
3618 else if (GET_CODE (new) == LABEL_REF
)
3620 dest
= BLOCK_FOR_INSN (XEXP (new, 0));
3621 /* Don't bypass edges containing instructions. */
3622 edest
= find_edge (bb
, dest
);
3623 if (edest
&& edest
->insns
.r
)
3629 /* Avoid unification of the edge with other edges from original
3630 branch. We would end up emitting the instruction on "both"
3633 if (dest
&& setcc
&& !CC0_P (SET_DEST (PATTERN (setcc
)))
3634 && find_edge (e
->src
, dest
))
3640 && dest
!= EXIT_BLOCK_PTR
)
3642 redirect_edge_and_branch_force (e
, dest
);
3644 /* Copy the register setter to the redirected edge.
3645 Don't copy CC0 setters, as CC0 is dead after jump. */
3648 rtx pat
= PATTERN (setcc
);
3649 if (!CC0_P (SET_DEST (pat
)))
3650 insert_insn_on_edge (copy_insn (pat
), e
);
3653 if (gcse_file
!= NULL
)
3655 fprintf (gcse_file
, "JUMP-BYPASS: Proved reg %d "
3656 "in jump_insn %d equals constant ",
3657 regno
, INSN_UID (jump
));
3658 print_rtl (gcse_file
, SET_SRC (set
->expr
));
3659 fprintf (gcse_file
, "\nBypass edge from %d->%d to %d\n",
3660 e
->src
->index
, old_dest
->index
, dest
->index
);
3673 /* Find basic blocks with more than one predecessor that only contain a
3674 single conditional jump. If the result of the comparison is known at
3675 compile-time from any incoming edge, redirect that edge to the
3676 appropriate target. Returns nonzero if a change was made.
3678 This function is now mis-named, because we also handle indirect jumps. */
3681 bypass_conditional_jumps (void)
3689 /* Note we start at block 1. */
3690 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
3693 bypass_last_basic_block
= last_basic_block
;
3694 mark_dfs_back_edges ();
3697 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
3698 EXIT_BLOCK_PTR
, next_bb
)
3700 /* Check for more than one predecessor. */
3701 if (!single_pred_p (bb
))
3704 FOR_BB_INSNS (bb
, insn
)
3705 if (NONJUMP_INSN_P (insn
))
3709 if (GET_CODE (PATTERN (insn
)) != SET
)
3712 dest
= SET_DEST (PATTERN (insn
));
3713 if (REG_P (dest
) || CC0_P (dest
))
3718 else if (JUMP_P (insn
))
3720 if ((any_condjump_p (insn
) || computed_jump_p (insn
))
3721 && onlyjump_p (insn
))
3722 changed
|= bypass_block (bb
, setcc
, insn
);
3725 else if (INSN_P (insn
))
3730 /* If we bypassed any register setting insns, we inserted a
3731 copy on the redirected edge. These need to be committed. */
3733 commit_edge_insertions();
3738 /* Compute PRE+LCM working variables. */
3740 /* Local properties of expressions. */
3741 /* Nonzero for expressions that are transparent in the block. */
3742 static sbitmap
*transp
;
3744 /* Nonzero for expressions that are transparent at the end of the block.
3745 This is only zero for expressions killed by abnormal critical edge
3746 created by a calls. */
3747 static sbitmap
*transpout
;
3749 /* Nonzero for expressions that are computed (available) in the block. */
3750 static sbitmap
*comp
;
3752 /* Nonzero for expressions that are locally anticipatable in the block. */
3753 static sbitmap
*antloc
;
3755 /* Nonzero for expressions where this block is an optimal computation
3757 static sbitmap
*pre_optimal
;
3759 /* Nonzero for expressions which are redundant in a particular block. */
3760 static sbitmap
*pre_redundant
;
3762 /* Nonzero for expressions which should be inserted on a specific edge. */
3763 static sbitmap
*pre_insert_map
;
3765 /* Nonzero for expressions which should be deleted in a specific block. */
3766 static sbitmap
*pre_delete_map
;
3768 /* Contains the edge_list returned by pre_edge_lcm. */
3769 static struct edge_list
*edge_list
;
3771 /* Redundant insns. */
3772 static sbitmap pre_redundant_insns
;
3774 /* Allocate vars used for PRE analysis. */
3777 alloc_pre_mem (int n_blocks
, int n_exprs
)
3779 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3780 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3781 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3784 pre_redundant
= NULL
;
3785 pre_insert_map
= NULL
;
3786 pre_delete_map
= NULL
;
3787 ae_kill
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
3789 /* pre_insert and pre_delete are allocated later. */
3792 /* Free vars used for PRE analysis. */
3797 sbitmap_vector_free (transp
);
3798 sbitmap_vector_free (comp
);
3800 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3803 sbitmap_vector_free (pre_optimal
);
3805 sbitmap_vector_free (pre_redundant
);
3807 sbitmap_vector_free (pre_insert_map
);
3809 sbitmap_vector_free (pre_delete_map
);
3811 transp
= comp
= NULL
;
3812 pre_optimal
= pre_redundant
= pre_insert_map
= pre_delete_map
= NULL
;
3815 /* Top level routine to do the dataflow analysis needed by PRE. */
3818 compute_pre_data (void)
3820 sbitmap trapping_expr
;
3824 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
3825 sbitmap_vector_zero (ae_kill
, last_basic_block
);
3827 /* Collect expressions which might trap. */
3828 trapping_expr
= sbitmap_alloc (expr_hash_table
.n_elems
);
3829 sbitmap_zero (trapping_expr
);
3830 for (ui
= 0; ui
< expr_hash_table
.size
; ui
++)
3833 for (e
= expr_hash_table
.table
[ui
]; e
!= NULL
; e
= e
->next_same_hash
)
3834 if (may_trap_p (e
->expr
))
3835 SET_BIT (trapping_expr
, e
->bitmap_index
);
3838 /* Compute ae_kill for each basic block using:
3848 /* If the current block is the destination of an abnormal edge, we
3849 kill all trapping expressions because we won't be able to properly
3850 place the instruction on the edge. So make them neither
3851 anticipatable nor transparent. This is fairly conservative. */
3852 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3853 if (e
->flags
& EDGE_ABNORMAL
)
3855 sbitmap_difference (antloc
[bb
->index
], antloc
[bb
->index
], trapping_expr
);
3856 sbitmap_difference (transp
[bb
->index
], transp
[bb
->index
], trapping_expr
);
3860 sbitmap_a_or_b (ae_kill
[bb
->index
], transp
[bb
->index
], comp
[bb
->index
]);
3861 sbitmap_not (ae_kill
[bb
->index
], ae_kill
[bb
->index
]);
3864 edge_list
= pre_edge_lcm (gcse_file
, expr_hash_table
.n_elems
, transp
, comp
, antloc
,
3865 ae_kill
, &pre_insert_map
, &pre_delete_map
);
3866 sbitmap_vector_free (antloc
);
3868 sbitmap_vector_free (ae_kill
);
3870 sbitmap_free (trapping_expr
);
3875 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3878 VISITED is a pointer to a working buffer for tracking which BB's have
3879 been visited. It is NULL for the top-level call.
3881 We treat reaching expressions that go through blocks containing the same
3882 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3883 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3884 2 as not reaching. The intent is to improve the probability of finding
3885 only one reaching expression and to reduce register lifetimes by picking
3886 the closest such expression. */
3889 pre_expr_reaches_here_p_work (basic_block occr_bb
, struct expr
*expr
, basic_block bb
, char *visited
)
3894 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
3896 basic_block pred_bb
= pred
->src
;
3898 if (pred
->src
== ENTRY_BLOCK_PTR
3899 /* Has predecessor has already been visited? */
3900 || visited
[pred_bb
->index
])
3901 ;/* Nothing to do. */
3903 /* Does this predecessor generate this expression? */
3904 else if (TEST_BIT (comp
[pred_bb
->index
], expr
->bitmap_index
))
3906 /* Is this the occurrence we're looking for?
3907 Note that there's only one generating occurrence per block
3908 so we just need to check the block number. */
3909 if (occr_bb
== pred_bb
)
3912 visited
[pred_bb
->index
] = 1;
3914 /* Ignore this predecessor if it kills the expression. */
3915 else if (! TEST_BIT (transp
[pred_bb
->index
], expr
->bitmap_index
))
3916 visited
[pred_bb
->index
] = 1;
3918 /* Neither gen nor kill. */
3921 visited
[pred_bb
->index
] = 1;
3922 if (pre_expr_reaches_here_p_work (occr_bb
, expr
, pred_bb
, visited
))
3927 /* All paths have been checked. */
3931 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3932 memory allocated for that function is returned. */
3935 pre_expr_reaches_here_p (basic_block occr_bb
, struct expr
*expr
, basic_block bb
)
3938 char *visited
= xcalloc (last_basic_block
, 1);
3940 rval
= pre_expr_reaches_here_p_work (occr_bb
, expr
, bb
, visited
);
3947 /* Given an expr, generate RTL which we can insert at the end of a BB,
3948 or on an edge. Set the block number of any insns generated to
3952 process_insert_insn (struct expr
*expr
)
3954 rtx reg
= expr
->reaching_reg
;
3955 rtx exp
= copy_rtx (expr
->expr
);
3960 /* If the expression is something that's an operand, like a constant,
3961 just copy it to a register. */
3962 if (general_operand (exp
, GET_MODE (reg
)))
3963 emit_move_insn (reg
, exp
);
3965 /* Otherwise, make a new insn to compute this expression and make sure the
3966 insn will be recognized (this also adds any needed CLOBBERs). Copy the
3967 expression to make sure we don't have any sharing issues. */
3970 rtx insn
= emit_insn (gen_rtx_SET (VOIDmode
, reg
, exp
));
3972 if (insn_invalid_p (insn
))
3983 /* Add EXPR to the end of basic block BB.
3985 This is used by both the PRE and code hoisting.
3987 For PRE, we want to verify that the expr is either transparent
3988 or locally anticipatable in the target block. This check makes
3989 no sense for code hoisting. */
3992 insert_insn_end_bb (struct expr
*expr
, basic_block bb
, int pre
)
3994 rtx insn
= BB_END (bb
);
3996 rtx reg
= expr
->reaching_reg
;
3997 int regno
= REGNO (reg
);
4000 pat
= process_insert_insn (expr
);
4001 gcc_assert (pat
&& INSN_P (pat
));
4004 while (NEXT_INSN (pat_end
) != NULL_RTX
)
4005 pat_end
= NEXT_INSN (pat_end
);
4007 /* If the last insn is a jump, insert EXPR in front [taking care to
4008 handle cc0, etc. properly]. Similarly we need to care trapping
4009 instructions in presence of non-call exceptions. */
4012 || (NONJUMP_INSN_P (insn
)
4013 && (!single_succ_p (bb
)
4014 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
)))
4019 /* It should always be the case that we can put these instructions
4020 anywhere in the basic block with performing PRE optimizations.
4022 gcc_assert (!NONJUMP_INSN_P (insn
) || !pre
4023 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4024 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4026 /* If this is a jump table, then we can't insert stuff here. Since
4027 we know the previous real insn must be the tablejump, we insert
4028 the new instruction just before the tablejump. */
4029 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
4030 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
4031 insn
= prev_real_insn (insn
);
4034 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4035 if cc0 isn't set. */
4036 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
4038 insn
= XEXP (note
, 0);
4041 rtx maybe_cc0_setter
= prev_nonnote_insn (insn
);
4042 if (maybe_cc0_setter
4043 && INSN_P (maybe_cc0_setter
)
4044 && sets_cc0_p (PATTERN (maybe_cc0_setter
)))
4045 insn
= maybe_cc0_setter
;
4048 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4049 new_insn
= emit_insn_before_noloc (pat
, insn
);
4052 /* Likewise if the last insn is a call, as will happen in the presence
4053 of exception handling. */
4054 else if (CALL_P (insn
)
4055 && (!single_succ_p (bb
)
4056 || single_succ_edge (bb
)->flags
& EDGE_ABNORMAL
))
4058 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4059 we search backward and place the instructions before the first
4060 parameter is loaded. Do this for everyone for consistency and a
4061 presumption that we'll get better code elsewhere as well.
4063 It should always be the case that we can put these instructions
4064 anywhere in the basic block with performing PRE optimizations.
4068 || TEST_BIT (antloc
[bb
->index
], expr
->bitmap_index
)
4069 || TEST_BIT (transp
[bb
->index
], expr
->bitmap_index
));
4071 /* Since different machines initialize their parameter registers
4072 in different orders, assume nothing. Collect the set of all
4073 parameter registers. */
4074 insn
= find_first_parameter_load (insn
, BB_HEAD (bb
));
4076 /* If we found all the parameter loads, then we want to insert
4077 before the first parameter load.
4079 If we did not find all the parameter loads, then we might have
4080 stopped on the head of the block, which could be a CODE_LABEL.
4081 If we inserted before the CODE_LABEL, then we would be putting
4082 the insn in the wrong basic block. In that case, put the insn
4083 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4084 while (LABEL_P (insn
)
4085 || NOTE_INSN_BASIC_BLOCK_P (insn
))
4086 insn
= NEXT_INSN (insn
);
4088 new_insn
= emit_insn_before_noloc (pat
, insn
);
4091 new_insn
= emit_insn_after_noloc (pat
, insn
);
4097 add_label_notes (PATTERN (pat
), new_insn
);
4098 note_stores (PATTERN (pat
), record_set_info
, pat
);
4102 pat
= NEXT_INSN (pat
);
4105 gcse_create_count
++;
4109 fprintf (gcse_file
, "PRE/HOIST: end of bb %d, insn %d, ",
4110 bb
->index
, INSN_UID (new_insn
));
4111 fprintf (gcse_file
, "copying expression %d to reg %d\n",
4112 expr
->bitmap_index
, regno
);
4116 /* Insert partially redundant expressions on edges in the CFG to make
4117 the expressions fully redundant. */
4120 pre_edge_insert (struct edge_list
*edge_list
, struct expr
**index_map
)
4122 int e
, i
, j
, num_edges
, set_size
, did_insert
= 0;
4125 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4126 if it reaches any of the deleted expressions. */
4128 set_size
= pre_insert_map
[0]->size
;
4129 num_edges
= NUM_EDGES (edge_list
);
4130 inserted
= sbitmap_vector_alloc (num_edges
, expr_hash_table
.n_elems
);
4131 sbitmap_vector_zero (inserted
, num_edges
);
4133 for (e
= 0; e
< num_edges
; e
++)
4136 basic_block bb
= INDEX_EDGE_PRED_BB (edge_list
, e
);
4138 for (i
= indx
= 0; i
< set_size
; i
++, indx
+= SBITMAP_ELT_BITS
)
4140 SBITMAP_ELT_TYPE insert
= pre_insert_map
[e
]->elms
[i
];
4142 for (j
= indx
; insert
&& j
< (int) expr_hash_table
.n_elems
; j
++, insert
>>= 1)
4143 if ((insert
& 1) != 0 && index_map
[j
]->reaching_reg
!= NULL_RTX
)
4145 struct expr
*expr
= index_map
[j
];
4148 /* Now look at each deleted occurrence of this expression. */
4149 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4151 if (! occr
->deleted_p
)
4154 /* Insert this expression on this edge if it would
4155 reach the deleted occurrence in BB. */
4156 if (!TEST_BIT (inserted
[e
], j
))
4159 edge eg
= INDEX_EDGE (edge_list
, e
);
4161 /* We can't insert anything on an abnormal and
4162 critical edge, so we insert the insn at the end of
4163 the previous block. There are several alternatives
4164 detailed in Morgans book P277 (sec 10.5) for
4165 handling this situation. This one is easiest for
4168 if (eg
->flags
& EDGE_ABNORMAL
)
4169 insert_insn_end_bb (index_map
[j
], bb
, 0);
4172 insn
= process_insert_insn (index_map
[j
]);
4173 insert_insn_on_edge (insn
, eg
);
4178 fprintf (gcse_file
, "PRE/HOIST: edge (%d,%d), ",
4180 INDEX_EDGE_SUCC_BB (edge_list
, e
)->index
);
4181 fprintf (gcse_file
, "copy expression %d\n",
4182 expr
->bitmap_index
);
4185 update_ld_motion_stores (expr
);
4186 SET_BIT (inserted
[e
], j
);
4188 gcse_create_count
++;
4195 sbitmap_vector_free (inserted
);
4199 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4200 Given "old_reg <- expr" (INSN), instead of adding after it
4201 reaching_reg <- old_reg
4202 it's better to do the following:
4203 reaching_reg <- expr
4204 old_reg <- reaching_reg
4205 because this way copy propagation can discover additional PRE
4206 opportunities. But if this fails, we try the old way.
4207 When "expr" is a store, i.e.
4208 given "MEM <- old_reg", instead of adding after it
4209 reaching_reg <- old_reg
4210 it's better to add it before as follows:
4211 reaching_reg <- old_reg
4212 MEM <- reaching_reg. */
4215 pre_insert_copy_insn (struct expr
*expr
, rtx insn
)
4217 rtx reg
= expr
->reaching_reg
;
4218 int regno
= REGNO (reg
);
4219 int indx
= expr
->bitmap_index
;
4220 rtx pat
= PATTERN (insn
);
4225 /* This block matches the logic in hash_scan_insn. */
4226 switch (GET_CODE (pat
))
4233 /* Search through the parallel looking for the set whose
4234 source was the expression that we're interested in. */
4236 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
4238 rtx x
= XVECEXP (pat
, 0, i
);
4239 if (GET_CODE (x
) == SET
4240 && expr_equiv_p (SET_SRC (x
), expr
->expr
))
4252 if (REG_P (SET_DEST (set
)))
4254 old_reg
= SET_DEST (set
);
4255 /* Check if we can modify the set destination in the original insn. */
4256 if (validate_change (insn
, &SET_DEST (set
), reg
, 0))
4258 new_insn
= gen_move_insn (old_reg
, reg
);
4259 new_insn
= emit_insn_after (new_insn
, insn
);
4261 /* Keep register set table up to date. */
4262 record_one_set (regno
, insn
);
4266 new_insn
= gen_move_insn (reg
, old_reg
);
4267 new_insn
= emit_insn_after (new_insn
, insn
);
4269 /* Keep register set table up to date. */
4270 record_one_set (regno
, new_insn
);
4273 else /* This is possible only in case of a store to memory. */
4275 old_reg
= SET_SRC (set
);
4276 new_insn
= gen_move_insn (reg
, old_reg
);
4278 /* Check if we can modify the set source in the original insn. */
4279 if (validate_change (insn
, &SET_SRC (set
), reg
, 0))
4280 new_insn
= emit_insn_before (new_insn
, insn
);
4282 new_insn
= emit_insn_after (new_insn
, insn
);
4284 /* Keep register set table up to date. */
4285 record_one_set (regno
, new_insn
);
4288 gcse_create_count
++;
4292 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4293 BLOCK_NUM (insn
), INSN_UID (new_insn
), indx
,
4294 INSN_UID (insn
), regno
);
4297 /* Copy available expressions that reach the redundant expression
4298 to `reaching_reg'. */
4301 pre_insert_copies (void)
4303 unsigned int i
, added_copy
;
4308 /* For each available expression in the table, copy the result to
4309 `reaching_reg' if the expression reaches a deleted one.
4311 ??? The current algorithm is rather brute force.
4312 Need to do some profiling. */
4314 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4315 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4317 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4318 we don't want to insert a copy here because the expression may not
4319 really be redundant. So only insert an insn if the expression was
4320 deleted. This test also avoids further processing if the
4321 expression wasn't deleted anywhere. */
4322 if (expr
->reaching_reg
== NULL
)
4325 /* Set when we add a copy for that expression. */
4328 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4330 if (! occr
->deleted_p
)
4333 for (avail
= expr
->avail_occr
; avail
!= NULL
; avail
= avail
->next
)
4335 rtx insn
= avail
->insn
;
4337 /* No need to handle this one if handled already. */
4338 if (avail
->copied_p
)
4341 /* Don't handle this one if it's a redundant one. */
4342 if (TEST_BIT (pre_redundant_insns
, INSN_CUID (insn
)))
4345 /* Or if the expression doesn't reach the deleted one. */
4346 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail
->insn
),
4348 BLOCK_FOR_INSN (occr
->insn
)))
4353 /* Copy the result of avail to reaching_reg. */
4354 pre_insert_copy_insn (expr
, insn
);
4355 avail
->copied_p
= 1;
4360 update_ld_motion_stores (expr
);
4364 /* Emit move from SRC to DEST noting the equivalence with expression computed
4367 gcse_emit_move_after (rtx src
, rtx dest
, rtx insn
)
4370 rtx set
= single_set (insn
), set2
;
4374 /* This should never fail since we're creating a reg->reg copy
4375 we've verified to be valid. */
4377 new = emit_insn_after (gen_move_insn (dest
, src
), insn
);
4379 /* Note the equivalence for local CSE pass. */
4380 set2
= single_set (new);
4381 if (!set2
|| !rtx_equal_p (SET_DEST (set2
), dest
))
4383 if ((note
= find_reg_equal_equiv_note (insn
)))
4384 eqv
= XEXP (note
, 0);
4386 eqv
= SET_SRC (set
);
4388 set_unique_reg_note (new, REG_EQUAL
, copy_insn_1 (eqv
));
4393 /* Delete redundant computations.
4394 Deletion is done by changing the insn to copy the `reaching_reg' of
4395 the expression into the result of the SET. It is left to later passes
4396 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4398 Returns nonzero if a change is made. */
4409 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4410 for (expr
= expr_hash_table
.table
[i
];
4412 expr
= expr
->next_same_hash
)
4414 int indx
= expr
->bitmap_index
;
4416 /* We only need to search antic_occr since we require
4419 for (occr
= expr
->antic_occr
; occr
!= NULL
; occr
= occr
->next
)
4421 rtx insn
= occr
->insn
;
4423 basic_block bb
= BLOCK_FOR_INSN (insn
);
4425 /* We only delete insns that have a single_set. */
4426 if (TEST_BIT (pre_delete_map
[bb
->index
], indx
)
4427 && (set
= single_set (insn
)) != 0)
4429 /* Create a pseudo-reg to store the result of reaching
4430 expressions into. Get the mode for the new pseudo from
4431 the mode of the original destination pseudo. */
4432 if (expr
->reaching_reg
== NULL
)
4434 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4436 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4438 occr
->deleted_p
= 1;
4439 SET_BIT (pre_redundant_insns
, INSN_CUID (insn
));
4446 "PRE: redundant insn %d (expression %d) in ",
4447 INSN_UID (insn
), indx
);
4448 fprintf (gcse_file
, "bb %d, reaching reg is %d\n",
4449 bb
->index
, REGNO (expr
->reaching_reg
));
4458 /* Perform GCSE optimizations using PRE.
4459 This is called by one_pre_gcse_pass after all the dataflow analysis
4462 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4463 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4464 Compiler Design and Implementation.
4466 ??? A new pseudo reg is created to hold the reaching expression. The nice
4467 thing about the classical approach is that it would try to use an existing
4468 reg. If the register can't be adequately optimized [i.e. we introduce
4469 reload problems], one could add a pass here to propagate the new register
4472 ??? We don't handle single sets in PARALLELs because we're [currently] not
4473 able to copy the rest of the parallel when we insert copies to create full
4474 redundancies from partial redundancies. However, there's no reason why we
4475 can't handle PARALLELs in the cases where there are no partial
4482 int did_insert
, changed
;
4483 struct expr
**index_map
;
4486 /* Compute a mapping from expression number (`bitmap_index') to
4487 hash table entry. */
4489 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4490 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4491 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4492 index_map
[expr
->bitmap_index
] = expr
;
4494 /* Reset bitmap used to track which insns are redundant. */
4495 pre_redundant_insns
= sbitmap_alloc (max_cuid
);
4496 sbitmap_zero (pre_redundant_insns
);
4498 /* Delete the redundant insns first so that
4499 - we know what register to use for the new insns and for the other
4500 ones with reaching expressions
4501 - we know which insns are redundant when we go to create copies */
4503 changed
= pre_delete ();
4505 did_insert
= pre_edge_insert (edge_list
, index_map
);
4507 /* In other places with reaching expressions, copy the expression to the
4508 specially allocated pseudo-reg that reaches the redundant expr. */
4509 pre_insert_copies ();
4512 commit_edge_insertions ();
4517 sbitmap_free (pre_redundant_insns
);
4521 /* Top level routine to perform one PRE GCSE pass.
4523 Return nonzero if a change was made. */
4526 one_pre_gcse_pass (int pass
)
4530 gcse_subst_count
= 0;
4531 gcse_create_count
= 0;
4533 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4534 add_noreturn_fake_exit_edges ();
4536 compute_ld_motion_mems ();
4538 compute_hash_table (&expr_hash_table
);
4539 trim_ld_motion_mems ();
4541 dump_hash_table (gcse_file
, "Expression", &expr_hash_table
);
4543 if (expr_hash_table
.n_elems
> 0)
4545 alloc_pre_mem (last_basic_block
, expr_hash_table
.n_elems
);
4546 compute_pre_data ();
4547 changed
|= pre_gcse ();
4548 free_edge_list (edge_list
);
4553 remove_fake_exit_edges ();
4554 free_hash_table (&expr_hash_table
);
4558 fprintf (gcse_file
, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4559 current_function_name (), pass
, bytes_used
);
4560 fprintf (gcse_file
, "%d substs, %d insns created\n",
4561 gcse_subst_count
, gcse_create_count
);
4567 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4568 If notes are added to an insn which references a CODE_LABEL, the
4569 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4570 because the following loop optimization pass requires them. */
4572 /* ??? This is very similar to the loop.c add_label_notes function. We
4573 could probably share code here. */
4575 /* ??? If there was a jump optimization pass after gcse and before loop,
4576 then we would not need to do this here, because jump would add the
4577 necessary REG_LABEL notes. */
4580 add_label_notes (rtx x
, rtx insn
)
4582 enum rtx_code code
= GET_CODE (x
);
4586 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
4588 /* This code used to ignore labels that referred to dispatch tables to
4589 avoid flow generating (slightly) worse code.
4591 We no longer ignore such label references (see LABEL_REF handling in
4592 mark_jump_label for additional information). */
4594 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, XEXP (x
, 0),
4596 if (LABEL_P (XEXP (x
, 0)))
4597 LABEL_NUSES (XEXP (x
, 0))++;
4601 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
4604 add_label_notes (XEXP (x
, i
), insn
);
4605 else if (fmt
[i
] == 'E')
4606 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
4607 add_label_notes (XVECEXP (x
, i
, j
), insn
);
4611 /* Compute transparent outgoing information for each block.
4613 An expression is transparent to an edge unless it is killed by
4614 the edge itself. This can only happen with abnormal control flow,
4615 when the edge is traversed through a call. This happens with
4616 non-local labels and exceptions.
4618 This would not be necessary if we split the edge. While this is
4619 normally impossible for abnormal critical edges, with some effort
4620 it should be possible with exception handling, since we still have
4621 control over which handler should be invoked. But due to increased
4622 EH table sizes, this may not be worthwhile. */
4625 compute_transpout (void)
4631 sbitmap_vector_ones (transpout
, last_basic_block
);
4635 /* Note that flow inserted a nop a the end of basic blocks that
4636 end in call instructions for reasons other than abnormal
4638 if (! CALL_P (BB_END (bb
)))
4641 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4642 for (expr
= expr_hash_table
.table
[i
]; expr
; expr
= expr
->next_same_hash
)
4643 if (MEM_P (expr
->expr
))
4645 if (GET_CODE (XEXP (expr
->expr
, 0)) == SYMBOL_REF
4646 && CONSTANT_POOL_ADDRESS_P (XEXP (expr
->expr
, 0)))
4649 /* ??? Optimally, we would use interprocedural alias
4650 analysis to determine if this mem is actually killed
4652 RESET_BIT (transpout
[bb
->index
], expr
->bitmap_index
);
4657 /* Code Hoisting variables and subroutines. */
4659 /* Very busy expressions. */
4660 static sbitmap
*hoist_vbein
;
4661 static sbitmap
*hoist_vbeout
;
4663 /* Hoistable expressions. */
4664 static sbitmap
*hoist_exprs
;
4666 /* ??? We could compute post dominators and run this algorithm in
4667 reverse to perform tail merging, doing so would probably be
4668 more effective than the tail merging code in jump.c.
4670 It's unclear if tail merging could be run in parallel with
4671 code hoisting. It would be nice. */
4673 /* Allocate vars used for code hoisting analysis. */
4676 alloc_code_hoist_mem (int n_blocks
, int n_exprs
)
4678 antloc
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4679 transp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4680 comp
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4682 hoist_vbein
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4683 hoist_vbeout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4684 hoist_exprs
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4685 transpout
= sbitmap_vector_alloc (n_blocks
, n_exprs
);
4688 /* Free vars used for code hoisting analysis. */
4691 free_code_hoist_mem (void)
4693 sbitmap_vector_free (antloc
);
4694 sbitmap_vector_free (transp
);
4695 sbitmap_vector_free (comp
);
4697 sbitmap_vector_free (hoist_vbein
);
4698 sbitmap_vector_free (hoist_vbeout
);
4699 sbitmap_vector_free (hoist_exprs
);
4700 sbitmap_vector_free (transpout
);
4702 free_dominance_info (CDI_DOMINATORS
);
4705 /* Compute the very busy expressions at entry/exit from each block.
4707 An expression is very busy if all paths from a given point
4708 compute the expression. */
4711 compute_code_hoist_vbeinout (void)
4713 int changed
, passes
;
4716 sbitmap_vector_zero (hoist_vbeout
, last_basic_block
);
4717 sbitmap_vector_zero (hoist_vbein
, last_basic_block
);
4726 /* We scan the blocks in the reverse order to speed up
4728 FOR_EACH_BB_REVERSE (bb
)
4730 changed
|= sbitmap_a_or_b_and_c_cg (hoist_vbein
[bb
->index
], antloc
[bb
->index
],
4731 hoist_vbeout
[bb
->index
], transp
[bb
->index
]);
4732 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
4733 sbitmap_intersection_of_succs (hoist_vbeout
[bb
->index
], hoist_vbein
, bb
->index
);
4740 fprintf (gcse_file
, "hoisting vbeinout computation: %d passes\n", passes
);
4743 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4746 compute_code_hoist_data (void)
4748 compute_local_properties (transp
, comp
, antloc
, &expr_hash_table
);
4749 compute_transpout ();
4750 compute_code_hoist_vbeinout ();
4751 calculate_dominance_info (CDI_DOMINATORS
);
4753 fprintf (gcse_file
, "\n");
4756 /* Determine if the expression identified by EXPR_INDEX would
4757 reach BB unimpared if it was placed at the end of EXPR_BB.
4759 It's unclear exactly what Muchnick meant by "unimpared". It seems
4760 to me that the expression must either be computed or transparent in
4761 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4762 would allow the expression to be hoisted out of loops, even if
4763 the expression wasn't a loop invariant.
4765 Contrast this to reachability for PRE where an expression is
4766 considered reachable if *any* path reaches instead of *all*
4770 hoist_expr_reaches_here_p (basic_block expr_bb
, int expr_index
, basic_block bb
, char *visited
)
4774 int visited_allocated_locally
= 0;
4777 if (visited
== NULL
)
4779 visited_allocated_locally
= 1;
4780 visited
= xcalloc (last_basic_block
, 1);
4783 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
4785 basic_block pred_bb
= pred
->src
;
4787 if (pred
->src
== ENTRY_BLOCK_PTR
)
4789 else if (pred_bb
== expr_bb
)
4791 else if (visited
[pred_bb
->index
])
4794 /* Does this predecessor generate this expression? */
4795 else if (TEST_BIT (comp
[pred_bb
->index
], expr_index
))
4797 else if (! TEST_BIT (transp
[pred_bb
->index
], expr_index
))
4803 visited
[pred_bb
->index
] = 1;
4804 if (! hoist_expr_reaches_here_p (expr_bb
, expr_index
,
4809 if (visited_allocated_locally
)
4812 return (pred
== NULL
);
4815 /* Actually perform code hoisting. */
4820 basic_block bb
, dominated
;
4822 unsigned int domby_len
;
4824 struct expr
**index_map
;
4827 sbitmap_vector_zero (hoist_exprs
, last_basic_block
);
4829 /* Compute a mapping from expression number (`bitmap_index') to
4830 hash table entry. */
4832 index_map
= xcalloc (expr_hash_table
.n_elems
, sizeof (struct expr
*));
4833 for (i
= 0; i
< expr_hash_table
.size
; i
++)
4834 for (expr
= expr_hash_table
.table
[i
]; expr
!= NULL
; expr
= expr
->next_same_hash
)
4835 index_map
[expr
->bitmap_index
] = expr
;
4837 /* Walk over each basic block looking for potentially hoistable
4838 expressions, nothing gets hoisted from the entry block. */
4842 int insn_inserted_p
;
4844 domby_len
= get_dominated_by (CDI_DOMINATORS
, bb
, &domby
);
4845 /* Examine each expression that is very busy at the exit of this
4846 block. These are the potentially hoistable expressions. */
4847 for (i
= 0; i
< hoist_vbeout
[bb
->index
]->n_bits
; i
++)
4851 if (TEST_BIT (hoist_vbeout
[bb
->index
], i
)
4852 && TEST_BIT (transpout
[bb
->index
], i
))
4854 /* We've found a potentially hoistable expression, now
4855 we look at every block BB dominates to see if it
4856 computes the expression. */
4857 for (j
= 0; j
< domby_len
; j
++)
4859 dominated
= domby
[j
];
4860 /* Ignore self dominance. */
4861 if (bb
== dominated
)
4863 /* We've found a dominated block, now see if it computes
4864 the busy expression and whether or not moving that
4865 expression to the "beginning" of that block is safe. */
4866 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4869 /* Note if the expression would reach the dominated block
4870 unimpared if it was placed at the end of BB.
4872 Keep track of how many times this expression is hoistable
4873 from a dominated block into BB. */
4874 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4878 /* If we found more than one hoistable occurrence of this
4879 expression, then note it in the bitmap of expressions to
4880 hoist. It makes no sense to hoist things which are computed
4881 in only one BB, and doing so tends to pessimize register
4882 allocation. One could increase this value to try harder
4883 to avoid any possible code expansion due to register
4884 allocation issues; however experiments have shown that
4885 the vast majority of hoistable expressions are only movable
4886 from two successors, so raising this threshold is likely
4887 to nullify any benefit we get from code hoisting. */
4890 SET_BIT (hoist_exprs
[bb
->index
], i
);
4895 /* If we found nothing to hoist, then quit now. */
4902 /* Loop over all the hoistable expressions. */
4903 for (i
= 0; i
< hoist_exprs
[bb
->index
]->n_bits
; i
++)
4905 /* We want to insert the expression into BB only once, so
4906 note when we've inserted it. */
4907 insn_inserted_p
= 0;
4909 /* These tests should be the same as the tests above. */
4910 if (TEST_BIT (hoist_exprs
[bb
->index
], i
))
4912 /* We've found a potentially hoistable expression, now
4913 we look at every block BB dominates to see if it
4914 computes the expression. */
4915 for (j
= 0; j
< domby_len
; j
++)
4917 dominated
= domby
[j
];
4918 /* Ignore self dominance. */
4919 if (bb
== dominated
)
4922 /* We've found a dominated block, now see if it computes
4923 the busy expression and whether or not moving that
4924 expression to the "beginning" of that block is safe. */
4925 if (!TEST_BIT (antloc
[dominated
->index
], i
))
4928 /* The expression is computed in the dominated block and
4929 it would be safe to compute it at the start of the
4930 dominated block. Now we have to determine if the
4931 expression would reach the dominated block if it was
4932 placed at the end of BB. */
4933 if (hoist_expr_reaches_here_p (bb
, i
, dominated
, NULL
))
4935 struct expr
*expr
= index_map
[i
];
4936 struct occr
*occr
= expr
->antic_occr
;
4940 /* Find the right occurrence of this expression. */
4941 while (BLOCK_FOR_INSN (occr
->insn
) != dominated
&& occr
)
4946 set
= single_set (insn
);
4949 /* Create a pseudo-reg to store the result of reaching
4950 expressions into. Get the mode for the new pseudo
4951 from the mode of the original destination pseudo. */
4952 if (expr
->reaching_reg
== NULL
)
4954 = gen_reg_rtx (GET_MODE (SET_DEST (set
)));
4956 gcse_emit_move_after (expr
->reaching_reg
, SET_DEST (set
), insn
);
4958 occr
->deleted_p
= 1;
4959 if (!insn_inserted_p
)
4961 insert_insn_end_bb (index_map
[i
], bb
, 0);
4962 insn_inserted_p
= 1;
4974 /* Top level routine to perform one code hoisting (aka unification) pass
4976 Return nonzero if a change was made. */
4979 one_code_hoisting_pass (void)
4983 alloc_hash_table (max_cuid
, &expr_hash_table
, 0);
4984 compute_hash_table (&expr_hash_table
);
4986 dump_hash_table (gcse_file
, "Code Hosting Expressions", &expr_hash_table
);
4988 if (expr_hash_table
.n_elems
> 0)
4990 alloc_code_hoist_mem (last_basic_block
, expr_hash_table
.n_elems
);
4991 compute_code_hoist_data ();
4993 free_code_hoist_mem ();
4996 free_hash_table (&expr_hash_table
);
5001 /* Here we provide the things required to do store motion towards
5002 the exit. In order for this to be effective, gcse also needed to
5003 be taught how to move a load when it is kill only by a store to itself.
5008 void foo(float scale)
5010 for (i=0; i<10; i++)
5014 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5015 the load out since its live around the loop, and stored at the bottom
5018 The 'Load Motion' referred to and implemented in this file is
5019 an enhancement to gcse which when using edge based lcm, recognizes
5020 this situation and allows gcse to move the load out of the loop.
5022 Once gcse has hoisted the load, store motion can then push this
5023 load towards the exit, and we end up with no loads or stores of 'i'
5027 pre_ldst_expr_hash (const void *p
)
5029 int do_not_record_p
= 0;
5030 const struct ls_expr
*x
= p
;
5031 return hash_rtx (x
->pattern
, GET_MODE (x
->pattern
), &do_not_record_p
, NULL
, false);
5035 pre_ldst_expr_eq (const void *p1
, const void *p2
)
5037 const struct ls_expr
*ptr1
= p1
, *ptr2
= p2
;
5038 return expr_equiv_p (ptr1
->pattern
, ptr2
->pattern
);
5041 /* This will search the ldst list for a matching expression. If it
5042 doesn't find one, we create one and initialize it. */
5044 static struct ls_expr
*
5047 int do_not_record_p
= 0;
5048 struct ls_expr
* ptr
;
5053 hash
= hash_rtx (x
, GET_MODE (x
), &do_not_record_p
,
5054 NULL
, /*have_reg_qty=*/false);
5057 slot
= htab_find_slot_with_hash (pre_ldst_table
, &e
, hash
, INSERT
);
5059 return (struct ls_expr
*)*slot
;
5061 ptr
= xmalloc (sizeof (struct ls_expr
));
5063 ptr
->next
= pre_ldst_mems
;
5066 ptr
->pattern_regs
= NULL_RTX
;
5067 ptr
->loads
= NULL_RTX
;
5068 ptr
->stores
= NULL_RTX
;
5069 ptr
->reaching_reg
= NULL_RTX
;
5072 ptr
->hash_index
= hash
;
5073 pre_ldst_mems
= ptr
;
5079 /* Free up an individual ldst entry. */
5082 free_ldst_entry (struct ls_expr
* ptr
)
5084 free_INSN_LIST_list (& ptr
->loads
);
5085 free_INSN_LIST_list (& ptr
->stores
);
5090 /* Free up all memory associated with the ldst list. */
5093 free_ldst_mems (void)
5096 htab_delete (pre_ldst_table
);
5097 pre_ldst_table
= NULL
;
5099 while (pre_ldst_mems
)
5101 struct ls_expr
* tmp
= pre_ldst_mems
;
5103 pre_ldst_mems
= pre_ldst_mems
->next
;
5105 free_ldst_entry (tmp
);
5108 pre_ldst_mems
= NULL
;
5111 /* Dump debugging info about the ldst list. */
5114 print_ldst_list (FILE * file
)
5116 struct ls_expr
* ptr
;
5118 fprintf (file
, "LDST list: \n");
5120 for (ptr
= first_ls_expr(); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5122 fprintf (file
, " Pattern (%3d): ", ptr
->index
);
5124 print_rtl (file
, ptr
->pattern
);
5126 fprintf (file
, "\n Loads : ");
5129 print_rtl (file
, ptr
->loads
);
5131 fprintf (file
, "(nil)");
5133 fprintf (file
, "\n Stores : ");
5136 print_rtl (file
, ptr
->stores
);
5138 fprintf (file
, "(nil)");
5140 fprintf (file
, "\n\n");
5143 fprintf (file
, "\n");
5146 /* Returns 1 if X is in the list of ldst only expressions. */
5148 static struct ls_expr
*
5149 find_rtx_in_ldst (rtx x
)
5153 if (!pre_ldst_table
)
5156 slot
= htab_find_slot (pre_ldst_table
, &e
, NO_INSERT
);
5157 if (!slot
|| ((struct ls_expr
*)*slot
)->invalid
)
5162 /* Assign each element of the list of mems a monotonically increasing value. */
5165 enumerate_ldsts (void)
5167 struct ls_expr
* ptr
;
5170 for (ptr
= pre_ldst_mems
; ptr
!= NULL
; ptr
= ptr
->next
)
5176 /* Return first item in the list. */
5178 static inline struct ls_expr
*
5179 first_ls_expr (void)
5181 return pre_ldst_mems
;
5184 /* Return the next item in the list after the specified one. */
5186 static inline struct ls_expr
*
5187 next_ls_expr (struct ls_expr
* ptr
)
5192 /* Load Motion for loads which only kill themselves. */
5194 /* Return true if x is a simple MEM operation, with no registers or
5195 side effects. These are the types of loads we consider for the
5196 ld_motion list, otherwise we let the usual aliasing take care of it. */
5204 if (MEM_VOLATILE_P (x
))
5207 if (GET_MODE (x
) == BLKmode
)
5210 /* If we are handling exceptions, we must be careful with memory references
5211 that may trap. If we are not, the behavior is undefined, so we may just
5213 if (flag_non_call_exceptions
&& may_trap_p (x
))
5216 if (side_effects_p (x
))
5219 /* Do not consider function arguments passed on stack. */
5220 if (reg_mentioned_p (stack_pointer_rtx
, x
))
5223 if (flag_float_store
&& FLOAT_MODE_P (GET_MODE (x
)))
5229 /* Make sure there isn't a buried reference in this pattern anywhere.
5230 If there is, invalidate the entry for it since we're not capable
5231 of fixing it up just yet.. We have to be sure we know about ALL
5232 loads since the aliasing code will allow all entries in the
5233 ld_motion list to not-alias itself. If we miss a load, we will get
5234 the wrong value since gcse might common it and we won't know to
5238 invalidate_any_buried_refs (rtx x
)
5242 struct ls_expr
* ptr
;
5244 /* Invalidate it in the list. */
5245 if (MEM_P (x
) && simple_mem (x
))
5247 ptr
= ldst_entry (x
);
5251 /* Recursively process the insn. */
5252 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5254 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
5257 invalidate_any_buried_refs (XEXP (x
, i
));
5258 else if (fmt
[i
] == 'E')
5259 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5260 invalidate_any_buried_refs (XVECEXP (x
, i
, j
));
5264 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5265 being defined as MEM loads and stores to symbols, with no side effects
5266 and no registers in the expression. For a MEM destination, we also
5267 check that the insn is still valid if we replace the destination with a
5268 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5269 which don't match this criteria, they are invalidated and trimmed out
5273 compute_ld_motion_mems (void)
5275 struct ls_expr
* ptr
;
5279 pre_ldst_mems
= NULL
;
5280 pre_ldst_table
= htab_create (13, pre_ldst_expr_hash
,
5281 pre_ldst_expr_eq
, NULL
);
5285 FOR_BB_INSNS (bb
, insn
)
5289 if (GET_CODE (PATTERN (insn
)) == SET
)
5291 rtx src
= SET_SRC (PATTERN (insn
));
5292 rtx dest
= SET_DEST (PATTERN (insn
));
5294 /* Check for a simple LOAD... */
5295 if (MEM_P (src
) && simple_mem (src
))
5297 ptr
= ldst_entry (src
);
5299 ptr
->loads
= alloc_INSN_LIST (insn
, ptr
->loads
);
5305 /* Make sure there isn't a buried load somewhere. */
5306 invalidate_any_buried_refs (src
);
5309 /* Check for stores. Don't worry about aliased ones, they
5310 will block any movement we might do later. We only care
5311 about this exact pattern since those are the only
5312 circumstance that we will ignore the aliasing info. */
5313 if (MEM_P (dest
) && simple_mem (dest
))
5315 ptr
= ldst_entry (dest
);
5318 && GET_CODE (src
) != ASM_OPERANDS
5319 /* Check for REG manually since want_to_gcse_p
5320 returns 0 for all REGs. */
5321 && can_assign_to_reg_p (src
))
5322 ptr
->stores
= alloc_INSN_LIST (insn
, ptr
->stores
);
5328 invalidate_any_buried_refs (PATTERN (insn
));
5334 /* Remove any references that have been either invalidated or are not in the
5335 expression list for pre gcse. */
5338 trim_ld_motion_mems (void)
5340 struct ls_expr
* * last
= & pre_ldst_mems
;
5341 struct ls_expr
* ptr
= pre_ldst_mems
;
5347 /* Delete if entry has been made invalid. */
5350 /* Delete if we cannot find this mem in the expression list. */
5351 unsigned int hash
= ptr
->hash_index
% expr_hash_table
.size
;
5353 for (expr
= expr_hash_table
.table
[hash
];
5355 expr
= expr
->next_same_hash
)
5356 if (expr_equiv_p (expr
->expr
, ptr
->pattern
))
5360 expr
= (struct expr
*) 0;
5364 /* Set the expression field if we are keeping it. */
5372 htab_remove_elt_with_hash (pre_ldst_table
, ptr
, ptr
->hash_index
);
5373 free_ldst_entry (ptr
);
5378 /* Show the world what we've found. */
5379 if (gcse_file
&& pre_ldst_mems
!= NULL
)
5380 print_ldst_list (gcse_file
);
5383 /* This routine will take an expression which we are replacing with
5384 a reaching register, and update any stores that are needed if
5385 that expression is in the ld_motion list. Stores are updated by
5386 copying their SRC to the reaching register, and then storing
5387 the reaching register into the store location. These keeps the
5388 correct value in the reaching register for the loads. */
5391 update_ld_motion_stores (struct expr
* expr
)
5393 struct ls_expr
* mem_ptr
;
5395 if ((mem_ptr
= find_rtx_in_ldst (expr
->expr
)))
5397 /* We can try to find just the REACHED stores, but is shouldn't
5398 matter to set the reaching reg everywhere... some might be
5399 dead and should be eliminated later. */
5401 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5402 where reg is the reaching reg used in the load. We checked in
5403 compute_ld_motion_mems that we can replace (set mem expr) with
5404 (set reg expr) in that insn. */
5405 rtx list
= mem_ptr
->stores
;
5407 for ( ; list
!= NULL_RTX
; list
= XEXP (list
, 1))
5409 rtx insn
= XEXP (list
, 0);
5410 rtx pat
= PATTERN (insn
);
5411 rtx src
= SET_SRC (pat
);
5412 rtx reg
= expr
->reaching_reg
;
5415 /* If we've already copied it, continue. */
5416 if (expr
->reaching_reg
== src
)
5421 fprintf (gcse_file
, "PRE: store updated with reaching reg ");
5422 print_rtl (gcse_file
, expr
->reaching_reg
);
5423 fprintf (gcse_file
, ":\n ");
5424 print_inline_rtx (gcse_file
, insn
, 8);
5425 fprintf (gcse_file
, "\n");
5428 copy
= gen_move_insn ( reg
, copy_rtx (SET_SRC (pat
)));
5429 new = emit_insn_before (copy
, insn
);
5430 record_one_set (REGNO (reg
), new);
5431 SET_SRC (pat
) = reg
;
5433 /* un-recognize this pattern since it's probably different now. */
5434 INSN_CODE (insn
) = -1;
5435 gcse_create_count
++;
5440 /* Store motion code. */
5442 #define ANTIC_STORE_LIST(x) ((x)->loads)
5443 #define AVAIL_STORE_LIST(x) ((x)->stores)
5444 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5446 /* This is used to communicate the target bitvector we want to use in the
5447 reg_set_info routine when called via the note_stores mechanism. */
5448 static int * regvec
;
5450 /* And current insn, for the same routine. */
5451 static rtx compute_store_table_current_insn
;
5453 /* Used in computing the reverse edge graph bit vectors. */
5454 static sbitmap
* st_antloc
;
5456 /* Global holding the number of store expressions we are dealing with. */
5457 static int num_stores
;
5459 /* Checks to set if we need to mark a register set. Called from
5463 reg_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5466 sbitmap bb_reg
= data
;
5468 if (GET_CODE (dest
) == SUBREG
)
5469 dest
= SUBREG_REG (dest
);
5473 regvec
[REGNO (dest
)] = INSN_UID (compute_store_table_current_insn
);
5475 SET_BIT (bb_reg
, REGNO (dest
));
5479 /* Clear any mark that says that this insn sets dest. Called from
5483 reg_clear_last_set (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
5486 int *dead_vec
= data
;
5488 if (GET_CODE (dest
) == SUBREG
)
5489 dest
= SUBREG_REG (dest
);
5492 dead_vec
[REGNO (dest
)] == INSN_UID (compute_store_table_current_insn
))
5493 dead_vec
[REGNO (dest
)] = 0;
5496 /* Return zero if some of the registers in list X are killed
5497 due to set of registers in bitmap REGS_SET. */
5500 store_ops_ok (rtx x
, int *regs_set
)
5504 for (; x
; x
= XEXP (x
, 1))
5507 if (regs_set
[REGNO(reg
)])
5514 /* Returns a list of registers mentioned in X. */
5516 extract_mentioned_regs (rtx x
)
5518 return extract_mentioned_regs_helper (x
, NULL_RTX
);
5521 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5524 extract_mentioned_regs_helper (rtx x
, rtx accum
)
5530 /* Repeat is used to turn tail-recursion into iteration. */
5536 code
= GET_CODE (x
);
5540 return alloc_EXPR_LIST (0, x
, accum
);
5550 /* We do not run this function with arguments having side effects. */
5569 i
= GET_RTX_LENGTH (code
) - 1;
5570 fmt
= GET_RTX_FORMAT (code
);
5576 rtx tem
= XEXP (x
, i
);
5578 /* If we are about to do the last recursive call
5579 needed at this level, change it into iteration. */
5586 accum
= extract_mentioned_regs_helper (tem
, accum
);
5588 else if (fmt
[i
] == 'E')
5592 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5593 accum
= extract_mentioned_regs_helper (XVECEXP (x
, i
, j
), accum
);
5600 /* Determine whether INSN is MEM store pattern that we will consider moving.
5601 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5602 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5603 including) the insn in this basic block. We must be passing through BB from
5604 head to end, as we are using this fact to speed things up.
5606 The results are stored this way:
5608 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5609 -- if the processed expression is not anticipatable, NULL_RTX is added
5610 there instead, so that we can use it as indicator that no further
5611 expression of this type may be anticipatable
5612 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5613 consequently, all of them but this head are dead and may be deleted.
5614 -- if the expression is not available, the insn due to that it fails to be
5615 available is stored in reaching_reg.
5617 The things are complicated a bit by fact that there already may be stores
5618 to the same MEM from other blocks; also caller must take care of the
5619 necessary cleanup of the temporary markers after end of the basic block.
5623 find_moveable_store (rtx insn
, int *regs_set_before
, int *regs_set_after
)
5625 struct ls_expr
* ptr
;
5627 int check_anticipatable
, check_available
;
5628 basic_block bb
= BLOCK_FOR_INSN (insn
);
5630 set
= single_set (insn
);
5634 dest
= SET_DEST (set
);
5636 if (! MEM_P (dest
) || MEM_VOLATILE_P (dest
)
5637 || GET_MODE (dest
) == BLKmode
)
5640 if (side_effects_p (dest
))
5643 /* If we are handling exceptions, we must be careful with memory references
5644 that may trap. If we are not, the behavior is undefined, so we may just
5646 if (flag_non_call_exceptions
&& may_trap_p (dest
))
5649 /* Even if the destination cannot trap, the source may. In this case we'd
5650 need to handle updating the REG_EH_REGION note. */
5651 if (find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
))
5654 ptr
= ldst_entry (dest
);
5655 if (!ptr
->pattern_regs
)
5656 ptr
->pattern_regs
= extract_mentioned_regs (dest
);
5658 /* Do not check for anticipatability if we either found one anticipatable
5659 store already, or tested for one and found out that it was killed. */
5660 check_anticipatable
= 0;
5661 if (!ANTIC_STORE_LIST (ptr
))
5662 check_anticipatable
= 1;
5665 tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0);
5667 && BLOCK_FOR_INSN (tmp
) != bb
)
5668 check_anticipatable
= 1;
5670 if (check_anticipatable
)
5672 if (store_killed_before (dest
, ptr
->pattern_regs
, insn
, bb
, regs_set_before
))
5676 ANTIC_STORE_LIST (ptr
) = alloc_INSN_LIST (tmp
,
5677 ANTIC_STORE_LIST (ptr
));
5680 /* It is not necessary to check whether store is available if we did
5681 it successfully before; if we failed before, do not bother to check
5682 until we reach the insn that caused us to fail. */
5683 check_available
= 0;
5684 if (!AVAIL_STORE_LIST (ptr
))
5685 check_available
= 1;
5688 tmp
= XEXP (AVAIL_STORE_LIST (ptr
), 0);
5689 if (BLOCK_FOR_INSN (tmp
) != bb
)
5690 check_available
= 1;
5692 if (check_available
)
5694 /* Check that we have already reached the insn at that the check
5695 failed last time. */
5696 if (LAST_AVAIL_CHECK_FAILURE (ptr
))
5698 for (tmp
= BB_END (bb
);
5699 tmp
!= insn
&& tmp
!= LAST_AVAIL_CHECK_FAILURE (ptr
);
5700 tmp
= PREV_INSN (tmp
))
5703 check_available
= 0;
5706 check_available
= store_killed_after (dest
, ptr
->pattern_regs
, insn
,
5708 &LAST_AVAIL_CHECK_FAILURE (ptr
));
5710 if (!check_available
)
5711 AVAIL_STORE_LIST (ptr
) = alloc_INSN_LIST (insn
, AVAIL_STORE_LIST (ptr
));
5714 /* Find available and anticipatable stores. */
5717 compute_store_table (void)
5723 int *last_set_in
, *already_set
;
5724 struct ls_expr
* ptr
, **prev_next_ptr_ptr
;
5726 max_gcse_regno
= max_reg_num ();
5728 reg_set_in_block
= sbitmap_vector_alloc (last_basic_block
,
5730 sbitmap_vector_zero (reg_set_in_block
, last_basic_block
);
5732 pre_ldst_table
= htab_create (13, pre_ldst_expr_hash
,
5733 pre_ldst_expr_eq
, NULL
);
5734 last_set_in
= xcalloc (max_gcse_regno
, sizeof (int));
5735 already_set
= xmalloc (sizeof (int) * max_gcse_regno
);
5737 /* Find all the stores we care about. */
5740 /* First compute the registers set in this block. */
5741 regvec
= last_set_in
;
5743 FOR_BB_INSNS (bb
, insn
)
5745 if (! INSN_P (insn
))
5750 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5751 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5753 last_set_in
[regno
] = INSN_UID (insn
);
5754 SET_BIT (reg_set_in_block
[bb
->index
], regno
);
5758 pat
= PATTERN (insn
);
5759 compute_store_table_current_insn
= insn
;
5760 note_stores (pat
, reg_set_info
, reg_set_in_block
[bb
->index
]);
5763 /* Now find the stores. */
5764 memset (already_set
, 0, sizeof (int) * max_gcse_regno
);
5765 regvec
= already_set
;
5766 FOR_BB_INSNS (bb
, insn
)
5768 if (! INSN_P (insn
))
5773 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5774 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
5775 already_set
[regno
] = 1;
5778 pat
= PATTERN (insn
);
5779 note_stores (pat
, reg_set_info
, NULL
);
5781 /* Now that we've marked regs, look for stores. */
5782 find_moveable_store (insn
, already_set
, last_set_in
);
5784 /* Unmark regs that are no longer set. */
5785 compute_store_table_current_insn
= insn
;
5786 note_stores (pat
, reg_clear_last_set
, last_set_in
);
5789 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
5790 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)
5791 && last_set_in
[regno
] == INSN_UID (insn
))
5792 last_set_in
[regno
] = 0;
5796 #ifdef ENABLE_CHECKING
5797 /* last_set_in should now be all-zero. */
5798 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
5799 gcc_assert (!last_set_in
[regno
]);
5802 /* Clear temporary marks. */
5803 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
5805 LAST_AVAIL_CHECK_FAILURE(ptr
) = NULL_RTX
;
5806 if (ANTIC_STORE_LIST (ptr
)
5807 && (tmp
= XEXP (ANTIC_STORE_LIST (ptr
), 0)) == NULL_RTX
)
5808 ANTIC_STORE_LIST (ptr
) = XEXP (ANTIC_STORE_LIST (ptr
), 1);
5812 /* Remove the stores that are not available anywhere, as there will
5813 be no opportunity to optimize them. */
5814 for (ptr
= pre_ldst_mems
, prev_next_ptr_ptr
= &pre_ldst_mems
;
5816 ptr
= *prev_next_ptr_ptr
)
5818 if (!AVAIL_STORE_LIST (ptr
))
5820 *prev_next_ptr_ptr
= ptr
->next
;
5821 htab_remove_elt_with_hash (pre_ldst_table
, ptr
, ptr
->hash_index
);
5822 free_ldst_entry (ptr
);
5825 prev_next_ptr_ptr
= &ptr
->next
;
5828 ret
= enumerate_ldsts ();
5832 fprintf (gcse_file
, "ST_avail and ST_antic (shown under loads..)\n");
5833 print_ldst_list (gcse_file
);
5841 /* Check to see if the load X is aliased with STORE_PATTERN.
5842 AFTER is true if we are checking the case when STORE_PATTERN occurs
5846 load_kills_store (rtx x
, rtx store_pattern
, int after
)
5849 return anti_dependence (x
, store_pattern
);
5851 return true_dependence (store_pattern
, GET_MODE (store_pattern
), x
,
5855 /* Go through the entire insn X, looking for any loads which might alias
5856 STORE_PATTERN. Return true if found.
5857 AFTER is true if we are checking the case when STORE_PATTERN occurs
5858 after the insn X. */
5861 find_loads (rtx x
, rtx store_pattern
, int after
)
5870 if (GET_CODE (x
) == SET
)
5875 if (load_kills_store (x
, store_pattern
, after
))
5879 /* Recursively process the insn. */
5880 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5882 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0 && !ret
; i
--)
5885 ret
|= find_loads (XEXP (x
, i
), store_pattern
, after
);
5886 else if (fmt
[i
] == 'E')
5887 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5888 ret
|= find_loads (XVECEXP (x
, i
, j
), store_pattern
, after
);
5893 /* Check if INSN kills the store pattern X (is aliased with it).
5894 AFTER is true if we are checking the case when store X occurs
5895 after the insn. Return true if it does. */
5898 store_killed_in_insn (rtx x
, rtx x_regs
, rtx insn
, int after
)
5900 rtx reg
, base
, note
;
5907 /* A normal or pure call might read from pattern,
5908 but a const call will not. */
5909 if (! CONST_OR_PURE_CALL_P (insn
) || pure_call_p (insn
))
5912 /* But even a const call reads its parameters. Check whether the
5913 base of some of registers used in mem is stack pointer. */
5914 for (reg
= x_regs
; reg
; reg
= XEXP (reg
, 1))
5916 base
= find_base_term (XEXP (reg
, 0));
5918 || (GET_CODE (base
) == ADDRESS
5919 && GET_MODE (base
) == Pmode
5920 && XEXP (base
, 0) == stack_pointer_rtx
))
5927 if (GET_CODE (PATTERN (insn
)) == SET
)
5929 rtx pat
= PATTERN (insn
);
5930 rtx dest
= SET_DEST (pat
);
5932 if (GET_CODE (dest
) == ZERO_EXTRACT
)
5933 dest
= XEXP (dest
, 0);
5935 /* Check for memory stores to aliased objects. */
5937 && !expr_equiv_p (dest
, x
))
5941 if (output_dependence (dest
, x
))
5946 if (output_dependence (x
, dest
))
5950 if (find_loads (SET_SRC (pat
), x
, after
))
5953 else if (find_loads (PATTERN (insn
), x
, after
))
5956 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5957 location aliased with X, then this insn kills X. */
5958 note
= find_reg_equal_equiv_note (insn
);
5961 note
= XEXP (note
, 0);
5963 /* However, if the note represents a must alias rather than a may
5964 alias relationship, then it does not kill X. */
5965 if (expr_equiv_p (note
, x
))
5968 /* See if there are any aliased loads in the note. */
5969 return find_loads (note
, x
, after
);
5972 /* Returns true if the expression X is loaded or clobbered on or after INSN
5973 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
5974 or after the insn. X_REGS is list of registers mentioned in X. If the store
5975 is killed, return the last insn in that it occurs in FAIL_INSN. */
5978 store_killed_after (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
5979 int *regs_set_after
, rtx
*fail_insn
)
5981 rtx last
= BB_END (bb
), act
;
5983 if (!store_ops_ok (x_regs
, regs_set_after
))
5985 /* We do not know where it will happen. */
5987 *fail_insn
= NULL_RTX
;
5991 /* Scan from the end, so that fail_insn is determined correctly. */
5992 for (act
= last
; act
!= PREV_INSN (insn
); act
= PREV_INSN (act
))
5993 if (store_killed_in_insn (x
, x_regs
, act
, false))
6003 /* Returns true if the expression X is loaded or clobbered on or before INSN
6004 within basic block BB. X_REGS is list of registers mentioned in X.
6005 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6007 store_killed_before (rtx x
, rtx x_regs
, rtx insn
, basic_block bb
,
6008 int *regs_set_before
)
6010 rtx first
= BB_HEAD (bb
);
6012 if (!store_ops_ok (x_regs
, regs_set_before
))
6015 for ( ; insn
!= PREV_INSN (first
); insn
= PREV_INSN (insn
))
6016 if (store_killed_in_insn (x
, x_regs
, insn
, true))
6022 /* Fill in available, anticipatable, transparent and kill vectors in
6023 STORE_DATA, based on lists of available and anticipatable stores. */
6025 build_store_vectors (void)
6028 int *regs_set_in_block
;
6030 struct ls_expr
* ptr
;
6033 /* Build the gen_vector. This is any store in the table which is not killed
6034 by aliasing later in its block. */
6035 ae_gen
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6036 sbitmap_vector_zero (ae_gen
, last_basic_block
);
6038 st_antloc
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6039 sbitmap_vector_zero (st_antloc
, last_basic_block
);
6041 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6043 for (st
= AVAIL_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
6045 insn
= XEXP (st
, 0);
6046 bb
= BLOCK_FOR_INSN (insn
);
6048 /* If we've already seen an available expression in this block,
6049 we can delete this one (It occurs earlier in the block). We'll
6050 copy the SRC expression to an unused register in case there
6051 are any side effects. */
6052 if (TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6054 rtx r
= gen_reg_rtx (GET_MODE (ptr
->pattern
));
6056 fprintf (gcse_file
, "Removing redundant store:\n");
6057 replace_store_insn (r
, XEXP (st
, 0), bb
, ptr
);
6060 SET_BIT (ae_gen
[bb
->index
], ptr
->index
);
6063 for (st
= ANTIC_STORE_LIST (ptr
); st
!= NULL
; st
= XEXP (st
, 1))
6065 insn
= XEXP (st
, 0);
6066 bb
= BLOCK_FOR_INSN (insn
);
6067 SET_BIT (st_antloc
[bb
->index
], ptr
->index
);
6071 ae_kill
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6072 sbitmap_vector_zero (ae_kill
, last_basic_block
);
6074 transp
= sbitmap_vector_alloc (last_basic_block
, num_stores
);
6075 sbitmap_vector_zero (transp
, last_basic_block
);
6076 regs_set_in_block
= xmalloc (sizeof (int) * max_gcse_regno
);
6080 for (regno
= 0; regno
< max_gcse_regno
; regno
++)
6081 regs_set_in_block
[regno
] = TEST_BIT (reg_set_in_block
[bb
->index
], regno
);
6083 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6085 if (store_killed_after (ptr
->pattern
, ptr
->pattern_regs
, BB_HEAD (bb
),
6086 bb
, regs_set_in_block
, NULL
))
6088 /* It should not be necessary to consider the expression
6089 killed if it is both anticipatable and available. */
6090 if (!TEST_BIT (st_antloc
[bb
->index
], ptr
->index
)
6091 || !TEST_BIT (ae_gen
[bb
->index
], ptr
->index
))
6092 SET_BIT (ae_kill
[bb
->index
], ptr
->index
);
6095 SET_BIT (transp
[bb
->index
], ptr
->index
);
6099 free (regs_set_in_block
);
6103 dump_sbitmap_vector (gcse_file
, "st_antloc", "", st_antloc
, last_basic_block
);
6104 dump_sbitmap_vector (gcse_file
, "st_kill", "", ae_kill
, last_basic_block
);
6105 dump_sbitmap_vector (gcse_file
, "Transpt", "", transp
, last_basic_block
);
6106 dump_sbitmap_vector (gcse_file
, "st_avloc", "", ae_gen
, last_basic_block
);
6110 /* Insert an instruction at the beginning of a basic block, and update
6111 the BB_HEAD if needed. */
6114 insert_insn_start_bb (rtx insn
, basic_block bb
)
6116 /* Insert at start of successor block. */
6117 rtx prev
= PREV_INSN (BB_HEAD (bb
));
6118 rtx before
= BB_HEAD (bb
);
6121 if (! LABEL_P (before
)
6122 && (! NOTE_P (before
)
6123 || NOTE_LINE_NUMBER (before
) != NOTE_INSN_BASIC_BLOCK
))
6126 if (prev
== BB_END (bb
))
6128 before
= NEXT_INSN (before
);
6131 insn
= emit_insn_after_noloc (insn
, prev
);
6135 fprintf (gcse_file
, "STORE_MOTION insert store at start of BB %d:\n",
6137 print_inline_rtx (gcse_file
, insn
, 6);
6138 fprintf (gcse_file
, "\n");
6142 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6143 the memory reference, and E is the edge to insert it on. Returns nonzero
6144 if an edge insertion was performed. */
6147 insert_store (struct ls_expr
* expr
, edge e
)
6154 /* We did all the deleted before this insert, so if we didn't delete a
6155 store, then we haven't set the reaching reg yet either. */
6156 if (expr
->reaching_reg
== NULL_RTX
)
6159 if (e
->flags
& EDGE_FAKE
)
6162 reg
= expr
->reaching_reg
;
6163 insn
= gen_move_insn (copy_rtx (expr
->pattern
), reg
);
6165 /* If we are inserting this expression on ALL predecessor edges of a BB,
6166 insert it at the start of the BB, and reset the insert bits on the other
6167 edges so we don't try to insert it on the other edges. */
6169 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6170 if (!(tmp
->flags
& EDGE_FAKE
))
6172 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6174 gcc_assert (index
!= EDGE_INDEX_NO_EDGE
);
6175 if (! TEST_BIT (pre_insert_map
[index
], expr
->index
))
6179 /* If tmp is NULL, we found an insertion on every edge, blank the
6180 insertion vector for these edges, and insert at the start of the BB. */
6181 if (!tmp
&& bb
!= EXIT_BLOCK_PTR
)
6183 FOR_EACH_EDGE (tmp
, ei
, e
->dest
->preds
)
6185 int index
= EDGE_INDEX (edge_list
, tmp
->src
, tmp
->dest
);
6186 RESET_BIT (pre_insert_map
[index
], expr
->index
);
6188 insert_insn_start_bb (insn
, bb
);
6192 /* We can't put stores in the front of blocks pointed to by abnormal
6193 edges since that may put a store where one didn't used to be. */
6194 gcc_assert (!(e
->flags
& EDGE_ABNORMAL
));
6196 insert_insn_on_edge (insn
, e
);
6200 fprintf (gcse_file
, "STORE_MOTION insert insn on edge (%d, %d):\n",
6201 e
->src
->index
, e
->dest
->index
);
6202 print_inline_rtx (gcse_file
, insn
, 6);
6203 fprintf (gcse_file
, "\n");
6209 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6210 memory location in SMEXPR set in basic block BB.
6212 This could be rather expensive. */
6215 remove_reachable_equiv_notes (basic_block bb
, struct ls_expr
*smexpr
)
6217 edge_iterator
*stack
, ei
;
6220 sbitmap visited
= sbitmap_alloc (last_basic_block
);
6221 rtx last
, insn
, note
;
6222 rtx mem
= smexpr
->pattern
;
6224 stack
= xmalloc (sizeof (edge_iterator
) * n_basic_blocks
);
6226 ei
= ei_start (bb
->succs
);
6228 sbitmap_zero (visited
);
6230 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6238 sbitmap_free (visited
);
6241 act
= ei_edge (stack
[--sp
]);
6245 if (bb
== EXIT_BLOCK_PTR
6246 || TEST_BIT (visited
, bb
->index
))
6250 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6253 SET_BIT (visited
, bb
->index
);
6255 if (TEST_BIT (st_antloc
[bb
->index
], smexpr
->index
))
6257 for (last
= ANTIC_STORE_LIST (smexpr
);
6258 BLOCK_FOR_INSN (XEXP (last
, 0)) != bb
;
6259 last
= XEXP (last
, 1))
6261 last
= XEXP (last
, 0);
6264 last
= NEXT_INSN (BB_END (bb
));
6266 for (insn
= BB_HEAD (bb
); insn
!= last
; insn
= NEXT_INSN (insn
))
6269 note
= find_reg_equal_equiv_note (insn
);
6270 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6274 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6276 remove_note (insn
, note
);
6281 act
= (! ei_end_p (ei
)) ? ei_edge (ei
) : NULL
;
6283 if (EDGE_COUNT (bb
->succs
) > 0)
6287 ei
= ei_start (bb
->succs
);
6288 act
= (EDGE_COUNT (ei_container (ei
)) > 0 ? EDGE_I (ei_container (ei
), 0) : NULL
);
6293 /* This routine will replace a store with a SET to a specified register. */
6296 replace_store_insn (rtx reg
, rtx del
, basic_block bb
, struct ls_expr
*smexpr
)
6298 rtx insn
, mem
, note
, set
, ptr
, pair
;
6300 mem
= smexpr
->pattern
;
6301 insn
= gen_move_insn (reg
, SET_SRC (single_set (del
)));
6302 insn
= emit_insn_after (insn
, del
);
6307 "STORE_MOTION delete insn in BB %d:\n ", bb
->index
);
6308 print_inline_rtx (gcse_file
, del
, 6);
6309 fprintf (gcse_file
, "\nSTORE MOTION replaced with insn:\n ");
6310 print_inline_rtx (gcse_file
, insn
, 6);
6311 fprintf (gcse_file
, "\n");
6314 for (ptr
= ANTIC_STORE_LIST (smexpr
); ptr
; ptr
= XEXP (ptr
, 1))
6315 if (XEXP (ptr
, 0) == del
)
6317 XEXP (ptr
, 0) = insn
;
6321 /* Move the notes from the deleted insn to its replacement, and patch
6322 up the LIBCALL notes. */
6323 REG_NOTES (insn
) = REG_NOTES (del
);
6325 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
6328 pair
= XEXP (note
, 0);
6329 note
= find_reg_note (pair
, REG_LIBCALL
, NULL_RTX
);
6330 XEXP (note
, 0) = insn
;
6332 note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
6335 pair
= XEXP (note
, 0);
6336 note
= find_reg_note (pair
, REG_RETVAL
, NULL_RTX
);
6337 XEXP (note
, 0) = insn
;
6342 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6343 they are no longer accurate provided that they are reached by this
6344 definition, so drop them. */
6345 for (; insn
!= NEXT_INSN (BB_END (bb
)); insn
= NEXT_INSN (insn
))
6348 set
= single_set (insn
);
6351 if (expr_equiv_p (SET_DEST (set
), mem
))
6353 note
= find_reg_equal_equiv_note (insn
);
6354 if (!note
|| !expr_equiv_p (XEXP (note
, 0), mem
))
6358 fprintf (gcse_file
, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6360 remove_note (insn
, note
);
6362 remove_reachable_equiv_notes (bb
, smexpr
);
6366 /* Delete a store, but copy the value that would have been stored into
6367 the reaching_reg for later storing. */
6370 delete_store (struct ls_expr
* expr
, basic_block bb
)
6374 if (expr
->reaching_reg
== NULL_RTX
)
6375 expr
->reaching_reg
= gen_reg_rtx (GET_MODE (expr
->pattern
));
6377 reg
= expr
->reaching_reg
;
6379 for (i
= AVAIL_STORE_LIST (expr
); i
; i
= XEXP (i
, 1))
6382 if (BLOCK_FOR_INSN (del
) == bb
)
6384 /* We know there is only one since we deleted redundant
6385 ones during the available computation. */
6386 replace_store_insn (reg
, del
, bb
, expr
);
6392 /* Free memory used by store motion. */
6395 free_store_memory (void)
6400 sbitmap_vector_free (ae_gen
);
6402 sbitmap_vector_free (ae_kill
);
6404 sbitmap_vector_free (transp
);
6406 sbitmap_vector_free (st_antloc
);
6408 sbitmap_vector_free (pre_insert_map
);
6410 sbitmap_vector_free (pre_delete_map
);
6411 if (reg_set_in_block
)
6412 sbitmap_vector_free (reg_set_in_block
);
6414 ae_gen
= ae_kill
= transp
= st_antloc
= NULL
;
6415 pre_insert_map
= pre_delete_map
= reg_set_in_block
= NULL
;
6418 /* Perform store motion. Much like gcse, except we move expressions the
6419 other way by looking at the flowgraph in reverse. */
6426 struct ls_expr
* ptr
;
6427 int update_flow
= 0;
6431 fprintf (gcse_file
, "before store motion\n");
6432 print_rtl (gcse_file
, get_insns ());
6435 init_alias_analysis ();
6437 /* Find all the available and anticipatable stores. */
6438 num_stores
= compute_store_table ();
6439 if (num_stores
== 0)
6441 htab_delete (pre_ldst_table
);
6442 pre_ldst_table
= NULL
;
6443 sbitmap_vector_free (reg_set_in_block
);
6444 end_alias_analysis ();
6448 /* Now compute kill & transp vectors. */
6449 build_store_vectors ();
6450 add_noreturn_fake_exit_edges ();
6451 connect_infinite_loops_to_exit ();
6453 edge_list
= pre_edge_rev_lcm (gcse_file
, num_stores
, transp
, ae_gen
,
6454 st_antloc
, ae_kill
, &pre_insert_map
,
6457 /* Now we want to insert the new stores which are going to be needed. */
6458 for (ptr
= first_ls_expr (); ptr
!= NULL
; ptr
= next_ls_expr (ptr
))
6460 /* If any of the edges we have above are abnormal, we can't move this
6462 for (x
= NUM_EDGES (edge_list
) - 1; x
>= 0; x
--)
6463 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
)
6464 && (INDEX_EDGE (edge_list
, x
)->flags
& EDGE_ABNORMAL
))
6469 if (gcse_file
!= NULL
)
6471 "Can't replace store %d: abnormal edge from %d to %d\n",
6472 ptr
->index
, INDEX_EDGE (edge_list
, x
)->src
->index
,
6473 INDEX_EDGE (edge_list
, x
)->dest
->index
);
6477 /* Now we want to insert the new stores which are going to be needed. */
6480 if (TEST_BIT (pre_delete_map
[bb
->index
], ptr
->index
))
6481 delete_store (ptr
, bb
);
6483 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
6484 if (TEST_BIT (pre_insert_map
[x
], ptr
->index
))
6485 update_flow
|= insert_store (ptr
, INDEX_EDGE (edge_list
, x
));
6489 commit_edge_insertions ();
6491 free_store_memory ();
6492 free_edge_list (edge_list
);
6493 remove_fake_exit_edges ();
6494 end_alias_analysis ();
6498 /* Entry point for jump bypassing optimization pass. */
6501 bypass_jumps (FILE *file
)
6505 /* We do not construct an accurate cfg in functions which call
6506 setjmp, so just punt to be safe. */
6507 if (current_function_calls_setjmp
)
6510 /* For calling dump_foo fns from gdb. */
6511 debug_stderr
= stderr
;
6514 /* Identify the basic block information for this function, including
6515 successors and predecessors. */
6516 max_gcse_regno
= max_reg_num ();
6519 dump_flow_info (file
);
6521 /* Return if there's nothing to do, or it is too expensive. */
6522 if (n_basic_blocks
<= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6525 gcc_obstack_init (&gcse_obstack
);
6528 /* We need alias. */
6529 init_alias_analysis ();
6531 /* Record where pseudo-registers are set. This data is kept accurate
6532 during each pass. ??? We could also record hard-reg information here
6533 [since it's unchanging], however it is currently done during hash table
6536 It may be tempting to compute MEM set information here too, but MEM sets
6537 will be subject to code motion one day and thus we need to compute
6538 information about memory sets when we build the hash tables. */
6540 alloc_reg_set_mem (max_gcse_regno
);
6543 max_gcse_regno
= max_reg_num ();
6545 changed
= one_cprop_pass (MAX_GCSE_PASSES
+ 2, true, true);
6550 fprintf (file
, "BYPASS of %s: %d basic blocks, ",
6551 current_function_name (), n_basic_blocks
);
6552 fprintf (file
, "%d bytes\n\n", bytes_used
);
6555 obstack_free (&gcse_obstack
, NULL
);
6556 free_reg_set_mem ();
6558 /* We are finished with alias. */
6559 end_alias_analysis ();
6560 allocate_reg_info (max_reg_num (), FALSE
, FALSE
);
6565 /* Return true if the graph is too expensive to optimize. PASS is the
6566 optimization about to be performed. */
6569 is_too_expensive (const char *pass
)
6571 /* Trying to perform global optimizations on flow graphs which have
6572 a high connectivity will take a long time and is unlikely to be
6573 particularly useful.
6575 In normal circumstances a cfg should have about twice as many
6576 edges as blocks. But we do not want to punish small functions
6577 which have a couple switch statements. Rather than simply
6578 threshold the number of blocks, uses something with a more
6579 graceful degradation. */
6580 if (n_edges
> 20000 + n_basic_blocks
* 4)
6582 warning (OPT_Wdisabled_optimization
,
6583 "%s: %d basic blocks and %d edges/basic block",
6584 pass
, n_basic_blocks
, n_edges
/ n_basic_blocks
);
6589 /* If allocating memory for the cprop bitmap would take up too much
6590 storage it's better just to disable the optimization. */
6592 * SBITMAP_SET_SIZE (max_reg_num ())
6593 * sizeof (SBITMAP_ELT_TYPE
)) > MAX_GCSE_MEMORY
)
6595 warning (OPT_Wdisabled_optimization
,
6596 "%s: %d basic blocks and %d registers",
6597 pass
, n_basic_blocks
, max_reg_num ());
6606 gate_handle_jump_bypass (void)
6608 return optimize
> 0 && flag_gcse
;
6611 /* Perform jump bypassing and control flow optimizations. */
6613 rest_of_handle_jump_bypass (void)
6615 cleanup_cfg (CLEANUP_EXPENSIVE
);
6616 reg_scan (get_insns (), max_reg_num ());
6618 if (bypass_jumps (dump_file
))
6620 rebuild_jump_labels (get_insns ());
6621 cleanup_cfg (CLEANUP_EXPENSIVE
);
6622 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6626 struct tree_opt_pass pass_jump_bypass
=
6628 "bypass", /* name */
6629 gate_handle_jump_bypass
, /* gate */
6630 rest_of_handle_jump_bypass
, /* execute */
6633 0, /* static_pass_number */
6634 TV_BYPASS
, /* tv_id */
6635 0, /* properties_required */
6636 0, /* properties_provided */
6637 0, /* properties_destroyed */
6638 0, /* todo_flags_start */
6640 TODO_ggc_collect
| TODO_verify_flow
, /* todo_flags_finish */
6646 gate_handle_gcse (void)
6648 return optimize
> 0 && flag_gcse
;
6653 rest_of_handle_gcse (void)
6655 int save_csb
, save_cfj
;
6658 tem
= gcse_main (get_insns (), dump_file
);
6659 rebuild_jump_labels (get_insns ());
6660 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6662 save_csb
= flag_cse_skip_blocks
;
6663 save_cfj
= flag_cse_follow_jumps
;
6664 flag_cse_skip_blocks
= flag_cse_follow_jumps
= 0;
6666 /* If -fexpensive-optimizations, re-run CSE to clean up things done
6668 if (flag_expensive_optimizations
)
6670 timevar_push (TV_CSE
);
6671 reg_scan (get_insns (), max_reg_num ());
6672 tem2
= cse_main (get_insns (), max_reg_num (), dump_file
);
6673 purge_all_dead_edges ();
6674 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6675 timevar_pop (TV_CSE
);
6676 cse_not_expected
= !flag_rerun_cse_after_loop
;
6679 /* If gcse or cse altered any jumps, rerun jump optimizations to clean
6683 timevar_push (TV_JUMP
);
6684 rebuild_jump_labels (get_insns ());
6685 delete_dead_jumptables ();
6686 cleanup_cfg (CLEANUP_EXPENSIVE
| CLEANUP_PRE_LOOP
);
6687 timevar_pop (TV_JUMP
);
6690 flag_cse_skip_blocks
= save_csb
;
6691 flag_cse_follow_jumps
= save_cfj
;
6694 struct tree_opt_pass pass_gcse
=
6697 gate_handle_gcse
, /* gate */
6698 rest_of_handle_gcse
, /* execute */
6701 0, /* static_pass_number */
6702 TV_GCSE
, /* tv_id */
6703 0, /* properties_required */
6704 0, /* properties_provided */
6705 0, /* properties_destroyed */
6706 0, /* todo_flags_start */
6708 TODO_verify_flow
| TODO_ggc_collect
, /* todo_flags_finish */
6713 #include "gt-gcse.h"