1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
50 #include "coretypes.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
60 #include "conditions.h"
63 #include "hard-reg-set.h"
70 #include "basic-block.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
80 #ifdef XCOFF_DEBUGGING_INFO
81 #include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
85 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86 #include "dwarf2out.h"
89 #ifdef DBX_DEBUGGING_INFO
93 #ifdef SDB_DEBUGGING_INFO
97 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
103 /* How to start an assembler comment. */
104 #ifndef ASM_COMMENT_START
105 #define ASM_COMMENT_START ";#"
108 /* Is the given character a logical line separator for the assembler? */
109 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
113 #ifndef JUMP_TABLES_IN_TEXT_SECTION
114 #define JUMP_TABLES_IN_TEXT_SECTION 0
117 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
118 #define HAVE_READONLY_DATA_SECTION 1
120 #define HAVE_READONLY_DATA_SECTION 0
123 /* Bitflags used by final_scan_insn. */
126 #define SEEN_EMITTED 4
128 /* Last insn processed by final_scan_insn. */
129 static rtx debug_insn
;
130 rtx current_output_insn
;
132 /* Line number of last NOTE. */
133 static int last_linenum
;
135 /* Highest line number in current block. */
136 static int high_block_linenum
;
138 /* Likewise for function. */
139 static int high_function_linenum
;
141 /* Filename of last NOTE. */
142 static const char *last_filename
;
144 /* Whether to force emission of a line note before the next insn. */
145 static bool force_source_line
= false;
147 extern int length_unit_log
; /* This is defined in insn-attrtab.c. */
149 /* Nonzero while outputting an `asm' with operands.
150 This means that inconsistencies are the user's fault, so don't die.
151 The precise value is the insn being output, to pass to error_for_asm. */
152 rtx this_is_asm_operands
;
154 /* Number of operands of this insn, for an `asm' with operands. */
155 static unsigned int insn_noperands
;
157 /* Compare optimization flag. */
159 static rtx last_ignored_compare
= 0;
161 /* Assign a unique number to each insn that is output.
162 This can be used to generate unique local labels. */
164 static int insn_counter
= 0;
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
176 CC_STATUS cc_prev_status
;
179 /* Indexed by hardware reg number, is 1 if that register is ever
180 used in the current function.
182 In life_analysis, or in stupid_life_analysis, this is set
183 up to record the hard regs used explicitly. Reload adds
184 in the hard regs used for holding pseudo regs. Final uses
185 it to generate the code in the function prologue and epilogue
186 to save and restore registers as needed. */
188 char regs_ever_live
[FIRST_PSEUDO_REGISTER
];
190 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
191 Unlike regs_ever_live, elements of this array corresponding to
192 eliminable regs like the frame pointer are set if an asm sets them. */
194 char regs_asm_clobbered
[FIRST_PSEUDO_REGISTER
];
196 /* Nonzero means current function must be given a frame pointer.
197 Initialized in function.c to 0. Set only in reload1.c as per
198 the needs of the function. */
200 int frame_pointer_needed
;
202 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
204 static int block_depth
;
206 /* Nonzero if have enabled APP processing of our assembler output. */
210 /* If we are outputting an insn sequence, this contains the sequence rtx.
215 #ifdef ASSEMBLER_DIALECT
217 /* Number of the assembler dialect to use, starting at 0. */
218 static int dialect_number
;
221 #ifdef HAVE_conditional_execution
222 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
223 rtx current_insn_predicate
;
226 #ifdef HAVE_ATTR_length
227 static int asm_insn_count (rtx
);
229 static void profile_function (FILE *);
230 static void profile_after_prologue (FILE *);
231 static bool notice_source_line (rtx
);
232 static rtx
walk_alter_subreg (rtx
*);
233 static void output_asm_name (void);
234 static void output_alternate_entry_point (FILE *, rtx
);
235 static tree
get_mem_expr_from_op (rtx
, int *);
236 static void output_asm_operand_names (rtx
*, int *, int);
237 static void output_operand (rtx
, int);
238 #ifdef LEAF_REGISTERS
239 static void leaf_renumber_regs (rtx
);
242 static int alter_cond (rtx
);
244 #ifndef ADDR_VEC_ALIGN
245 static int final_addr_vec_align (rtx
);
247 #ifdef HAVE_ATTR_length
248 static int align_fuzz (rtx
, rtx
, int, unsigned);
251 /* Initialize data in final at the beginning of a compilation. */
254 init_final (const char *filename ATTRIBUTE_UNUSED
)
259 #ifdef ASSEMBLER_DIALECT
260 dialect_number
= ASSEMBLER_DIALECT
;
264 /* Default target function prologue and epilogue assembler output.
266 If not overridden for epilogue code, then the function body itself
267 contains return instructions wherever needed. */
269 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
270 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
274 /* Default target hook that outputs nothing to a stream. */
276 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
280 /* Enable APP processing of subsequent output.
281 Used before the output from an `asm' statement. */
288 fputs (ASM_APP_ON
, asm_out_file
);
293 /* Disable APP processing of subsequent output.
294 Called from varasm.c before most kinds of output. */
301 fputs (ASM_APP_OFF
, asm_out_file
);
306 /* Return the number of slots filled in the current
307 delayed branch sequence (we don't count the insn needing the
308 delay slot). Zero if not in a delayed branch sequence. */
312 dbr_sequence_length (void)
314 if (final_sequence
!= 0)
315 return XVECLEN (final_sequence
, 0) - 1;
321 /* The next two pages contain routines used to compute the length of an insn
322 and to shorten branches. */
324 /* Arrays for insn lengths, and addresses. The latter is referenced by
325 `insn_current_length'. */
327 static int *insn_lengths
;
329 varray_type insn_addresses_
;
331 /* Max uid for which the above arrays are valid. */
332 static int insn_lengths_max_uid
;
334 /* Address of insn being processed. Used by `insn_current_length'. */
335 int insn_current_address
;
337 /* Address of insn being processed in previous iteration. */
338 int insn_last_address
;
340 /* known invariant alignment of insn being processed. */
341 int insn_current_align
;
343 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
344 gives the next following alignment insn that increases the known
345 alignment, or NULL_RTX if there is no such insn.
346 For any alignment obtained this way, we can again index uid_align with
347 its uid to obtain the next following align that in turn increases the
348 alignment, till we reach NULL_RTX; the sequence obtained this way
349 for each insn we'll call the alignment chain of this insn in the following
352 struct label_alignment
358 static rtx
*uid_align
;
359 static int *uid_shuid
;
360 static struct label_alignment
*label_align
;
362 /* Indicate that branch shortening hasn't yet been done. */
365 init_insn_lengths (void)
376 insn_lengths_max_uid
= 0;
378 #ifdef HAVE_ATTR_length
379 INSN_ADDRESSES_FREE ();
388 /* Obtain the current length of an insn. If branch shortening has been done,
389 get its actual length. Otherwise, use FALLBACK_FN to calcualte the
392 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED
,
393 int (*fallback_fn
) (rtx
) ATTRIBUTE_UNUSED
)
395 #ifdef HAVE_ATTR_length
400 if (insn_lengths_max_uid
> INSN_UID (insn
))
401 return insn_lengths
[INSN_UID (insn
)];
403 switch (GET_CODE (insn
))
411 length
= fallback_fn (insn
);
415 body
= PATTERN (insn
);
416 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
418 /* Alignment is machine-dependent and should be handled by
422 length
= fallback_fn (insn
);
426 body
= PATTERN (insn
);
427 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
430 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
431 length
= asm_insn_count (body
) * fallback_fn (insn
);
432 else if (GET_CODE (body
) == SEQUENCE
)
433 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
434 length
+= get_attr_length (XVECEXP (body
, 0, i
));
436 length
= fallback_fn (insn
);
443 #ifdef ADJUST_INSN_LENGTH
444 ADJUST_INSN_LENGTH (insn
, length
);
447 #else /* not HAVE_ATTR_length */
449 #define insn_default_length 0
450 #define insn_min_length 0
451 #endif /* not HAVE_ATTR_length */
454 /* Obtain the current length of an insn. If branch shortening has been done,
455 get its actual length. Otherwise, get its maximum length. */
457 get_attr_length (rtx insn
)
459 return get_attr_length_1 (insn
, insn_default_length
);
462 /* Obtain the current length of an insn. If branch shortening has been done,
463 get its actual length. Otherwise, get its minimum length. */
465 get_attr_min_length (rtx insn
)
467 return get_attr_length_1 (insn
, insn_min_length
);
470 /* Code to handle alignment inside shorten_branches. */
472 /* Here is an explanation how the algorithm in align_fuzz can give
475 Call a sequence of instructions beginning with alignment point X
476 and continuing until the next alignment point `block X'. When `X'
477 is used in an expression, it means the alignment value of the
480 Call the distance between the start of the first insn of block X, and
481 the end of the last insn of block X `IX', for the `inner size of X'.
482 This is clearly the sum of the instruction lengths.
484 Likewise with the next alignment-delimited block following X, which we
487 Call the distance between the start of the first insn of block X, and
488 the start of the first insn of block Y `OX', for the `outer size of X'.
490 The estimated padding is then OX - IX.
492 OX can be safely estimated as
497 OX = round_up(IX, X) + Y - X
499 Clearly est(IX) >= real(IX), because that only depends on the
500 instruction lengths, and those being overestimated is a given.
502 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
503 we needn't worry about that when thinking about OX.
505 When X >= Y, the alignment provided by Y adds no uncertainty factor
506 for branch ranges starting before X, so we can just round what we have.
507 But when X < Y, we don't know anything about the, so to speak,
508 `middle bits', so we have to assume the worst when aligning up from an
509 address mod X to one mod Y, which is Y - X. */
512 #define LABEL_ALIGN(LABEL) align_labels_log
515 #ifndef LABEL_ALIGN_MAX_SKIP
516 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
520 #define LOOP_ALIGN(LABEL) align_loops_log
523 #ifndef LOOP_ALIGN_MAX_SKIP
524 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
527 #ifndef LABEL_ALIGN_AFTER_BARRIER
528 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
531 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
532 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
536 #define JUMP_ALIGN(LABEL) align_jumps_log
539 #ifndef JUMP_ALIGN_MAX_SKIP
540 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
543 #ifndef ADDR_VEC_ALIGN
545 final_addr_vec_align (rtx addr_vec
)
547 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
549 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
550 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
551 return exact_log2 (align
);
555 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
558 #ifndef INSN_LENGTH_ALIGNMENT
559 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
562 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
564 static int min_labelno
, max_labelno
;
566 #define LABEL_TO_ALIGNMENT(LABEL) \
567 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
569 #define LABEL_TO_MAX_SKIP(LABEL) \
570 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
572 /* For the benefit of port specific code do this also as a function. */
575 label_to_alignment (rtx label
)
577 return LABEL_TO_ALIGNMENT (label
);
580 #ifdef HAVE_ATTR_length
581 /* The differences in addresses
582 between a branch and its target might grow or shrink depending on
583 the alignment the start insn of the range (the branch for a forward
584 branch or the label for a backward branch) starts out on; if these
585 differences are used naively, they can even oscillate infinitely.
586 We therefore want to compute a 'worst case' address difference that
587 is independent of the alignment the start insn of the range end
588 up on, and that is at least as large as the actual difference.
589 The function align_fuzz calculates the amount we have to add to the
590 naively computed difference, by traversing the part of the alignment
591 chain of the start insn of the range that is in front of the end insn
592 of the range, and considering for each alignment the maximum amount
593 that it might contribute to a size increase.
595 For casesi tables, we also want to know worst case minimum amounts of
596 address difference, in case a machine description wants to introduce
597 some common offset that is added to all offsets in a table.
598 For this purpose, align_fuzz with a growth argument of 0 computes the
599 appropriate adjustment. */
601 /* Compute the maximum delta by which the difference of the addresses of
602 START and END might grow / shrink due to a different address for start
603 which changes the size of alignment insns between START and END.
604 KNOWN_ALIGN_LOG is the alignment known for START.
605 GROWTH should be ~0 if the objective is to compute potential code size
606 increase, and 0 if the objective is to compute potential shrink.
607 The return value is undefined for any other value of GROWTH. */
610 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
612 int uid
= INSN_UID (start
);
614 int known_align
= 1 << known_align_log
;
615 int end_shuid
= INSN_SHUID (end
);
618 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
620 int align_addr
, new_align
;
622 uid
= INSN_UID (align_label
);
623 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
624 if (uid_shuid
[uid
] > end_shuid
)
626 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
627 new_align
= 1 << known_align_log
;
628 if (new_align
< known_align
)
630 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
631 known_align
= new_align
;
636 /* Compute a worst-case reference address of a branch so that it
637 can be safely used in the presence of aligned labels. Since the
638 size of the branch itself is unknown, the size of the branch is
639 not included in the range. I.e. for a forward branch, the reference
640 address is the end address of the branch as known from the previous
641 branch shortening pass, minus a value to account for possible size
642 increase due to alignment. For a backward branch, it is the start
643 address of the branch as known from the current pass, plus a value
644 to account for possible size increase due to alignment.
645 NB.: Therefore, the maximum offset allowed for backward branches needs
646 to exclude the branch size. */
649 insn_current_reference_address (rtx branch
)
654 if (! INSN_ADDRESSES_SET_P ())
657 seq
= NEXT_INSN (PREV_INSN (branch
));
658 seq_uid
= INSN_UID (seq
);
659 if (!JUMP_P (branch
))
660 /* This can happen for example on the PA; the objective is to know the
661 offset to address something in front of the start of the function.
662 Thus, we can treat it like a backward branch.
663 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
664 any alignment we'd encounter, so we skip the call to align_fuzz. */
665 return insn_current_address
;
666 dest
= JUMP_LABEL (branch
);
668 /* BRANCH has no proper alignment chain set, so use SEQ.
669 BRANCH also has no INSN_SHUID. */
670 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
672 /* Forward branch. */
673 return (insn_last_address
+ insn_lengths
[seq_uid
]
674 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
678 /* Backward branch. */
679 return (insn_current_address
680 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
683 #endif /* HAVE_ATTR_length */
686 compute_alignments (void)
688 int log
, max_skip
, max_log
;
697 max_labelno
= max_label_num ();
698 min_labelno
= get_first_label_num ();
699 label_align
= xcalloc (max_labelno
- min_labelno
+ 1,
700 sizeof (struct label_alignment
));
702 /* If not optimizing or optimizing for size, don't assign any alignments. */
703 if (! optimize
|| optimize_size
)
708 rtx label
= BB_HEAD (bb
);
709 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
714 || probably_never_executed_bb_p (bb
))
716 max_log
= LABEL_ALIGN (label
);
717 max_skip
= LABEL_ALIGN_MAX_SKIP
;
719 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
721 if (e
->flags
& EDGE_FALLTHRU
)
722 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
724 branch_frequency
+= EDGE_FREQUENCY (e
);
727 /* There are two purposes to align block with no fallthru incoming edge:
728 1) to avoid fetch stalls when branch destination is near cache boundary
729 2) to improve cache efficiency in case the previous block is not executed
730 (so it does not need to be in the cache).
732 We to catch first case, we align frequently executed blocks.
733 To catch the second, we align blocks that are executed more frequently
734 than the predecessor and the predecessor is likely to not be executed
735 when function is called. */
738 && (branch_frequency
> BB_FREQ_MAX
/ 10
739 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
740 && (bb
->prev_bb
->frequency
741 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
743 log
= JUMP_ALIGN (label
);
747 max_skip
= JUMP_ALIGN_MAX_SKIP
;
750 /* In case block is frequent and reached mostly by non-fallthru edge,
751 align it. It is most likely a first block of loop. */
753 && maybe_hot_bb_p (bb
)
754 && branch_frequency
+ fallthru_frequency
> BB_FREQ_MAX
/ 10
755 && branch_frequency
> fallthru_frequency
* 2)
757 log
= LOOP_ALIGN (label
);
761 max_skip
= LOOP_ALIGN_MAX_SKIP
;
764 LABEL_TO_ALIGNMENT (label
) = max_log
;
765 LABEL_TO_MAX_SKIP (label
) = max_skip
;
769 struct tree_opt_pass pass_compute_alignments
=
773 compute_alignments
, /* execute */
776 0, /* static_pass_number */
778 0, /* properties_required */
779 0, /* properties_provided */
780 0, /* properties_destroyed */
781 0, /* todo_flags_start */
782 0, /* todo_flags_finish */
787 /* Make a pass over all insns and compute their actual lengths by shortening
788 any branches of variable length if possible. */
790 /* shorten_branches might be called multiple times: for example, the SH
791 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
792 In order to do this, it needs proper length information, which it obtains
793 by calling shorten_branches. This cannot be collapsed with
794 shorten_branches itself into a single pass unless we also want to integrate
795 reorg.c, since the branch splitting exposes new instructions with delay
799 shorten_branches (rtx first ATTRIBUTE_UNUSED
)
806 #ifdef HAVE_ATTR_length
807 #define MAX_CODE_ALIGN 16
809 int something_changed
= 1;
810 char *varying_length
;
813 rtx align_tab
[MAX_CODE_ALIGN
];
817 /* Compute maximum UID and allocate label_align / uid_shuid. */
818 max_uid
= get_max_uid ();
820 /* Free uid_shuid before reallocating it. */
823 uid_shuid
= xmalloc (max_uid
* sizeof *uid_shuid
);
825 if (max_labelno
!= max_label_num ())
827 int old
= max_labelno
;
831 max_labelno
= max_label_num ();
833 n_labels
= max_labelno
- min_labelno
+ 1;
834 n_old_labels
= old
- min_labelno
+ 1;
836 label_align
= xrealloc (label_align
,
837 n_labels
* sizeof (struct label_alignment
));
839 /* Range of labels grows monotonically in the function. Failing here
840 means that the initialization of array got lost. */
841 gcc_assert (n_old_labels
<= n_labels
);
843 memset (label_align
+ n_old_labels
, 0,
844 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
847 /* Initialize label_align and set up uid_shuid to be strictly
848 monotonically rising with insn order. */
849 /* We use max_log here to keep track of the maximum alignment we want to
850 impose on the next CODE_LABEL (or the current one if we are processing
851 the CODE_LABEL itself). */
856 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
860 INSN_SHUID (insn
) = i
++;
863 /* reorg might make the first insn of a loop being run once only,
864 and delete the label in front of it. Then we want to apply
865 the loop alignment to the new label created by reorg, which
866 is separated by the former loop start insn from the
867 NOTE_INSN_LOOP_BEG. */
869 else if (LABEL_P (insn
))
873 /* Merge in alignments computed by compute_alignments. */
874 log
= LABEL_TO_ALIGNMENT (insn
);
878 max_skip
= LABEL_TO_MAX_SKIP (insn
);
881 log
= LABEL_ALIGN (insn
);
885 max_skip
= LABEL_ALIGN_MAX_SKIP
;
887 next
= next_nonnote_insn (insn
);
888 /* ADDR_VECs only take room if read-only data goes into the text
890 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
891 if (next
&& JUMP_P (next
))
893 rtx nextbody
= PATTERN (next
);
894 if (GET_CODE (nextbody
) == ADDR_VEC
895 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
897 log
= ADDR_VEC_ALIGN (next
);
901 max_skip
= LABEL_ALIGN_MAX_SKIP
;
905 LABEL_TO_ALIGNMENT (insn
) = max_log
;
906 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
910 else if (BARRIER_P (insn
))
914 for (label
= insn
; label
&& ! INSN_P (label
);
915 label
= NEXT_INSN (label
))
918 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
922 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
928 #ifdef HAVE_ATTR_length
930 /* Allocate the rest of the arrays. */
931 insn_lengths
= xmalloc (max_uid
* sizeof (*insn_lengths
));
932 insn_lengths_max_uid
= max_uid
;
933 /* Syntax errors can lead to labels being outside of the main insn stream.
934 Initialize insn_addresses, so that we get reproducible results. */
935 INSN_ADDRESSES_ALLOC (max_uid
);
937 varying_length
= xcalloc (max_uid
, sizeof (char));
939 /* Initialize uid_align. We scan instructions
940 from end to start, and keep in align_tab[n] the last seen insn
941 that does an alignment of at least n+1, i.e. the successor
942 in the alignment chain for an insn that does / has a known
944 uid_align
= xcalloc (max_uid
, sizeof *uid_align
);
946 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
947 align_tab
[i
] = NULL_RTX
;
948 seq
= get_last_insn ();
949 for (; seq
; seq
= PREV_INSN (seq
))
951 int uid
= INSN_UID (seq
);
953 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
954 uid_align
[uid
] = align_tab
[0];
957 /* Found an alignment label. */
958 uid_align
[uid
] = align_tab
[log
];
959 for (i
= log
- 1; i
>= 0; i
--)
963 #ifdef CASE_VECTOR_SHORTEN_MODE
966 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
969 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
970 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
973 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
975 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
976 int len
, i
, min
, max
, insn_shuid
;
978 addr_diff_vec_flags flags
;
981 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
983 pat
= PATTERN (insn
);
984 len
= XVECLEN (pat
, 1);
985 gcc_assert (len
> 0);
986 min_align
= MAX_CODE_ALIGN
;
987 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
989 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
990 int shuid
= INSN_SHUID (lab
);
1001 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1002 min_align
= LABEL_TO_ALIGNMENT (lab
);
1004 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1005 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1006 insn_shuid
= INSN_SHUID (insn
);
1007 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1008 memset (&flags
, 0, sizeof (flags
));
1009 flags
.min_align
= min_align
;
1010 flags
.base_after_vec
= rel
> insn_shuid
;
1011 flags
.min_after_vec
= min
> insn_shuid
;
1012 flags
.max_after_vec
= max
> insn_shuid
;
1013 flags
.min_after_base
= min
> rel
;
1014 flags
.max_after_base
= max
> rel
;
1015 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1018 #endif /* CASE_VECTOR_SHORTEN_MODE */
1020 /* Compute initial lengths, addresses, and varying flags for each insn. */
1021 for (insn_current_address
= 0, insn
= first
;
1023 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1025 uid
= INSN_UID (insn
);
1027 insn_lengths
[uid
] = 0;
1031 int log
= LABEL_TO_ALIGNMENT (insn
);
1034 int align
= 1 << log
;
1035 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1036 insn_lengths
[uid
] = new_address
- insn_current_address
;
1040 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1042 if (NOTE_P (insn
) || BARRIER_P (insn
)
1045 if (INSN_DELETED_P (insn
))
1048 body
= PATTERN (insn
);
1049 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1051 /* This only takes room if read-only data goes into the text
1053 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1054 insn_lengths
[uid
] = (XVECLEN (body
,
1055 GET_CODE (body
) == ADDR_DIFF_VEC
)
1056 * GET_MODE_SIZE (GET_MODE (body
)));
1057 /* Alignment is handled by ADDR_VEC_ALIGN. */
1059 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1060 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1061 else if (GET_CODE (body
) == SEQUENCE
)
1064 int const_delay_slots
;
1066 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1068 const_delay_slots
= 0;
1070 /* Inside a delay slot sequence, we do not do any branch shortening
1071 if the shortening could change the number of delay slots
1073 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1075 rtx inner_insn
= XVECEXP (body
, 0, i
);
1076 int inner_uid
= INSN_UID (inner_insn
);
1079 if (GET_CODE (body
) == ASM_INPUT
1080 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1081 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1082 * insn_default_length (inner_insn
));
1084 inner_length
= insn_default_length (inner_insn
);
1086 insn_lengths
[inner_uid
] = inner_length
;
1087 if (const_delay_slots
)
1089 if ((varying_length
[inner_uid
]
1090 = insn_variable_length_p (inner_insn
)) != 0)
1091 varying_length
[uid
] = 1;
1092 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1093 + insn_lengths
[uid
]);
1096 varying_length
[inner_uid
] = 0;
1097 insn_lengths
[uid
] += inner_length
;
1100 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1102 insn_lengths
[uid
] = insn_default_length (insn
);
1103 varying_length
[uid
] = insn_variable_length_p (insn
);
1106 /* If needed, do any adjustment. */
1107 #ifdef ADJUST_INSN_LENGTH
1108 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1109 if (insn_lengths
[uid
] < 0)
1110 fatal_insn ("negative insn length", insn
);
1114 /* Now loop over all the insns finding varying length insns. For each,
1115 get the current insn length. If it has changed, reflect the change.
1116 When nothing changes for a full pass, we are done. */
1118 while (something_changed
)
1120 something_changed
= 0;
1121 insn_current_align
= MAX_CODE_ALIGN
- 1;
1122 for (insn_current_address
= 0, insn
= first
;
1124 insn
= NEXT_INSN (insn
))
1127 #ifdef ADJUST_INSN_LENGTH
1132 uid
= INSN_UID (insn
);
1136 int log
= LABEL_TO_ALIGNMENT (insn
);
1137 if (log
> insn_current_align
)
1139 int align
= 1 << log
;
1140 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1141 insn_lengths
[uid
] = new_address
- insn_current_address
;
1142 insn_current_align
= log
;
1143 insn_current_address
= new_address
;
1146 insn_lengths
[uid
] = 0;
1147 INSN_ADDRESSES (uid
) = insn_current_address
;
1151 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1152 if (length_align
< insn_current_align
)
1153 insn_current_align
= length_align
;
1155 insn_last_address
= INSN_ADDRESSES (uid
);
1156 INSN_ADDRESSES (uid
) = insn_current_address
;
1158 #ifdef CASE_VECTOR_SHORTEN_MODE
1159 if (optimize
&& JUMP_P (insn
)
1160 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1162 rtx body
= PATTERN (insn
);
1163 int old_length
= insn_lengths
[uid
];
1164 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1165 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1166 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1167 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1168 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1169 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1172 addr_diff_vec_flags flags
;
1174 /* Avoid automatic aggregate initialization. */
1175 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1177 /* Try to find a known alignment for rel_lab. */
1178 for (prev
= rel_lab
;
1180 && ! insn_lengths
[INSN_UID (prev
)]
1181 && ! (varying_length
[INSN_UID (prev
)] & 1);
1182 prev
= PREV_INSN (prev
))
1183 if (varying_length
[INSN_UID (prev
)] & 2)
1185 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1189 /* See the comment on addr_diff_vec_flags in rtl.h for the
1190 meaning of the flags values. base: REL_LAB vec: INSN */
1191 /* Anything after INSN has still addresses from the last
1192 pass; adjust these so that they reflect our current
1193 estimate for this pass. */
1194 if (flags
.base_after_vec
)
1195 rel_addr
+= insn_current_address
- insn_last_address
;
1196 if (flags
.min_after_vec
)
1197 min_addr
+= insn_current_address
- insn_last_address
;
1198 if (flags
.max_after_vec
)
1199 max_addr
+= insn_current_address
- insn_last_address
;
1200 /* We want to know the worst case, i.e. lowest possible value
1201 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1202 its offset is positive, and we have to be wary of code shrink;
1203 otherwise, it is negative, and we have to be vary of code
1205 if (flags
.min_after_base
)
1207 /* If INSN is between REL_LAB and MIN_LAB, the size
1208 changes we are about to make can change the alignment
1209 within the observed offset, therefore we have to break
1210 it up into two parts that are independent. */
1211 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1213 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1214 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1217 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1221 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1223 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1224 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1227 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1229 /* Likewise, determine the highest lowest possible value
1230 for the offset of MAX_LAB. */
1231 if (flags
.max_after_base
)
1233 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1235 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1236 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1239 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1243 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1245 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1246 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1249 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1251 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1252 max_addr
- rel_addr
,
1254 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1257 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1258 insn_current_address
+= insn_lengths
[uid
];
1259 if (insn_lengths
[uid
] != old_length
)
1260 something_changed
= 1;
1265 #endif /* CASE_VECTOR_SHORTEN_MODE */
1267 if (! (varying_length
[uid
]))
1269 if (NONJUMP_INSN_P (insn
)
1270 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1274 body
= PATTERN (insn
);
1275 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1277 rtx inner_insn
= XVECEXP (body
, 0, i
);
1278 int inner_uid
= INSN_UID (inner_insn
);
1280 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1282 insn_current_address
+= insn_lengths
[inner_uid
];
1286 insn_current_address
+= insn_lengths
[uid
];
1291 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1295 body
= PATTERN (insn
);
1297 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1299 rtx inner_insn
= XVECEXP (body
, 0, i
);
1300 int inner_uid
= INSN_UID (inner_insn
);
1303 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1305 /* insn_current_length returns 0 for insns with a
1306 non-varying length. */
1307 if (! varying_length
[inner_uid
])
1308 inner_length
= insn_lengths
[inner_uid
];
1310 inner_length
= insn_current_length (inner_insn
);
1312 if (inner_length
!= insn_lengths
[inner_uid
])
1314 insn_lengths
[inner_uid
] = inner_length
;
1315 something_changed
= 1;
1317 insn_current_address
+= insn_lengths
[inner_uid
];
1318 new_length
+= inner_length
;
1323 new_length
= insn_current_length (insn
);
1324 insn_current_address
+= new_length
;
1327 #ifdef ADJUST_INSN_LENGTH
1328 /* If needed, do any adjustment. */
1329 tmp_length
= new_length
;
1330 ADJUST_INSN_LENGTH (insn
, new_length
);
1331 insn_current_address
+= (new_length
- tmp_length
);
1334 if (new_length
!= insn_lengths
[uid
])
1336 insn_lengths
[uid
] = new_length
;
1337 something_changed
= 1;
1340 /* For a non-optimizing compile, do only a single pass. */
1345 free (varying_length
);
1347 #endif /* HAVE_ATTR_length */
1350 #ifdef HAVE_ATTR_length
1351 /* Given the body of an INSN known to be generated by an ASM statement, return
1352 the number of machine instructions likely to be generated for this insn.
1353 This is used to compute its length. */
1356 asm_insn_count (rtx body
)
1358 const char *template;
1361 if (GET_CODE (body
) == ASM_INPUT
)
1362 template = XSTR (body
, 0);
1364 template = decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
);
1366 for (; *template; template++)
1367 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1374 /* Output assembler code for the start of a function,
1375 and initialize some of the variables in this file
1376 for the new function. The label for the function and associated
1377 assembler pseudo-ops have already been output in `assemble_start_function'.
1379 FIRST is the first insn of the rtl for the function being compiled.
1380 FILE is the file to write assembler code to.
1381 OPTIMIZE is nonzero if we should eliminate redundant
1382 test and compare insns. */
1385 final_start_function (rtx first ATTRIBUTE_UNUSED
, FILE *file
,
1386 int optimize ATTRIBUTE_UNUSED
)
1390 this_is_asm_operands
= 0;
1392 last_filename
= locator_file (prologue_locator
);
1393 last_linenum
= locator_line (prologue_locator
);
1395 high_block_linenum
= high_function_linenum
= last_linenum
;
1397 (*debug_hooks
->begin_prologue
) (last_linenum
, last_filename
);
1399 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1400 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1401 dwarf2out_begin_prologue (0, NULL
);
1404 #ifdef LEAF_REG_REMAP
1405 if (current_function_uses_only_leaf_regs
)
1406 leaf_renumber_regs (first
);
1409 /* The Sun386i and perhaps other machines don't work right
1410 if the profiling code comes after the prologue. */
1411 #ifdef PROFILE_BEFORE_PROLOGUE
1412 if (current_function_profile
)
1413 profile_function (file
);
1414 #endif /* PROFILE_BEFORE_PROLOGUE */
1416 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1417 if (dwarf2out_do_frame ())
1418 dwarf2out_frame_debug (NULL_RTX
, false);
1421 /* If debugging, assign block numbers to all of the blocks in this
1425 remove_unnecessary_notes ();
1426 reemit_insn_block_notes ();
1427 number_blocks (current_function_decl
);
1428 /* We never actually put out begin/end notes for the top-level
1429 block in the function. But, conceptually, that block is
1431 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1434 /* First output the function prologue: code to set up the stack frame. */
1435 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1437 /* If the machine represents the prologue as RTL, the profiling code must
1438 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1439 #ifdef HAVE_prologue
1440 if (! HAVE_prologue
)
1442 profile_after_prologue (file
);
1446 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1448 #ifndef PROFILE_BEFORE_PROLOGUE
1449 if (current_function_profile
)
1450 profile_function (file
);
1451 #endif /* not PROFILE_BEFORE_PROLOGUE */
1455 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1457 #ifndef NO_PROFILE_COUNTERS
1458 # define NO_PROFILE_COUNTERS 0
1460 #if defined(ASM_OUTPUT_REG_PUSH)
1461 int sval
= current_function_returns_struct
;
1462 rtx svrtx
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
), 1);
1463 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1464 int cxt
= cfun
->static_chain_decl
!= NULL
;
1466 #endif /* ASM_OUTPUT_REG_PUSH */
1468 if (! NO_PROFILE_COUNTERS
)
1470 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1472 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1473 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1474 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1477 current_function_section (current_function_decl
);
1479 #if defined(ASM_OUTPUT_REG_PUSH)
1480 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1481 ASM_OUTPUT_REG_PUSH (file
, REGNO (svrtx
));
1484 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1486 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1488 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1491 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_REGNUM
);
1496 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1498 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1500 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1502 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1505 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_REGNUM
);
1510 #if defined(ASM_OUTPUT_REG_PUSH)
1511 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1512 ASM_OUTPUT_REG_POP (file
, REGNO (svrtx
));
1516 /* Output assembler code for the end of a function.
1517 For clarity, args are same as those of `final_start_function'
1518 even though not all of them are needed. */
1521 final_end_function (void)
1525 (*debug_hooks
->end_function
) (high_function_linenum
);
1527 /* Finally, output the function epilogue:
1528 code to restore the stack frame and return to the caller. */
1529 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1531 /* And debug output. */
1532 (*debug_hooks
->end_epilogue
) (last_linenum
, last_filename
);
1534 #if defined (DWARF2_UNWIND_INFO)
1535 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
1536 && dwarf2out_do_frame ())
1537 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1541 /* Output assembler code for some insns: all or part of a function.
1542 For description of args, see `final_start_function', above. */
1545 final (rtx first
, FILE *file
, int optimize
)
1551 last_ignored_compare
= 0;
1553 #ifdef SDB_DEBUGGING_INFO
1554 /* When producing SDB debugging info, delete troublesome line number
1555 notes from inlined functions in other files as well as duplicate
1556 line number notes. */
1557 if (write_symbols
== SDB_DEBUG
)
1560 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1561 if (NOTE_P (insn
) && NOTE_LINE_NUMBER (insn
) > 0)
1564 #ifdef USE_MAPPED_LOCATION
1565 && NOTE_SOURCE_LOCATION (insn
) == NOTE_SOURCE_LOCATION (last
)
1567 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last
)
1568 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last
)
1572 delete_insn (insn
); /* Use delete_note. */
1580 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1582 if (INSN_UID (insn
) > max_uid
) /* Find largest UID. */
1583 max_uid
= INSN_UID (insn
);
1585 /* If CC tracking across branches is enabled, record the insn which
1586 jumps to each branch only reached from one place. */
1587 if (optimize
&& JUMP_P (insn
))
1589 rtx lab
= JUMP_LABEL (insn
);
1590 if (lab
&& LABEL_NUSES (lab
) == 1)
1592 LABEL_REFS (lab
) = insn
;
1602 /* Output the insns. */
1603 for (insn
= NEXT_INSN (first
); insn
;)
1605 #ifdef HAVE_ATTR_length
1606 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1608 /* This can be triggered by bugs elsewhere in the compiler if
1609 new insns are created after init_insn_lengths is called. */
1610 gcc_assert (NOTE_P (insn
));
1611 insn_current_address
= -1;
1614 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1615 #endif /* HAVE_ATTR_length */
1617 insn
= final_scan_insn (insn
, file
, optimize
, 0, &seen
);
1622 get_insn_template (int code
, rtx insn
)
1624 switch (insn_data
[code
].output_format
)
1626 case INSN_OUTPUT_FORMAT_SINGLE
:
1627 return insn_data
[code
].output
.single
;
1628 case INSN_OUTPUT_FORMAT_MULTI
:
1629 return insn_data
[code
].output
.multi
[which_alternative
];
1630 case INSN_OUTPUT_FORMAT_FUNCTION
:
1632 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1639 /* Emit the appropriate declaration for an alternate-entry-point
1640 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1641 LABEL_KIND != LABEL_NORMAL.
1643 The case fall-through in this function is intentional. */
1645 output_alternate_entry_point (FILE *file
, rtx insn
)
1647 const char *name
= LABEL_NAME (insn
);
1649 switch (LABEL_KIND (insn
))
1651 case LABEL_WEAK_ENTRY
:
1652 #ifdef ASM_WEAKEN_LABEL
1653 ASM_WEAKEN_LABEL (file
, name
);
1655 case LABEL_GLOBAL_ENTRY
:
1656 targetm
.asm_out
.globalize_label (file
, name
);
1657 case LABEL_STATIC_ENTRY
:
1658 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1659 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1661 ASM_OUTPUT_LABEL (file
, name
);
1670 /* The final scan for one insn, INSN.
1671 Args are same as in `final', except that INSN
1672 is the insn being scanned.
1673 Value returned is the next insn to be scanned.
1675 NOPEEPHOLES is the flag to disallow peephole processing (currently
1676 used for within delayed branch sequence output).
1678 SEEN is used to track the end of the prologue, for emitting
1679 debug information. We force the emission of a line note after
1680 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1681 at the beginning of the second basic block, whichever comes
1685 final_scan_insn (rtx insn
, FILE *file
, int optimize ATTRIBUTE_UNUSED
,
1686 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
1695 /* Ignore deleted insns. These can occur when we split insns (due to a
1696 template of "#") while not optimizing. */
1697 if (INSN_DELETED_P (insn
))
1698 return NEXT_INSN (insn
);
1700 switch (GET_CODE (insn
))
1703 switch (NOTE_LINE_NUMBER (insn
))
1705 case NOTE_INSN_DELETED
:
1706 case NOTE_INSN_LOOP_BEG
:
1707 case NOTE_INSN_LOOP_END
:
1708 case NOTE_INSN_FUNCTION_END
:
1709 case NOTE_INSN_REPEATED_LINE_NUMBER
:
1710 case NOTE_INSN_EXPECTED_VALUE
:
1713 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
1715 /* The presence of this note indicates that this basic block
1716 belongs in the "cold" section of the .o file. If we are
1717 not already writing to the cold section we need to change
1720 if (last_text_section
== in_text
)
1722 (*debug_hooks
->switch_text_section
) ();
1723 unlikely_text_section ();
1727 (*debug_hooks
->switch_text_section
) ();
1732 case NOTE_INSN_BASIC_BLOCK
:
1734 #ifdef TARGET_UNWIND_INFO
1735 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
1739 fprintf (asm_out_file
, "\t%s basic block %d\n",
1740 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1742 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
1744 *seen
|= SEEN_EMITTED
;
1745 force_source_line
= true;
1752 case NOTE_INSN_EH_REGION_BEG
:
1753 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1754 NOTE_EH_HANDLER (insn
));
1757 case NOTE_INSN_EH_REGION_END
:
1758 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1759 NOTE_EH_HANDLER (insn
));
1762 case NOTE_INSN_PROLOGUE_END
:
1763 targetm
.asm_out
.function_end_prologue (file
);
1764 profile_after_prologue (file
);
1766 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1768 *seen
|= SEEN_EMITTED
;
1769 force_source_line
= true;
1776 case NOTE_INSN_EPILOGUE_BEG
:
1777 targetm
.asm_out
.function_begin_epilogue (file
);
1780 case NOTE_INSN_FUNCTION_BEG
:
1782 (*debug_hooks
->end_prologue
) (last_linenum
, last_filename
);
1784 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1786 *seen
|= SEEN_EMITTED
;
1787 force_source_line
= true;
1794 case NOTE_INSN_BLOCK_BEG
:
1795 if (debug_info_level
== DINFO_LEVEL_NORMAL
1796 || debug_info_level
== DINFO_LEVEL_VERBOSE
1797 || write_symbols
== DWARF2_DEBUG
1798 || write_symbols
== VMS_AND_DWARF2_DEBUG
1799 || write_symbols
== VMS_DEBUG
)
1801 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1805 high_block_linenum
= last_linenum
;
1807 /* Output debugging info about the symbol-block beginning. */
1808 (*debug_hooks
->begin_block
) (last_linenum
, n
);
1810 /* Mark this block as output. */
1811 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1815 case NOTE_INSN_BLOCK_END
:
1816 if (debug_info_level
== DINFO_LEVEL_NORMAL
1817 || debug_info_level
== DINFO_LEVEL_VERBOSE
1818 || write_symbols
== DWARF2_DEBUG
1819 || write_symbols
== VMS_AND_DWARF2_DEBUG
1820 || write_symbols
== VMS_DEBUG
)
1822 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1826 /* End of a symbol-block. */
1828 gcc_assert (block_depth
>= 0);
1830 (*debug_hooks
->end_block
) (high_block_linenum
, n
);
1834 case NOTE_INSN_DELETED_LABEL
:
1835 /* Emit the label. We may have deleted the CODE_LABEL because
1836 the label could be proved to be unreachable, though still
1837 referenced (in the form of having its address taken. */
1838 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
1841 case NOTE_INSN_VAR_LOCATION
:
1842 (*debug_hooks
->var_location
) (insn
);
1849 gcc_assert (NOTE_LINE_NUMBER (insn
) > 0);
1855 #if defined (DWARF2_UNWIND_INFO)
1856 if (dwarf2out_do_frame ())
1857 dwarf2out_frame_debug (insn
, false);
1862 /* The target port might emit labels in the output function for
1863 some insn, e.g. sh.c output_branchy_insn. */
1864 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
1866 int align
= LABEL_TO_ALIGNMENT (insn
);
1867 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1868 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
1871 if (align
&& NEXT_INSN (insn
))
1873 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1874 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
1876 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1877 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
1879 ASM_OUTPUT_ALIGN (file
, align
);
1886 /* If this label is reached from only one place, set the condition
1887 codes from the instruction just before the branch. */
1889 /* Disabled because some insns set cc_status in the C output code
1890 and NOTICE_UPDATE_CC alone can set incorrect status. */
1891 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1893 rtx jump
= LABEL_REFS (insn
);
1894 rtx barrier
= prev_nonnote_insn (insn
);
1896 /* If the LABEL_REFS field of this label has been set to point
1897 at a branch, the predecessor of the branch is a regular
1898 insn, and that branch is the only way to reach this label,
1899 set the condition codes based on the branch and its
1901 if (barrier
&& BARRIER_P (barrier
)
1902 && jump
&& JUMP_P (jump
)
1903 && (prev
= prev_nonnote_insn (jump
))
1904 && NONJUMP_INSN_P (prev
))
1906 NOTICE_UPDATE_CC (PATTERN (prev
), prev
);
1907 NOTICE_UPDATE_CC (PATTERN (jump
), jump
);
1912 if (LABEL_NAME (insn
))
1913 (*debug_hooks
->label
) (insn
);
1917 fputs (ASM_APP_OFF
, file
);
1921 next
= next_nonnote_insn (insn
);
1922 if (next
!= 0 && JUMP_P (next
))
1924 rtx nextbody
= PATTERN (next
);
1926 /* If this label is followed by a jump-table,
1927 make sure we put the label in the read-only section. Also
1928 possibly write the label and jump table together. */
1930 if (GET_CODE (nextbody
) == ADDR_VEC
1931 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
1933 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1934 /* In this case, the case vector is being moved by the
1935 target, so don't output the label at all. Leave that
1936 to the back end macros. */
1938 if (! JUMP_TABLES_IN_TEXT_SECTION
)
1942 targetm
.asm_out
.function_rodata_section (current_function_decl
);
1944 #ifdef ADDR_VEC_ALIGN
1945 log_align
= ADDR_VEC_ALIGN (next
);
1947 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
1949 ASM_OUTPUT_ALIGN (file
, log_align
);
1952 current_function_section (current_function_decl
);
1954 #ifdef ASM_OUTPUT_CASE_LABEL
1955 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
1958 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1964 if (LABEL_ALT_ENTRY_P (insn
))
1965 output_alternate_entry_point (file
, insn
);
1967 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1972 rtx body
= PATTERN (insn
);
1973 int insn_code_number
;
1974 const char *template;
1976 /* An INSN, JUMP_INSN or CALL_INSN.
1977 First check for special kinds that recog doesn't recognize. */
1979 if (GET_CODE (body
) == USE
/* These are just declarations. */
1980 || GET_CODE (body
) == CLOBBER
)
1985 /* If there is a REG_CC_SETTER note on this insn, it means that
1986 the setting of the condition code was done in the delay slot
1987 of the insn that branched here. So recover the cc status
1988 from the insn that set it. */
1990 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
1993 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
1994 cc_prev_status
= cc_status
;
1999 /* Detect insns that are really jump-tables
2000 and output them as such. */
2002 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2004 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2008 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2009 targetm
.asm_out
.function_rodata_section (current_function_decl
);
2011 current_function_section (current_function_decl
);
2015 fputs (ASM_APP_OFF
, file
);
2019 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2020 if (GET_CODE (body
) == ADDR_VEC
)
2022 #ifdef ASM_OUTPUT_ADDR_VEC
2023 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2030 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2031 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2037 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2038 for (idx
= 0; idx
< vlen
; idx
++)
2040 if (GET_CODE (body
) == ADDR_VEC
)
2042 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2043 ASM_OUTPUT_ADDR_VEC_ELT
2044 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2051 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2052 ASM_OUTPUT_ADDR_DIFF_ELT
2055 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2056 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2062 #ifdef ASM_OUTPUT_CASE_END
2063 ASM_OUTPUT_CASE_END (file
,
2064 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2069 current_function_section (current_function_decl
);
2073 /* Output this line note if it is the first or the last line
2075 if (notice_source_line (insn
))
2077 (*debug_hooks
->source_line
) (last_linenum
, last_filename
);
2080 if (GET_CODE (body
) == ASM_INPUT
)
2082 const char *string
= XSTR (body
, 0);
2084 /* There's no telling what that did to the condition codes. */
2091 fputs (ASM_APP_ON
, file
);
2094 fprintf (asm_out_file
, "\t%s\n", string
);
2099 /* Detect `asm' construct with operands. */
2100 if (asm_noperands (body
) >= 0)
2102 unsigned int noperands
= asm_noperands (body
);
2103 rtx
*ops
= alloca (noperands
* sizeof (rtx
));
2106 /* There's no telling what that did to the condition codes. */
2109 /* Get out the operand values. */
2110 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
);
2111 /* Inhibit dieing on what would otherwise be compiler bugs. */
2112 insn_noperands
= noperands
;
2113 this_is_asm_operands
= insn
;
2115 #ifdef FINAL_PRESCAN_INSN
2116 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2119 /* Output the insn using them. */
2124 fputs (ASM_APP_ON
, file
);
2127 output_asm_insn (string
, ops
);
2130 this_is_asm_operands
= 0;
2136 fputs (ASM_APP_OFF
, file
);
2140 if (GET_CODE (body
) == SEQUENCE
)
2142 /* A delayed-branch sequence */
2145 final_sequence
= body
;
2147 /* Record the delay slots' frame information before the branch.
2148 This is needed for delayed calls: see execute_cfa_program(). */
2149 #if defined (DWARF2_UNWIND_INFO)
2150 if (dwarf2out_do_frame ())
2151 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2152 dwarf2out_frame_debug (XVECEXP (body
, 0, i
), false);
2155 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2156 force the restoration of a comparison that was previously
2157 thought unnecessary. If that happens, cancel this sequence
2158 and cause that insn to be restored. */
2160 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2161 if (next
!= XVECEXP (body
, 0, 1))
2167 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2169 rtx insn
= XVECEXP (body
, 0, i
);
2170 rtx next
= NEXT_INSN (insn
);
2171 /* We loop in case any instruction in a delay slot gets
2174 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2175 while (insn
!= next
);
2177 #ifdef DBR_OUTPUT_SEQEND
2178 DBR_OUTPUT_SEQEND (file
);
2182 /* If the insn requiring the delay slot was a CALL_INSN, the
2183 insns in the delay slot are actually executed before the
2184 called function. Hence we don't preserve any CC-setting
2185 actions in these insns and the CC must be marked as being
2186 clobbered by the function. */
2187 if (CALL_P (XVECEXP (body
, 0, 0)))
2194 /* We have a real machine instruction as rtl. */
2196 body
= PATTERN (insn
);
2199 set
= single_set (insn
);
2201 /* Check for redundant test and compare instructions
2202 (when the condition codes are already set up as desired).
2203 This is done only when optimizing; if not optimizing,
2204 it should be possible for the user to alter a variable
2205 with the debugger in between statements
2206 and the next statement should reexamine the variable
2207 to compute the condition codes. */
2212 && GET_CODE (SET_DEST (set
)) == CC0
2213 && insn
!= last_ignored_compare
)
2215 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2216 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2217 else if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2219 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2220 XEXP (SET_SRC (set
), 0)
2221 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2222 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2223 XEXP (SET_SRC (set
), 1)
2224 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2226 if ((cc_status
.value1
!= 0
2227 && rtx_equal_p (SET_SRC (set
), cc_status
.value1
))
2228 || (cc_status
.value2
!= 0
2229 && rtx_equal_p (SET_SRC (set
), cc_status
.value2
)))
2231 /* Don't delete insn if it has an addressing side-effect. */
2232 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2233 /* or if anything in it is volatile. */
2234 && ! volatile_refs_p (PATTERN (insn
)))
2236 /* We don't really delete the insn; just ignore it. */
2237 last_ignored_compare
= insn
;
2246 /* If this is a conditional branch, maybe modify it
2247 if the cc's are in a nonstandard state
2248 so that it accomplishes the same thing that it would
2249 do straightforwardly if the cc's were set up normally. */
2251 if (cc_status
.flags
!= 0
2253 && GET_CODE (body
) == SET
2254 && SET_DEST (body
) == pc_rtx
2255 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2256 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2257 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2259 /* This function may alter the contents of its argument
2260 and clear some of the cc_status.flags bits.
2261 It may also return 1 meaning condition now always true
2262 or -1 meaning condition now always false
2263 or 2 meaning condition nontrivial but altered. */
2264 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2265 /* If condition now has fixed value, replace the IF_THEN_ELSE
2266 with its then-operand or its else-operand. */
2268 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2270 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2272 /* The jump is now either unconditional or a no-op.
2273 If it has become a no-op, don't try to output it.
2274 (It would not be recognized.) */
2275 if (SET_SRC (body
) == pc_rtx
)
2280 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2281 /* Replace (set (pc) (return)) with (return). */
2282 PATTERN (insn
) = body
= SET_SRC (body
);
2284 /* Rerecognize the instruction if it has changed. */
2286 INSN_CODE (insn
) = -1;
2289 /* Make same adjustments to instructions that examine the
2290 condition codes without jumping and instructions that
2291 handle conditional moves (if this machine has either one). */
2293 if (cc_status
.flags
!= 0
2296 rtx cond_rtx
, then_rtx
, else_rtx
;
2299 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2301 cond_rtx
= XEXP (SET_SRC (set
), 0);
2302 then_rtx
= XEXP (SET_SRC (set
), 1);
2303 else_rtx
= XEXP (SET_SRC (set
), 2);
2307 cond_rtx
= SET_SRC (set
);
2308 then_rtx
= const_true_rtx
;
2309 else_rtx
= const0_rtx
;
2312 switch (GET_CODE (cond_rtx
))
2326 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2328 result
= alter_cond (cond_rtx
);
2330 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2331 else if (result
== -1)
2332 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2333 else if (result
== 2)
2334 INSN_CODE (insn
) = -1;
2335 if (SET_DEST (set
) == SET_SRC (set
))
2347 #ifdef HAVE_peephole
2348 /* Do machine-specific peephole optimizations if desired. */
2350 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2352 rtx next
= peephole (insn
);
2353 /* When peepholing, if there were notes within the peephole,
2354 emit them before the peephole. */
2355 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2357 rtx note
, prev
= PREV_INSN (insn
);
2359 for (note
= NEXT_INSN (insn
); note
!= next
;
2360 note
= NEXT_INSN (note
))
2361 final_scan_insn (note
, file
, optimize
, nopeepholes
, seen
);
2363 /* Put the notes in the proper position for a later
2364 rescan. For example, the SH target can do this
2365 when generating a far jump in a delayed branch
2367 note
= NEXT_INSN (insn
);
2368 PREV_INSN (note
) = prev
;
2369 NEXT_INSN (prev
) = note
;
2370 NEXT_INSN (PREV_INSN (next
)) = insn
;
2371 PREV_INSN (insn
) = PREV_INSN (next
);
2372 NEXT_INSN (insn
) = next
;
2373 PREV_INSN (next
) = insn
;
2376 /* PEEPHOLE might have changed this. */
2377 body
= PATTERN (insn
);
2381 /* Try to recognize the instruction.
2382 If successful, verify that the operands satisfy the
2383 constraints for the instruction. Crash if they don't,
2384 since `reload' should have changed them so that they do. */
2386 insn_code_number
= recog_memoized (insn
);
2387 cleanup_subreg_operands (insn
);
2389 /* Dump the insn in the assembly for debugging. */
2390 if (flag_dump_rtl_in_asm
)
2392 print_rtx_head
= ASM_COMMENT_START
;
2393 print_rtl_single (asm_out_file
, insn
);
2394 print_rtx_head
= "";
2397 if (! constrain_operands_cached (1))
2398 fatal_insn_not_found (insn
);
2400 /* Some target machines need to prescan each insn before
2403 #ifdef FINAL_PRESCAN_INSN
2404 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2407 #ifdef HAVE_conditional_execution
2408 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2409 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2411 current_insn_predicate
= NULL_RTX
;
2415 cc_prev_status
= cc_status
;
2417 /* Update `cc_status' for this instruction.
2418 The instruction's output routine may change it further.
2419 If the output routine for a jump insn needs to depend
2420 on the cc status, it should look at cc_prev_status. */
2422 NOTICE_UPDATE_CC (body
, insn
);
2425 current_output_insn
= debug_insn
= insn
;
2427 #if defined (DWARF2_UNWIND_INFO)
2428 if (CALL_P (insn
) && dwarf2out_do_frame ())
2429 dwarf2out_frame_debug (insn
, false);
2432 /* Find the proper template for this insn. */
2433 template = get_insn_template (insn_code_number
, insn
);
2435 /* If the C code returns 0, it means that it is a jump insn
2436 which follows a deleted test insn, and that test insn
2437 needs to be reinserted. */
2442 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2444 /* We have already processed the notes between the setter and
2445 the user. Make sure we don't process them again, this is
2446 particularly important if one of the notes is a block
2447 scope note or an EH note. */
2449 prev
!= last_ignored_compare
;
2450 prev
= PREV_INSN (prev
))
2453 delete_insn (prev
); /* Use delete_note. */
2459 /* If the template is the string "#", it means that this insn must
2461 if (template[0] == '#' && template[1] == '\0')
2463 rtx
new = try_split (body
, insn
, 0);
2465 /* If we didn't split the insn, go away. */
2466 if (new == insn
&& PATTERN (new) == body
)
2467 fatal_insn ("could not split insn", insn
);
2469 #ifdef HAVE_ATTR_length
2470 /* This instruction should have been split in shorten_branches,
2471 to ensure that we would have valid length info for the
2479 #ifdef TARGET_UNWIND_INFO
2480 /* ??? This will put the directives in the wrong place if
2481 get_insn_template outputs assembly directly. However calling it
2482 before get_insn_template breaks if the insns is split. */
2483 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2486 /* Output assembler code from the template. */
2487 output_asm_insn (template, recog_data
.operand
);
2489 /* If necessary, report the effect that the instruction has on
2490 the unwind info. We've already done this for delay slots
2491 and call instructions. */
2492 #if defined (DWARF2_UNWIND_INFO)
2493 if (final_sequence
== 0
2494 #if !defined (HAVE_prologue)
2495 && !ACCUMULATE_OUTGOING_ARGS
2497 && dwarf2out_do_frame ())
2498 dwarf2out_frame_debug (insn
, true);
2501 current_output_insn
= debug_insn
= 0;
2504 return NEXT_INSN (insn
);
2507 /* Return whether a source line note needs to be emitted before INSN. */
2510 notice_source_line (rtx insn
)
2512 const char *filename
= insn_file (insn
);
2513 int linenum
= insn_line (insn
);
2516 && (force_source_line
2517 || filename
!= last_filename
2518 || last_linenum
!= linenum
))
2520 force_source_line
= false;
2521 last_filename
= filename
;
2522 last_linenum
= linenum
;
2523 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2524 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2530 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2531 directly to the desired hard register. */
2534 cleanup_subreg_operands (rtx insn
)
2537 extract_insn_cached (insn
);
2538 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2540 /* The following test cannot use recog_data.operand when testing
2541 for a SUBREG: the underlying object might have been changed
2542 already if we are inside a match_operator expression that
2543 matches the else clause. Instead we test the underlying
2544 expression directly. */
2545 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2546 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2547 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2548 || GET_CODE (recog_data
.operand
[i
]) == MULT
2549 || MEM_P (recog_data
.operand
[i
]))
2550 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
]);
2553 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2555 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2556 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2557 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2558 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2559 || MEM_P (*recog_data
.dup_loc
[i
]))
2560 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
]);
2564 /* If X is a SUBREG, replace it with a REG or a MEM,
2565 based on the thing it is a subreg of. */
2568 alter_subreg (rtx
*xp
)
2571 rtx y
= SUBREG_REG (x
);
2573 /* simplify_subreg does not remove subreg from volatile references.
2574 We are required to. */
2577 int offset
= SUBREG_BYTE (x
);
2579 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2580 contains 0 instead of the proper offset. See simplify_subreg. */
2582 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
2584 int difference
= GET_MODE_SIZE (GET_MODE (y
))
2585 - GET_MODE_SIZE (GET_MODE (x
));
2586 if (WORDS_BIG_ENDIAN
)
2587 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
2588 if (BYTES_BIG_ENDIAN
)
2589 offset
+= difference
% UNITS_PER_WORD
;
2592 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
2596 rtx
new = simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2603 /* Simplify_subreg can't handle some REG cases, but we have to. */
2604 unsigned int regno
= subreg_regno (x
);
2605 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, SUBREG_BYTE (x
));
2612 /* Do alter_subreg on all the SUBREGs contained in X. */
2615 walk_alter_subreg (rtx
*xp
)
2618 switch (GET_CODE (x
))
2623 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2624 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1));
2629 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2633 return alter_subreg (xp
);
2644 /* Given BODY, the body of a jump instruction, alter the jump condition
2645 as required by the bits that are set in cc_status.flags.
2646 Not all of the bits there can be handled at this level in all cases.
2648 The value is normally 0.
2649 1 means that the condition has become always true.
2650 -1 means that the condition has become always false.
2651 2 means that COND has been altered. */
2654 alter_cond (rtx cond
)
2658 if (cc_status
.flags
& CC_REVERSED
)
2661 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2664 if (cc_status
.flags
& CC_INVERTED
)
2667 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2670 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2671 switch (GET_CODE (cond
))
2676 /* Jump becomes unconditional. */
2682 /* Jump becomes no-op. */
2686 PUT_CODE (cond
, EQ
);
2691 PUT_CODE (cond
, NE
);
2699 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2700 switch (GET_CODE (cond
))
2704 /* Jump becomes unconditional. */
2709 /* Jump becomes no-op. */
2714 PUT_CODE (cond
, EQ
);
2720 PUT_CODE (cond
, NE
);
2728 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2729 switch (GET_CODE (cond
))
2732 /* Jump becomes unconditional. */
2736 PUT_CODE (cond
, EQ
);
2741 PUT_CODE (cond
, NE
);
2746 /* Jump becomes no-op. */
2753 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
2754 switch (GET_CODE (cond
))
2760 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
2765 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
2770 if (cc_status
.flags
& CC_NOT_SIGNED
)
2771 /* The flags are valid if signed condition operators are converted
2773 switch (GET_CODE (cond
))
2776 PUT_CODE (cond
, LEU
);
2781 PUT_CODE (cond
, LTU
);
2786 PUT_CODE (cond
, GTU
);
2791 PUT_CODE (cond
, GEU
);
2803 /* Report inconsistency between the assembler template and the operands.
2804 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2807 output_operand_lossage (const char *cmsgid
, ...)
2811 const char *pfx_str
;
2814 va_start (ap
, cmsgid
);
2816 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
2817 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
2818 vasprintf (&new_message
, fmt_string
, ap
);
2820 if (this_is_asm_operands
)
2821 error_for_asm (this_is_asm_operands
, "%s", new_message
);
2823 internal_error ("%s", new_message
);
2830 /* Output of assembler code from a template, and its subroutines. */
2832 /* Annotate the assembly with a comment describing the pattern and
2833 alternative used. */
2836 output_asm_name (void)
2840 int num
= INSN_CODE (debug_insn
);
2841 fprintf (asm_out_file
, "\t%s %d\t%s",
2842 ASM_COMMENT_START
, INSN_UID (debug_insn
),
2843 insn_data
[num
].name
);
2844 if (insn_data
[num
].n_alternatives
> 1)
2845 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
2846 #ifdef HAVE_ATTR_length
2847 fprintf (asm_out_file
, "\t[length = %d]",
2848 get_attr_length (debug_insn
));
2850 /* Clear this so only the first assembler insn
2851 of any rtl insn will get the special comment for -dp. */
2856 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2857 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2858 corresponds to the address of the object and 0 if to the object. */
2861 get_mem_expr_from_op (rtx op
, int *paddressp
)
2869 return REG_EXPR (op
);
2870 else if (!MEM_P (op
))
2873 if (MEM_EXPR (op
) != 0)
2874 return MEM_EXPR (op
);
2876 /* Otherwise we have an address, so indicate it and look at the address. */
2880 /* First check if we have a decl for the address, then look at the right side
2881 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2882 But don't allow the address to itself be indirect. */
2883 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
2885 else if (GET_CODE (op
) == PLUS
2886 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
2889 while (GET_RTX_CLASS (GET_CODE (op
)) == RTX_UNARY
2890 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
2893 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
2894 return inner_addressp
? 0 : expr
;
2897 /* Output operand names for assembler instructions. OPERANDS is the
2898 operand vector, OPORDER is the order to write the operands, and NOPS
2899 is the number of operands to write. */
2902 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
2907 for (i
= 0; i
< nops
; i
++)
2910 rtx op
= operands
[oporder
[i
]];
2911 tree expr
= get_mem_expr_from_op (op
, &addressp
);
2913 fprintf (asm_out_file
, "%c%s",
2914 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
2918 fprintf (asm_out_file
, "%s",
2919 addressp
? "*" : "");
2920 print_mem_expr (asm_out_file
, expr
);
2923 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
2924 && ORIGINAL_REGNO (op
) != REGNO (op
))
2925 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
2929 /* Output text from TEMPLATE to the assembler output file,
2930 obeying %-directions to substitute operands taken from
2931 the vector OPERANDS.
2933 %N (for N a digit) means print operand N in usual manner.
2934 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2935 and print the label name with no punctuation.
2936 %cN means require operand N to be a constant
2937 and print the constant expression with no punctuation.
2938 %aN means expect operand N to be a memory address
2939 (not a memory reference!) and print a reference
2941 %nN means expect operand N to be a constant
2942 and print a constant expression for minus the value
2943 of the operand, with no other punctuation. */
2946 output_asm_insn (const char *template, rtx
*operands
)
2950 #ifdef ASSEMBLER_DIALECT
2953 int oporder
[MAX_RECOG_OPERANDS
];
2954 char opoutput
[MAX_RECOG_OPERANDS
];
2957 /* An insn may return a null string template
2958 in a case where no assembler code is needed. */
2962 memset (opoutput
, 0, sizeof opoutput
);
2964 putc ('\t', asm_out_file
);
2966 #ifdef ASM_OUTPUT_OPCODE
2967 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
2974 if (flag_verbose_asm
)
2975 output_asm_operand_names (operands
, oporder
, ops
);
2976 if (flag_print_asm_name
)
2980 memset (opoutput
, 0, sizeof opoutput
);
2982 putc (c
, asm_out_file
);
2983 #ifdef ASM_OUTPUT_OPCODE
2984 while ((c
= *p
) == '\t')
2986 putc (c
, asm_out_file
);
2989 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
2993 #ifdef ASSEMBLER_DIALECT
2999 output_operand_lossage ("nested assembly dialect alternatives");
3003 /* If we want the first dialect, do nothing. Otherwise, skip
3004 DIALECT_NUMBER of strings ending with '|'. */
3005 for (i
= 0; i
< dialect_number
; i
++)
3007 while (*p
&& *p
!= '}' && *p
++ != '|')
3016 output_operand_lossage ("unterminated assembly dialect alternative");
3023 /* Skip to close brace. */
3028 output_operand_lossage ("unterminated assembly dialect alternative");
3032 while (*p
++ != '}');
3036 putc (c
, asm_out_file
);
3041 putc (c
, asm_out_file
);
3047 /* %% outputs a single %. */
3051 putc (c
, asm_out_file
);
3053 /* %= outputs a number which is unique to each insn in the entire
3054 compilation. This is useful for making local labels that are
3055 referred to more than once in a given insn. */
3059 fprintf (asm_out_file
, "%d", insn_counter
);
3061 /* % followed by a letter and some digits
3062 outputs an operand in a special way depending on the letter.
3063 Letters `acln' are implemented directly.
3064 Other letters are passed to `output_operand' so that
3065 the PRINT_OPERAND macro can define them. */
3066 else if (ISALPHA (*p
))
3069 unsigned long opnum
;
3072 opnum
= strtoul (p
, &endptr
, 10);
3075 output_operand_lossage ("operand number missing "
3077 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3078 output_operand_lossage ("operand number out of range");
3079 else if (letter
== 'l')
3080 output_asm_label (operands
[opnum
]);
3081 else if (letter
== 'a')
3082 output_address (operands
[opnum
]);
3083 else if (letter
== 'c')
3085 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3086 output_addr_const (asm_out_file
, operands
[opnum
]);
3088 output_operand (operands
[opnum
], 'c');
3090 else if (letter
== 'n')
3092 if (GET_CODE (operands
[opnum
]) == CONST_INT
)
3093 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3094 - INTVAL (operands
[opnum
]));
3097 putc ('-', asm_out_file
);
3098 output_addr_const (asm_out_file
, operands
[opnum
]);
3102 output_operand (operands
[opnum
], letter
);
3104 if (!opoutput
[opnum
])
3105 oporder
[ops
++] = opnum
;
3106 opoutput
[opnum
] = 1;
3111 /* % followed by a digit outputs an operand the default way. */
3112 else if (ISDIGIT (*p
))
3114 unsigned long opnum
;
3117 opnum
= strtoul (p
, &endptr
, 10);
3118 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3119 output_operand_lossage ("operand number out of range");
3121 output_operand (operands
[opnum
], 0);
3123 if (!opoutput
[opnum
])
3124 oporder
[ops
++] = opnum
;
3125 opoutput
[opnum
] = 1;
3130 /* % followed by punctuation: output something for that
3131 punctuation character alone, with no operand.
3132 The PRINT_OPERAND macro decides what is actually done. */
3133 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3134 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p
))
3135 output_operand (NULL_RTX
, *p
++);
3138 output_operand_lossage ("invalid %%-code");
3142 putc (c
, asm_out_file
);
3145 /* Write out the variable names for operands, if we know them. */
3146 if (flag_verbose_asm
)
3147 output_asm_operand_names (operands
, oporder
, ops
);
3148 if (flag_print_asm_name
)
3151 putc ('\n', asm_out_file
);
3154 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3157 output_asm_label (rtx x
)
3161 if (GET_CODE (x
) == LABEL_REF
)
3165 && NOTE_LINE_NUMBER (x
) == NOTE_INSN_DELETED_LABEL
))
3166 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3168 output_operand_lossage ("'%%l' operand isn't a label");
3170 assemble_name (asm_out_file
, buf
);
3173 /* Print operand X using machine-dependent assembler syntax.
3174 The macro PRINT_OPERAND is defined just to control this function.
3175 CODE is a non-digit that preceded the operand-number in the % spec,
3176 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3177 between the % and the digits.
3178 When CODE is a non-letter, X is 0.
3180 The meanings of the letters are machine-dependent and controlled
3181 by PRINT_OPERAND. */
3184 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3186 if (x
&& GET_CODE (x
) == SUBREG
)
3187 x
= alter_subreg (&x
);
3189 /* X must not be a pseudo reg. */
3190 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3192 PRINT_OPERAND (asm_out_file
, x
, code
);
3195 /* Print a memory reference operand for address X
3196 using machine-dependent assembler syntax.
3197 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3200 output_address (rtx x
)
3202 walk_alter_subreg (&x
);
3203 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3206 /* Print an integer constant expression in assembler syntax.
3207 Addition and subtraction are the only arithmetic
3208 that may appear in these expressions. */
3211 output_addr_const (FILE *file
, rtx x
)
3216 switch (GET_CODE (x
))
3223 if (SYMBOL_REF_DECL (x
))
3224 mark_decl_referenced (SYMBOL_REF_DECL (x
));
3225 #ifdef ASM_OUTPUT_SYMBOL_REF
3226 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3228 assemble_name (file
, XSTR (x
, 0));
3236 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3237 #ifdef ASM_OUTPUT_LABEL_REF
3238 ASM_OUTPUT_LABEL_REF (file
, buf
);
3240 assemble_name (file
, buf
);
3245 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3249 /* This used to output parentheses around the expression,
3250 but that does not work on the 386 (either ATT or BSD assembler). */
3251 output_addr_const (file
, XEXP (x
, 0));
3255 if (GET_MODE (x
) == VOIDmode
)
3257 /* We can use %d if the number is one word and positive. */
3258 if (CONST_DOUBLE_HIGH (x
))
3259 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3260 CONST_DOUBLE_HIGH (x
), CONST_DOUBLE_LOW (x
));
3261 else if (CONST_DOUBLE_LOW (x
) < 0)
3262 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, CONST_DOUBLE_LOW (x
));
3264 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3267 /* We can't handle floating point constants;
3268 PRINT_OPERAND must handle them. */
3269 output_operand_lossage ("floating constant misused");
3273 /* Some assemblers need integer constants to appear last (eg masm). */
3274 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
3276 output_addr_const (file
, XEXP (x
, 1));
3277 if (INTVAL (XEXP (x
, 0)) >= 0)
3278 fprintf (file
, "+");
3279 output_addr_const (file
, XEXP (x
, 0));
3283 output_addr_const (file
, XEXP (x
, 0));
3284 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
3285 || INTVAL (XEXP (x
, 1)) >= 0)
3286 fprintf (file
, "+");
3287 output_addr_const (file
, XEXP (x
, 1));
3292 /* Avoid outputting things like x-x or x+5-x,
3293 since some assemblers can't handle that. */
3294 x
= simplify_subtraction (x
);
3295 if (GET_CODE (x
) != MINUS
)
3298 output_addr_const (file
, XEXP (x
, 0));
3299 fprintf (file
, "-");
3300 if ((GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0)
3301 || GET_CODE (XEXP (x
, 1)) == PC
3302 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3303 output_addr_const (file
, XEXP (x
, 1));
3306 fputs (targetm
.asm_out
.open_paren
, file
);
3307 output_addr_const (file
, XEXP (x
, 1));
3308 fputs (targetm
.asm_out
.close_paren
, file
);
3315 output_addr_const (file
, XEXP (x
, 0));
3319 #ifdef OUTPUT_ADDR_CONST_EXTRA
3320 OUTPUT_ADDR_CONST_EXTRA (file
, x
, fail
);
3325 output_operand_lossage ("invalid expression as operand");
3329 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3330 %R prints the value of REGISTER_PREFIX.
3331 %L prints the value of LOCAL_LABEL_PREFIX.
3332 %U prints the value of USER_LABEL_PREFIX.
3333 %I prints the value of IMMEDIATE_PREFIX.
3334 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3335 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3337 We handle alternate assembler dialects here, just like output_asm_insn. */
3340 asm_fprintf (FILE *file
, const char *p
, ...)
3346 va_start (argptr
, p
);
3353 #ifdef ASSEMBLER_DIALECT
3358 /* If we want the first dialect, do nothing. Otherwise, skip
3359 DIALECT_NUMBER of strings ending with '|'. */
3360 for (i
= 0; i
< dialect_number
; i
++)
3362 while (*p
&& *p
++ != '|')
3372 /* Skip to close brace. */
3373 while (*p
&& *p
++ != '}')
3384 while (strchr ("-+ #0", c
))
3389 while (ISDIGIT (c
) || c
== '.')
3400 case 'd': case 'i': case 'u':
3401 case 'x': case 'X': case 'o':
3405 fprintf (file
, buf
, va_arg (argptr
, int));
3409 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3410 'o' cases, but we do not check for those cases. It
3411 means that the value is a HOST_WIDE_INT, which may be
3412 either `long' or `long long'. */
3413 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
3414 q
+= strlen (HOST_WIDE_INT_PRINT
);
3417 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3422 #ifdef HAVE_LONG_LONG
3428 fprintf (file
, buf
, va_arg (argptr
, long long));
3435 fprintf (file
, buf
, va_arg (argptr
, long));
3443 fprintf (file
, buf
, va_arg (argptr
, char *));
3447 #ifdef ASM_OUTPUT_OPCODE
3448 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3453 #ifdef REGISTER_PREFIX
3454 fprintf (file
, "%s", REGISTER_PREFIX
);
3459 #ifdef IMMEDIATE_PREFIX
3460 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3465 #ifdef LOCAL_LABEL_PREFIX
3466 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3471 fputs (user_label_prefix
, file
);
3474 #ifdef ASM_FPRINTF_EXTENSIONS
3475 /* Uppercase letters are reserved for general use by asm_fprintf
3476 and so are not available to target specific code. In order to
3477 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3478 they are defined here. As they get turned into real extensions
3479 to asm_fprintf they should be removed from this list. */
3480 case 'A': case 'B': case 'C': case 'D': case 'E':
3481 case 'F': case 'G': case 'H': case 'J': case 'K':
3482 case 'M': case 'N': case 'P': case 'Q': case 'S':
3483 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3486 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3499 /* Split up a CONST_DOUBLE or integer constant rtx
3500 into two rtx's for single words,
3501 storing in *FIRST the word that comes first in memory in the target
3502 and in *SECOND the other. */
3505 split_double (rtx value
, rtx
*first
, rtx
*second
)
3507 if (GET_CODE (value
) == CONST_INT
)
3509 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3511 /* In this case the CONST_INT holds both target words.
3512 Extract the bits from it into two word-sized pieces.
3513 Sign extend each half to HOST_WIDE_INT. */
3514 unsigned HOST_WIDE_INT low
, high
;
3515 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3517 /* Set sign_bit to the most significant bit of a word. */
3519 sign_bit
<<= BITS_PER_WORD
- 1;
3521 /* Set mask so that all bits of the word are set. We could
3522 have used 1 << BITS_PER_WORD instead of basing the
3523 calculation on sign_bit. However, on machines where
3524 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3525 compiler warning, even though the code would never be
3527 mask
= sign_bit
<< 1;
3530 /* Set sign_extend as any remaining bits. */
3531 sign_extend
= ~mask
;
3533 /* Pick the lower word and sign-extend it. */
3534 low
= INTVAL (value
);
3539 /* Pick the higher word, shifted to the least significant
3540 bits, and sign-extend it. */
3541 high
= INTVAL (value
);
3542 high
>>= BITS_PER_WORD
- 1;
3545 if (high
& sign_bit
)
3546 high
|= sign_extend
;
3548 /* Store the words in the target machine order. */
3549 if (WORDS_BIG_ENDIAN
)
3551 *first
= GEN_INT (high
);
3552 *second
= GEN_INT (low
);
3556 *first
= GEN_INT (low
);
3557 *second
= GEN_INT (high
);
3562 /* The rule for using CONST_INT for a wider mode
3563 is that we regard the value as signed.
3564 So sign-extend it. */
3565 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3566 if (WORDS_BIG_ENDIAN
)
3578 else if (GET_CODE (value
) != CONST_DOUBLE
)
3580 if (WORDS_BIG_ENDIAN
)
3582 *first
= const0_rtx
;
3588 *second
= const0_rtx
;
3591 else if (GET_MODE (value
) == VOIDmode
3592 /* This is the old way we did CONST_DOUBLE integers. */
3593 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3595 /* In an integer, the words are defined as most and least significant.
3596 So order them by the target's convention. */
3597 if (WORDS_BIG_ENDIAN
)
3599 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3600 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3604 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3605 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3612 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3614 /* Note, this converts the REAL_VALUE_TYPE to the target's
3615 format, splits up the floating point double and outputs
3616 exactly 32 bits of it into each of l[0] and l[1] --
3617 not necessarily BITS_PER_WORD bits. */
3618 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3620 /* If 32 bits is an entire word for the target, but not for the host,
3621 then sign-extend on the host so that the number will look the same
3622 way on the host that it would on the target. See for instance
3623 simplify_unary_operation. The #if is needed to avoid compiler
3626 #if HOST_BITS_PER_LONG > 32
3627 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3629 if (l
[0] & ((long) 1 << 31))
3630 l
[0] |= ((long) (-1) << 32);
3631 if (l
[1] & ((long) 1 << 31))
3632 l
[1] |= ((long) (-1) << 32);
3636 *first
= GEN_INT (l
[0]);
3637 *second
= GEN_INT (l
[1]);
3641 /* Return nonzero if this function has no function calls. */
3644 leaf_function_p (void)
3649 if (current_function_profile
|| profile_arc_flag
)
3652 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3655 && ! SIBLING_CALL_P (insn
))
3657 if (NONJUMP_INSN_P (insn
)
3658 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3659 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3660 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3663 for (link
= current_function_epilogue_delay_list
;
3665 link
= XEXP (link
, 1))
3667 insn
= XEXP (link
, 0);
3670 && ! SIBLING_CALL_P (insn
))
3672 if (NONJUMP_INSN_P (insn
)
3673 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3674 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3675 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3682 /* Return 1 if branch is a forward branch.
3683 Uses insn_shuid array, so it works only in the final pass. May be used by
3684 output templates to customary add branch prediction hints.
3687 final_forward_branch_p (rtx insn
)
3689 int insn_id
, label_id
;
3691 gcc_assert (uid_shuid
);
3692 insn_id
= INSN_SHUID (insn
);
3693 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
3694 /* We've hit some insns that does not have id information available. */
3695 gcc_assert (insn_id
&& label_id
);
3696 return insn_id
< label_id
;
3699 /* On some machines, a function with no call insns
3700 can run faster if it doesn't create its own register window.
3701 When output, the leaf function should use only the "output"
3702 registers. Ordinarily, the function would be compiled to use
3703 the "input" registers to find its arguments; it is a candidate
3704 for leaf treatment if it uses only the "input" registers.
3705 Leaf function treatment means renumbering so the function
3706 uses the "output" registers instead. */
3708 #ifdef LEAF_REGISTERS
3710 /* Return 1 if this function uses only the registers that can be
3711 safely renumbered. */
3714 only_leaf_regs_used (void)
3717 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
3719 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3720 if ((regs_ever_live
[i
] || global_regs
[i
])
3721 && ! permitted_reg_in_leaf_functions
[i
])
3724 if (current_function_uses_pic_offset_table
3725 && pic_offset_table_rtx
!= 0
3726 && REG_P (pic_offset_table_rtx
)
3727 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
3733 /* Scan all instructions and renumber all registers into those
3734 available in leaf functions. */
3737 leaf_renumber_regs (rtx first
)
3741 /* Renumber only the actual patterns.
3742 The reg-notes can contain frame pointer refs,
3743 and renumbering them could crash, and should not be needed. */
3744 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3746 leaf_renumber_regs_insn (PATTERN (insn
));
3747 for (insn
= current_function_epilogue_delay_list
;
3749 insn
= XEXP (insn
, 1))
3750 if (INSN_P (XEXP (insn
, 0)))
3751 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
3754 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3755 available in leaf functions. */
3758 leaf_renumber_regs_insn (rtx in_rtx
)
3761 const char *format_ptr
;
3766 /* Renumber all input-registers into output-registers.
3767 renumbered_regs would be 1 for an output-register;
3774 /* Don't renumber the same reg twice. */
3778 newreg
= REGNO (in_rtx
);
3779 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3780 to reach here as part of a REG_NOTE. */
3781 if (newreg
>= FIRST_PSEUDO_REGISTER
)
3786 newreg
= LEAF_REG_REMAP (newreg
);
3787 gcc_assert (newreg
>= 0);
3788 regs_ever_live
[REGNO (in_rtx
)] = 0;
3789 regs_ever_live
[newreg
] = 1;
3790 REGNO (in_rtx
) = newreg
;
3794 if (INSN_P (in_rtx
))
3796 /* Inside a SEQUENCE, we find insns.
3797 Renumber just the patterns of these insns,
3798 just as we do for the top-level insns. */
3799 leaf_renumber_regs_insn (PATTERN (in_rtx
));
3803 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
3805 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
3806 switch (*format_ptr
++)
3809 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
3813 if (NULL
!= XVEC (in_rtx
, i
))
3815 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
3816 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
3836 /* When -gused is used, emit debug info for only used symbols. But in
3837 addition to the standard intercepted debug_hooks there are some direct
3838 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3839 Those routines may also be called from a higher level intercepted routine. So
3840 to prevent recording data for an inner call to one of these for an intercept,
3841 we maintain an intercept nesting counter (debug_nesting). We only save the
3842 intercepted arguments if the nesting is 1. */
3843 int debug_nesting
= 0;
3845 static tree
*symbol_queue
;
3846 int symbol_queue_index
= 0;
3847 static int symbol_queue_size
= 0;
3849 /* Generate the symbols for any queued up type symbols we encountered
3850 while generating the type info for some originally used symbol.
3851 This might generate additional entries in the queue. Only when
3852 the nesting depth goes to 0 is this routine called. */
3855 debug_flush_symbol_queue (void)
3859 /* Make sure that additionally queued items are not flushed
3864 for (i
= 0; i
< symbol_queue_index
; ++i
)
3866 /* If we pushed queued symbols then such symbols are must be
3867 output no matter what anyone else says. Specifically,
3868 we need to make sure dbxout_symbol() thinks the symbol was
3869 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3870 which may be set for outside reasons. */
3871 int saved_tree_used
= TREE_USED (symbol_queue
[i
]);
3872 int saved_suppress_debug
= TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]);
3873 TREE_USED (symbol_queue
[i
]) = 1;
3874 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = 0;
3876 #ifdef DBX_DEBUGGING_INFO
3877 dbxout_symbol (symbol_queue
[i
], 0);
3880 TREE_USED (symbol_queue
[i
]) = saved_tree_used
;
3881 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = saved_suppress_debug
;
3884 symbol_queue_index
= 0;
3888 /* Queue a type symbol needed as part of the definition of a decl
3889 symbol. These symbols are generated when debug_flush_symbol_queue()
3893 debug_queue_symbol (tree decl
)
3895 if (symbol_queue_index
>= symbol_queue_size
)
3897 symbol_queue_size
+= 10;
3898 symbol_queue
= xrealloc (symbol_queue
,
3899 symbol_queue_size
* sizeof (tree
));
3902 symbol_queue
[symbol_queue_index
++] = decl
;
3905 /* Free symbol queue. */
3907 debug_free_queue (void)
3911 free (symbol_queue
);
3912 symbol_queue
= NULL
;
3913 symbol_queue_size
= 0;
3917 /* Turn the RTL into assembly. */
3919 rest_of_handle_final (void)
3924 /* Get the function's name, as described by its RTL. This may be
3925 different from the DECL_NAME name used in the source file. */
3927 x
= DECL_RTL (current_function_decl
);
3928 gcc_assert (MEM_P (x
));
3930 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
3931 fnname
= XSTR (x
, 0);
3933 assemble_start_function (current_function_decl
, fnname
);
3934 final_start_function (get_insns (), asm_out_file
, optimize
);
3935 final (get_insns (), asm_out_file
, optimize
);
3936 final_end_function ();
3938 #ifdef TARGET_UNWIND_INFO
3939 /* ??? The IA-64 ".handlerdata" directive must be issued before
3940 the ".endp" directive that closes the procedure descriptor. */
3941 output_function_exception_table ();
3944 assemble_end_function (current_function_decl
, fnname
);
3946 #ifndef TARGET_UNWIND_INFO
3947 /* Otherwise, it feels unclean to switch sections in the middle. */
3948 output_function_exception_table ();
3951 user_defined_section_attribute
= false;
3954 fflush (asm_out_file
);
3956 /* Release all memory allocated by flow. */
3957 free_basic_block_vars ();
3959 /* Write DBX symbols if requested. */
3961 /* Note that for those inline functions where we don't initially
3962 know for certain that we will be generating an out-of-line copy,
3963 the first invocation of this routine (rest_of_compilation) will
3964 skip over this code by doing a `goto exit_rest_of_compilation;'.
3965 Later on, wrapup_global_declarations will (indirectly) call
3966 rest_of_compilation again for those inline functions that need
3967 to have out-of-line copies generated. During that call, we
3968 *will* be routed past here. */
3970 timevar_push (TV_SYMOUT
);
3971 (*debug_hooks
->function_decl
) (current_function_decl
);
3972 timevar_pop (TV_SYMOUT
);
3975 struct tree_opt_pass pass_final
=
3979 rest_of_handle_final
, /* execute */
3982 0, /* static_pass_number */
3983 TV_FINAL
, /* tv_id */
3984 0, /* properties_required */
3985 0, /* properties_provided */
3986 0, /* properties_destroyed */
3987 0, /* todo_flags_start */
3988 TODO_ggc_collect
, /* todo_flags_finish */
3994 rest_of_handle_shorten_branches (void)
3996 /* Shorten branches. */
3997 shorten_branches (get_insns ());
4000 struct tree_opt_pass pass_shorten_branches
=
4002 "shorten", /* name */
4004 rest_of_handle_shorten_branches
, /* execute */
4007 0, /* static_pass_number */
4008 TV_FINAL
, /* tv_id */
4009 0, /* properties_required */
4010 0, /* properties_provided */
4011 0, /* properties_destroyed */
4012 0, /* todo_flags_start */
4013 TODO_dump_func
, /* todo_flags_finish */
4019 rest_of_clean_state (void)
4023 /* It is very important to decompose the RTL instruction chain here:
4024 debug information keeps pointing into CODE_LABEL insns inside the function
4025 body. If these remain pointing to the other insns, we end up preserving
4026 whole RTL chain and attached detailed debug info in memory. */
4027 for (insn
= get_insns (); insn
; insn
= next
)
4029 next
= NEXT_INSN (insn
);
4030 NEXT_INSN (insn
) = NULL
;
4031 PREV_INSN (insn
) = NULL
;
4034 /* In case the function was not output,
4035 don't leave any temporary anonymous types
4036 queued up for sdb output. */
4037 #ifdef SDB_DEBUGGING_INFO
4038 if (write_symbols
== SDB_DEBUG
)
4039 sdbout_types (NULL_TREE
);
4042 reload_completed
= 0;
4043 epilogue_completed
= 0;
4044 flow2_completed
= 0;
4047 /* Clear out the insn_length contents now that they are no
4049 init_insn_lengths ();
4051 /* Show no temporary slots allocated. */
4054 free_basic_block_vars ();
4055 free_bb_for_insn ();
4058 if (targetm
.binds_local_p (current_function_decl
))
4060 int pref
= cfun
->preferred_stack_boundary
;
4061 if (cfun
->stack_alignment_needed
> cfun
->preferred_stack_boundary
)
4062 pref
= cfun
->stack_alignment_needed
;
4063 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4067 /* Make sure volatile mem refs aren't considered valid operands for
4068 arithmetic insns. We must call this here if this is a nested inline
4069 function, since the above code leaves us in the init_recog state,
4070 and the function context push/pop code does not save/restore volatile_ok.
4072 ??? Maybe it isn't necessary for expand_start_function to call this
4073 anymore if we do it here? */
4075 init_recog_no_volatile ();
4077 /* We're done with this function. Free up memory if we can. */
4078 free_after_parsing (cfun
);
4079 free_after_compilation (cfun
);
4082 struct tree_opt_pass pass_clean_state
=
4086 rest_of_clean_state
, /* execute */
4089 0, /* static_pass_number */
4090 TV_FINAL
, /* tv_id */
4091 0, /* properties_required */
4092 0, /* properties_provided */
4093 PROP_rtl
, /* properties_destroyed */
4094 0, /* todo_flags_start */
4095 0, /* todo_flags_finish */