2005-12-05 Jan Beulich <jbeulich@novell.com>
[official-gcc.git] / gcc / convert.c
blob49d4a3ac5d6c2b7c79fd7ff436c7ce6929535485
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
41 tree
42 convert_to_pointer (tree type, tree expr)
44 if (integer_zerop (expr))
45 return build_int_cst (type, 0);
47 switch (TREE_CODE (TREE_TYPE (expr)))
49 case POINTER_TYPE:
50 case REFERENCE_TYPE:
51 return build1 (NOP_EXPR, type, expr);
53 case INTEGER_TYPE:
54 case ENUMERAL_TYPE:
55 case BOOLEAN_TYPE:
56 case CHAR_TYPE:
57 if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
58 expr = fold_build1 (NOP_EXPR,
59 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
60 expr);
61 return fold_build1 (CONVERT_EXPR, type, expr);
64 default:
65 error ("cannot convert to a pointer type");
66 return convert_to_pointer (type, integer_zero_node);
70 /* Avoid any floating point extensions from EXP. */
71 tree
72 strip_float_extensions (tree exp)
74 tree sub, expt, subt;
76 /* For floating point constant look up the narrowest type that can hold
77 it properly and handle it like (type)(narrowest_type)constant.
78 This way we can optimize for instance a=a*2.0 where "a" is float
79 but 2.0 is double constant. */
80 if (TREE_CODE (exp) == REAL_CST)
82 REAL_VALUE_TYPE orig;
83 tree type = NULL;
85 orig = TREE_REAL_CST (exp);
86 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
87 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
88 type = float_type_node;
89 else if (TYPE_PRECISION (TREE_TYPE (exp))
90 > TYPE_PRECISION (double_type_node)
91 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
92 type = double_type_node;
93 if (type)
94 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
97 if (TREE_CODE (exp) != NOP_EXPR
98 && TREE_CODE (exp) != CONVERT_EXPR)
99 return exp;
101 sub = TREE_OPERAND (exp, 0);
102 subt = TREE_TYPE (sub);
103 expt = TREE_TYPE (exp);
105 if (!FLOAT_TYPE_P (subt))
106 return exp;
108 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
109 return exp;
111 return strip_float_extensions (sub);
115 /* Convert EXPR to some floating-point type TYPE.
117 EXPR must be float, integer, or enumeral;
118 in other cases error is called. */
120 tree
121 convert_to_real (tree type, tree expr)
123 enum built_in_function fcode = builtin_mathfn_code (expr);
124 tree itype = TREE_TYPE (expr);
126 /* Disable until we figure out how to decide whether the functions are
127 present in runtime. */
128 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
129 if (optimize
130 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
131 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
133 switch (fcode)
135 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
136 CASE_MATHFN (ACOS)
137 CASE_MATHFN (ACOSH)
138 CASE_MATHFN (ASIN)
139 CASE_MATHFN (ASINH)
140 CASE_MATHFN (ATAN)
141 CASE_MATHFN (ATANH)
142 CASE_MATHFN (CBRT)
143 CASE_MATHFN (COS)
144 CASE_MATHFN (COSH)
145 CASE_MATHFN (ERF)
146 CASE_MATHFN (ERFC)
147 CASE_MATHFN (EXP)
148 CASE_MATHFN (EXP10)
149 CASE_MATHFN (EXP2)
150 CASE_MATHFN (EXPM1)
151 CASE_MATHFN (FABS)
152 CASE_MATHFN (GAMMA)
153 CASE_MATHFN (J0)
154 CASE_MATHFN (J1)
155 CASE_MATHFN (LGAMMA)
156 CASE_MATHFN (LOG)
157 CASE_MATHFN (LOG10)
158 CASE_MATHFN (LOG1P)
159 CASE_MATHFN (LOG2)
160 CASE_MATHFN (LOGB)
161 CASE_MATHFN (POW10)
162 CASE_MATHFN (SIN)
163 CASE_MATHFN (SINH)
164 CASE_MATHFN (SQRT)
165 CASE_MATHFN (TAN)
166 CASE_MATHFN (TANH)
167 CASE_MATHFN (TGAMMA)
168 CASE_MATHFN (Y0)
169 CASE_MATHFN (Y1)
170 #undef CASE_MATHFN
172 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
173 tree newtype = type;
175 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
176 the both as the safe type for operation. */
177 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
178 newtype = TREE_TYPE (arg0);
180 /* Be careful about integer to fp conversions.
181 These may overflow still. */
182 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
183 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
184 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
185 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
187 tree arglist;
188 tree fn = mathfn_built_in (newtype, fcode);
190 if (fn)
192 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
193 expr = build_function_call_expr (fn, arglist);
194 if (newtype == type)
195 return expr;
199 default:
200 break;
203 if (optimize
204 && (((fcode == BUILT_IN_FLOORL
205 || fcode == BUILT_IN_CEILL
206 || fcode == BUILT_IN_ROUNDL
207 || fcode == BUILT_IN_RINTL
208 || fcode == BUILT_IN_TRUNCL
209 || fcode == BUILT_IN_NEARBYINTL)
210 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
211 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
212 || ((fcode == BUILT_IN_FLOOR
213 || fcode == BUILT_IN_CEIL
214 || fcode == BUILT_IN_ROUND
215 || fcode == BUILT_IN_RINT
216 || fcode == BUILT_IN_TRUNC
217 || fcode == BUILT_IN_NEARBYINT)
218 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
220 tree fn = mathfn_built_in (type, fcode);
222 if (fn)
224 tree arg
225 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
227 /* Make sure (type)arg0 is an extension, otherwise we could end up
228 changing (float)floor(double d) into floorf((float)d), which is
229 incorrect because (float)d uses round-to-nearest and can round
230 up to the next integer. */
231 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
232 return
233 build_function_call_expr (fn,
234 build_tree_list (NULL_TREE,
235 fold (convert_to_real (type, arg))));
239 /* Propagate the cast into the operation. */
240 if (itype != type && FLOAT_TYPE_P (type))
241 switch (TREE_CODE (expr))
243 /* Convert (float)-x into -(float)x. This is always safe. */
244 case ABS_EXPR:
245 case NEGATE_EXPR:
246 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
247 return build1 (TREE_CODE (expr), type,
248 fold (convert_to_real (type,
249 TREE_OPERAND (expr, 0))));
250 break;
251 /* Convert (outertype)((innertype0)a+(innertype1)b)
252 into ((newtype)a+(newtype)b) where newtype
253 is the widest mode from all of these. */
254 case PLUS_EXPR:
255 case MINUS_EXPR:
256 case MULT_EXPR:
257 case RDIV_EXPR:
259 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
260 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
262 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
263 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
265 tree newtype = type;
266 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
267 newtype = TREE_TYPE (arg0);
268 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
269 newtype = TREE_TYPE (arg1);
270 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
272 expr = build2 (TREE_CODE (expr), newtype,
273 fold (convert_to_real (newtype, arg0)),
274 fold (convert_to_real (newtype, arg1)));
275 if (newtype == type)
276 return expr;
280 break;
281 default:
282 break;
285 switch (TREE_CODE (TREE_TYPE (expr)))
287 case REAL_TYPE:
288 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
289 type, expr);
291 case INTEGER_TYPE:
292 case ENUMERAL_TYPE:
293 case BOOLEAN_TYPE:
294 case CHAR_TYPE:
295 return build1 (FLOAT_EXPR, type, expr);
297 case COMPLEX_TYPE:
298 return convert (type,
299 fold_build1 (REALPART_EXPR,
300 TREE_TYPE (TREE_TYPE (expr)), expr));
302 case POINTER_TYPE:
303 case REFERENCE_TYPE:
304 error ("pointer value used where a floating point value was expected");
305 return convert_to_real (type, integer_zero_node);
307 default:
308 error ("aggregate value used where a float was expected");
309 return convert_to_real (type, integer_zero_node);
313 /* Convert EXPR to some integer (or enum) type TYPE.
315 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
316 vector; in other cases error is called.
318 The result of this is always supposed to be a newly created tree node
319 not in use in any existing structure. */
321 tree
322 convert_to_integer (tree type, tree expr)
324 enum tree_code ex_form = TREE_CODE (expr);
325 tree intype = TREE_TYPE (expr);
326 unsigned int inprec = TYPE_PRECISION (intype);
327 unsigned int outprec = TYPE_PRECISION (type);
329 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
330 be. Consider `enum E = { a, b = (enum E) 3 };'. */
331 if (!COMPLETE_TYPE_P (type))
333 error ("conversion to incomplete type");
334 return error_mark_node;
337 /* Convert e.g. (long)round(d) -> lround(d). */
338 /* If we're converting to char, we may encounter differing behavior
339 between converting from double->char vs double->long->char.
340 We're in "undefined" territory but we prefer to be conservative,
341 so only proceed in "unsafe" math mode. */
342 if (optimize
343 && (flag_unsafe_math_optimizations
344 || (long_integer_type_node
345 && outprec >= TYPE_PRECISION (long_integer_type_node))))
347 tree s_expr = strip_float_extensions (expr);
348 tree s_intype = TREE_TYPE (s_expr);
349 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
350 tree fn = 0;
352 switch (fcode)
354 CASE_FLT_FN (BUILT_IN_CEIL):
355 /* Only convert in ISO C99 mode. */
356 if (!TARGET_C99_FUNCTIONS)
357 break;
358 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
359 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
360 else
361 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
362 break;
364 CASE_FLT_FN (BUILT_IN_FLOOR):
365 /* Only convert in ISO C99 mode. */
366 if (!TARGET_C99_FUNCTIONS)
367 break;
368 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
369 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
370 else
371 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
372 break;
374 CASE_FLT_FN (BUILT_IN_ROUND):
375 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
376 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
377 else
378 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
379 break;
381 CASE_FLT_FN (BUILT_IN_RINT):
382 /* Only convert rint* if we can ignore math exceptions. */
383 if (flag_trapping_math)
384 break;
385 /* ... Fall through ... */
386 CASE_FLT_FN (BUILT_IN_NEARBYINT):
387 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
388 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
389 else
390 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
391 break;
393 CASE_FLT_FN (BUILT_IN_TRUNC):
395 tree arglist = TREE_OPERAND (s_expr, 1);
396 return convert_to_integer (type, TREE_VALUE (arglist));
399 default:
400 break;
403 if (fn)
405 tree arglist = TREE_OPERAND (s_expr, 1);
406 tree newexpr = build_function_call_expr (fn, arglist);
407 return convert_to_integer (type, newexpr);
411 switch (TREE_CODE (intype))
413 case POINTER_TYPE:
414 case REFERENCE_TYPE:
415 if (integer_zerop (expr))
416 return build_int_cst (type, 0);
418 /* Convert to an unsigned integer of the correct width first,
419 and from there widen/truncate to the required type. */
420 expr = fold_build1 (CONVERT_EXPR,
421 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
422 expr);
423 return fold_convert (type, expr);
425 case INTEGER_TYPE:
426 case ENUMERAL_TYPE:
427 case BOOLEAN_TYPE:
428 case CHAR_TYPE:
429 /* If this is a logical operation, which just returns 0 or 1, we can
430 change the type of the expression. */
432 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
434 expr = copy_node (expr);
435 TREE_TYPE (expr) = type;
436 return expr;
439 /* If we are widening the type, put in an explicit conversion.
440 Similarly if we are not changing the width. After this, we know
441 we are truncating EXPR. */
443 else if (outprec >= inprec)
445 enum tree_code code;
447 /* If the precision of the EXPR's type is K bits and the
448 destination mode has more bits, and the sign is changing,
449 it is not safe to use a NOP_EXPR. For example, suppose
450 that EXPR's type is a 3-bit unsigned integer type, the
451 TYPE is a 3-bit signed integer type, and the machine mode
452 for the types is 8-bit QImode. In that case, the
453 conversion necessitates an explicit sign-extension. In
454 the signed-to-unsigned case the high-order bits have to
455 be cleared. */
456 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
457 && (TYPE_PRECISION (TREE_TYPE (expr))
458 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
459 code = CONVERT_EXPR;
460 else
461 code = NOP_EXPR;
463 return fold_build1 (code, type, expr);
466 /* If TYPE is an enumeral type or a type with a precision less
467 than the number of bits in its mode, do the conversion to the
468 type corresponding to its mode, then do a nop conversion
469 to TYPE. */
470 else if (TREE_CODE (type) == ENUMERAL_TYPE
471 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
472 return build1 (NOP_EXPR, type,
473 convert (lang_hooks.types.type_for_mode
474 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
475 expr));
477 /* Here detect when we can distribute the truncation down past some
478 arithmetic. For example, if adding two longs and converting to an
479 int, we can equally well convert both to ints and then add.
480 For the operations handled here, such truncation distribution
481 is always safe.
482 It is desirable in these cases:
483 1) when truncating down to full-word from a larger size
484 2) when truncating takes no work.
485 3) when at least one operand of the arithmetic has been extended
486 (as by C's default conversions). In this case we need two conversions
487 if we do the arithmetic as already requested, so we might as well
488 truncate both and then combine. Perhaps that way we need only one.
490 Note that in general we cannot do the arithmetic in a type
491 shorter than the desired result of conversion, even if the operands
492 are both extended from a shorter type, because they might overflow
493 if combined in that type. The exceptions to this--the times when
494 two narrow values can be combined in their narrow type even to
495 make a wider result--are handled by "shorten" in build_binary_op. */
497 switch (ex_form)
499 case RSHIFT_EXPR:
500 /* We can pass truncation down through right shifting
501 when the shift count is a nonpositive constant. */
502 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
503 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
504 goto trunc1;
505 break;
507 case LSHIFT_EXPR:
508 /* We can pass truncation down through left shifting
509 when the shift count is a nonnegative constant and
510 the target type is unsigned. */
511 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
512 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
513 && TYPE_UNSIGNED (type)
514 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
516 /* If shift count is less than the width of the truncated type,
517 really shift. */
518 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
519 /* In this case, shifting is like multiplication. */
520 goto trunc1;
521 else
523 /* If it is >= that width, result is zero.
524 Handling this with trunc1 would give the wrong result:
525 (int) ((long long) a << 32) is well defined (as 0)
526 but (int) a << 32 is undefined and would get a
527 warning. */
529 tree t = build_int_cst (type, 0);
531 /* If the original expression had side-effects, we must
532 preserve it. */
533 if (TREE_SIDE_EFFECTS (expr))
534 return build2 (COMPOUND_EXPR, type, expr, t);
535 else
536 return t;
539 break;
541 case MAX_EXPR:
542 case MIN_EXPR:
543 case MULT_EXPR:
545 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
546 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
548 /* Don't distribute unless the output precision is at least as big
549 as the actual inputs. Otherwise, the comparison of the
550 truncated values will be wrong. */
551 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
552 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
553 /* If signedness of arg0 and arg1 don't match,
554 we can't necessarily find a type to compare them in. */
555 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
556 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
557 goto trunc1;
558 break;
561 case PLUS_EXPR:
562 case MINUS_EXPR:
563 case BIT_AND_EXPR:
564 case BIT_IOR_EXPR:
565 case BIT_XOR_EXPR:
566 trunc1:
568 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
569 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
571 if (outprec >= BITS_PER_WORD
572 || TRULY_NOOP_TRUNCATION (outprec, inprec)
573 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
574 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
576 /* Do the arithmetic in type TYPEX,
577 then convert result to TYPE. */
578 tree typex = type;
580 /* Can't do arithmetic in enumeral types
581 so use an integer type that will hold the values. */
582 if (TREE_CODE (typex) == ENUMERAL_TYPE)
583 typex = lang_hooks.types.type_for_size
584 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
586 /* But now perhaps TYPEX is as wide as INPREC.
587 In that case, do nothing special here.
588 (Otherwise would recurse infinitely in convert. */
589 if (TYPE_PRECISION (typex) != inprec)
591 /* Don't do unsigned arithmetic where signed was wanted,
592 or vice versa.
593 Exception: if both of the original operands were
594 unsigned then we can safely do the work as unsigned.
595 Exception: shift operations take their type solely
596 from the first argument.
597 Exception: the LSHIFT_EXPR case above requires that
598 we perform this operation unsigned lest we produce
599 signed-overflow undefinedness.
600 And we may need to do it as unsigned
601 if we truncate to the original size. */
602 if (TYPE_UNSIGNED (TREE_TYPE (expr))
603 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
604 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
605 || ex_form == LSHIFT_EXPR
606 || ex_form == RSHIFT_EXPR
607 || ex_form == LROTATE_EXPR
608 || ex_form == RROTATE_EXPR))
609 || ex_form == LSHIFT_EXPR)
610 typex = lang_hooks.types.unsigned_type (typex);
611 else
612 typex = lang_hooks.types.signed_type (typex);
613 return convert (type,
614 fold_build2 (ex_form, typex,
615 convert (typex, arg0),
616 convert (typex, arg1)));
620 break;
622 case NEGATE_EXPR:
623 case BIT_NOT_EXPR:
624 /* This is not correct for ABS_EXPR,
625 since we must test the sign before truncation. */
627 tree typex;
629 /* Don't do unsigned arithmetic where signed was wanted,
630 or vice versa. */
631 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
632 typex = lang_hooks.types.unsigned_type (type);
633 else
634 typex = lang_hooks.types.signed_type (type);
635 return convert (type,
636 fold_build1 (ex_form, typex,
637 convert (typex,
638 TREE_OPERAND (expr, 0))));
641 case NOP_EXPR:
642 /* Don't introduce a
643 "can't convert between vector values of different size" error. */
644 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
645 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
646 != GET_MODE_SIZE (TYPE_MODE (type))))
647 break;
648 /* If truncating after truncating, might as well do all at once.
649 If truncating after extending, we may get rid of wasted work. */
650 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
652 case COND_EXPR:
653 /* It is sometimes worthwhile to push the narrowing down through
654 the conditional and never loses. */
655 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
656 convert (type, TREE_OPERAND (expr, 1)),
657 convert (type, TREE_OPERAND (expr, 2)));
659 default:
660 break;
663 return build1 (CONVERT_EXPR, type, expr);
665 case REAL_TYPE:
666 return build1 (FIX_TRUNC_EXPR, type, expr);
668 case COMPLEX_TYPE:
669 return convert (type,
670 fold_build1 (REALPART_EXPR,
671 TREE_TYPE (TREE_TYPE (expr)), expr));
673 case VECTOR_TYPE:
674 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
676 error ("can't convert between vector values of different size");
677 return error_mark_node;
679 return build1 (VIEW_CONVERT_EXPR, type, expr);
681 default:
682 error ("aggregate value used where an integer was expected");
683 return convert (type, integer_zero_node);
687 /* Convert EXPR to the complex type TYPE in the usual ways. */
689 tree
690 convert_to_complex (tree type, tree expr)
692 tree subtype = TREE_TYPE (type);
694 switch (TREE_CODE (TREE_TYPE (expr)))
696 case REAL_TYPE:
697 case INTEGER_TYPE:
698 case ENUMERAL_TYPE:
699 case BOOLEAN_TYPE:
700 case CHAR_TYPE:
701 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
702 convert (subtype, integer_zero_node));
704 case COMPLEX_TYPE:
706 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
708 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
709 return expr;
710 else if (TREE_CODE (expr) == COMPLEX_EXPR)
711 return fold_build2 (COMPLEX_EXPR, type,
712 convert (subtype, TREE_OPERAND (expr, 0)),
713 convert (subtype, TREE_OPERAND (expr, 1)));
714 else
716 expr = save_expr (expr);
717 return
718 fold_build2 (COMPLEX_EXPR, type,
719 convert (subtype,
720 fold_build1 (REALPART_EXPR,
721 TREE_TYPE (TREE_TYPE (expr)),
722 expr)),
723 convert (subtype,
724 fold_build1 (IMAGPART_EXPR,
725 TREE_TYPE (TREE_TYPE (expr)),
726 expr)));
730 case POINTER_TYPE:
731 case REFERENCE_TYPE:
732 error ("pointer value used where a complex was expected");
733 return convert_to_complex (type, integer_zero_node);
735 default:
736 error ("aggregate value used where a complex was expected");
737 return convert_to_complex (type, integer_zero_node);
741 /* Convert EXPR to the vector type TYPE in the usual ways. */
743 tree
744 convert_to_vector (tree type, tree expr)
746 switch (TREE_CODE (TREE_TYPE (expr)))
748 case INTEGER_TYPE:
749 case VECTOR_TYPE:
750 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
752 error ("can't convert between vector values of different size");
753 return error_mark_node;
755 return build1 (VIEW_CONVERT_EXPR, type, expr);
757 default:
758 error ("can't convert value to a vector");
759 return error_mark_node;