1 /* SSA operands management for trees.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
23 #include "coretypes.h"
28 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
36 #include "langhooks.h"
38 /* This file contains the code required to manage the operands cache of the
39 SSA optimizer. For every stmt, we maintain an operand cache in the stmt
40 annotation. This cache contains operands that will be of interest to
41 optimizers and other passes wishing to manipulate the IL.
43 The operand type are broken up into REAL and VIRTUAL operands. The real
44 operands are represented as pointers into the stmt's operand tree. Thus
45 any manipulation of the real operands will be reflected in the actual tree.
46 Virtual operands are represented solely in the cache, although the base
47 variable for the SSA_NAME may, or may not occur in the stmt's tree.
48 Manipulation of the virtual operands will not be reflected in the stmt tree.
50 The routines in this file are concerned with creating this operand cache
53 get_stmt_operands() in the primary entry point.
55 The operand tree is the parsed by the various get_* routines which look
56 through the stmt tree for the occurrence of operands which may be of
57 interest, and calls are made to the append_* routines whenever one is
58 found. There are 5 of these routines, each representing one of the
59 5 types of operands. Defs, Uses, Virtual Uses, Virtual May Defs, and
62 The append_* routines check for duplication, and simply keep a list of
63 unique objects for each operand type in the build_* extendable vectors.
65 Once the stmt tree is completely parsed, the finalize_ssa_operands()
66 routine is called, which proceeds to perform the finalization routine
67 on each of the 5 operand vectors which have been built up.
69 If the stmt had a previous operand cache, the finalization routines
70 attempt to match up the new operands with the old ones. If its a perfect
71 match, the old vector is simply reused. If it isn't a perfect match, then
72 a new vector is created and the new operands are placed there. For
73 virtual operands, if the previous cache had SSA_NAME version of a
74 variable, and that same variable occurs in the same operands cache, then
75 the new cache vector will also get the same SSA_NAME.
77 i.e., if a stmt had a VUSE of 'a_5', and 'a' occurs in the new operand
78 vector for VUSE, then the new vector will also be modified such that
79 it contains 'a_5' rather than 'a'.
84 /* Flags to describe operand properties in get_stmt_operands and helpers. */
86 /* By default, operands are loaded. */
89 /* Operand is the target of an assignment expression or a
90 call-clobbered variable */
91 #define opf_is_def (1 << 0)
93 /* Operand is the target of an assignment expression. */
94 #define opf_kill_def (1 << 1)
96 /* No virtual operands should be created in the expression. This is used
97 when traversing ADDR_EXPR nodes which have different semantics than
98 other expressions. Inside an ADDR_EXPR node, the only operands that we
99 need to consider are indices into arrays. For instance, &a.b[i] should
100 generate a USE of 'i' but it should not generate a VUSE for 'a' nor a
102 #define opf_no_vops (1 << 2)
104 /* Array for building all the def operands. */
105 static GTY (()) varray_type build_defs
;
107 /* Array for building all the use operands. */
108 static GTY (()) varray_type build_uses
;
110 /* Array for building all the v_may_def operands. */
111 static GTY (()) varray_type build_v_may_defs
;
113 /* Array for building all the vuse operands. */
114 static GTY (()) varray_type build_vuses
;
116 /* Array for building all the v_must_def operands. */
117 static GTY (()) varray_type build_v_must_defs
;
119 /* True if the operands for call clobbered vars are cached and valid. */
120 bool ssa_call_clobbered_cache_valid
;
121 bool ssa_ro_call_cache_valid
;
123 /* These arrays are the cached operand vectors for call clobbered calls. */
124 static GTY (()) varray_type clobbered_v_may_defs
;
125 static GTY (()) varray_type clobbered_vuses
;
126 static GTY (()) varray_type ro_call_vuses
;
127 static bool clobbered_aliased_loads
;
128 static bool clobbered_aliased_stores
;
129 static bool ro_call_aliased_loads
;
131 def_operand_p NULL_DEF_OPERAND_P
= { NULL
};
132 use_operand_p NULL_USE_OPERAND_P
= { NULL
};
134 static void note_addressable (tree
, stmt_ann_t
);
135 static void get_expr_operands (tree
, tree
*, int);
136 static void get_asm_expr_operands (tree
);
137 static void get_indirect_ref_operands (tree
, tree
, int);
138 static void get_call_expr_operands (tree
, tree
);
139 static inline void append_def (tree
*);
140 static inline void append_use (tree
*);
141 static void append_v_may_def (tree
);
142 static void append_v_must_def (tree
);
143 static void add_call_clobber_ops (tree
);
144 static void add_call_read_ops (tree
);
145 static void add_stmt_operand (tree
*, stmt_ann_t
, int);
147 /* Return a vector of contiguous memory for NUM def operands. */
149 static inline def_optype
150 allocate_def_optype (unsigned num
)
154 size
= sizeof (struct def_optype_d
) + sizeof (tree
*) * (num
- 1);
155 def_ops
= ggc_alloc (size
);
156 def_ops
->num_defs
= num
;
161 /* Return a vector of contiguous memory for NUM use operands. */
163 static inline use_optype
164 allocate_use_optype (unsigned num
)
168 size
= sizeof (struct use_optype_d
) + sizeof (tree
*) * (num
- 1);
169 use_ops
= ggc_alloc (size
);
170 use_ops
->num_uses
= num
;
175 /* Return a vector of contiguous memory for NUM v_may_def operands. */
177 static inline v_may_def_optype
178 allocate_v_may_def_optype (unsigned num
)
180 v_may_def_optype v_may_def_ops
;
182 size
= sizeof (struct v_may_def_optype_d
)
183 + sizeof (v_def_use_operand_type_t
) * (num
- 1);
184 v_may_def_ops
= ggc_alloc (size
);
185 v_may_def_ops
->num_v_may_defs
= num
;
186 return v_may_def_ops
;
190 /* Return a vector of contiguous memory for NUM v_use operands. */
192 static inline vuse_optype
193 allocate_vuse_optype (unsigned num
)
195 vuse_optype vuse_ops
;
197 size
= sizeof (struct vuse_optype_d
) + sizeof (tree
) * (num
- 1);
198 vuse_ops
= ggc_alloc (size
);
199 vuse_ops
->num_vuses
= num
;
204 /* Return a vector of contiguous memory for NUM v_must_def operands. */
206 static inline v_must_def_optype
207 allocate_v_must_def_optype (unsigned num
)
209 v_must_def_optype v_must_def_ops
;
211 size
= sizeof (struct v_must_def_optype_d
) + sizeof (v_def_use_operand_type_t
) * (num
- 1);
212 v_must_def_ops
= ggc_alloc (size
);
213 v_must_def_ops
->num_v_must_defs
= num
;
214 return v_must_def_ops
;
218 /* Free memory for USES. */
221 free_uses (use_optype
*uses
)
231 /* Free memory for DEFS. */
234 free_defs (def_optype
*defs
)
244 /* Free memory for VUSES. */
247 free_vuses (vuse_optype
*vuses
)
257 /* Free memory for V_MAY_DEFS. */
260 free_v_may_defs (v_may_def_optype
*v_may_defs
)
264 ggc_free (*v_may_defs
);
270 /* Free memory for V_MUST_DEFS. */
273 free_v_must_defs (v_must_def_optype
*v_must_defs
)
277 ggc_free (*v_must_defs
);
283 /* Initialize the operand cache routines. */
286 init_ssa_operands (void)
288 VARRAY_TREE_PTR_INIT (build_defs
, 5, "build defs");
289 VARRAY_TREE_PTR_INIT (build_uses
, 10, "build uses");
290 VARRAY_TREE_INIT (build_v_may_defs
, 10, "build v_may_defs");
291 VARRAY_TREE_INIT (build_vuses
, 10, "build vuses");
292 VARRAY_TREE_INIT (build_v_must_defs
, 10, "build v_must_defs");
296 /* Dispose of anything required by the operand routines. */
299 fini_ssa_operands (void)
301 ggc_free (build_defs
);
302 ggc_free (build_uses
);
303 ggc_free (build_v_may_defs
);
304 ggc_free (build_vuses
);
305 ggc_free (build_v_must_defs
);
308 build_v_may_defs
= NULL
;
310 build_v_must_defs
= NULL
;
311 if (clobbered_v_may_defs
)
313 ggc_free (clobbered_v_may_defs
);
314 ggc_free (clobbered_vuses
);
315 clobbered_v_may_defs
= NULL
;
316 clobbered_vuses
= NULL
;
320 ggc_free (ro_call_vuses
);
321 ro_call_vuses
= NULL
;
326 /* All the finalize_ssa_* routines do the work required to turn the build_
327 VARRAY into an operand_vector of the appropriate type. The original vector,
328 if any, is passed in for comparison and virtual SSA_NAME reuse. If the
329 old vector is reused, the pointer passed in is set to NULL so that
330 the memory is not freed when the old operands are freed. */
332 /* Return a new def operand vector for STMT, comparing to OLD_OPS_P. */
335 finalize_ssa_defs (def_optype
*old_ops_p
, tree stmt ATTRIBUTE_UNUSED
)
338 def_optype def_ops
, old_ops
;
341 num
= VARRAY_ACTIVE_SIZE (build_defs
);
345 /* There should only be a single real definition per assignment. */
346 gcc_assert (TREE_CODE (stmt
) != MODIFY_EXPR
|| num
<= 1);
348 old_ops
= *old_ops_p
;
350 /* Compare old vector and new array. */
352 if (old_ops
&& old_ops
->num_defs
== num
)
355 for (x
= 0; x
< num
; x
++)
356 if (old_ops
->defs
[x
].def
!= VARRAY_TREE_PTR (build_defs
, x
))
370 def_ops
= allocate_def_optype (num
);
371 for (x
= 0; x
< num
; x
++)
372 def_ops
->defs
[x
].def
= VARRAY_TREE_PTR (build_defs
, x
);
375 VARRAY_POP_ALL (build_defs
);
381 /* Return a new use operand vector for STMT, comparing to OLD_OPS_P. */
384 finalize_ssa_uses (use_optype
*old_ops_p
, tree stmt ATTRIBUTE_UNUSED
)
387 use_optype use_ops
, old_ops
;
390 num
= VARRAY_ACTIVE_SIZE (build_uses
);
394 #ifdef ENABLE_CHECKING
397 /* If the pointer to the operand is the statement itself, something is
398 wrong. It means that we are pointing to a local variable (the
399 initial call to get_stmt_operands does not pass a pointer to a
401 for (x
= 0; x
< num
; x
++)
402 gcc_assert (*(VARRAY_TREE_PTR (build_uses
, x
)) != stmt
);
405 old_ops
= *old_ops_p
;
407 /* Check if the old vector and the new array are the same. */
409 if (old_ops
&& old_ops
->num_uses
== num
)
412 for (x
= 0; x
< num
; x
++)
413 if (old_ops
->uses
[x
].use
!= VARRAY_TREE_PTR (build_uses
, x
))
427 use_ops
= allocate_use_optype (num
);
428 for (x
= 0; x
< num
; x
++)
429 use_ops
->uses
[x
].use
= VARRAY_TREE_PTR (build_uses
, x
);
431 VARRAY_POP_ALL (build_uses
);
437 /* Return a new v_may_def operand vector for STMT, comparing to OLD_OPS_P. */
439 static v_may_def_optype
440 finalize_ssa_v_may_defs (v_may_def_optype
*old_ops_p
)
442 unsigned num
, x
, i
, old_num
;
443 v_may_def_optype v_may_def_ops
, old_ops
;
447 num
= VARRAY_ACTIVE_SIZE (build_v_may_defs
);
451 old_ops
= *old_ops_p
;
453 /* Check if the old vector and the new array are the same. */
455 if (old_ops
&& old_ops
->num_v_may_defs
== num
)
459 for (x
= 0; x
< num
; x
++)
461 var
= old_ops
->v_may_defs
[x
].def
;
462 if (TREE_CODE (var
) == SSA_NAME
)
463 var
= SSA_NAME_VAR (var
);
464 if (var
!= VARRAY_TREE (build_v_may_defs
, x
))
472 old_num
= (old_ops
? old_ops
->num_v_may_defs
: 0);
476 v_may_def_ops
= old_ops
;
481 v_may_def_ops
= allocate_v_may_def_optype (num
);
482 for (x
= 0; x
< num
; x
++)
484 var
= VARRAY_TREE (build_v_may_defs
, x
);
485 /* Look for VAR in the old operands vector. */
486 for (i
= 0; i
< old_num
; i
++)
488 result
= old_ops
->v_may_defs
[i
].def
;
489 if (TREE_CODE (result
) == SSA_NAME
)
490 result
= SSA_NAME_VAR (result
);
493 v_may_def_ops
->v_may_defs
[x
] = old_ops
->v_may_defs
[i
];
499 v_may_def_ops
->v_may_defs
[x
].def
= var
;
500 v_may_def_ops
->v_may_defs
[x
].use
= var
;
505 /* Empty the V_MAY_DEF build vector after VUSES have been processed. */
507 return v_may_def_ops
;
511 /* Clear the in_list bits and empty the build array for v_may_defs. */
514 cleanup_v_may_defs (void)
517 num
= VARRAY_ACTIVE_SIZE (build_v_may_defs
);
519 for (x
= 0; x
< num
; x
++)
521 tree t
= VARRAY_TREE (build_v_may_defs
, x
);
522 var_ann_t ann
= var_ann (t
);
523 ann
->in_v_may_def_list
= 0;
525 VARRAY_POP_ALL (build_v_may_defs
);
528 /* Return a new vuse operand vector, comparing to OLD_OPS_P. */
531 finalize_ssa_vuses (vuse_optype
*old_ops_p
)
533 unsigned num
, x
, i
, num_v_may_defs
, old_num
;
534 vuse_optype vuse_ops
, old_ops
;
537 num
= VARRAY_ACTIVE_SIZE (build_vuses
);
540 cleanup_v_may_defs ();
544 /* Remove superfluous VUSE operands. If the statement already has a
545 V_MAY_DEF operation for a variable 'a', then a VUSE for 'a' is not
546 needed because V_MAY_DEFs imply a VUSE of the variable. For instance,
547 suppose that variable 'a' is aliased:
550 # a_3 = V_MAY_DEF <a_2>
553 The VUSE <a_2> is superfluous because it is implied by the V_MAY_DEF
556 num_v_may_defs
= VARRAY_ACTIVE_SIZE (build_v_may_defs
);
558 if (num_v_may_defs
> 0)
562 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_vuses
); i
++)
564 vuse
= VARRAY_TREE (build_vuses
, i
);
565 if (TREE_CODE (vuse
) != SSA_NAME
)
567 var_ann_t ann
= var_ann (vuse
);
568 ann
->in_vuse_list
= 0;
569 if (ann
->in_v_may_def_list
)
571 /* If we found a useless VUSE operand, remove it from the
572 operand array by replacing it with the last active element
573 in the operand array (unless the useless VUSE was the
574 last operand, in which case we simply remove it. */
575 if (i
!= VARRAY_ACTIVE_SIZE (build_vuses
) - 1)
577 VARRAY_TREE (build_vuses
, i
)
578 = VARRAY_TREE (build_vuses
,
579 VARRAY_ACTIVE_SIZE (build_vuses
) - 1);
581 VARRAY_POP (build_vuses
);
583 /* We want to rescan the element at this index, unless
584 this was the last element, in which case the loop
592 /* Clear out the in_list bits. */
593 for (x
= 0; x
< num
; x
++)
595 tree t
= VARRAY_TREE (build_vuses
, x
);
596 if (TREE_CODE (t
) != SSA_NAME
)
598 var_ann_t ann
= var_ann (t
);
599 ann
->in_vuse_list
= 0;
604 num
= VARRAY_ACTIVE_SIZE (build_vuses
);
605 /* We could have reduced the size to zero now, however. */
608 cleanup_v_may_defs ();
612 old_ops
= *old_ops_p
;
614 /* Determine whether vuses is the same as the old vector. */
616 if (old_ops
&& old_ops
->num_vuses
== num
)
620 for (x
= 0; x
< num
; x
++)
623 v
= old_ops
->vuses
[x
];
624 if (TREE_CODE (v
) == SSA_NAME
)
625 v
= SSA_NAME_VAR (v
);
626 if (v
!= VARRAY_TREE (build_vuses
, x
))
634 old_num
= (old_ops
? old_ops
->num_vuses
: 0);
643 vuse_ops
= allocate_vuse_optype (num
);
644 for (x
= 0; x
< num
; x
++)
646 tree result
, var
= VARRAY_TREE (build_vuses
, x
);
647 /* Look for VAR in the old vector, and use that SSA_NAME. */
648 for (i
= 0; i
< old_num
; i
++)
650 result
= old_ops
->vuses
[i
];
651 if (TREE_CODE (result
) == SSA_NAME
)
652 result
= SSA_NAME_VAR (result
);
655 vuse_ops
->vuses
[x
] = old_ops
->vuses
[i
];
660 vuse_ops
->vuses
[x
] = var
;
664 /* The v_may_def build vector wasn't freed because we needed it here.
665 Free it now with the vuses build vector. */
666 VARRAY_POP_ALL (build_vuses
);
667 cleanup_v_may_defs ();
672 /* Return a new v_must_def operand vector for STMT, comparing to OLD_OPS_P. */
674 static v_must_def_optype
675 finalize_ssa_v_must_defs (v_must_def_optype
*old_ops_p
,
676 tree stmt ATTRIBUTE_UNUSED
)
678 unsigned num
, x
, i
, old_num
= 0;
679 v_must_def_optype v_must_def_ops
, old_ops
;
682 num
= VARRAY_ACTIVE_SIZE (build_v_must_defs
);
686 /* In the presence of subvars, there may be more than one V_MUST_DEF per
687 statement (one for each subvar). It is a bit expensive to verify that
688 all must-defs in a statement belong to subvars if there is more than one
689 MUST-def, so we don't do it. Suffice to say, if you reach here without
690 having subvars, and have num >1, you have hit a bug. */
693 old_ops
= *old_ops_p
;
695 /* Check if the old vector and the new array are the same. */
697 if (old_ops
&& old_ops
->num_v_must_defs
== num
)
701 for (x
= 0; x
< num
; x
++)
703 tree var
= old_ops
->v_must_defs
[x
].def
;
704 if (TREE_CODE (var
) == SSA_NAME
)
705 var
= SSA_NAME_VAR (var
);
706 if (var
!= VARRAY_TREE (build_v_must_defs
, x
))
714 old_num
= (old_ops
? old_ops
->num_v_must_defs
: 0);
718 v_must_def_ops
= old_ops
;
723 v_must_def_ops
= allocate_v_must_def_optype (num
);
724 for (x
= 0; x
< num
; x
++)
726 tree result
, var
= VARRAY_TREE (build_v_must_defs
, x
);
727 /* Look for VAR in the original vector. */
728 for (i
= 0; i
< old_num
; i
++)
730 result
= old_ops
->v_must_defs
[i
].def
;
731 if (TREE_CODE (result
) == SSA_NAME
)
732 result
= SSA_NAME_VAR (result
);
735 v_must_def_ops
->v_must_defs
[x
].def
= old_ops
->v_must_defs
[i
].def
;
736 v_must_def_ops
->v_must_defs
[x
].use
= old_ops
->v_must_defs
[i
].use
;
742 v_must_def_ops
->v_must_defs
[x
].def
= var
;
743 v_must_def_ops
->v_must_defs
[x
].use
= var
;
747 VARRAY_POP_ALL (build_v_must_defs
);
749 return v_must_def_ops
;
753 /* Finalize all the build vectors, fill the new ones into INFO. */
756 finalize_ssa_stmt_operands (tree stmt
, stmt_operands_p old_ops
,
757 stmt_operands_p new_ops
)
759 new_ops
->def_ops
= finalize_ssa_defs (&(old_ops
->def_ops
), stmt
);
760 new_ops
->use_ops
= finalize_ssa_uses (&(old_ops
->use_ops
), stmt
);
761 new_ops
->v_must_def_ops
762 = finalize_ssa_v_must_defs (&(old_ops
->v_must_def_ops
), stmt
);
763 new_ops
->v_may_def_ops
= finalize_ssa_v_may_defs (&(old_ops
->v_may_def_ops
));
764 new_ops
->vuse_ops
= finalize_ssa_vuses (&(old_ops
->vuse_ops
));
768 /* Start the process of building up operands vectors in INFO. */
771 start_ssa_stmt_operands (void)
773 gcc_assert (VARRAY_ACTIVE_SIZE (build_defs
) == 0);
774 gcc_assert (VARRAY_ACTIVE_SIZE (build_uses
) == 0);
775 gcc_assert (VARRAY_ACTIVE_SIZE (build_vuses
) == 0);
776 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_may_defs
) == 0);
777 gcc_assert (VARRAY_ACTIVE_SIZE (build_v_must_defs
) == 0);
781 /* Add DEF_P to the list of pointers to operands. */
784 append_def (tree
*def_p
)
786 VARRAY_PUSH_TREE_PTR (build_defs
, def_p
);
790 /* Add USE_P to the list of pointers to operands. */
793 append_use (tree
*use_p
)
795 VARRAY_PUSH_TREE_PTR (build_uses
, use_p
);
799 /* Add a new virtual may def for variable VAR to the build array. */
802 append_v_may_def (tree var
)
804 var_ann_t ann
= get_var_ann (var
);
806 /* Don't allow duplicate entries. */
807 if (ann
->in_v_may_def_list
)
809 ann
->in_v_may_def_list
= 1;
811 VARRAY_PUSH_TREE (build_v_may_defs
, var
);
815 /* Add VAR to the list of virtual uses. */
818 append_vuse (tree var
)
821 /* Don't allow duplicate entries. */
822 if (TREE_CODE (var
) != SSA_NAME
)
824 var_ann_t ann
= get_var_ann (var
);
826 if (ann
->in_vuse_list
|| ann
->in_v_may_def_list
)
828 ann
->in_vuse_list
= 1;
831 VARRAY_PUSH_TREE (build_vuses
, var
);
835 /* Add VAR to the list of virtual must definitions for INFO. */
838 append_v_must_def (tree var
)
842 /* Don't allow duplicate entries. */
843 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_v_must_defs
); i
++)
844 if (var
== VARRAY_TREE (build_v_must_defs
, i
))
847 VARRAY_PUSH_TREE (build_v_must_defs
, var
);
850 /* Create an operands cache for STMT, returning it in NEW_OPS. OLD_OPS are the
851 original operands, and if ANN is non-null, appropriate stmt flags are set
852 in the stmt's annotation. Note that some fields in old_ops may
853 change to NULL, although none of the memory they originally pointed to
854 will be destroyed. It is appropriate to call free_stmt_operands() on
855 the value returned in old_ops.
857 The rationale for this: Certain optimizations wish to examine the difference
858 between new_ops and old_ops after processing. If a set of operands don't
859 change, new_ops will simply assume the pointer in old_ops, and the old_ops
860 pointer will be set to NULL, indicating no memory needs to be cleared.
861 Usage might appear something like:
863 old_ops_copy = old_ops = stmt_ann(stmt)->operands;
864 build_ssa_operands (stmt, NULL, &old_ops, &new_ops);
865 <* compare old_ops_copy and new_ops *>
866 free_ssa_operands (old_ops); */
869 build_ssa_operands (tree stmt
, stmt_ann_t ann
, stmt_operands_p old_ops
,
870 stmt_operands_p new_ops
)
873 tree_ann_t saved_ann
= stmt
->common
.ann
;
875 /* Replace stmt's annotation with the one passed in for the duration
876 of the operand building process. This allows "fake" stmts to be built
877 and not be included in other data structures which can be built here. */
878 stmt
->common
.ann
= (tree_ann_t
) ann
;
880 /* Initially assume that the statement has no volatile operands, nor
881 makes aliased loads or stores. */
884 ann
->has_volatile_ops
= false;
885 ann
->makes_aliased_stores
= false;
886 ann
->makes_aliased_loads
= false;
889 start_ssa_stmt_operands ();
891 code
= TREE_CODE (stmt
);
895 /* First get operands from the RHS. For the LHS, we use a V_MAY_DEF if
896 either only part of LHS is modified or if the RHS might throw,
897 otherwise, use V_MUST_DEF.
899 ??? If it might throw, we should represent somehow that it is killed
900 on the fallthrough path. */
902 tree lhs
= TREE_OPERAND (stmt
, 0);
903 int lhs_flags
= opf_is_def
;
905 get_expr_operands (stmt
, &TREE_OPERAND (stmt
, 1), opf_none
);
907 /* If the LHS is a VIEW_CONVERT_EXPR, it isn't changing whether
908 or not the entire LHS is modified; that depends on what's
909 inside the VIEW_CONVERT_EXPR. */
910 if (TREE_CODE (lhs
) == VIEW_CONVERT_EXPR
)
911 lhs
= TREE_OPERAND (lhs
, 0);
913 if (TREE_CODE (lhs
) != ARRAY_REF
&& TREE_CODE (lhs
) != ARRAY_RANGE_REF
914 && TREE_CODE (lhs
) != BIT_FIELD_REF
915 && TREE_CODE (lhs
) != REALPART_EXPR
916 && TREE_CODE (lhs
) != IMAGPART_EXPR
)
917 lhs_flags
|= opf_kill_def
;
919 get_expr_operands (stmt
, &TREE_OPERAND (stmt
, 0), lhs_flags
);
924 get_expr_operands (stmt
, &COND_EXPR_COND (stmt
), opf_none
);
928 get_expr_operands (stmt
, &SWITCH_COND (stmt
), opf_none
);
932 get_asm_expr_operands (stmt
);
936 get_expr_operands (stmt
, &TREE_OPERAND (stmt
, 0), opf_none
);
940 get_expr_operands (stmt
, &GOTO_DESTINATION (stmt
), opf_none
);
944 get_expr_operands (stmt
, &LABEL_EXPR_LABEL (stmt
), opf_none
);
947 /* These nodes contain no variable references. */
949 case CASE_LABEL_EXPR
:
951 case TRY_FINALLY_EXPR
:
958 /* Notice that if get_expr_operands tries to use &STMT as the operand
959 pointer (which may only happen for USE operands), we will abort in
960 append_use. This default will handle statements like empty
961 statements, or CALL_EXPRs that may appear on the RHS of a statement
962 or as statements themselves. */
963 get_expr_operands (stmt
, &stmt
, opf_none
);
967 finalize_ssa_stmt_operands (stmt
, old_ops
, new_ops
);
968 stmt
->common
.ann
= saved_ann
;
972 /* Free any operands vectors in OPS. */
975 free_ssa_operands (stmt_operands_p ops
)
978 free_defs (&(ops
->def_ops
));
980 free_uses (&(ops
->use_ops
));
982 free_vuses (&(ops
->vuse_ops
));
983 if (ops
->v_may_def_ops
)
984 free_v_may_defs (&(ops
->v_may_def_ops
));
985 if (ops
->v_must_def_ops
)
986 free_v_must_defs (&(ops
->v_must_def_ops
));
990 /* Get the operands of statement STMT. Note that repeated calls to
991 get_stmt_operands for the same statement will do nothing until the
992 statement is marked modified by a call to modify_stmt(). */
995 get_stmt_operands (tree stmt
)
998 stmt_operands_t old_operands
;
1000 /* The optimizers cannot handle statements that are nothing but a
1001 _DECL. This indicates a bug in the gimplifier. */
1002 gcc_assert (!SSA_VAR_P (stmt
));
1004 ann
= get_stmt_ann (stmt
);
1006 /* If the statement has not been modified, the operands are still valid. */
1010 timevar_push (TV_TREE_OPS
);
1012 old_operands
= ann
->operands
;
1013 memset (&(ann
->operands
), 0, sizeof (stmt_operands_t
));
1015 build_ssa_operands (stmt
, ann
, &old_operands
, &(ann
->operands
));
1016 free_ssa_operands (&old_operands
);
1018 /* Clear the modified bit for STMT. Subsequent calls to
1019 get_stmt_operands for this statement will do nothing until the
1020 statement is marked modified by a call to modify_stmt(). */
1023 timevar_pop (TV_TREE_OPS
);
1027 /* Return true if OFFSET and SIZE define a range that overlaps with some
1028 portion of the range of SV, a subvar. If there was an exact overlap,
1029 *EXACT will be set to true upon return. */
1032 overlap_subvar (HOST_WIDE_INT offset
, HOST_WIDE_INT size
,
1033 subvar_t sv
, bool *exact
)
1035 /* There are three possible cases of overlap.
1036 1. We can have an exact overlap, like so:
1037 |offset, offset + size |
1038 |sv->offset, sv->offset + sv->size |
1040 2. We can have offset starting after sv->offset, like so:
1042 |offset, offset + size |
1043 |sv->offset, sv->offset + sv->size |
1045 3. We can have offset starting before sv->offset, like so:
1047 |offset, offset + size |
1048 |sv->offset, sv->offset + sv->size|
1053 if (offset
== sv
->offset
&& size
== sv
->size
)
1059 else if (offset
>= sv
->offset
&& offset
< (sv
->offset
+ sv
->size
))
1063 else if (offset
< sv
->offset
&& (offset
+ size
> sv
->offset
))
1070 /* Recursively scan the expression pointed by EXPR_P in statement referred to
1071 by INFO. FLAGS is one of the OPF_* constants modifying how to interpret the
1075 get_expr_operands (tree stmt
, tree
*expr_p
, int flags
)
1077 enum tree_code code
;
1078 enum tree_code_class
class;
1079 tree expr
= *expr_p
;
1080 stmt_ann_t s_ann
= stmt_ann (stmt
);
1085 code
= TREE_CODE (expr
);
1086 class = TREE_CODE_CLASS (code
);
1091 /* We could have the address of a component, array member,
1092 etc which has interesting variable references. */
1093 /* Taking the address of a variable does not represent a
1094 reference to it, but the fact that the stmt takes its address will be
1095 of interest to some passes (e.g. alias resolution). */
1096 add_stmt_operand (expr_p
, s_ann
, 0);
1098 /* If the address is invariant, there may be no interesting variable
1099 references inside. */
1100 if (is_gimple_min_invariant (expr
))
1103 /* There should be no VUSEs created, since the referenced objects are
1104 not really accessed. The only operands that we should find here
1105 are ARRAY_REF indices which will always be real operands (GIMPLE
1106 does not allow non-registers as array indices). */
1107 flags
|= opf_no_vops
;
1109 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1120 /* Add the subvars for a variable if it has subvars, to DEFS or USES.
1121 Otherwise, add the variable itself.
1122 Whether it goes to USES or DEFS depends on the operand flags. */
1123 if (var_can_have_subvars (expr
)
1124 && (svars
= get_subvars_for_var (expr
)))
1127 for (sv
= svars
; sv
; sv
= sv
->next
)
1128 add_stmt_operand (&sv
->var
, s_ann
, flags
);
1132 add_stmt_operand (expr_p
, s_ann
, flags
);
1136 case MISALIGNED_INDIRECT_REF
:
1137 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), flags
);
1140 case ALIGN_INDIRECT_REF
:
1142 get_indirect_ref_operands (stmt
, expr
, flags
);
1146 case ARRAY_RANGE_REF
:
1147 /* Treat array references as references to the virtual variable
1148 representing the array. The virtual variable for an ARRAY_REF
1149 is the VAR_DECL for the array. */
1151 /* Add the virtual variable for the ARRAY_REF to VDEFS or VUSES
1152 according to the value of IS_DEF. Recurse if the LHS of the
1153 ARRAY_REF node is not a regular variable. */
1154 if (SSA_VAR_P (TREE_OPERAND (expr
, 0)))
1155 add_stmt_operand (expr_p
, s_ann
, flags
);
1157 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1159 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), opf_none
);
1160 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), opf_none
);
1161 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 3), opf_none
);
1169 HOST_WIDE_INT offset
, size
;
1170 /* This component ref becomes an access to all of the subvariables
1171 it can touch, if we can determine that, but *NOT* the real one.
1172 If we can't determine which fields we could touch, the recursion
1173 will eventually get to a variable and add *all* of its subvars, or
1174 whatever is the minimum correct subset. */
1176 ref
= okay_component_ref_for_subvars (expr
, &offset
, &size
);
1179 subvar_t svars
= get_subvars_for_var (ref
);
1181 for (sv
= svars
; sv
; sv
= sv
->next
)
1184 if (overlap_subvar (offset
, size
, sv
, &exact
))
1187 flags
&= ~opf_kill_def
;
1188 add_stmt_operand (&sv
->var
, s_ann
, flags
);
1193 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0),
1194 flags
& ~opf_kill_def
);
1196 if (code
== COMPONENT_REF
)
1197 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), opf_none
);
1200 case WITH_SIZE_EXPR
:
1201 /* WITH_SIZE_EXPR is a pass-through reference to its first argument,
1202 and an rvalue reference to its second argument. */
1203 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), opf_none
);
1204 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1208 get_call_expr_operands (stmt
, expr
);
1213 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), opf_none
);
1214 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), opf_none
);
1215 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), opf_none
);
1223 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), opf_none
);
1225 op
= TREE_OPERAND (expr
, 0);
1226 if (TREE_CODE (op
) == WITH_SIZE_EXPR
)
1227 op
= TREE_OPERAND (expr
, 0);
1228 if (TREE_CODE (op
) == ARRAY_REF
1229 || TREE_CODE (op
) == ARRAY_RANGE_REF
1230 || TREE_CODE (op
) == REALPART_EXPR
1231 || TREE_CODE (op
) == IMAGPART_EXPR
)
1232 subflags
= opf_is_def
;
1234 subflags
= opf_is_def
| opf_kill_def
;
1236 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), subflags
);
1242 /* General aggregate CONSTRUCTORs have been decomposed, but they
1243 are still in use as the COMPLEX_EXPR equivalent for vectors. */
1246 for (t
= TREE_OPERAND (expr
, 0); t
; t
= TREE_CHAIN (t
))
1247 get_expr_operands (stmt
, &TREE_VALUE (t
), opf_none
);
1252 case TRUTH_NOT_EXPR
:
1254 case VIEW_CONVERT_EXPR
:
1256 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1259 case TRUTH_AND_EXPR
:
1261 case TRUTH_XOR_EXPR
:
1266 tree op0
= TREE_OPERAND (expr
, 0);
1267 tree op1
= TREE_OPERAND (expr
, 1);
1269 /* If it would be profitable to swap the operands, then do so to
1270 canonicalize the statement, enabling better optimization.
1272 By placing canonicalization of such expressions here we
1273 transparently keep statements in canonical form, even
1274 when the statement is modified. */
1275 if (tree_swap_operands_p (op0
, op1
, false))
1277 /* For relationals we need to swap the operands
1278 and change the code. */
1284 TREE_SET_CODE (expr
, swap_tree_comparison (code
));
1285 TREE_OPERAND (expr
, 0) = op1
;
1286 TREE_OPERAND (expr
, 1) = op0
;
1289 /* For a commutative operator we can just swap the operands. */
1290 else if (commutative_tree_code (code
))
1292 TREE_OPERAND (expr
, 0) = op1
;
1293 TREE_OPERAND (expr
, 1) = op0
;
1297 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1298 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), flags
);
1302 case REALIGN_LOAD_EXPR
:
1304 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), flags
);
1305 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 1), flags
);
1306 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), flags
);
1315 /* Expressions that make no memory references. */
1319 if (class == tcc_unary
)
1321 if (class == tcc_binary
|| class == tcc_comparison
)
1323 if (class == tcc_constant
|| class == tcc_type
)
1327 /* If we get here, something has gone wrong. */
1328 #ifdef ENABLE_CHECKING
1329 fprintf (stderr
, "unhandled expression in get_expr_operands():\n");
1331 fputs ("\n", stderr
);
1332 internal_error ("internal error");
1338 /* Scan operands in the ASM_EXPR stmt referred to in INFO. */
1341 get_asm_expr_operands (tree stmt
)
1343 stmt_ann_t s_ann
= stmt_ann (stmt
);
1344 int noutputs
= list_length (ASM_OUTPUTS (stmt
));
1345 const char **oconstraints
1346 = (const char **) alloca ((noutputs
) * sizeof (const char *));
1349 const char *constraint
;
1350 bool allows_mem
, allows_reg
, is_inout
;
1352 for (i
=0, link
= ASM_OUTPUTS (stmt
); link
; ++i
, link
= TREE_CHAIN (link
))
1354 oconstraints
[i
] = constraint
1355 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1356 parse_output_constraint (&constraint
, i
, 0, 0,
1357 &allows_mem
, &allows_reg
, &is_inout
);
1359 /* This should have been split in gimplify_asm_expr. */
1360 gcc_assert (!allows_reg
|| !is_inout
);
1362 /* Memory operands are addressable. Note that STMT needs the
1363 address of this operand. */
1364 if (!allows_reg
&& allows_mem
)
1366 tree t
= get_base_address (TREE_VALUE (link
));
1367 if (t
&& DECL_P (t
))
1368 note_addressable (t
, s_ann
);
1371 get_expr_operands (stmt
, &TREE_VALUE (link
), opf_is_def
);
1374 for (link
= ASM_INPUTS (stmt
); link
; link
= TREE_CHAIN (link
))
1377 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link
)));
1378 parse_input_constraint (&constraint
, 0, 0, noutputs
, 0,
1379 oconstraints
, &allows_mem
, &allows_reg
);
1381 /* Memory operands are addressable. Note that STMT needs the
1382 address of this operand. */
1383 if (!allows_reg
&& allows_mem
)
1385 tree t
= get_base_address (TREE_VALUE (link
));
1386 if (t
&& DECL_P (t
))
1387 note_addressable (t
, s_ann
);
1390 get_expr_operands (stmt
, &TREE_VALUE (link
), 0);
1394 /* Clobber memory for asm ("" : : : "memory"); */
1395 for (link
= ASM_CLOBBERS (stmt
); link
; link
= TREE_CHAIN (link
))
1396 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (link
)), "memory") == 0)
1401 /* Clobber all call-clobbered variables (or .GLOBAL_VAR if we
1402 decided to group them). */
1404 add_stmt_operand (&global_var
, s_ann
, opf_is_def
);
1406 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars
, 0, i
, bi
)
1408 tree var
= referenced_var (i
);
1409 add_stmt_operand (&var
, s_ann
, opf_is_def
);
1412 /* Now clobber all addressables. */
1413 EXECUTE_IF_SET_IN_BITMAP (addressable_vars
, 0, i
, bi
)
1415 tree var
= referenced_var (i
);
1416 add_stmt_operand (&var
, s_ann
, opf_is_def
);
1423 /* A subroutine of get_expr_operands to handle INDIRECT_REF,
1424 ALIGN_INDIRECT_REF and MISALIGNED_INDIRECT_REF. */
1427 get_indirect_ref_operands (tree stmt
, tree expr
, int flags
)
1429 tree
*pptr
= &TREE_OPERAND (expr
, 0);
1431 stmt_ann_t s_ann
= stmt_ann (stmt
);
1433 /* Stores into INDIRECT_REF operands are never killing definitions. */
1434 flags
&= ~opf_kill_def
;
1436 if (SSA_VAR_P (ptr
))
1438 struct ptr_info_def
*pi
= NULL
;
1440 /* If PTR has flow-sensitive points-to information, use it. */
1441 if (TREE_CODE (ptr
) == SSA_NAME
1442 && (pi
= SSA_NAME_PTR_INFO (ptr
)) != NULL
1443 && pi
->name_mem_tag
)
1445 /* PTR has its own memory tag. Use it. */
1446 add_stmt_operand (&pi
->name_mem_tag
, s_ann
, flags
);
1450 /* If PTR is not an SSA_NAME or it doesn't have a name
1451 tag, use its type memory tag. */
1454 /* If we are emitting debugging dumps, display a warning if
1455 PTR is an SSA_NAME with no flow-sensitive alias
1456 information. That means that we may need to compute
1459 && TREE_CODE (ptr
) == SSA_NAME
1463 "NOTE: no flow-sensitive alias info for ");
1464 print_generic_expr (dump_file
, ptr
, dump_flags
);
1465 fprintf (dump_file
, " in ");
1466 print_generic_stmt (dump_file
, stmt
, dump_flags
);
1469 if (TREE_CODE (ptr
) == SSA_NAME
)
1470 ptr
= SSA_NAME_VAR (ptr
);
1471 v_ann
= var_ann (ptr
);
1472 if (v_ann
->type_mem_tag
)
1473 add_stmt_operand (&v_ann
->type_mem_tag
, s_ann
, flags
);
1477 /* If a constant is used as a pointer, we can't generate a real
1478 operand for it but we mark the statement volatile to prevent
1479 optimizations from messing things up. */
1480 else if (TREE_CODE (ptr
) == INTEGER_CST
)
1483 s_ann
->has_volatile_ops
= true;
1487 /* Everything else *should* have been folded elsewhere, but users
1488 are smarter than we in finding ways to write invalid code. We
1489 cannot just abort here. If we were absolutely certain that we
1490 do handle all valid cases, then we could just do nothing here.
1491 That seems optimistic, so attempt to do something logical... */
1492 else if ((TREE_CODE (ptr
) == PLUS_EXPR
|| TREE_CODE (ptr
) == MINUS_EXPR
)
1493 && TREE_CODE (TREE_OPERAND (ptr
, 0)) == ADDR_EXPR
1494 && TREE_CODE (TREE_OPERAND (ptr
, 1)) == INTEGER_CST
)
1496 /* Make sure we know the object is addressable. */
1497 pptr
= &TREE_OPERAND (ptr
, 0);
1498 add_stmt_operand (pptr
, s_ann
, 0);
1500 /* Mark the object itself with a VUSE. */
1501 pptr
= &TREE_OPERAND (*pptr
, 0);
1502 get_expr_operands (stmt
, pptr
, flags
);
1506 /* Ok, this isn't even is_gimple_min_invariant. Something's broke. */
1510 /* Add a USE operand for the base pointer. */
1511 get_expr_operands (stmt
, pptr
, opf_none
);
1514 /* A subroutine of get_expr_operands to handle CALL_EXPR. */
1517 get_call_expr_operands (tree stmt
, tree expr
)
1520 int call_flags
= call_expr_flags (expr
);
1522 /* If aliases have been computed already, add V_MAY_DEF or V_USE
1523 operands for all the symbols that have been found to be
1526 Note that if aliases have not been computed, the global effects
1527 of calls will not be included in the SSA web. This is fine
1528 because no optimizer should run before aliases have been
1529 computed. By not bothering with virtual operands for CALL_EXPRs
1530 we avoid adding superfluous virtual operands, which can be a
1531 significant compile time sink (See PR 15855). */
1532 if (aliases_computed_p
1533 && !bitmap_empty_p (call_clobbered_vars
)
1534 && !(call_flags
& ECF_NOVOPS
))
1536 /* A 'pure' or a 'const' functions never call clobber anything.
1537 A 'noreturn' function might, but since we don't return anyway
1538 there is no point in recording that. */
1539 if (TREE_SIDE_EFFECTS (expr
)
1540 && !(call_flags
& (ECF_PURE
| ECF_CONST
| ECF_NORETURN
)))
1541 add_call_clobber_ops (stmt
);
1542 else if (!(call_flags
& ECF_CONST
))
1543 add_call_read_ops (stmt
);
1546 /* Find uses in the called function. */
1547 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 0), opf_none
);
1549 for (op
= TREE_OPERAND (expr
, 1); op
; op
= TREE_CHAIN (op
))
1550 get_expr_operands (stmt
, &TREE_VALUE (op
), opf_none
);
1552 get_expr_operands (stmt
, &TREE_OPERAND (expr
, 2), opf_none
);
1557 /* Add *VAR_P to the appropriate operand array for INFO. FLAGS is as in
1558 get_expr_operands. If *VAR_P is a GIMPLE register, it will be added to
1559 the statement's real operands, otherwise it is added to virtual
1563 add_stmt_operand (tree
*var_p
, stmt_ann_t s_ann
, int flags
)
1572 /* If the operand is an ADDR_EXPR, add its operand to the list of
1573 variables that have had their address taken in this statement. */
1574 if (TREE_CODE (var
) == ADDR_EXPR
)
1576 note_addressable (TREE_OPERAND (var
, 0), s_ann
);
1580 /* If the original variable is not a scalar, it will be added to the list
1581 of virtual operands. In that case, use its base symbol as the virtual
1582 variable representing it. */
1583 is_real_op
= is_gimple_reg (var
);
1584 if (!is_real_op
&& !DECL_P (var
))
1585 var
= get_virtual_var (var
);
1587 /* If VAR is not a variable that we care to optimize, do nothing. */
1588 if (var
== NULL_TREE
|| !SSA_VAR_P (var
))
1591 sym
= (TREE_CODE (var
) == SSA_NAME
? SSA_NAME_VAR (var
) : var
);
1592 v_ann
= var_ann (sym
);
1594 /* Mark statements with volatile operands. Optimizers should back
1595 off from statements having volatile operands. */
1596 if (TREE_THIS_VOLATILE (sym
) && s_ann
)
1597 s_ann
->has_volatile_ops
= true;
1601 /* The variable is a GIMPLE register. Add it to real operands. */
1602 if (flags
& opf_is_def
)
1609 varray_type aliases
;
1611 /* The variable is not a GIMPLE register. Add it (or its aliases) to
1612 virtual operands, unless the caller has specifically requested
1613 not to add virtual operands (used when adding operands inside an
1614 ADDR_EXPR expression). */
1615 if (flags
& opf_no_vops
)
1618 aliases
= v_ann
->may_aliases
;
1620 if (aliases
== NULL
)
1622 /* The variable is not aliased or it is an alias tag. */
1623 if (flags
& opf_is_def
)
1625 if (flags
& opf_kill_def
)
1627 /* Only regular variables or struct fields may get a
1628 V_MUST_DEF operand. */
1629 gcc_assert (v_ann
->mem_tag_kind
== NOT_A_TAG
1630 || v_ann
->mem_tag_kind
== STRUCT_FIELD
);
1631 /* V_MUST_DEF for non-aliased, non-GIMPLE register
1632 variable definitions. */
1633 append_v_must_def (var
);
1637 /* Add a V_MAY_DEF for call-clobbered variables and
1639 append_v_may_def (var
);
1645 if (s_ann
&& v_ann
->is_alias_tag
)
1646 s_ann
->makes_aliased_loads
= 1;
1653 /* The variable is aliased. Add its aliases to the virtual
1655 gcc_assert (VARRAY_ACTIVE_SIZE (aliases
) != 0);
1657 if (flags
& opf_is_def
)
1659 /* If the variable is also an alias tag, add a virtual
1660 operand for it, otherwise we will miss representing
1661 references to the members of the variable's alias set.
1662 This fixes the bug in gcc.c-torture/execute/20020503-1.c. */
1663 if (v_ann
->is_alias_tag
)
1664 append_v_may_def (var
);
1666 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (aliases
); i
++)
1667 append_v_may_def (VARRAY_TREE (aliases
, i
));
1670 s_ann
->makes_aliased_stores
= 1;
1674 /* Similarly, append a virtual uses for VAR itself, when
1675 it is an alias tag. */
1676 if (v_ann
->is_alias_tag
)
1679 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (aliases
); i
++)
1680 append_vuse (VARRAY_TREE (aliases
, i
));
1683 s_ann
->makes_aliased_loads
= 1;
1690 /* Record that VAR had its address taken in the statement with annotations
1694 note_addressable (tree var
, stmt_ann_t s_ann
)
1698 HOST_WIDE_INT offset
;
1704 /* If this is a COMPONENT_REF, and we know exactly what it touches, we only
1705 take the address of the subvariables it will touch.
1706 Otherwise, we take the address of all the subvariables, plus the real
1709 if (var
&& TREE_CODE (var
) == COMPONENT_REF
1710 && (ref
= okay_component_ref_for_subvars (var
, &offset
, &size
)))
1713 svars
= get_subvars_for_var (ref
);
1715 if (s_ann
->addresses_taken
== NULL
)
1716 s_ann
->addresses_taken
= BITMAP_GGC_ALLOC ();
1718 for (sv
= svars
; sv
; sv
= sv
->next
)
1720 if (overlap_subvar (offset
, size
, sv
, NULL
))
1721 bitmap_set_bit (s_ann
->addresses_taken
, var_ann (sv
->var
)->uid
);
1726 var
= get_base_address (var
);
1727 if (var
&& SSA_VAR_P (var
))
1729 if (s_ann
->addresses_taken
== NULL
)
1730 s_ann
->addresses_taken
= BITMAP_GGC_ALLOC ();
1733 if (var_can_have_subvars (var
)
1734 && (svars
= get_subvars_for_var (var
)))
1737 for (sv
= svars
; sv
; sv
= sv
->next
)
1738 bitmap_set_bit (s_ann
->addresses_taken
, var_ann (sv
->var
)->uid
);
1741 bitmap_set_bit (s_ann
->addresses_taken
, var_ann (var
)->uid
);
1745 /* Add clobbering definitions for .GLOBAL_VAR or for each of the call
1746 clobbered variables in the function. */
1749 add_call_clobber_ops (tree stmt
)
1754 stmt_ann_t s_ann
= stmt_ann (stmt
);
1755 struct stmt_ann_d empty_ann
;
1757 /* Functions that are not const, pure or never return may clobber
1758 call-clobbered variables. */
1760 s_ann
->makes_clobbering_call
= true;
1762 /* If we created .GLOBAL_VAR earlier, just use it. See compute_may_aliases
1763 for the heuristic used to decide whether to create .GLOBAL_VAR or not. */
1766 add_stmt_operand (&global_var
, s_ann
, opf_is_def
);
1770 /* If cache is valid, copy the elements into the build vectors. */
1771 if (ssa_call_clobbered_cache_valid
)
1773 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (clobbered_vuses
); i
++)
1775 t
= VARRAY_TREE (clobbered_vuses
, i
);
1776 gcc_assert (TREE_CODE (t
) != SSA_NAME
);
1777 var_ann (t
)->in_vuse_list
= 1;
1778 VARRAY_PUSH_TREE (build_vuses
, t
);
1780 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (clobbered_v_may_defs
); i
++)
1782 t
= VARRAY_TREE (clobbered_v_may_defs
, i
);
1783 gcc_assert (TREE_CODE (t
) != SSA_NAME
);
1784 var_ann (t
)->in_v_may_def_list
= 1;
1785 VARRAY_PUSH_TREE (build_v_may_defs
, t
);
1789 s_ann
->makes_aliased_loads
= clobbered_aliased_loads
;
1790 s_ann
->makes_aliased_stores
= clobbered_aliased_stores
;
1795 memset (&empty_ann
, 0, sizeof (struct stmt_ann_d
));
1797 /* Add a V_MAY_DEF operand for every call clobbered variable. */
1798 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars
, 0, i
, bi
)
1800 tree var
= referenced_var (i
);
1801 if (TREE_READONLY (var
)
1802 && (TREE_STATIC (var
) || DECL_EXTERNAL (var
)))
1803 add_stmt_operand (&var
, &empty_ann
, opf_none
);
1805 add_stmt_operand (&var
, &empty_ann
, opf_is_def
);
1808 clobbered_aliased_loads
= empty_ann
.makes_aliased_loads
;
1809 clobbered_aliased_stores
= empty_ann
.makes_aliased_stores
;
1811 /* Set the flags for a stmt's annotation. */
1814 s_ann
->makes_aliased_loads
= empty_ann
.makes_aliased_loads
;
1815 s_ann
->makes_aliased_stores
= empty_ann
.makes_aliased_stores
;
1818 /* Prepare empty cache vectors. */
1819 if (clobbered_v_may_defs
)
1821 VARRAY_POP_ALL (clobbered_vuses
);
1822 VARRAY_POP_ALL (clobbered_v_may_defs
);
1826 VARRAY_TREE_INIT (clobbered_v_may_defs
, 10, "clobbered_v_may_defs");
1827 VARRAY_TREE_INIT (clobbered_vuses
, 10, "clobbered_vuses");
1830 /* Now fill the clobbered cache with the values that have been found. */
1831 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_vuses
); i
++)
1832 VARRAY_PUSH_TREE (clobbered_vuses
, VARRAY_TREE (build_vuses
, i
));
1833 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_v_may_defs
); i
++)
1834 VARRAY_PUSH_TREE (clobbered_v_may_defs
, VARRAY_TREE (build_v_may_defs
, i
));
1836 ssa_call_clobbered_cache_valid
= true;
1840 /* Add VUSE operands for .GLOBAL_VAR or all call clobbered variables in the
1844 add_call_read_ops (tree stmt
)
1849 stmt_ann_t s_ann
= stmt_ann (stmt
);
1850 struct stmt_ann_d empty_ann
;
1852 /* if the function is not pure, it may reference memory. Add
1853 a VUSE for .GLOBAL_VAR if it has been created. See add_referenced_var
1854 for the heuristic used to decide whether to create .GLOBAL_VAR. */
1857 add_stmt_operand (&global_var
, s_ann
, opf_none
);
1861 /* If cache is valid, copy the elements into the build vector. */
1862 if (ssa_ro_call_cache_valid
)
1864 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (ro_call_vuses
); i
++)
1866 t
= VARRAY_TREE (ro_call_vuses
, i
);
1867 gcc_assert (TREE_CODE (t
) != SSA_NAME
);
1868 var_ann (t
)->in_vuse_list
= 1;
1869 VARRAY_PUSH_TREE (build_vuses
, t
);
1872 s_ann
->makes_aliased_loads
= ro_call_aliased_loads
;
1876 memset (&empty_ann
, 0, sizeof (struct stmt_ann_d
));
1878 /* Add a VUSE for each call-clobbered variable. */
1879 EXECUTE_IF_SET_IN_BITMAP (call_clobbered_vars
, 0, i
, bi
)
1881 tree var
= referenced_var (i
);
1882 add_stmt_operand (&var
, &empty_ann
, opf_none
);
1885 ro_call_aliased_loads
= empty_ann
.makes_aliased_loads
;
1887 s_ann
->makes_aliased_loads
= empty_ann
.makes_aliased_loads
;
1889 /* Prepare empty cache vectors. */
1891 VARRAY_POP_ALL (ro_call_vuses
);
1893 VARRAY_TREE_INIT (ro_call_vuses
, 10, "ro_call_vuses");
1895 /* Now fill the clobbered cache with the values that have been found. */
1896 for (i
= 0; i
< VARRAY_ACTIVE_SIZE (build_vuses
); i
++)
1897 VARRAY_PUSH_TREE (ro_call_vuses
, VARRAY_TREE (build_vuses
, i
));
1899 ssa_ro_call_cache_valid
= true;
1902 /* Copies virtual operands from SRC to DST. */
1905 copy_virtual_operands (tree dst
, tree src
)
1908 vuse_optype vuses
= STMT_VUSE_OPS (src
);
1909 v_may_def_optype v_may_defs
= STMT_V_MAY_DEF_OPS (src
);
1910 v_must_def_optype v_must_defs
= STMT_V_MUST_DEF_OPS (src
);
1911 vuse_optype
*vuses_new
= &stmt_ann (dst
)->operands
.vuse_ops
;
1912 v_may_def_optype
*v_may_defs_new
= &stmt_ann (dst
)->operands
.v_may_def_ops
;
1913 v_must_def_optype
*v_must_defs_new
= &stmt_ann (dst
)->operands
.v_must_def_ops
;
1917 *vuses_new
= allocate_vuse_optype (NUM_VUSES (vuses
));
1918 for (i
= 0; i
< NUM_VUSES (vuses
); i
++)
1919 SET_VUSE_OP (*vuses_new
, i
, VUSE_OP (vuses
, i
));
1924 *v_may_defs_new
= allocate_v_may_def_optype (NUM_V_MAY_DEFS (v_may_defs
));
1925 for (i
= 0; i
< NUM_V_MAY_DEFS (v_may_defs
); i
++)
1927 SET_V_MAY_DEF_OP (*v_may_defs_new
, i
, V_MAY_DEF_OP (v_may_defs
, i
));
1928 SET_V_MAY_DEF_RESULT (*v_may_defs_new
, i
,
1929 V_MAY_DEF_RESULT (v_may_defs
, i
));
1935 *v_must_defs_new
= allocate_v_must_def_optype (NUM_V_MUST_DEFS (v_must_defs
));
1936 for (i
= 0; i
< NUM_V_MUST_DEFS (v_must_defs
); i
++)
1938 SET_V_MUST_DEF_RESULT (*v_must_defs_new
, i
, V_MUST_DEF_RESULT (v_must_defs
, i
));
1939 SET_V_MUST_DEF_KILL (*v_must_defs_new
, i
, V_MUST_DEF_KILL (v_must_defs
, i
));
1945 /* Specifically for use in DOM's expression analysis. Given a store, we
1946 create an artificial stmt which looks like a load from the store, this can
1947 be used to eliminate redundant loads. OLD_OPS are the operands from the
1948 store stmt, and NEW_STMT is the new load which represents a load of the
1952 create_ssa_artficial_load_stmt (stmt_operands_p old_ops
, tree new_stmt
)
1956 stmt_operands_t tmp
;
1959 memset (&tmp
, 0, sizeof (stmt_operands_t
));
1960 ann
= get_stmt_ann (new_stmt
);
1962 /* Free operands just in case is was an existing stmt. */
1963 free_ssa_operands (&(ann
->operands
));
1965 build_ssa_operands (new_stmt
, NULL
, &tmp
, &(ann
->operands
));
1966 free_vuses (&(ann
->operands
.vuse_ops
));
1967 free_v_may_defs (&(ann
->operands
.v_may_def_ops
));
1968 free_v_must_defs (&(ann
->operands
.v_must_def_ops
));
1970 /* For each VDEF on the original statement, we want to create a
1971 VUSE of the V_MAY_DEF result or V_MUST_DEF op on the new
1973 for (j
= 0; j
< NUM_V_MAY_DEFS (old_ops
->v_may_def_ops
); j
++)
1975 op
= V_MAY_DEF_RESULT (old_ops
->v_may_def_ops
, j
);
1979 for (j
= 0; j
< NUM_V_MUST_DEFS (old_ops
->v_must_def_ops
); j
++)
1981 op
= V_MUST_DEF_RESULT (old_ops
->v_must_def_ops
, j
);
1985 /* Now set the vuses for this new stmt. */
1986 ann
->operands
.vuse_ops
= finalize_ssa_vuses (&(tmp
.vuse_ops
));
1989 #include "gt-tree-ssa-operands.h"