* reload1.c (find_optional_reg, inherit_one_chain): Always use
[official-gcc.git] / gcc / df.c
blobad7852cb4d427a448e648fc000dbb513577a5044
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
5 mhayes@redhat.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA.
25 OVERVIEW:
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
41 USAGE:
43 Here's an example of using the dataflow routines.
45 struct df *df;
47 df = df_init ();
49 df_analyze (df, 0, DF_ALL);
51 df_dump (df, DF_ALL, stderr);
53 df_finish (df);
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
59 everything.
61 df_analyze performs the following:
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
79 PHILOSOPHY:
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
87 is called.
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
97 be called very often.
100 DATA STRUCTURES:
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
110 Note that the reg-def and reg-use chains are generally short (except for
111 the hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
118 TODO:
120 1) Incremental dataflow analysis.
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
135 2) Reduced memory requirements.
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
144 3) Ordering of reg-def and reg-use lists.
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
148 (within a BB)?
150 4) Working with a sub-CFG.
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
158 NOTES:
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
169 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
170 for which the number of word_mode units covered by the outer mode is
171 smaller than that covered by the inner mode, invokes a read-modify-write.
172 operation. We generate both a use and a def and again mark them
173 read/write.
174 Paradoxical subreg writes don't leave a trace of the old content, so they
175 are write-only operations. */
177 #include "config.h"
178 #include "system.h"
179 #include "coretypes.h"
180 #include "tm.h"
181 #include "rtl.h"
182 #include "tm_p.h"
183 #include "insn-config.h"
184 #include "recog.h"
185 #include "function.h"
186 #include "regs.h"
187 #include "alloc-pool.h"
188 #include "hard-reg-set.h"
189 #include "basic-block.h"
190 #include "sbitmap.h"
191 #include "bitmap.h"
192 #include "df.h"
194 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
195 do \
197 unsigned int node_; \
198 bitmap_iterator bi; \
199 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, bi) \
201 (BB) = BASIC_BLOCK (node_); \
202 CODE; \
205 while (0)
207 static alloc_pool df_ref_pool;
208 static alloc_pool df_link_pool;
209 static struct df *ddf;
211 static void df_reg_table_realloc (struct df *, int);
212 static void df_insn_table_realloc (struct df *, unsigned int);
213 static void df_bb_table_realloc (struct df *, unsigned int);
214 static void df_bitmaps_alloc (struct df *, bitmap, int);
215 static void df_bitmaps_free (struct df *, int);
216 static void df_free (struct df *);
217 static void df_alloc (struct df *, int);
219 static rtx df_reg_use_gen (unsigned int);
221 static inline struct df_link *df_link_create (struct ref *, struct df_link *);
222 static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
223 static void df_def_unlink (struct df *, struct ref *);
224 static void df_use_unlink (struct df *, struct ref *);
225 static void df_insn_refs_unlink (struct df *, basic_block, rtx);
226 #if 0
227 static void df_bb_refs_unlink (struct df *, basic_block);
228 static void df_refs_unlink (struct df *, bitmap);
229 #endif
231 static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
232 enum df_ref_type, enum df_ref_flags);
233 static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
234 enum df_ref_flags);
235 static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
236 enum df_ref_flags);
237 static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
238 static void df_defs_record (struct df *, rtx, basic_block, rtx);
239 static void df_uses_record (struct df *, rtx *, enum df_ref_type,
240 basic_block, rtx, enum df_ref_flags);
241 static void df_insn_refs_record (struct df *, basic_block, rtx);
242 static void df_bb_refs_record (struct df *, basic_block);
243 static void df_refs_record (struct df *, bitmap);
245 static void df_bb_reg_def_chain_create (struct df *, basic_block);
246 static void df_reg_def_chain_create (struct df *, bitmap, bool);
247 static void df_bb_reg_use_chain_create (struct df *, basic_block);
248 static void df_reg_use_chain_create (struct df *, bitmap, bool);
249 static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
250 static void df_du_chain_create (struct df *, bitmap);
251 static void df_bb_ud_chain_create (struct df *, basic_block);
252 static void df_ud_chain_create (struct df *, bitmap);
253 static void df_bb_rd_local_compute (struct df *, basic_block, bitmap);
254 static void df_rd_local_compute (struct df *, bitmap);
255 static void df_bb_ru_local_compute (struct df *, basic_block);
256 static void df_ru_local_compute (struct df *, bitmap);
257 static void df_bb_lr_local_compute (struct df *, basic_block);
258 static void df_lr_local_compute (struct df *, bitmap);
259 static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
260 static void df_reg_info_compute (struct df *, bitmap);
262 static int df_bb_luids_set (struct df *df, basic_block);
263 static int df_luids_set (struct df *df, bitmap);
265 static int df_modified_p (struct df *, bitmap);
266 static int df_refs_queue (struct df *);
267 static int df_refs_process (struct df *);
268 static int df_bb_refs_update (struct df *, basic_block);
269 static int df_refs_update (struct df *, bitmap);
270 static void df_analyze_1 (struct df *, bitmap, int, int);
272 static void df_insns_modify (struct df *, basic_block, rtx, rtx);
273 static int df_rtx_mem_replace (rtx *, void *);
274 static int df_rtx_reg_replace (rtx *, void *);
275 void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);
277 static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
278 static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
279 static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
280 rtx, unsigned int);
281 static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
282 rtx, unsigned int);
284 static void df_chain_dump (struct df_link *, FILE *file);
285 static void df_chain_dump_regno (struct df_link *, FILE *file);
286 static void df_regno_debug (struct df *, unsigned int, FILE *);
287 static void df_ref_debug (struct df *, struct ref *, FILE *);
288 static void df_rd_transfer_function (int, int *, void *, void *, void *,
289 void *, void *);
290 static void df_ru_transfer_function (int, int *, void *, void *, void *,
291 void *, void *);
292 static void df_lr_transfer_function (int, int *, void *, void *, void *,
293 void *, void *);
294 static void hybrid_search (basic_block, struct dataflow *,
295 sbitmap, sbitmap, sbitmap);
298 /* Local memory allocation/deallocation routines. */
301 /* Increase the insn info table to have space for at least SIZE + 1
302 elements. */
303 static void
304 df_insn_table_realloc (struct df *df, unsigned int size)
306 size++;
307 if (size <= df->insn_size)
308 return;
310 /* Make the table a little larger than requested, so we do not need
311 to enlarge it so often. */
312 size += df->insn_size / 4;
314 df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
316 memset (df->insns + df->insn_size, 0,
317 (size - df->insn_size) * sizeof (struct insn_info));
319 df->insn_size = size;
321 if (! df->insns_modified)
323 df->insns_modified = BITMAP_ALLOC (NULL);
324 bitmap_zero (df->insns_modified);
328 /* Increase the bb info table to have space for at least SIZE + 1
329 elements. */
331 static void
332 df_bb_table_realloc (struct df *df, unsigned int size)
334 size++;
335 if (size <= df->n_bbs)
336 return;
338 /* Make the table a little larger than requested, so we do not need
339 to enlarge it so often. */
340 size += df->n_bbs / 4;
342 df->bbs = xrealloc (df->bbs, size * sizeof (struct bb_info));
344 memset (df->bbs + df->n_bbs, 0, (size - df->n_bbs) * sizeof (struct bb_info));
346 df->n_bbs = size;
349 /* Increase the reg info table by SIZE more elements. */
350 static void
351 df_reg_table_realloc (struct df *df, int size)
353 /* Make table 25 percent larger by default. */
354 if (! size)
355 size = df->reg_size / 4;
357 size += df->reg_size;
358 if (size < max_reg_num ())
359 size = max_reg_num ();
361 df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
362 df->reg_def_last = xrealloc (df->reg_def_last,
363 size * sizeof (struct ref *));
365 /* Zero the new entries. */
366 memset (df->regs + df->reg_size, 0,
367 (size - df->reg_size) * sizeof (struct reg_info));
369 df->reg_size = size;
373 /* Allocate bitmaps for each basic block. */
375 static void
376 df_bitmaps_alloc (struct df *df, bitmap blocks, int flags)
378 basic_block bb;
380 df->n_defs = df->def_id;
381 df->n_uses = df->use_id;
383 if (!blocks)
384 blocks = df->all_blocks;
386 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
388 struct bb_info *bb_info = DF_BB_INFO (df, bb);
390 if (flags & DF_RD)
392 if (!bb_info->rd_in)
394 /* Allocate bitmaps for reaching definitions. */
395 bb_info->rd_kill = BITMAP_ALLOC (NULL);
396 bb_info->rd_gen = BITMAP_ALLOC (NULL);
397 bb_info->rd_in = BITMAP_ALLOC (NULL);
398 bb_info->rd_out = BITMAP_ALLOC (NULL);
400 else
402 bitmap_clear (bb_info->rd_kill);
403 bitmap_clear (bb_info->rd_gen);
404 bitmap_clear (bb_info->rd_in);
405 bitmap_clear (bb_info->rd_out);
409 if (flags & DF_RU)
411 if (!bb_info->ru_in)
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info->ru_kill = BITMAP_ALLOC (NULL);
415 bb_info->ru_gen = BITMAP_ALLOC (NULL);
416 bb_info->ru_in = BITMAP_ALLOC (NULL);
417 bb_info->ru_out = BITMAP_ALLOC (NULL);
419 else
421 bitmap_clear (bb_info->ru_kill);
422 bitmap_clear (bb_info->ru_gen);
423 bitmap_clear (bb_info->ru_in);
424 bitmap_clear (bb_info->ru_out);
428 if (flags & DF_LR)
430 if (!bb_info->lr_in)
432 /* Allocate bitmaps for live variables. */
433 bb_info->lr_def = BITMAP_ALLOC (NULL);
434 bb_info->lr_use = BITMAP_ALLOC (NULL);
435 bb_info->lr_in = BITMAP_ALLOC (NULL);
436 bb_info->lr_out = BITMAP_ALLOC (NULL);
438 else
440 bitmap_clear (bb_info->lr_def);
441 bitmap_clear (bb_info->lr_use);
442 bitmap_clear (bb_info->lr_in);
443 bitmap_clear (bb_info->lr_out);
450 /* Free bitmaps for each basic block. */
451 static void
452 df_bitmaps_free (struct df *df, int flags)
454 basic_block bb;
456 FOR_EACH_BB (bb)
458 struct bb_info *bb_info = DF_BB_INFO (df, bb);
460 if (!bb_info)
461 continue;
463 if ((flags & DF_RD) && bb_info->rd_in)
465 /* Free bitmaps for reaching definitions. */
466 BITMAP_FREE (bb_info->rd_kill);
467 bb_info->rd_kill = NULL;
468 BITMAP_FREE (bb_info->rd_gen);
469 bb_info->rd_gen = NULL;
470 BITMAP_FREE (bb_info->rd_in);
471 bb_info->rd_in = NULL;
472 BITMAP_FREE (bb_info->rd_out);
473 bb_info->rd_out = NULL;
476 if ((flags & DF_RU) && bb_info->ru_in)
478 /* Free bitmaps for upward exposed uses. */
479 BITMAP_FREE (bb_info->ru_kill);
480 bb_info->ru_kill = NULL;
481 BITMAP_FREE (bb_info->ru_gen);
482 bb_info->ru_gen = NULL;
483 BITMAP_FREE (bb_info->ru_in);
484 bb_info->ru_in = NULL;
485 BITMAP_FREE (bb_info->ru_out);
486 bb_info->ru_out = NULL;
489 if ((flags & DF_LR) && bb_info->lr_in)
491 /* Free bitmaps for live variables. */
492 BITMAP_FREE (bb_info->lr_def);
493 bb_info->lr_def = NULL;
494 BITMAP_FREE (bb_info->lr_use);
495 bb_info->lr_use = NULL;
496 BITMAP_FREE (bb_info->lr_in);
497 bb_info->lr_in = NULL;
498 BITMAP_FREE (bb_info->lr_out);
499 bb_info->lr_out = NULL;
502 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
506 /* Allocate and initialize dataflow memory. */
507 static void
508 df_alloc (struct df *df, int n_regs)
510 int n_insns;
511 basic_block bb;
513 df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
514 100);
515 df_ref_pool = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
517 /* Perhaps we should use LUIDs to save memory for the insn_refs
518 table. This is only a small saving; a few pointers. */
519 n_insns = get_max_uid () + 1;
521 df->def_id = 0;
522 df->n_defs = 0;
523 /* Approximate number of defs by number of insns. */
524 df->def_size = n_insns;
525 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
527 df->use_id = 0;
528 df->n_uses = 0;
529 /* Approximate number of uses by twice number of insns. */
530 df->use_size = n_insns * 2;
531 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
533 df->n_regs = n_regs;
534 df->n_bbs = last_basic_block;
536 /* Allocate temporary working array used during local dataflow analysis. */
537 df_insn_table_realloc (df, n_insns);
539 df_reg_table_realloc (df, df->n_regs);
541 df->bbs_modified = BITMAP_ALLOC (NULL);
542 bitmap_zero (df->bbs_modified);
544 df->flags = 0;
546 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
548 df->all_blocks = BITMAP_ALLOC (NULL);
549 FOR_EACH_BB (bb)
550 bitmap_set_bit (df->all_blocks, bb->index);
554 /* Free all the dataflow info. */
555 static void
556 df_free (struct df *df)
558 df_bitmaps_free (df, DF_ALL);
560 if (df->bbs)
561 free (df->bbs);
562 df->bbs = 0;
564 if (df->insns)
565 free (df->insns);
566 df->insns = 0;
567 df->insn_size = 0;
569 if (df->defs)
570 free (df->defs);
571 df->defs = 0;
572 df->def_size = 0;
573 df->def_id = 0;
575 if (df->uses)
576 free (df->uses);
577 df->uses = 0;
578 df->use_size = 0;
579 df->use_id = 0;
581 if (df->regs)
582 free (df->regs);
583 df->regs = 0;
584 df->reg_size = 0;
586 BITMAP_FREE (df->bbs_modified);
587 df->bbs_modified = 0;
589 BITMAP_FREE (df->insns_modified);
590 df->insns_modified = 0;
592 BITMAP_FREE (df->all_blocks);
593 df->all_blocks = 0;
595 free_alloc_pool (df_ref_pool);
596 free_alloc_pool (df_link_pool);
599 /* Local miscellaneous routines. */
601 /* Return a USE for register REGNO. */
602 static rtx df_reg_use_gen (unsigned int regno)
604 rtx reg;
605 rtx use;
607 reg = regno_reg_rtx[regno];
609 use = gen_rtx_USE (GET_MODE (reg), reg);
610 return use;
613 /* Local chain manipulation routines. */
615 /* Create a link in a def-use or use-def chain. */
616 static inline struct df_link *
617 df_link_create (struct ref *ref, struct df_link *next)
619 struct df_link *link;
621 link = pool_alloc (df_link_pool);
622 link->next = next;
623 link->ref = ref;
624 return link;
627 /* Releases members of the CHAIN. */
629 static void
630 free_reg_ref_chain (struct df_link **chain)
632 struct df_link *act, *next;
634 for (act = *chain; act; act = next)
636 next = act->next;
637 pool_free (df_link_pool, act);
640 *chain = NULL;
643 /* Add REF to chain head pointed to by PHEAD. */
644 static struct df_link *
645 df_ref_unlink (struct df_link **phead, struct ref *ref)
647 struct df_link *link = *phead;
649 if (link)
651 if (! link->next)
653 /* Only a single ref. It must be the one we want.
654 If not, the def-use and use-def chains are likely to
655 be inconsistent. */
656 gcc_assert (link->ref == ref);
658 /* Now have an empty chain. */
659 *phead = NULL;
661 else
663 /* Multiple refs. One of them must be us. */
664 if (link->ref == ref)
665 *phead = link->next;
666 else
668 /* Follow chain. */
669 for (; link->next; link = link->next)
671 if (link->next->ref == ref)
673 /* Unlink from list. */
674 link->next = link->next->next;
675 return link->next;
681 return link;
685 /* Unlink REF from all def-use/use-def chains, etc. */
687 df_ref_remove (struct df *df, struct ref *ref)
689 if (DF_REF_REG_DEF_P (ref))
691 df_def_unlink (df, ref);
692 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
694 else
696 df_use_unlink (df, ref);
697 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
699 return 1;
703 /* Unlink DEF from use-def and reg-def chains. */
704 static void
705 df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
707 struct df_link *du_link;
708 unsigned int dregno = DF_REF_REGNO (def);
710 /* Follow def-use chain to find all the uses of this def. */
711 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
713 struct ref *use = du_link->ref;
715 /* Unlink this def from the use-def chain. */
716 df_ref_unlink (&DF_REF_CHAIN (use), def);
718 DF_REF_CHAIN (def) = 0;
720 /* Unlink def from reg-def chain. */
721 df_ref_unlink (&df->regs[dregno].defs, def);
723 df->defs[DF_REF_ID (def)] = 0;
727 /* Unlink use from def-use and reg-use chains. */
728 static void
729 df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
731 struct df_link *ud_link;
732 unsigned int uregno = DF_REF_REGNO (use);
734 /* Follow use-def chain to find all the defs of this use. */
735 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
737 struct ref *def = ud_link->ref;
739 /* Unlink this use from the def-use chain. */
740 df_ref_unlink (&DF_REF_CHAIN (def), use);
742 DF_REF_CHAIN (use) = 0;
744 /* Unlink use from reg-use chain. */
745 df_ref_unlink (&df->regs[uregno].uses, use);
747 df->uses[DF_REF_ID (use)] = 0;
750 /* Local routines for recording refs. */
753 /* Create a new ref of type DF_REF_TYPE for register REG at address
754 LOC within INSN of BB. */
755 static struct ref *
756 df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
757 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
759 struct ref *this_ref;
761 this_ref = pool_alloc (df_ref_pool);
762 DF_REF_REG (this_ref) = reg;
763 DF_REF_LOC (this_ref) = loc;
764 DF_REF_INSN (this_ref) = insn;
765 DF_REF_CHAIN (this_ref) = 0;
766 DF_REF_TYPE (this_ref) = ref_type;
767 DF_REF_FLAGS (this_ref) = ref_flags;
768 DF_REF_DATA (this_ref) = NULL;
770 if (ref_type == DF_REF_REG_DEF)
772 if (df->def_id >= df->def_size)
774 /* Make table 25 percent larger. */
775 df->def_size += (df->def_size / 4);
776 df->defs = xrealloc (df->defs,
777 df->def_size * sizeof (*df->defs));
779 DF_REF_ID (this_ref) = df->def_id;
780 df->defs[df->def_id++] = this_ref;
782 else
784 if (df->use_id >= df->use_size)
786 /* Make table 25 percent larger. */
787 df->use_size += (df->use_size / 4);
788 df->uses = xrealloc (df->uses,
789 df->use_size * sizeof (*df->uses));
791 DF_REF_ID (this_ref) = df->use_id;
792 df->uses[df->use_id++] = this_ref;
794 return this_ref;
798 /* Create a new reference of type DF_REF_TYPE for a single register REG,
799 used inside the LOC rtx of INSN. */
800 static void
801 df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
802 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
804 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
808 /* Create new references of type DF_REF_TYPE for each part of register REG
809 at address LOC within INSN of BB. */
810 static void
811 df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
812 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
814 unsigned int regno;
816 gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
818 /* For the reg allocator we are interested in some SUBREG rtx's, but not
819 all. Notably only those representing a word extraction from a multi-word
820 reg. As written in the docu those should have the form
821 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
822 XXX Is that true? We could also use the global word_mode variable. */
823 if (GET_CODE (reg) == SUBREG
824 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
825 || GET_MODE_SIZE (GET_MODE (reg))
826 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
828 loc = &SUBREG_REG (reg);
829 reg = *loc;
830 ref_flags |= DF_REF_STRIPPED;
833 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
834 if (regno < FIRST_PSEUDO_REGISTER)
836 int i;
837 int endregno;
839 if (! (df->flags & DF_HARD_REGS))
840 return;
842 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
843 for the mode, because we only want to add references to regs, which
844 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
845 reference the whole reg 0 in DI mode (which would also include
846 reg 1, at least, if 0 and 1 are SImode registers). */
847 endregno = hard_regno_nregs[regno][GET_MODE (reg)];
848 if (GET_CODE (reg) == SUBREG)
849 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
850 SUBREG_BYTE (reg), GET_MODE (reg));
851 endregno += regno;
853 for (i = regno; i < endregno; i++)
854 df_ref_record_1 (df, regno_reg_rtx[i],
855 loc, insn, ref_type, ref_flags);
857 else
859 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
864 /* A set to a non-paradoxical SUBREG for which the number of word_mode units
865 covered by the outer mode is smaller than that covered by the inner mode,
866 is a read-modify-write operation.
867 This function returns true iff the SUBREG X is such a SUBREG. */
868 bool
869 read_modify_subreg_p (rtx x)
871 unsigned int isize, osize;
872 if (GET_CODE (x) != SUBREG)
873 return false;
874 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
875 osize = GET_MODE_SIZE (GET_MODE (x));
876 return (isize > osize && isize > UNITS_PER_WORD);
880 /* Process all the registers defined in the rtx, X. */
881 static void
882 df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
884 rtx *loc;
885 rtx dst;
886 enum df_ref_flags flags = 0;
888 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
889 construct. */
890 if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
891 loc = &XEXP (x, 0);
892 else
893 loc = &SET_DEST (x);
894 dst = *loc;
896 /* Some targets place small structures in registers for
897 return values of functions. */
898 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
900 int i;
902 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
904 rtx temp = XVECEXP (dst, 0, i);
905 if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
906 || GET_CODE (temp) == SET)
907 df_def_record_1 (df, temp, bb, insn);
909 return;
912 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
913 be handy for the reg allocator. */
914 while (GET_CODE (dst) == STRICT_LOW_PART
915 || GET_CODE (dst) == ZERO_EXTRACT
916 || read_modify_subreg_p (dst))
918 /* Strict low part always contains SUBREG, but we do not want to make
919 it appear outside, as whole register is always considered. */
920 if (GET_CODE (dst) == STRICT_LOW_PART)
922 loc = &XEXP (dst, 0);
923 dst = *loc;
925 loc = &XEXP (dst, 0);
926 dst = *loc;
927 flags |= DF_REF_READ_WRITE;
930 if (REG_P (dst)
931 || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
932 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
936 /* Process all the registers defined in the pattern rtx, X. */
937 static void
938 df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
940 RTX_CODE code = GET_CODE (x);
942 if (code == SET || code == CLOBBER)
944 /* Mark the single def within the pattern. */
945 df_def_record_1 (df, x, bb, insn);
947 else if (code == PARALLEL)
949 int i;
951 /* Mark the multiple defs within the pattern. */
952 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
954 code = GET_CODE (XVECEXP (x, 0, i));
955 if (code == SET || code == CLOBBER)
956 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
962 /* Process all the registers used in the rtx at address LOC. */
963 static void
964 df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
965 basic_block bb, rtx insn, enum df_ref_flags flags)
967 RTX_CODE code;
968 rtx x;
969 retry:
970 x = *loc;
971 if (!x)
972 return;
973 code = GET_CODE (x);
974 switch (code)
976 case LABEL_REF:
977 case SYMBOL_REF:
978 case CONST_INT:
979 case CONST:
980 case CONST_DOUBLE:
981 case CONST_VECTOR:
982 case PC:
983 case CC0:
984 case ADDR_VEC:
985 case ADDR_DIFF_VEC:
986 return;
988 case CLOBBER:
989 /* If we are clobbering a MEM, mark any registers inside the address
990 as being used. */
991 if (MEM_P (XEXP (x, 0)))
992 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
993 DF_REF_REG_MEM_STORE, bb, insn, flags);
995 /* If we're clobbering a REG then we have a def so ignore. */
996 return;
998 case MEM:
999 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
1000 return;
1002 case SUBREG:
1003 /* While we're here, optimize this case. */
1005 /* In case the SUBREG is not of a REG, do not optimize. */
1006 if (!REG_P (SUBREG_REG (x)))
1008 loc = &SUBREG_REG (x);
1009 df_uses_record (df, loc, ref_type, bb, insn, flags);
1010 return;
1012 /* ... Fall through ... */
1014 case REG:
1015 df_ref_record (df, x, loc, insn, ref_type, flags);
1016 return;
1018 case SET:
1020 rtx dst = SET_DEST (x);
1022 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1024 switch (GET_CODE (dst))
1026 case SUBREG:
1027 if (read_modify_subreg_p (dst))
1029 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1030 insn, DF_REF_READ_WRITE);
1031 break;
1033 /* Fall through. */
1034 case REG:
1035 case PARALLEL:
1036 case PC:
1037 case CC0:
1038 break;
1039 case MEM:
1040 df_uses_record (df, &XEXP (dst, 0),
1041 DF_REF_REG_MEM_STORE,
1042 bb, insn, 0);
1043 break;
1044 case STRICT_LOW_PART:
1045 /* A strict_low_part uses the whole REG and not just the
1046 SUBREG. */
1047 dst = XEXP (dst, 0);
1048 gcc_assert (GET_CODE (dst) == SUBREG);
1049 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1050 insn, DF_REF_READ_WRITE);
1051 break;
1052 case ZERO_EXTRACT:
1053 case SIGN_EXTRACT:
1054 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1055 DF_REF_READ_WRITE);
1056 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1057 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1058 dst = XEXP (dst, 0);
1059 break;
1060 default:
1061 gcc_unreachable ();
1063 return;
1066 case RETURN:
1067 break;
1069 case ASM_OPERANDS:
1070 case UNSPEC_VOLATILE:
1071 case TRAP_IF:
1072 case ASM_INPUT:
1074 /* Traditional and volatile asm instructions must be considered to use
1075 and clobber all hard registers, all pseudo-registers and all of
1076 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1078 Consider for instance a volatile asm that changes the fpu rounding
1079 mode. An insn should not be moved across this even if it only uses
1080 pseudo-regs because it might give an incorrectly rounded result.
1082 For now, just mark any regs we can find in ASM_OPERANDS as
1083 used. */
1085 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1086 We can not just fall through here since then we would be confused
1087 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1088 traditional asms unlike their normal usage. */
1089 if (code == ASM_OPERANDS)
1091 int j;
1093 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1094 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1095 DF_REF_REG_USE, bb, insn, 0);
1096 return;
1098 break;
1101 case PRE_DEC:
1102 case POST_DEC:
1103 case PRE_INC:
1104 case POST_INC:
1105 case PRE_MODIFY:
1106 case POST_MODIFY:
1107 /* Catch the def of the register being modified. */
1108 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1110 /* ... Fall through to handle uses ... */
1112 default:
1113 break;
1116 /* Recursively scan the operands of this expression. */
1118 const char *fmt = GET_RTX_FORMAT (code);
1119 int i;
1121 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1123 if (fmt[i] == 'e')
1125 /* Tail recursive case: save a function call level. */
1126 if (i == 0)
1128 loc = &XEXP (x, 0);
1129 goto retry;
1131 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1133 else if (fmt[i] == 'E')
1135 int j;
1136 for (j = 0; j < XVECLEN (x, i); j++)
1137 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1138 bb, insn, flags);
1145 /* Record all the df within INSN of basic block BB. */
1146 static void
1147 df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
1149 int i;
1151 if (INSN_P (insn))
1153 rtx note;
1155 /* Record register defs. */
1156 df_defs_record (df, PATTERN (insn), bb, insn);
1158 if (df->flags & DF_EQUIV_NOTES)
1159 for (note = REG_NOTES (insn); note;
1160 note = XEXP (note, 1))
1162 switch (REG_NOTE_KIND (note))
1164 case REG_EQUIV:
1165 case REG_EQUAL:
1166 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1167 bb, insn, 0);
1168 default:
1169 break;
1173 if (CALL_P (insn))
1175 rtx note;
1176 rtx x;
1178 /* Record the registers used to pass arguments. */
1179 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1180 note = XEXP (note, 1))
1182 if (GET_CODE (XEXP (note, 0)) == USE)
1183 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1184 bb, insn, 0);
1187 /* The stack ptr is used (honorarily) by a CALL insn. */
1188 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1189 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1191 if (df->flags & DF_HARD_REGS)
1193 /* Calls may also reference any of the global registers,
1194 so they are recorded as used. */
1195 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1196 if (global_regs[i])
1198 x = df_reg_use_gen (i);
1199 df_uses_record (df, &XEXP (x, 0),
1200 DF_REF_REG_USE, bb, insn, 0);
1205 /* Record the register uses. */
1206 df_uses_record (df, &PATTERN (insn),
1207 DF_REF_REG_USE, bb, insn, 0);
1209 if (CALL_P (insn))
1211 rtx note;
1213 /* We do not record hard registers clobbered by the call,
1214 since there are awfully many of them and "defs" created
1215 through them are not interesting (since no use can be legally
1216 reached by them). So we must just make sure we include them when
1217 computing kill bitmaps. */
1219 /* There may be extra registers to be clobbered. */
1220 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1221 note;
1222 note = XEXP (note, 1))
1223 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1224 df_defs_record (df, XEXP (note, 0), bb, insn);
1230 /* Record all the refs within the basic block BB. */
1231 static void
1232 df_bb_refs_record (struct df *df, basic_block bb)
1234 rtx insn;
1236 /* Scan the block an insn at a time from beginning to end. */
1237 FOR_BB_INSNS (bb, insn)
1239 if (INSN_P (insn))
1241 /* Record defs within INSN. */
1242 df_insn_refs_record (df, bb, insn);
1248 /* Record all the refs in the basic blocks specified by BLOCKS. */
1249 static void
1250 df_refs_record (struct df *df, bitmap blocks)
1252 basic_block bb;
1254 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1256 df_bb_refs_record (df, bb);
1260 /* Dataflow analysis routines. */
1262 /* Create reg-def chains for basic block BB. These are a list of
1263 definitions for each register. */
1265 static void
1266 df_bb_reg_def_chain_create (struct df *df, basic_block bb)
1268 rtx insn;
1270 /* Perhaps the defs should be sorted using a depth first search
1271 of the CFG (or possibly a breadth first search). */
1273 FOR_BB_INSNS_REVERSE (bb, insn)
1275 struct df_link *link;
1276 unsigned int uid = INSN_UID (insn);
1278 if (! INSN_P (insn))
1279 continue;
1281 for (link = df->insns[uid].defs; link; link = link->next)
1283 struct ref *def = link->ref;
1284 unsigned int dregno = DF_REF_REGNO (def);
1286 /* Do not add ref's to the chain twice, i.e., only add new
1287 refs. XXX the same could be done by testing if the
1288 current insn is a modified (or a new) one. This would be
1289 faster. */
1290 if (DF_REF_ID (def) < df->def_id_save)
1291 continue;
1293 df->regs[dregno].defs = df_link_create (def, df->regs[dregno].defs);
1299 /* Create reg-def chains for each basic block within BLOCKS. These
1300 are a list of definitions for each register. If REDO is true, add
1301 all defs, otherwise just add the new defs. */
1303 static void
1304 df_reg_def_chain_create (struct df *df, bitmap blocks, bool redo)
1306 basic_block bb;
1307 #ifdef ENABLE_CHECKING
1308 unsigned regno;
1309 #endif
1310 unsigned old_def_id_save = df->def_id_save;
1312 if (redo)
1314 #ifdef ENABLE_CHECKING
1315 for (regno = 0; regno < df->n_regs; regno++)
1316 gcc_assert (!df->regs[regno].defs);
1317 #endif
1319 /* Pretend that all defs are new. */
1320 df->def_id_save = 0;
1323 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1325 df_bb_reg_def_chain_create (df, bb);
1328 df->def_id_save = old_def_id_save;
1331 /* Remove all reg-def chains stored in the dataflow object DF. */
1333 static void
1334 df_reg_def_chain_clean (struct df *df)
1336 unsigned regno;
1338 for (regno = 0; regno < df->n_regs; regno++)
1339 free_reg_ref_chain (&df->regs[regno].defs);
1342 /* Create reg-use chains for basic block BB. These are a list of uses
1343 for each register. */
1345 static void
1346 df_bb_reg_use_chain_create (struct df *df, basic_block bb)
1348 rtx insn;
1350 /* Scan in forward order so that the last uses appear at the start
1351 of the chain. */
1353 FOR_BB_INSNS (bb, insn)
1355 struct df_link *link;
1356 unsigned int uid = INSN_UID (insn);
1358 if (! INSN_P (insn))
1359 continue;
1361 for (link = df->insns[uid].uses; link; link = link->next)
1363 struct ref *use = link->ref;
1364 unsigned int uregno = DF_REF_REGNO (use);
1366 /* Do not add ref's to the chain twice, i.e., only add new
1367 refs. XXX the same could be done by testing if the
1368 current insn is a modified (or a new) one. This would be
1369 faster. */
1370 if (DF_REF_ID (use) < df->use_id_save)
1371 continue;
1373 df->regs[uregno].uses
1374 = df_link_create (use, df->regs[uregno].uses);
1380 /* Create reg-use chains for each basic block within BLOCKS. These
1381 are a list of uses for each register. If REDO is true, remove the
1382 old reg-use chains first, otherwise just add new uses to them. */
1384 static void
1385 df_reg_use_chain_create (struct df *df, bitmap blocks, bool redo)
1387 basic_block bb;
1388 #ifdef ENABLE_CHECKING
1389 unsigned regno;
1390 #endif
1391 unsigned old_use_id_save = df->use_id_save;
1393 if (redo)
1395 #ifdef ENABLE_CHECKING
1396 for (regno = 0; regno < df->n_regs; regno++)
1397 gcc_assert (!df->regs[regno].uses);
1398 #endif
1400 /* Pretend that all uses are new. */
1401 df->use_id_save = 0;
1404 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1406 df_bb_reg_use_chain_create (df, bb);
1409 df->use_id_save = old_use_id_save;
1412 /* Remove all reg-use chains stored in the dataflow object DF. */
1414 static void
1415 df_reg_use_chain_clean (struct df *df)
1417 unsigned regno;
1419 for (regno = 0; regno < df->n_regs; regno++)
1420 free_reg_ref_chain (&df->regs[regno].uses);
1423 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1424 static void
1425 df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
1427 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1428 rtx insn;
1430 bitmap_copy (ru, bb_info->ru_out);
1432 /* For each def in BB create a linked list (chain) of uses
1433 reached from the def. */
1434 FOR_BB_INSNS_REVERSE (bb, insn)
1436 struct df_link *def_link;
1437 struct df_link *use_link;
1438 unsigned int uid = INSN_UID (insn);
1440 if (! INSN_P (insn))
1441 continue;
1443 /* For each def in insn... */
1444 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1446 struct ref *def = def_link->ref;
1447 unsigned int dregno = DF_REF_REGNO (def);
1449 DF_REF_CHAIN (def) = 0;
1451 /* While the reg-use chains are not essential, it
1452 is _much_ faster to search these short lists rather
1453 than all the reaching uses, especially for large functions. */
1454 for (use_link = df->regs[dregno].uses; use_link;
1455 use_link = use_link->next)
1457 struct ref *use = use_link->ref;
1459 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1461 DF_REF_CHAIN (def)
1462 = df_link_create (use, DF_REF_CHAIN (def));
1464 bitmap_clear_bit (ru, DF_REF_ID (use));
1469 /* For each use in insn... */
1470 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1472 struct ref *use = use_link->ref;
1473 bitmap_set_bit (ru, DF_REF_ID (use));
1479 /* Create def-use chains from reaching use bitmaps for basic blocks
1480 in BLOCKS. */
1481 static void
1482 df_du_chain_create (struct df *df, bitmap blocks)
1484 bitmap ru;
1485 basic_block bb;
1487 ru = BITMAP_ALLOC (NULL);
1489 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1491 df_bb_du_chain_create (df, bb, ru);
1494 BITMAP_FREE (ru);
1498 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1499 static void
1500 df_bb_ud_chain_create (struct df *df, basic_block bb)
1502 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1503 struct ref **reg_def_last = df->reg_def_last;
1504 rtx insn;
1506 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1508 /* For each use in BB create a linked list (chain) of defs
1509 that reach the use. */
1510 FOR_BB_INSNS (bb, insn)
1512 unsigned int uid = INSN_UID (insn);
1513 struct df_link *use_link;
1514 struct df_link *def_link;
1516 if (! INSN_P (insn))
1517 continue;
1519 /* For each use in insn... */
1520 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1522 struct ref *use = use_link->ref;
1523 unsigned int regno = DF_REF_REGNO (use);
1525 DF_REF_CHAIN (use) = 0;
1527 /* Has regno been defined in this BB yet? If so, use
1528 the last def as the single entry for the use-def
1529 chain for this use. Otherwise, we need to add all
1530 the defs using this regno that reach the start of
1531 this BB. */
1532 if (reg_def_last[regno])
1534 DF_REF_CHAIN (use)
1535 = df_link_create (reg_def_last[regno], 0);
1537 else
1539 /* While the reg-def chains are not essential, it is
1540 _much_ faster to search these short lists rather than
1541 all the reaching defs, especially for large
1542 functions. */
1543 for (def_link = df->regs[regno].defs; def_link;
1544 def_link = def_link->next)
1546 struct ref *def = def_link->ref;
1548 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1550 DF_REF_CHAIN (use)
1551 = df_link_create (def, DF_REF_CHAIN (use));
1558 /* For each def in insn... record the last def of each reg. */
1559 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1561 struct ref *def = def_link->ref;
1562 int dregno = DF_REF_REGNO (def);
1564 reg_def_last[dregno] = def;
1570 /* Create use-def chains from reaching def bitmaps for basic blocks
1571 within BLOCKS. */
1572 static void
1573 df_ud_chain_create (struct df *df, bitmap blocks)
1575 basic_block bb;
1577 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1579 df_bb_ud_chain_create (df, bb);
1585 static void
1586 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1587 void *out, void *gen, void *kill,
1588 void *data ATTRIBUTE_UNUSED)
1590 *changed = bitmap_ior_and_compl (out, gen, in, kill);
1594 static void
1595 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1596 void *out, void *gen, void *kill,
1597 void *data ATTRIBUTE_UNUSED)
1599 *changed = bitmap_ior_and_compl (in, gen, out, kill);
1603 static void
1604 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1605 void *out, void *use, void *def,
1606 void *data ATTRIBUTE_UNUSED)
1608 *changed = bitmap_ior_and_compl (in, use, out, def);
1612 /* Compute local reaching def info for basic block BB. */
1613 static void
1614 df_bb_rd_local_compute (struct df *df, basic_block bb, bitmap call_killed_defs)
1616 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1617 rtx insn;
1618 bitmap seen = BITMAP_ALLOC (NULL);
1619 bool call_seen = false;
1621 FOR_BB_INSNS_REVERSE (bb, insn)
1623 unsigned int uid = INSN_UID (insn);
1624 struct df_link *def_link;
1626 if (! INSN_P (insn))
1627 continue;
1629 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1631 struct ref *def = def_link->ref;
1632 unsigned int regno = DF_REF_REGNO (def);
1633 struct df_link *def2_link;
1635 if (bitmap_bit_p (seen, regno)
1636 || (call_seen
1637 && regno < FIRST_PSEUDO_REGISTER
1638 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)))
1639 continue;
1641 for (def2_link = df->regs[regno].defs; def2_link;
1642 def2_link = def2_link->next)
1644 struct ref *def2 = def2_link->ref;
1646 /* Add all defs of this reg to the set of kills. This
1647 is greedy since many of these defs will not actually
1648 be killed by this BB but it keeps things a lot
1649 simpler. */
1650 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1653 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1654 bitmap_set_bit (seen, regno);
1657 if (CALL_P (insn) && (df->flags & DF_HARD_REGS))
1659 bitmap_ior_into (bb_info->rd_kill, call_killed_defs);
1660 call_seen = 1;
1664 BITMAP_FREE (seen);
1668 /* Compute local reaching def info for each basic block within BLOCKS. */
1669 static void
1670 df_rd_local_compute (struct df *df, bitmap blocks)
1672 basic_block bb;
1673 bitmap killed_by_call = NULL;
1674 unsigned regno;
1675 struct df_link *def_link;
1677 if (df->flags & DF_HARD_REGS)
1679 killed_by_call = BITMAP_ALLOC (NULL);
1680 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1682 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1683 continue;
1685 for (def_link = df->regs[regno].defs;
1686 def_link;
1687 def_link = def_link->next)
1688 bitmap_set_bit (killed_by_call, DF_REF_ID (def_link->ref));
1692 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1694 df_bb_rd_local_compute (df, bb, killed_by_call);
1697 if (df->flags & DF_HARD_REGS)
1698 BITMAP_FREE (killed_by_call);
1702 /* Compute local reaching use (upward exposed use) info for basic
1703 block BB. */
1704 static void
1705 df_bb_ru_local_compute (struct df *df, basic_block bb)
1707 /* This is much more tricky than computing reaching defs. With
1708 reaching defs, defs get killed by other defs. With upwards
1709 exposed uses, these get killed by defs with the same regno. */
1711 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1712 rtx insn;
1715 FOR_BB_INSNS_REVERSE (bb, insn)
1717 unsigned int uid = INSN_UID (insn);
1718 struct df_link *def_link;
1719 struct df_link *use_link;
1721 if (! INSN_P (insn))
1722 continue;
1724 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1726 struct ref *def = def_link->ref;
1727 unsigned int dregno = DF_REF_REGNO (def);
1729 for (use_link = df->regs[dregno].uses; use_link;
1730 use_link = use_link->next)
1732 struct ref *use = use_link->ref;
1734 /* Add all uses of this reg to the set of kills. This
1735 is greedy since many of these uses will not actually
1736 be killed by this BB but it keeps things a lot
1737 simpler. */
1738 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1740 /* Zap from the set of gens for this BB. */
1741 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1745 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1747 struct ref *use = use_link->ref;
1748 /* Add use to set of gens in this BB. */
1749 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1755 /* Compute local reaching use (upward exposed use) info for each basic
1756 block within BLOCKS. */
1757 static void
1758 df_ru_local_compute (struct df *df, bitmap blocks)
1760 basic_block bb;
1762 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1764 df_bb_ru_local_compute (df, bb);
1769 /* Compute local live variable info for basic block BB. */
1770 static void
1771 df_bb_lr_local_compute (struct df *df, basic_block bb)
1773 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1774 rtx insn;
1776 FOR_BB_INSNS_REVERSE (bb, insn)
1778 unsigned int uid = INSN_UID (insn);
1779 struct df_link *link;
1781 if (! INSN_P (insn))
1782 continue;
1784 for (link = df->insns[uid].defs; link; link = link->next)
1786 struct ref *def = link->ref;
1787 unsigned int dregno = DF_REF_REGNO (def);
1789 /* Add def to set of defs in this BB. */
1790 bitmap_set_bit (bb_info->lr_def, dregno);
1792 bitmap_clear_bit (bb_info->lr_use, dregno);
1795 for (link = df->insns[uid].uses; link; link = link->next)
1797 struct ref *use = link->ref;
1798 /* Add use to set of uses in this BB. */
1799 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1805 /* Compute local live variable info for each basic block within BLOCKS. */
1806 static void
1807 df_lr_local_compute (struct df *df, bitmap blocks)
1809 basic_block bb;
1811 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1813 df_bb_lr_local_compute (df, bb);
1818 /* Compute register info: lifetime, bb, and number of defs and uses
1819 for basic block BB. */
1820 static void
1821 df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
1823 struct reg_info *reg_info = df->regs;
1824 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1825 rtx insn;
1827 bitmap_copy (live, bb_info->lr_out);
1829 FOR_BB_INSNS_REVERSE (bb, insn)
1831 unsigned int uid = INSN_UID (insn);
1832 unsigned int regno;
1833 struct df_link *link;
1834 bitmap_iterator bi;
1836 if (! INSN_P (insn))
1837 continue;
1839 for (link = df->insns[uid].defs; link; link = link->next)
1841 struct ref *def = link->ref;
1842 unsigned int dregno = DF_REF_REGNO (def);
1844 /* Kill this register. */
1845 bitmap_clear_bit (live, dregno);
1846 reg_info[dregno].n_defs++;
1849 for (link = df->insns[uid].uses; link; link = link->next)
1851 struct ref *use = link->ref;
1852 unsigned int uregno = DF_REF_REGNO (use);
1854 /* This register is now live. */
1855 bitmap_set_bit (live, uregno);
1856 reg_info[uregno].n_uses++;
1859 /* Increment lifetimes of all live registers. */
1860 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno, bi)
1862 reg_info[regno].lifetime++;
1868 /* Compute register info: lifetime, bb, and number of defs and uses. */
1869 static void
1870 df_reg_info_compute (struct df *df, bitmap blocks)
1872 basic_block bb;
1873 bitmap live;
1875 live = BITMAP_ALLOC (NULL);
1877 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1879 df_bb_reg_info_compute (df, bb, live);
1882 BITMAP_FREE (live);
1886 /* Assign LUIDs for BB. */
1887 static int
1888 df_bb_luids_set (struct df *df, basic_block bb)
1890 rtx insn;
1891 int luid = 0;
1893 /* The LUIDs are monotonically increasing for each basic block. */
1895 FOR_BB_INSNS (bb, insn)
1897 if (INSN_P (insn))
1898 DF_INSN_LUID (df, insn) = luid++;
1899 DF_INSN_LUID (df, insn) = luid;
1901 return luid;
1905 /* Assign LUIDs for each basic block within BLOCKS. */
1906 static int
1907 df_luids_set (struct df *df, bitmap blocks)
1909 basic_block bb;
1910 int total = 0;
1912 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1914 total += df_bb_luids_set (df, bb);
1916 return total;
1920 /* Perform dataflow analysis using existing DF structure for blocks
1921 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1922 static void
1923 df_analyze_1 (struct df *df, bitmap blocks, int flags, int update)
1925 int aflags;
1926 int dflags;
1927 int i;
1928 basic_block bb;
1929 struct dataflow dflow;
1931 dflags = 0;
1932 aflags = flags;
1933 if (flags & DF_UD_CHAIN)
1934 aflags |= DF_RD | DF_RD_CHAIN;
1936 if (flags & DF_DU_CHAIN)
1937 aflags |= DF_RU;
1939 if (flags & DF_RU)
1940 aflags |= DF_RU_CHAIN;
1942 if (flags & DF_REG_INFO)
1943 aflags |= DF_LR;
1945 if (! blocks)
1946 blocks = df->all_blocks;
1948 df->flags = flags;
1949 if (update)
1951 df_refs_update (df, NULL);
1952 /* More fine grained incremental dataflow analysis would be
1953 nice. For now recompute the whole shebang for the
1954 modified blocks. */
1955 #if 0
1956 df_refs_unlink (df, blocks);
1957 #endif
1958 /* All the def-use, use-def chains can be potentially
1959 modified by changes in one block. The size of the
1960 bitmaps can also change. */
1962 else
1964 /* Scan the function for all register defs and uses. */
1965 df_refs_queue (df);
1966 df_refs_record (df, blocks);
1968 /* Link all the new defs and uses to the insns. */
1969 df_refs_process (df);
1972 /* Allocate the bitmaps now the total number of defs and uses are
1973 known. If the number of defs or uses have changed, then
1974 these bitmaps need to be reallocated. */
1975 df_bitmaps_alloc (df, NULL, aflags);
1977 /* Set the LUIDs for each specified basic block. */
1978 df_luids_set (df, blocks);
1980 /* Recreate reg-def and reg-use chains from scratch so that first
1981 def is at the head of the reg-def chain and the last use is at
1982 the head of the reg-use chain. This is only important for
1983 regs local to a basic block as it speeds up searching. */
1984 if (aflags & DF_RD_CHAIN)
1986 df_reg_def_chain_create (df, blocks, false);
1989 if (aflags & DF_RU_CHAIN)
1991 df_reg_use_chain_create (df, blocks, false);
1994 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
1995 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
1996 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
1997 df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
1998 df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
1999 df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
2001 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2002 flow_reverse_top_sort_order_compute (df->rts_order);
2003 for (i = 0; i < n_basic_blocks; i++)
2005 df->inverse_dfs_map[df->dfs_order[i]] = i;
2006 df->inverse_rc_map[df->rc_order[i]] = i;
2007 df->inverse_rts_map[df->rts_order[i]] = i;
2009 if (aflags & DF_RD)
2011 /* Compute the sets of gens and kills for the defs of each bb. */
2012 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2013 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2014 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2015 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2017 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2018 FOR_EACH_BB (bb)
2020 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2021 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2022 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2023 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2026 dflow.repr = SR_BITMAP;
2027 dflow.dir = DF_FORWARD;
2028 dflow.conf_op = DF_UNION;
2029 dflow.transfun = df_rd_transfer_function;
2030 dflow.n_blocks = n_basic_blocks;
2031 dflow.order = df->rc_order;
2032 dflow.data = NULL;
2034 iterative_dataflow (&dflow);
2035 free (dflow.in);
2036 free (dflow.out);
2037 free (dflow.gen);
2038 free (dflow.kill);
2041 if (aflags & DF_UD_CHAIN)
2043 /* Create use-def chains. */
2044 df_ud_chain_create (df, df->all_blocks);
2046 if (! (flags & DF_RD))
2047 dflags |= DF_RD;
2050 if (aflags & DF_RU)
2052 /* Compute the sets of gens and kills for the upwards exposed
2053 uses in each bb. */
2054 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2055 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2056 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2057 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2059 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2061 FOR_EACH_BB (bb)
2063 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2064 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2065 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2066 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2069 dflow.repr = SR_BITMAP;
2070 dflow.dir = DF_BACKWARD;
2071 dflow.conf_op = DF_UNION;
2072 dflow.transfun = df_ru_transfer_function;
2073 dflow.n_blocks = n_basic_blocks;
2074 dflow.order = df->rts_order;
2075 dflow.data = NULL;
2077 iterative_dataflow (&dflow);
2078 free (dflow.in);
2079 free (dflow.out);
2080 free (dflow.gen);
2081 free (dflow.kill);
2084 if (aflags & DF_DU_CHAIN)
2086 /* Create def-use chains. */
2087 df_du_chain_create (df, df->all_blocks);
2089 if (! (flags & DF_RU))
2090 dflags |= DF_RU;
2093 /* Free up bitmaps that are no longer required. */
2094 if (dflags)
2095 df_bitmaps_free (df, dflags);
2097 if (aflags & DF_LR)
2099 /* Compute the sets of defs and uses of live variables. */
2100 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2101 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2102 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2103 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2105 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2107 FOR_EACH_BB (bb)
2109 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2110 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2111 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2112 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2115 dflow.repr = SR_BITMAP;
2116 dflow.dir = DF_BACKWARD;
2117 dflow.conf_op = DF_UNION;
2118 dflow.transfun = df_lr_transfer_function;
2119 dflow.n_blocks = n_basic_blocks;
2120 dflow.order = df->rts_order;
2121 dflow.data = NULL;
2123 iterative_dataflow (&dflow);
2124 free (dflow.in);
2125 free (dflow.out);
2126 free (dflow.gen);
2127 free (dflow.kill);
2130 if (aflags & DF_REG_INFO)
2132 df_reg_info_compute (df, df->all_blocks);
2135 free (df->dfs_order);
2136 free (df->rc_order);
2137 free (df->rts_order);
2138 free (df->inverse_rc_map);
2139 free (df->inverse_dfs_map);
2140 free (df->inverse_rts_map);
2144 /* Initialize dataflow analysis. */
2145 struct df *
2146 df_init (void)
2148 struct df *df;
2150 df = xcalloc (1, sizeof (struct df));
2152 /* Squirrel away a global for debugging. */
2153 ddf = df;
2155 return df;
2159 /* Start queuing refs. */
2160 static int
2161 df_refs_queue (struct df *df)
2163 df->def_id_save = df->def_id;
2164 df->use_id_save = df->use_id;
2165 /* ???? Perhaps we should save current obstack state so that we can
2166 unwind it. */
2167 return 0;
2171 /* Process queued refs. */
2172 static int
2173 df_refs_process (struct df *df)
2175 unsigned int i;
2177 /* Build new insn-def chains. */
2178 for (i = df->def_id_save; i != df->def_id; i++)
2180 struct ref *def = df->defs[i];
2181 unsigned int uid = DF_REF_INSN_UID (def);
2183 /* Add def to head of def list for INSN. */
2184 df->insns[uid].defs
2185 = df_link_create (def, df->insns[uid].defs);
2188 /* Build new insn-use chains. */
2189 for (i = df->use_id_save; i != df->use_id; i++)
2191 struct ref *use = df->uses[i];
2192 unsigned int uid = DF_REF_INSN_UID (use);
2194 /* Add use to head of use list for INSN. */
2195 df->insns[uid].uses
2196 = df_link_create (use, df->insns[uid].uses);
2198 return 0;
2202 /* Update refs for basic block BB. */
2203 static int
2204 df_bb_refs_update (struct df *df, basic_block bb)
2206 rtx insn;
2207 int count = 0;
2209 /* While we have to scan the chain of insns for this BB, we do not
2210 need to allocate and queue a long chain of BB/INSN pairs. Using
2211 a bitmap for insns_modified saves memory and avoids queuing
2212 duplicates. */
2214 FOR_BB_INSNS (bb, insn)
2216 unsigned int uid;
2218 uid = INSN_UID (insn);
2220 if (bitmap_bit_p (df->insns_modified, uid))
2222 /* Delete any allocated refs of this insn. MPH, FIXME. */
2223 df_insn_refs_unlink (df, bb, insn);
2225 /* Scan the insn for refs. */
2226 df_insn_refs_record (df, bb, insn);
2228 count++;
2231 return count;
2235 /* Process all the modified/deleted insns that were queued. */
2236 static int
2237 df_refs_update (struct df *df, bitmap blocks)
2239 basic_block bb;
2240 unsigned count = 0, bbno;
2242 df->n_regs = max_reg_num ();
2243 if (df->n_regs >= df->reg_size)
2244 df_reg_table_realloc (df, 0);
2246 df_refs_queue (df);
2248 if (!blocks)
2250 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2252 count += df_bb_refs_update (df, bb);
2255 else
2257 bitmap_iterator bi;
2259 EXECUTE_IF_AND_IN_BITMAP (df->bbs_modified, blocks, 0, bbno, bi)
2261 count += df_bb_refs_update (df, BASIC_BLOCK (bbno));
2265 df_refs_process (df);
2266 return count;
2270 /* Return nonzero if any of the requested blocks in the bitmap
2271 BLOCKS have been modified. */
2272 static int
2273 df_modified_p (struct df *df, bitmap blocks)
2275 int update = 0;
2276 basic_block bb;
2278 if (!df->n_bbs)
2279 return 0;
2281 FOR_EACH_BB (bb)
2282 if (bitmap_bit_p (df->bbs_modified, bb->index)
2283 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2285 update = 1;
2286 break;
2289 return update;
2292 /* Analyze dataflow info for the basic blocks specified by the bitmap
2293 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2294 modified blocks if BLOCKS is -1. */
2297 df_analyze (struct df *df, bitmap blocks, int flags)
2299 int update;
2301 /* We could deal with additional basic blocks being created by
2302 rescanning everything again. */
2303 gcc_assert (!df->n_bbs || df->n_bbs == (unsigned int) last_basic_block);
2305 update = df_modified_p (df, blocks);
2306 if (update || (flags != df->flags))
2308 if (! blocks)
2310 if (df->n_bbs)
2312 /* Recompute everything from scratch. */
2313 df_free (df);
2315 /* Allocate and initialize data structures. */
2316 df_alloc (df, max_reg_num ());
2317 df_analyze_1 (df, 0, flags, 0);
2318 update = 1;
2320 else
2322 if (blocks == (bitmap) -1)
2323 blocks = df->bbs_modified;
2325 gcc_assert (df->n_bbs);
2327 df_analyze_1 (df, blocks, flags, 1);
2328 bitmap_zero (df->bbs_modified);
2329 bitmap_zero (df->insns_modified);
2332 return update;
2335 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2336 the order of the remaining entries. Returns the length of the resulting
2337 list. */
2339 static unsigned
2340 prune_to_subcfg (int list[], unsigned len, bitmap blocks)
2342 unsigned act, last;
2344 for (act = 0, last = 0; act < len; act++)
2345 if (bitmap_bit_p (blocks, list[act]))
2346 list[last++] = list[act];
2348 return last;
2351 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2352 graph induced by BLOCKS.
2354 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2355 here, and simultaneously not make even greater chaos in it. We behave
2356 slightly differently in some details, especially in handling modified
2357 insns. */
2359 void
2360 df_analyze_subcfg (struct df *df, bitmap blocks, int flags)
2362 rtx insn;
2363 basic_block bb;
2364 struct dataflow dflow;
2365 unsigned n_blocks;
2367 if (flags & DF_UD_CHAIN)
2368 flags |= DF_RD | DF_RD_CHAIN;
2369 if (flags & DF_DU_CHAIN)
2370 flags |= DF_RU;
2371 if (flags & DF_RU)
2372 flags |= DF_RU_CHAIN;
2373 if (flags & DF_REG_INFO)
2374 flags |= DF_LR;
2376 if (!df->n_bbs)
2378 df_alloc (df, max_reg_num ());
2380 /* Mark all insns as modified. */
2382 FOR_EACH_BB (bb)
2384 FOR_BB_INSNS (bb, insn)
2386 df_insn_modify (df, bb, insn);
2391 df->flags = flags;
2393 df_reg_def_chain_clean (df);
2394 df_reg_use_chain_clean (df);
2396 df_refs_update (df, blocks);
2398 /* Clear the updated stuff from ``modified'' bitmaps. */
2399 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2401 if (bitmap_bit_p (df->bbs_modified, bb->index))
2403 FOR_BB_INSNS (bb, insn)
2405 bitmap_clear_bit (df->insns_modified, INSN_UID (insn));
2408 bitmap_clear_bit (df->bbs_modified, bb->index);
2412 /* Allocate the bitmaps now the total number of defs and uses are
2413 known. If the number of defs or uses have changed, then
2414 these bitmaps need to be reallocated. */
2415 df_bitmaps_alloc (df, blocks, flags);
2417 /* Set the LUIDs for each specified basic block. */
2418 df_luids_set (df, blocks);
2420 /* Recreate reg-def and reg-use chains from scratch so that first
2421 def is at the head of the reg-def chain and the last use is at
2422 the head of the reg-use chain. This is only important for
2423 regs local to a basic block as it speeds up searching. */
2424 if (flags & DF_RD_CHAIN)
2426 df_reg_def_chain_create (df, blocks, true);
2429 if (flags & DF_RU_CHAIN)
2431 df_reg_use_chain_create (df, blocks, true);
2434 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
2435 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
2436 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
2438 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2439 flow_reverse_top_sort_order_compute (df->rts_order);
2441 n_blocks = prune_to_subcfg (df->dfs_order, n_basic_blocks, blocks);
2442 prune_to_subcfg (df->rc_order, n_basic_blocks, blocks);
2443 prune_to_subcfg (df->rts_order, n_basic_blocks, blocks);
2445 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2446 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2447 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2448 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2450 if (flags & DF_RD)
2452 /* Compute the sets of gens and kills for the defs of each bb. */
2453 df_rd_local_compute (df, blocks);
2455 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2457 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2458 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2459 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2460 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2463 dflow.repr = SR_BITMAP;
2464 dflow.dir = DF_FORWARD;
2465 dflow.conf_op = DF_UNION;
2466 dflow.transfun = df_rd_transfer_function;
2467 dflow.n_blocks = n_blocks;
2468 dflow.order = df->rc_order;
2469 dflow.data = NULL;
2471 iterative_dataflow (&dflow);
2474 if (flags & DF_UD_CHAIN)
2476 /* Create use-def chains. */
2477 df_ud_chain_create (df, blocks);
2480 if (flags & DF_RU)
2482 /* Compute the sets of gens and kills for the upwards exposed
2483 uses in each bb. */
2484 df_ru_local_compute (df, blocks);
2486 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2488 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2489 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2490 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2491 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2494 dflow.repr = SR_BITMAP;
2495 dflow.dir = DF_BACKWARD;
2496 dflow.conf_op = DF_UNION;
2497 dflow.transfun = df_ru_transfer_function;
2498 dflow.n_blocks = n_blocks;
2499 dflow.order = df->rts_order;
2500 dflow.data = NULL;
2502 iterative_dataflow (&dflow);
2505 if (flags & DF_DU_CHAIN)
2507 /* Create def-use chains. */
2508 df_du_chain_create (df, blocks);
2511 if (flags & DF_LR)
2513 /* Compute the sets of defs and uses of live variables. */
2514 df_lr_local_compute (df, blocks);
2516 FOR_EACH_BB (bb)
2518 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2519 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2520 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2521 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2524 dflow.repr = SR_BITMAP;
2525 dflow.dir = DF_BACKWARD;
2526 dflow.conf_op = DF_UNION;
2527 dflow.transfun = df_lr_transfer_function;
2528 dflow.n_blocks = n_blocks;
2529 dflow.order = df->rts_order;
2530 dflow.data = NULL;
2532 iterative_dataflow (&dflow);
2535 if (flags & DF_REG_INFO)
2537 df_reg_info_compute (df, blocks);
2540 free (dflow.in);
2541 free (dflow.out);
2542 free (dflow.gen);
2543 free (dflow.kill);
2545 free (df->dfs_order);
2546 free (df->rc_order);
2547 free (df->rts_order);
2550 /* Free all the dataflow info and the DF structure. */
2551 void
2552 df_finish (struct df *df)
2554 df_free (df);
2555 free (df);
2558 /* Unlink INSN from its reference information. */
2559 static void
2560 df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2562 struct df_link *link;
2563 unsigned int uid;
2565 uid = INSN_UID (insn);
2567 /* Unlink all refs defined by this insn. */
2568 for (link = df->insns[uid].defs; link; link = link->next)
2569 df_def_unlink (df, link->ref);
2571 /* Unlink all refs used by this insn. */
2572 for (link = df->insns[uid].uses; link; link = link->next)
2573 df_use_unlink (df, link->ref);
2575 df->insns[uid].defs = 0;
2576 df->insns[uid].uses = 0;
2580 #if 0
2581 /* Unlink all the insns within BB from their reference information. */
2582 static void
2583 df_bb_refs_unlink (struct df *df, basic_block bb)
2585 rtx insn;
2587 /* Scan the block an insn at a time from beginning to end. */
2588 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
2590 if (INSN_P (insn))
2592 /* Unlink refs for INSN. */
2593 df_insn_refs_unlink (df, bb, insn);
2595 if (insn == BB_END (bb))
2596 break;
2601 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2602 Not currently used. */
2603 static void
2604 df_refs_unlink (struct df *df, bitmap blocks)
2606 basic_block bb;
2608 if (blocks)
2610 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2612 df_bb_refs_unlink (df, bb);
2615 else
2617 FOR_EACH_BB (bb)
2618 df_bb_refs_unlink (df, bb);
2621 #endif
2623 /* Functions to modify insns. */
2626 /* Delete INSN and all its reference information. */
2628 df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2630 /* If the insn is a jump, we should perhaps call delete_insn to
2631 handle the JUMP_LABEL? */
2633 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2634 gcc_assert (insn != BB_HEAD (bb));
2636 /* Delete the insn. */
2637 delete_insn (insn);
2639 df_insn_modify (df, bb, insn);
2641 return NEXT_INSN (insn);
2644 /* Mark that basic block BB was modified. */
2646 static void
2647 df_bb_modify (struct df *df, basic_block bb)
2649 if ((unsigned) bb->index >= df->n_bbs)
2650 df_bb_table_realloc (df, df->n_bbs);
2652 bitmap_set_bit (df->bbs_modified, bb->index);
2655 /* Mark that INSN within BB may have changed (created/modified/deleted).
2656 This may be called multiple times for the same insn. There is no
2657 harm calling this function if the insn wasn't changed; it will just
2658 slow down the rescanning of refs. */
2659 void
2660 df_insn_modify (struct df *df, basic_block bb, rtx insn)
2662 unsigned int uid;
2664 uid = INSN_UID (insn);
2665 if (uid >= df->insn_size)
2666 df_insn_table_realloc (df, uid);
2668 df_bb_modify (df, bb);
2669 bitmap_set_bit (df->insns_modified, uid);
2671 /* For incremental updating on the fly, perhaps we could make a copy
2672 of all the refs of the original insn and turn them into
2673 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2674 the original refs. If validate_change fails then these anti-refs
2675 will just get ignored. */
2678 typedef struct replace_args
2680 rtx match;
2681 rtx replacement;
2682 rtx insn;
2683 int modified;
2684 } replace_args;
2687 /* Replace mem pointed to by PX with its associated pseudo register.
2688 DATA is actually a pointer to a structure describing the
2689 instruction currently being scanned and the MEM we are currently
2690 replacing. */
2691 static int
2692 df_rtx_mem_replace (rtx *px, void *data)
2694 replace_args *args = (replace_args *) data;
2695 rtx mem = *px;
2697 if (mem == NULL_RTX)
2698 return 0;
2700 switch (GET_CODE (mem))
2702 case MEM:
2703 break;
2705 case CONST_DOUBLE:
2706 /* We're not interested in the MEM associated with a
2707 CONST_DOUBLE, so there's no need to traverse into one. */
2708 return -1;
2710 default:
2711 /* This is not a MEM. */
2712 return 0;
2715 if (!rtx_equal_p (args->match, mem))
2716 /* This is not the MEM we are currently replacing. */
2717 return 0;
2719 /* Actually replace the MEM. */
2720 validate_change (args->insn, px, args->replacement, 1);
2721 args->modified++;
2723 return 0;
2728 df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
2730 replace_args args;
2732 args.insn = insn;
2733 args.match = mem;
2734 args.replacement = reg;
2735 args.modified = 0;
2737 /* Search and replace all matching mems within insn. */
2738 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2740 if (args.modified)
2741 df_insn_modify (df, bb, insn);
2743 /* ???? FIXME. We may have a new def or one or more new uses of REG
2744 in INSN. REG should be a new pseudo so it won't affect the
2745 dataflow information that we currently have. We should add
2746 the new uses and defs to INSN and then recreate the chains
2747 when df_analyze is called. */
2748 return args.modified;
2752 /* Replace one register with another. Called through for_each_rtx; PX
2753 points to the rtx being scanned. DATA is actually a pointer to a
2754 structure of arguments. */
2755 static int
2756 df_rtx_reg_replace (rtx *px, void *data)
2758 rtx x = *px;
2759 replace_args *args = (replace_args *) data;
2761 if (x == NULL_RTX)
2762 return 0;
2764 if (x == args->match)
2766 validate_change (args->insn, px, args->replacement, 1);
2767 args->modified++;
2770 return 0;
2774 /* Replace the reg within every ref on CHAIN that is within the set
2775 BLOCKS of basic blocks with NEWREG. Also update the regs within
2776 REG_NOTES. */
2777 void
2778 df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
2780 struct df_link *link;
2781 replace_args args;
2783 if (! blocks)
2784 blocks = df->all_blocks;
2786 args.match = oldreg;
2787 args.replacement = newreg;
2788 args.modified = 0;
2790 for (link = chain; link; link = link->next)
2792 struct ref *ref = link->ref;
2793 rtx insn = DF_REF_INSN (ref);
2795 if (! INSN_P (insn))
2796 continue;
2798 gcc_assert (bitmap_bit_p (blocks, DF_REF_BBNO (ref)));
2800 df_ref_reg_replace (df, ref, oldreg, newreg);
2802 /* Replace occurrences of the reg within the REG_NOTES. */
2803 if ((! link->next || DF_REF_INSN (ref)
2804 != DF_REF_INSN (link->next->ref))
2805 && REG_NOTES (insn))
2807 args.insn = insn;
2808 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2814 /* Replace all occurrences of register OLDREG with register NEWREG in
2815 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2816 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2817 routine expects the reg-use and reg-def chains to be valid. */
2819 df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
2821 unsigned int oldregno = REGNO (oldreg);
2823 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2824 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2825 return 1;
2829 /* Try replacing the reg within REF with NEWREG. Do not modify
2830 def-use/use-def chains. */
2832 df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
2834 /* Check that insn was deleted by being converted into a NOTE. If
2835 so ignore this insn. */
2836 if (! INSN_P (DF_REF_INSN (ref)))
2837 return 0;
2839 gcc_assert (!oldreg || oldreg == DF_REF_REG (ref));
2841 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2842 return 0;
2844 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2845 return 1;
2849 struct ref*
2850 df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
2852 struct ref *def;
2853 struct ref *use;
2854 int def_uid;
2855 int use_uid;
2856 struct df_link *link;
2858 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2859 if (! def)
2860 return 0;
2862 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2863 if (! use)
2864 return 0;
2866 /* The USE no longer exists. */
2867 use_uid = INSN_UID (use_insn);
2868 df_use_unlink (df, use);
2869 df_ref_unlink (&df->insns[use_uid].uses, use);
2871 /* The DEF requires shifting so remove it from DEF_INSN
2872 and add it to USE_INSN by reusing LINK. */
2873 def_uid = INSN_UID (def_insn);
2874 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2875 link->ref = def;
2876 link->next = df->insns[use_uid].defs;
2877 df->insns[use_uid].defs = link;
2879 #if 0
2880 link = df_ref_unlink (&df->regs[regno].defs, def);
2881 link->ref = def;
2882 link->next = df->regs[regno].defs;
2883 df->insns[regno].defs = link;
2884 #endif
2886 DF_REF_INSN (def) = use_insn;
2887 return def;
2891 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2892 insns must be processed by this routine. */
2893 static void
2894 df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
2896 rtx insn;
2898 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2900 unsigned int uid;
2902 /* A non-const call should not have slipped through the net. If
2903 it does, we need to create a new basic block. Ouch. The
2904 same applies for a label. */
2905 gcc_assert ((!CALL_P (insn) || CONST_OR_PURE_CALL_P (insn))
2906 && !LABEL_P (insn));
2908 uid = INSN_UID (insn);
2910 if (uid >= df->insn_size)
2911 df_insn_table_realloc (df, uid);
2913 df_insn_modify (df, bb, insn);
2915 if (insn == last_insn)
2916 break;
2921 /* Emit PATTERN before INSN within BB. */
2923 df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
2925 rtx ret_insn;
2926 rtx prev_insn = PREV_INSN (insn);
2928 /* We should not be inserting before the start of the block. */
2929 gcc_assert (insn != BB_HEAD (bb));
2930 ret_insn = emit_insn_before (pattern, insn);
2931 if (ret_insn == insn)
2932 return ret_insn;
2934 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2935 return ret_insn;
2939 /* Emit PATTERN after INSN within BB. */
2941 df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2943 rtx ret_insn;
2945 ret_insn = emit_insn_after (pattern, insn);
2946 if (ret_insn == insn)
2947 return ret_insn;
2949 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2950 return ret_insn;
2954 /* Emit jump PATTERN after INSN within BB. */
2956 df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2958 rtx ret_insn;
2960 ret_insn = emit_jump_insn_after (pattern, insn);
2961 if (ret_insn == insn)
2962 return ret_insn;
2964 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2965 return ret_insn;
2969 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2971 This function should only be used to move loop invariant insns
2972 out of a loop where it has been proven that the def-use info
2973 will still be valid. */
2975 df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
2977 struct df_link *link;
2978 unsigned int uid;
2980 if (! bb)
2981 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2983 uid = INSN_UID (insn);
2985 /* Change bb for all df defined and used by this insn. */
2986 for (link = df->insns[uid].defs; link; link = link->next)
2987 DF_REF_BB (link->ref) = before_bb;
2988 for (link = df->insns[uid].uses; link; link = link->next)
2989 DF_REF_BB (link->ref) = before_bb;
2991 /* The lifetimes of the registers used in this insn will be reduced
2992 while the lifetimes of the registers defined in this insn
2993 are likely to be increased. */
2995 /* ???? Perhaps all the insns moved should be stored on a list
2996 which df_analyze removes when it recalculates data flow. */
2998 return emit_insn_before (insn, before_insn);
3001 /* Functions to query dataflow information. */
3005 df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3006 rtx insn, unsigned int regno)
3008 unsigned int uid;
3009 struct df_link *link;
3011 uid = INSN_UID (insn);
3013 for (link = df->insns[uid].defs; link; link = link->next)
3015 struct ref *def = link->ref;
3017 if (DF_REF_REGNO (def) == regno)
3018 return 1;
3021 return 0;
3024 /* Finds the reference corresponding to the definition of REG in INSN.
3025 DF is the dataflow object. */
3027 struct ref *
3028 df_find_def (struct df *df, rtx insn, rtx reg)
3030 struct df_link *defs;
3032 for (defs = DF_INSN_DEFS (df, insn); defs; defs = defs->next)
3033 if (rtx_equal_p (DF_REF_REG (defs->ref), reg))
3034 return defs->ref;
3036 return NULL;
3039 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3042 df_reg_used (struct df *df, rtx insn, rtx reg)
3044 struct df_link *uses;
3046 for (uses = DF_INSN_USES (df, insn); uses; uses = uses->next)
3047 if (rtx_equal_p (DF_REF_REG (uses->ref), reg))
3048 return 1;
3050 return 0;
3053 static int
3054 df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
3056 struct df_link *du_link;
3058 /* Follow def-use chain to find all the uses of this def. */
3059 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3061 struct ref *use = du_link->ref;
3062 struct df_link *ud_link;
3064 /* Follow use-def chain to check all the defs for this use. */
3065 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3066 if (ud_link->ref != def)
3067 return 0;
3069 return 1;
3074 df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3075 rtx insn)
3077 unsigned int uid;
3078 struct df_link *link;
3080 uid = INSN_UID (insn);
3082 for (link = df->insns[uid].defs; link; link = link->next)
3084 struct ref *def = link->ref;
3086 if (! df_def_dominates_all_uses_p (df, def))
3087 return 0;
3090 return 1;
3094 /* Return nonzero if all DF dominates all the uses within the bitmap
3095 BLOCKS. */
3096 static int
3097 df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
3098 bitmap blocks)
3100 struct df_link *du_link;
3102 /* Follow def-use chain to find all the uses of this def. */
3103 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3105 struct ref *use = du_link->ref;
3106 struct df_link *ud_link;
3108 /* Only worry about the uses within BLOCKS. For example,
3109 consider a register defined within a loop that is live at the
3110 loop exits. */
3111 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
3113 /* Follow use-def chain to check all the defs for this use. */
3114 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3115 if (ud_link->ref != def)
3116 return 0;
3119 return 1;
3123 /* Return nonzero if all the defs of INSN within BB dominates
3124 all the corresponding uses. */
3126 df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3127 rtx insn, bitmap blocks)
3129 unsigned int uid;
3130 struct df_link *link;
3132 uid = INSN_UID (insn);
3134 for (link = df->insns[uid].defs; link; link = link->next)
3136 struct ref *def = link->ref;
3138 /* Only consider the defs within BLOCKS. */
3139 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
3140 && ! df_def_dominates_uses_p (df, def, blocks))
3141 return 0;
3143 return 1;
3147 /* Return the basic block that REG referenced in or NULL if referenced
3148 in multiple basic blocks. */
3149 basic_block
3150 df_regno_bb (struct df *df, unsigned int regno)
3152 struct df_link *defs = df->regs[regno].defs;
3153 struct df_link *uses = df->regs[regno].uses;
3154 struct ref *def = defs ? defs->ref : 0;
3155 struct ref *use = uses ? uses->ref : 0;
3156 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3157 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3159 /* Compare blocks of first def and last use. ???? FIXME. What if
3160 the reg-def and reg-use lists are not correctly ordered. */
3161 return bb_def == bb_use ? bb_def : 0;
3165 /* Return nonzero if REG used in multiple basic blocks. */
3167 df_reg_global_p (struct df *df, rtx reg)
3169 return df_regno_bb (df, REGNO (reg)) != 0;
3173 /* Return total lifetime (in insns) of REG. */
3175 df_reg_lifetime (struct df *df, rtx reg)
3177 return df->regs[REGNO (reg)].lifetime;
3181 /* Return nonzero if REG live at start of BB. */
3183 df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
3185 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3187 gcc_assert (bb_info->lr_in);
3189 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3193 /* Return nonzero if REG live at end of BB. */
3195 df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
3197 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3199 gcc_assert (bb_info->lr_in);
3201 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3205 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3206 after life of REG2, or 0, if the lives overlap. */
3208 df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
3210 unsigned int regno1 = REGNO (reg1);
3211 unsigned int regno2 = REGNO (reg2);
3212 struct ref *def1;
3213 struct ref *use1;
3214 struct ref *def2;
3215 struct ref *use2;
3218 /* The regs must be local to BB. */
3219 gcc_assert (df_regno_bb (df, regno1) == bb
3220 && df_regno_bb (df, regno2) == bb);
3222 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3223 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3225 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3226 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3227 return -1;
3229 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3230 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3232 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3233 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3234 return 1;
3236 return 0;
3240 /* Return last use of REGNO within BB. */
3241 struct ref *
3242 df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
3244 struct df_link *link;
3246 /* This assumes that the reg-use list is ordered such that for any
3247 BB, the last use is found first. However, since the BBs are not
3248 ordered, the first use in the chain is not necessarily the last
3249 use in the function. */
3250 for (link = df->regs[regno].uses; link; link = link->next)
3252 struct ref *use = link->ref;
3254 if (DF_REF_BB (use) == bb)
3255 return use;
3257 return 0;
3261 /* Return first def of REGNO within BB. */
3262 struct ref *
3263 df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
3265 struct df_link *link;
3267 /* This assumes that the reg-def list is ordered such that for any
3268 BB, the first def is found first. However, since the BBs are not
3269 ordered, the first def in the chain is not necessarily the first
3270 def in the function. */
3271 for (link = df->regs[regno].defs; link; link = link->next)
3273 struct ref *def = link->ref;
3275 if (DF_REF_BB (def) == bb)
3276 return def;
3278 return 0;
3281 /* Return last def of REGNO within BB. */
3282 struct ref *
3283 df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
3285 struct df_link *link;
3286 struct ref *last_def = NULL;
3287 int in_bb = 0;
3289 /* This assumes that the reg-def list is ordered such that for any
3290 BB, the first def is found first. However, since the BBs are not
3291 ordered, the first def in the chain is not necessarily the first
3292 def in the function. */
3293 for (link = df->regs[regno].defs; link; link = link->next)
3295 struct ref *def = link->ref;
3296 /* The first time in the desired block. */
3297 if (DF_REF_BB (def) == bb)
3298 in_bb = 1;
3299 /* The last def in the desired block. */
3300 else if (in_bb)
3301 return last_def;
3302 last_def = def;
3304 return last_def;
3307 /* Return first use of REGNO inside INSN within BB. */
3308 static struct ref *
3309 df_bb_insn_regno_last_use_find (struct df *df,
3310 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3311 unsigned int regno)
3313 unsigned int uid;
3314 struct df_link *link;
3316 uid = INSN_UID (insn);
3318 for (link = df->insns[uid].uses; link; link = link->next)
3320 struct ref *use = link->ref;
3322 if (DF_REF_REGNO (use) == regno)
3323 return use;
3326 return 0;
3330 /* Return first def of REGNO inside INSN within BB. */
3331 static struct ref *
3332 df_bb_insn_regno_first_def_find (struct df *df,
3333 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3334 unsigned int regno)
3336 unsigned int uid;
3337 struct df_link *link;
3339 uid = INSN_UID (insn);
3341 for (link = df->insns[uid].defs; link; link = link->next)
3343 struct ref *def = link->ref;
3345 if (DF_REF_REGNO (def) == regno)
3346 return def;
3349 return 0;
3353 /* Return insn using REG if the BB contains only a single
3354 use and def of REG. */
3356 df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
3358 struct ref *def;
3359 struct ref *use;
3360 struct df_link *du_link;
3362 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3364 gcc_assert (def);
3366 du_link = DF_REF_CHAIN (def);
3368 if (! du_link)
3369 return NULL_RTX;
3371 use = du_link->ref;
3373 /* Check if def is dead. */
3374 if (! use)
3375 return NULL_RTX;
3377 /* Check for multiple uses. */
3378 if (du_link->next)
3379 return NULL_RTX;
3381 return DF_REF_INSN (use);
3384 /* Functions for debugging/dumping dataflow information. */
3387 /* Dump a def-use or use-def chain for REF to FILE. */
3388 static void
3389 df_chain_dump (struct df_link *link, FILE *file)
3391 fprintf (file, "{ ");
3392 for (; link; link = link->next)
3394 fprintf (file, "%c%d ",
3395 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3396 DF_REF_ID (link->ref));
3398 fprintf (file, "}");
3402 /* Dump a chain of refs with the associated regno. */
3403 static void
3404 df_chain_dump_regno (struct df_link *link, FILE *file)
3406 fprintf (file, "{ ");
3407 for (; link; link = link->next)
3409 fprintf (file, "%c%d(%d) ",
3410 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3411 DF_REF_ID (link->ref),
3412 DF_REF_REGNO (link->ref));
3414 fprintf (file, "}");
3418 /* Dump dataflow info. */
3419 void
3420 df_dump (struct df *df, int flags, FILE *file)
3422 unsigned int j;
3423 basic_block bb;
3425 if (! df || ! file)
3426 return;
3428 fprintf (file, "\nDataflow summary:\n");
3429 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3430 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3432 if (flags & DF_RD)
3434 basic_block bb;
3436 fprintf (file, "Reaching defs:\n");
3437 FOR_EACH_BB (bb)
3439 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3441 if (! bb_info->rd_in)
3442 continue;
3444 fprintf (file, "bb %d in \t", bb->index);
3445 dump_bitmap (file, bb_info->rd_in);
3446 fprintf (file, "bb %d gen \t", bb->index);
3447 dump_bitmap (file, bb_info->rd_gen);
3448 fprintf (file, "bb %d kill\t", bb->index);
3449 dump_bitmap (file, bb_info->rd_kill);
3450 fprintf (file, "bb %d out \t", bb->index);
3451 dump_bitmap (file, bb_info->rd_out);
3455 if (flags & DF_UD_CHAIN)
3457 fprintf (file, "Use-def chains:\n");
3458 for (j = 0; j < df->n_defs; j++)
3460 if (df->defs[j])
3462 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3463 j, DF_REF_BBNO (df->defs[j]),
3464 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3465 DF_REF_INSN_UID (df->defs[j]),
3466 DF_REF_REGNO (df->defs[j]));
3467 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3468 fprintf (file, "read/write ");
3469 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3470 fprintf (file, "\n");
3475 if (flags & DF_RU)
3477 fprintf (file, "Reaching uses:\n");
3478 FOR_EACH_BB (bb)
3480 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3482 if (! bb_info->ru_in)
3483 continue;
3485 fprintf (file, "bb %d in \t", bb->index);
3486 dump_bitmap (file, bb_info->ru_in);
3487 fprintf (file, "bb %d gen \t", bb->index);
3488 dump_bitmap (file, bb_info->ru_gen);
3489 fprintf (file, "bb %d kill\t", bb->index);
3490 dump_bitmap (file, bb_info->ru_kill);
3491 fprintf (file, "bb %d out \t", bb->index);
3492 dump_bitmap (file, bb_info->ru_out);
3496 if (flags & DF_DU_CHAIN)
3498 fprintf (file, "Def-use chains:\n");
3499 for (j = 0; j < df->n_uses; j++)
3501 if (df->uses[j])
3503 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3504 j, DF_REF_BBNO (df->uses[j]),
3505 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3506 DF_REF_INSN_UID (df->uses[j]),
3507 DF_REF_REGNO (df->uses[j]));
3508 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3509 fprintf (file, "read/write ");
3510 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3511 fprintf (file, "\n");
3516 if (flags & DF_LR)
3518 fprintf (file, "Live regs:\n");
3519 FOR_EACH_BB (bb)
3521 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3523 if (! bb_info->lr_in)
3524 continue;
3526 fprintf (file, "bb %d in \t", bb->index);
3527 dump_bitmap (file, bb_info->lr_in);
3528 fprintf (file, "bb %d use \t", bb->index);
3529 dump_bitmap (file, bb_info->lr_use);
3530 fprintf (file, "bb %d def \t", bb->index);
3531 dump_bitmap (file, bb_info->lr_def);
3532 fprintf (file, "bb %d out \t", bb->index);
3533 dump_bitmap (file, bb_info->lr_out);
3537 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3539 struct reg_info *reg_info = df->regs;
3541 fprintf (file, "Register info:\n");
3542 for (j = 0; j < df->n_regs; j++)
3544 if (((flags & DF_REG_INFO)
3545 && (reg_info[j].n_uses || reg_info[j].n_defs))
3546 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3547 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3549 fprintf (file, "reg %d", j);
3550 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3552 basic_block bb = df_regno_bb (df, j);
3554 if (bb)
3555 fprintf (file, " bb %d", bb->index);
3556 else
3557 fprintf (file, " bb ?");
3559 if (flags & DF_REG_INFO)
3561 fprintf (file, " life %d", reg_info[j].lifetime);
3564 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3566 fprintf (file, " defs ");
3567 if (flags & DF_REG_INFO)
3568 fprintf (file, "%d ", reg_info[j].n_defs);
3569 if (flags & DF_RD_CHAIN)
3570 df_chain_dump (reg_info[j].defs, file);
3573 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3575 fprintf (file, " uses ");
3576 if (flags & DF_REG_INFO)
3577 fprintf (file, "%d ", reg_info[j].n_uses);
3578 if (flags & DF_RU_CHAIN)
3579 df_chain_dump (reg_info[j].uses, file);
3582 fprintf (file, "\n");
3586 fprintf (file, "\n");
3590 void
3591 df_insn_debug (struct df *df, rtx insn, FILE *file)
3593 unsigned int uid;
3594 int bbi;
3596 uid = INSN_UID (insn);
3597 if (uid >= df->insn_size)
3598 return;
3600 if (df->insns[uid].defs)
3601 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3602 else if (df->insns[uid].uses)
3603 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3604 else
3605 bbi = -1;
3607 fprintf (file, "insn %d bb %d luid %d defs ",
3608 uid, bbi, DF_INSN_LUID (df, insn));
3609 df_chain_dump (df->insns[uid].defs, file);
3610 fprintf (file, " uses ");
3611 df_chain_dump (df->insns[uid].uses, file);
3612 fprintf (file, "\n");
3616 void
3617 df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
3619 unsigned int uid;
3620 int bbi;
3622 uid = INSN_UID (insn);
3623 if (uid >= df->insn_size)
3624 return;
3626 if (df->insns[uid].defs)
3627 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3628 else if (df->insns[uid].uses)
3629 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3630 else
3631 bbi = -1;
3633 fprintf (file, "insn %d bb %d luid %d defs ",
3634 uid, bbi, DF_INSN_LUID (df, insn));
3635 df_chain_dump_regno (df->insns[uid].defs, file);
3636 fprintf (file, " uses ");
3637 df_chain_dump_regno (df->insns[uid].uses, file);
3638 fprintf (file, "\n");
3642 static void
3643 df_regno_debug (struct df *df, unsigned int regno, FILE *file)
3645 if (regno >= df->reg_size)
3646 return;
3648 fprintf (file, "reg %d life %d defs ",
3649 regno, df->regs[regno].lifetime);
3650 df_chain_dump (df->regs[regno].defs, file);
3651 fprintf (file, " uses ");
3652 df_chain_dump (df->regs[regno].uses, file);
3653 fprintf (file, "\n");
3657 static void
3658 df_ref_debug (struct df *df, struct ref *ref, FILE *file)
3660 fprintf (file, "%c%d ",
3661 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3662 DF_REF_ID (ref));
3663 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3664 DF_REF_REGNO (ref),
3665 DF_REF_BBNO (ref),
3666 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3667 INSN_UID (DF_REF_INSN (ref)));
3668 df_chain_dump (DF_REF_CHAIN (ref), file);
3669 fprintf (file, "\n");
3672 /* Functions for debugging from GDB. */
3674 void
3675 debug_df_insn (rtx insn)
3677 df_insn_debug (ddf, insn, stderr);
3678 debug_rtx (insn);
3682 void
3683 debug_df_reg (rtx reg)
3685 df_regno_debug (ddf, REGNO (reg), stderr);
3689 void
3690 debug_df_regno (unsigned int regno)
3692 df_regno_debug (ddf, regno, stderr);
3696 void
3697 debug_df_ref (struct ref *ref)
3699 df_ref_debug (ddf, ref, stderr);
3703 void
3704 debug_df_defno (unsigned int defno)
3706 df_ref_debug (ddf, ddf->defs[defno], stderr);
3710 void
3711 debug_df_useno (unsigned int defno)
3713 df_ref_debug (ddf, ddf->uses[defno], stderr);
3717 void
3718 debug_df_chain (struct df_link *link)
3720 df_chain_dump (link, stderr);
3721 fputc ('\n', stderr);
3725 /* Perform the set operation OP1 OP OP2, using set representation REPR, and
3726 storing the result in OP1. */
3728 static void
3729 dataflow_set_a_op_b (enum set_representation repr,
3730 enum df_confluence_op op,
3731 void *op1, void *op2)
3733 switch (repr)
3735 case SR_SBITMAP:
3736 switch (op)
3738 case DF_UNION:
3739 sbitmap_a_or_b (op1, op1, op2);
3740 break;
3742 case DF_INTERSECTION:
3743 sbitmap_a_and_b (op1, op1, op2);
3744 break;
3746 default:
3747 gcc_unreachable ();
3749 break;
3751 case SR_BITMAP:
3752 switch (op)
3754 case DF_UNION:
3755 bitmap_ior_into (op1, op2);
3756 break;
3758 case DF_INTERSECTION:
3759 bitmap_and_into (op1, op2);
3760 break;
3762 default:
3763 gcc_unreachable ();
3765 break;
3767 default:
3768 gcc_unreachable ();
3772 static void
3773 dataflow_set_copy (enum set_representation repr, void *dest, void *src)
3775 switch (repr)
3777 case SR_SBITMAP:
3778 sbitmap_copy (dest, src);
3779 break;
3781 case SR_BITMAP:
3782 bitmap_copy (dest, src);
3783 break;
3785 default:
3786 gcc_unreachable ();
3790 /* Hybrid search algorithm from "Implementation Techniques for
3791 Efficient Data-Flow Analysis of Large Programs". */
3793 static void
3794 hybrid_search (basic_block bb, struct dataflow *dataflow,
3795 sbitmap visited, sbitmap pending, sbitmap considered)
3797 int changed;
3798 int i = bb->index;
3799 edge e;
3800 edge_iterator ei;
3802 SET_BIT (visited, bb->index);
3803 gcc_assert (TEST_BIT (pending, bb->index));
3804 RESET_BIT (pending, i);
3806 #define HS(E_ANTI, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3807 E, E_BB, E_START_BB, OUT_SET) \
3808 do \
3810 /* Calculate <conf_op> of predecessor_outs. */ \
3811 bitmap_zero (IN_SET[i]); \
3812 FOR_EACH_EDGE (e, ei, bb->E_ANTI) \
3814 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3815 continue; \
3816 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3817 continue; \
3819 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3820 IN_SET[i], \
3821 OUT_SET[e->E_ANTI_BB->index]); \
3824 (*dataflow->transfun)(i, &changed, \
3825 dataflow->in[i], dataflow->out[i], \
3826 dataflow->gen[i], dataflow->kill[i], \
3827 dataflow->data); \
3829 if (!changed) \
3830 break; \
3832 FOR_EACH_EDGE (e, ei, bb->E) \
3834 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3835 continue; \
3837 if (!TEST_BIT (considered, e->E_BB->index)) \
3838 continue; \
3840 SET_BIT (pending, e->E_BB->index); \
3843 FOR_EACH_EDGE (e, ei, bb->E) \
3845 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3846 continue; \
3848 if (!TEST_BIT (considered, e->E_BB->index)) \
3849 continue; \
3851 if (!TEST_BIT (visited, e->E_BB->index)) \
3852 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3854 } while (0)
3856 if (dataflow->dir == DF_FORWARD)
3857 HS (preds, src, ENTRY_BLOCK_PTR, dataflow->in,
3858 succs, dest, EXIT_BLOCK_PTR, dataflow->out);
3859 else
3860 HS (succs, dest, EXIT_BLOCK_PTR, dataflow->out,
3861 preds, src, ENTRY_BLOCK_PTR, dataflow->in);
3864 /* This function will perform iterative bitvector dataflow described by
3865 DATAFLOW, producing the in and out sets. Only the part of the cfg
3866 induced by blocks in DATAFLOW->order is taken into account.
3868 For forward problems, you probably want to pass in a mapping of
3869 block number to rc_order (like df->inverse_rc_map). */
3871 void
3872 iterative_dataflow (struct dataflow *dataflow)
3874 unsigned i, idx;
3875 sbitmap visited, pending, considered;
3877 pending = sbitmap_alloc (last_basic_block);
3878 visited = sbitmap_alloc (last_basic_block);
3879 considered = sbitmap_alloc (last_basic_block);
3880 sbitmap_zero (pending);
3881 sbitmap_zero (visited);
3882 sbitmap_zero (considered);
3884 for (i = 0; i < dataflow->n_blocks; i++)
3886 idx = dataflow->order[i];
3887 SET_BIT (pending, idx);
3888 SET_BIT (considered, idx);
3889 if (dataflow->dir == DF_FORWARD)
3890 dataflow_set_copy (dataflow->repr,
3891 dataflow->out[idx], dataflow->gen[idx]);
3892 else
3893 dataflow_set_copy (dataflow->repr,
3894 dataflow->in[idx], dataflow->gen[idx]);
3897 while (1)
3899 for (i = 0; i < dataflow->n_blocks; i++)
3901 idx = dataflow->order[i];
3903 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
3904 hybrid_search (BASIC_BLOCK (idx), dataflow,
3905 visited, pending, considered);
3908 if (sbitmap_first_set_bit (pending) == -1)
3909 break;
3911 sbitmap_zero (visited);
3914 sbitmap_free (pending);
3915 sbitmap_free (visited);
3916 sbitmap_free (considered);