1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
34 #include "diagnostic-core.h"
35 #include "stor-layout.h"
40 #include "common/common-target.h"
43 static rtx
break_out_memory_refs (rtx
);
46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
49 trunc_int_for_mode (HOST_WIDE_INT c
, machine_mode mode
)
51 int width
= GET_MODE_PRECISION (mode
);
53 /* You want to truncate to a _what_? */
54 gcc_assert (SCALAR_INT_MODE_P (mode
)
55 || POINTER_BOUNDS_MODE_P (mode
));
57 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 return c
& 1 ? STORE_FLAG_VALUE
: 0;
61 /* Sign-extend for the requested mode. */
63 if (width
< HOST_BITS_PER_WIDE_INT
)
65 HOST_WIDE_INT sign
= 1;
75 /* Return an rtx for the sum of X and the integer C, given that X has
76 mode MODE. INPLACE is true if X can be modified inplace or false
77 if it must be treated as immutable. */
80 plus_constant (machine_mode mode
, rtx x
, HOST_WIDE_INT c
,
88 gcc_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
100 CASE_CONST_SCALAR_INT
:
101 return immed_wide_int_const (wi::add (rtx_mode_t (x
, mode
), c
), mode
);
103 /* If this is a reference to the constant pool, try replacing it with
104 a reference to a new constant. If the resulting address isn't
105 valid, don't return it because we have no way to validize it. */
106 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
107 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
109 rtx cst
= get_pool_constant (XEXP (x
, 0));
111 if (GET_CODE (cst
) == CONST_VECTOR
112 && GET_MODE_INNER (GET_MODE (cst
)) == mode
)
114 cst
= gen_lowpart (mode
, cst
);
117 if (GET_MODE (cst
) == VOIDmode
|| GET_MODE (cst
) == mode
)
119 tem
= plus_constant (mode
, cst
, c
);
120 tem
= force_const_mem (GET_MODE (x
), tem
);
121 /* Targets may disallow some constants in the constant pool, thus
122 force_const_mem may return NULL_RTX. */
123 if (tem
&& memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
130 /* If adding to something entirely constant, set a flag
131 so that we can add a CONST around the result. */
132 if (inplace
&& shared_const_p (x
))
144 /* The interesting case is adding the integer to a sum. Look
145 for constant term in the sum and combine with C. For an
146 integer constant term or a constant term that is not an
147 explicit integer, we combine or group them together anyway.
149 We may not immediately return from the recursive call here, lest
150 all_constant gets lost. */
152 if (CONSTANT_P (XEXP (x
, 1)))
154 rtx term
= plus_constant (mode
, XEXP (x
, 1), c
, inplace
);
155 if (term
== const0_rtx
)
160 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), term
);
163 else if (rtx
*const_loc
= find_constant_term_loc (&y
))
167 /* We need to be careful since X may be shared and we can't
168 modify it in place. */
170 const_loc
= find_constant_term_loc (&x
);
172 *const_loc
= plus_constant (mode
, *const_loc
, c
, true);
182 x
= gen_rtx_PLUS (mode
, x
, gen_int_mode (c
, mode
));
184 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
186 else if (all_constant
)
187 return gen_rtx_CONST (mode
, x
);
192 /* If X is a sum, return a new sum like X but lacking any constant terms.
193 Add all the removed constant terms into *CONSTPTR.
194 X itself is not altered. The result != X if and only if
195 it is not isomorphic to X. */
198 eliminate_constant_term (rtx x
, rtx
*constptr
)
203 if (GET_CODE (x
) != PLUS
)
206 /* First handle constants appearing at this level explicitly. */
207 if (CONST_INT_P (XEXP (x
, 1))
208 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
210 && CONST_INT_P (tem
))
213 return eliminate_constant_term (XEXP (x
, 0), constptr
);
217 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
218 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
219 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
220 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
222 && CONST_INT_P (tem
))
225 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
232 /* Return a copy of X in which all memory references
233 and all constants that involve symbol refs
234 have been replaced with new temporary registers.
235 Also emit code to load the memory locations and constants
236 into those registers.
238 If X contains no such constants or memory references,
239 X itself (not a copy) is returned.
241 If a constant is found in the address that is not a legitimate constant
242 in an insn, it is left alone in the hope that it might be valid in the
245 X may contain no arithmetic except addition, subtraction and multiplication.
246 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
249 break_out_memory_refs (rtx x
)
252 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
253 && GET_MODE (x
) != VOIDmode
))
254 x
= force_reg (GET_MODE (x
), x
);
255 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
256 || GET_CODE (x
) == MULT
)
258 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
259 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
261 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
262 x
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
268 /* Given X, a memory address in address space AS' pointer mode, convert it to
269 an address in the address space's address mode, or vice versa (TO_MODE says
270 which way). We take advantage of the fact that pointers are not allowed to
271 overflow by commuting arithmetic operations over conversions so that address
272 arithmetic insns can be used. IN_CONST is true if this conversion is inside
273 a CONST. NO_EMIT is true if no insns should be emitted, and instead
274 it should return NULL if it can't be simplified without emitting insns. */
277 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED
,
278 rtx x
, addr_space_t as ATTRIBUTE_UNUSED
,
279 bool in_const ATTRIBUTE_UNUSED
,
280 bool no_emit ATTRIBUTE_UNUSED
)
282 #ifndef POINTERS_EXTEND_UNSIGNED
283 gcc_assert (GET_MODE (x
) == to_mode
|| GET_MODE (x
) == VOIDmode
);
285 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
286 machine_mode pointer_mode
, address_mode
, from_mode
;
290 /* If X already has the right mode, just return it. */
291 if (GET_MODE (x
) == to_mode
)
294 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
295 address_mode
= targetm
.addr_space
.address_mode (as
);
296 from_mode
= to_mode
== pointer_mode
? address_mode
: pointer_mode
;
298 /* Here we handle some special cases. If none of them apply, fall through
299 to the default case. */
300 switch (GET_CODE (x
))
302 CASE_CONST_SCALAR_INT
:
303 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
305 else if (POINTERS_EXTEND_UNSIGNED
< 0)
307 else if (POINTERS_EXTEND_UNSIGNED
> 0)
311 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
317 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
318 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
319 return SUBREG_REG (x
);
323 temp
= gen_rtx_LABEL_REF (to_mode
, label_ref_label (x
));
324 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
328 temp
= shallow_copy_rtx (x
);
329 PUT_MODE (temp
, to_mode
);
333 temp
= convert_memory_address_addr_space_1 (to_mode
, XEXP (x
, 0), as
,
335 return temp
? gen_rtx_CONST (to_mode
, temp
) : temp
;
339 /* For addition we can safely permute the conversion and addition
340 operation if one operand is a constant and converting the constant
341 does not change it or if one operand is a constant and we are
342 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
343 We can always safely permute them if we are making the address
344 narrower. Inside a CONST RTL, this is safe for both pointers
345 zero or sign extended as pointers cannot wrap. */
346 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
347 || (GET_CODE (x
) == PLUS
348 && CONST_INT_P (XEXP (x
, 1))
349 && ((in_const
&& POINTERS_EXTEND_UNSIGNED
!= 0)
350 || XEXP (x
, 1) == convert_memory_address_addr_space_1
351 (to_mode
, XEXP (x
, 1), as
, in_const
,
353 || POINTERS_EXTEND_UNSIGNED
< 0)))
355 temp
= convert_memory_address_addr_space_1 (to_mode
, XEXP (x
, 0),
356 as
, in_const
, no_emit
);
357 return (temp
? gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
370 return convert_modes (to_mode
, from_mode
,
371 x
, POINTERS_EXTEND_UNSIGNED
);
372 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
375 /* Given X, a memory address in address space AS' pointer mode, convert it to
376 an address in the address space's address mode, or vice versa (TO_MODE says
377 which way). We take advantage of the fact that pointers are not allowed to
378 overflow by commuting arithmetic operations over conversions so that address
379 arithmetic insns can be used. */
382 convert_memory_address_addr_space (machine_mode to_mode
, rtx x
, addr_space_t as
)
384 return convert_memory_address_addr_space_1 (to_mode
, x
, as
, false, false);
388 /* Return something equivalent to X but valid as a memory address for something
389 of mode MODE in the named address space AS. When X is not itself valid,
390 this works by copying X or subexpressions of it into registers. */
393 memory_address_addr_space (machine_mode mode
, rtx x
, addr_space_t as
)
396 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
398 x
= convert_memory_address_addr_space (address_mode
, x
, as
);
400 /* By passing constant addresses through registers
401 we get a chance to cse them. */
402 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
403 x
= force_reg (address_mode
, x
);
405 /* We get better cse by rejecting indirect addressing at this stage.
406 Let the combiner create indirect addresses where appropriate.
407 For now, generate the code so that the subexpressions useful to share
408 are visible. But not if cse won't be done! */
411 if (! cse_not_expected
&& !REG_P (x
))
412 x
= break_out_memory_refs (x
);
414 /* At this point, any valid address is accepted. */
415 if (memory_address_addr_space_p (mode
, x
, as
))
418 /* If it was valid before but breaking out memory refs invalidated it,
419 use it the old way. */
420 if (memory_address_addr_space_p (mode
, oldx
, as
))
426 /* Perform machine-dependent transformations on X
427 in certain cases. This is not necessary since the code
428 below can handle all possible cases, but machine-dependent
429 transformations can make better code. */
432 x
= targetm
.addr_space
.legitimize_address (x
, oldx
, mode
, as
);
433 if (orig_x
!= x
&& memory_address_addr_space_p (mode
, x
, as
))
437 /* PLUS and MULT can appear in special ways
438 as the result of attempts to make an address usable for indexing.
439 Usually they are dealt with by calling force_operand, below.
440 But a sum containing constant terms is special
441 if removing them makes the sum a valid address:
442 then we generate that address in a register
443 and index off of it. We do this because it often makes
444 shorter code, and because the addresses thus generated
445 in registers often become common subexpressions. */
446 if (GET_CODE (x
) == PLUS
)
448 rtx constant_term
= const0_rtx
;
449 rtx y
= eliminate_constant_term (x
, &constant_term
);
450 if (constant_term
== const0_rtx
451 || ! memory_address_addr_space_p (mode
, y
, as
))
452 x
= force_operand (x
, NULL_RTX
);
455 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
456 if (! memory_address_addr_space_p (mode
, y
, as
))
457 x
= force_operand (x
, NULL_RTX
);
463 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
464 x
= force_operand (x
, NULL_RTX
);
466 /* If we have a register that's an invalid address,
467 it must be a hard reg of the wrong class. Copy it to a pseudo. */
471 /* Last resort: copy the value to a register, since
472 the register is a valid address. */
474 x
= force_reg (address_mode
, x
);
479 gcc_assert (memory_address_addr_space_p (mode
, x
, as
));
480 /* If we didn't change the address, we are done. Otherwise, mark
481 a reg as a pointer if we have REG or REG + CONST_INT. */
485 mark_reg_pointer (x
, BITS_PER_UNIT
);
486 else if (GET_CODE (x
) == PLUS
487 && REG_P (XEXP (x
, 0))
488 && CONST_INT_P (XEXP (x
, 1)))
489 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
491 /* OLDX may have been the address on a temporary. Update the address
492 to indicate that X is now used. */
493 update_temp_slot_address (oldx
, x
);
498 /* Convert a mem ref into one with a valid memory address.
499 Pass through anything else unchanged. */
502 validize_mem (rtx ref
)
506 ref
= use_anchored_address (ref
);
507 if (memory_address_addr_space_p (GET_MODE (ref
), XEXP (ref
, 0),
508 MEM_ADDR_SPACE (ref
)))
511 /* Don't alter REF itself, since that is probably a stack slot. */
512 return replace_equiv_address (ref
, XEXP (ref
, 0));
515 /* If X is a memory reference to a member of an object block, try rewriting
516 it to use an anchor instead. Return the new memory reference on success
517 and the old one on failure. */
520 use_anchored_address (rtx x
)
523 HOST_WIDE_INT offset
;
526 if (!flag_section_anchors
)
532 /* Split the address into a base and offset. */
535 if (GET_CODE (base
) == CONST
536 && GET_CODE (XEXP (base
, 0)) == PLUS
537 && CONST_INT_P (XEXP (XEXP (base
, 0), 1)))
539 offset
+= INTVAL (XEXP (XEXP (base
, 0), 1));
540 base
= XEXP (XEXP (base
, 0), 0);
543 /* Check whether BASE is suitable for anchors. */
544 if (GET_CODE (base
) != SYMBOL_REF
545 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base
)
546 || SYMBOL_REF_ANCHOR_P (base
)
547 || SYMBOL_REF_BLOCK (base
) == NULL
548 || !targetm
.use_anchors_for_symbol_p (base
))
551 /* Decide where BASE is going to be. */
552 place_block_symbol (base
);
554 /* Get the anchor we need to use. */
555 offset
+= SYMBOL_REF_BLOCK_OFFSET (base
);
556 base
= get_section_anchor (SYMBOL_REF_BLOCK (base
), offset
,
557 SYMBOL_REF_TLS_MODEL (base
));
559 /* Work out the offset from the anchor. */
560 offset
-= SYMBOL_REF_BLOCK_OFFSET (base
);
562 /* If we're going to run a CSE pass, force the anchor into a register.
563 We will then be able to reuse registers for several accesses, if the
564 target costs say that that's worthwhile. */
565 mode
= GET_MODE (base
);
566 if (!cse_not_expected
)
567 base
= force_reg (mode
, base
);
569 return replace_equiv_address (x
, plus_constant (mode
, base
, offset
));
572 /* Copy the value or contents of X to a new temp reg and return that reg. */
577 rtx temp
= gen_reg_rtx (GET_MODE (x
));
579 /* If not an operand, must be an address with PLUS and MULT so
580 do the computation. */
581 if (! general_operand (x
, VOIDmode
))
582 x
= force_operand (x
, temp
);
585 emit_move_insn (temp
, x
);
590 /* Like copy_to_reg but always give the new register mode Pmode
591 in case X is a constant. */
594 copy_addr_to_reg (rtx x
)
596 return copy_to_mode_reg (Pmode
, x
);
599 /* Like copy_to_reg but always give the new register mode MODE
600 in case X is a constant. */
603 copy_to_mode_reg (machine_mode mode
, rtx x
)
605 rtx temp
= gen_reg_rtx (mode
);
607 /* If not an operand, must be an address with PLUS and MULT so
608 do the computation. */
609 if (! general_operand (x
, VOIDmode
))
610 x
= force_operand (x
, temp
);
612 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
614 emit_move_insn (temp
, x
);
618 /* Load X into a register if it is not already one.
619 Use mode MODE for the register.
620 X should be valid for mode MODE, but it may be a constant which
621 is valid for all integer modes; that's why caller must specify MODE.
623 The caller must not alter the value in the register we return,
624 since we mark it as a "constant" register. */
627 force_reg (machine_mode mode
, rtx x
)
635 if (general_operand (x
, mode
))
637 temp
= gen_reg_rtx (mode
);
638 insn
= emit_move_insn (temp
, x
);
642 temp
= force_operand (x
, NULL_RTX
);
644 insn
= get_last_insn ();
647 rtx temp2
= gen_reg_rtx (mode
);
648 insn
= emit_move_insn (temp2
, temp
);
653 /* Let optimizers know that TEMP's value never changes
654 and that X can be substituted for it. Don't get confused
655 if INSN set something else (such as a SUBREG of TEMP). */
657 && (set
= single_set (insn
)) != 0
658 && SET_DEST (set
) == temp
659 && ! rtx_equal_p (x
, SET_SRC (set
)))
660 set_unique_reg_note (insn
, REG_EQUAL
, x
);
662 /* Let optimizers know that TEMP is a pointer, and if so, the
663 known alignment of that pointer. */
666 if (GET_CODE (x
) == SYMBOL_REF
)
668 align
= BITS_PER_UNIT
;
669 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
670 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
672 else if (GET_CODE (x
) == LABEL_REF
)
673 align
= BITS_PER_UNIT
;
674 else if (GET_CODE (x
) == CONST
675 && GET_CODE (XEXP (x
, 0)) == PLUS
676 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
677 && CONST_INT_P (XEXP (XEXP (x
, 0), 1)))
679 rtx s
= XEXP (XEXP (x
, 0), 0);
680 rtx c
= XEXP (XEXP (x
, 0), 1);
684 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
685 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
691 ca
= ctz_hwi (INTVAL (c
)) * BITS_PER_UNIT
;
692 align
= MIN (sa
, ca
);
696 if (align
|| (MEM_P (x
) && MEM_POINTER (x
)))
697 mark_reg_pointer (temp
, align
);
703 /* If X is a memory ref, copy its contents to a new temp reg and return
704 that reg. Otherwise, return X. */
707 force_not_mem (rtx x
)
711 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
714 temp
= gen_reg_rtx (GET_MODE (x
));
717 REG_POINTER (temp
) = 1;
719 emit_move_insn (temp
, x
);
723 /* Copy X to TARGET (if it's nonzero and a reg)
724 or to a new temp reg and return that reg.
725 MODE is the mode to use for X in case it is a constant. */
728 copy_to_suggested_reg (rtx x
, rtx target
, machine_mode mode
)
732 if (target
&& REG_P (target
))
735 temp
= gen_reg_rtx (mode
);
737 emit_move_insn (temp
, x
);
741 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
742 PUNSIGNEDP points to the signedness of the type and may be adjusted
743 to show what signedness to use on extension operations.
745 FOR_RETURN is nonzero if the caller is promoting the return value
746 of FNDECL, else it is for promoting args. */
749 promote_function_mode (const_tree type
, machine_mode mode
, int *punsignedp
,
750 const_tree funtype
, int for_return
)
752 /* Called without a type node for a libcall. */
753 if (type
== NULL_TREE
)
755 if (INTEGRAL_MODE_P (mode
))
756 return targetm
.calls
.promote_function_mode (NULL_TREE
, mode
,
763 switch (TREE_CODE (type
))
765 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
766 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
767 case POINTER_TYPE
: case REFERENCE_TYPE
:
768 return targetm
.calls
.promote_function_mode (type
, mode
, punsignedp
, funtype
,
775 /* Return the mode to use to store a scalar of TYPE and MODE.
776 PUNSIGNEDP points to the signedness of the type and may be adjusted
777 to show what signedness to use on extension operations. */
780 promote_mode (const_tree type ATTRIBUTE_UNUSED
, machine_mode mode
,
781 int *punsignedp ATTRIBUTE_UNUSED
)
788 /* For libcalls this is invoked without TYPE from the backends
789 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
791 if (type
== NULL_TREE
)
794 /* FIXME: this is the same logic that was there until GCC 4.4, but we
795 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
796 is not defined. The affected targets are M32C, S390, SPARC. */
798 code
= TREE_CODE (type
);
799 unsignedp
= *punsignedp
;
803 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
804 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
805 PROMOTE_MODE (mode
, unsignedp
, type
);
806 *punsignedp
= unsignedp
;
809 #ifdef POINTERS_EXTEND_UNSIGNED
812 *punsignedp
= POINTERS_EXTEND_UNSIGNED
;
813 return targetm
.addr_space
.address_mode
814 (TYPE_ADDR_SPACE (TREE_TYPE (type
)));
826 /* Use one of promote_mode or promote_function_mode to find the promoted
827 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
828 of DECL after promotion. */
831 promote_decl_mode (const_tree decl
, int *punsignedp
)
833 tree type
= TREE_TYPE (decl
);
834 int unsignedp
= TYPE_UNSIGNED (type
);
835 machine_mode mode
= DECL_MODE (decl
);
838 if (TREE_CODE (decl
) == RESULT_DECL
&& !DECL_BY_REFERENCE (decl
))
839 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
840 TREE_TYPE (current_function_decl
), 1);
841 else if (TREE_CODE (decl
) == RESULT_DECL
|| TREE_CODE (decl
) == PARM_DECL
)
842 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
843 TREE_TYPE (current_function_decl
), 2);
845 pmode
= promote_mode (type
, mode
, &unsignedp
);
848 *punsignedp
= unsignedp
;
852 /* Return the promoted mode for name. If it is a named SSA_NAME, it
853 is the same as promote_decl_mode. Otherwise, it is the promoted
854 mode of a temp decl of same type as the SSA_NAME, if we had created
858 promote_ssa_mode (const_tree name
, int *punsignedp
)
860 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
862 /* Partitions holding parms and results must be promoted as expected
864 if (SSA_NAME_VAR (name
)
865 && (TREE_CODE (SSA_NAME_VAR (name
)) == PARM_DECL
866 || TREE_CODE (SSA_NAME_VAR (name
)) == RESULT_DECL
))
868 machine_mode mode
= promote_decl_mode (SSA_NAME_VAR (name
), punsignedp
);
873 tree type
= TREE_TYPE (name
);
874 int unsignedp
= TYPE_UNSIGNED (type
);
875 machine_mode mode
= TYPE_MODE (type
);
877 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
880 gcc_assert (VECTOR_TYPE_P (type
));
881 mode
= type
->type_common
.mode
;
884 machine_mode pmode
= promote_mode (type
, mode
, &unsignedp
);
886 *punsignedp
= unsignedp
;
893 /* Controls the behavior of {anti_,}adjust_stack. */
894 static bool suppress_reg_args_size
;
896 /* A helper for adjust_stack and anti_adjust_stack. */
899 adjust_stack_1 (rtx adjust
, bool anti_p
)
904 /* Hereafter anti_p means subtract_p. */
905 if (!STACK_GROWS_DOWNWARD
)
908 temp
= expand_binop (Pmode
,
909 anti_p
? sub_optab
: add_optab
,
910 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
913 if (temp
!= stack_pointer_rtx
)
914 insn
= emit_move_insn (stack_pointer_rtx
, temp
);
917 insn
= get_last_insn ();
918 temp
= single_set (insn
);
919 gcc_assert (temp
!= NULL
&& SET_DEST (temp
) == stack_pointer_rtx
);
922 if (!suppress_reg_args_size
)
923 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
926 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
927 This pops when ADJUST is positive. ADJUST need not be constant. */
930 adjust_stack (rtx adjust
)
932 if (adjust
== const0_rtx
)
935 /* We expect all variable sized adjustments to be multiple of
936 PREFERRED_STACK_BOUNDARY. */
937 if (CONST_INT_P (adjust
))
938 stack_pointer_delta
-= INTVAL (adjust
);
940 adjust_stack_1 (adjust
, false);
943 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
944 This pushes when ADJUST is positive. ADJUST need not be constant. */
947 anti_adjust_stack (rtx adjust
)
949 if (adjust
== const0_rtx
)
952 /* We expect all variable sized adjustments to be multiple of
953 PREFERRED_STACK_BOUNDARY. */
954 if (CONST_INT_P (adjust
))
955 stack_pointer_delta
+= INTVAL (adjust
);
957 adjust_stack_1 (adjust
, true);
960 /* Round the size of a block to be pushed up to the boundary required
961 by this machine. SIZE is the desired size, which need not be constant. */
964 round_push (rtx size
)
966 rtx align_rtx
, alignm1_rtx
;
968 if (!SUPPORTS_STACK_ALIGNMENT
969 || crtl
->preferred_stack_boundary
== MAX_SUPPORTED_STACK_ALIGNMENT
)
971 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
976 if (CONST_INT_P (size
))
978 HOST_WIDE_INT new_size
= (INTVAL (size
) + align
- 1) / align
* align
;
980 if (INTVAL (size
) != new_size
)
981 size
= GEN_INT (new_size
);
985 align_rtx
= GEN_INT (align
);
986 alignm1_rtx
= GEN_INT (align
- 1);
990 /* If crtl->preferred_stack_boundary might still grow, use
991 virtual_preferred_stack_boundary_rtx instead. This will be
992 substituted by the right value in vregs pass and optimized
994 align_rtx
= virtual_preferred_stack_boundary_rtx
;
995 alignm1_rtx
= force_operand (plus_constant (Pmode
, align_rtx
, -1),
999 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1000 but we know it can't. So add ourselves and then do
1002 size
= expand_binop (Pmode
, add_optab
, size
, alignm1_rtx
,
1003 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1004 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, align_rtx
,
1006 size
= expand_mult (Pmode
, size
, align_rtx
, NULL_RTX
, 1);
1011 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1012 to a previously-created save area. If no save area has been allocated,
1013 this function will allocate one. If a save area is specified, it
1014 must be of the proper mode. */
1017 emit_stack_save (enum save_level save_level
, rtx
*psave
)
1020 /* The default is that we use a move insn and save in a Pmode object. */
1021 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1022 machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
1024 /* See if this machine has anything special to do for this kind of save. */
1028 if (targetm
.have_save_stack_block ())
1029 fcn
= targetm
.gen_save_stack_block
;
1032 if (targetm
.have_save_stack_function ())
1033 fcn
= targetm
.gen_save_stack_function
;
1036 if (targetm
.have_save_stack_nonlocal ())
1037 fcn
= targetm
.gen_save_stack_nonlocal
;
1043 /* If there is no save area and we have to allocate one, do so. Otherwise
1044 verify the save area is the proper mode. */
1048 if (mode
!= VOIDmode
)
1050 if (save_level
== SAVE_NONLOCAL
)
1051 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1053 *psave
= sa
= gen_reg_rtx (mode
);
1057 do_pending_stack_adjust ();
1059 sa
= validize_mem (sa
);
1060 emit_insn (fcn (sa
, stack_pointer_rtx
));
1063 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1064 area made by emit_stack_save. If it is zero, we have nothing to do. */
1067 emit_stack_restore (enum save_level save_level
, rtx sa
)
1069 /* The default is that we use a move insn. */
1070 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1072 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1073 STACK_POINTER and HARD_FRAME_POINTER.
1074 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1075 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1076 aligned variables, which is reflected in ix86_can_eliminate.
1077 We normally still have the realigned STACK_POINTER that we can use.
1078 But if there is a stack restore still present at reload, it can trigger
1079 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1080 FRAME_POINTER into a hard reg.
1081 To prevent this situation, we force need_drap if we emit a stack
1083 if (SUPPORTS_STACK_ALIGNMENT
)
1084 crtl
->need_drap
= true;
1086 /* See if this machine has anything special to do for this kind of save. */
1090 if (targetm
.have_restore_stack_block ())
1091 fcn
= targetm
.gen_restore_stack_block
;
1094 if (targetm
.have_restore_stack_function ())
1095 fcn
= targetm
.gen_restore_stack_function
;
1098 if (targetm
.have_restore_stack_nonlocal ())
1099 fcn
= targetm
.gen_restore_stack_nonlocal
;
1107 sa
= validize_mem (sa
);
1108 /* These clobbers prevent the scheduler from moving
1109 references to variable arrays below the code
1110 that deletes (pops) the arrays. */
1111 emit_clobber (gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
)));
1112 emit_clobber (gen_rtx_MEM (BLKmode
, stack_pointer_rtx
));
1115 discard_pending_stack_adjust ();
1117 emit_insn (fcn (stack_pointer_rtx
, sa
));
1120 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1121 function. This should be called whenever we allocate or deallocate
1122 dynamic stack space. */
1125 update_nonlocal_goto_save_area (void)
1130 /* The nonlocal_goto_save_area object is an array of N pointers. The
1131 first one is used for the frame pointer save; the rest are sized by
1132 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1133 of the stack save area slots. */
1134 t_save
= build4 (ARRAY_REF
,
1135 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
1136 cfun
->nonlocal_goto_save_area
,
1137 integer_one_node
, NULL_TREE
, NULL_TREE
);
1138 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1140 emit_stack_save (SAVE_NONLOCAL
, &r_save
);
1143 /* Record a new stack level for the current function. This should be called
1144 whenever we allocate or deallocate dynamic stack space. */
1147 record_new_stack_level (void)
1149 /* Record the new stack level for nonlocal gotos. */
1150 if (cfun
->nonlocal_goto_save_area
)
1151 update_nonlocal_goto_save_area ();
1153 /* Record the new stack level for SJLJ exceptions. */
1154 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
1155 update_sjlj_context ();
1158 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1160 align_dynamic_address (rtx target
, unsigned required_align
)
1162 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1163 but we know it can't. So add ourselves and then do
1165 target
= expand_binop (Pmode
, add_optab
, target
,
1166 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1168 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1169 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1170 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1173 target
= expand_mult (Pmode
, target
,
1174 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1181 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1182 be dynamically pushed on the stack.
1184 *PSIZE is an rtx representing the size of the area.
1186 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1187 parameter may be zero. If so, a proper value will be extracted
1188 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1190 REQUIRED_ALIGN is the alignment (in bits) required for the region
1193 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1194 the additional size returned. */
1196 get_dynamic_stack_size (rtx
*psize
, unsigned size_align
,
1197 unsigned required_align
,
1198 HOST_WIDE_INT
*pstack_usage_size
)
1203 /* Ensure the size is in the proper mode. */
1204 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1205 size
= convert_to_mode (Pmode
, size
, 1);
1207 if (CONST_INT_P (size
))
1209 unsigned HOST_WIDE_INT lsb
;
1211 lsb
= INTVAL (size
);
1214 /* Watch out for overflow truncating to "unsigned". */
1215 if (lsb
> UINT_MAX
/ BITS_PER_UNIT
)
1216 size_align
= 1u << (HOST_BITS_PER_INT
- 1);
1218 size_align
= (unsigned)lsb
* BITS_PER_UNIT
;
1220 else if (size_align
< BITS_PER_UNIT
)
1221 size_align
= BITS_PER_UNIT
;
1223 /* We can't attempt to minimize alignment necessary, because we don't
1224 know the final value of preferred_stack_boundary yet while executing
1226 if (crtl
->preferred_stack_boundary
< PREFERRED_STACK_BOUNDARY
)
1227 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1229 /* We will need to ensure that the address we return is aligned to
1230 REQUIRED_ALIGN. At this point in the compilation, we don't always
1231 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1232 (it might depend on the size of the outgoing parameter lists, for
1233 example), so we must preventively align the value. We leave space
1234 in SIZE for the hole that might result from the alignment operation. */
1236 unsigned known_align
= REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
);
1237 if (known_align
== 0)
1238 known_align
= BITS_PER_UNIT
;
1239 if (required_align
> known_align
)
1241 extra
= (required_align
- known_align
) / BITS_PER_UNIT
;
1242 size
= plus_constant (Pmode
, size
, extra
);
1243 size
= force_operand (size
, NULL_RTX
);
1246 if (flag_stack_usage_info
&& pstack_usage_size
)
1247 *pstack_usage_size
+= extra
;
1249 if (extra
&& size_align
> BITS_PER_UNIT
)
1250 size_align
= BITS_PER_UNIT
;
1252 /* Round the size to a multiple of the required stack alignment.
1253 Since the stack is presumed to be rounded before this allocation,
1254 this will maintain the required alignment.
1256 If the stack grows downward, we could save an insn by subtracting
1257 SIZE from the stack pointer and then aligning the stack pointer.
1258 The problem with this is that the stack pointer may be unaligned
1259 between the execution of the subtraction and alignment insns and
1260 some machines do not allow this. Even on those that do, some
1261 signal handlers malfunction if a signal should occur between those
1262 insns. Since this is an extremely rare event, we have no reliable
1263 way of knowing which systems have this problem. So we avoid even
1264 momentarily mis-aligning the stack. */
1265 if (size_align
% MAX_SUPPORTED_STACK_ALIGNMENT
!= 0)
1267 size
= round_push (size
);
1269 if (flag_stack_usage_info
&& pstack_usage_size
)
1271 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
1272 *pstack_usage_size
=
1273 (*pstack_usage_size
+ align
- 1) / align
* align
;
1280 /* Return an rtx representing the address of an area of memory dynamically
1281 pushed on the stack.
1283 Any required stack pointer alignment is preserved.
1285 SIZE is an rtx representing the size of the area.
1287 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1288 parameter may be zero. If so, a proper value will be extracted
1289 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1291 REQUIRED_ALIGN is the alignment (in bits) required for the region
1294 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1295 stack space allocated by the generated code cannot be added with itself
1296 in the course of the execution of the function. It is always safe to
1297 pass FALSE here and the following criterion is sufficient in order to
1298 pass TRUE: every path in the CFG that starts at the allocation point and
1299 loops to it executes the associated deallocation code. */
1302 allocate_dynamic_stack_space (rtx size
, unsigned size_align
,
1303 unsigned required_align
, bool cannot_accumulate
)
1305 HOST_WIDE_INT stack_usage_size
= -1;
1306 rtx_code_label
*final_label
;
1307 rtx final_target
, target
;
1309 /* If we're asking for zero bytes, it doesn't matter what we point
1310 to since we can't dereference it. But return a reasonable
1312 if (size
== const0_rtx
)
1313 return virtual_stack_dynamic_rtx
;
1315 /* Otherwise, show we're calling alloca or equivalent. */
1316 cfun
->calls_alloca
= 1;
1318 /* If stack usage info is requested, look into the size we are passed.
1319 We need to do so this early to avoid the obfuscation that may be
1320 introduced later by the various alignment operations. */
1321 if (flag_stack_usage_info
)
1323 if (CONST_INT_P (size
))
1324 stack_usage_size
= INTVAL (size
);
1325 else if (REG_P (size
))
1327 /* Look into the last emitted insn and see if we can deduce
1328 something for the register. */
1331 insn
= get_last_insn ();
1332 if ((set
= single_set (insn
)) && rtx_equal_p (SET_DEST (set
), size
))
1334 if (CONST_INT_P (SET_SRC (set
)))
1335 stack_usage_size
= INTVAL (SET_SRC (set
));
1336 else if ((note
= find_reg_equal_equiv_note (insn
))
1337 && CONST_INT_P (XEXP (note
, 0)))
1338 stack_usage_size
= INTVAL (XEXP (note
, 0));
1342 /* If the size is not constant, we can't say anything. */
1343 if (stack_usage_size
== -1)
1345 current_function_has_unbounded_dynamic_stack_size
= 1;
1346 stack_usage_size
= 0;
1350 get_dynamic_stack_size (&size
, size_align
, required_align
, &stack_usage_size
);
1352 target
= gen_reg_rtx (Pmode
);
1354 /* The size is supposed to be fully adjusted at this point so record it
1355 if stack usage info is requested. */
1356 if (flag_stack_usage_info
)
1358 current_function_dynamic_stack_size
+= stack_usage_size
;
1360 /* ??? This is gross but the only safe stance in the absence
1361 of stack usage oriented flow analysis. */
1362 if (!cannot_accumulate
)
1363 current_function_has_unbounded_dynamic_stack_size
= 1;
1366 do_pending_stack_adjust ();
1369 final_target
= NULL_RTX
;
1371 /* If we are splitting the stack, we need to ask the backend whether
1372 there is enough room on the current stack. If there isn't, or if
1373 the backend doesn't know how to tell is, then we need to call a
1374 function to allocate memory in some other way. This memory will
1375 be released when we release the current stack segment. The
1376 effect is that stack allocation becomes less efficient, but at
1377 least it doesn't cause a stack overflow. */
1378 if (flag_split_stack
)
1380 rtx_code_label
*available_label
;
1381 rtx ask
, space
, func
;
1383 available_label
= NULL
;
1385 if (targetm
.have_split_stack_space_check ())
1387 available_label
= gen_label_rtx ();
1389 /* This instruction will branch to AVAILABLE_LABEL if there
1390 are SIZE bytes available on the stack. */
1391 emit_insn (targetm
.gen_split_stack_space_check
1392 (size
, available_label
));
1395 /* The __morestack_allocate_stack_space function will allocate
1396 memory using malloc. If the alignment of the memory returned
1397 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1398 make sure we allocate enough space. */
1399 if (MALLOC_ABI_ALIGNMENT
>= required_align
)
1402 ask
= expand_binop (Pmode
, add_optab
, size
,
1403 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1405 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1407 func
= init_one_libfunc ("__morestack_allocate_stack_space");
1409 space
= emit_library_call_value (func
, target
, LCT_NORMAL
, Pmode
,
1412 if (available_label
== NULL_RTX
)
1415 final_target
= gen_reg_rtx (Pmode
);
1417 emit_move_insn (final_target
, space
);
1419 final_label
= gen_label_rtx ();
1420 emit_jump (final_label
);
1422 emit_label (available_label
);
1425 /* We ought to be called always on the toplevel and stack ought to be aligned
1427 gcc_assert (!(stack_pointer_delta
1428 % (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
)));
1430 /* If needed, check that we have the required amount of stack. Take into
1431 account what has already been checked. */
1432 if (STACK_CHECK_MOVING_SP
)
1434 else if (flag_stack_check
== GENERIC_STACK_CHECK
)
1435 probe_stack_range (STACK_OLD_CHECK_PROTECT
+ STACK_CHECK_MAX_FRAME_SIZE
,
1437 else if (flag_stack_check
== STATIC_BUILTIN_STACK_CHECK
)
1438 probe_stack_range (STACK_CHECK_PROTECT
, size
);
1440 /* Don't let anti_adjust_stack emit notes. */
1441 suppress_reg_args_size
= true;
1443 /* Perform the required allocation from the stack. Some systems do
1444 this differently than simply incrementing/decrementing from the
1445 stack pointer, such as acquiring the space by calling malloc(). */
1446 if (targetm
.have_allocate_stack ())
1448 struct expand_operand ops
[2];
1449 /* We don't have to check against the predicate for operand 0 since
1450 TARGET is known to be a pseudo of the proper mode, which must
1451 be valid for the operand. */
1452 create_fixed_operand (&ops
[0], target
);
1453 create_convert_operand_to (&ops
[1], size
, STACK_SIZE_MODE
, true);
1454 expand_insn (targetm
.code_for_allocate_stack
, 2, ops
);
1458 int saved_stack_pointer_delta
;
1460 if (!STACK_GROWS_DOWNWARD
)
1461 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1463 /* Check stack bounds if necessary. */
1464 if (crtl
->limit_stack
)
1467 rtx_code_label
*space_available
= gen_label_rtx ();
1468 if (STACK_GROWS_DOWNWARD
)
1469 available
= expand_binop (Pmode
, sub_optab
,
1470 stack_pointer_rtx
, stack_limit_rtx
,
1471 NULL_RTX
, 1, OPTAB_WIDEN
);
1473 available
= expand_binop (Pmode
, sub_optab
,
1474 stack_limit_rtx
, stack_pointer_rtx
,
1475 NULL_RTX
, 1, OPTAB_WIDEN
);
1477 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1479 if (targetm
.have_trap ())
1480 emit_insn (targetm
.gen_trap ());
1482 error ("stack limits not supported on this target");
1484 emit_label (space_available
);
1487 saved_stack_pointer_delta
= stack_pointer_delta
;
1489 if (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1490 anti_adjust_stack_and_probe (size
, false);
1492 anti_adjust_stack (size
);
1494 /* Even if size is constant, don't modify stack_pointer_delta.
1495 The constant size alloca should preserve
1496 crtl->preferred_stack_boundary alignment. */
1497 stack_pointer_delta
= saved_stack_pointer_delta
;
1499 if (STACK_GROWS_DOWNWARD
)
1500 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1503 suppress_reg_args_size
= false;
1505 /* Finish up the split stack handling. */
1506 if (final_label
!= NULL_RTX
)
1508 gcc_assert (flag_split_stack
);
1509 emit_move_insn (final_target
, target
);
1510 emit_label (final_label
);
1511 target
= final_target
;
1514 target
= align_dynamic_address (target
, required_align
);
1516 /* Now that we've committed to a return value, mark its alignment. */
1517 mark_reg_pointer (target
, required_align
);
1519 /* Record the new stack level. */
1520 record_new_stack_level ();
1525 /* Return an rtx representing the address of an area of memory already
1526 statically pushed onto the stack in the virtual stack vars area. (It is
1527 assumed that the area is allocated in the function prologue.)
1529 Any required stack pointer alignment is preserved.
1531 OFFSET is the offset of the area into the virtual stack vars area.
1533 REQUIRED_ALIGN is the alignment (in bits) required for the region
1537 get_dynamic_stack_base (HOST_WIDE_INT offset
, unsigned required_align
)
1541 if (crtl
->preferred_stack_boundary
< PREFERRED_STACK_BOUNDARY
)
1542 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1544 target
= gen_reg_rtx (Pmode
);
1545 emit_move_insn (target
, virtual_stack_vars_rtx
);
1546 target
= expand_binop (Pmode
, add_optab
, target
,
1547 gen_int_mode (offset
, Pmode
),
1548 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1549 target
= align_dynamic_address (target
, required_align
);
1551 /* Now that we've committed to a return value, mark its alignment. */
1552 mark_reg_pointer (target
, required_align
);
1557 /* A front end may want to override GCC's stack checking by providing a
1558 run-time routine to call to check the stack, so provide a mechanism for
1559 calling that routine. */
1561 static GTY(()) rtx stack_check_libfunc
;
1564 set_stack_check_libfunc (const char *libfunc_name
)
1566 gcc_assert (stack_check_libfunc
== NULL_RTX
);
1567 stack_check_libfunc
= gen_rtx_SYMBOL_REF (Pmode
, libfunc_name
);
1570 /* Emit one stack probe at ADDRESS, an address within the stack. */
1573 emit_stack_probe (rtx address
)
1575 if (targetm
.have_probe_stack_address ())
1576 emit_insn (targetm
.gen_probe_stack_address (address
));
1579 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1581 MEM_VOLATILE_P (memref
) = 1;
1583 /* See if we have an insn to probe the stack. */
1584 if (targetm
.have_probe_stack ())
1585 emit_insn (targetm
.gen_probe_stack (memref
));
1587 emit_move_insn (memref
, const0_rtx
);
1591 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1592 FIRST is a constant and size is a Pmode RTX. These are offsets from
1593 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1594 or subtract them from the stack pointer. */
1596 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1598 #if STACK_GROWS_DOWNWARD
1599 #define STACK_GROW_OP MINUS
1600 #define STACK_GROW_OPTAB sub_optab
1601 #define STACK_GROW_OFF(off) -(off)
1603 #define STACK_GROW_OP PLUS
1604 #define STACK_GROW_OPTAB add_optab
1605 #define STACK_GROW_OFF(off) (off)
1609 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1611 /* First ensure SIZE is Pmode. */
1612 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1613 size
= convert_to_mode (Pmode
, size
, 1);
1615 /* Next see if we have a function to check the stack. */
1616 if (stack_check_libfunc
)
1618 rtx addr
= memory_address (Pmode
,
1619 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1621 plus_constant (Pmode
,
1623 emit_library_call (stack_check_libfunc
, LCT_THROW
, VOIDmode
, 1, addr
,
1627 /* Next see if we have an insn to check the stack. */
1628 else if (targetm
.have_check_stack ())
1630 struct expand_operand ops
[1];
1631 rtx addr
= memory_address (Pmode
,
1632 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1634 plus_constant (Pmode
,
1637 create_input_operand (&ops
[0], addr
, Pmode
);
1638 success
= maybe_expand_insn (targetm
.code_for_check_stack
, 1, ops
);
1639 gcc_assert (success
);
1642 /* Otherwise we have to generate explicit probes. If we have a constant
1643 small number of them to generate, that's the easy case. */
1644 else if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1646 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1649 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1650 it exceeds SIZE. If only one probe is needed, this will not
1651 generate any code. Then probe at FIRST + SIZE. */
1652 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1654 addr
= memory_address (Pmode
,
1655 plus_constant (Pmode
, stack_pointer_rtx
,
1656 STACK_GROW_OFF (first
+ i
)));
1657 emit_stack_probe (addr
);
1660 addr
= memory_address (Pmode
,
1661 plus_constant (Pmode
, stack_pointer_rtx
,
1662 STACK_GROW_OFF (first
+ isize
)));
1663 emit_stack_probe (addr
);
1666 /* In the variable case, do the same as above, but in a loop. Note that we
1667 must be extra careful with variables wrapping around because we might be
1668 at the very top (or the very bottom) of the address space and we have to
1669 be able to handle this case properly; in particular, we use an equality
1670 test for the loop condition. */
1673 rtx rounded_size
, rounded_size_op
, test_addr
, last_addr
, temp
;
1674 rtx_code_label
*loop_lab
= gen_label_rtx ();
1675 rtx_code_label
*end_lab
= gen_label_rtx ();
1677 /* Step 1: round SIZE to the previous multiple of the interval. */
1679 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1681 = simplify_gen_binary (AND
, Pmode
, size
,
1682 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1683 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1686 /* Step 2: compute initial and final value of the loop counter. */
1688 /* TEST_ADDR = SP + FIRST. */
1689 test_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1691 gen_int_mode (first
, Pmode
)),
1694 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1695 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1697 rounded_size_op
), NULL_RTX
);
1702 while (TEST_ADDR != LAST_ADDR)
1704 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1708 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1709 until it is equal to ROUNDED_SIZE. */
1711 emit_label (loop_lab
);
1713 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1714 emit_cmp_and_jump_insns (test_addr
, last_addr
, EQ
, NULL_RTX
, Pmode
, 1,
1717 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1718 temp
= expand_binop (Pmode
, STACK_GROW_OPTAB
, test_addr
,
1719 gen_int_mode (PROBE_INTERVAL
, Pmode
), test_addr
,
1722 gcc_assert (temp
== test_addr
);
1724 /* Probe at TEST_ADDR. */
1725 emit_stack_probe (test_addr
);
1727 emit_jump (loop_lab
);
1729 emit_label (end_lab
);
1732 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1733 that SIZE is equal to ROUNDED_SIZE. */
1735 /* TEMP = SIZE - ROUNDED_SIZE. */
1736 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1737 if (temp
!= const0_rtx
)
1741 if (CONST_INT_P (temp
))
1743 /* Use [base + disp} addressing mode if supported. */
1744 HOST_WIDE_INT offset
= INTVAL (temp
);
1745 addr
= memory_address (Pmode
,
1746 plus_constant (Pmode
, last_addr
,
1747 STACK_GROW_OFF (offset
)));
1751 /* Manual CSE if the difference is not known at compile-time. */
1752 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1753 addr
= memory_address (Pmode
,
1754 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1758 emit_stack_probe (addr
);
1762 /* Make sure nothing is scheduled before we are done. */
1763 emit_insn (gen_blockage ());
1766 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1767 while probing it. This pushes when SIZE is positive. SIZE need not
1768 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1769 by plus SIZE at the end. */
1772 anti_adjust_stack_and_probe (rtx size
, bool adjust_back
)
1774 /* We skip the probe for the first interval + a small dope of 4 words and
1775 probe that many bytes past the specified size to maintain a protection
1776 area at the botton of the stack. */
1777 const int dope
= 4 * UNITS_PER_WORD
;
1779 /* First ensure SIZE is Pmode. */
1780 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1781 size
= convert_to_mode (Pmode
, size
, 1);
1783 /* If we have a constant small number of probes to generate, that's the
1785 if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1787 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1788 bool first_probe
= true;
1790 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1791 values of N from 1 until it exceeds SIZE. If only one probe is
1792 needed, this will not generate any code. Then adjust and probe
1793 to PROBE_INTERVAL + SIZE. */
1794 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1798 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL
+ dope
));
1799 first_probe
= false;
1802 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1803 emit_stack_probe (stack_pointer_rtx
);
1807 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
1809 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
- i
));
1810 emit_stack_probe (stack_pointer_rtx
);
1813 /* In the variable case, do the same as above, but in a loop. Note that we
1814 must be extra careful with variables wrapping around because we might be
1815 at the very top (or the very bottom) of the address space and we have to
1816 be able to handle this case properly; in particular, we use an equality
1817 test for the loop condition. */
1820 rtx rounded_size
, rounded_size_op
, last_addr
, temp
;
1821 rtx_code_label
*loop_lab
= gen_label_rtx ();
1822 rtx_code_label
*end_lab
= gen_label_rtx ();
1825 /* Step 1: round SIZE to the previous multiple of the interval. */
1827 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1829 = simplify_gen_binary (AND
, Pmode
, size
,
1830 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1831 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1834 /* Step 2: compute initial and final value of the loop counter. */
1836 /* SP = SP_0 + PROBE_INTERVAL. */
1837 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1839 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1840 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1842 rounded_size_op
), NULL_RTX
);
1847 while (SP != LAST_ADDR)
1849 SP = SP + PROBE_INTERVAL
1853 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1854 values of N from 1 until it is equal to ROUNDED_SIZE. */
1856 emit_label (loop_lab
);
1858 /* Jump to END_LAB if SP == LAST_ADDR. */
1859 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
1862 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1863 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1864 emit_stack_probe (stack_pointer_rtx
);
1866 emit_jump (loop_lab
);
1868 emit_label (end_lab
);
1871 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1872 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1874 /* TEMP = SIZE - ROUNDED_SIZE. */
1875 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1876 if (temp
!= const0_rtx
)
1878 /* Manual CSE if the difference is not known at compile-time. */
1879 if (GET_CODE (temp
) != CONST_INT
)
1880 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1881 anti_adjust_stack (temp
);
1882 emit_stack_probe (stack_pointer_rtx
);
1886 /* Adjust back and account for the additional first interval. */
1888 adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
1890 adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1893 /* Return an rtx representing the register or memory location
1894 in which a scalar value of data type VALTYPE
1895 was returned by a function call to function FUNC.
1896 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1897 function is known, otherwise 0.
1898 OUTGOING is 1 if on a machine with register windows this function
1899 should return the register in which the function will put its result
1903 hard_function_value (const_tree valtype
, const_tree func
, const_tree fntype
,
1904 int outgoing ATTRIBUTE_UNUSED
)
1908 val
= targetm
.calls
.function_value (valtype
, func
? func
: fntype
, outgoing
);
1911 && GET_MODE (val
) == BLKmode
)
1913 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1914 machine_mode tmpmode
;
1916 /* int_size_in_bytes can return -1. We don't need a check here
1917 since the value of bytes will then be large enough that no
1918 mode will match anyway. */
1920 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1921 tmpmode
!= VOIDmode
;
1922 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1924 /* Have we found a large enough mode? */
1925 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1929 /* No suitable mode found. */
1930 gcc_assert (tmpmode
!= VOIDmode
);
1932 PUT_MODE (val
, tmpmode
);
1937 /* Return an rtx representing the register or memory location
1938 in which a scalar value of mode MODE was returned by a library call. */
1941 hard_libcall_value (machine_mode mode
, rtx fun
)
1943 return targetm
.calls
.libcall_value (mode
, fun
);
1946 /* Look up the tree code for a given rtx code
1947 to provide the arithmetic operation for real_arithmetic.
1948 The function returns an int because the caller may not know
1949 what `enum tree_code' means. */
1952 rtx_to_tree_code (enum rtx_code code
)
1954 enum tree_code tcode
;
1977 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1980 return ((int) tcode
);
1983 #include "gt-explow.h"