d: Add test for PR d/108167 to the testsuite [PR108167]
[official-gcc.git] / gcc / loop-iv.cc
blobdfa4f7613bd011b98ed80ad122a4b4a90463fa4e
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, mode, reg, iv): Stores the description of the induction
39 variable corresponding to the use of register REG in INSN to IV, given
40 that REG has mode MODE. Returns true if REG is an induction variable
41 in INSN. false otherwise. If a use of REG is not found in INSN,
42 the following insns are scanned (so that we may call this function
43 on insns returned by get_condition).
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
46 iv_analyze_expr (insn, mode, expr, iv): Stores to IV the description of iv
47 corresponding to expression EXPR evaluated at INSN. All registers used by
48 EXPR must also be used in INSN. MODE is the mode of EXPR.
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "backend.h"
55 #include "rtl.h"
56 #include "df.h"
57 #include "memmodel.h"
58 #include "emit-rtl.h"
59 #include "diagnostic-core.h"
60 #include "cfgloop.h"
61 #include "intl.h"
62 #include "dumpfile.h"
63 #include "rtl-iter.h"
64 #include "tree-ssa-loop-niter.h"
65 #include "regs.h"
66 #include "function-abi.h"
68 /* Possible return values of iv_get_reaching_def. */
70 enum iv_grd_result
72 /* More than one reaching def, or reaching def that does not
73 dominate the use. */
74 GRD_INVALID,
76 /* The use is trivial invariant of the loop, i.e. is not changed
77 inside the loop. */
78 GRD_INVARIANT,
80 /* The use is reached by initial value and a value from the
81 previous iteration. */
82 GRD_MAYBE_BIV,
84 /* The use has single dominating def. */
85 GRD_SINGLE_DOM
88 /* Information about a biv. */
90 class biv_entry
92 public:
93 unsigned regno; /* The register of the biv. */
94 class rtx_iv iv; /* Value of the biv. */
97 static bool clean_slate = true;
99 static unsigned int iv_ref_table_size = 0;
101 /* Table of rtx_ivs indexed by the df_ref uid field. */
102 static class rtx_iv ** iv_ref_table;
104 /* Induction variable stored at the reference. */
105 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
106 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
108 /* The current loop. */
110 static class loop *current_loop;
112 /* Hashtable helper. */
114 struct biv_entry_hasher : free_ptr_hash <biv_entry>
116 typedef rtx_def *compare_type;
117 static inline hashval_t hash (const biv_entry *);
118 static inline bool equal (const biv_entry *, const rtx_def *);
121 /* Returns hash value for biv B. */
123 inline hashval_t
124 biv_entry_hasher::hash (const biv_entry *b)
126 return b->regno;
129 /* Compares biv B and register R. */
131 inline bool
132 biv_entry_hasher::equal (const biv_entry *b, const rtx_def *r)
134 return b->regno == REGNO (r);
137 /* Bivs of the current loop. */
139 static hash_table<biv_entry_hasher> *bivs;
141 static bool iv_analyze_op (rtx_insn *, scalar_int_mode, rtx, class rtx_iv *);
143 /* Return the RTX code corresponding to the IV extend code EXTEND. */
144 static inline enum rtx_code
145 iv_extend_to_rtx_code (enum iv_extend_code extend)
147 switch (extend)
149 case IV_SIGN_EXTEND:
150 return SIGN_EXTEND;
151 case IV_ZERO_EXTEND:
152 return ZERO_EXTEND;
153 case IV_UNKNOWN_EXTEND:
154 return UNKNOWN;
156 gcc_unreachable ();
159 /* Dumps information about IV to FILE. */
161 extern void dump_iv_info (FILE *, class rtx_iv *);
162 void
163 dump_iv_info (FILE *file, class rtx_iv *iv)
165 if (!iv->base)
167 fprintf (file, "not simple");
168 return;
171 if (iv->step == const0_rtx
172 && !iv->first_special)
173 fprintf (file, "invariant ");
175 print_rtl (file, iv->base);
176 if (iv->step != const0_rtx)
178 fprintf (file, " + ");
179 print_rtl (file, iv->step);
180 fprintf (file, " * iteration");
182 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
184 if (iv->mode != iv->extend_mode)
185 fprintf (file, " %s to %s",
186 rtx_name[iv_extend_to_rtx_code (iv->extend)],
187 GET_MODE_NAME (iv->extend_mode));
189 if (iv->mult != const1_rtx)
191 fprintf (file, " * ");
192 print_rtl (file, iv->mult);
194 if (iv->delta != const0_rtx)
196 fprintf (file, " + ");
197 print_rtl (file, iv->delta);
199 if (iv->first_special)
200 fprintf (file, " (first special)");
203 static void
204 check_iv_ref_table_size (void)
206 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
208 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
209 iv_ref_table = XRESIZEVEC (class rtx_iv *, iv_ref_table, new_size);
210 memset (&iv_ref_table[iv_ref_table_size], 0,
211 (new_size - iv_ref_table_size) * sizeof (class rtx_iv *));
212 iv_ref_table_size = new_size;
217 /* Checks whether REG is a well-behaved register. */
219 static bool
220 simple_reg_p (rtx reg)
222 unsigned r;
224 if (GET_CODE (reg) == SUBREG)
226 if (!subreg_lowpart_p (reg))
227 return false;
228 reg = SUBREG_REG (reg);
231 if (!REG_P (reg))
232 return false;
234 r = REGNO (reg);
235 if (HARD_REGISTER_NUM_P (r))
236 return false;
238 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
239 return false;
241 return true;
244 /* Clears the information about ivs stored in df. */
246 static void
247 clear_iv_info (void)
249 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
250 class rtx_iv *iv;
252 check_iv_ref_table_size ();
253 for (i = 0; i < n_defs; i++)
255 iv = iv_ref_table[i];
256 if (iv)
258 free (iv);
259 iv_ref_table[i] = NULL;
263 bivs->empty ();
267 /* Prepare the data for an induction variable analysis of a LOOP. */
269 void
270 iv_analysis_loop_init (class loop *loop)
272 current_loop = loop;
274 /* Clear the information from the analysis of the previous loop. */
275 if (clean_slate)
277 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
278 bivs = new hash_table<biv_entry_hasher> (10);
279 clean_slate = false;
281 else
282 clear_iv_info ();
284 /* Get rid of the ud chains before processing the rescans. Then add
285 the problem back. */
286 df_remove_problem (df_chain);
287 df_process_deferred_rescans ();
288 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
289 df_chain_add_problem (DF_UD_CHAIN);
290 df_note_add_problem ();
291 df_analyze_loop (loop);
292 if (dump_file)
293 df_dump_region (dump_file);
295 check_iv_ref_table_size ();
298 /* Finds the definition of REG that dominates loop latch and stores
299 it to DEF. Returns false if there is not a single definition
300 dominating the latch. If REG has no definition in loop, DEF
301 is set to NULL and true is returned. */
303 static bool
304 latch_dominating_def (rtx reg, df_ref *def)
306 df_ref single_rd = NULL, adef;
307 unsigned regno = REGNO (reg);
308 class df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
310 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
312 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
313 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
314 continue;
316 /* More than one reaching definition. */
317 if (single_rd)
318 return false;
320 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
321 return false;
323 single_rd = adef;
326 *def = single_rd;
327 return true;
330 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
332 static enum iv_grd_result
333 iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def)
335 df_ref use, adef;
336 basic_block def_bb, use_bb;
337 rtx_insn *def_insn;
338 bool dom_p;
340 *def = NULL;
341 if (!simple_reg_p (reg))
342 return GRD_INVALID;
343 if (GET_CODE (reg) == SUBREG)
344 reg = SUBREG_REG (reg);
345 gcc_assert (REG_P (reg));
347 use = df_find_use (insn, reg);
348 gcc_assert (use != NULL);
350 if (!DF_REF_CHAIN (use))
351 return GRD_INVARIANT;
353 /* More than one reaching def. */
354 if (DF_REF_CHAIN (use)->next)
355 return GRD_INVALID;
357 adef = DF_REF_CHAIN (use)->ref;
359 /* We do not handle setting only part of the register. */
360 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
361 return GRD_INVALID;
363 def_insn = DF_REF_INSN (adef);
364 def_bb = DF_REF_BB (adef);
365 use_bb = BLOCK_FOR_INSN (insn);
367 if (use_bb == def_bb)
368 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
369 else
370 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
372 if (dom_p)
374 *def = adef;
375 return GRD_SINGLE_DOM;
378 /* The definition does not dominate the use. This is still OK if
379 this may be a use of a biv, i.e. if the def_bb dominates loop
380 latch. */
381 if (just_once_each_iteration_p (current_loop, def_bb))
382 return GRD_MAYBE_BIV;
384 return GRD_INVALID;
387 /* Sets IV to invariant CST in MODE. Always returns true (just for
388 consistency with other iv manipulation functions that may fail). */
390 static bool
391 iv_constant (class rtx_iv *iv, scalar_int_mode mode, rtx cst)
393 iv->mode = mode;
394 iv->base = cst;
395 iv->step = const0_rtx;
396 iv->first_special = false;
397 iv->extend = IV_UNKNOWN_EXTEND;
398 iv->extend_mode = iv->mode;
399 iv->delta = const0_rtx;
400 iv->mult = const1_rtx;
402 return true;
405 /* Evaluates application of subreg to MODE on IV. */
407 static bool
408 iv_subreg (class rtx_iv *iv, scalar_int_mode mode)
410 /* If iv is invariant, just calculate the new value. */
411 if (iv->step == const0_rtx
412 && !iv->first_special)
414 rtx val = get_iv_value (iv, const0_rtx);
415 val = lowpart_subreg (mode, val,
416 iv->extend == IV_UNKNOWN_EXTEND
417 ? iv->mode : iv->extend_mode);
419 iv->base = val;
420 iv->extend = IV_UNKNOWN_EXTEND;
421 iv->mode = iv->extend_mode = mode;
422 iv->delta = const0_rtx;
423 iv->mult = const1_rtx;
424 return true;
427 if (iv->extend_mode == mode)
428 return true;
430 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
431 return false;
433 iv->extend = IV_UNKNOWN_EXTEND;
434 iv->mode = mode;
436 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
437 simplify_gen_binary (MULT, iv->extend_mode,
438 iv->base, iv->mult));
439 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
440 iv->mult = const1_rtx;
441 iv->delta = const0_rtx;
442 iv->first_special = false;
444 return true;
447 /* Evaluates application of EXTEND to MODE on IV. */
449 static bool
450 iv_extend (class rtx_iv *iv, enum iv_extend_code extend, scalar_int_mode mode)
452 /* If iv is invariant, just calculate the new value. */
453 if (iv->step == const0_rtx
454 && !iv->first_special)
456 rtx val = get_iv_value (iv, const0_rtx);
457 if (iv->extend_mode != iv->mode
458 && iv->extend != IV_UNKNOWN_EXTEND
459 && iv->extend != extend)
460 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
461 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
462 val,
463 iv->extend == extend
464 ? iv->extend_mode : iv->mode);
465 iv->base = val;
466 iv->extend = IV_UNKNOWN_EXTEND;
467 iv->mode = iv->extend_mode = mode;
468 iv->delta = const0_rtx;
469 iv->mult = const1_rtx;
470 return true;
473 if (mode != iv->extend_mode)
474 return false;
476 if (iv->extend != IV_UNKNOWN_EXTEND
477 && iv->extend != extend)
478 return false;
480 iv->extend = extend;
482 return true;
485 /* Evaluates negation of IV. */
487 static bool
488 iv_neg (class rtx_iv *iv)
490 if (iv->extend == IV_UNKNOWN_EXTEND)
492 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
493 iv->base, iv->extend_mode);
494 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
495 iv->step, iv->extend_mode);
497 else
499 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
500 iv->delta, iv->extend_mode);
501 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
502 iv->mult, iv->extend_mode);
505 return true;
508 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
510 static bool
511 iv_add (class rtx_iv *iv0, class rtx_iv *iv1, enum rtx_code op)
513 scalar_int_mode mode;
514 rtx arg;
516 /* Extend the constant to extend_mode of the other operand if necessary. */
517 if (iv0->extend == IV_UNKNOWN_EXTEND
518 && iv0->mode == iv0->extend_mode
519 && iv0->step == const0_rtx
520 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
522 iv0->extend_mode = iv1->extend_mode;
523 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
524 iv0->base, iv0->mode);
526 if (iv1->extend == IV_UNKNOWN_EXTEND
527 && iv1->mode == iv1->extend_mode
528 && iv1->step == const0_rtx
529 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
531 iv1->extend_mode = iv0->extend_mode;
532 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
533 iv1->base, iv1->mode);
536 mode = iv0->extend_mode;
537 if (mode != iv1->extend_mode)
538 return false;
540 if (iv0->extend == IV_UNKNOWN_EXTEND
541 && iv1->extend == IV_UNKNOWN_EXTEND)
543 if (iv0->mode != iv1->mode)
544 return false;
546 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
547 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
549 return true;
552 /* Handle addition of constant. */
553 if (iv1->extend == IV_UNKNOWN_EXTEND
554 && iv1->mode == mode
555 && iv1->step == const0_rtx)
557 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
558 return true;
561 if (iv0->extend == IV_UNKNOWN_EXTEND
562 && iv0->mode == mode
563 && iv0->step == const0_rtx)
565 arg = iv0->base;
566 *iv0 = *iv1;
567 if (op == MINUS
568 && !iv_neg (iv0))
569 return false;
571 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
572 return true;
575 return false;
578 /* Evaluates multiplication of IV by constant CST. */
580 static bool
581 iv_mult (class rtx_iv *iv, rtx mby)
583 scalar_int_mode mode = iv->extend_mode;
585 if (GET_MODE (mby) != VOIDmode
586 && GET_MODE (mby) != mode)
587 return false;
589 if (iv->extend == IV_UNKNOWN_EXTEND)
591 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
592 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
594 else
596 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
597 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
600 return true;
603 /* Evaluates shift of IV by constant CST. */
605 static bool
606 iv_shift (class rtx_iv *iv, rtx mby)
608 scalar_int_mode mode = iv->extend_mode;
610 if (GET_MODE (mby) != VOIDmode
611 && GET_MODE (mby) != mode)
612 return false;
614 if (iv->extend == IV_UNKNOWN_EXTEND)
616 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
617 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
619 else
621 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
622 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
625 return true;
628 /* The recursive part of get_biv_step. Gets the value of the single value
629 defined by DEF wrto initial value of REG inside loop, in shape described
630 at get_biv_step. */
632 static bool
633 get_biv_step_1 (df_ref def, scalar_int_mode outer_mode, rtx reg,
634 rtx *inner_step, scalar_int_mode *inner_mode,
635 enum iv_extend_code *extend,
636 rtx *outer_step)
638 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
639 rtx next, nextr;
640 enum rtx_code code;
641 rtx_insn *insn = DF_REF_INSN (def);
642 df_ref next_def;
643 enum iv_grd_result res;
645 set = single_set (insn);
646 if (!set)
647 return false;
649 rhs = find_reg_equal_equiv_note (insn);
650 if (rhs)
651 rhs = XEXP (rhs, 0);
652 else
653 rhs = SET_SRC (set);
655 code = GET_CODE (rhs);
656 switch (code)
658 case SUBREG:
659 case REG:
660 next = rhs;
661 break;
663 case PLUS:
664 case MINUS:
665 op0 = XEXP (rhs, 0);
666 op1 = XEXP (rhs, 1);
668 if (code == PLUS && CONSTANT_P (op0))
669 std::swap (op0, op1);
671 if (!simple_reg_p (op0)
672 || !CONSTANT_P (op1))
673 return false;
675 if (GET_MODE (rhs) != outer_mode)
677 /* ppc64 uses expressions like
679 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
681 this is equivalent to
683 (set x':DI (plus:DI y:DI 1))
684 (set x:SI (subreg:SI (x':DI)). */
685 if (GET_CODE (op0) != SUBREG)
686 return false;
687 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
688 return false;
691 next = op0;
692 break;
694 case SIGN_EXTEND:
695 case ZERO_EXTEND:
696 if (GET_MODE (rhs) != outer_mode)
697 return false;
699 op0 = XEXP (rhs, 0);
700 if (!simple_reg_p (op0))
701 return false;
703 next = op0;
704 break;
706 default:
707 return false;
710 if (GET_CODE (next) == SUBREG)
712 if (!subreg_lowpart_p (next))
713 return false;
715 nextr = SUBREG_REG (next);
716 if (GET_MODE (nextr) != outer_mode)
717 return false;
719 else
720 nextr = next;
722 res = iv_get_reaching_def (insn, nextr, &next_def);
724 if (res == GRD_INVALID || res == GRD_INVARIANT)
725 return false;
727 if (res == GRD_MAYBE_BIV)
729 if (!rtx_equal_p (nextr, reg))
730 return false;
732 *inner_step = const0_rtx;
733 *extend = IV_UNKNOWN_EXTEND;
734 *inner_mode = outer_mode;
735 *outer_step = const0_rtx;
737 else if (!get_biv_step_1 (next_def, outer_mode, reg,
738 inner_step, inner_mode, extend,
739 outer_step))
740 return false;
742 if (GET_CODE (next) == SUBREG)
744 scalar_int_mode amode;
745 if (!is_a <scalar_int_mode> (GET_MODE (next), &amode)
746 || GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
747 return false;
749 *inner_mode = amode;
750 *inner_step = simplify_gen_binary (PLUS, outer_mode,
751 *inner_step, *outer_step);
752 *outer_step = const0_rtx;
753 *extend = IV_UNKNOWN_EXTEND;
756 switch (code)
758 case REG:
759 case SUBREG:
760 break;
762 case PLUS:
763 case MINUS:
764 if (*inner_mode == outer_mode
765 /* See comment in previous switch. */
766 || GET_MODE (rhs) != outer_mode)
767 *inner_step = simplify_gen_binary (code, outer_mode,
768 *inner_step, op1);
769 else
770 *outer_step = simplify_gen_binary (code, outer_mode,
771 *outer_step, op1);
772 break;
774 case SIGN_EXTEND:
775 case ZERO_EXTEND:
776 gcc_assert (GET_MODE (op0) == *inner_mode
777 && *extend == IV_UNKNOWN_EXTEND
778 && *outer_step == const0_rtx);
780 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
781 break;
783 default:
784 return false;
787 return true;
790 /* Gets the operation on register REG inside loop, in shape
792 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
794 If the operation cannot be described in this shape, return false.
795 LAST_DEF is the definition of REG that dominates loop latch. */
797 static bool
798 get_biv_step (df_ref last_def, scalar_int_mode outer_mode, rtx reg,
799 rtx *inner_step, scalar_int_mode *inner_mode,
800 enum iv_extend_code *extend, rtx *outer_step)
802 if (!get_biv_step_1 (last_def, outer_mode, reg,
803 inner_step, inner_mode, extend,
804 outer_step))
805 return false;
807 gcc_assert ((*inner_mode == outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
808 gcc_assert (*inner_mode != outer_mode || *outer_step == const0_rtx);
810 return true;
813 /* Records information that DEF is induction variable IV. */
815 static void
816 record_iv (df_ref def, class rtx_iv *iv)
818 class rtx_iv *recorded_iv = XNEW (class rtx_iv);
820 *recorded_iv = *iv;
821 check_iv_ref_table_size ();
822 DF_REF_IV_SET (def, recorded_iv);
825 /* If DEF was already analyzed for bivness, store the description of the biv to
826 IV and return true. Otherwise return false. */
828 static bool
829 analyzed_for_bivness_p (rtx def, class rtx_iv *iv)
831 class biv_entry *biv = bivs->find_with_hash (def, REGNO (def));
833 if (!biv)
834 return false;
836 *iv = biv->iv;
837 return true;
840 static void
841 record_biv (rtx def, class rtx_iv *iv)
843 class biv_entry *biv = XNEW (class biv_entry);
844 biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def), INSERT);
846 biv->regno = REGNO (def);
847 biv->iv = *iv;
848 gcc_assert (!*slot);
849 *slot = biv;
852 /* Determines whether DEF is a biv and if so, stores its description
853 to *IV. OUTER_MODE is the mode of DEF. */
855 static bool
856 iv_analyze_biv (scalar_int_mode outer_mode, rtx def, class rtx_iv *iv)
858 rtx inner_step, outer_step;
859 scalar_int_mode inner_mode;
860 enum iv_extend_code extend;
861 df_ref last_def;
863 if (dump_file)
865 fprintf (dump_file, "Analyzing ");
866 print_rtl (dump_file, def);
867 fprintf (dump_file, " for bivness.\n");
870 if (!REG_P (def))
872 if (!CONSTANT_P (def))
873 return false;
875 return iv_constant (iv, outer_mode, def);
878 if (!latch_dominating_def (def, &last_def))
880 if (dump_file)
881 fprintf (dump_file, " not simple.\n");
882 return false;
885 if (!last_def)
886 return iv_constant (iv, outer_mode, def);
888 if (analyzed_for_bivness_p (def, iv))
890 if (dump_file)
891 fprintf (dump_file, " already analysed.\n");
892 return iv->base != NULL_RTX;
895 if (!get_biv_step (last_def, outer_mode, def, &inner_step, &inner_mode,
896 &extend, &outer_step))
898 iv->base = NULL_RTX;
899 goto end;
902 /* Loop transforms base to es (base + inner_step) + outer_step,
903 where es means extend of subreg between inner_mode and outer_mode.
904 The corresponding induction variable is
906 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
908 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
909 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
910 iv->mode = inner_mode;
911 iv->extend_mode = outer_mode;
912 iv->extend = extend;
913 iv->mult = const1_rtx;
914 iv->delta = outer_step;
915 iv->first_special = inner_mode != outer_mode;
917 end:
918 if (dump_file)
920 fprintf (dump_file, " ");
921 dump_iv_info (dump_file, iv);
922 fprintf (dump_file, "\n");
925 record_biv (def, iv);
926 return iv->base != NULL_RTX;
929 /* Analyzes expression RHS used at INSN and stores the result to *IV.
930 The mode of the induction variable is MODE. */
932 bool
933 iv_analyze_expr (rtx_insn *insn, scalar_int_mode mode, rtx rhs,
934 class rtx_iv *iv)
936 rtx mby = NULL_RTX;
937 rtx op0 = NULL_RTX, op1 = NULL_RTX;
938 class rtx_iv iv0, iv1;
939 enum rtx_code code = GET_CODE (rhs);
940 scalar_int_mode omode = mode;
942 iv->base = NULL_RTX;
943 iv->step = NULL_RTX;
945 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
947 if (CONSTANT_P (rhs)
948 || REG_P (rhs)
949 || code == SUBREG)
950 return iv_analyze_op (insn, mode, rhs, iv);
952 switch (code)
954 case REG:
955 op0 = rhs;
956 break;
958 case SIGN_EXTEND:
959 case ZERO_EXTEND:
960 case NEG:
961 op0 = XEXP (rhs, 0);
962 /* We don't know how many bits there are in a sign-extended constant. */
963 if (!is_a <scalar_int_mode> (GET_MODE (op0), &omode))
964 return false;
965 break;
967 case PLUS:
968 case MINUS:
969 op0 = XEXP (rhs, 0);
970 op1 = XEXP (rhs, 1);
971 break;
973 case MULT:
974 op0 = XEXP (rhs, 0);
975 mby = XEXP (rhs, 1);
976 if (!CONSTANT_P (mby))
977 std::swap (op0, mby);
978 if (!CONSTANT_P (mby))
979 return false;
980 break;
982 case ASHIFT:
983 op0 = XEXP (rhs, 0);
984 mby = XEXP (rhs, 1);
985 if (!CONSTANT_P (mby))
986 return false;
987 break;
989 default:
990 return false;
993 if (op0
994 && !iv_analyze_expr (insn, omode, op0, &iv0))
995 return false;
997 if (op1
998 && !iv_analyze_expr (insn, omode, op1, &iv1))
999 return false;
1001 switch (code)
1003 case SIGN_EXTEND:
1004 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1005 return false;
1006 break;
1008 case ZERO_EXTEND:
1009 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1010 return false;
1011 break;
1013 case NEG:
1014 if (!iv_neg (&iv0))
1015 return false;
1016 break;
1018 case PLUS:
1019 case MINUS:
1020 if (!iv_add (&iv0, &iv1, code))
1021 return false;
1022 break;
1024 case MULT:
1025 if (!iv_mult (&iv0, mby))
1026 return false;
1027 break;
1029 case ASHIFT:
1030 if (!iv_shift (&iv0, mby))
1031 return false;
1032 break;
1034 default:
1035 break;
1038 *iv = iv0;
1039 return iv->base != NULL_RTX;
1042 /* Analyzes iv DEF and stores the result to *IV. */
1044 static bool
1045 iv_analyze_def (df_ref def, class rtx_iv *iv)
1047 rtx_insn *insn = DF_REF_INSN (def);
1048 rtx reg = DF_REF_REG (def);
1049 rtx set, rhs;
1051 if (dump_file)
1053 fprintf (dump_file, "Analyzing def of ");
1054 print_rtl (dump_file, reg);
1055 fprintf (dump_file, " in insn ");
1056 print_rtl_single (dump_file, insn);
1059 check_iv_ref_table_size ();
1060 if (DF_REF_IV (def))
1062 if (dump_file)
1063 fprintf (dump_file, " already analysed.\n");
1064 *iv = *DF_REF_IV (def);
1065 return iv->base != NULL_RTX;
1068 iv->base = NULL_RTX;
1069 iv->step = NULL_RTX;
1071 scalar_int_mode mode;
1072 if (!REG_P (reg) || !is_a <scalar_int_mode> (GET_MODE (reg), &mode))
1073 return false;
1075 set = single_set (insn);
1076 if (!set)
1077 return false;
1079 if (!REG_P (SET_DEST (set)))
1080 return false;
1082 gcc_assert (SET_DEST (set) == reg);
1083 rhs = find_reg_equal_equiv_note (insn);
1084 if (rhs)
1085 rhs = XEXP (rhs, 0);
1086 else
1087 rhs = SET_SRC (set);
1089 iv_analyze_expr (insn, mode, rhs, iv);
1090 record_iv (def, iv);
1092 if (dump_file)
1094 print_rtl (dump_file, reg);
1095 fprintf (dump_file, " in insn ");
1096 print_rtl_single (dump_file, insn);
1097 fprintf (dump_file, " is ");
1098 dump_iv_info (dump_file, iv);
1099 fprintf (dump_file, "\n");
1102 return iv->base != NULL_RTX;
1105 /* Analyzes operand OP of INSN and stores the result to *IV. MODE is the
1106 mode of OP. */
1108 static bool
1109 iv_analyze_op (rtx_insn *insn, scalar_int_mode mode, rtx op, class rtx_iv *iv)
1111 df_ref def = NULL;
1112 enum iv_grd_result res;
1114 if (dump_file)
1116 fprintf (dump_file, "Analyzing operand ");
1117 print_rtl (dump_file, op);
1118 fprintf (dump_file, " of insn ");
1119 print_rtl_single (dump_file, insn);
1122 if (function_invariant_p (op))
1123 res = GRD_INVARIANT;
1124 else if (GET_CODE (op) == SUBREG)
1126 scalar_int_mode inner_mode;
1127 if (!subreg_lowpart_p (op)
1128 || !is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op)), &inner_mode))
1129 return false;
1131 if (!iv_analyze_op (insn, inner_mode, SUBREG_REG (op), iv))
1132 return false;
1134 return iv_subreg (iv, mode);
1136 else
1138 res = iv_get_reaching_def (insn, op, &def);
1139 if (res == GRD_INVALID)
1141 if (dump_file)
1142 fprintf (dump_file, " not simple.\n");
1143 return false;
1147 if (res == GRD_INVARIANT)
1149 iv_constant (iv, mode, op);
1151 if (dump_file)
1153 fprintf (dump_file, " ");
1154 dump_iv_info (dump_file, iv);
1155 fprintf (dump_file, "\n");
1157 return true;
1160 if (res == GRD_MAYBE_BIV)
1161 return iv_analyze_biv (mode, op, iv);
1163 return iv_analyze_def (def, iv);
1166 /* Analyzes value VAL at INSN and stores the result to *IV. MODE is the
1167 mode of VAL. */
1169 bool
1170 iv_analyze (rtx_insn *insn, scalar_int_mode mode, rtx val, class rtx_iv *iv)
1172 rtx reg;
1174 /* We must find the insn in that val is used, so that we get to UD chains.
1175 Since the function is sometimes called on result of get_condition,
1176 this does not necessarily have to be directly INSN; scan also the
1177 following insns. */
1178 if (simple_reg_p (val))
1180 if (GET_CODE (val) == SUBREG)
1181 reg = SUBREG_REG (val);
1182 else
1183 reg = val;
1185 while (!df_find_use (insn, reg))
1186 insn = NEXT_INSN (insn);
1189 return iv_analyze_op (insn, mode, val, iv);
1192 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1194 bool
1195 iv_analyze_result (rtx_insn *insn, rtx def, class rtx_iv *iv)
1197 df_ref adef;
1199 adef = df_find_def (insn, def);
1200 if (!adef)
1201 return false;
1203 return iv_analyze_def (adef, iv);
1206 /* Checks whether definition of register REG in INSN is a basic induction
1207 variable. MODE is the mode of REG.
1209 IV analysis must have been initialized (via a call to
1210 iv_analysis_loop_init) for this function to produce a result. */
1212 bool
1213 biv_p (rtx_insn *insn, scalar_int_mode mode, rtx reg)
1215 class rtx_iv iv;
1216 df_ref def, last_def;
1218 if (!simple_reg_p (reg))
1219 return false;
1221 def = df_find_def (insn, reg);
1222 gcc_assert (def != NULL);
1223 if (!latch_dominating_def (reg, &last_def))
1224 return false;
1225 if (last_def != def)
1226 return false;
1228 if (!iv_analyze_biv (mode, reg, &iv))
1229 return false;
1231 return iv.step != const0_rtx;
1234 /* Calculates value of IV at ITERATION-th iteration. */
1237 get_iv_value (class rtx_iv *iv, rtx iteration)
1239 rtx val;
1241 /* We would need to generate some if_then_else patterns, and so far
1242 it is not needed anywhere. */
1243 gcc_assert (!iv->first_special);
1245 if (iv->step != const0_rtx && iteration != const0_rtx)
1246 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1247 simplify_gen_binary (MULT, iv->extend_mode,
1248 iv->step, iteration));
1249 else
1250 val = iv->base;
1252 if (iv->extend_mode == iv->mode)
1253 return val;
1255 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1257 if (iv->extend == IV_UNKNOWN_EXTEND)
1258 return val;
1260 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1261 iv->extend_mode, val, iv->mode);
1262 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1263 simplify_gen_binary (MULT, iv->extend_mode,
1264 iv->mult, val));
1266 return val;
1269 /* Free the data for an induction variable analysis. */
1271 void
1272 iv_analysis_done (void)
1274 if (!clean_slate)
1276 clear_iv_info ();
1277 clean_slate = true;
1278 df_finish_pass (true);
1279 delete bivs;
1280 bivs = NULL;
1281 free (iv_ref_table);
1282 iv_ref_table = NULL;
1283 iv_ref_table_size = 0;
1287 /* Computes inverse to X modulo (1 << MOD). */
1289 static uint64_t
1290 inverse (uint64_t x, int mod)
1292 uint64_t mask =
1293 ((uint64_t) 1 << (mod - 1) << 1) - 1;
1294 uint64_t rslt = 1;
1295 int i;
1297 for (i = 0; i < mod - 1; i++)
1299 rslt = (rslt * x) & mask;
1300 x = (x * x) & mask;
1303 return rslt;
1306 /* Checks whether any register in X is in set ALT. */
1308 static bool
1309 altered_reg_used (const_rtx x, bitmap alt)
1311 subrtx_iterator::array_type array;
1312 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1314 const_rtx x = *iter;
1315 if (REG_P (x) && REGNO_REG_SET_P (alt, REGNO (x)))
1316 return true;
1318 return false;
1321 /* Marks registers altered by EXPR in set ALT. */
1323 static void
1324 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1326 if (GET_CODE (expr) == SUBREG)
1327 expr = SUBREG_REG (expr);
1328 if (!REG_P (expr))
1329 return;
1331 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1334 /* Checks whether RHS is simple enough to process. */
1336 static bool
1337 simple_rhs_p (rtx rhs)
1339 rtx op0, op1;
1341 if (function_invariant_p (rhs)
1342 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1343 return true;
1345 switch (GET_CODE (rhs))
1347 case PLUS:
1348 case MINUS:
1349 case AND:
1350 op0 = XEXP (rhs, 0);
1351 op1 = XEXP (rhs, 1);
1352 /* Allow reg OP const and reg OP reg. */
1353 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1354 && !function_invariant_p (op0))
1355 return false;
1356 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1357 && !function_invariant_p (op1))
1358 return false;
1360 return true;
1362 case ASHIFT:
1363 case ASHIFTRT:
1364 case LSHIFTRT:
1365 case MULT:
1366 op0 = XEXP (rhs, 0);
1367 op1 = XEXP (rhs, 1);
1368 /* Allow reg OP const. */
1369 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1370 return false;
1371 if (!function_invariant_p (op1))
1372 return false;
1374 return true;
1376 default:
1377 return false;
1381 /* If any registers in *EXPR that have a single definition, try to replace
1382 them with the known-equivalent values. */
1384 static void
1385 replace_single_def_regs (rtx *expr)
1387 subrtx_var_iterator::array_type array;
1388 repeat:
1389 FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST)
1391 rtx x = *iter;
1392 if (REG_P (x))
1393 if (rtx new_x = df_find_single_def_src (x))
1395 *expr = simplify_replace_rtx (*expr, x, new_x);
1396 goto repeat;
1401 /* A subroutine of simplify_using_initial_values, this function examines INSN
1402 to see if it contains a suitable set that we can use to make a replacement.
1403 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1404 the set; return false otherwise. */
1406 static bool
1407 suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src)
1409 rtx set = single_set (insn);
1410 rtx lhs = NULL_RTX, rhs;
1412 if (!set)
1413 return false;
1415 lhs = SET_DEST (set);
1416 if (!REG_P (lhs))
1417 return false;
1419 rhs = find_reg_equal_equiv_note (insn);
1420 if (rhs)
1421 rhs = XEXP (rhs, 0);
1422 else
1423 rhs = SET_SRC (set);
1425 if (!simple_rhs_p (rhs))
1426 return false;
1428 *dest = lhs;
1429 *src = rhs;
1430 return true;
1433 /* Using the data returned by suitable_set_for_replacement, replace DEST
1434 with SRC in *EXPR and return the new expression. Also call
1435 replace_single_def_regs if the replacement changed something. */
1436 static void
1437 replace_in_expr (rtx *expr, rtx dest, rtx src)
1439 rtx old = *expr;
1440 *expr = simplify_replace_rtx (*expr, dest, src);
1441 if (old == *expr)
1442 return;
1443 replace_single_def_regs (expr);
1446 /* Checks whether A implies B. */
1448 static bool
1449 implies_p (rtx a, rtx b)
1451 rtx op0, op1, opb0, opb1;
1452 machine_mode mode;
1454 if (rtx_equal_p (a, b))
1455 return true;
1457 if (GET_CODE (a) == EQ)
1459 op0 = XEXP (a, 0);
1460 op1 = XEXP (a, 1);
1462 if (REG_P (op0)
1463 || (GET_CODE (op0) == SUBREG
1464 && REG_P (SUBREG_REG (op0))))
1466 rtx r = simplify_replace_rtx (b, op0, op1);
1467 if (r == const_true_rtx)
1468 return true;
1471 if (REG_P (op1)
1472 || (GET_CODE (op1) == SUBREG
1473 && REG_P (SUBREG_REG (op1))))
1475 rtx r = simplify_replace_rtx (b, op1, op0);
1476 if (r == const_true_rtx)
1477 return true;
1481 if (b == const_true_rtx)
1482 return true;
1484 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1485 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1486 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1487 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1488 return false;
1490 op0 = XEXP (a, 0);
1491 op1 = XEXP (a, 1);
1492 opb0 = XEXP (b, 0);
1493 opb1 = XEXP (b, 1);
1495 mode = GET_MODE (op0);
1496 if (mode != GET_MODE (opb0))
1497 mode = VOIDmode;
1498 else if (mode == VOIDmode)
1500 mode = GET_MODE (op1);
1501 if (mode != GET_MODE (opb1))
1502 mode = VOIDmode;
1505 /* A < B implies A + 1 <= B. */
1506 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1507 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1510 if (GET_CODE (a) == GT)
1511 std::swap (op0, op1);
1513 if (GET_CODE (b) == GE)
1514 std::swap (opb0, opb1);
1516 if (SCALAR_INT_MODE_P (mode)
1517 && rtx_equal_p (op1, opb1)
1518 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1519 return true;
1520 return false;
1523 /* A < B or A > B imply A != B. TODO: Likewise
1524 A + n < B implies A != B + n if neither wraps. */
1525 if (GET_CODE (b) == NE
1526 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1527 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1529 if (rtx_equal_p (op0, opb0)
1530 && rtx_equal_p (op1, opb1))
1531 return true;
1534 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1535 if (GET_CODE (a) == NE
1536 && op1 == const0_rtx)
1538 if ((GET_CODE (b) == GTU
1539 && opb1 == const0_rtx)
1540 || (GET_CODE (b) == GEU
1541 && opb1 == const1_rtx))
1542 return rtx_equal_p (op0, opb0);
1545 /* A != N is equivalent to A - (N + 1) <u -1. */
1546 if (GET_CODE (a) == NE
1547 && CONST_INT_P (op1)
1548 && GET_CODE (b) == LTU
1549 && opb1 == constm1_rtx
1550 && GET_CODE (opb0) == PLUS
1551 && CONST_INT_P (XEXP (opb0, 1))
1552 /* Avoid overflows. */
1553 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1554 != ((unsigned HOST_WIDE_INT)1
1555 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1556 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1557 return rtx_equal_p (op0, XEXP (opb0, 0));
1559 /* Likewise, A != N implies A - N > 0. */
1560 if (GET_CODE (a) == NE
1561 && CONST_INT_P (op1))
1563 if (GET_CODE (b) == GTU
1564 && GET_CODE (opb0) == PLUS
1565 && opb1 == const0_rtx
1566 && CONST_INT_P (XEXP (opb0, 1))
1567 /* Avoid overflows. */
1568 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1569 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
1570 && rtx_equal_p (XEXP (opb0, 0), op0))
1571 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1572 if (GET_CODE (b) == GEU
1573 && GET_CODE (opb0) == PLUS
1574 && opb1 == const1_rtx
1575 && CONST_INT_P (XEXP (opb0, 1))
1576 /* Avoid overflows. */
1577 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1578 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
1579 && rtx_equal_p (XEXP (opb0, 0), op0))
1580 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1583 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1584 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1585 && CONST_INT_P (op1)
1586 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1587 || INTVAL (op1) >= 0)
1588 && GET_CODE (b) == LTU
1589 && CONST_INT_P (opb1)
1590 && rtx_equal_p (op0, opb0))
1591 return INTVAL (opb1) < 0;
1593 return false;
1596 /* Canonicalizes COND so that
1598 (1) Ensure that operands are ordered according to
1599 swap_commutative_operands_p.
1600 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1601 for GE, GEU, and LEU. */
1604 canon_condition (rtx cond)
1606 rtx op0, op1;
1607 enum rtx_code code;
1608 machine_mode mode;
1610 code = GET_CODE (cond);
1611 op0 = XEXP (cond, 0);
1612 op1 = XEXP (cond, 1);
1614 if (swap_commutative_operands_p (op0, op1))
1616 code = swap_condition (code);
1617 std::swap (op0, op1);
1620 mode = GET_MODE (op0);
1621 if (mode == VOIDmode)
1622 mode = GET_MODE (op1);
1623 gcc_assert (mode != VOIDmode);
1625 if (CONST_SCALAR_INT_P (op1) && GET_MODE_CLASS (mode) != MODE_CC)
1627 rtx_mode_t const_val (op1, mode);
1629 switch (code)
1631 case LE:
1632 if (wi::ne_p (const_val, wi::max_value (mode, SIGNED)))
1634 code = LT;
1635 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1637 break;
1639 case GE:
1640 if (wi::ne_p (const_val, wi::min_value (mode, SIGNED)))
1642 code = GT;
1643 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1645 break;
1647 case LEU:
1648 if (wi::ne_p (const_val, -1))
1650 code = LTU;
1651 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1653 break;
1655 case GEU:
1656 if (wi::ne_p (const_val, 0))
1658 code = GTU;
1659 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1661 break;
1663 default:
1664 break;
1668 if (op0 != XEXP (cond, 0)
1669 || op1 != XEXP (cond, 1)
1670 || code != GET_CODE (cond)
1671 || GET_MODE (cond) != SImode)
1672 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1674 return cond;
1677 /* Reverses CONDition; returns NULL if we cannot. */
1679 static rtx
1680 reversed_condition (rtx cond)
1682 enum rtx_code reversed;
1683 reversed = reversed_comparison_code (cond, NULL);
1684 if (reversed == UNKNOWN)
1685 return NULL_RTX;
1686 else
1687 return gen_rtx_fmt_ee (reversed,
1688 GET_MODE (cond), XEXP (cond, 0),
1689 XEXP (cond, 1));
1692 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1693 set of altered regs. */
1695 void
1696 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1698 rtx rev, reve, exp = *expr;
1700 /* If some register gets altered later, we do not really speak about its
1701 value at the time of comparison. */
1702 if (altered && altered_reg_used (cond, altered))
1703 return;
1705 if (GET_CODE (cond) == EQ
1706 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1708 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1709 return;
1712 if (!COMPARISON_P (exp))
1713 return;
1715 rev = reversed_condition (cond);
1716 reve = reversed_condition (exp);
1718 cond = canon_condition (cond);
1719 exp = canon_condition (exp);
1720 if (rev)
1721 rev = canon_condition (rev);
1722 if (reve)
1723 reve = canon_condition (reve);
1725 if (rtx_equal_p (exp, cond))
1727 *expr = const_true_rtx;
1728 return;
1731 if (rev && rtx_equal_p (exp, rev))
1733 *expr = const0_rtx;
1734 return;
1737 if (implies_p (cond, exp))
1739 *expr = const_true_rtx;
1740 return;
1743 if (reve && implies_p (cond, reve))
1745 *expr = const0_rtx;
1746 return;
1749 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1750 be false. */
1751 if (rev && implies_p (exp, rev))
1753 *expr = const0_rtx;
1754 return;
1757 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1758 if (rev && reve && implies_p (reve, rev))
1760 *expr = const_true_rtx;
1761 return;
1764 /* We would like to have some other tests here. TODO. */
1766 return;
1769 /* Use relationship between A and *B to eventually eliminate *B.
1770 OP is the operation we consider. */
1772 static void
1773 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1775 switch (op)
1777 case AND:
1778 /* If A implies *B, we may replace *B by true. */
1779 if (implies_p (a, *b))
1780 *b = const_true_rtx;
1781 break;
1783 case IOR:
1784 /* If *B implies A, we may replace *B by false. */
1785 if (implies_p (*b, a))
1786 *b = const0_rtx;
1787 break;
1789 default:
1790 gcc_unreachable ();
1794 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1795 operation we consider. */
1797 static void
1798 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1800 rtx elt;
1802 for (elt = tail; elt; elt = XEXP (elt, 1))
1803 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1804 for (elt = tail; elt; elt = XEXP (elt, 1))
1805 eliminate_implied_condition (op, XEXP (elt, 0), head);
1808 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1809 is a list, its elements are assumed to be combined using OP. */
1811 static void
1812 simplify_using_initial_values (class loop *loop, enum rtx_code op, rtx *expr)
1814 bool expression_valid;
1815 rtx head, tail, last_valid_expr;
1816 rtx_expr_list *cond_list;
1817 rtx_insn *insn;
1818 rtx neutral, aggr;
1819 regset altered, this_altered;
1820 edge e;
1822 if (!*expr)
1823 return;
1825 if (CONSTANT_P (*expr))
1826 return;
1828 if (GET_CODE (*expr) == EXPR_LIST)
1830 head = XEXP (*expr, 0);
1831 tail = XEXP (*expr, 1);
1833 eliminate_implied_conditions (op, &head, tail);
1835 switch (op)
1837 case AND:
1838 neutral = const_true_rtx;
1839 aggr = const0_rtx;
1840 break;
1842 case IOR:
1843 neutral = const0_rtx;
1844 aggr = const_true_rtx;
1845 break;
1847 default:
1848 gcc_unreachable ();
1851 simplify_using_initial_values (loop, UNKNOWN, &head);
1852 if (head == aggr)
1854 XEXP (*expr, 0) = aggr;
1855 XEXP (*expr, 1) = NULL_RTX;
1856 return;
1858 else if (head == neutral)
1860 *expr = tail;
1861 simplify_using_initial_values (loop, op, expr);
1862 return;
1864 simplify_using_initial_values (loop, op, &tail);
1866 if (tail && XEXP (tail, 0) == aggr)
1868 *expr = tail;
1869 return;
1872 XEXP (*expr, 0) = head;
1873 XEXP (*expr, 1) = tail;
1874 return;
1877 gcc_assert (op == UNKNOWN);
1879 replace_single_def_regs (expr);
1880 if (CONSTANT_P (*expr))
1881 return;
1883 e = loop_preheader_edge (loop);
1884 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1885 return;
1887 altered = ALLOC_REG_SET (&reg_obstack);
1888 this_altered = ALLOC_REG_SET (&reg_obstack);
1890 expression_valid = true;
1891 last_valid_expr = *expr;
1892 cond_list = NULL;
1893 while (1)
1895 insn = BB_END (e->src);
1896 if (any_condjump_p (insn) && onlyjump_p (insn))
1898 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1900 if (cond && (e->flags & EDGE_FALLTHRU))
1901 cond = reversed_condition (cond);
1902 if (cond)
1904 rtx old = *expr;
1905 simplify_using_condition (cond, expr, altered);
1906 if (old != *expr)
1908 rtx note;
1909 if (CONSTANT_P (*expr))
1910 goto out;
1911 for (note = cond_list; note; note = XEXP (note, 1))
1913 simplify_using_condition (XEXP (note, 0), expr, altered);
1914 if (CONSTANT_P (*expr))
1915 goto out;
1918 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1922 FOR_BB_INSNS_REVERSE (e->src, insn)
1924 rtx src, dest;
1925 rtx old = *expr;
1927 if (!INSN_P (insn))
1928 continue;
1930 CLEAR_REG_SET (this_altered);
1931 note_stores (insn, mark_altered, this_altered);
1932 if (CALL_P (insn))
1934 /* Kill all registers that might be clobbered by the call.
1935 We don't track modes of hard registers, so we need to be
1936 conservative and assume that partial kills are full kills. */
1937 function_abi callee_abi = insn_callee_abi (insn);
1938 IOR_REG_SET_HRS (this_altered,
1939 callee_abi.full_and_partial_reg_clobbers ());
1942 if (suitable_set_for_replacement (insn, &dest, &src))
1944 rtx_expr_list **pnote, **pnote_next;
1946 replace_in_expr (expr, dest, src);
1947 if (CONSTANT_P (*expr))
1948 goto out;
1950 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1952 rtx_expr_list *note = *pnote;
1953 rtx old_cond = XEXP (note, 0);
1955 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
1956 replace_in_expr (&XEXP (note, 0), dest, src);
1958 /* We can no longer use a condition that has been simplified
1959 to a constant, and simplify_using_condition will abort if
1960 we try. */
1961 if (CONSTANT_P (XEXP (note, 0)))
1963 *pnote = *pnote_next;
1964 pnote_next = pnote;
1965 free_EXPR_LIST_node (note);
1967 /* Retry simplifications with this condition if either the
1968 expression or the condition changed. */
1969 else if (old_cond != XEXP (note, 0) || old != *expr)
1970 simplify_using_condition (XEXP (note, 0), expr, altered);
1973 else
1975 rtx_expr_list **pnote, **pnote_next;
1977 /* If we did not use this insn to make a replacement, any overlap
1978 between stores in this insn and our expression will cause the
1979 expression to become invalid. */
1980 if (altered_reg_used (*expr, this_altered))
1981 goto out;
1983 /* Likewise for the conditions. */
1984 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1986 rtx_expr_list *note = *pnote;
1987 rtx old_cond = XEXP (note, 0);
1989 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
1990 if (altered_reg_used (old_cond, this_altered))
1992 *pnote = *pnote_next;
1993 pnote_next = pnote;
1994 free_EXPR_LIST_node (note);
1999 if (CONSTANT_P (*expr))
2000 goto out;
2002 IOR_REG_SET (altered, this_altered);
2004 /* If the expression now contains regs that have been altered, we
2005 can't return it to the caller. However, it is still valid for
2006 further simplification, so keep searching to see if we can
2007 eventually turn it into a constant. */
2008 if (altered_reg_used (*expr, altered))
2009 expression_valid = false;
2010 if (expression_valid)
2011 last_valid_expr = *expr;
2014 if (!single_pred_p (e->src)
2015 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2016 break;
2017 e = single_pred_edge (e->src);
2020 out:
2021 free_EXPR_LIST_list (&cond_list);
2022 if (!CONSTANT_P (*expr))
2023 *expr = last_valid_expr;
2024 FREE_REG_SET (altered);
2025 FREE_REG_SET (this_altered);
2028 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2029 that IV occurs as left operands of comparison COND and its signedness
2030 is SIGNED_P to DESC. */
2032 static void
2033 shorten_into_mode (class rtx_iv *iv, scalar_int_mode mode,
2034 enum rtx_code cond, bool signed_p, class niter_desc *desc)
2036 rtx mmin, mmax, cond_over, cond_under;
2038 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2039 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2040 iv->base, mmin);
2041 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2042 iv->base, mmax);
2044 switch (cond)
2046 case LE:
2047 case LT:
2048 case LEU:
2049 case LTU:
2050 if (cond_under != const0_rtx)
2051 desc->infinite =
2052 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2053 if (cond_over != const0_rtx)
2054 desc->noloop_assumptions =
2055 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2056 break;
2058 case GE:
2059 case GT:
2060 case GEU:
2061 case GTU:
2062 if (cond_over != const0_rtx)
2063 desc->infinite =
2064 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2065 if (cond_under != const0_rtx)
2066 desc->noloop_assumptions =
2067 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2068 break;
2070 case NE:
2071 if (cond_over != const0_rtx)
2072 desc->infinite =
2073 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2074 if (cond_under != const0_rtx)
2075 desc->infinite =
2076 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2077 break;
2079 default:
2080 gcc_unreachable ();
2083 iv->mode = mode;
2084 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2087 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2088 subregs of the same mode if possible (sometimes it is necessary to add
2089 some assumptions to DESC). */
2091 static bool
2092 canonicalize_iv_subregs (class rtx_iv *iv0, class rtx_iv *iv1,
2093 enum rtx_code cond, class niter_desc *desc)
2095 scalar_int_mode comp_mode;
2096 bool signed_p;
2098 /* If the ivs behave specially in the first iteration, or are
2099 added/multiplied after extending, we ignore them. */
2100 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2101 return false;
2102 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2103 return false;
2105 /* If there is some extend, it must match signedness of the comparison. */
2106 switch (cond)
2108 case LE:
2109 case LT:
2110 if (iv0->extend == IV_ZERO_EXTEND
2111 || iv1->extend == IV_ZERO_EXTEND)
2112 return false;
2113 signed_p = true;
2114 break;
2116 case LEU:
2117 case LTU:
2118 if (iv0->extend == IV_SIGN_EXTEND
2119 || iv1->extend == IV_SIGN_EXTEND)
2120 return false;
2121 signed_p = false;
2122 break;
2124 case NE:
2125 if (iv0->extend != IV_UNKNOWN_EXTEND
2126 && iv1->extend != IV_UNKNOWN_EXTEND
2127 && iv0->extend != iv1->extend)
2128 return false;
2130 signed_p = false;
2131 if (iv0->extend != IV_UNKNOWN_EXTEND)
2132 signed_p = iv0->extend == IV_SIGN_EXTEND;
2133 if (iv1->extend != IV_UNKNOWN_EXTEND)
2134 signed_p = iv1->extend == IV_SIGN_EXTEND;
2135 break;
2137 default:
2138 gcc_unreachable ();
2141 /* Values of both variables should be computed in the same mode. These
2142 might indeed be different, if we have comparison like
2144 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2146 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2147 in different modes. This does not seem impossible to handle, but
2148 it hardly ever occurs in practice.
2150 The only exception is the case when one of operands is invariant.
2151 For example pentium 3 generates comparisons like
2152 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2153 definitely do not want this prevent the optimization. */
2154 comp_mode = iv0->extend_mode;
2155 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2156 comp_mode = iv1->extend_mode;
2158 if (iv0->extend_mode != comp_mode)
2160 if (iv0->mode != iv0->extend_mode
2161 || iv0->step != const0_rtx)
2162 return false;
2164 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2165 comp_mode, iv0->base, iv0->mode);
2166 iv0->extend_mode = comp_mode;
2169 if (iv1->extend_mode != comp_mode)
2171 if (iv1->mode != iv1->extend_mode
2172 || iv1->step != const0_rtx)
2173 return false;
2175 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2176 comp_mode, iv1->base, iv1->mode);
2177 iv1->extend_mode = comp_mode;
2180 /* Check that both ivs belong to a range of a single mode. If one of the
2181 operands is an invariant, we may need to shorten it into the common
2182 mode. */
2183 if (iv0->mode == iv0->extend_mode
2184 && iv0->step == const0_rtx
2185 && iv0->mode != iv1->mode)
2186 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2188 if (iv1->mode == iv1->extend_mode
2189 && iv1->step == const0_rtx
2190 && iv0->mode != iv1->mode)
2191 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2193 if (iv0->mode != iv1->mode)
2194 return false;
2196 desc->mode = iv0->mode;
2197 desc->signed_p = signed_p;
2199 return true;
2202 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2203 result. This function is called from iv_number_of_iterations with
2204 a number of fields in DESC already filled in. OLD_NITER is the original
2205 expression for the number of iterations, before we tried to simplify it. */
2207 static uint64_t
2208 determine_max_iter (class loop *loop, class niter_desc *desc, rtx old_niter)
2210 rtx niter = desc->niter_expr;
2211 rtx mmin, mmax, cmp;
2212 uint64_t nmax, inc;
2213 uint64_t andmax = 0;
2215 /* We used to look for constant operand 0 of AND,
2216 but canonicalization should always make this impossible. */
2217 gcc_checking_assert (GET_CODE (niter) != AND
2218 || !CONST_INT_P (XEXP (niter, 0)));
2220 if (GET_CODE (niter) == AND
2221 && CONST_INT_P (XEXP (niter, 1)))
2223 andmax = UINTVAL (XEXP (niter, 1));
2224 niter = XEXP (niter, 0);
2227 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2228 nmax = UINTVAL (mmax) - UINTVAL (mmin);
2230 if (GET_CODE (niter) == UDIV)
2232 if (!CONST_INT_P (XEXP (niter, 1)))
2233 return nmax;
2234 inc = INTVAL (XEXP (niter, 1));
2235 niter = XEXP (niter, 0);
2237 else
2238 inc = 1;
2240 /* We could use a binary search here, but for now improving the upper
2241 bound by just one eliminates one important corner case. */
2242 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2243 desc->mode, old_niter, mmax);
2244 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2245 if (cmp == const_true_rtx)
2247 nmax--;
2249 if (dump_file)
2250 fprintf (dump_file, ";; improved upper bound by one.\n");
2252 nmax /= inc;
2253 if (andmax)
2254 nmax = MIN (nmax, andmax);
2255 if (dump_file)
2256 fprintf (dump_file, ";; Determined upper bound %" PRId64".\n",
2257 nmax);
2258 return nmax;
2261 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2262 the result into DESC. Very similar to determine_number_of_iterations
2263 (basically its rtl version), complicated by things like subregs. */
2265 static void
2266 iv_number_of_iterations (class loop *loop, rtx_insn *insn, rtx condition,
2267 class niter_desc *desc)
2269 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2270 class rtx_iv iv0, iv1;
2271 rtx assumption, may_not_xform;
2272 enum rtx_code cond;
2273 machine_mode nonvoid_mode;
2274 scalar_int_mode comp_mode;
2275 rtx mmin, mmax, mode_mmin, mode_mmax;
2276 uint64_t s, size, d, inv, max, up, down;
2277 int64_t inc, step_val;
2278 int was_sharp = false;
2279 rtx old_niter;
2280 bool step_is_pow2;
2282 /* The meaning of these assumptions is this:
2283 if !assumptions
2284 then the rest of information does not have to be valid
2285 if noloop_assumptions then the loop does not roll
2286 if infinite then this exit is never used */
2288 desc->assumptions = NULL_RTX;
2289 desc->noloop_assumptions = NULL_RTX;
2290 desc->infinite = NULL_RTX;
2291 desc->simple_p = true;
2293 desc->const_iter = false;
2294 desc->niter_expr = NULL_RTX;
2296 cond = GET_CODE (condition);
2297 gcc_assert (COMPARISON_P (condition));
2299 nonvoid_mode = GET_MODE (XEXP (condition, 0));
2300 if (nonvoid_mode == VOIDmode)
2301 nonvoid_mode = GET_MODE (XEXP (condition, 1));
2302 /* The constant comparisons should be folded. */
2303 gcc_assert (nonvoid_mode != VOIDmode);
2305 /* We only handle integers or pointers. */
2306 scalar_int_mode mode;
2307 if (!is_a <scalar_int_mode> (nonvoid_mode, &mode))
2308 goto fail;
2310 op0 = XEXP (condition, 0);
2311 if (!iv_analyze (insn, mode, op0, &iv0))
2312 goto fail;
2314 op1 = XEXP (condition, 1);
2315 if (!iv_analyze (insn, mode, op1, &iv1))
2316 goto fail;
2318 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2319 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2320 goto fail;
2322 /* Check condition and normalize it. */
2324 switch (cond)
2326 case GE:
2327 case GT:
2328 case GEU:
2329 case GTU:
2330 std::swap (iv0, iv1);
2331 cond = swap_condition (cond);
2332 break;
2333 case NE:
2334 case LE:
2335 case LEU:
2336 case LT:
2337 case LTU:
2338 break;
2339 default:
2340 goto fail;
2343 /* Handle extends. This is relatively nontrivial, so we only try in some
2344 easy cases, when we can canonicalize the ivs (possibly by adding some
2345 assumptions) to shape subreg (base + i * step). This function also fills
2346 in desc->mode and desc->signed_p. */
2348 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2349 goto fail;
2351 comp_mode = iv0.extend_mode;
2352 mode = iv0.mode;
2353 size = GET_MODE_PRECISION (mode);
2354 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2355 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2356 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2358 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2359 goto fail;
2361 /* We can take care of the case of two induction variables chasing each other
2362 if the test is NE. I have never seen a loop using it, but still it is
2363 cool. */
2364 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2366 if (cond != NE)
2367 goto fail;
2369 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2370 iv1.step = const0_rtx;
2373 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2374 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2376 /* This is either infinite loop or the one that ends immediately, depending
2377 on initial values. Unswitching should remove this kind of conditions. */
2378 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2379 goto fail;
2381 if (cond != NE)
2383 if (iv0.step == const0_rtx)
2384 step_val = -INTVAL (iv1.step);
2385 else
2386 step_val = INTVAL (iv0.step);
2388 /* Ignore loops of while (i-- < 10) type. */
2389 if (step_val < 0)
2390 goto fail;
2392 step_is_pow2 = !(step_val & (step_val - 1));
2394 else
2396 /* We do not care about whether the step is power of two in this
2397 case. */
2398 step_is_pow2 = false;
2399 step_val = 0;
2402 /* Some more condition normalization. We must record some assumptions
2403 due to overflows. */
2404 switch (cond)
2406 case LT:
2407 case LTU:
2408 /* We want to take care only of non-sharp relationals; this is easy,
2409 as in cases the overflow would make the transformation unsafe
2410 the loop does not roll. Seemingly it would make more sense to want
2411 to take care of sharp relationals instead, as NE is more similar to
2412 them, but the problem is that here the transformation would be more
2413 difficult due to possibly infinite loops. */
2414 if (iv0.step == const0_rtx)
2416 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2417 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2418 mode_mmax);
2419 if (assumption == const_true_rtx)
2420 goto zero_iter_simplify;
2421 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2422 iv0.base, const1_rtx);
2424 else
2426 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2427 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2428 mode_mmin);
2429 if (assumption == const_true_rtx)
2430 goto zero_iter_simplify;
2431 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2432 iv1.base, constm1_rtx);
2435 if (assumption != const0_rtx)
2436 desc->noloop_assumptions =
2437 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2438 cond = (cond == LT) ? LE : LEU;
2440 /* It will be useful to be able to tell the difference once more in
2441 LE -> NE reduction. */
2442 was_sharp = true;
2443 break;
2444 default: ;
2447 /* Take care of trivially infinite loops. */
2448 if (cond != NE)
2450 if (iv0.step == const0_rtx)
2452 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2453 if (rtx_equal_p (tmp, mode_mmin))
2455 desc->infinite =
2456 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2457 /* Fill in the remaining fields somehow. */
2458 goto zero_iter_simplify;
2461 else
2463 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2464 if (rtx_equal_p (tmp, mode_mmax))
2466 desc->infinite =
2467 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2468 /* Fill in the remaining fields somehow. */
2469 goto zero_iter_simplify;
2474 /* If we can we want to take care of NE conditions instead of size
2475 comparisons, as they are much more friendly (most importantly
2476 this takes care of special handling of loops with step 1). We can
2477 do it if we first check that upper bound is greater or equal to
2478 lower bound, their difference is constant c modulo step and that
2479 there is not an overflow. */
2480 if (cond != NE)
2482 if (iv0.step == const0_rtx)
2483 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2484 else
2485 step = iv0.step;
2486 step = lowpart_subreg (mode, step, comp_mode);
2487 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2488 delta = lowpart_subreg (mode, delta, comp_mode);
2489 delta = simplify_gen_binary (UMOD, mode, delta, step);
2490 may_xform = const0_rtx;
2491 may_not_xform = const_true_rtx;
2493 if (CONST_INT_P (delta))
2495 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2497 /* A special case. We have transformed condition of type
2498 for (i = 0; i < 4; i += 4)
2499 into
2500 for (i = 0; i <= 3; i += 4)
2501 obviously if the test for overflow during that transformation
2502 passed, we cannot overflow here. Most importantly any
2503 loop with sharp end condition and step 1 falls into this
2504 category, so handling this case specially is definitely
2505 worth the troubles. */
2506 may_xform = const_true_rtx;
2508 else if (iv0.step == const0_rtx)
2510 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2511 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2512 bound = lowpart_subreg (mode, bound, comp_mode);
2513 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2514 may_xform = simplify_gen_relational (cond, SImode, mode,
2515 bound, tmp);
2516 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2517 SImode, mode,
2518 bound, tmp);
2520 else
2522 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2523 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2524 bound = lowpart_subreg (mode, bound, comp_mode);
2525 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2526 may_xform = simplify_gen_relational (cond, SImode, mode,
2527 tmp, bound);
2528 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2529 SImode, mode,
2530 tmp, bound);
2534 if (may_xform != const0_rtx)
2536 /* We perform the transformation always provided that it is not
2537 completely senseless. This is OK, as we would need this assumption
2538 to determine the number of iterations anyway. */
2539 if (may_xform != const_true_rtx)
2541 /* If the step is a power of two and the final value we have
2542 computed overflows, the cycle is infinite. Otherwise it
2543 is nontrivial to compute the number of iterations. */
2544 if (step_is_pow2)
2545 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2546 desc->infinite);
2547 else
2548 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2549 desc->assumptions);
2552 /* We are going to lose some information about upper bound on
2553 number of iterations in this step, so record the information
2554 here. */
2555 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2556 if (CONST_INT_P (iv1.base))
2557 up = INTVAL (iv1.base);
2558 else
2559 up = INTVAL (mode_mmax) - inc;
2560 down = INTVAL (CONST_INT_P (iv0.base)
2561 ? iv0.base
2562 : mode_mmin);
2563 max = (up - down) / inc + 1;
2564 if (!desc->infinite
2565 && !desc->assumptions)
2566 record_niter_bound (loop, max, false, true);
2568 if (iv0.step == const0_rtx)
2570 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2571 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2573 else
2575 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2576 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2579 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2580 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2581 assumption = simplify_gen_relational (reverse_condition (cond),
2582 SImode, mode, tmp0, tmp1);
2583 if (assumption == const_true_rtx)
2584 goto zero_iter_simplify;
2585 else if (assumption != const0_rtx)
2586 desc->noloop_assumptions =
2587 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2588 cond = NE;
2592 /* Count the number of iterations. */
2593 if (cond == NE)
2595 /* Everything we do here is just arithmetics modulo size of mode. This
2596 makes us able to do more involved computations of number of iterations
2597 than in other cases. First transform the condition into shape
2598 s * i <> c, with s positive. */
2599 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2600 iv0.base = const0_rtx;
2601 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2602 iv1.step = const0_rtx;
2603 if (INTVAL (iv0.step) < 0)
2605 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode);
2606 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode);
2608 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2610 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2611 is infinite. Otherwise, the number of iterations is
2612 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2613 s = INTVAL (iv0.step); d = 1;
2614 while (s % 2 != 1)
2616 s /= 2;
2617 d *= 2;
2618 size--;
2620 bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1);
2622 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2623 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
2624 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2625 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2627 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
2628 inv = inverse (s, size);
2629 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2630 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2632 else
2634 if (iv1.step == const0_rtx)
2635 /* Condition in shape a + s * i <= b
2636 We must know that b + s does not overflow and a <= b + s and then we
2637 can compute number of iterations as (b + s - a) / s. (It might
2638 seem that we in fact could be more clever about testing the b + s
2639 overflow condition using some information about b - a mod s,
2640 but it was already taken into account during LE -> NE transform). */
2642 step = iv0.step;
2643 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2644 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2646 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2647 lowpart_subreg (mode, step,
2648 comp_mode));
2649 if (step_is_pow2)
2651 rtx t0, t1;
2653 /* If s is power of 2, we know that the loop is infinite if
2654 a % s <= b % s and b + s overflows. */
2655 assumption = simplify_gen_relational (reverse_condition (cond),
2656 SImode, mode,
2657 tmp1, bound);
2659 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2660 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2661 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2662 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2663 desc->infinite =
2664 alloc_EXPR_LIST (0, assumption, desc->infinite);
2666 else
2668 assumption = simplify_gen_relational (cond, SImode, mode,
2669 tmp1, bound);
2670 desc->assumptions =
2671 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2674 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2675 tmp = lowpart_subreg (mode, tmp, comp_mode);
2676 assumption = simplify_gen_relational (reverse_condition (cond),
2677 SImode, mode, tmp0, tmp);
2679 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2680 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2682 else
2684 /* Condition in shape a <= b - s * i
2685 We must know that a - s does not overflow and a - s <= b and then
2686 we can again compute number of iterations as (b - (a - s)) / s. */
2687 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2688 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2689 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2691 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2692 lowpart_subreg (mode, step, comp_mode));
2693 if (step_is_pow2)
2695 rtx t0, t1;
2697 /* If s is power of 2, we know that the loop is infinite if
2698 a % s <= b % s and a - s overflows. */
2699 assumption = simplify_gen_relational (reverse_condition (cond),
2700 SImode, mode,
2701 bound, tmp0);
2703 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2704 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2705 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2706 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2707 desc->infinite =
2708 alloc_EXPR_LIST (0, assumption, desc->infinite);
2710 else
2712 assumption = simplify_gen_relational (cond, SImode, mode,
2713 bound, tmp0);
2714 desc->assumptions =
2715 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2718 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2719 tmp = lowpart_subreg (mode, tmp, comp_mode);
2720 assumption = simplify_gen_relational (reverse_condition (cond),
2721 SImode, mode,
2722 tmp, tmp1);
2723 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2724 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2726 if (assumption == const_true_rtx)
2727 goto zero_iter_simplify;
2728 else if (assumption != const0_rtx)
2729 desc->noloop_assumptions =
2730 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2731 delta = simplify_gen_binary (UDIV, mode, delta, step);
2732 desc->niter_expr = delta;
2735 old_niter = desc->niter_expr;
2737 simplify_using_initial_values (loop, AND, &desc->assumptions);
2738 if (desc->assumptions
2739 && XEXP (desc->assumptions, 0) == const0_rtx)
2740 goto fail;
2741 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2742 simplify_using_initial_values (loop, IOR, &desc->infinite);
2743 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2745 /* Rerun the simplification. Consider code (created by copying loop headers)
2747 i = 0;
2749 if (0 < n)
2753 i++;
2754 } while (i < n);
2757 The first pass determines that i = 0, the second pass uses it to eliminate
2758 noloop assumption. */
2760 simplify_using_initial_values (loop, AND, &desc->assumptions);
2761 if (desc->assumptions
2762 && XEXP (desc->assumptions, 0) == const0_rtx)
2763 goto fail;
2764 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2765 simplify_using_initial_values (loop, IOR, &desc->infinite);
2766 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2768 if (desc->noloop_assumptions
2769 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2770 goto zero_iter;
2772 if (CONST_INT_P (desc->niter_expr))
2774 uint64_t val = INTVAL (desc->niter_expr);
2776 desc->const_iter = true;
2777 desc->niter = val & GET_MODE_MASK (desc->mode);
2778 if (!desc->infinite
2779 && !desc->assumptions)
2780 record_niter_bound (loop, desc->niter, false, true);
2782 else
2784 max = determine_max_iter (loop, desc, old_niter);
2785 if (!max)
2786 goto zero_iter_simplify;
2787 if (!desc->infinite
2788 && !desc->assumptions)
2789 record_niter_bound (loop, max, false, true);
2791 /* simplify_using_initial_values does a copy propagation on the registers
2792 in the expression for the number of iterations. This prolongs life
2793 ranges of registers and increases register pressure, and usually
2794 brings no gain (and if it happens to do, the cse pass will take care
2795 of it anyway). So prevent this behavior, unless it enabled us to
2796 derive that the number of iterations is a constant. */
2797 desc->niter_expr = old_niter;
2800 return;
2802 zero_iter_simplify:
2803 /* Simplify the assumptions. */
2804 simplify_using_initial_values (loop, AND, &desc->assumptions);
2805 if (desc->assumptions
2806 && XEXP (desc->assumptions, 0) == const0_rtx)
2807 goto fail;
2808 simplify_using_initial_values (loop, IOR, &desc->infinite);
2810 /* Fallthru. */
2811 zero_iter:
2812 desc->const_iter = true;
2813 desc->niter = 0;
2814 record_niter_bound (loop, 0, true, true);
2815 desc->noloop_assumptions = NULL_RTX;
2816 desc->niter_expr = const0_rtx;
2817 return;
2819 fail:
2820 desc->simple_p = false;
2821 return;
2824 /* Checks whether E is a simple exit from LOOP and stores its description
2825 into DESC. */
2827 static void
2828 check_simple_exit (class loop *loop, edge e, class niter_desc *desc)
2830 basic_block exit_bb;
2831 rtx condition;
2832 rtx_insn *at;
2833 edge ein;
2835 exit_bb = e->src;
2836 desc->simple_p = false;
2838 /* It must belong directly to the loop. */
2839 if (exit_bb->loop_father != loop)
2840 return;
2842 /* It must be tested (at least) once during any iteration. */
2843 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2844 return;
2846 /* It must end in a simple conditional jump. */
2847 if (!any_condjump_p (BB_END (exit_bb)) || !onlyjump_p (BB_END (exit_bb)))
2848 return;
2850 ein = EDGE_SUCC (exit_bb, 0);
2851 if (ein == e)
2852 ein = EDGE_SUCC (exit_bb, 1);
2854 desc->out_edge = e;
2855 desc->in_edge = ein;
2857 /* Test whether the condition is suitable. */
2858 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2859 return;
2861 if (ein->flags & EDGE_FALLTHRU)
2863 condition = reversed_condition (condition);
2864 if (!condition)
2865 return;
2868 /* Check that we are able to determine number of iterations and fill
2869 in information about it. */
2870 iv_number_of_iterations (loop, at, condition, desc);
2873 /* Finds a simple exit of LOOP and stores its description into DESC. */
2875 static void
2876 find_simple_exit (class loop *loop, class niter_desc *desc)
2878 unsigned i;
2879 basic_block *body;
2880 edge e;
2881 class niter_desc act;
2882 bool any = false;
2883 edge_iterator ei;
2885 desc->simple_p = false;
2886 body = get_loop_body (loop);
2888 for (i = 0; i < loop->num_nodes; i++)
2890 FOR_EACH_EDGE (e, ei, body[i]->succs)
2892 if (flow_bb_inside_loop_p (loop, e->dest))
2893 continue;
2895 check_simple_exit (loop, e, &act);
2896 if (!act.simple_p)
2897 continue;
2899 if (!any)
2900 any = true;
2901 else
2903 /* Prefer constant iterations; the less the better. */
2904 if (!act.const_iter
2905 || (desc->const_iter && act.niter >= desc->niter))
2906 continue;
2908 /* Also if the actual exit may be infinite, while the old one
2909 not, prefer the old one. */
2910 if (act.infinite && !desc->infinite)
2911 continue;
2914 *desc = act;
2918 if (dump_file)
2920 if (desc->simple_p)
2922 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2923 fprintf (dump_file, " simple exit %d -> %d\n",
2924 desc->out_edge->src->index,
2925 desc->out_edge->dest->index);
2926 if (desc->assumptions)
2928 fprintf (dump_file, " assumptions: ");
2929 print_rtl (dump_file, desc->assumptions);
2930 fprintf (dump_file, "\n");
2932 if (desc->noloop_assumptions)
2934 fprintf (dump_file, " does not roll if: ");
2935 print_rtl (dump_file, desc->noloop_assumptions);
2936 fprintf (dump_file, "\n");
2938 if (desc->infinite)
2940 fprintf (dump_file, " infinite if: ");
2941 print_rtl (dump_file, desc->infinite);
2942 fprintf (dump_file, "\n");
2945 fprintf (dump_file, " number of iterations: ");
2946 print_rtl (dump_file, desc->niter_expr);
2947 fprintf (dump_file, "\n");
2949 fprintf (dump_file, " upper bound: %li\n",
2950 (long)get_max_loop_iterations_int (loop));
2951 fprintf (dump_file, " likely upper bound: %li\n",
2952 (long)get_likely_max_loop_iterations_int (loop));
2953 fprintf (dump_file, " realistic bound: %li\n",
2954 (long)get_estimated_loop_iterations_int (loop));
2956 else
2957 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
2960 /* Fix up the finiteness if possible. We can only do it for single exit,
2961 since the loop is finite, but it's possible that we predicate one loop
2962 exit to be finite which can not be determined as finite in middle-end as
2963 well. It results in incorrect predicate information on the exit condition
2964 expression. For example, if says [(int) _1 + -8, + , -8] != 0 finite,
2965 it means _1 can exactly divide -8. */
2966 if (desc->infinite && single_exit (loop) && finite_loop_p (loop))
2968 desc->infinite = NULL_RTX;
2969 if (dump_file)
2970 fprintf (dump_file, " infinite updated to finite.\n");
2973 free (body);
2976 /* Creates a simple loop description of LOOP if it was not computed
2977 already. */
2979 class niter_desc *
2980 get_simple_loop_desc (class loop *loop)
2982 class niter_desc *desc = simple_loop_desc (loop);
2984 if (desc)
2985 return desc;
2987 /* At least desc->infinite is not always initialized by
2988 find_simple_loop_exit. */
2989 desc = ggc_cleared_alloc<niter_desc> ();
2990 iv_analysis_loop_init (loop);
2991 find_simple_exit (loop, desc);
2992 loop->simple_loop_desc = desc;
2993 return desc;
2996 /* Releases simple loop description for LOOP. */
2998 void
2999 free_simple_loop_desc (class loop *loop)
3001 class niter_desc *desc = simple_loop_desc (loop);
3003 if (!desc)
3004 return;
3006 ggc_free (desc);
3007 loop->simple_loop_desc = NULL;