d: Add test for PR d/108167 to the testsuite [PR108167]
[official-gcc.git] / gcc / cse.cc
blob8fbda4ecc86708e347f19a47373eb651831483b4
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "cfgcleanup.h"
38 #include "alias.h"
39 #include "toplev.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "rtl-iter.h"
44 #include "regs.h"
45 #include "function-abi.h"
46 #include "rtlanal.h"
47 #include "expr.h"
49 /* The basic idea of common subexpression elimination is to go
50 through the code, keeping a record of expressions that would
51 have the same value at the current scan point, and replacing
52 expressions encountered with the cheapest equivalent expression.
54 It is too complicated to keep track of the different possibilities
55 when control paths merge in this code; so, at each label, we forget all
56 that is known and start fresh. This can be described as processing each
57 extended basic block separately. We have a separate pass to perform
58 global CSE.
60 Note CSE can turn a conditional or computed jump into a nop or
61 an unconditional jump. When this occurs we arrange to run the jump
62 optimizer after CSE to delete the unreachable code.
64 We use two data structures to record the equivalent expressions:
65 a hash table for most expressions, and a vector of "quantity
66 numbers" to record equivalent (pseudo) registers.
68 The use of the special data structure for registers is desirable
69 because it is faster. It is possible because registers references
70 contain a fairly small number, the register number, taken from
71 a contiguously allocated series, and two register references are
72 identical if they have the same number. General expressions
73 do not have any such thing, so the only way to retrieve the
74 information recorded on an expression other than a register
75 is to keep it in a hash table.
77 Registers and "quantity numbers":
79 At the start of each basic block, all of the (hardware and pseudo)
80 registers used in the function are given distinct quantity
81 numbers to indicate their contents. During scan, when the code
82 copies one register into another, we copy the quantity number.
83 When a register is loaded in any other way, we allocate a new
84 quantity number to describe the value generated by this operation.
85 `REG_QTY (N)' records what quantity register N is currently thought
86 of as containing.
88 All real quantity numbers are greater than or equal to zero.
89 If register N has not been assigned a quantity, `REG_QTY (N)' will
90 equal -N - 1, which is always negative.
92 Quantity numbers below zero do not exist and none of the `qty_table'
93 entries should be referenced with a negative index.
95 We also maintain a bidirectional chain of registers for each
96 quantity number. The `qty_table` members `first_reg' and `last_reg',
97 and `reg_eqv_table' members `next' and `prev' hold these chains.
99 The first register in a chain is the one whose lifespan is least local.
100 Among equals, it is the one that was seen first.
101 We replace any equivalent register with that one.
103 If two registers have the same quantity number, it must be true that
104 REG expressions with qty_table `mode' must be in the hash table for both
105 registers and must be in the same class.
107 The converse is not true. Since hard registers may be referenced in
108 any mode, two REG expressions might be equivalent in the hash table
109 but not have the same quantity number if the quantity number of one
110 of the registers is not the same mode as those expressions.
112 Constants and quantity numbers
114 When a quantity has a known constant value, that value is stored
115 in the appropriate qty_table `const_rtx'. This is in addition to
116 putting the constant in the hash table as is usual for non-regs.
118 Whether a reg or a constant is preferred is determined by the configuration
119 macro CONST_COSTS and will often depend on the constant value. In any
120 event, expressions containing constants can be simplified, by fold_rtx.
122 When a quantity has a known nearly constant value (such as an address
123 of a stack slot), that value is stored in the appropriate qty_table
124 `const_rtx'.
126 Integer constants don't have a machine mode. However, cse
127 determines the intended machine mode from the destination
128 of the instruction that moves the constant. The machine mode
129 is recorded in the hash table along with the actual RTL
130 constant expression so that different modes are kept separate.
132 Other expressions:
134 To record known equivalences among expressions in general
135 we use a hash table called `table'. It has a fixed number of buckets
136 that contain chains of `struct table_elt' elements for expressions.
137 These chains connect the elements whose expressions have the same
138 hash codes.
140 Other chains through the same elements connect the elements which
141 currently have equivalent values.
143 Register references in an expression are canonicalized before hashing
144 the expression. This is done using `reg_qty' and qty_table `first_reg'.
145 The hash code of a register reference is computed using the quantity
146 number, not the register number.
148 When the value of an expression changes, it is necessary to remove from the
149 hash table not just that expression but all expressions whose values
150 could be different as a result.
152 1. If the value changing is in memory, except in special cases
153 ANYTHING referring to memory could be changed. That is because
154 nobody knows where a pointer does not point.
155 The function `invalidate_memory' removes what is necessary.
157 The special cases are when the address is constant or is
158 a constant plus a fixed register such as the frame pointer
159 or a static chain pointer. When such addresses are stored in,
160 we can tell exactly which other such addresses must be invalidated
161 due to overlap. `invalidate' does this.
162 All expressions that refer to non-constant
163 memory addresses are also invalidated. `invalidate_memory' does this.
165 2. If the value changing is a register, all expressions
166 containing references to that register, and only those,
167 must be removed.
169 Because searching the entire hash table for expressions that contain
170 a register is very slow, we try to figure out when it isn't necessary.
171 Precisely, this is necessary only when expressions have been
172 entered in the hash table using this register, and then the value has
173 changed, and then another expression wants to be added to refer to
174 the register's new value. This sequence of circumstances is rare
175 within any one basic block.
177 `REG_TICK' and `REG_IN_TABLE', accessors for members of
178 cse_reg_info, are used to detect this case. REG_TICK (i) is
179 incremented whenever a value is stored in register i.
180 REG_IN_TABLE (i) holds -1 if no references to register i have been
181 entered in the table; otherwise, it contains the value REG_TICK (i)
182 had when the references were entered. If we want to enter a
183 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
184 remove old references. Until we want to enter a new entry, the
185 mere fact that the two vectors don't match makes the entries be
186 ignored if anyone tries to match them.
188 Registers themselves are entered in the hash table as well as in
189 the equivalent-register chains. However, `REG_TICK' and
190 `REG_IN_TABLE' do not apply to expressions which are simple
191 register references. These expressions are removed from the table
192 immediately when they become invalid, and this can be done even if
193 we do not immediately search for all the expressions that refer to
194 the register.
196 A CLOBBER rtx in an instruction invalidates its operand for further
197 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
198 invalidates everything that resides in memory.
200 Related expressions:
202 Constant expressions that differ only by an additive integer
203 are called related. When a constant expression is put in
204 the table, the related expression with no constant term
205 is also entered. These are made to point at each other
206 so that it is possible to find out if there exists any
207 register equivalent to an expression related to a given expression. */
209 /* Length of qty_table vector. We know in advance we will not need
210 a quantity number this big. */
212 static int max_qty;
214 /* Next quantity number to be allocated.
215 This is 1 + the largest number needed so far. */
217 static int next_qty;
219 /* Per-qty information tracking.
221 `first_reg' and `last_reg' track the head and tail of the
222 chain of registers which currently contain this quantity.
224 `mode' contains the machine mode of this quantity.
226 `const_rtx' holds the rtx of the constant value of this
227 quantity, if known. A summations of the frame/arg pointer
228 and a constant can also be entered here. When this holds
229 a known value, `const_insn' is the insn which stored the
230 constant value.
232 `comparison_{code,const,qty}' are used to track when a
233 comparison between a quantity and some constant or register has
234 been passed. In such a case, we know the results of the comparison
235 in case we see it again. These members record a comparison that
236 is known to be true. `comparison_code' holds the rtx code of such
237 a comparison, else it is set to UNKNOWN and the other two
238 comparison members are undefined. `comparison_const' holds
239 the constant being compared against, or zero if the comparison
240 is not against a constant. `comparison_qty' holds the quantity
241 being compared against when the result is known. If the comparison
242 is not with a register, `comparison_qty' is -1. */
244 struct qty_table_elem
246 rtx const_rtx;
247 rtx_insn *const_insn;
248 rtx comparison_const;
249 int comparison_qty;
250 unsigned int first_reg, last_reg;
251 /* The sizes of these fields should match the sizes of the
252 code and mode fields of struct rtx_def (see rtl.h). */
253 ENUM_BITFIELD(rtx_code) comparison_code : 16;
254 ENUM_BITFIELD(machine_mode) mode : 8;
257 /* The table of all qtys, indexed by qty number. */
258 static struct qty_table_elem *qty_table;
260 /* Insn being scanned. */
262 static rtx_insn *this_insn;
263 static bool optimize_this_for_speed_p;
265 /* Index by register number, gives the number of the next (or
266 previous) register in the chain of registers sharing the same
267 value.
269 Or -1 if this register is at the end of the chain.
271 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
273 /* Per-register equivalence chain. */
274 struct reg_eqv_elem
276 int next, prev;
279 /* The table of all register equivalence chains. */
280 static struct reg_eqv_elem *reg_eqv_table;
282 struct cse_reg_info
284 /* The timestamp at which this register is initialized. */
285 unsigned int timestamp;
287 /* The quantity number of the register's current contents. */
288 int reg_qty;
290 /* The number of times the register has been altered in the current
291 basic block. */
292 int reg_tick;
294 /* The REG_TICK value at which rtx's containing this register are
295 valid in the hash table. If this does not equal the current
296 reg_tick value, such expressions existing in the hash table are
297 invalid. */
298 int reg_in_table;
300 /* The SUBREG that was set when REG_TICK was last incremented. Set
301 to -1 if the last store was to the whole register, not a subreg. */
302 unsigned int subreg_ticked;
305 /* A table of cse_reg_info indexed by register numbers. */
306 static struct cse_reg_info *cse_reg_info_table;
308 /* The size of the above table. */
309 static unsigned int cse_reg_info_table_size;
311 /* The index of the first entry that has not been initialized. */
312 static unsigned int cse_reg_info_table_first_uninitialized;
314 /* The timestamp at the beginning of the current run of
315 cse_extended_basic_block. We increment this variable at the beginning of
316 the current run of cse_extended_basic_block. The timestamp field of a
317 cse_reg_info entry matches the value of this variable if and only
318 if the entry has been initialized during the current run of
319 cse_extended_basic_block. */
320 static unsigned int cse_reg_info_timestamp;
322 /* A HARD_REG_SET containing all the hard registers for which there is
323 currently a REG expression in the hash table. Note the difference
324 from the above variables, which indicate if the REG is mentioned in some
325 expression in the table. */
327 static HARD_REG_SET hard_regs_in_table;
329 /* True if CSE has altered the CFG. */
330 static bool cse_cfg_altered;
332 /* True if CSE has altered conditional jump insns in such a way
333 that jump optimization should be redone. */
334 static bool cse_jumps_altered;
336 /* True if we put a LABEL_REF into the hash table for an INSN
337 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
338 to put in the note. */
339 static bool recorded_label_ref;
341 /* canon_hash stores 1 in do_not_record if it notices a reference to PC or
342 some other volatile subexpression. */
344 static int do_not_record;
346 /* canon_hash stores 1 in hash_arg_in_memory
347 if it notices a reference to memory within the expression being hashed. */
349 static int hash_arg_in_memory;
351 /* The hash table contains buckets which are chains of `struct table_elt's,
352 each recording one expression's information.
353 That expression is in the `exp' field.
355 The canon_exp field contains a canonical (from the point of view of
356 alias analysis) version of the `exp' field.
358 Those elements with the same hash code are chained in both directions
359 through the `next_same_hash' and `prev_same_hash' fields.
361 Each set of expressions with equivalent values
362 are on a two-way chain through the `next_same_value'
363 and `prev_same_value' fields, and all point with
364 the `first_same_value' field at the first element in
365 that chain. The chain is in order of increasing cost.
366 Each element's cost value is in its `cost' field.
368 The `in_memory' field is nonzero for elements that
369 involve any reference to memory. These elements are removed
370 whenever a write is done to an unidentified location in memory.
371 To be safe, we assume that a memory address is unidentified unless
372 the address is either a symbol constant or a constant plus
373 the frame pointer or argument pointer.
375 The `related_value' field is used to connect related expressions
376 (that differ by adding an integer).
377 The related expressions are chained in a circular fashion.
378 `related_value' is zero for expressions for which this
379 chain is not useful.
381 The `cost' field stores the cost of this element's expression.
382 The `regcost' field stores the value returned by approx_reg_cost for
383 this element's expression.
385 The `is_const' flag is set if the element is a constant (including
386 a fixed address).
388 The `flag' field is used as a temporary during some search routines.
390 The `mode' field is usually the same as GET_MODE (`exp'), but
391 if `exp' is a CONST_INT and has no machine mode then the `mode'
392 field is the mode it was being used as. Each constant is
393 recorded separately for each mode it is used with. */
395 struct table_elt
397 rtx exp;
398 rtx canon_exp;
399 struct table_elt *next_same_hash;
400 struct table_elt *prev_same_hash;
401 struct table_elt *next_same_value;
402 struct table_elt *prev_same_value;
403 struct table_elt *first_same_value;
404 struct table_elt *related_value;
405 int cost;
406 int regcost;
407 /* The size of this field should match the size
408 of the mode field of struct rtx_def (see rtl.h). */
409 ENUM_BITFIELD(machine_mode) mode : 8;
410 char in_memory;
411 char is_const;
412 char flag;
415 /* We don't want a lot of buckets, because we rarely have very many
416 things stored in the hash table, and a lot of buckets slows
417 down a lot of loops that happen frequently. */
418 #define HASH_SHIFT 5
419 #define HASH_SIZE (1 << HASH_SHIFT)
420 #define HASH_MASK (HASH_SIZE - 1)
422 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
423 register (hard registers may require `do_not_record' to be set). */
425 #define HASH(X, M) \
426 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
427 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
428 : canon_hash (X, M)) & HASH_MASK)
430 /* Like HASH, but without side-effects. */
431 #define SAFE_HASH(X, M) \
432 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
433 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
434 : safe_hash (X, M)) & HASH_MASK)
436 /* Determine whether register number N is considered a fixed register for the
437 purpose of approximating register costs.
438 It is desirable to replace other regs with fixed regs, to reduce need for
439 non-fixed hard regs.
440 A reg wins if it is either the frame pointer or designated as fixed. */
441 #define FIXED_REGNO_P(N) \
442 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
443 || fixed_regs[N] || global_regs[N])
445 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
446 hard registers and pointers into the frame are the cheapest with a cost
447 of 0. Next come pseudos with a cost of one and other hard registers with
448 a cost of 2. Aside from these special cases, call `rtx_cost'. */
450 #define CHEAP_REGNO(N) \
451 (REGNO_PTR_FRAME_P (N) \
452 || (HARD_REGISTER_NUM_P (N) \
453 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
455 #define COST(X, MODE) \
456 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
457 #define COST_IN(X, MODE, OUTER, OPNO) \
458 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
460 /* Get the number of times this register has been updated in this
461 basic block. */
463 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
465 /* Get the point at which REG was recorded in the table. */
467 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
469 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
470 SUBREG). */
472 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
474 /* Get the quantity number for REG. */
476 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
478 /* Determine if the quantity number for register X represents a valid index
479 into the qty_table. */
481 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
483 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
485 #define CHEAPER(X, Y) \
486 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
488 static struct table_elt *table[HASH_SIZE];
490 /* Chain of `struct table_elt's made so far for this function
491 but currently removed from the table. */
493 static struct table_elt *free_element_chain;
495 /* Trace a patch through the CFG. */
497 struct branch_path
499 /* The basic block for this path entry. */
500 basic_block bb;
503 /* This data describes a block that will be processed by
504 cse_extended_basic_block. */
506 struct cse_basic_block_data
508 /* Total number of SETs in block. */
509 int nsets;
510 /* Size of current branch path, if any. */
511 int path_size;
512 /* Current path, indicating which basic_blocks will be processed. */
513 struct branch_path *path;
517 /* Pointers to the live in/live out bitmaps for the boundaries of the
518 current EBB. */
519 static bitmap cse_ebb_live_in, cse_ebb_live_out;
521 /* A simple bitmap to track which basic blocks have been visited
522 already as part of an already processed extended basic block. */
523 static sbitmap cse_visited_basic_blocks;
525 static bool fixed_base_plus_p (rtx x);
526 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
527 static int preferable (int, int, int, int);
528 static void new_basic_block (void);
529 static void make_new_qty (unsigned int, machine_mode);
530 static void make_regs_eqv (unsigned int, unsigned int);
531 static void delete_reg_equiv (unsigned int);
532 static int mention_regs (rtx);
533 static int insert_regs (rtx, struct table_elt *, int);
534 static void remove_from_table (struct table_elt *, unsigned);
535 static void remove_pseudo_from_table (rtx, unsigned);
536 static struct table_elt *lookup (rtx, unsigned, machine_mode);
537 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
538 static rtx lookup_as_function (rtx, enum rtx_code);
539 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
540 machine_mode, int, int);
541 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
542 machine_mode);
543 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
544 static void invalidate (rtx, machine_mode);
545 static void remove_invalid_refs (unsigned int);
546 static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
547 machine_mode);
548 static void rehash_using_reg (rtx);
549 static void invalidate_memory (void);
550 static rtx use_related_value (rtx, struct table_elt *);
552 static inline unsigned canon_hash (rtx, machine_mode);
553 static inline unsigned safe_hash (rtx, machine_mode);
554 static inline unsigned hash_rtx_string (const char *);
556 static rtx canon_reg (rtx, rtx_insn *);
557 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
558 machine_mode *,
559 machine_mode *);
560 static rtx fold_rtx (rtx, rtx_insn *);
561 static rtx equiv_constant (rtx);
562 static void record_jump_equiv (rtx_insn *, bool);
563 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
564 int);
565 static void cse_insn (rtx_insn *);
566 static void cse_prescan_path (struct cse_basic_block_data *);
567 static void invalidate_from_clobbers (rtx_insn *);
568 static void invalidate_from_sets_and_clobbers (rtx_insn *);
569 static void cse_extended_basic_block (struct cse_basic_block_data *);
570 extern void dump_class (struct table_elt*);
571 static void get_cse_reg_info_1 (unsigned int regno);
572 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
574 static void flush_hash_table (void);
575 static bool insn_live_p (rtx_insn *, int *);
576 static bool set_live_p (rtx, int *);
577 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
578 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
579 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
580 bool);
583 #undef RTL_HOOKS_GEN_LOWPART
584 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
586 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
588 /* Nonzero if X has the form (PLUS frame-pointer integer). */
590 static bool
591 fixed_base_plus_p (rtx x)
593 switch (GET_CODE (x))
595 case REG:
596 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
597 return true;
598 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
599 return true;
600 return false;
602 case PLUS:
603 if (!CONST_INT_P (XEXP (x, 1)))
604 return false;
605 return fixed_base_plus_p (XEXP (x, 0));
607 default:
608 return false;
612 /* Dump the expressions in the equivalence class indicated by CLASSP.
613 This function is used only for debugging. */
614 DEBUG_FUNCTION void
615 dump_class (struct table_elt *classp)
617 struct table_elt *elt;
619 fprintf (stderr, "Equivalence chain for ");
620 print_rtl (stderr, classp->exp);
621 fprintf (stderr, ": \n");
623 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
625 print_rtl (stderr, elt->exp);
626 fprintf (stderr, "\n");
630 /* Return an estimate of the cost of the registers used in an rtx.
631 This is mostly the number of different REG expressions in the rtx;
632 however for some exceptions like fixed registers we use a cost of
633 0. If any other hard register reference occurs, return MAX_COST. */
635 static int
636 approx_reg_cost (const_rtx x)
638 int cost = 0;
639 subrtx_iterator::array_type array;
640 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
642 const_rtx x = *iter;
643 if (REG_P (x))
645 unsigned int regno = REGNO (x);
646 if (!CHEAP_REGNO (regno))
648 if (regno < FIRST_PSEUDO_REGISTER)
650 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
651 return MAX_COST;
652 cost += 2;
654 else
655 cost += 1;
659 return cost;
662 /* Return a negative value if an rtx A, whose costs are given by COST_A
663 and REGCOST_A, is more desirable than an rtx B.
664 Return a positive value if A is less desirable, or 0 if the two are
665 equally good. */
666 static int
667 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
669 /* First, get rid of cases involving expressions that are entirely
670 unwanted. */
671 if (cost_a != cost_b)
673 if (cost_a == MAX_COST)
674 return 1;
675 if (cost_b == MAX_COST)
676 return -1;
679 /* Avoid extending lifetimes of hardregs. */
680 if (regcost_a != regcost_b)
682 if (regcost_a == MAX_COST)
683 return 1;
684 if (regcost_b == MAX_COST)
685 return -1;
688 /* Normal operation costs take precedence. */
689 if (cost_a != cost_b)
690 return cost_a - cost_b;
691 /* Only if these are identical consider effects on register pressure. */
692 if (regcost_a != regcost_b)
693 return regcost_a - regcost_b;
694 return 0;
697 /* Internal function, to compute cost when X is not a register; called
698 from COST macro to keep it simple. */
700 static int
701 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
703 scalar_int_mode int_mode, inner_mode;
704 return ((GET_CODE (x) == SUBREG
705 && REG_P (SUBREG_REG (x))
706 && is_int_mode (mode, &int_mode)
707 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
708 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
709 && subreg_lowpart_p (x)
710 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
712 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
716 /* Initialize CSE_REG_INFO_TABLE. */
718 static void
719 init_cse_reg_info (unsigned int nregs)
721 /* Do we need to grow the table? */
722 if (nregs > cse_reg_info_table_size)
724 unsigned int new_size;
726 if (cse_reg_info_table_size < 2048)
728 /* Compute a new size that is a power of 2 and no smaller
729 than the large of NREGS and 64. */
730 new_size = (cse_reg_info_table_size
731 ? cse_reg_info_table_size : 64);
733 while (new_size < nregs)
734 new_size *= 2;
736 else
738 /* If we need a big table, allocate just enough to hold
739 NREGS registers. */
740 new_size = nregs;
743 /* Reallocate the table with NEW_SIZE entries. */
744 free (cse_reg_info_table);
745 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
746 cse_reg_info_table_size = new_size;
747 cse_reg_info_table_first_uninitialized = 0;
750 /* Do we have all of the first NREGS entries initialized? */
751 if (cse_reg_info_table_first_uninitialized < nregs)
753 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
754 unsigned int i;
756 /* Put the old timestamp on newly allocated entries so that they
757 will all be considered out of date. We do not touch those
758 entries beyond the first NREGS entries to be nice to the
759 virtual memory. */
760 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
761 cse_reg_info_table[i].timestamp = old_timestamp;
763 cse_reg_info_table_first_uninitialized = nregs;
767 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
769 static void
770 get_cse_reg_info_1 (unsigned int regno)
772 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
773 entry will be considered to have been initialized. */
774 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
776 /* Initialize the rest of the entry. */
777 cse_reg_info_table[regno].reg_tick = 1;
778 cse_reg_info_table[regno].reg_in_table = -1;
779 cse_reg_info_table[regno].subreg_ticked = -1;
780 cse_reg_info_table[regno].reg_qty = -regno - 1;
783 /* Find a cse_reg_info entry for REGNO. */
785 static inline struct cse_reg_info *
786 get_cse_reg_info (unsigned int regno)
788 struct cse_reg_info *p = &cse_reg_info_table[regno];
790 /* If this entry has not been initialized, go ahead and initialize
791 it. */
792 if (p->timestamp != cse_reg_info_timestamp)
793 get_cse_reg_info_1 (regno);
795 return p;
798 /* Clear the hash table and initialize each register with its own quantity,
799 for a new basic block. */
801 static void
802 new_basic_block (void)
804 int i;
806 next_qty = 0;
808 /* Invalidate cse_reg_info_table. */
809 cse_reg_info_timestamp++;
811 /* Clear out hash table state for this pass. */
812 CLEAR_HARD_REG_SET (hard_regs_in_table);
814 /* The per-quantity values used to be initialized here, but it is
815 much faster to initialize each as it is made in `make_new_qty'. */
817 for (i = 0; i < HASH_SIZE; i++)
819 struct table_elt *first;
821 first = table[i];
822 if (first != NULL)
824 struct table_elt *last = first;
826 table[i] = NULL;
828 while (last->next_same_hash != NULL)
829 last = last->next_same_hash;
831 /* Now relink this hash entire chain into
832 the free element list. */
834 last->next_same_hash = free_element_chain;
835 free_element_chain = first;
840 /* Say that register REG contains a quantity in mode MODE not in any
841 register before and initialize that quantity. */
843 static void
844 make_new_qty (unsigned int reg, machine_mode mode)
846 int q;
847 struct qty_table_elem *ent;
848 struct reg_eqv_elem *eqv;
850 gcc_assert (next_qty < max_qty);
852 q = REG_QTY (reg) = next_qty++;
853 ent = &qty_table[q];
854 ent->first_reg = reg;
855 ent->last_reg = reg;
856 ent->mode = mode;
857 ent->const_rtx = ent->const_insn = NULL;
858 ent->comparison_code = UNKNOWN;
860 eqv = &reg_eqv_table[reg];
861 eqv->next = eqv->prev = -1;
864 /* Make reg NEW equivalent to reg OLD.
865 OLD is not changing; NEW is. */
867 static void
868 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
870 unsigned int lastr, firstr;
871 int q = REG_QTY (old_reg);
872 struct qty_table_elem *ent;
874 ent = &qty_table[q];
876 /* Nothing should become eqv until it has a "non-invalid" qty number. */
877 gcc_assert (REGNO_QTY_VALID_P (old_reg));
879 REG_QTY (new_reg) = q;
880 firstr = ent->first_reg;
881 lastr = ent->last_reg;
883 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
884 hard regs. Among pseudos, if NEW will live longer than any other reg
885 of the same qty, and that is beyond the current basic block,
886 make it the new canonical replacement for this qty. */
887 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
888 /* Certain fixed registers might be of the class NO_REGS. This means
889 that not only can they not be allocated by the compiler, but
890 they cannot be used in substitutions or canonicalizations
891 either. */
892 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
893 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
894 || (new_reg >= FIRST_PSEUDO_REGISTER
895 && (firstr < FIRST_PSEUDO_REGISTER
896 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
897 && !bitmap_bit_p (cse_ebb_live_out, firstr))
898 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
899 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
901 reg_eqv_table[firstr].prev = new_reg;
902 reg_eqv_table[new_reg].next = firstr;
903 reg_eqv_table[new_reg].prev = -1;
904 ent->first_reg = new_reg;
906 else
908 /* If NEW is a hard reg (known to be non-fixed), insert at end.
909 Otherwise, insert before any non-fixed hard regs that are at the
910 end. Registers of class NO_REGS cannot be used as an
911 equivalent for anything. */
912 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
913 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
914 && new_reg >= FIRST_PSEUDO_REGISTER)
915 lastr = reg_eqv_table[lastr].prev;
916 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
917 if (reg_eqv_table[lastr].next >= 0)
918 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
919 else
920 qty_table[q].last_reg = new_reg;
921 reg_eqv_table[lastr].next = new_reg;
922 reg_eqv_table[new_reg].prev = lastr;
926 /* Remove REG from its equivalence class. */
928 static void
929 delete_reg_equiv (unsigned int reg)
931 struct qty_table_elem *ent;
932 int q = REG_QTY (reg);
933 int p, n;
935 /* If invalid, do nothing. */
936 if (! REGNO_QTY_VALID_P (reg))
937 return;
939 ent = &qty_table[q];
941 p = reg_eqv_table[reg].prev;
942 n = reg_eqv_table[reg].next;
944 if (n != -1)
945 reg_eqv_table[n].prev = p;
946 else
947 ent->last_reg = p;
948 if (p != -1)
949 reg_eqv_table[p].next = n;
950 else
951 ent->first_reg = n;
953 REG_QTY (reg) = -reg - 1;
956 /* Remove any invalid expressions from the hash table
957 that refer to any of the registers contained in expression X.
959 Make sure that newly inserted references to those registers
960 as subexpressions will be considered valid.
962 mention_regs is not called when a register itself
963 is being stored in the table.
965 Return 1 if we have done something that may have changed the hash code
966 of X. */
968 static int
969 mention_regs (rtx x)
971 enum rtx_code code;
972 int i, j;
973 const char *fmt;
974 int changed = 0;
976 if (x == 0)
977 return 0;
979 code = GET_CODE (x);
980 if (code == REG)
982 unsigned int regno = REGNO (x);
983 unsigned int endregno = END_REGNO (x);
984 unsigned int i;
986 for (i = regno; i < endregno; i++)
988 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
989 remove_invalid_refs (i);
991 REG_IN_TABLE (i) = REG_TICK (i);
992 SUBREG_TICKED (i) = -1;
995 return 0;
998 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
999 pseudo if they don't use overlapping words. We handle only pseudos
1000 here for simplicity. */
1001 if (code == SUBREG && REG_P (SUBREG_REG (x))
1002 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1004 unsigned int i = REGNO (SUBREG_REG (x));
1006 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1008 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1009 the last store to this register really stored into this
1010 subreg, then remove the memory of this subreg.
1011 Otherwise, remove any memory of the entire register and
1012 all its subregs from the table. */
1013 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1014 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1015 remove_invalid_refs (i);
1016 else
1017 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1020 REG_IN_TABLE (i) = REG_TICK (i);
1021 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1022 return 0;
1025 /* If X is a comparison or a COMPARE and either operand is a register
1026 that does not have a quantity, give it one. This is so that a later
1027 call to record_jump_equiv won't cause X to be assigned a different
1028 hash code and not found in the table after that call.
1030 It is not necessary to do this here, since rehash_using_reg can
1031 fix up the table later, but doing this here eliminates the need to
1032 call that expensive function in the most common case where the only
1033 use of the register is in the comparison. */
1035 if (code == COMPARE || COMPARISON_P (x))
1037 if (REG_P (XEXP (x, 0))
1038 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1039 if (insert_regs (XEXP (x, 0), NULL, 0))
1041 rehash_using_reg (XEXP (x, 0));
1042 changed = 1;
1045 if (REG_P (XEXP (x, 1))
1046 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1047 if (insert_regs (XEXP (x, 1), NULL, 0))
1049 rehash_using_reg (XEXP (x, 1));
1050 changed = 1;
1054 fmt = GET_RTX_FORMAT (code);
1055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1056 if (fmt[i] == 'e')
1057 changed |= mention_regs (XEXP (x, i));
1058 else if (fmt[i] == 'E')
1059 for (j = 0; j < XVECLEN (x, i); j++)
1060 changed |= mention_regs (XVECEXP (x, i, j));
1062 return changed;
1065 /* Update the register quantities for inserting X into the hash table
1066 with a value equivalent to CLASSP.
1067 (If the class does not contain a REG, it is irrelevant.)
1068 If MODIFIED is nonzero, X is a destination; it is being modified.
1069 Note that delete_reg_equiv should be called on a register
1070 before insert_regs is done on that register with MODIFIED != 0.
1072 Nonzero value means that elements of reg_qty have changed
1073 so X's hash code may be different. */
1075 static int
1076 insert_regs (rtx x, struct table_elt *classp, int modified)
1078 if (REG_P (x))
1080 unsigned int regno = REGNO (x);
1081 int qty_valid;
1083 /* If REGNO is in the equivalence table already but is of the
1084 wrong mode for that equivalence, don't do anything here. */
1086 qty_valid = REGNO_QTY_VALID_P (regno);
1087 if (qty_valid)
1089 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1091 if (ent->mode != GET_MODE (x))
1092 return 0;
1095 if (modified || ! qty_valid)
1097 if (classp)
1098 for (classp = classp->first_same_value;
1099 classp != 0;
1100 classp = classp->next_same_value)
1101 if (REG_P (classp->exp)
1102 && GET_MODE (classp->exp) == GET_MODE (x))
1104 unsigned c_regno = REGNO (classp->exp);
1106 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1108 /* Suppose that 5 is hard reg and 100 and 101 are
1109 pseudos. Consider
1111 (set (reg:si 100) (reg:si 5))
1112 (set (reg:si 5) (reg:si 100))
1113 (set (reg:di 101) (reg:di 5))
1115 We would now set REG_QTY (101) = REG_QTY (5), but the
1116 entry for 5 is in SImode. When we use this later in
1117 copy propagation, we get the register in wrong mode. */
1118 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1119 continue;
1121 make_regs_eqv (regno, c_regno);
1122 return 1;
1125 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1126 than REG_IN_TABLE to find out if there was only a single preceding
1127 invalidation - for the SUBREG - or another one, which would be
1128 for the full register. However, if we find here that REG_TICK
1129 indicates that the register is invalid, it means that it has
1130 been invalidated in a separate operation. The SUBREG might be used
1131 now (then this is a recursive call), or we might use the full REG
1132 now and a SUBREG of it later. So bump up REG_TICK so that
1133 mention_regs will do the right thing. */
1134 if (! modified
1135 && REG_IN_TABLE (regno) >= 0
1136 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1137 REG_TICK (regno)++;
1138 make_new_qty (regno, GET_MODE (x));
1139 return 1;
1142 return 0;
1145 /* If X is a SUBREG, we will likely be inserting the inner register in the
1146 table. If that register doesn't have an assigned quantity number at
1147 this point but does later, the insertion that we will be doing now will
1148 not be accessible because its hash code will have changed. So assign
1149 a quantity number now. */
1151 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1152 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1154 insert_regs (SUBREG_REG (x), NULL, 0);
1155 mention_regs (x);
1156 return 1;
1158 else
1159 return mention_regs (x);
1163 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1164 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1165 CST is equal to an anchor. */
1167 static bool
1168 compute_const_anchors (rtx cst,
1169 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1170 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1172 unsigned HOST_WIDE_INT n = UINTVAL (cst);
1174 *lower_base = n & ~(targetm.const_anchor - 1);
1175 if ((unsigned HOST_WIDE_INT) *lower_base == n)
1176 return false;
1178 *upper_base = ((n + (targetm.const_anchor - 1))
1179 & ~(targetm.const_anchor - 1));
1180 *upper_offs = n - *upper_base;
1181 *lower_offs = n - *lower_base;
1182 return true;
1185 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1187 static void
1188 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1189 machine_mode mode)
1191 struct table_elt *elt;
1192 unsigned hash;
1193 rtx anchor_exp;
1194 rtx exp;
1196 anchor_exp = gen_int_mode (anchor, mode);
1197 hash = HASH (anchor_exp, mode);
1198 elt = lookup (anchor_exp, hash, mode);
1199 if (!elt)
1200 elt = insert (anchor_exp, NULL, hash, mode);
1202 exp = plus_constant (mode, reg, offs);
1203 /* REG has just been inserted and the hash codes recomputed. */
1204 mention_regs (exp);
1205 hash = HASH (exp, mode);
1207 /* Use the cost of the register rather than the whole expression. When
1208 looking up constant anchors we will further offset the corresponding
1209 expression therefore it does not make sense to prefer REGs over
1210 reg-immediate additions. Prefer instead the oldest expression. Also
1211 don't prefer pseudos over hard regs so that we derive constants in
1212 argument registers from other argument registers rather than from the
1213 original pseudo that was used to synthesize the constant. */
1214 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1217 /* The constant CST is equivalent to the register REG. Create
1218 equivalences between the two anchors of CST and the corresponding
1219 register-offset expressions using REG. */
1221 static void
1222 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1224 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1226 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1227 &upper_base, &upper_offs))
1228 return;
1230 /* Ignore anchors of value 0. Constants accessible from zero are
1231 simple. */
1232 if (lower_base != 0)
1233 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1235 if (upper_base != 0)
1236 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1239 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1240 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1241 valid expression. Return the cheapest and oldest of such expressions. In
1242 *OLD, return how old the resulting expression is compared to the other
1243 equivalent expressions. */
1245 static rtx
1246 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1247 unsigned *old)
1249 struct table_elt *elt;
1250 unsigned idx;
1251 struct table_elt *match_elt;
1252 rtx match;
1254 /* Find the cheapest and *oldest* expression to maximize the chance of
1255 reusing the same pseudo. */
1257 match_elt = NULL;
1258 match = NULL_RTX;
1259 for (elt = anchor_elt->first_same_value, idx = 0;
1260 elt;
1261 elt = elt->next_same_value, idx++)
1263 if (match_elt && CHEAPER (match_elt, elt))
1264 return match;
1266 if (REG_P (elt->exp)
1267 || (GET_CODE (elt->exp) == PLUS
1268 && REG_P (XEXP (elt->exp, 0))
1269 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1271 rtx x;
1273 /* Ignore expressions that are no longer valid. */
1274 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1275 continue;
1277 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1278 if (REG_P (x)
1279 || (GET_CODE (x) == PLUS
1280 && IN_RANGE (INTVAL (XEXP (x, 1)),
1281 -targetm.const_anchor,
1282 targetm.const_anchor - 1)))
1284 match = x;
1285 match_elt = elt;
1286 *old = idx;
1291 return match;
1294 /* Try to express the constant SRC_CONST using a register+offset expression
1295 derived from a constant anchor. Return it if successful or NULL_RTX,
1296 otherwise. */
1298 static rtx
1299 try_const_anchors (rtx src_const, machine_mode mode)
1301 struct table_elt *lower_elt, *upper_elt;
1302 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1303 rtx lower_anchor_rtx, upper_anchor_rtx;
1304 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1305 unsigned lower_old, upper_old;
1307 /* CONST_INT is used for CC modes, but we should leave those alone. */
1308 if (GET_MODE_CLASS (mode) == MODE_CC)
1309 return NULL_RTX;
1311 gcc_assert (SCALAR_INT_MODE_P (mode));
1312 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1313 &upper_base, &upper_offs))
1314 return NULL_RTX;
1316 lower_anchor_rtx = GEN_INT (lower_base);
1317 upper_anchor_rtx = GEN_INT (upper_base);
1318 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1319 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1321 if (lower_elt)
1322 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1323 if (upper_elt)
1324 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1326 if (!lower_exp)
1327 return upper_exp;
1328 if (!upper_exp)
1329 return lower_exp;
1331 /* Return the older expression. */
1332 return (upper_old > lower_old ? upper_exp : lower_exp);
1335 /* Look in or update the hash table. */
1337 /* Remove table element ELT from use in the table.
1338 HASH is its hash code, made using the HASH macro.
1339 It's an argument because often that is known in advance
1340 and we save much time not recomputing it. */
1342 static void
1343 remove_from_table (struct table_elt *elt, unsigned int hash)
1345 if (elt == 0)
1346 return;
1348 /* Mark this element as removed. See cse_insn. */
1349 elt->first_same_value = 0;
1351 /* Remove the table element from its equivalence class. */
1354 struct table_elt *prev = elt->prev_same_value;
1355 struct table_elt *next = elt->next_same_value;
1357 if (next)
1358 next->prev_same_value = prev;
1360 if (prev)
1361 prev->next_same_value = next;
1362 else
1364 struct table_elt *newfirst = next;
1365 while (next)
1367 next->first_same_value = newfirst;
1368 next = next->next_same_value;
1373 /* Remove the table element from its hash bucket. */
1376 struct table_elt *prev = elt->prev_same_hash;
1377 struct table_elt *next = elt->next_same_hash;
1379 if (next)
1380 next->prev_same_hash = prev;
1382 if (prev)
1383 prev->next_same_hash = next;
1384 else if (table[hash] == elt)
1385 table[hash] = next;
1386 else
1388 /* This entry is not in the proper hash bucket. This can happen
1389 when two classes were merged by `merge_equiv_classes'. Search
1390 for the hash bucket that it heads. This happens only very
1391 rarely, so the cost is acceptable. */
1392 for (hash = 0; hash < HASH_SIZE; hash++)
1393 if (table[hash] == elt)
1394 table[hash] = next;
1398 /* Remove the table element from its related-value circular chain. */
1400 if (elt->related_value != 0 && elt->related_value != elt)
1402 struct table_elt *p = elt->related_value;
1404 while (p->related_value != elt)
1405 p = p->related_value;
1406 p->related_value = elt->related_value;
1407 if (p->related_value == p)
1408 p->related_value = 0;
1411 /* Now add it to the free element chain. */
1412 elt->next_same_hash = free_element_chain;
1413 free_element_chain = elt;
1416 /* Same as above, but X is a pseudo-register. */
1418 static void
1419 remove_pseudo_from_table (rtx x, unsigned int hash)
1421 struct table_elt *elt;
1423 /* Because a pseudo-register can be referenced in more than one
1424 mode, we might have to remove more than one table entry. */
1425 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1426 remove_from_table (elt, hash);
1429 /* Look up X in the hash table and return its table element,
1430 or 0 if X is not in the table.
1432 MODE is the machine-mode of X, or if X is an integer constant
1433 with VOIDmode then MODE is the mode with which X will be used.
1435 Here we are satisfied to find an expression whose tree structure
1436 looks like X. */
1438 static struct table_elt *
1439 lookup (rtx x, unsigned int hash, machine_mode mode)
1441 struct table_elt *p;
1443 for (p = table[hash]; p; p = p->next_same_hash)
1444 if (mode == p->mode && ((x == p->exp && REG_P (x))
1445 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1446 return p;
1448 return 0;
1451 /* Like `lookup' but don't care whether the table element uses invalid regs.
1452 Also ignore discrepancies in the machine mode of a register. */
1454 static struct table_elt *
1455 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1457 struct table_elt *p;
1459 if (REG_P (x))
1461 unsigned int regno = REGNO (x);
1463 /* Don't check the machine mode when comparing registers;
1464 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1465 for (p = table[hash]; p; p = p->next_same_hash)
1466 if (REG_P (p->exp)
1467 && REGNO (p->exp) == regno)
1468 return p;
1470 else
1472 for (p = table[hash]; p; p = p->next_same_hash)
1473 if (mode == p->mode
1474 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1475 return p;
1478 return 0;
1481 /* Look for an expression equivalent to X and with code CODE.
1482 If one is found, return that expression. */
1484 static rtx
1485 lookup_as_function (rtx x, enum rtx_code code)
1487 struct table_elt *p
1488 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1490 if (p == 0)
1491 return 0;
1493 for (p = p->first_same_value; p; p = p->next_same_value)
1494 if (GET_CODE (p->exp) == code
1495 /* Make sure this is a valid entry in the table. */
1496 && exp_equiv_p (p->exp, p->exp, 1, false))
1497 return p->exp;
1499 return 0;
1502 /* Insert X in the hash table, assuming HASH is its hash code and
1503 CLASSP is an element of the class it should go in (or 0 if a new
1504 class should be made). COST is the code of X and reg_cost is the
1505 cost of registers in X. It is inserted at the proper position to
1506 keep the class in the order cheapest first.
1508 MODE is the machine-mode of X, or if X is an integer constant
1509 with VOIDmode then MODE is the mode with which X will be used.
1511 For elements of equal cheapness, the most recent one
1512 goes in front, except that the first element in the list
1513 remains first unless a cheaper element is added. The order of
1514 pseudo-registers does not matter, as canon_reg will be called to
1515 find the cheapest when a register is retrieved from the table.
1517 The in_memory field in the hash table element is set to 0.
1518 The caller must set it nonzero if appropriate.
1520 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1521 and if insert_regs returns a nonzero value
1522 you must then recompute its hash code before calling here.
1524 If necessary, update table showing constant values of quantities. */
1526 static struct table_elt *
1527 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1528 machine_mode mode, int cost, int reg_cost)
1530 struct table_elt *elt;
1532 /* If X is a register and we haven't made a quantity for it,
1533 something is wrong. */
1534 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1536 /* If X is a hard register, show it is being put in the table. */
1537 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1538 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1540 /* Put an element for X into the right hash bucket. */
1542 elt = free_element_chain;
1543 if (elt)
1544 free_element_chain = elt->next_same_hash;
1545 else
1546 elt = XNEW (struct table_elt);
1548 elt->exp = x;
1549 elt->canon_exp = NULL_RTX;
1550 elt->cost = cost;
1551 elt->regcost = reg_cost;
1552 elt->next_same_value = 0;
1553 elt->prev_same_value = 0;
1554 elt->next_same_hash = table[hash];
1555 elt->prev_same_hash = 0;
1556 elt->related_value = 0;
1557 elt->in_memory = 0;
1558 elt->mode = mode;
1559 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1561 if (table[hash])
1562 table[hash]->prev_same_hash = elt;
1563 table[hash] = elt;
1565 /* Put it into the proper value-class. */
1566 if (classp)
1568 classp = classp->first_same_value;
1569 if (CHEAPER (elt, classp))
1570 /* Insert at the head of the class. */
1572 struct table_elt *p;
1573 elt->next_same_value = classp;
1574 classp->prev_same_value = elt;
1575 elt->first_same_value = elt;
1577 for (p = classp; p; p = p->next_same_value)
1578 p->first_same_value = elt;
1580 else
1582 /* Insert not at head of the class. */
1583 /* Put it after the last element cheaper than X. */
1584 struct table_elt *p, *next;
1586 for (p = classp;
1587 (next = p->next_same_value) && CHEAPER (next, elt);
1588 p = next)
1591 /* Put it after P and before NEXT. */
1592 elt->next_same_value = next;
1593 if (next)
1594 next->prev_same_value = elt;
1596 elt->prev_same_value = p;
1597 p->next_same_value = elt;
1598 elt->first_same_value = classp;
1601 else
1602 elt->first_same_value = elt;
1604 /* If this is a constant being set equivalent to a register or a register
1605 being set equivalent to a constant, note the constant equivalence.
1607 If this is a constant, it cannot be equivalent to a different constant,
1608 and a constant is the only thing that can be cheaper than a register. So
1609 we know the register is the head of the class (before the constant was
1610 inserted).
1612 If this is a register that is not already known equivalent to a
1613 constant, we must check the entire class.
1615 If this is a register that is already known equivalent to an insn,
1616 update the qtys `const_insn' to show that `this_insn' is the latest
1617 insn making that quantity equivalent to the constant. */
1619 if (elt->is_const && classp && REG_P (classp->exp)
1620 && !REG_P (x))
1622 int exp_q = REG_QTY (REGNO (classp->exp));
1623 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1625 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1626 exp_ent->const_insn = this_insn;
1629 else if (REG_P (x)
1630 && classp
1631 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1632 && ! elt->is_const)
1634 struct table_elt *p;
1636 for (p = classp; p != 0; p = p->next_same_value)
1638 if (p->is_const && !REG_P (p->exp))
1640 int x_q = REG_QTY (REGNO (x));
1641 struct qty_table_elem *x_ent = &qty_table[x_q];
1643 x_ent->const_rtx
1644 = gen_lowpart (GET_MODE (x), p->exp);
1645 x_ent->const_insn = this_insn;
1646 break;
1651 else if (REG_P (x)
1652 && qty_table[REG_QTY (REGNO (x))].const_rtx
1653 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1654 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1656 /* If this is a constant with symbolic value,
1657 and it has a term with an explicit integer value,
1658 link it up with related expressions. */
1659 if (GET_CODE (x) == CONST)
1661 rtx subexp = get_related_value (x);
1662 unsigned subhash;
1663 struct table_elt *subelt, *subelt_prev;
1665 if (subexp != 0)
1667 /* Get the integer-free subexpression in the hash table. */
1668 subhash = SAFE_HASH (subexp, mode);
1669 subelt = lookup (subexp, subhash, mode);
1670 if (subelt == 0)
1671 subelt = insert (subexp, NULL, subhash, mode);
1672 /* Initialize SUBELT's circular chain if it has none. */
1673 if (subelt->related_value == 0)
1674 subelt->related_value = subelt;
1675 /* Find the element in the circular chain that precedes SUBELT. */
1676 subelt_prev = subelt;
1677 while (subelt_prev->related_value != subelt)
1678 subelt_prev = subelt_prev->related_value;
1679 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1680 This way the element that follows SUBELT is the oldest one. */
1681 elt->related_value = subelt_prev->related_value;
1682 subelt_prev->related_value = elt;
1686 return elt;
1689 /* Wrap insert_with_costs by passing the default costs. */
1691 static struct table_elt *
1692 insert (rtx x, struct table_elt *classp, unsigned int hash,
1693 machine_mode mode)
1695 return insert_with_costs (x, classp, hash, mode,
1696 COST (x, mode), approx_reg_cost (x));
1700 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1701 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1702 the two classes equivalent.
1704 CLASS1 will be the surviving class; CLASS2 should not be used after this
1705 call.
1707 Any invalid entries in CLASS2 will not be copied. */
1709 static void
1710 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1712 struct table_elt *elt, *next, *new_elt;
1714 /* Ensure we start with the head of the classes. */
1715 class1 = class1->first_same_value;
1716 class2 = class2->first_same_value;
1718 /* If they were already equal, forget it. */
1719 if (class1 == class2)
1720 return;
1722 for (elt = class2; elt; elt = next)
1724 unsigned int hash;
1725 rtx exp = elt->exp;
1726 machine_mode mode = elt->mode;
1728 next = elt->next_same_value;
1730 /* Remove old entry, make a new one in CLASS1's class.
1731 Don't do this for invalid entries as we cannot find their
1732 hash code (it also isn't necessary). */
1733 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1735 bool need_rehash = false;
1737 hash_arg_in_memory = 0;
1738 hash = HASH (exp, mode);
1740 if (REG_P (exp))
1742 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1743 delete_reg_equiv (REGNO (exp));
1746 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1747 remove_pseudo_from_table (exp, hash);
1748 else
1749 remove_from_table (elt, hash);
1751 if (insert_regs (exp, class1, 0) || need_rehash)
1753 rehash_using_reg (exp);
1754 hash = HASH (exp, mode);
1756 new_elt = insert (exp, class1, hash, mode);
1757 new_elt->in_memory = hash_arg_in_memory;
1758 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1759 new_elt->cost = MAX_COST;
1764 /* Flush the entire hash table. */
1766 static void
1767 flush_hash_table (void)
1769 int i;
1770 struct table_elt *p;
1772 for (i = 0; i < HASH_SIZE; i++)
1773 for (p = table[i]; p; p = table[i])
1775 /* Note that invalidate can remove elements
1776 after P in the current hash chain. */
1777 if (REG_P (p->exp))
1778 invalidate (p->exp, VOIDmode);
1779 else
1780 remove_from_table (p, i);
1784 /* Check whether an anti dependence exists between X and EXP. MODE and
1785 ADDR are as for canon_anti_dependence. */
1787 static bool
1788 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1790 subrtx_iterator::array_type array;
1791 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1793 const_rtx x = *iter;
1794 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1795 return true;
1797 return false;
1800 /* Remove from the hash table, or mark as invalid, all expressions whose
1801 values could be altered by storing in register X. */
1803 static void
1804 invalidate_reg (rtx x)
1806 gcc_assert (GET_CODE (x) == REG);
1808 /* If X is a register, dependencies on its contents are recorded
1809 through the qty number mechanism. Just change the qty number of
1810 the register, mark it as invalid for expressions that refer to it,
1811 and remove it itself. */
1812 unsigned int regno = REGNO (x);
1813 unsigned int hash = HASH (x, GET_MODE (x));
1815 /* Remove REGNO from any quantity list it might be on and indicate
1816 that its value might have changed. If it is a pseudo, remove its
1817 entry from the hash table.
1819 For a hard register, we do the first two actions above for any
1820 additional hard registers corresponding to X. Then, if any of these
1821 registers are in the table, we must remove any REG entries that
1822 overlap these registers. */
1824 delete_reg_equiv (regno);
1825 REG_TICK (regno)++;
1826 SUBREG_TICKED (regno) = -1;
1828 if (regno >= FIRST_PSEUDO_REGISTER)
1829 remove_pseudo_from_table (x, hash);
1830 else
1832 HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1833 unsigned int endregno = END_REGNO (x);
1834 unsigned int rn;
1835 struct table_elt *p, *next;
1837 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1839 for (rn = regno + 1; rn < endregno; rn++)
1841 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1842 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1843 delete_reg_equiv (rn);
1844 REG_TICK (rn)++;
1845 SUBREG_TICKED (rn) = -1;
1848 if (in_table)
1849 for (hash = 0; hash < HASH_SIZE; hash++)
1850 for (p = table[hash]; p; p = next)
1852 next = p->next_same_hash;
1854 if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1855 continue;
1857 unsigned int tregno = REGNO (p->exp);
1858 unsigned int tendregno = END_REGNO (p->exp);
1859 if (tendregno > regno && tregno < endregno)
1860 remove_from_table (p, hash);
1865 /* Remove from the hash table, or mark as invalid, all expressions whose
1866 values could be altered by storing in X. X is a register, a subreg, or
1867 a memory reference with nonvarying address (because, when a memory
1868 reference with a varying address is stored in, all memory references are
1869 removed by invalidate_memory so specific invalidation is superfluous).
1870 FULL_MODE, if not VOIDmode, indicates that this much should be
1871 invalidated instead of just the amount indicated by the mode of X. This
1872 is only used for bitfield stores into memory.
1874 A nonvarying address may be just a register or just a symbol reference,
1875 or it may be either of those plus a numeric offset. */
1877 static void
1878 invalidate (rtx x, machine_mode full_mode)
1880 int i;
1881 struct table_elt *p;
1882 rtx addr;
1884 switch (GET_CODE (x))
1886 case REG:
1887 invalidate_reg (x);
1888 return;
1890 case SUBREG:
1891 invalidate (SUBREG_REG (x), VOIDmode);
1892 return;
1894 case PARALLEL:
1895 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1896 invalidate (XVECEXP (x, 0, i), VOIDmode);
1897 return;
1899 case EXPR_LIST:
1900 /* This is part of a disjoint return value; extract the location in
1901 question ignoring the offset. */
1902 invalidate (XEXP (x, 0), VOIDmode);
1903 return;
1905 case MEM:
1906 addr = canon_rtx (get_addr (XEXP (x, 0)));
1907 /* Calculate the canonical version of X here so that
1908 true_dependence doesn't generate new RTL for X on each call. */
1909 x = canon_rtx (x);
1911 /* Remove all hash table elements that refer to overlapping pieces of
1912 memory. */
1913 if (full_mode == VOIDmode)
1914 full_mode = GET_MODE (x);
1916 for (i = 0; i < HASH_SIZE; i++)
1918 struct table_elt *next;
1920 for (p = table[i]; p; p = next)
1922 next = p->next_same_hash;
1923 if (p->in_memory)
1925 /* Just canonicalize the expression once;
1926 otherwise each time we call invalidate
1927 true_dependence will canonicalize the
1928 expression again. */
1929 if (!p->canon_exp)
1930 p->canon_exp = canon_rtx (p->exp);
1931 if (check_dependence (p->canon_exp, x, full_mode, addr))
1932 remove_from_table (p, i);
1936 return;
1938 default:
1939 gcc_unreachable ();
1943 /* Invalidate DEST. Used when DEST is not going to be added
1944 into the hash table for some reason, e.g. do_not_record
1945 flagged on it. */
1947 static void
1948 invalidate_dest (rtx dest)
1950 if (REG_P (dest)
1951 || GET_CODE (dest) == SUBREG
1952 || MEM_P (dest))
1953 invalidate (dest, VOIDmode);
1954 else if (GET_CODE (dest) == STRICT_LOW_PART
1955 || GET_CODE (dest) == ZERO_EXTRACT)
1956 invalidate (XEXP (dest, 0), GET_MODE (dest));
1959 /* Remove all expressions that refer to register REGNO,
1960 since they are already invalid, and we are about to
1961 mark that register valid again and don't want the old
1962 expressions to reappear as valid. */
1964 static void
1965 remove_invalid_refs (unsigned int regno)
1967 unsigned int i;
1968 struct table_elt *p, *next;
1970 for (i = 0; i < HASH_SIZE; i++)
1971 for (p = table[i]; p; p = next)
1973 next = p->next_same_hash;
1974 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1975 remove_from_table (p, i);
1979 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1980 and mode MODE. */
1981 static void
1982 remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
1983 machine_mode mode)
1985 unsigned int i;
1986 struct table_elt *p, *next;
1988 for (i = 0; i < HASH_SIZE; i++)
1989 for (p = table[i]; p; p = next)
1991 rtx exp = p->exp;
1992 next = p->next_same_hash;
1994 if (!REG_P (exp)
1995 && (GET_CODE (exp) != SUBREG
1996 || !REG_P (SUBREG_REG (exp))
1997 || REGNO (SUBREG_REG (exp)) != regno
1998 || ranges_maybe_overlap_p (SUBREG_BYTE (exp),
1999 GET_MODE_SIZE (GET_MODE (exp)),
2000 offset, GET_MODE_SIZE (mode)))
2001 && refers_to_regno_p (regno, p->exp))
2002 remove_from_table (p, i);
2006 /* Recompute the hash codes of any valid entries in the hash table that
2007 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2009 This is called when we make a jump equivalence. */
2011 static void
2012 rehash_using_reg (rtx x)
2014 unsigned int i;
2015 struct table_elt *p, *next;
2016 unsigned hash;
2018 if (GET_CODE (x) == SUBREG)
2019 x = SUBREG_REG (x);
2021 /* If X is not a register or if the register is known not to be in any
2022 valid entries in the table, we have no work to do. */
2024 if (!REG_P (x)
2025 || REG_IN_TABLE (REGNO (x)) < 0
2026 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2027 return;
2029 /* Scan all hash chains looking for valid entries that mention X.
2030 If we find one and it is in the wrong hash chain, move it. */
2032 for (i = 0; i < HASH_SIZE; i++)
2033 for (p = table[i]; p; p = next)
2035 next = p->next_same_hash;
2036 if (reg_mentioned_p (x, p->exp)
2037 && exp_equiv_p (p->exp, p->exp, 1, false)
2038 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2040 if (p->next_same_hash)
2041 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2043 if (p->prev_same_hash)
2044 p->prev_same_hash->next_same_hash = p->next_same_hash;
2045 else
2046 table[i] = p->next_same_hash;
2048 p->next_same_hash = table[hash];
2049 p->prev_same_hash = 0;
2050 if (table[hash])
2051 table[hash]->prev_same_hash = p;
2052 table[hash] = p;
2057 /* Remove from the hash table any expression that is a call-clobbered
2058 register in INSN. Also update their TICK values. */
2060 static void
2061 invalidate_for_call (rtx_insn *insn)
2063 unsigned int regno;
2064 unsigned hash;
2065 struct table_elt *p, *next;
2066 int in_table = 0;
2067 hard_reg_set_iterator hrsi;
2069 /* Go through all the hard registers. For each that might be clobbered
2070 in call insn INSN, remove the register from quantity chains and update
2071 reg_tick if defined. Also see if any of these registers is currently
2072 in the table.
2074 ??? We could be more precise for partially-clobbered registers,
2075 and only invalidate values that actually occupy the clobbered part
2076 of the registers. It doesn't seem worth the effort though, since
2077 we shouldn't see this situation much before RA. Whatever choice
2078 we make here has to be consistent with the table walk below,
2079 so any change to this test will require a change there too. */
2080 HARD_REG_SET callee_clobbers
2081 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
2082 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
2084 delete_reg_equiv (regno);
2085 if (REG_TICK (regno) >= 0)
2087 REG_TICK (regno)++;
2088 SUBREG_TICKED (regno) = -1;
2090 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2093 /* In the case where we have no call-clobbered hard registers in the
2094 table, we are done. Otherwise, scan the table and remove any
2095 entry that overlaps a call-clobbered register. */
2097 if (in_table)
2098 for (hash = 0; hash < HASH_SIZE; hash++)
2099 for (p = table[hash]; p; p = next)
2101 next = p->next_same_hash;
2103 if (!REG_P (p->exp)
2104 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2105 continue;
2107 /* This must use the same test as above rather than the
2108 more accurate clobbers_reg_p. */
2109 if (overlaps_hard_reg_set_p (callee_clobbers, GET_MODE (p->exp),
2110 REGNO (p->exp)))
2111 remove_from_table (p, hash);
2115 /* Given an expression X of type CONST,
2116 and ELT which is its table entry (or 0 if it
2117 is not in the hash table),
2118 return an alternate expression for X as a register plus integer.
2119 If none can be found, return 0. */
2121 static rtx
2122 use_related_value (rtx x, struct table_elt *elt)
2124 struct table_elt *relt = 0;
2125 struct table_elt *p, *q;
2126 HOST_WIDE_INT offset;
2128 /* First, is there anything related known?
2129 If we have a table element, we can tell from that.
2130 Otherwise, must look it up. */
2132 if (elt != 0 && elt->related_value != 0)
2133 relt = elt;
2134 else if (elt == 0 && GET_CODE (x) == CONST)
2136 rtx subexp = get_related_value (x);
2137 if (subexp != 0)
2138 relt = lookup (subexp,
2139 SAFE_HASH (subexp, GET_MODE (subexp)),
2140 GET_MODE (subexp));
2143 if (relt == 0)
2144 return 0;
2146 /* Search all related table entries for one that has an
2147 equivalent register. */
2149 p = relt;
2150 while (1)
2152 /* This loop is strange in that it is executed in two different cases.
2153 The first is when X is already in the table. Then it is searching
2154 the RELATED_VALUE list of X's class (RELT). The second case is when
2155 X is not in the table. Then RELT points to a class for the related
2156 value.
2158 Ensure that, whatever case we are in, that we ignore classes that have
2159 the same value as X. */
2161 if (rtx_equal_p (x, p->exp))
2162 q = 0;
2163 else
2164 for (q = p->first_same_value; q; q = q->next_same_value)
2165 if (REG_P (q->exp))
2166 break;
2168 if (q)
2169 break;
2171 p = p->related_value;
2173 /* We went all the way around, so there is nothing to be found.
2174 Alternatively, perhaps RELT was in the table for some other reason
2175 and it has no related values recorded. */
2176 if (p == relt || p == 0)
2177 break;
2180 if (q == 0)
2181 return 0;
2183 offset = (get_integer_term (x) - get_integer_term (p->exp));
2184 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2185 return plus_constant (q->mode, q->exp, offset);
2189 /* Hash a string. Just add its bytes up. */
2190 static inline unsigned
2191 hash_rtx_string (const char *ps)
2193 unsigned hash = 0;
2194 const unsigned char *p = (const unsigned char *) ps;
2196 if (p)
2197 while (*p)
2198 hash += *p++;
2200 return hash;
2203 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2204 When the callback returns true, we continue with the new rtx. */
2206 unsigned
2207 hash_rtx_cb (const_rtx x, machine_mode mode,
2208 int *do_not_record_p, int *hash_arg_in_memory_p,
2209 bool have_reg_qty, hash_rtx_callback_function cb)
2211 int i, j;
2212 unsigned hash = 0;
2213 enum rtx_code code;
2214 const char *fmt;
2215 machine_mode newmode;
2216 rtx newx;
2218 /* Used to turn recursion into iteration. We can't rely on GCC's
2219 tail-recursion elimination since we need to keep accumulating values
2220 in HASH. */
2221 repeat:
2222 if (x == 0)
2223 return hash;
2225 /* Invoke the callback first. */
2226 if (cb != NULL
2227 && ((*cb) (x, mode, &newx, &newmode)))
2229 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2230 hash_arg_in_memory_p, have_reg_qty, cb);
2231 return hash;
2234 code = GET_CODE (x);
2235 switch (code)
2237 case REG:
2239 unsigned int regno = REGNO (x);
2241 if (do_not_record_p && !reload_completed)
2243 /* On some machines, we can't record any non-fixed hard register,
2244 because extending its life will cause reload problems. We
2245 consider ap, fp, sp, gp to be fixed for this purpose.
2247 We also consider CCmode registers to be fixed for this purpose;
2248 failure to do so leads to failure to simplify 0<100 type of
2249 conditionals.
2251 On all machines, we can't record any global registers.
2252 Nor should we record any register that is in a small
2253 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2254 bool record;
2256 if (regno >= FIRST_PSEUDO_REGISTER)
2257 record = true;
2258 else if (x == frame_pointer_rtx
2259 || x == hard_frame_pointer_rtx
2260 || x == arg_pointer_rtx
2261 || x == stack_pointer_rtx
2262 || x == pic_offset_table_rtx)
2263 record = true;
2264 else if (global_regs[regno])
2265 record = false;
2266 else if (fixed_regs[regno])
2267 record = true;
2268 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2269 record = true;
2270 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2271 record = false;
2272 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2273 record = false;
2274 else
2275 record = true;
2277 if (!record)
2279 *do_not_record_p = 1;
2280 return 0;
2284 hash += ((unsigned int) REG << 7);
2285 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2286 return hash;
2289 /* We handle SUBREG of a REG specially because the underlying
2290 reg changes its hash value with every value change; we don't
2291 want to have to forget unrelated subregs when one subreg changes. */
2292 case SUBREG:
2294 if (REG_P (SUBREG_REG (x)))
2296 hash += (((unsigned int) SUBREG << 7)
2297 + REGNO (SUBREG_REG (x))
2298 + (constant_lower_bound (SUBREG_BYTE (x))
2299 / UNITS_PER_WORD));
2300 return hash;
2302 break;
2305 case CONST_INT:
2306 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2307 + (unsigned int) INTVAL (x));
2308 return hash;
2310 case CONST_WIDE_INT:
2311 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2312 hash += CONST_WIDE_INT_ELT (x, i);
2313 return hash;
2315 case CONST_POLY_INT:
2317 inchash::hash h;
2318 h.add_int (hash);
2319 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2320 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2321 return h.end ();
2324 case CONST_DOUBLE:
2325 /* This is like the general case, except that it only counts
2326 the integers representing the constant. */
2327 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2328 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2329 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2330 + (unsigned int) CONST_DOUBLE_HIGH (x));
2331 else
2332 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2333 return hash;
2335 case CONST_FIXED:
2336 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2337 hash += fixed_hash (CONST_FIXED_VALUE (x));
2338 return hash;
2340 case CONST_VECTOR:
2342 int units;
2343 rtx elt;
2345 units = const_vector_encoded_nelts (x);
2347 for (i = 0; i < units; ++i)
2349 elt = CONST_VECTOR_ENCODED_ELT (x, i);
2350 hash += hash_rtx_cb (elt, GET_MODE (elt),
2351 do_not_record_p, hash_arg_in_memory_p,
2352 have_reg_qty, cb);
2355 return hash;
2358 /* Assume there is only one rtx object for any given label. */
2359 case LABEL_REF:
2360 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2361 differences and differences between each stage's debugging dumps. */
2362 hash += (((unsigned int) LABEL_REF << 7)
2363 + CODE_LABEL_NUMBER (label_ref_label (x)));
2364 return hash;
2366 case SYMBOL_REF:
2368 /* Don't hash on the symbol's address to avoid bootstrap differences.
2369 Different hash values may cause expressions to be recorded in
2370 different orders and thus different registers to be used in the
2371 final assembler. This also avoids differences in the dump files
2372 between various stages. */
2373 unsigned int h = 0;
2374 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2376 while (*p)
2377 h += (h << 7) + *p++; /* ??? revisit */
2379 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2380 return hash;
2383 case MEM:
2384 /* We don't record if marked volatile or if BLKmode since we don't
2385 know the size of the move. */
2386 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2388 *do_not_record_p = 1;
2389 return 0;
2391 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2392 *hash_arg_in_memory_p = 1;
2394 /* Now that we have already found this special case,
2395 might as well speed it up as much as possible. */
2396 hash += (unsigned) MEM;
2397 x = XEXP (x, 0);
2398 goto repeat;
2400 case USE:
2401 /* A USE that mentions non-volatile memory needs special
2402 handling since the MEM may be BLKmode which normally
2403 prevents an entry from being made. Pure calls are
2404 marked by a USE which mentions BLKmode memory.
2405 See calls.cc:emit_call_1. */
2406 if (MEM_P (XEXP (x, 0))
2407 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2409 hash += (unsigned) USE;
2410 x = XEXP (x, 0);
2412 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2413 *hash_arg_in_memory_p = 1;
2415 /* Now that we have already found this special case,
2416 might as well speed it up as much as possible. */
2417 hash += (unsigned) MEM;
2418 x = XEXP (x, 0);
2419 goto repeat;
2421 break;
2423 case PRE_DEC:
2424 case PRE_INC:
2425 case POST_DEC:
2426 case POST_INC:
2427 case PRE_MODIFY:
2428 case POST_MODIFY:
2429 case PC:
2430 case CALL:
2431 case UNSPEC_VOLATILE:
2432 if (do_not_record_p) {
2433 *do_not_record_p = 1;
2434 return 0;
2436 else
2437 return hash;
2438 break;
2440 case ASM_OPERANDS:
2441 if (do_not_record_p && MEM_VOLATILE_P (x))
2443 *do_not_record_p = 1;
2444 return 0;
2446 else
2448 /* We don't want to take the filename and line into account. */
2449 hash += (unsigned) code + (unsigned) GET_MODE (x)
2450 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2451 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2452 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2454 if (ASM_OPERANDS_INPUT_LENGTH (x))
2456 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2458 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2459 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2460 do_not_record_p, hash_arg_in_memory_p,
2461 have_reg_qty, cb)
2462 + hash_rtx_string
2463 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2466 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2467 x = ASM_OPERANDS_INPUT (x, 0);
2468 mode = GET_MODE (x);
2469 goto repeat;
2472 return hash;
2474 break;
2476 default:
2477 break;
2480 i = GET_RTX_LENGTH (code) - 1;
2481 hash += (unsigned) code + (unsigned) GET_MODE (x);
2482 fmt = GET_RTX_FORMAT (code);
2483 for (; i >= 0; i--)
2485 switch (fmt[i])
2487 case 'e':
2488 /* If we are about to do the last recursive call
2489 needed at this level, change it into iteration.
2490 This function is called enough to be worth it. */
2491 if (i == 0)
2493 x = XEXP (x, i);
2494 goto repeat;
2497 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2498 hash_arg_in_memory_p,
2499 have_reg_qty, cb);
2500 break;
2502 case 'E':
2503 for (j = 0; j < XVECLEN (x, i); j++)
2504 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2505 hash_arg_in_memory_p,
2506 have_reg_qty, cb);
2507 break;
2509 case 's':
2510 hash += hash_rtx_string (XSTR (x, i));
2511 break;
2513 case 'i':
2514 hash += (unsigned int) XINT (x, i);
2515 break;
2517 case 'p':
2518 hash += constant_lower_bound (SUBREG_BYTE (x));
2519 break;
2521 case '0': case 't':
2522 /* Unused. */
2523 break;
2525 default:
2526 gcc_unreachable ();
2530 return hash;
2533 /* Hash an rtx. We are careful to make sure the value is never negative.
2534 Equivalent registers hash identically.
2535 MODE is used in hashing for CONST_INTs only;
2536 otherwise the mode of X is used.
2538 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2540 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2541 a MEM rtx which does not have the MEM_READONLY_P flag set.
2543 Note that cse_insn knows that the hash code of a MEM expression
2544 is just (int) MEM plus the hash code of the address. */
2546 unsigned
2547 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2548 int *hash_arg_in_memory_p, bool have_reg_qty)
2550 return hash_rtx_cb (x, mode, do_not_record_p,
2551 hash_arg_in_memory_p, have_reg_qty, NULL);
2554 /* Hash an rtx X for cse via hash_rtx.
2555 Stores 1 in do_not_record if any subexpression is volatile.
2556 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2557 does not have the MEM_READONLY_P flag set. */
2559 static inline unsigned
2560 canon_hash (rtx x, machine_mode mode)
2562 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2565 /* Like canon_hash but with no side effects, i.e. do_not_record
2566 and hash_arg_in_memory are not changed. */
2568 static inline unsigned
2569 safe_hash (rtx x, machine_mode mode)
2571 int dummy_do_not_record;
2572 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2575 /* Return 1 iff X and Y would canonicalize into the same thing,
2576 without actually constructing the canonicalization of either one.
2577 If VALIDATE is nonzero,
2578 we assume X is an expression being processed from the rtl
2579 and Y was found in the hash table. We check register refs
2580 in Y for being marked as valid.
2582 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2585 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2587 int i, j;
2588 enum rtx_code code;
2589 const char *fmt;
2591 /* Note: it is incorrect to assume an expression is equivalent to itself
2592 if VALIDATE is nonzero. */
2593 if (x == y && !validate)
2594 return 1;
2596 if (x == 0 || y == 0)
2597 return x == y;
2599 code = GET_CODE (x);
2600 if (code != GET_CODE (y))
2601 return 0;
2603 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2604 if (GET_MODE (x) != GET_MODE (y))
2605 return 0;
2607 /* MEMs referring to different address space are not equivalent. */
2608 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2609 return 0;
2611 switch (code)
2613 case PC:
2614 CASE_CONST_UNIQUE:
2615 return x == y;
2617 case CONST_VECTOR:
2618 if (!same_vector_encodings_p (x, y))
2619 return false;
2620 break;
2622 case LABEL_REF:
2623 return label_ref_label (x) == label_ref_label (y);
2625 case SYMBOL_REF:
2626 return XSTR (x, 0) == XSTR (y, 0);
2628 case REG:
2629 if (for_gcse)
2630 return REGNO (x) == REGNO (y);
2631 else
2633 unsigned int regno = REGNO (y);
2634 unsigned int i;
2635 unsigned int endregno = END_REGNO (y);
2637 /* If the quantities are not the same, the expressions are not
2638 equivalent. If there are and we are not to validate, they
2639 are equivalent. Otherwise, ensure all regs are up-to-date. */
2641 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2642 return 0;
2644 if (! validate)
2645 return 1;
2647 for (i = regno; i < endregno; i++)
2648 if (REG_IN_TABLE (i) != REG_TICK (i))
2649 return 0;
2651 return 1;
2654 case MEM:
2655 if (for_gcse)
2657 /* A volatile mem should not be considered equivalent to any
2658 other. */
2659 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2660 return 0;
2662 /* Can't merge two expressions in different alias sets, since we
2663 can decide that the expression is transparent in a block when
2664 it isn't, due to it being set with the different alias set.
2666 Also, can't merge two expressions with different MEM_ATTRS.
2667 They could e.g. be two different entities allocated into the
2668 same space on the stack (see e.g. PR25130). In that case, the
2669 MEM addresses can be the same, even though the two MEMs are
2670 absolutely not equivalent.
2672 But because really all MEM attributes should be the same for
2673 equivalent MEMs, we just use the invariant that MEMs that have
2674 the same attributes share the same mem_attrs data structure. */
2675 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2676 return 0;
2678 /* If we are handling exceptions, we cannot consider two expressions
2679 with different trapping status as equivalent, because simple_mem
2680 might accept one and reject the other. */
2681 if (cfun->can_throw_non_call_exceptions
2682 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2683 return 0;
2685 break;
2687 /* For commutative operations, check both orders. */
2688 case PLUS:
2689 case MULT:
2690 case AND:
2691 case IOR:
2692 case XOR:
2693 case NE:
2694 case EQ:
2695 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2696 validate, for_gcse)
2697 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2698 validate, for_gcse))
2699 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2700 validate, for_gcse)
2701 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2702 validate, for_gcse)));
2704 case ASM_OPERANDS:
2705 /* We don't use the generic code below because we want to
2706 disregard filename and line numbers. */
2708 /* A volatile asm isn't equivalent to any other. */
2709 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2710 return 0;
2712 if (GET_MODE (x) != GET_MODE (y)
2713 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2714 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2715 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2716 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2717 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2718 return 0;
2720 if (ASM_OPERANDS_INPUT_LENGTH (x))
2722 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2723 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2724 ASM_OPERANDS_INPUT (y, i),
2725 validate, for_gcse)
2726 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2727 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2728 return 0;
2731 return 1;
2733 default:
2734 break;
2737 /* Compare the elements. If any pair of corresponding elements
2738 fail to match, return 0 for the whole thing. */
2740 fmt = GET_RTX_FORMAT (code);
2741 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2743 switch (fmt[i])
2745 case 'e':
2746 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2747 validate, for_gcse))
2748 return 0;
2749 break;
2751 case 'E':
2752 if (XVECLEN (x, i) != XVECLEN (y, i))
2753 return 0;
2754 for (j = 0; j < XVECLEN (x, i); j++)
2755 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2756 validate, for_gcse))
2757 return 0;
2758 break;
2760 case 's':
2761 if (strcmp (XSTR (x, i), XSTR (y, i)))
2762 return 0;
2763 break;
2765 case 'i':
2766 if (XINT (x, i) != XINT (y, i))
2767 return 0;
2768 break;
2770 case 'w':
2771 if (XWINT (x, i) != XWINT (y, i))
2772 return 0;
2773 break;
2775 case 'p':
2776 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2777 return 0;
2778 break;
2780 case '0':
2781 case 't':
2782 break;
2784 default:
2785 gcc_unreachable ();
2789 return 1;
2792 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2793 the result if necessary. INSN is as for canon_reg. */
2795 static void
2796 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2798 if (*xloc)
2800 rtx new_rtx = canon_reg (*xloc, insn);
2802 /* If replacing pseudo with hard reg or vice versa, ensure the
2803 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2804 gcc_assert (insn && new_rtx);
2805 validate_change (insn, xloc, new_rtx, 1);
2809 /* Canonicalize an expression:
2810 replace each register reference inside it
2811 with the "oldest" equivalent register.
2813 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2814 after we make our substitution. The calls are made with IN_GROUP nonzero
2815 so apply_change_group must be called upon the outermost return from this
2816 function (unless INSN is zero). The result of apply_change_group can
2817 generally be discarded since the changes we are making are optional. */
2819 static rtx
2820 canon_reg (rtx x, rtx_insn *insn)
2822 int i;
2823 enum rtx_code code;
2824 const char *fmt;
2826 if (x == 0)
2827 return x;
2829 code = GET_CODE (x);
2830 switch (code)
2832 case PC:
2833 case CONST:
2834 CASE_CONST_ANY:
2835 case SYMBOL_REF:
2836 case LABEL_REF:
2837 case ADDR_VEC:
2838 case ADDR_DIFF_VEC:
2839 return x;
2841 case REG:
2843 int first;
2844 int q;
2845 struct qty_table_elem *ent;
2847 /* Never replace a hard reg, because hard regs can appear
2848 in more than one machine mode, and we must preserve the mode
2849 of each occurrence. Also, some hard regs appear in
2850 MEMs that are shared and mustn't be altered. Don't try to
2851 replace any reg that maps to a reg of class NO_REGS. */
2852 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2853 || ! REGNO_QTY_VALID_P (REGNO (x)))
2854 return x;
2856 q = REG_QTY (REGNO (x));
2857 ent = &qty_table[q];
2858 first = ent->first_reg;
2859 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2860 : REGNO_REG_CLASS (first) == NO_REGS ? x
2861 : gen_rtx_REG (ent->mode, first));
2864 default:
2865 break;
2868 fmt = GET_RTX_FORMAT (code);
2869 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2871 int j;
2873 if (fmt[i] == 'e')
2874 validate_canon_reg (&XEXP (x, i), insn);
2875 else if (fmt[i] == 'E')
2876 for (j = 0; j < XVECLEN (x, i); j++)
2877 validate_canon_reg (&XVECEXP (x, i, j), insn);
2880 return x;
2883 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2884 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2885 what values are being compared.
2887 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2888 actually being compared. For example, if *PARG1 was (reg:CC CC_REG) and
2889 *PARG2 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that
2890 were compared to produce (reg:CC CC_REG).
2892 The return value is the comparison operator and is either the code of
2893 A or the code corresponding to the inverse of the comparison. */
2895 static enum rtx_code
2896 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2897 machine_mode *pmode1, machine_mode *pmode2)
2899 rtx arg1, arg2;
2900 hash_set<rtx> *visited = NULL;
2901 /* Set nonzero when we find something of interest. */
2902 rtx x = NULL;
2904 arg1 = *parg1, arg2 = *parg2;
2906 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2908 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2910 int reverse_code = 0;
2911 struct table_elt *p = 0;
2913 /* Remember state from previous iteration. */
2914 if (x)
2916 if (!visited)
2917 visited = new hash_set<rtx>;
2918 visited->add (x);
2919 x = 0;
2922 /* If arg1 is a COMPARE, extract the comparison arguments from it. */
2924 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2925 x = arg1;
2927 /* If ARG1 is a comparison operator and CODE is testing for
2928 STORE_FLAG_VALUE, get the inner arguments. */
2930 else if (COMPARISON_P (arg1))
2932 #ifdef FLOAT_STORE_FLAG_VALUE
2933 REAL_VALUE_TYPE fsfv;
2934 #endif
2936 if (code == NE
2937 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2938 && code == LT && STORE_FLAG_VALUE == -1)
2939 #ifdef FLOAT_STORE_FLAG_VALUE
2940 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2941 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2942 REAL_VALUE_NEGATIVE (fsfv)))
2943 #endif
2945 x = arg1;
2946 else if (code == EQ
2947 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2948 && code == GE && STORE_FLAG_VALUE == -1)
2949 #ifdef FLOAT_STORE_FLAG_VALUE
2950 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2951 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2952 REAL_VALUE_NEGATIVE (fsfv)))
2953 #endif
2955 x = arg1, reverse_code = 1;
2958 /* ??? We could also check for
2960 (ne (and (eq (...) (const_int 1))) (const_int 0))
2962 and related forms, but let's wait until we see them occurring. */
2964 if (x == 0)
2965 /* Look up ARG1 in the hash table and see if it has an equivalence
2966 that lets us see what is being compared. */
2967 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2968 if (p)
2970 p = p->first_same_value;
2972 /* If what we compare is already known to be constant, that is as
2973 good as it gets.
2974 We need to break the loop in this case, because otherwise we
2975 can have an infinite loop when looking at a reg that is known
2976 to be a constant which is the same as a comparison of a reg
2977 against zero which appears later in the insn stream, which in
2978 turn is constant and the same as the comparison of the first reg
2979 against zero... */
2980 if (p->is_const)
2981 break;
2984 for (; p; p = p->next_same_value)
2986 machine_mode inner_mode = GET_MODE (p->exp);
2987 #ifdef FLOAT_STORE_FLAG_VALUE
2988 REAL_VALUE_TYPE fsfv;
2989 #endif
2991 /* If the entry isn't valid, skip it. */
2992 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2993 continue;
2995 /* If it's a comparison we've used before, skip it. */
2996 if (visited && visited->contains (p->exp))
2997 continue;
2999 if (GET_CODE (p->exp) == COMPARE
3000 /* Another possibility is that this machine has a compare insn
3001 that includes the comparison code. In that case, ARG1 would
3002 be equivalent to a comparison operation that would set ARG1 to
3003 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3004 ORIG_CODE is the actual comparison being done; if it is an EQ,
3005 we must reverse ORIG_CODE. On machine with a negative value
3006 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3007 || ((code == NE
3008 || (code == LT
3009 && val_signbit_known_set_p (inner_mode,
3010 STORE_FLAG_VALUE))
3011 #ifdef FLOAT_STORE_FLAG_VALUE
3012 || (code == LT
3013 && SCALAR_FLOAT_MODE_P (inner_mode)
3014 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3015 REAL_VALUE_NEGATIVE (fsfv)))
3016 #endif
3018 && COMPARISON_P (p->exp)))
3020 x = p->exp;
3021 break;
3023 else if ((code == EQ
3024 || (code == GE
3025 && val_signbit_known_set_p (inner_mode,
3026 STORE_FLAG_VALUE))
3027 #ifdef FLOAT_STORE_FLAG_VALUE
3028 || (code == GE
3029 && SCALAR_FLOAT_MODE_P (inner_mode)
3030 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3031 REAL_VALUE_NEGATIVE (fsfv)))
3032 #endif
3034 && COMPARISON_P (p->exp))
3036 reverse_code = 1;
3037 x = p->exp;
3038 break;
3041 /* If this non-trapping address, e.g. fp + constant, the
3042 equivalent is a better operand since it may let us predict
3043 the value of the comparison. */
3044 else if (!rtx_addr_can_trap_p (p->exp))
3046 arg1 = p->exp;
3047 continue;
3051 /* If we didn't find a useful equivalence for ARG1, we are done.
3052 Otherwise, set up for the next iteration. */
3053 if (x == 0)
3054 break;
3056 /* If we need to reverse the comparison, make sure that is
3057 possible -- we can't necessarily infer the value of GE from LT
3058 with floating-point operands. */
3059 if (reverse_code)
3061 enum rtx_code reversed = reversed_comparison_code (x, NULL);
3062 if (reversed == UNKNOWN)
3063 break;
3064 else
3065 code = reversed;
3067 else if (COMPARISON_P (x))
3068 code = GET_CODE (x);
3069 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3072 /* Return our results. Return the modes from before fold_rtx
3073 because fold_rtx might produce const_int, and then it's too late. */
3074 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3075 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3077 if (visited)
3078 delete visited;
3079 return code;
3082 /* If X is a nontrivial arithmetic operation on an argument for which
3083 a constant value can be determined, return the result of operating
3084 on that value, as a constant. Otherwise, return X, possibly with
3085 one or more operands changed to a forward-propagated constant.
3087 If X is a register whose contents are known, we do NOT return
3088 those contents here; equiv_constant is called to perform that task.
3089 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3091 INSN is the insn that we may be modifying. If it is 0, make a copy
3092 of X before modifying it. */
3094 static rtx
3095 fold_rtx (rtx x, rtx_insn *insn)
3097 enum rtx_code code;
3098 machine_mode mode;
3099 const char *fmt;
3100 int i;
3101 rtx new_rtx = 0;
3102 int changed = 0;
3103 poly_int64 xval;
3105 /* Operands of X. */
3106 /* Workaround -Wmaybe-uninitialized false positive during
3107 profiledbootstrap by initializing them. */
3108 rtx folded_arg0 = NULL_RTX;
3109 rtx folded_arg1 = NULL_RTX;
3111 /* Constant equivalents of first three operands of X;
3112 0 when no such equivalent is known. */
3113 rtx const_arg0;
3114 rtx const_arg1;
3115 rtx const_arg2;
3117 /* The mode of the first operand of X. We need this for sign and zero
3118 extends. */
3119 machine_mode mode_arg0;
3121 if (x == 0)
3122 return x;
3124 /* Try to perform some initial simplifications on X. */
3125 code = GET_CODE (x);
3126 switch (code)
3128 case MEM:
3129 case SUBREG:
3130 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3131 than it would in other contexts. Basically its mode does not
3132 signify the size of the object read. That information is carried
3133 by size operand. If we happen to have a MEM of the appropriate
3134 mode in our tables with a constant value we could simplify the
3135 extraction incorrectly if we allowed substitution of that value
3136 for the MEM. */
3137 case ZERO_EXTRACT:
3138 case SIGN_EXTRACT:
3139 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3140 return new_rtx;
3141 return x;
3143 case CONST:
3144 CASE_CONST_ANY:
3145 case SYMBOL_REF:
3146 case LABEL_REF:
3147 case REG:
3148 case PC:
3149 /* No use simplifying an EXPR_LIST
3150 since they are used only for lists of args
3151 in a function call's REG_EQUAL note. */
3152 case EXPR_LIST:
3153 return x;
3155 case ASM_OPERANDS:
3156 if (insn)
3158 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3159 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3160 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3162 return x;
3164 case CALL:
3165 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3166 return x;
3167 break;
3168 case VEC_SELECT:
3170 rtx trueop0 = XEXP (x, 0);
3171 mode = GET_MODE (trueop0);
3172 rtx trueop1 = XEXP (x, 1);
3173 /* If we select a low-part subreg, return that. */
3174 if (vec_series_lowpart_p (GET_MODE (x), mode, trueop1))
3176 rtx new_rtx = lowpart_subreg (GET_MODE (x), trueop0, mode);
3177 if (new_rtx != NULL_RTX)
3178 return new_rtx;
3182 /* Anything else goes through the loop below. */
3183 default:
3184 break;
3187 mode = GET_MODE (x);
3188 const_arg0 = 0;
3189 const_arg1 = 0;
3190 const_arg2 = 0;
3191 mode_arg0 = VOIDmode;
3193 /* Try folding our operands.
3194 Then see which ones have constant values known. */
3196 fmt = GET_RTX_FORMAT (code);
3197 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3198 if (fmt[i] == 'e')
3200 rtx folded_arg = XEXP (x, i), const_arg;
3201 machine_mode mode_arg = GET_MODE (folded_arg);
3203 switch (GET_CODE (folded_arg))
3205 case MEM:
3206 case REG:
3207 case SUBREG:
3208 const_arg = equiv_constant (folded_arg);
3209 break;
3211 case CONST:
3212 CASE_CONST_ANY:
3213 case SYMBOL_REF:
3214 case LABEL_REF:
3215 const_arg = folded_arg;
3216 break;
3218 default:
3219 folded_arg = fold_rtx (folded_arg, insn);
3220 const_arg = equiv_constant (folded_arg);
3221 break;
3224 /* For the first three operands, see if the operand
3225 is constant or equivalent to a constant. */
3226 switch (i)
3228 case 0:
3229 folded_arg0 = folded_arg;
3230 const_arg0 = const_arg;
3231 mode_arg0 = mode_arg;
3232 break;
3233 case 1:
3234 folded_arg1 = folded_arg;
3235 const_arg1 = const_arg;
3236 break;
3237 case 2:
3238 const_arg2 = const_arg;
3239 break;
3242 /* Pick the least expensive of the argument and an equivalent constant
3243 argument. */
3244 if (const_arg != 0
3245 && const_arg != folded_arg
3246 && (COST_IN (const_arg, mode_arg, code, i)
3247 <= COST_IN (folded_arg, mode_arg, code, i))
3249 /* It's not safe to substitute the operand of a conversion
3250 operator with a constant, as the conversion's identity
3251 depends upon the mode of its operand. This optimization
3252 is handled by the call to simplify_unary_operation. */
3253 && (GET_RTX_CLASS (code) != RTX_UNARY
3254 || GET_MODE (const_arg) == mode_arg0
3255 || (code != ZERO_EXTEND
3256 && code != SIGN_EXTEND
3257 && code != TRUNCATE
3258 && code != FLOAT_TRUNCATE
3259 && code != FLOAT_EXTEND
3260 && code != FLOAT
3261 && code != FIX
3262 && code != UNSIGNED_FLOAT
3263 && code != UNSIGNED_FIX)))
3264 folded_arg = const_arg;
3266 if (folded_arg == XEXP (x, i))
3267 continue;
3269 if (insn == NULL_RTX && !changed)
3270 x = copy_rtx (x);
3271 changed = 1;
3272 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3275 if (changed)
3277 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3278 consistent with the order in X. */
3279 if (canonicalize_change_group (insn, x))
3281 std::swap (const_arg0, const_arg1);
3282 std::swap (folded_arg0, folded_arg1);
3285 apply_change_group ();
3288 /* If X is an arithmetic operation, see if we can simplify it. */
3290 switch (GET_RTX_CLASS (code))
3292 case RTX_UNARY:
3294 /* We can't simplify extension ops unless we know the
3295 original mode. */
3296 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3297 && mode_arg0 == VOIDmode)
3298 break;
3300 new_rtx = simplify_unary_operation (code, mode,
3301 const_arg0 ? const_arg0 : folded_arg0,
3302 mode_arg0);
3304 break;
3306 case RTX_COMPARE:
3307 case RTX_COMM_COMPARE:
3308 /* See what items are actually being compared and set FOLDED_ARG[01]
3309 to those values and CODE to the actual comparison code. If any are
3310 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3311 do anything if both operands are already known to be constant. */
3313 /* ??? Vector mode comparisons are not supported yet. */
3314 if (VECTOR_MODE_P (mode))
3315 break;
3317 if (const_arg0 == 0 || const_arg1 == 0)
3319 struct table_elt *p0, *p1;
3320 rtx true_rtx, false_rtx;
3321 machine_mode mode_arg1;
3323 if (SCALAR_FLOAT_MODE_P (mode))
3325 #ifdef FLOAT_STORE_FLAG_VALUE
3326 true_rtx = (const_double_from_real_value
3327 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3328 #else
3329 true_rtx = NULL_RTX;
3330 #endif
3331 false_rtx = CONST0_RTX (mode);
3333 else
3335 true_rtx = const_true_rtx;
3336 false_rtx = const0_rtx;
3339 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3340 &mode_arg0, &mode_arg1);
3342 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3343 what kinds of things are being compared, so we can't do
3344 anything with this comparison. */
3346 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3347 break;
3349 const_arg0 = equiv_constant (folded_arg0);
3350 const_arg1 = equiv_constant (folded_arg1);
3352 /* If we do not now have two constants being compared, see
3353 if we can nevertheless deduce some things about the
3354 comparison. */
3355 if (const_arg0 == 0 || const_arg1 == 0)
3357 if (const_arg1 != NULL)
3359 rtx cheapest_simplification;
3360 int cheapest_cost;
3361 rtx simp_result;
3362 struct table_elt *p;
3364 /* See if we can find an equivalent of folded_arg0
3365 that gets us a cheaper expression, possibly a
3366 constant through simplifications. */
3367 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3368 mode_arg0);
3370 if (p != NULL)
3372 cheapest_simplification = x;
3373 cheapest_cost = COST (x, mode);
3375 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3377 int cost;
3379 /* If the entry isn't valid, skip it. */
3380 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3381 continue;
3383 /* Try to simplify using this equivalence. */
3384 simp_result
3385 = simplify_relational_operation (code, mode,
3386 mode_arg0,
3387 p->exp,
3388 const_arg1);
3390 if (simp_result == NULL)
3391 continue;
3393 cost = COST (simp_result, mode);
3394 if (cost < cheapest_cost)
3396 cheapest_cost = cost;
3397 cheapest_simplification = simp_result;
3401 /* If we have a cheaper expression now, use that
3402 and try folding it further, from the top. */
3403 if (cheapest_simplification != x)
3404 return fold_rtx (copy_rtx (cheapest_simplification),
3405 insn);
3409 /* See if the two operands are the same. */
3411 if ((REG_P (folded_arg0)
3412 && REG_P (folded_arg1)
3413 && (REG_QTY (REGNO (folded_arg0))
3414 == REG_QTY (REGNO (folded_arg1))))
3415 || ((p0 = lookup (folded_arg0,
3416 SAFE_HASH (folded_arg0, mode_arg0),
3417 mode_arg0))
3418 && (p1 = lookup (folded_arg1,
3419 SAFE_HASH (folded_arg1, mode_arg0),
3420 mode_arg0))
3421 && p0->first_same_value == p1->first_same_value))
3422 folded_arg1 = folded_arg0;
3424 /* If FOLDED_ARG0 is a register, see if the comparison we are
3425 doing now is either the same as we did before or the reverse
3426 (we only check the reverse if not floating-point). */
3427 else if (REG_P (folded_arg0))
3429 int qty = REG_QTY (REGNO (folded_arg0));
3431 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3433 struct qty_table_elem *ent = &qty_table[qty];
3435 if ((comparison_dominates_p (ent->comparison_code, code)
3436 || (! FLOAT_MODE_P (mode_arg0)
3437 && comparison_dominates_p (ent->comparison_code,
3438 reverse_condition (code))))
3439 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3440 || (const_arg1
3441 && rtx_equal_p (ent->comparison_const,
3442 const_arg1))
3443 || (REG_P (folded_arg1)
3444 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3446 if (comparison_dominates_p (ent->comparison_code, code))
3448 if (true_rtx)
3449 return true_rtx;
3450 else
3451 break;
3453 else
3454 return false_rtx;
3461 /* If we are comparing against zero, see if the first operand is
3462 equivalent to an IOR with a constant. If so, we may be able to
3463 determine the result of this comparison. */
3464 if (const_arg1 == const0_rtx && !const_arg0)
3466 rtx y = lookup_as_function (folded_arg0, IOR);
3467 rtx inner_const;
3469 if (y != 0
3470 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3471 && CONST_INT_P (inner_const)
3472 && INTVAL (inner_const) != 0)
3473 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3477 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3478 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3479 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3480 op0, op1);
3482 break;
3484 case RTX_BIN_ARITH:
3485 case RTX_COMM_ARITH:
3486 switch (code)
3488 case PLUS:
3489 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3490 with that LABEL_REF as its second operand. If so, the result is
3491 the first operand of that MINUS. This handles switches with an
3492 ADDR_DIFF_VEC table. */
3493 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3495 rtx y
3496 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3497 : lookup_as_function (folded_arg0, MINUS);
3499 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3500 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3501 return XEXP (y, 0);
3503 /* Now try for a CONST of a MINUS like the above. */
3504 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3505 : lookup_as_function (folded_arg0, CONST))) != 0
3506 && GET_CODE (XEXP (y, 0)) == MINUS
3507 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3508 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3509 return XEXP (XEXP (y, 0), 0);
3512 /* Likewise if the operands are in the other order. */
3513 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3515 rtx y
3516 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3517 : lookup_as_function (folded_arg1, MINUS);
3519 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3520 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3521 return XEXP (y, 0);
3523 /* Now try for a CONST of a MINUS like the above. */
3524 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3525 : lookup_as_function (folded_arg1, CONST))) != 0
3526 && GET_CODE (XEXP (y, 0)) == MINUS
3527 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3528 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3529 return XEXP (XEXP (y, 0), 0);
3532 /* If second operand is a register equivalent to a negative
3533 CONST_INT, see if we can find a register equivalent to the
3534 positive constant. Make a MINUS if so. Don't do this for
3535 a non-negative constant since we might then alternate between
3536 choosing positive and negative constants. Having the positive
3537 constant previously-used is the more common case. Be sure
3538 the resulting constant is non-negative; if const_arg1 were
3539 the smallest negative number this would overflow: depending
3540 on the mode, this would either just be the same value (and
3541 hence not save anything) or be incorrect. */
3542 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3543 && INTVAL (const_arg1) < 0
3544 /* This used to test
3546 -INTVAL (const_arg1) >= 0
3548 But The Sun V5.0 compilers mis-compiled that test. So
3549 instead we test for the problematic value in a more direct
3550 manner and hope the Sun compilers get it correct. */
3551 && INTVAL (const_arg1) !=
3552 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3553 && REG_P (folded_arg1))
3555 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3556 struct table_elt *p
3557 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3559 if (p)
3560 for (p = p->first_same_value; p; p = p->next_same_value)
3561 if (REG_P (p->exp))
3562 return simplify_gen_binary (MINUS, mode, folded_arg0,
3563 canon_reg (p->exp, NULL));
3565 goto from_plus;
3567 case MINUS:
3568 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3569 If so, produce (PLUS Z C2-C). */
3570 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
3572 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3573 if (y && poly_int_rtx_p (XEXP (y, 1)))
3574 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
3575 NULL);
3578 /* Fall through. */
3580 from_plus:
3581 case SMIN: case SMAX: case UMIN: case UMAX:
3582 case IOR: case AND: case XOR:
3583 case MULT:
3584 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3585 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3586 is known to be of similar form, we may be able to replace the
3587 operation with a combined operation. This may eliminate the
3588 intermediate operation if every use is simplified in this way.
3589 Note that the similar optimization done by combine.cc only works
3590 if the intermediate operation's result has only one reference. */
3592 if (REG_P (folded_arg0)
3593 && const_arg1 && CONST_INT_P (const_arg1))
3595 int is_shift
3596 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3597 rtx y, inner_const, new_const;
3598 rtx canon_const_arg1 = const_arg1;
3599 enum rtx_code associate_code;
3601 if (is_shift
3602 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
3603 || INTVAL (const_arg1) < 0))
3605 if (SHIFT_COUNT_TRUNCATED)
3606 canon_const_arg1 = gen_int_shift_amount
3607 (mode, (INTVAL (const_arg1)
3608 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3609 else
3610 break;
3613 y = lookup_as_function (folded_arg0, code);
3614 if (y == 0)
3615 break;
3617 /* If we have compiled a statement like
3618 "if (x == (x & mask1))", and now are looking at
3619 "x & mask2", we will have a case where the first operand
3620 of Y is the same as our first operand. Unless we detect
3621 this case, an infinite loop will result. */
3622 if (XEXP (y, 0) == folded_arg0)
3623 break;
3625 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3626 if (!inner_const || !CONST_INT_P (inner_const))
3627 break;
3629 /* Don't associate these operations if they are a PLUS with the
3630 same constant and it is a power of two. These might be doable
3631 with a pre- or post-increment. Similarly for two subtracts of
3632 identical powers of two with post decrement. */
3634 if (code == PLUS && const_arg1 == inner_const
3635 && ((HAVE_PRE_INCREMENT
3636 && pow2p_hwi (INTVAL (const_arg1)))
3637 || (HAVE_POST_INCREMENT
3638 && pow2p_hwi (INTVAL (const_arg1)))
3639 || (HAVE_PRE_DECREMENT
3640 && pow2p_hwi (- INTVAL (const_arg1)))
3641 || (HAVE_POST_DECREMENT
3642 && pow2p_hwi (- INTVAL (const_arg1)))))
3643 break;
3645 /* ??? Vector mode shifts by scalar
3646 shift operand are not supported yet. */
3647 if (is_shift && VECTOR_MODE_P (mode))
3648 break;
3650 if (is_shift
3651 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
3652 || INTVAL (inner_const) < 0))
3654 if (SHIFT_COUNT_TRUNCATED)
3655 inner_const = gen_int_shift_amount
3656 (mode, (INTVAL (inner_const)
3657 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3658 else
3659 break;
3662 /* Compute the code used to compose the constants. For example,
3663 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3665 associate_code = (is_shift || code == MINUS ? PLUS : code);
3667 new_const = simplify_binary_operation (associate_code, mode,
3668 canon_const_arg1,
3669 inner_const);
3671 if (new_const == 0)
3672 break;
3674 /* If we are associating shift operations, don't let this
3675 produce a shift of the size of the object or larger.
3676 This could occur when we follow a sign-extend by a right
3677 shift on a machine that does a sign-extend as a pair
3678 of shifts. */
3680 if (is_shift
3681 && CONST_INT_P (new_const)
3682 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
3684 /* As an exception, we can turn an ASHIFTRT of this
3685 form into a shift of the number of bits - 1. */
3686 if (code == ASHIFTRT)
3687 new_const = gen_int_shift_amount
3688 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
3689 else if (!side_effects_p (XEXP (y, 0)))
3690 return CONST0_RTX (mode);
3691 else
3692 break;
3695 y = copy_rtx (XEXP (y, 0));
3697 /* If Y contains our first operand (the most common way this
3698 can happen is if Y is a MEM), we would do into an infinite
3699 loop if we tried to fold it. So don't in that case. */
3701 if (! reg_mentioned_p (folded_arg0, y))
3702 y = fold_rtx (y, insn);
3704 return simplify_gen_binary (code, mode, y, new_const);
3706 break;
3708 case DIV: case UDIV:
3709 /* ??? The associative optimization performed immediately above is
3710 also possible for DIV and UDIV using associate_code of MULT.
3711 However, we would need extra code to verify that the
3712 multiplication does not overflow, that is, there is no overflow
3713 in the calculation of new_const. */
3714 break;
3716 default:
3717 break;
3720 new_rtx = simplify_binary_operation (code, mode,
3721 const_arg0 ? const_arg0 : folded_arg0,
3722 const_arg1 ? const_arg1 : folded_arg1);
3723 break;
3725 case RTX_OBJ:
3726 /* (lo_sum (high X) X) is simply X. */
3727 if (code == LO_SUM && const_arg0 != 0
3728 && GET_CODE (const_arg0) == HIGH
3729 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3730 return const_arg1;
3731 break;
3733 case RTX_TERNARY:
3734 case RTX_BITFIELD_OPS:
3735 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3736 const_arg0 ? const_arg0 : folded_arg0,
3737 const_arg1 ? const_arg1 : folded_arg1,
3738 const_arg2 ? const_arg2 : XEXP (x, 2));
3739 break;
3741 default:
3742 break;
3745 return new_rtx ? new_rtx : x;
3748 /* Return a constant value currently equivalent to X.
3749 Return 0 if we don't know one. */
3751 static rtx
3752 equiv_constant (rtx x)
3754 if (REG_P (x)
3755 && REGNO_QTY_VALID_P (REGNO (x)))
3757 int x_q = REG_QTY (REGNO (x));
3758 struct qty_table_elem *x_ent = &qty_table[x_q];
3760 if (x_ent->const_rtx)
3761 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3764 if (x == 0 || CONSTANT_P (x))
3765 return x;
3767 if (GET_CODE (x) == SUBREG)
3769 machine_mode mode = GET_MODE (x);
3770 machine_mode imode = GET_MODE (SUBREG_REG (x));
3771 rtx new_rtx;
3773 /* See if we previously assigned a constant value to this SUBREG. */
3774 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3775 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3776 || (NUM_POLY_INT_COEFFS > 1
3777 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
3778 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3779 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3780 return new_rtx;
3782 /* If we didn't and if doing so makes sense, see if we previously
3783 assigned a constant value to the enclosing word mode SUBREG. */
3784 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3785 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
3787 poly_int64 byte = (SUBREG_BYTE (x)
3788 - subreg_lowpart_offset (mode, word_mode));
3789 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
3791 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3792 new_rtx = lookup_as_function (y, CONST_INT);
3793 if (new_rtx)
3794 return gen_lowpart (mode, new_rtx);
3798 /* Otherwise see if we already have a constant for the inner REG,
3799 and if that is enough to calculate an equivalent constant for
3800 the subreg. Note that the upper bits of paradoxical subregs
3801 are undefined, so they cannot be said to equal anything. */
3802 if (REG_P (SUBREG_REG (x))
3803 && !paradoxical_subreg_p (x)
3804 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3805 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3807 return 0;
3810 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3811 the hash table in case its value was seen before. */
3813 if (MEM_P (x))
3815 struct table_elt *elt;
3817 x = avoid_constant_pool_reference (x);
3818 if (CONSTANT_P (x))
3819 return x;
3821 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3822 if (elt == 0)
3823 return 0;
3825 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3826 if (elt->is_const && CONSTANT_P (elt->exp))
3827 return elt->exp;
3830 return 0;
3833 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3834 "taken" branch.
3836 In certain cases, this can cause us to add an equivalence. For example,
3837 if we are following the taken case of
3838 if (i == 2)
3839 we can add the fact that `i' and '2' are now equivalent.
3841 In any case, we can record that this comparison was passed. If the same
3842 comparison is seen later, we will know its value. */
3844 static void
3845 record_jump_equiv (rtx_insn *insn, bool taken)
3847 int cond_known_true;
3848 rtx op0, op1;
3849 rtx set;
3850 machine_mode mode, mode0, mode1;
3851 int reversed_nonequality = 0;
3852 enum rtx_code code;
3854 /* Ensure this is the right kind of insn. */
3855 gcc_assert (any_condjump_p (insn));
3857 set = pc_set (insn);
3859 /* See if this jump condition is known true or false. */
3860 if (taken)
3861 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3862 else
3863 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3865 /* Get the type of comparison being done and the operands being compared.
3866 If we had to reverse a non-equality condition, record that fact so we
3867 know that it isn't valid for floating-point. */
3868 code = GET_CODE (XEXP (SET_SRC (set), 0));
3869 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3870 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3872 /* If fold_rtx returns NULL_RTX, there's nothing to record. */
3873 if (op0 == NULL_RTX || op1 == NULL_RTX)
3874 return;
3876 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3877 if (! cond_known_true)
3879 code = reversed_comparison_code_parts (code, op0, op1, insn);
3881 /* Don't remember if we can't find the inverse. */
3882 if (code == UNKNOWN)
3883 return;
3886 /* The mode is the mode of the non-constant. */
3887 mode = mode0;
3888 if (mode1 != VOIDmode)
3889 mode = mode1;
3891 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3894 /* Yet another form of subreg creation. In this case, we want something in
3895 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3897 static rtx
3898 record_jump_cond_subreg (machine_mode mode, rtx op)
3900 machine_mode op_mode = GET_MODE (op);
3901 if (op_mode == mode || op_mode == VOIDmode)
3902 return op;
3903 return lowpart_subreg (mode, op, op_mode);
3906 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3907 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3908 Make any useful entries we can with that information. Called from
3909 above function and called recursively. */
3911 static void
3912 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3913 rtx op1, int reversed_nonequality)
3915 unsigned op0_hash, op1_hash;
3916 int op0_in_memory, op1_in_memory;
3917 struct table_elt *op0_elt, *op1_elt;
3919 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3920 we know that they are also equal in the smaller mode (this is also
3921 true for all smaller modes whether or not there is a SUBREG, but
3922 is not worth testing for with no SUBREG). */
3924 /* Note that GET_MODE (op0) may not equal MODE. */
3925 if (code == EQ && paradoxical_subreg_p (op0))
3927 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3928 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3929 if (tem)
3930 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3931 reversed_nonequality);
3934 if (code == EQ && paradoxical_subreg_p (op1))
3936 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3937 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3938 if (tem)
3939 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3940 reversed_nonequality);
3943 /* Similarly, if this is an NE comparison, and either is a SUBREG
3944 making a smaller mode, we know the whole thing is also NE. */
3946 /* Note that GET_MODE (op0) may not equal MODE;
3947 if we test MODE instead, we can get an infinite recursion
3948 alternating between two modes each wider than MODE. */
3950 if (code == NE
3951 && partial_subreg_p (op0)
3952 && subreg_lowpart_p (op0))
3954 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3955 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3956 if (tem)
3957 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3958 reversed_nonequality);
3961 if (code == NE
3962 && partial_subreg_p (op1)
3963 && subreg_lowpart_p (op1))
3965 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3966 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3967 if (tem)
3968 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3969 reversed_nonequality);
3972 /* Hash both operands. */
3974 do_not_record = 0;
3975 hash_arg_in_memory = 0;
3976 op0_hash = HASH (op0, mode);
3977 op0_in_memory = hash_arg_in_memory;
3979 if (do_not_record)
3980 return;
3982 do_not_record = 0;
3983 hash_arg_in_memory = 0;
3984 op1_hash = HASH (op1, mode);
3985 op1_in_memory = hash_arg_in_memory;
3987 if (do_not_record)
3988 return;
3990 /* Look up both operands. */
3991 op0_elt = lookup (op0, op0_hash, mode);
3992 op1_elt = lookup (op1, op1_hash, mode);
3994 /* If both operands are already equivalent or if they are not in the
3995 table but are identical, do nothing. */
3996 if ((op0_elt != 0 && op1_elt != 0
3997 && op0_elt->first_same_value == op1_elt->first_same_value)
3998 || op0 == op1 || rtx_equal_p (op0, op1))
3999 return;
4001 /* If we aren't setting two things equal all we can do is save this
4002 comparison. Similarly if this is floating-point. In the latter
4003 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4004 If we record the equality, we might inadvertently delete code
4005 whose intent was to change -0 to +0. */
4007 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4009 struct qty_table_elem *ent;
4010 int qty;
4012 /* If we reversed a floating-point comparison, if OP0 is not a
4013 register, or if OP1 is neither a register or constant, we can't
4014 do anything. */
4016 if (!REG_P (op1))
4017 op1 = equiv_constant (op1);
4019 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4020 || !REG_P (op0) || op1 == 0)
4021 return;
4023 /* Put OP0 in the hash table if it isn't already. This gives it a
4024 new quantity number. */
4025 if (op0_elt == 0)
4027 if (insert_regs (op0, NULL, 0))
4029 rehash_using_reg (op0);
4030 op0_hash = HASH (op0, mode);
4032 /* If OP0 is contained in OP1, this changes its hash code
4033 as well. Faster to rehash than to check, except
4034 for the simple case of a constant. */
4035 if (! CONSTANT_P (op1))
4036 op1_hash = HASH (op1,mode);
4039 op0_elt = insert (op0, NULL, op0_hash, mode);
4040 op0_elt->in_memory = op0_in_memory;
4043 qty = REG_QTY (REGNO (op0));
4044 ent = &qty_table[qty];
4046 ent->comparison_code = code;
4047 if (REG_P (op1))
4049 /* Look it up again--in case op0 and op1 are the same. */
4050 op1_elt = lookup (op1, op1_hash, mode);
4052 /* Put OP1 in the hash table so it gets a new quantity number. */
4053 if (op1_elt == 0)
4055 if (insert_regs (op1, NULL, 0))
4057 rehash_using_reg (op1);
4058 op1_hash = HASH (op1, mode);
4061 op1_elt = insert (op1, NULL, op1_hash, mode);
4062 op1_elt->in_memory = op1_in_memory;
4065 ent->comparison_const = NULL_RTX;
4066 ent->comparison_qty = REG_QTY (REGNO (op1));
4068 else
4070 ent->comparison_const = op1;
4071 ent->comparison_qty = -1;
4074 return;
4077 /* If either side is still missing an equivalence, make it now,
4078 then merge the equivalences. */
4080 if (op0_elt == 0)
4082 if (insert_regs (op0, NULL, 0))
4084 rehash_using_reg (op0);
4085 op0_hash = HASH (op0, mode);
4088 op0_elt = insert (op0, NULL, op0_hash, mode);
4089 op0_elt->in_memory = op0_in_memory;
4092 if (op1_elt == 0)
4094 if (insert_regs (op1, NULL, 0))
4096 rehash_using_reg (op1);
4097 op1_hash = HASH (op1, mode);
4100 op1_elt = insert (op1, NULL, op1_hash, mode);
4101 op1_elt->in_memory = op1_in_memory;
4104 merge_equiv_classes (op0_elt, op1_elt);
4107 /* CSE processing for one instruction.
4109 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4110 but the few that "leak through" are cleaned up by cse_insn, and complex
4111 addressing modes are often formed here.
4113 The main function is cse_insn, and between here and that function
4114 a couple of helper functions is defined to keep the size of cse_insn
4115 within reasonable proportions.
4117 Data is shared between the main and helper functions via STRUCT SET,
4118 that contains all data related for every set in the instruction that
4119 is being processed.
4121 Note that cse_main processes all sets in the instruction. Most
4122 passes in GCC only process simple SET insns or single_set insns, but
4123 CSE processes insns with multiple sets as well. */
4125 /* Data on one SET contained in the instruction. */
4127 struct set
4129 /* The SET rtx itself. */
4130 rtx rtl;
4131 /* The SET_SRC of the rtx (the original value, if it is changing). */
4132 rtx src;
4133 /* The hash-table element for the SET_SRC of the SET. */
4134 struct table_elt *src_elt;
4135 /* Hash value for the SET_SRC. */
4136 unsigned src_hash;
4137 /* Hash value for the SET_DEST. */
4138 unsigned dest_hash;
4139 /* The SET_DEST, with SUBREG, etc., stripped. */
4140 rtx inner_dest;
4141 /* Nonzero if the SET_SRC is in memory. */
4142 char src_in_memory;
4143 /* Nonzero if the SET_SRC contains something
4144 whose value cannot be predicted and understood. */
4145 char src_volatile;
4146 /* Original machine mode, in case it becomes a CONST_INT.
4147 The size of this field should match the size of the mode
4148 field of struct rtx_def (see rtl.h). */
4149 ENUM_BITFIELD(machine_mode) mode : 8;
4150 /* Hash value of constant equivalent for SET_SRC. */
4151 unsigned src_const_hash;
4152 /* A constant equivalent for SET_SRC, if any. */
4153 rtx src_const;
4154 /* Table entry for constant equivalent for SET_SRC, if any. */
4155 struct table_elt *src_const_elt;
4156 /* Table entry for the destination address. */
4157 struct table_elt *dest_addr_elt;
4160 /* Special handling for (set REG0 REG1) where REG0 is the
4161 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4162 be used in the sequel, so (if easily done) change this insn to
4163 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4164 that computed their value. Then REG1 will become a dead store
4165 and won't cloud the situation for later optimizations.
4167 Do not make this change if REG1 is a hard register, because it will
4168 then be used in the sequel and we may be changing a two-operand insn
4169 into a three-operand insn.
4171 This is the last transformation that cse_insn will try to do. */
4173 static void
4174 try_back_substitute_reg (rtx set, rtx_insn *insn)
4176 rtx dest = SET_DEST (set);
4177 rtx src = SET_SRC (set);
4179 if (REG_P (dest)
4180 && REG_P (src) && ! HARD_REGISTER_P (src)
4181 && REGNO_QTY_VALID_P (REGNO (src)))
4183 int src_q = REG_QTY (REGNO (src));
4184 struct qty_table_elem *src_ent = &qty_table[src_q];
4186 if (src_ent->first_reg == REGNO (dest))
4188 /* Scan for the previous nonnote insn, but stop at a basic
4189 block boundary. */
4190 rtx_insn *prev = insn;
4191 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4194 prev = PREV_INSN (prev);
4196 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4198 /* Do not swap the registers around if the previous instruction
4199 attaches a REG_EQUIV note to REG1.
4201 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4202 from the pseudo that originally shadowed an incoming argument
4203 to another register. Some uses of REG_EQUIV might rely on it
4204 being attached to REG1 rather than REG2.
4206 This section previously turned the REG_EQUIV into a REG_EQUAL
4207 note. We cannot do that because REG_EQUIV may provide an
4208 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4209 if (NONJUMP_INSN_P (prev)
4210 && GET_CODE (PATTERN (prev)) == SET
4211 && SET_DEST (PATTERN (prev)) == src
4212 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4214 rtx note;
4216 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4217 validate_change (insn, &SET_DEST (set), src, 1);
4218 validate_change (insn, &SET_SRC (set), dest, 1);
4219 apply_change_group ();
4221 /* If INSN has a REG_EQUAL note, and this note mentions
4222 REG0, then we must delete it, because the value in
4223 REG0 has changed. If the note's value is REG1, we must
4224 also delete it because that is now this insn's dest. */
4225 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4226 if (note != 0
4227 && (reg_mentioned_p (dest, XEXP (note, 0))
4228 || rtx_equal_p (src, XEXP (note, 0))))
4229 remove_note (insn, note);
4231 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4232 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4233 if (note != 0)
4235 remove_note (insn, note);
4236 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4237 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4244 /* Add an entry containing RTL X into SETS. */
4245 static inline void
4246 add_to_set (vec<struct set> *sets, rtx x)
4248 struct set entry = {};
4249 entry.rtl = x;
4250 sets->safe_push (entry);
4253 /* Record all the SETs in this instruction into SETS_PTR,
4254 and return the number of recorded sets. */
4255 static int
4256 find_sets_in_insn (rtx_insn *insn, vec<struct set> *psets)
4258 rtx x = PATTERN (insn);
4260 if (GET_CODE (x) == SET)
4262 /* Ignore SETs that are unconditional jumps.
4263 They never need cse processing, so this does not hurt.
4264 The reason is not efficiency but rather
4265 so that we can test at the end for instructions
4266 that have been simplified to unconditional jumps
4267 and not be misled by unchanged instructions
4268 that were unconditional jumps to begin with. */
4269 if (SET_DEST (x) == pc_rtx
4270 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4272 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4273 The hard function value register is used only once, to copy to
4274 someplace else, so it isn't worth cse'ing. */
4275 else if (GET_CODE (SET_SRC (x)) == CALL)
4277 else if (GET_CODE (SET_SRC (x)) == CONST_VECTOR
4278 && GET_MODE_CLASS (GET_MODE (SET_SRC (x))) != MODE_VECTOR_BOOL
4279 /* Prevent duplicates from being generated if the type is a V1
4280 type and a subreg. Folding this will result in the same
4281 element as folding x itself. */
4282 && !(SUBREG_P (SET_DEST (x))
4283 && known_eq (GET_MODE_NUNITS (GET_MODE (SET_SRC (x))), 1)))
4285 /* First register the vector itself. */
4286 add_to_set (psets, x);
4287 rtx src = SET_SRC (x);
4288 /* Go over the constants of the CONST_VECTOR in forward order, to
4289 put them in the same order in the SETS array. */
4290 for (unsigned i = 0; i < const_vector_encoded_nelts (src) ; i++)
4292 /* These are templates and don't actually get emitted but are
4293 used to tell CSE how to get to a particular constant. */
4294 rtx y = simplify_gen_vec_select (SET_DEST (x), i);
4295 gcc_assert (y);
4296 add_to_set (psets, gen_rtx_SET (y, CONST_VECTOR_ELT (src, i)));
4299 else
4300 add_to_set (psets, x);
4302 else if (GET_CODE (x) == PARALLEL)
4304 int i, lim = XVECLEN (x, 0);
4306 /* Go over the expressions of the PARALLEL in forward order, to
4307 put them in the same order in the SETS array. */
4308 for (i = 0; i < lim; i++)
4310 rtx y = XVECEXP (x, 0, i);
4311 if (GET_CODE (y) == SET)
4313 /* As above, we ignore unconditional jumps and call-insns and
4314 ignore the result of apply_change_group. */
4315 if (SET_DEST (y) == pc_rtx
4316 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4318 else if (GET_CODE (SET_SRC (y)) == CALL)
4320 else
4321 add_to_set (psets, y);
4326 return psets->length ();
4329 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4331 static void
4332 canon_asm_operands (rtx x, rtx_insn *insn)
4334 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4336 rtx input = ASM_OPERANDS_INPUT (x, i);
4337 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4339 input = canon_reg (input, insn);
4340 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4345 /* Where possible, substitute every register reference in the N_SETS
4346 number of SETS in INSN with the canonical register.
4348 Register canonicalization propagatest the earliest register (i.e.
4349 one that is set before INSN) with the same value. This is a very
4350 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4351 to RTL. For instance, a CONST for an address is usually expanded
4352 multiple times to loads into different registers, thus creating many
4353 subexpressions of the form:
4355 (set (reg1) (some_const))
4356 (set (mem (... reg1 ...) (thing)))
4357 (set (reg2) (some_const))
4358 (set (mem (... reg2 ...) (thing)))
4360 After canonicalizing, the code takes the following form:
4362 (set (reg1) (some_const))
4363 (set (mem (... reg1 ...) (thing)))
4364 (set (reg2) (some_const))
4365 (set (mem (... reg1 ...) (thing)))
4367 The set to reg2 is now trivially dead, and the memory reference (or
4368 address, or whatever) may be a candidate for further CSEing.
4370 In this function, the result of apply_change_group can be ignored;
4371 see canon_reg. */
4373 static void
4374 canonicalize_insn (rtx_insn *insn, vec<struct set> *psets)
4376 vec<struct set> sets = *psets;
4377 int n_sets = sets.length ();
4378 rtx tem;
4379 rtx x = PATTERN (insn);
4380 int i;
4382 if (CALL_P (insn))
4384 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4385 if (GET_CODE (XEXP (tem, 0)) != SET)
4386 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4389 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4391 canon_reg (SET_SRC (x), insn);
4392 apply_change_group ();
4393 fold_rtx (SET_SRC (x), insn);
4395 else if (GET_CODE (x) == CLOBBER)
4397 /* If we clobber memory, canon the address.
4398 This does nothing when a register is clobbered
4399 because we have already invalidated the reg. */
4400 if (MEM_P (XEXP (x, 0)))
4401 canon_reg (XEXP (x, 0), insn);
4403 else if (GET_CODE (x) == USE
4404 && ! (REG_P (XEXP (x, 0))
4405 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4406 /* Canonicalize a USE of a pseudo register or memory location. */
4407 canon_reg (x, insn);
4408 else if (GET_CODE (x) == ASM_OPERANDS)
4409 canon_asm_operands (x, insn);
4410 else if (GET_CODE (x) == CALL)
4412 canon_reg (x, insn);
4413 apply_change_group ();
4414 fold_rtx (x, insn);
4416 else if (DEBUG_INSN_P (insn))
4417 canon_reg (PATTERN (insn), insn);
4418 else if (GET_CODE (x) == PARALLEL)
4420 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4422 rtx y = XVECEXP (x, 0, i);
4423 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4425 canon_reg (SET_SRC (y), insn);
4426 apply_change_group ();
4427 fold_rtx (SET_SRC (y), insn);
4429 else if (GET_CODE (y) == CLOBBER)
4431 if (MEM_P (XEXP (y, 0)))
4432 canon_reg (XEXP (y, 0), insn);
4434 else if (GET_CODE (y) == USE
4435 && ! (REG_P (XEXP (y, 0))
4436 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4437 canon_reg (y, insn);
4438 else if (GET_CODE (y) == ASM_OPERANDS)
4439 canon_asm_operands (y, insn);
4440 else if (GET_CODE (y) == CALL)
4442 canon_reg (y, insn);
4443 apply_change_group ();
4444 fold_rtx (y, insn);
4449 if (n_sets == 1 && REG_NOTES (insn) != 0
4450 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4452 /* We potentially will process this insn many times. Therefore,
4453 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4454 unique set in INSN.
4456 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4457 because cse_insn handles those specially. */
4458 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4459 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4460 remove_note (insn, tem);
4461 else
4463 canon_reg (XEXP (tem, 0), insn);
4464 apply_change_group ();
4465 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4466 df_notes_rescan (insn);
4470 /* Canonicalize sources and addresses of destinations.
4471 We do this in a separate pass to avoid problems when a MATCH_DUP is
4472 present in the insn pattern. In that case, we want to ensure that
4473 we don't break the duplicate nature of the pattern. So we will replace
4474 both operands at the same time. Otherwise, we would fail to find an
4475 equivalent substitution in the loop calling validate_change below.
4477 We used to suppress canonicalization of DEST if it appears in SRC,
4478 but we don't do this any more. */
4480 for (i = 0; i < n_sets; i++)
4482 rtx dest = SET_DEST (sets[i].rtl);
4483 rtx src = SET_SRC (sets[i].rtl);
4484 rtx new_rtx = canon_reg (src, insn);
4486 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4488 if (GET_CODE (dest) == ZERO_EXTRACT)
4490 validate_change (insn, &XEXP (dest, 1),
4491 canon_reg (XEXP (dest, 1), insn), 1);
4492 validate_change (insn, &XEXP (dest, 2),
4493 canon_reg (XEXP (dest, 2), insn), 1);
4496 while (GET_CODE (dest) == SUBREG
4497 || GET_CODE (dest) == ZERO_EXTRACT
4498 || GET_CODE (dest) == STRICT_LOW_PART)
4499 dest = XEXP (dest, 0);
4501 if (MEM_P (dest))
4502 canon_reg (dest, insn);
4505 /* Now that we have done all the replacements, we can apply the change
4506 group and see if they all work. Note that this will cause some
4507 canonicalizations that would have worked individually not to be applied
4508 because some other canonicalization didn't work, but this should not
4509 occur often.
4511 The result of apply_change_group can be ignored; see canon_reg. */
4513 apply_change_group ();
4516 /* Main function of CSE.
4517 First simplify sources and addresses of all assignments
4518 in the instruction, using previously-computed equivalents values.
4519 Then install the new sources and destinations in the table
4520 of available values. */
4522 static void
4523 cse_insn (rtx_insn *insn)
4525 rtx x = PATTERN (insn);
4526 int i;
4527 rtx tem;
4528 int n_sets = 0;
4530 rtx src_eqv = 0;
4531 struct table_elt *src_eqv_elt = 0;
4532 int src_eqv_volatile = 0;
4533 int src_eqv_in_memory = 0;
4534 unsigned src_eqv_hash = 0;
4536 this_insn = insn;
4538 /* Find all regs explicitly clobbered in this insn,
4539 to ensure they are not replaced with any other regs
4540 elsewhere in this insn. */
4541 invalidate_from_sets_and_clobbers (insn);
4543 /* Record all the SETs in this instruction. */
4544 auto_vec<struct set, 8> sets;
4545 n_sets = find_sets_in_insn (insn, (vec<struct set>*)&sets);
4547 /* Substitute the canonical register where possible. */
4548 canonicalize_insn (insn, (vec<struct set>*)&sets);
4550 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4551 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4552 latter condition is necessary because SRC_EQV is handled specially for
4553 this case, and if it isn't set, then there will be no equivalence
4554 for the destination. */
4555 if (n_sets == 1 && REG_NOTES (insn) != 0
4556 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4559 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4560 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4561 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4562 src_eqv = copy_rtx (XEXP (tem, 0));
4563 /* If DEST is of the form ZERO_EXTACT, as in:
4564 (set (zero_extract:SI (reg:SI 119)
4565 (const_int 16 [0x10])
4566 (const_int 16 [0x10]))
4567 (const_int 51154 [0xc7d2]))
4568 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4569 point. Note that this is different from SRC_EQV. We can however
4570 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4571 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4572 && CONST_INT_P (XEXP (tem, 0))
4573 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4574 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4576 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4577 /* This is the mode of XEXP (tem, 0) as well. */
4578 scalar_int_mode dest_mode
4579 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
4580 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4581 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4582 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4583 HOST_WIDE_INT mask;
4584 unsigned int shift;
4585 if (BITS_BIG_ENDIAN)
4586 shift = (GET_MODE_PRECISION (dest_mode)
4587 - INTVAL (pos) - INTVAL (width));
4588 else
4589 shift = INTVAL (pos);
4590 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4591 mask = HOST_WIDE_INT_M1;
4592 else
4593 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4594 val = (val >> shift) & mask;
4595 src_eqv = GEN_INT (val);
4599 /* Set sets[i].src_elt to the class each source belongs to.
4600 Detect assignments from or to volatile things
4601 and set set[i] to zero so they will be ignored
4602 in the rest of this function.
4604 Nothing in this loop changes the hash table or the register chains. */
4606 for (i = 0; i < n_sets; i++)
4608 bool repeat = false;
4609 bool noop_insn = false;
4610 rtx src, dest;
4611 rtx src_folded;
4612 struct table_elt *elt = 0, *p;
4613 machine_mode mode;
4614 rtx src_eqv_here;
4615 rtx src_const = 0;
4616 rtx src_related = 0;
4617 bool src_related_is_const_anchor = false;
4618 struct table_elt *src_const_elt = 0;
4619 int src_cost = MAX_COST;
4620 int src_eqv_cost = MAX_COST;
4621 int src_folded_cost = MAX_COST;
4622 int src_related_cost = MAX_COST;
4623 int src_elt_cost = MAX_COST;
4624 int src_regcost = MAX_COST;
4625 int src_eqv_regcost = MAX_COST;
4626 int src_folded_regcost = MAX_COST;
4627 int src_related_regcost = MAX_COST;
4628 int src_elt_regcost = MAX_COST;
4629 scalar_int_mode int_mode;
4631 dest = SET_DEST (sets[i].rtl);
4632 src = SET_SRC (sets[i].rtl);
4634 /* If SRC is a constant that has no machine mode,
4635 hash it with the destination's machine mode.
4636 This way we can keep different modes separate. */
4638 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4639 sets[i].mode = mode;
4641 if (src_eqv)
4643 machine_mode eqvmode = mode;
4644 if (GET_CODE (dest) == STRICT_LOW_PART)
4645 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4646 do_not_record = 0;
4647 hash_arg_in_memory = 0;
4648 src_eqv_hash = HASH (src_eqv, eqvmode);
4650 /* Find the equivalence class for the equivalent expression. */
4652 if (!do_not_record)
4653 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4655 src_eqv_volatile = do_not_record;
4656 src_eqv_in_memory = hash_arg_in_memory;
4659 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4660 value of the INNER register, not the destination. So it is not
4661 a valid substitution for the source. But save it for later. */
4662 if (GET_CODE (dest) == STRICT_LOW_PART)
4663 src_eqv_here = 0;
4664 else
4665 src_eqv_here = src_eqv;
4667 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4668 simplified result, which may not necessarily be valid. */
4669 src_folded = fold_rtx (src, NULL);
4671 #if 0
4672 /* ??? This caused bad code to be generated for the m68k port with -O2.
4673 Suppose src is (CONST_INT -1), and that after truncation src_folded
4674 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4675 At the end we will add src and src_const to the same equivalence
4676 class. We now have 3 and -1 on the same equivalence class. This
4677 causes later instructions to be mis-optimized. */
4678 /* If storing a constant in a bitfield, pre-truncate the constant
4679 so we will be able to record it later. */
4680 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4682 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4684 if (CONST_INT_P (src)
4685 && CONST_INT_P (width)
4686 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4687 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4688 src_folded
4689 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4690 << INTVAL (width)) - 1));
4692 #endif
4694 /* Compute SRC's hash code, and also notice if it
4695 should not be recorded at all. In that case,
4696 prevent any further processing of this assignment.
4698 We set DO_NOT_RECORD if the destination has a REG_UNUSED note.
4699 This avoids getting the source register into the tables, where it
4700 may be invalidated later (via REG_QTY), then trigger an ICE upon
4701 re-insertion.
4703 This is only a problem in multi-set insns. If it were a single
4704 set the dead copy would have been removed. If the RHS were anything
4705 but a simple REG, then we won't call insert_regs and thus there's
4706 no potential for triggering the ICE. */
4707 do_not_record = (REG_P (dest)
4708 && REG_P (src)
4709 && find_reg_note (insn, REG_UNUSED, dest));
4710 hash_arg_in_memory = 0;
4712 sets[i].src = src;
4713 sets[i].src_hash = HASH (src, mode);
4714 sets[i].src_volatile = do_not_record;
4715 sets[i].src_in_memory = hash_arg_in_memory;
4717 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4718 a pseudo, do not record SRC. Using SRC as a replacement for
4719 anything else will be incorrect in that situation. Note that
4720 this usually occurs only for stack slots, in which case all the
4721 RTL would be referring to SRC, so we don't lose any optimization
4722 opportunities by not having SRC in the hash table. */
4724 if (MEM_P (src)
4725 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4726 && REG_P (dest)
4727 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4728 sets[i].src_volatile = 1;
4730 else if (GET_CODE (src) == ASM_OPERANDS
4731 && GET_CODE (x) == PARALLEL)
4733 /* Do not record result of a non-volatile inline asm with
4734 more than one result. */
4735 if (n_sets > 1)
4736 sets[i].src_volatile = 1;
4738 int j, lim = XVECLEN (x, 0);
4739 for (j = 0; j < lim; j++)
4741 rtx y = XVECEXP (x, 0, j);
4742 /* And do not record result of a non-volatile inline asm
4743 with "memory" clobber. */
4744 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4746 sets[i].src_volatile = 1;
4747 break;
4752 #if 0
4753 /* It is no longer clear why we used to do this, but it doesn't
4754 appear to still be needed. So let's try without it since this
4755 code hurts cse'ing widened ops. */
4756 /* If source is a paradoxical subreg (such as QI treated as an SI),
4757 treat it as volatile. It may do the work of an SI in one context
4758 where the extra bits are not being used, but cannot replace an SI
4759 in general. */
4760 if (paradoxical_subreg_p (src))
4761 sets[i].src_volatile = 1;
4762 #endif
4764 /* Locate all possible equivalent forms for SRC. Try to replace
4765 SRC in the insn with each cheaper equivalent.
4767 We have the following types of equivalents: SRC itself, a folded
4768 version, a value given in a REG_EQUAL note, or a value related
4769 to a constant.
4771 Each of these equivalents may be part of an additional class
4772 of equivalents (if more than one is in the table, they must be in
4773 the same class; we check for this).
4775 If the source is volatile, we don't do any table lookups.
4777 We note any constant equivalent for possible later use in a
4778 REG_NOTE. */
4780 if (!sets[i].src_volatile)
4781 elt = lookup (src, sets[i].src_hash, mode);
4783 sets[i].src_elt = elt;
4785 if (elt && src_eqv_here && src_eqv_elt)
4787 if (elt->first_same_value != src_eqv_elt->first_same_value)
4789 /* The REG_EQUAL is indicating that two formerly distinct
4790 classes are now equivalent. So merge them. */
4791 merge_equiv_classes (elt, src_eqv_elt);
4792 src_eqv_hash = HASH (src_eqv, elt->mode);
4793 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4796 src_eqv_here = 0;
4799 else if (src_eqv_elt)
4800 elt = src_eqv_elt;
4802 /* Try to find a constant somewhere and record it in `src_const'.
4803 Record its table element, if any, in `src_const_elt'. Look in
4804 any known equivalences first. (If the constant is not in the
4805 table, also set `sets[i].src_const_hash'). */
4806 if (elt)
4807 for (p = elt->first_same_value; p; p = p->next_same_value)
4808 if (p->is_const)
4810 src_const = p->exp;
4811 src_const_elt = elt;
4812 break;
4815 if (src_const == 0
4816 && (CONSTANT_P (src_folded)
4817 /* Consider (minus (label_ref L1) (label_ref L2)) as
4818 "constant" here so we will record it. This allows us
4819 to fold switch statements when an ADDR_DIFF_VEC is used. */
4820 || (GET_CODE (src_folded) == MINUS
4821 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4822 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4823 src_const = src_folded, src_const_elt = elt;
4824 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4825 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4827 /* If we don't know if the constant is in the table, get its
4828 hash code and look it up. */
4829 if (src_const && src_const_elt == 0)
4831 sets[i].src_const_hash = HASH (src_const, mode);
4832 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4835 sets[i].src_const = src_const;
4836 sets[i].src_const_elt = src_const_elt;
4838 /* If the constant and our source are both in the table, mark them as
4839 equivalent. Otherwise, if a constant is in the table but the source
4840 isn't, set ELT to it. */
4841 if (src_const_elt && elt
4842 && src_const_elt->first_same_value != elt->first_same_value)
4843 merge_equiv_classes (elt, src_const_elt);
4844 else if (src_const_elt && elt == 0)
4845 elt = src_const_elt;
4847 /* See if there is a register linearly related to a constant
4848 equivalent of SRC. */
4849 if (src_const
4850 && (GET_CODE (src_const) == CONST
4851 || (src_const_elt && src_const_elt->related_value != 0)))
4853 src_related = use_related_value (src_const, src_const_elt);
4854 if (src_related)
4856 struct table_elt *src_related_elt
4857 = lookup (src_related, HASH (src_related, mode), mode);
4858 if (src_related_elt && elt)
4860 if (elt->first_same_value
4861 != src_related_elt->first_same_value)
4862 /* This can occur when we previously saw a CONST
4863 involving a SYMBOL_REF and then see the SYMBOL_REF
4864 twice. Merge the involved classes. */
4865 merge_equiv_classes (elt, src_related_elt);
4867 src_related = 0;
4868 src_related_elt = 0;
4870 else if (src_related_elt && elt == 0)
4871 elt = src_related_elt;
4875 /* See if we have a CONST_INT that is already in a register in a
4876 wider mode. */
4878 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4879 && is_int_mode (mode, &int_mode)
4880 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4882 opt_scalar_int_mode wider_mode_iter;
4883 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4885 scalar_int_mode wider_mode = wider_mode_iter.require ();
4886 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4887 break;
4889 struct table_elt *const_elt
4890 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4892 if (const_elt == 0)
4893 continue;
4895 for (const_elt = const_elt->first_same_value;
4896 const_elt; const_elt = const_elt->next_same_value)
4897 if (REG_P (const_elt->exp))
4899 src_related = gen_lowpart (int_mode, const_elt->exp);
4900 break;
4903 if (src_related != 0)
4904 break;
4908 /* Another possibility is that we have an AND with a constant in
4909 a mode narrower than a word. If so, it might have been generated
4910 as part of an "if" which would narrow the AND. If we already
4911 have done the AND in a wider mode, we can use a SUBREG of that
4912 value. */
4914 if (flag_expensive_optimizations && ! src_related
4915 && is_a <scalar_int_mode> (mode, &int_mode)
4916 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4917 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4919 opt_scalar_int_mode tmode_iter;
4920 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4922 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4924 scalar_int_mode tmode = tmode_iter.require ();
4925 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4926 break;
4928 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4929 struct table_elt *larger_elt;
4931 if (inner)
4933 PUT_MODE (new_and, tmode);
4934 XEXP (new_and, 0) = inner;
4935 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4936 if (larger_elt == 0)
4937 continue;
4939 for (larger_elt = larger_elt->first_same_value;
4940 larger_elt; larger_elt = larger_elt->next_same_value)
4941 if (REG_P (larger_elt->exp))
4943 src_related
4944 = gen_lowpart (int_mode, larger_elt->exp);
4945 break;
4948 if (src_related)
4949 break;
4954 /* See if a MEM has already been loaded with a widening operation;
4955 if it has, we can use a subreg of that. Many CISC machines
4956 also have such operations, but this is only likely to be
4957 beneficial on these machines. */
4959 rtx_code extend_op;
4960 if (flag_expensive_optimizations && src_related == 0
4961 && MEM_P (src) && ! do_not_record
4962 && is_a <scalar_int_mode> (mode, &int_mode)
4963 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4965 struct rtx_def memory_extend_buf;
4966 rtx memory_extend_rtx = &memory_extend_buf;
4968 /* Set what we are trying to extend and the operation it might
4969 have been extended with. */
4970 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4971 PUT_CODE (memory_extend_rtx, extend_op);
4972 XEXP (memory_extend_rtx, 0) = src;
4974 opt_scalar_int_mode tmode_iter;
4975 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4977 struct table_elt *larger_elt;
4979 scalar_int_mode tmode = tmode_iter.require ();
4980 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4981 break;
4983 PUT_MODE (memory_extend_rtx, tmode);
4984 larger_elt = lookup (memory_extend_rtx,
4985 HASH (memory_extend_rtx, tmode), tmode);
4986 if (larger_elt == 0)
4987 continue;
4989 for (larger_elt = larger_elt->first_same_value;
4990 larger_elt; larger_elt = larger_elt->next_same_value)
4991 if (REG_P (larger_elt->exp))
4993 src_related = gen_lowpart (int_mode, larger_elt->exp);
4994 break;
4997 if (src_related)
4998 break;
5002 /* Try to express the constant using a register+offset expression
5003 derived from a constant anchor. */
5005 if (targetm.const_anchor
5006 && !src_related
5007 && src_const
5008 && GET_CODE (src_const) == CONST_INT)
5010 src_related = try_const_anchors (src_const, mode);
5011 src_related_is_const_anchor = src_related != NULL_RTX;
5014 /* Try to re-materialize a vec_dup with an existing constant. */
5015 rtx src_elt;
5016 if ((!src_eqv_here || CONSTANT_P (src_eqv_here))
5017 && const_vec_duplicate_p (src, &src_elt))
5019 machine_mode const_mode = GET_MODE_INNER (GET_MODE (src));
5020 struct table_elt *related_elt
5021 = lookup (src_elt, HASH (src_elt, const_mode), const_mode);
5022 if (related_elt)
5024 for (related_elt = related_elt->first_same_value;
5025 related_elt; related_elt = related_elt->next_same_value)
5026 if (REG_P (related_elt->exp))
5028 /* We don't need to compare costs with an existing (constant)
5029 src_eqv_here, since any such src_eqv_here should already be
5030 available in src_const. */
5031 src_eqv_here
5032 = gen_rtx_VEC_DUPLICATE (GET_MODE (src),
5033 related_elt->exp);
5034 break;
5039 if (src == src_folded)
5040 src_folded = 0;
5042 /* At this point, ELT, if nonzero, points to a class of expressions
5043 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5044 and SRC_RELATED, if nonzero, each contain additional equivalent
5045 expressions. Prune these latter expressions by deleting expressions
5046 already in the equivalence class.
5048 Check for an equivalent identical to the destination. If found,
5049 this is the preferred equivalent since it will likely lead to
5050 elimination of the insn. Indicate this by placing it in
5051 `src_related'. */
5053 if (elt)
5054 elt = elt->first_same_value;
5055 for (p = elt; p; p = p->next_same_value)
5057 enum rtx_code code = GET_CODE (p->exp);
5059 /* If the expression is not valid, ignore it. Then we do not
5060 have to check for validity below. In most cases, we can use
5061 `rtx_equal_p', since canonicalization has already been done. */
5062 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5063 continue;
5065 /* Also skip paradoxical subregs, unless that's what we're
5066 looking for. */
5067 if (paradoxical_subreg_p (p->exp)
5068 && ! (src != 0
5069 && GET_CODE (src) == SUBREG
5070 && GET_MODE (src) == GET_MODE (p->exp)
5071 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5072 GET_MODE (SUBREG_REG (p->exp)))))
5073 continue;
5075 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5076 src = 0;
5077 else if (src_folded && GET_CODE (src_folded) == code
5078 && rtx_equal_p (src_folded, p->exp))
5079 src_folded = 0;
5080 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5081 && rtx_equal_p (src_eqv_here, p->exp))
5082 src_eqv_here = 0;
5083 else if (src_related && GET_CODE (src_related) == code
5084 && rtx_equal_p (src_related, p->exp))
5085 src_related = 0;
5087 /* This is the same as the destination of the insns, we want
5088 to prefer it. Copy it to src_related. The code below will
5089 then give it a negative cost. */
5090 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5091 src_related = p->exp;
5094 /* Find the cheapest valid equivalent, trying all the available
5095 possibilities. Prefer items not in the hash table to ones
5096 that are when they are equal cost. Note that we can never
5097 worsen an insn as the current contents will also succeed.
5098 If we find an equivalent identical to the destination, use it as best,
5099 since this insn will probably be eliminated in that case. */
5100 if (src)
5102 if (rtx_equal_p (src, dest))
5103 src_cost = src_regcost = -1;
5104 else
5106 src_cost = COST (src, mode);
5107 src_regcost = approx_reg_cost (src);
5111 if (src_eqv_here)
5113 if (rtx_equal_p (src_eqv_here, dest))
5114 src_eqv_cost = src_eqv_regcost = -1;
5115 else
5117 src_eqv_cost = COST (src_eqv_here, mode);
5118 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5122 if (src_folded)
5124 if (rtx_equal_p (src_folded, dest))
5125 src_folded_cost = src_folded_regcost = -1;
5126 else
5128 src_folded_cost = COST (src_folded, mode);
5129 src_folded_regcost = approx_reg_cost (src_folded);
5133 if (src_related)
5135 if (rtx_equal_p (src_related, dest))
5136 src_related_cost = src_related_regcost = -1;
5137 else
5139 src_related_cost = COST (src_related, mode);
5140 src_related_regcost = approx_reg_cost (src_related);
5142 /* If a const-anchor is used to synthesize a constant that
5143 normally requires multiple instructions then slightly prefer
5144 it over the original sequence. These instructions are likely
5145 to become redundant now. We can't compare against the cost
5146 of src_eqv_here because, on MIPS for example, multi-insn
5147 constants have zero cost; they are assumed to be hoisted from
5148 loops. */
5149 if (src_related_is_const_anchor
5150 && src_related_cost == src_cost
5151 && src_eqv_here)
5152 src_related_cost--;
5156 /* If this was an indirect jump insn, a known label will really be
5157 cheaper even though it looks more expensive. */
5158 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5159 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5161 /* Terminate loop when replacement made. This must terminate since
5162 the current contents will be tested and will always be valid. */
5163 while (1)
5165 rtx trial;
5167 /* Skip invalid entries. */
5168 while (elt && !REG_P (elt->exp)
5169 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5170 elt = elt->next_same_value;
5172 /* A paradoxical subreg would be bad here: it'll be the right
5173 size, but later may be adjusted so that the upper bits aren't
5174 what we want. So reject it. */
5175 if (elt != 0
5176 && paradoxical_subreg_p (elt->exp)
5177 /* It is okay, though, if the rtx we're trying to match
5178 will ignore any of the bits we can't predict. */
5179 && ! (src != 0
5180 && GET_CODE (src) == SUBREG
5181 && GET_MODE (src) == GET_MODE (elt->exp)
5182 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5183 GET_MODE (SUBREG_REG (elt->exp)))))
5185 elt = elt->next_same_value;
5186 continue;
5189 if (elt)
5191 src_elt_cost = elt->cost;
5192 src_elt_regcost = elt->regcost;
5195 /* Find cheapest and skip it for the next time. For items
5196 of equal cost, use this order:
5197 src_folded, src, src_eqv, src_related and hash table entry. */
5198 if (src_folded
5199 && preferable (src_folded_cost, src_folded_regcost,
5200 src_cost, src_regcost) <= 0
5201 && preferable (src_folded_cost, src_folded_regcost,
5202 src_eqv_cost, src_eqv_regcost) <= 0
5203 && preferable (src_folded_cost, src_folded_regcost,
5204 src_related_cost, src_related_regcost) <= 0
5205 && preferable (src_folded_cost, src_folded_regcost,
5206 src_elt_cost, src_elt_regcost) <= 0)
5207 trial = src_folded, src_folded_cost = MAX_COST;
5208 else if (src
5209 && preferable (src_cost, src_regcost,
5210 src_eqv_cost, src_eqv_regcost) <= 0
5211 && preferable (src_cost, src_regcost,
5212 src_related_cost, src_related_regcost) <= 0
5213 && preferable (src_cost, src_regcost,
5214 src_elt_cost, src_elt_regcost) <= 0)
5215 trial = src, src_cost = MAX_COST;
5216 else if (src_eqv_here
5217 && preferable (src_eqv_cost, src_eqv_regcost,
5218 src_related_cost, src_related_regcost) <= 0
5219 && preferable (src_eqv_cost, src_eqv_regcost,
5220 src_elt_cost, src_elt_regcost) <= 0)
5221 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5222 else if (src_related
5223 && preferable (src_related_cost, src_related_regcost,
5224 src_elt_cost, src_elt_regcost) <= 0)
5225 trial = src_related, src_related_cost = MAX_COST;
5226 else
5228 trial = elt->exp;
5229 elt = elt->next_same_value;
5230 src_elt_cost = MAX_COST;
5233 /* Try to optimize
5234 (set (reg:M N) (const_int A))
5235 (set (reg:M2 O) (const_int B))
5236 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5237 (reg:M2 O)). */
5238 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5239 && CONST_INT_P (trial)
5240 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5241 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5242 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5243 && (known_ge
5244 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5245 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
5246 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5247 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5248 <= HOST_BITS_PER_WIDE_INT))
5250 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5251 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5252 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5253 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5254 struct table_elt *dest_elt
5255 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5256 rtx dest_cst = NULL;
5258 if (dest_elt)
5259 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5260 if (p->is_const && CONST_INT_P (p->exp))
5262 dest_cst = p->exp;
5263 break;
5265 if (dest_cst)
5267 HOST_WIDE_INT val = INTVAL (dest_cst);
5268 HOST_WIDE_INT mask;
5269 unsigned int shift;
5270 /* This is the mode of DEST_CST as well. */
5271 scalar_int_mode dest_mode
5272 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
5273 if (BITS_BIG_ENDIAN)
5274 shift = GET_MODE_PRECISION (dest_mode)
5275 - INTVAL (pos) - INTVAL (width);
5276 else
5277 shift = INTVAL (pos);
5278 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5279 mask = HOST_WIDE_INT_M1;
5280 else
5281 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5282 val &= ~(mask << shift);
5283 val |= (INTVAL (trial) & mask) << shift;
5284 val = trunc_int_for_mode (val, dest_mode);
5285 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5286 dest_reg, 1);
5287 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5288 GEN_INT (val), 1);
5289 if (apply_change_group ())
5291 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5292 if (note)
5294 remove_note (insn, note);
5295 df_notes_rescan (insn);
5297 src_eqv = NULL_RTX;
5298 src_eqv_elt = NULL;
5299 src_eqv_volatile = 0;
5300 src_eqv_in_memory = 0;
5301 src_eqv_hash = 0;
5302 repeat = true;
5303 break;
5308 /* We don't normally have an insn matching (set (pc) (pc)), so
5309 check for this separately here. We will delete such an
5310 insn below.
5312 For other cases such as a table jump or conditional jump
5313 where we know the ultimate target, go ahead and replace the
5314 operand. While that may not make a valid insn, we will
5315 reemit the jump below (and also insert any necessary
5316 barriers). */
5317 if (n_sets == 1 && dest == pc_rtx
5318 && (trial == pc_rtx
5319 || (GET_CODE (trial) == LABEL_REF
5320 && ! condjump_p (insn))))
5322 /* Don't substitute non-local labels, this confuses CFG. */
5323 if (GET_CODE (trial) == LABEL_REF
5324 && LABEL_REF_NONLOCAL_P (trial))
5325 continue;
5327 SET_SRC (sets[i].rtl) = trial;
5328 cse_jumps_altered = true;
5329 break;
5332 /* Similarly, lots of targets don't allow no-op
5333 (set (mem x) (mem x)) moves. Even (set (reg x) (reg x))
5334 might be impossible for certain registers (like CC registers). */
5335 else if (n_sets == 1
5336 && !CALL_P (insn)
5337 && (MEM_P (trial) || REG_P (trial))
5338 && rtx_equal_p (trial, dest)
5339 && !side_effects_p (dest)
5340 && (cfun->can_delete_dead_exceptions
5341 || insn_nothrow_p (insn))
5342 /* We can only remove the later store if the earlier aliases
5343 at least all accesses the later one. */
5344 && (!MEM_P (trial)
5345 || ((MEM_ALIAS_SET (dest) == MEM_ALIAS_SET (trial)
5346 || alias_set_subset_of (MEM_ALIAS_SET (dest),
5347 MEM_ALIAS_SET (trial)))
5348 && (!MEM_EXPR (trial)
5349 || refs_same_for_tbaa_p (MEM_EXPR (trial),
5350 MEM_EXPR (dest))))))
5352 SET_SRC (sets[i].rtl) = trial;
5353 noop_insn = true;
5354 break;
5357 /* Reject certain invalid forms of CONST that we create. */
5358 else if (CONSTANT_P (trial)
5359 && GET_CODE (trial) == CONST
5360 /* Reject cases that will cause decode_rtx_const to
5361 die. On the alpha when simplifying a switch, we
5362 get (const (truncate (minus (label_ref)
5363 (label_ref)))). */
5364 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5365 /* Likewise on IA-64, except without the
5366 truncate. */
5367 || (GET_CODE (XEXP (trial, 0)) == MINUS
5368 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5369 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5370 /* Do nothing for this case. */
5373 /* Do not replace anything with a MEM, except the replacement
5374 is a no-op. This allows this loop to terminate. */
5375 else if (MEM_P (trial) && !rtx_equal_p (trial, SET_SRC(sets[i].rtl)))
5376 /* Do nothing for this case. */
5379 /* Look for a substitution that makes a valid insn. */
5380 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5381 trial, 0))
5383 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5385 /* The result of apply_change_group can be ignored; see
5386 canon_reg. */
5388 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5389 apply_change_group ();
5391 break;
5394 /* If the current function uses a constant pool and this is a
5395 constant, try making a pool entry. Put it in src_folded
5396 unless we already have done this since that is where it
5397 likely came from. */
5399 else if (crtl->uses_const_pool
5400 && CONSTANT_P (trial)
5401 && !CONST_INT_P (trial)
5402 && (src_folded == 0 || !MEM_P (src_folded))
5403 && GET_MODE_CLASS (mode) != MODE_CC
5404 && mode != VOIDmode)
5406 src_folded = force_const_mem (mode, trial);
5407 if (src_folded)
5409 src_folded_cost = COST (src_folded, mode);
5410 src_folded_regcost = approx_reg_cost (src_folded);
5415 /* If we changed the insn too much, handle this set from scratch. */
5416 if (repeat)
5418 i--;
5419 continue;
5422 src = SET_SRC (sets[i].rtl);
5424 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5425 However, there is an important exception: If both are registers
5426 that are not the head of their equivalence class, replace SET_SRC
5427 with the head of the class. If we do not do this, we will have
5428 both registers live over a portion of the basic block. This way,
5429 their lifetimes will likely abut instead of overlapping. */
5430 if (REG_P (dest)
5431 && REGNO_QTY_VALID_P (REGNO (dest)))
5433 int dest_q = REG_QTY (REGNO (dest));
5434 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5436 if (dest_ent->mode == GET_MODE (dest)
5437 && dest_ent->first_reg != REGNO (dest)
5438 && REG_P (src) && REGNO (src) == REGNO (dest)
5439 /* Don't do this if the original insn had a hard reg as
5440 SET_SRC or SET_DEST. */
5441 && (!REG_P (sets[i].src)
5442 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5443 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5444 /* We can't call canon_reg here because it won't do anything if
5445 SRC is a hard register. */
5447 int src_q = REG_QTY (REGNO (src));
5448 struct qty_table_elem *src_ent = &qty_table[src_q];
5449 int first = src_ent->first_reg;
5450 rtx new_src
5451 = (first >= FIRST_PSEUDO_REGISTER
5452 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5454 /* We must use validate-change even for this, because this
5455 might be a special no-op instruction, suitable only to
5456 tag notes onto. */
5457 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5459 src = new_src;
5460 /* If we had a constant that is cheaper than what we are now
5461 setting SRC to, use that constant. We ignored it when we
5462 thought we could make this into a no-op. */
5463 if (src_const && COST (src_const, mode) < COST (src, mode)
5464 && validate_change (insn, &SET_SRC (sets[i].rtl),
5465 src_const, 0))
5466 src = src_const;
5471 /* If we made a change, recompute SRC values. */
5472 if (src != sets[i].src)
5474 do_not_record = 0;
5475 hash_arg_in_memory = 0;
5476 sets[i].src = src;
5477 sets[i].src_hash = HASH (src, mode);
5478 sets[i].src_volatile = do_not_record;
5479 sets[i].src_in_memory = hash_arg_in_memory;
5480 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5483 /* If this is a single SET, we are setting a register, and we have an
5484 equivalent constant, we want to add a REG_EQUAL note if the constant
5485 is different from the source. We don't want to do it for a constant
5486 pseudo since verifying that this pseudo hasn't been eliminated is a
5487 pain; moreover such a note won't help anything.
5489 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5490 which can be created for a reference to a compile time computable
5491 entry in a jump table. */
5492 if (n_sets == 1
5493 && REG_P (dest)
5494 && src_const
5495 && !REG_P (src_const)
5496 && !(GET_CODE (src_const) == SUBREG
5497 && REG_P (SUBREG_REG (src_const)))
5498 && !(GET_CODE (src_const) == CONST
5499 && GET_CODE (XEXP (src_const, 0)) == MINUS
5500 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5501 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5502 && !rtx_equal_p (src, src_const))
5504 /* Make sure that the rtx is not shared. */
5505 src_const = copy_rtx (src_const);
5507 /* Record the actual constant value in a REG_EQUAL note,
5508 making a new one if one does not already exist. */
5509 set_unique_reg_note (insn, REG_EQUAL, src_const);
5510 df_notes_rescan (insn);
5513 /* Now deal with the destination. */
5514 do_not_record = 0;
5516 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5517 while (GET_CODE (dest) == SUBREG
5518 || GET_CODE (dest) == ZERO_EXTRACT
5519 || GET_CODE (dest) == STRICT_LOW_PART)
5520 dest = XEXP (dest, 0);
5522 sets[i].inner_dest = dest;
5524 if (MEM_P (dest))
5526 #ifdef PUSH_ROUNDING
5527 /* Stack pushes invalidate the stack pointer. */
5528 rtx addr = XEXP (dest, 0);
5529 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5530 && XEXP (addr, 0) == stack_pointer_rtx)
5531 invalidate (stack_pointer_rtx, VOIDmode);
5532 #endif
5533 dest = fold_rtx (dest, insn);
5536 /* Compute the hash code of the destination now,
5537 before the effects of this instruction are recorded,
5538 since the register values used in the address computation
5539 are those before this instruction. */
5540 sets[i].dest_hash = HASH (dest, mode);
5542 /* Don't enter a bit-field in the hash table
5543 because the value in it after the store
5544 may not equal what was stored, due to truncation. */
5546 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5548 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5550 if (src_const != 0 && CONST_INT_P (src_const)
5551 && CONST_INT_P (width)
5552 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5553 && ! (INTVAL (src_const)
5554 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5555 /* Exception: if the value is constant,
5556 and it won't be truncated, record it. */
5558 else
5560 /* This is chosen so that the destination will be invalidated
5561 but no new value will be recorded.
5562 We must invalidate because sometimes constant
5563 values can be recorded for bitfields. */
5564 sets[i].src_elt = 0;
5565 sets[i].src_volatile = 1;
5566 src_eqv = 0;
5567 src_eqv_elt = 0;
5571 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5572 the insn. */
5573 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5575 /* One less use of the label this insn used to jump to. */
5576 cse_cfg_altered |= delete_insn_and_edges (insn);
5577 cse_jumps_altered = true;
5578 /* No more processing for this set. */
5579 sets[i].rtl = 0;
5582 /* Similarly for no-op moves. */
5583 else if (noop_insn)
5585 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5586 cse_cfg_altered = true;
5587 cse_cfg_altered |= delete_insn_and_edges (insn);
5588 /* No more processing for this set. */
5589 sets[i].rtl = 0;
5592 /* If this SET is now setting PC to a label, we know it used to
5593 be a conditional or computed branch. */
5594 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5595 && !LABEL_REF_NONLOCAL_P (src))
5597 /* We reemit the jump in as many cases as possible just in
5598 case the form of an unconditional jump is significantly
5599 different than a computed jump or conditional jump.
5601 If this insn has multiple sets, then reemitting the
5602 jump is nontrivial. So instead we just force rerecognition
5603 and hope for the best. */
5604 if (n_sets == 1)
5606 rtx_jump_insn *new_rtx;
5607 rtx note;
5609 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5610 new_rtx = emit_jump_insn_before (seq, insn);
5611 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5612 LABEL_NUSES (XEXP (src, 0))++;
5614 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5615 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5616 if (note)
5618 XEXP (note, 1) = NULL_RTX;
5619 REG_NOTES (new_rtx) = note;
5622 cse_cfg_altered |= delete_insn_and_edges (insn);
5623 insn = new_rtx;
5625 else
5626 INSN_CODE (insn) = -1;
5628 /* Do not bother deleting any unreachable code, let jump do it. */
5629 cse_jumps_altered = true;
5630 sets[i].rtl = 0;
5633 /* If destination is volatile, invalidate it and then do no further
5634 processing for this assignment. */
5636 else if (do_not_record)
5638 invalidate_dest (dest);
5639 sets[i].rtl = 0;
5642 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5644 do_not_record = 0;
5645 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5646 if (do_not_record)
5648 invalidate_dest (SET_DEST (sets[i].rtl));
5649 sets[i].rtl = 0;
5654 /* Now enter all non-volatile source expressions in the hash table
5655 if they are not already present.
5656 Record their equivalence classes in src_elt.
5657 This way we can insert the corresponding destinations into
5658 the same classes even if the actual sources are no longer in them
5659 (having been invalidated). */
5661 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5662 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5664 struct table_elt *elt;
5665 struct table_elt *classp = sets[0].src_elt;
5666 rtx dest = SET_DEST (sets[0].rtl);
5667 machine_mode eqvmode = GET_MODE (dest);
5669 if (GET_CODE (dest) == STRICT_LOW_PART)
5671 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5672 classp = 0;
5674 if (insert_regs (src_eqv, classp, 0))
5676 rehash_using_reg (src_eqv);
5677 src_eqv_hash = HASH (src_eqv, eqvmode);
5679 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5680 elt->in_memory = src_eqv_in_memory;
5681 src_eqv_elt = elt;
5683 /* Check to see if src_eqv_elt is the same as a set source which
5684 does not yet have an elt, and if so set the elt of the set source
5685 to src_eqv_elt. */
5686 for (i = 0; i < n_sets; i++)
5687 if (sets[i].rtl && sets[i].src_elt == 0
5688 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5689 sets[i].src_elt = src_eqv_elt;
5692 for (i = 0; i < n_sets; i++)
5693 if (sets[i].rtl && ! sets[i].src_volatile
5694 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5696 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5698 /* REG_EQUAL in setting a STRICT_LOW_PART
5699 gives an equivalent for the entire destination register,
5700 not just for the subreg being stored in now.
5701 This is a more interesting equivalence, so we arrange later
5702 to treat the entire reg as the destination. */
5703 sets[i].src_elt = src_eqv_elt;
5704 sets[i].src_hash = src_eqv_hash;
5706 else
5708 /* Insert source and constant equivalent into hash table, if not
5709 already present. */
5710 struct table_elt *classp = src_eqv_elt;
5711 rtx src = sets[i].src;
5712 rtx dest = SET_DEST (sets[i].rtl);
5713 machine_mode mode
5714 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5716 /* It's possible that we have a source value known to be
5717 constant but don't have a REG_EQUAL note on the insn.
5718 Lack of a note will mean src_eqv_elt will be NULL. This
5719 can happen where we've generated a SUBREG to access a
5720 CONST_INT that is already in a register in a wider mode.
5721 Ensure that the source expression is put in the proper
5722 constant class. */
5723 if (!classp)
5724 classp = sets[i].src_const_elt;
5726 if (sets[i].src_elt == 0)
5728 struct table_elt *elt;
5730 /* Note that these insert_regs calls cannot remove
5731 any of the src_elt's, because they would have failed to
5732 match if not still valid. */
5733 if (insert_regs (src, classp, 0))
5735 rehash_using_reg (src);
5736 sets[i].src_hash = HASH (src, mode);
5738 elt = insert (src, classp, sets[i].src_hash, mode);
5739 elt->in_memory = sets[i].src_in_memory;
5740 /* If inline asm has any clobbers, ensure we only reuse
5741 existing inline asms and never try to put the ASM_OPERANDS
5742 into an insn that isn't inline asm. */
5743 if (GET_CODE (src) == ASM_OPERANDS
5744 && GET_CODE (x) == PARALLEL)
5745 elt->cost = MAX_COST;
5746 sets[i].src_elt = classp = elt;
5748 if (sets[i].src_const && sets[i].src_const_elt == 0
5749 && src != sets[i].src_const
5750 && ! rtx_equal_p (sets[i].src_const, src))
5751 sets[i].src_elt = insert (sets[i].src_const, classp,
5752 sets[i].src_const_hash, mode);
5755 else if (sets[i].src_elt == 0)
5756 /* If we did not insert the source into the hash table (e.g., it was
5757 volatile), note the equivalence class for the REG_EQUAL value, if any,
5758 so that the destination goes into that class. */
5759 sets[i].src_elt = src_eqv_elt;
5761 /* Record destination addresses in the hash table. This allows us to
5762 check if they are invalidated by other sets. */
5763 for (i = 0; i < n_sets; i++)
5765 if (sets[i].rtl)
5767 rtx x = sets[i].inner_dest;
5768 struct table_elt *elt;
5769 machine_mode mode;
5770 unsigned hash;
5772 if (MEM_P (x))
5774 x = XEXP (x, 0);
5775 mode = GET_MODE (x);
5776 hash = HASH (x, mode);
5777 elt = lookup (x, hash, mode);
5778 if (!elt)
5780 if (insert_regs (x, NULL, 0))
5782 rtx dest = SET_DEST (sets[i].rtl);
5784 rehash_using_reg (x);
5785 hash = HASH (x, mode);
5786 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5788 elt = insert (x, NULL, hash, mode);
5791 sets[i].dest_addr_elt = elt;
5793 else
5794 sets[i].dest_addr_elt = NULL;
5798 invalidate_from_clobbers (insn);
5800 /* Some registers are invalidated by subroutine calls. Memory is
5801 invalidated by non-constant calls. */
5803 if (CALL_P (insn))
5805 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5806 invalidate_memory ();
5807 else
5808 /* For const/pure calls, invalidate any argument slots, because
5809 those are owned by the callee. */
5810 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5811 if (GET_CODE (XEXP (tem, 0)) == USE
5812 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5813 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5814 invalidate_for_call (insn);
5817 /* Now invalidate everything set by this instruction.
5818 If a SUBREG or other funny destination is being set,
5819 sets[i].rtl is still nonzero, so here we invalidate the reg
5820 a part of which is being set. */
5822 for (i = 0; i < n_sets; i++)
5823 if (sets[i].rtl)
5825 /* We can't use the inner dest, because the mode associated with
5826 a ZERO_EXTRACT is significant. */
5827 rtx dest = SET_DEST (sets[i].rtl);
5829 /* Needed for registers to remove the register from its
5830 previous quantity's chain.
5831 Needed for memory if this is a nonvarying address, unless
5832 we have just done an invalidate_memory that covers even those. */
5833 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5834 invalidate (dest, VOIDmode);
5835 else if (MEM_P (dest))
5836 invalidate (dest, VOIDmode);
5837 else if (GET_CODE (dest) == STRICT_LOW_PART
5838 || GET_CODE (dest) == ZERO_EXTRACT)
5839 invalidate (XEXP (dest, 0), GET_MODE (dest));
5842 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5843 the regs restored by the longjmp come from a later time
5844 than the setjmp. */
5845 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5847 flush_hash_table ();
5848 goto done;
5851 /* Make sure registers mentioned in destinations
5852 are safe for use in an expression to be inserted.
5853 This removes from the hash table
5854 any invalid entry that refers to one of these registers.
5856 We don't care about the return value from mention_regs because
5857 we are going to hash the SET_DEST values unconditionally. */
5859 for (i = 0; i < n_sets; i++)
5861 if (sets[i].rtl)
5863 rtx x = SET_DEST (sets[i].rtl);
5865 if (!REG_P (x))
5866 mention_regs (x);
5867 else
5869 /* We used to rely on all references to a register becoming
5870 inaccessible when a register changes to a new quantity,
5871 since that changes the hash code. However, that is not
5872 safe, since after HASH_SIZE new quantities we get a
5873 hash 'collision' of a register with its own invalid
5874 entries. And since SUBREGs have been changed not to
5875 change their hash code with the hash code of the register,
5876 it wouldn't work any longer at all. So we have to check
5877 for any invalid references lying around now.
5878 This code is similar to the REG case in mention_regs,
5879 but it knows that reg_tick has been incremented, and
5880 it leaves reg_in_table as -1 . */
5881 unsigned int regno = REGNO (x);
5882 unsigned int endregno = END_REGNO (x);
5883 unsigned int i;
5885 for (i = regno; i < endregno; i++)
5887 if (REG_IN_TABLE (i) >= 0)
5889 remove_invalid_refs (i);
5890 REG_IN_TABLE (i) = -1;
5897 /* We may have just removed some of the src_elt's from the hash table.
5898 So replace each one with the current head of the same class.
5899 Also check if destination addresses have been removed. */
5901 for (i = 0; i < n_sets; i++)
5902 if (sets[i].rtl)
5904 if (sets[i].dest_addr_elt
5905 && sets[i].dest_addr_elt->first_same_value == 0)
5907 /* The elt was removed, which means this destination is not
5908 valid after this instruction. */
5909 sets[i].rtl = NULL_RTX;
5911 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5912 /* If elt was removed, find current head of same class,
5913 or 0 if nothing remains of that class. */
5915 struct table_elt *elt = sets[i].src_elt;
5917 while (elt && elt->prev_same_value)
5918 elt = elt->prev_same_value;
5920 while (elt && elt->first_same_value == 0)
5921 elt = elt->next_same_value;
5922 sets[i].src_elt = elt ? elt->first_same_value : 0;
5926 /* Now insert the destinations into their equivalence classes. */
5928 for (i = 0; i < n_sets; i++)
5929 if (sets[i].rtl)
5931 rtx dest = SET_DEST (sets[i].rtl);
5932 struct table_elt *elt;
5934 /* Don't record value if we are not supposed to risk allocating
5935 floating-point values in registers that might be wider than
5936 memory. */
5937 if ((flag_float_store
5938 && MEM_P (dest)
5939 && FLOAT_MODE_P (GET_MODE (dest)))
5940 /* Don't record BLKmode values, because we don't know the
5941 size of it, and can't be sure that other BLKmode values
5942 have the same or smaller size. */
5943 || GET_MODE (dest) == BLKmode
5944 /* If we didn't put a REG_EQUAL value or a source into the hash
5945 table, there is no point is recording DEST. */
5946 || sets[i].src_elt == 0)
5947 continue;
5949 /* STRICT_LOW_PART isn't part of the value BEING set,
5950 and neither is the SUBREG inside it.
5951 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5952 if (GET_CODE (dest) == STRICT_LOW_PART)
5953 dest = SUBREG_REG (XEXP (dest, 0));
5955 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5956 /* Registers must also be inserted into chains for quantities. */
5957 if (insert_regs (dest, sets[i].src_elt, 1))
5959 /* If `insert_regs' changes something, the hash code must be
5960 recalculated. */
5961 rehash_using_reg (dest);
5962 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5965 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5966 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5967 if (paradoxical_subreg_p (dest))
5968 continue;
5970 elt = insert (dest, sets[i].src_elt,
5971 sets[i].dest_hash, GET_MODE (dest));
5973 /* If this is a constant, insert the constant anchors with the
5974 equivalent register-offset expressions using register DEST. */
5975 if (targetm.const_anchor
5976 && REG_P (dest)
5977 && SCALAR_INT_MODE_P (GET_MODE (dest))
5978 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5979 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5981 elt->in_memory = (MEM_P (sets[i].inner_dest)
5982 && !MEM_READONLY_P (sets[i].inner_dest));
5984 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5985 narrower than M2, and both M1 and M2 are the same number of words,
5986 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5987 make that equivalence as well.
5989 However, BAR may have equivalences for which gen_lowpart
5990 will produce a simpler value than gen_lowpart applied to
5991 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5992 BAR's equivalences. If we don't get a simplified form, make
5993 the SUBREG. It will not be used in an equivalence, but will
5994 cause two similar assignments to be detected.
5996 Note the loop below will find SUBREG_REG (DEST) since we have
5997 already entered SRC and DEST of the SET in the table. */
5999 if (GET_CODE (dest) == SUBREG
6000 && (known_equal_after_align_down
6001 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6002 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6003 UNITS_PER_WORD))
6004 && !partial_subreg_p (dest)
6005 && sets[i].src_elt != 0)
6007 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6008 struct table_elt *elt, *classp = 0;
6010 for (elt = sets[i].src_elt->first_same_value; elt;
6011 elt = elt->next_same_value)
6013 rtx new_src = 0;
6014 unsigned src_hash;
6015 struct table_elt *src_elt;
6017 /* Ignore invalid entries. */
6018 if (!REG_P (elt->exp)
6019 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6020 continue;
6022 /* We may have already been playing subreg games. If the
6023 mode is already correct for the destination, use it. */
6024 if (GET_MODE (elt->exp) == new_mode)
6025 new_src = elt->exp;
6026 else
6028 poly_uint64 byte
6029 = subreg_lowpart_offset (new_mode, GET_MODE (dest));
6030 new_src = simplify_gen_subreg (new_mode, elt->exp,
6031 GET_MODE (dest), byte);
6034 /* The call to simplify_gen_subreg fails if the value
6035 is VOIDmode, yet we can't do any simplification, e.g.
6036 for EXPR_LISTs denoting function call results.
6037 It is invalid to construct a SUBREG with a VOIDmode
6038 SUBREG_REG, hence a zero new_src means we can't do
6039 this substitution. */
6040 if (! new_src)
6041 continue;
6043 src_hash = HASH (new_src, new_mode);
6044 src_elt = lookup (new_src, src_hash, new_mode);
6046 /* Put the new source in the hash table is if isn't
6047 already. */
6048 if (src_elt == 0)
6050 if (insert_regs (new_src, classp, 0))
6052 rehash_using_reg (new_src);
6053 src_hash = HASH (new_src, new_mode);
6055 src_elt = insert (new_src, classp, src_hash, new_mode);
6056 src_elt->in_memory = elt->in_memory;
6057 if (GET_CODE (new_src) == ASM_OPERANDS
6058 && elt->cost == MAX_COST)
6059 src_elt->cost = MAX_COST;
6061 else if (classp && classp != src_elt->first_same_value)
6062 /* Show that two things that we've seen before are
6063 actually the same. */
6064 merge_equiv_classes (src_elt, classp);
6066 classp = src_elt->first_same_value;
6067 /* Ignore invalid entries. */
6068 while (classp
6069 && !REG_P (classp->exp)
6070 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6071 classp = classp->next_same_value;
6076 /* Special handling for (set REG0 REG1) where REG0 is the
6077 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6078 be used in the sequel, so (if easily done) change this insn to
6079 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6080 that computed their value. Then REG1 will become a dead store
6081 and won't cloud the situation for later optimizations.
6083 Do not make this change if REG1 is a hard register, because it will
6084 then be used in the sequel and we may be changing a two-operand insn
6085 into a three-operand insn.
6087 Also do not do this if we are operating on a copy of INSN. */
6089 if (n_sets == 1 && sets[0].rtl)
6090 try_back_substitute_reg (sets[0].rtl, insn);
6092 done:;
6095 /* Remove from the hash table all expressions that reference memory. */
6097 static void
6098 invalidate_memory (void)
6100 int i;
6101 struct table_elt *p, *next;
6103 for (i = 0; i < HASH_SIZE; i++)
6104 for (p = table[i]; p; p = next)
6106 next = p->next_same_hash;
6107 if (p->in_memory)
6108 remove_from_table (p, i);
6112 /* Perform invalidation on the basis of everything about INSN,
6113 except for invalidating the actual places that are SET in it.
6114 This includes the places CLOBBERed, and anything that might
6115 alias with something that is SET or CLOBBERed. */
6117 static void
6118 invalidate_from_clobbers (rtx_insn *insn)
6120 rtx x = PATTERN (insn);
6122 if (GET_CODE (x) == CLOBBER)
6124 rtx ref = XEXP (x, 0);
6125 if (ref)
6127 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6128 || MEM_P (ref))
6129 invalidate (ref, VOIDmode);
6130 else if (GET_CODE (ref) == STRICT_LOW_PART
6131 || GET_CODE (ref) == ZERO_EXTRACT)
6132 invalidate (XEXP (ref, 0), GET_MODE (ref));
6135 else if (GET_CODE (x) == PARALLEL)
6137 int i;
6138 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6140 rtx y = XVECEXP (x, 0, i);
6141 if (GET_CODE (y) == CLOBBER)
6143 rtx ref = XEXP (y, 0);
6144 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6145 || MEM_P (ref))
6146 invalidate (ref, VOIDmode);
6147 else if (GET_CODE (ref) == STRICT_LOW_PART
6148 || GET_CODE (ref) == ZERO_EXTRACT)
6149 invalidate (XEXP (ref, 0), GET_MODE (ref));
6155 /* Perform invalidation on the basis of everything about INSN.
6156 This includes the places CLOBBERed, and anything that might
6157 alias with something that is SET or CLOBBERed. */
6159 static void
6160 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6162 rtx tem;
6163 rtx x = PATTERN (insn);
6165 if (CALL_P (insn))
6167 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6169 rtx temx = XEXP (tem, 0);
6170 if (GET_CODE (temx) == CLOBBER)
6171 invalidate (SET_DEST (temx), VOIDmode);
6175 /* Ensure we invalidate the destination register of a CALL insn.
6176 This is necessary for machines where this register is a fixed_reg,
6177 because no other code would invalidate it. */
6178 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6179 invalidate (SET_DEST (x), VOIDmode);
6181 else if (GET_CODE (x) == PARALLEL)
6183 int i;
6185 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6187 rtx y = XVECEXP (x, 0, i);
6188 if (GET_CODE (y) == CLOBBER)
6190 rtx clobbered = XEXP (y, 0);
6192 if (REG_P (clobbered)
6193 || GET_CODE (clobbered) == SUBREG)
6194 invalidate (clobbered, VOIDmode);
6195 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6196 || GET_CODE (clobbered) == ZERO_EXTRACT)
6197 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6199 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6200 invalidate (SET_DEST (y), VOIDmode);
6205 static rtx cse_process_note (rtx);
6207 /* A simplify_replace_fn_rtx callback for cse_process_note. Process X,
6208 part of the REG_NOTES of an insn. Replace any registers with either
6209 an equivalent constant or the canonical form of the register.
6210 Only replace addresses if the containing MEM remains valid.
6212 Return the replacement for X, or null if it should be simplified
6213 recursively. */
6215 static rtx
6216 cse_process_note_1 (rtx x, const_rtx, void *)
6218 if (MEM_P (x))
6220 validate_change (x, &XEXP (x, 0), cse_process_note (XEXP (x, 0)), false);
6221 return x;
6224 if (REG_P (x))
6226 int i = REG_QTY (REGNO (x));
6228 /* Return a constant or a constant register. */
6229 if (REGNO_QTY_VALID_P (REGNO (x)))
6231 struct qty_table_elem *ent = &qty_table[i];
6233 if (ent->const_rtx != NULL_RTX
6234 && (CONSTANT_P (ent->const_rtx)
6235 || REG_P (ent->const_rtx)))
6237 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6238 if (new_rtx)
6239 return copy_rtx (new_rtx);
6243 /* Otherwise, canonicalize this register. */
6244 return canon_reg (x, NULL);
6247 return NULL_RTX;
6250 /* Process X, part of the REG_NOTES of an insn. Replace any registers in it
6251 with either an equivalent constant or the canonical form of the register.
6252 Only replace addresses if the containing MEM remains valid. */
6254 static rtx
6255 cse_process_note (rtx x)
6257 return simplify_replace_fn_rtx (x, NULL_RTX, cse_process_note_1, NULL);
6261 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6263 DATA is a pointer to a struct cse_basic_block_data, that is used to
6264 describe the path.
6265 It is filled with a queue of basic blocks, starting with FIRST_BB
6266 and following a trace through the CFG.
6268 If all paths starting at FIRST_BB have been followed, or no new path
6269 starting at FIRST_BB can be constructed, this function returns FALSE.
6270 Otherwise, DATA->path is filled and the function returns TRUE indicating
6271 that a path to follow was found.
6273 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6274 block in the path will be FIRST_BB. */
6276 static bool
6277 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6278 int follow_jumps)
6280 basic_block bb;
6281 edge e;
6282 int path_size;
6284 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6286 /* See if there is a previous path. */
6287 path_size = data->path_size;
6289 /* There is a previous path. Make sure it started with FIRST_BB. */
6290 if (path_size)
6291 gcc_assert (data->path[0].bb == first_bb);
6293 /* There was only one basic block in the last path. Clear the path and
6294 return, so that paths starting at another basic block can be tried. */
6295 if (path_size == 1)
6297 path_size = 0;
6298 goto done;
6301 /* If the path was empty from the beginning, construct a new path. */
6302 if (path_size == 0)
6303 data->path[path_size++].bb = first_bb;
6304 else
6306 /* Otherwise, path_size must be equal to or greater than 2, because
6307 a previous path exists that is at least two basic blocks long.
6309 Update the previous branch path, if any. If the last branch was
6310 previously along the branch edge, take the fallthrough edge now. */
6311 while (path_size >= 2)
6313 basic_block last_bb_in_path, previous_bb_in_path;
6314 edge e;
6316 --path_size;
6317 last_bb_in_path = data->path[path_size].bb;
6318 previous_bb_in_path = data->path[path_size - 1].bb;
6320 /* If we previously followed a path along the branch edge, try
6321 the fallthru edge now. */
6322 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6323 && any_condjump_p (BB_END (previous_bb_in_path))
6324 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6325 && e == BRANCH_EDGE (previous_bb_in_path))
6327 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6328 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6329 && single_pred_p (bb)
6330 /* We used to assert here that we would only see blocks
6331 that we have not visited yet. But we may end up
6332 visiting basic blocks twice if the CFG has changed
6333 in this run of cse_main, because when the CFG changes
6334 the topological sort of the CFG also changes. A basic
6335 blocks that previously had more than two predecessors
6336 may now have a single predecessor, and become part of
6337 a path that starts at another basic block.
6339 We still want to visit each basic block only once, so
6340 halt the path here if we have already visited BB. */
6341 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6343 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6344 data->path[path_size++].bb = bb;
6345 break;
6349 data->path[path_size].bb = NULL;
6352 /* If only one block remains in the path, bail. */
6353 if (path_size == 1)
6355 path_size = 0;
6356 goto done;
6360 /* Extend the path if possible. */
6361 if (follow_jumps)
6363 bb = data->path[path_size - 1].bb;
6364 while (bb && path_size < param_max_cse_path_length)
6366 if (single_succ_p (bb))
6367 e = single_succ_edge (bb);
6368 else if (EDGE_COUNT (bb->succs) == 2
6369 && any_condjump_p (BB_END (bb)))
6371 /* First try to follow the branch. If that doesn't lead
6372 to a useful path, follow the fallthru edge. */
6373 e = BRANCH_EDGE (bb);
6374 if (!single_pred_p (e->dest))
6375 e = FALLTHRU_EDGE (bb);
6377 else
6378 e = NULL;
6380 if (e
6381 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6382 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6383 && single_pred_p (e->dest)
6384 /* Avoid visiting basic blocks twice. The large comment
6385 above explains why this can happen. */
6386 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6388 basic_block bb2 = e->dest;
6389 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6390 data->path[path_size++].bb = bb2;
6391 bb = bb2;
6393 else
6394 bb = NULL;
6398 done:
6399 data->path_size = path_size;
6400 return path_size != 0;
6403 /* Dump the path in DATA to file F. NSETS is the number of sets
6404 in the path. */
6406 static void
6407 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6409 int path_entry;
6411 fprintf (f, ";; Following path with %d sets: ", nsets);
6412 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6413 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6414 fputc ('\n', f);
6415 fflush (f);
6419 /* Return true if BB has exception handling successor edges. */
6421 static bool
6422 have_eh_succ_edges (basic_block bb)
6424 edge e;
6425 edge_iterator ei;
6427 FOR_EACH_EDGE (e, ei, bb->succs)
6428 if (e->flags & EDGE_EH)
6429 return true;
6431 return false;
6435 /* Scan to the end of the path described by DATA. Return an estimate of
6436 the total number of SETs of all insns in the path. */
6438 static void
6439 cse_prescan_path (struct cse_basic_block_data *data)
6441 int nsets = 0;
6442 int path_size = data->path_size;
6443 int path_entry;
6445 /* Scan to end of each basic block in the path. */
6446 for (path_entry = 0; path_entry < path_size; path_entry++)
6448 basic_block bb;
6449 rtx_insn *insn;
6451 bb = data->path[path_entry].bb;
6453 FOR_BB_INSNS (bb, insn)
6455 if (!INSN_P (insn))
6456 continue;
6458 /* A PARALLEL can have lots of SETs in it,
6459 especially if it is really an ASM_OPERANDS. */
6460 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6461 nsets += XVECLEN (PATTERN (insn), 0);
6462 else
6463 nsets += 1;
6467 data->nsets = nsets;
6470 /* Return true if the pattern of INSN uses a LABEL_REF for which
6471 there isn't a REG_LABEL_OPERAND note. */
6473 static bool
6474 check_for_label_ref (rtx_insn *insn)
6476 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6477 note for it, we must rerun jump since it needs to place the note. If
6478 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6479 don't do this since no REG_LABEL_OPERAND will be added. */
6480 subrtx_iterator::array_type array;
6481 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6483 const_rtx x = *iter;
6484 if (GET_CODE (x) == LABEL_REF
6485 && !LABEL_REF_NONLOCAL_P (x)
6486 && (!JUMP_P (insn)
6487 || !label_is_jump_target_p (label_ref_label (x), insn))
6488 && LABEL_P (label_ref_label (x))
6489 && INSN_UID (label_ref_label (x)) != 0
6490 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6491 return true;
6493 return false;
6496 /* Process a single extended basic block described by EBB_DATA. */
6498 static void
6499 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6501 int path_size = ebb_data->path_size;
6502 int path_entry;
6503 int num_insns = 0;
6505 /* Allocate the space needed by qty_table. */
6506 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6508 new_basic_block ();
6509 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6510 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6511 for (path_entry = 0; path_entry < path_size; path_entry++)
6513 basic_block bb;
6514 rtx_insn *insn;
6516 bb = ebb_data->path[path_entry].bb;
6518 /* Invalidate recorded information for eh regs if there is an EH
6519 edge pointing to that bb. */
6520 if (bb_has_eh_pred (bb))
6522 df_ref def;
6524 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6525 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6526 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6529 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6530 FOR_BB_INSNS (bb, insn)
6532 /* If we have processed 1,000 insns, flush the hash table to
6533 avoid extreme quadratic behavior. We must not include NOTEs
6534 in the count since there may be more of them when generating
6535 debugging information. If we clear the table at different
6536 times, code generated with -g -O might be different than code
6537 generated with -O but not -g.
6539 FIXME: This is a real kludge and needs to be done some other
6540 way. */
6541 if (NONDEBUG_INSN_P (insn)
6542 && num_insns++ > param_max_cse_insns)
6544 flush_hash_table ();
6545 num_insns = 0;
6548 if (INSN_P (insn))
6550 /* Process notes first so we have all notes in canonical forms
6551 when looking for duplicate operations. */
6552 bool changed = false;
6553 for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
6554 if (REG_NOTE_KIND (note) == REG_EQUAL)
6556 rtx newval = cse_process_note (XEXP (note, 0));
6557 if (newval != XEXP (note, 0))
6559 XEXP (note, 0) = newval;
6560 changed = true;
6563 if (changed)
6564 df_notes_rescan (insn);
6566 cse_insn (insn);
6568 /* If we haven't already found an insn where we added a LABEL_REF,
6569 check this one. */
6570 if (INSN_P (insn) && !recorded_label_ref
6571 && check_for_label_ref (insn))
6572 recorded_label_ref = true;
6576 /* With non-call exceptions, we are not always able to update
6577 the CFG properly inside cse_insn. So clean up possibly
6578 redundant EH edges here. */
6579 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6580 cse_cfg_altered |= purge_dead_edges (bb);
6582 /* If we changed a conditional jump, we may have terminated
6583 the path we are following. Check that by verifying that
6584 the edge we would take still exists. If the edge does
6585 not exist anymore, purge the remainder of the path.
6586 Note that this will cause us to return to the caller. */
6587 if (path_entry < path_size - 1)
6589 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6590 if (!find_edge (bb, next_bb))
6594 path_size--;
6596 /* If we truncate the path, we must also reset the
6597 visited bit on the remaining blocks in the path,
6598 or we will never visit them at all. */
6599 bitmap_clear_bit (cse_visited_basic_blocks,
6600 ebb_data->path[path_size].bb->index);
6601 ebb_data->path[path_size].bb = NULL;
6603 while (path_size - 1 != path_entry);
6604 ebb_data->path_size = path_size;
6608 /* If this is a conditional jump insn, record any known
6609 equivalences due to the condition being tested. */
6610 insn = BB_END (bb);
6611 if (path_entry < path_size - 1
6612 && EDGE_COUNT (bb->succs) == 2
6613 && JUMP_P (insn)
6614 && single_set (insn)
6615 && any_condjump_p (insn))
6617 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6618 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6619 record_jump_equiv (insn, taken);
6623 gcc_assert (next_qty <= max_qty);
6625 free (qty_table);
6629 /* Perform cse on the instructions of a function.
6630 F is the first instruction.
6631 NREGS is one plus the highest pseudo-reg number used in the instruction.
6633 Return 2 if jump optimizations should be redone due to simplifications
6634 in conditional jump instructions.
6635 Return 1 if the CFG should be cleaned up because it has been modified.
6636 Return 0 otherwise. */
6638 static int
6639 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6641 struct cse_basic_block_data ebb_data;
6642 basic_block bb;
6643 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6644 int i, n_blocks;
6646 /* CSE doesn't use dominane info but can invalidate it in different ways.
6647 For simplicity free dominance info here. */
6648 free_dominance_info (CDI_DOMINATORS);
6650 df_set_flags (DF_LR_RUN_DCE);
6651 df_note_add_problem ();
6652 df_analyze ();
6653 df_set_flags (DF_DEFER_INSN_RESCAN);
6655 reg_scan (get_insns (), max_reg_num ());
6656 init_cse_reg_info (nregs);
6658 ebb_data.path = XNEWVEC (struct branch_path,
6659 param_max_cse_path_length);
6661 cse_cfg_altered = false;
6662 cse_jumps_altered = false;
6663 recorded_label_ref = false;
6664 ebb_data.path_size = 0;
6665 ebb_data.nsets = 0;
6666 rtl_hooks = cse_rtl_hooks;
6668 init_recog ();
6669 init_alias_analysis ();
6671 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6673 /* Set up the table of already visited basic blocks. */
6674 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6675 bitmap_clear (cse_visited_basic_blocks);
6677 /* Loop over basic blocks in reverse completion order (RPO),
6678 excluding the ENTRY and EXIT blocks. */
6679 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6680 i = 0;
6681 while (i < n_blocks)
6683 /* Find the first block in the RPO queue that we have not yet
6684 processed before. */
6687 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6689 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6690 && i < n_blocks);
6692 /* Find all paths starting with BB, and process them. */
6693 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6695 /* Pre-scan the path. */
6696 cse_prescan_path (&ebb_data);
6698 /* If this basic block has no sets, skip it. */
6699 if (ebb_data.nsets == 0)
6700 continue;
6702 /* Get a reasonable estimate for the maximum number of qty's
6703 needed for this path. For this, we take the number of sets
6704 and multiply that by MAX_RECOG_OPERANDS. */
6705 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6707 /* Dump the path we're about to process. */
6708 if (dump_file)
6709 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6711 cse_extended_basic_block (&ebb_data);
6715 /* Clean up. */
6716 end_alias_analysis ();
6717 free (reg_eqv_table);
6718 free (ebb_data.path);
6719 sbitmap_free (cse_visited_basic_blocks);
6720 free (rc_order);
6721 rtl_hooks = general_rtl_hooks;
6723 if (cse_jumps_altered || recorded_label_ref)
6724 return 2;
6725 else if (cse_cfg_altered)
6726 return 1;
6727 else
6728 return 0;
6731 /* Count the number of times registers are used (not set) in X.
6732 COUNTS is an array in which we accumulate the count, INCR is how much
6733 we count each register usage.
6735 Don't count a usage of DEST, which is the SET_DEST of a SET which
6736 contains X in its SET_SRC. This is because such a SET does not
6737 modify the liveness of DEST.
6738 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6739 We must then count uses of a SET_DEST regardless, because the insn can't be
6740 deleted here. */
6742 static void
6743 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6745 enum rtx_code code;
6746 rtx note;
6747 const char *fmt;
6748 int i, j;
6750 if (x == 0)
6751 return;
6753 switch (code = GET_CODE (x))
6755 case REG:
6756 if (x != dest)
6757 counts[REGNO (x)] += incr;
6758 return;
6760 case PC:
6761 case CONST:
6762 CASE_CONST_ANY:
6763 case SYMBOL_REF:
6764 case LABEL_REF:
6765 return;
6767 case CLOBBER:
6768 /* If we are clobbering a MEM, mark any registers inside the address
6769 as being used. */
6770 if (MEM_P (XEXP (x, 0)))
6771 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6772 return;
6774 case SET:
6775 /* Unless we are setting a REG, count everything in SET_DEST. */
6776 if (!REG_P (SET_DEST (x)))
6777 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6778 count_reg_usage (SET_SRC (x), counts,
6779 dest ? dest : SET_DEST (x),
6780 incr);
6781 return;
6783 case DEBUG_INSN:
6784 return;
6786 case CALL_INSN:
6787 case INSN:
6788 case JUMP_INSN:
6789 /* We expect dest to be NULL_RTX here. If the insn may throw,
6790 or if it cannot be deleted due to side-effects, mark this fact
6791 by setting DEST to pc_rtx. */
6792 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6793 || side_effects_p (PATTERN (x)))
6794 dest = pc_rtx;
6795 if (code == CALL_INSN)
6796 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6797 count_reg_usage (PATTERN (x), counts, dest, incr);
6799 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6800 use them. */
6802 note = find_reg_equal_equiv_note (x);
6803 if (note)
6805 rtx eqv = XEXP (note, 0);
6807 if (GET_CODE (eqv) == EXPR_LIST)
6808 /* This REG_EQUAL note describes the result of a function call.
6809 Process all the arguments. */
6812 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6813 eqv = XEXP (eqv, 1);
6815 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6816 else
6817 count_reg_usage (eqv, counts, dest, incr);
6819 return;
6821 case EXPR_LIST:
6822 if (REG_NOTE_KIND (x) == REG_EQUAL
6823 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6824 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6825 involving registers in the address. */
6826 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6827 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6829 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6830 return;
6832 case ASM_OPERANDS:
6833 /* Iterate over just the inputs, not the constraints as well. */
6834 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6835 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6836 return;
6838 case INSN_LIST:
6839 case INT_LIST:
6840 gcc_unreachable ();
6842 default:
6843 break;
6846 fmt = GET_RTX_FORMAT (code);
6847 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6849 if (fmt[i] == 'e')
6850 count_reg_usage (XEXP (x, i), counts, dest, incr);
6851 else if (fmt[i] == 'E')
6852 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6853 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6857 /* Return true if X is a dead register. */
6859 static inline int
6860 is_dead_reg (const_rtx x, int *counts)
6862 return (REG_P (x)
6863 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6864 && counts[REGNO (x)] == 0);
6867 /* Return true if set is live. */
6868 static bool
6869 set_live_p (rtx set, int *counts)
6871 if (set_noop_p (set))
6872 return false;
6874 if (!is_dead_reg (SET_DEST (set), counts)
6875 || side_effects_p (SET_SRC (set)))
6876 return true;
6878 return false;
6881 /* Return true if insn is live. */
6883 static bool
6884 insn_live_p (rtx_insn *insn, int *counts)
6886 int i;
6887 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6888 return true;
6889 else if (GET_CODE (PATTERN (insn)) == SET)
6890 return set_live_p (PATTERN (insn), counts);
6891 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6893 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6895 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6897 if (GET_CODE (elt) == SET)
6899 if (set_live_p (elt, counts))
6900 return true;
6902 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6903 return true;
6905 return false;
6907 else if (DEBUG_INSN_P (insn))
6909 rtx_insn *next;
6911 if (DEBUG_MARKER_INSN_P (insn))
6912 return true;
6914 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6915 if (NOTE_P (next))
6916 continue;
6917 else if (!DEBUG_INSN_P (next))
6918 return true;
6919 /* If we find an inspection point, such as a debug begin stmt,
6920 we want to keep the earlier debug insn. */
6921 else if (DEBUG_MARKER_INSN_P (next))
6922 return true;
6923 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6924 return false;
6926 return true;
6928 else
6929 return true;
6932 /* Count the number of stores into pseudo. Callback for note_stores. */
6934 static void
6935 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6937 int *counts = (int *) data;
6938 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6939 counts[REGNO (x)]++;
6942 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6943 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6944 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6945 Set *SEEN_REPL to true if we see a dead register that does have
6946 a replacement. */
6948 static bool
6949 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6950 bool *seen_repl)
6952 subrtx_iterator::array_type array;
6953 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6955 const_rtx x = *iter;
6956 if (is_dead_reg (x, counts))
6958 if (replacements && replacements[REGNO (x)] != NULL_RTX)
6959 *seen_repl = true;
6960 else
6961 return true;
6964 return false;
6967 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6968 Callback for simplify_replace_fn_rtx. */
6970 static rtx
6971 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6973 rtx *replacements = (rtx *) data;
6975 if (REG_P (x)
6976 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6977 && replacements[REGNO (x)] != NULL_RTX)
6979 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6980 return replacements[REGNO (x)];
6981 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6982 GET_MODE (replacements[REGNO (x)]));
6984 return NULL_RTX;
6987 /* Scan all the insns and delete any that are dead; i.e., they store a register
6988 that is never used or they copy a register to itself.
6990 This is used to remove insns made obviously dead by cse, loop or other
6991 optimizations. It improves the heuristics in loop since it won't try to
6992 move dead invariants out of loops or make givs for dead quantities. The
6993 remaining passes of the compilation are also sped up. */
6996 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
6998 int *counts;
6999 rtx_insn *insn, *prev;
7000 rtx *replacements = NULL;
7001 int ndead = 0;
7003 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7004 /* First count the number of times each register is used. */
7005 if (MAY_HAVE_DEBUG_BIND_INSNS)
7007 counts = XCNEWVEC (int, nreg * 3);
7008 for (insn = insns; insn; insn = NEXT_INSN (insn))
7009 if (DEBUG_BIND_INSN_P (insn))
7010 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7011 NULL_RTX, 1);
7012 else if (INSN_P (insn))
7014 count_reg_usage (insn, counts, NULL_RTX, 1);
7015 note_stores (insn, count_stores, counts + nreg * 2);
7017 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7018 First one counts how many times each pseudo is used outside
7019 of debug insns, second counts how many times each pseudo is
7020 used in debug insns and third counts how many times a pseudo
7021 is stored. */
7023 else
7025 counts = XCNEWVEC (int, nreg);
7026 for (insn = insns; insn; insn = NEXT_INSN (insn))
7027 if (INSN_P (insn))
7028 count_reg_usage (insn, counts, NULL_RTX, 1);
7029 /* If no debug insns can be present, COUNTS is just an array
7030 which counts how many times each pseudo is used. */
7032 /* Pseudo PIC register should be considered as used due to possible
7033 new usages generated. */
7034 if (!reload_completed
7035 && pic_offset_table_rtx
7036 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7037 counts[REGNO (pic_offset_table_rtx)]++;
7038 /* Go from the last insn to the first and delete insns that only set unused
7039 registers or copy a register to itself. As we delete an insn, remove
7040 usage counts for registers it uses.
7042 The first jump optimization pass may leave a real insn as the last
7043 insn in the function. We must not skip that insn or we may end
7044 up deleting code that is not really dead.
7046 If some otherwise unused register is only used in DEBUG_INSNs,
7047 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7048 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7049 has been created for the unused register, replace it with
7050 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7051 for (insn = get_last_insn (); insn; insn = prev)
7053 int live_insn = 0;
7055 prev = PREV_INSN (insn);
7056 if (!INSN_P (insn))
7057 continue;
7059 live_insn = insn_live_p (insn, counts);
7061 /* If this is a dead insn, delete it and show registers in it aren't
7062 being used. */
7064 if (! live_insn && dbg_cnt (delete_trivial_dead))
7066 if (DEBUG_INSN_P (insn))
7068 if (DEBUG_BIND_INSN_P (insn))
7069 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7070 NULL_RTX, -1);
7072 else
7074 rtx set;
7075 if (MAY_HAVE_DEBUG_BIND_INSNS
7076 && (set = single_set (insn)) != NULL_RTX
7077 && is_dead_reg (SET_DEST (set), counts)
7078 /* Used at least once in some DEBUG_INSN. */
7079 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7080 /* And set exactly once. */
7081 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7082 && !side_effects_p (SET_SRC (set))
7083 && asm_noperands (PATTERN (insn)) < 0)
7085 rtx dval, bind_var_loc;
7086 rtx_insn *bind;
7088 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7089 dval = make_debug_expr_from_rtl (SET_DEST (set));
7091 /* Emit a debug bind insn before the insn in which
7092 reg dies. */
7093 bind_var_loc =
7094 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7095 DEBUG_EXPR_TREE_DECL (dval),
7096 SET_SRC (set),
7097 VAR_INIT_STATUS_INITIALIZED);
7098 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7100 bind = emit_debug_insn_before (bind_var_loc, insn);
7101 df_insn_rescan (bind);
7103 if (replacements == NULL)
7104 replacements = XCNEWVEC (rtx, nreg);
7105 replacements[REGNO (SET_DEST (set))] = dval;
7108 count_reg_usage (insn, counts, NULL_RTX, -1);
7109 ndead++;
7111 cse_cfg_altered |= delete_insn_and_edges (insn);
7115 if (MAY_HAVE_DEBUG_BIND_INSNS)
7117 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7118 if (DEBUG_BIND_INSN_P (insn))
7120 /* If this debug insn references a dead register that wasn't replaced
7121 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7122 bool seen_repl = false;
7123 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7124 counts, replacements, &seen_repl))
7126 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7127 df_insn_rescan (insn);
7129 else if (seen_repl)
7131 INSN_VAR_LOCATION_LOC (insn)
7132 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7133 NULL_RTX, replace_dead_reg,
7134 replacements);
7135 df_insn_rescan (insn);
7138 free (replacements);
7141 if (dump_file && ndead)
7142 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7143 ndead);
7144 /* Clean up. */
7145 free (counts);
7146 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7147 return ndead;
7150 /* If LOC contains references to NEWREG in a different mode, change them
7151 to use NEWREG instead. */
7153 static void
7154 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7155 rtx *loc, rtx_insn *insn, rtx newreg)
7157 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7159 rtx *loc = *iter;
7160 rtx x = *loc;
7161 if (x
7162 && REG_P (x)
7163 && REGNO (x) == REGNO (newreg)
7164 && GET_MODE (x) != GET_MODE (newreg))
7166 validate_change (insn, loc, newreg, 1);
7167 iter.skip_subrtxes ();
7172 /* Change the mode of any reference to the register REGNO (NEWREG) to
7173 GET_MODE (NEWREG) in INSN. */
7175 static void
7176 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7178 int success;
7180 if (!INSN_P (insn))
7181 return;
7183 subrtx_ptr_iterator::array_type array;
7184 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7185 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7187 /* If the following assertion was triggered, there is most probably
7188 something wrong with the cc_modes_compatible back end function.
7189 CC modes only can be considered compatible if the insn - with the mode
7190 replaced by any of the compatible modes - can still be recognized. */
7191 success = apply_change_group ();
7192 gcc_assert (success);
7195 /* Change the mode of any reference to the register REGNO (NEWREG) to
7196 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7197 any instruction which modifies NEWREG. */
7199 static void
7200 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7202 rtx_insn *insn;
7204 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7206 if (! INSN_P (insn))
7207 continue;
7209 if (reg_set_p (newreg, insn))
7210 return;
7212 cse_change_cc_mode_insn (insn, newreg);
7216 /* BB is a basic block which finishes with CC_REG as a condition code
7217 register which is set to CC_SRC. Look through the successors of BB
7218 to find blocks which have a single predecessor (i.e., this one),
7219 and look through those blocks for an assignment to CC_REG which is
7220 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7221 permitted to change the mode of CC_SRC to a compatible mode. This
7222 returns VOIDmode if no equivalent assignments were found.
7223 Otherwise it returns the mode which CC_SRC should wind up with.
7224 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7225 but is passed unmodified down to recursive calls in order to prevent
7226 endless recursion.
7228 The main complexity in this function is handling the mode issues.
7229 We may have more than one duplicate which we can eliminate, and we
7230 try to find a mode which will work for multiple duplicates. */
7232 static machine_mode
7233 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7234 bool can_change_mode)
7236 bool found_equiv;
7237 machine_mode mode;
7238 unsigned int insn_count;
7239 edge e;
7240 rtx_insn *insns[2];
7241 machine_mode modes[2];
7242 rtx_insn *last_insns[2];
7243 unsigned int i;
7244 rtx newreg;
7245 edge_iterator ei;
7247 /* We expect to have two successors. Look at both before picking
7248 the final mode for the comparison. If we have more successors
7249 (i.e., some sort of table jump, although that seems unlikely),
7250 then we require all beyond the first two to use the same
7251 mode. */
7253 found_equiv = false;
7254 mode = GET_MODE (cc_src);
7255 insn_count = 0;
7256 FOR_EACH_EDGE (e, ei, bb->succs)
7258 rtx_insn *insn;
7259 rtx_insn *end;
7261 if (e->flags & EDGE_COMPLEX)
7262 continue;
7264 if (EDGE_COUNT (e->dest->preds) != 1
7265 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7266 /* Avoid endless recursion on unreachable blocks. */
7267 || e->dest == orig_bb)
7268 continue;
7270 end = NEXT_INSN (BB_END (e->dest));
7271 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7273 rtx set;
7275 if (! INSN_P (insn))
7276 continue;
7278 /* If CC_SRC is modified, we have to stop looking for
7279 something which uses it. */
7280 if (modified_in_p (cc_src, insn))
7281 break;
7283 /* Check whether INSN sets CC_REG to CC_SRC. */
7284 set = single_set (insn);
7285 if (set
7286 && REG_P (SET_DEST (set))
7287 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7289 bool found;
7290 machine_mode set_mode;
7291 machine_mode comp_mode;
7293 found = false;
7294 set_mode = GET_MODE (SET_SRC (set));
7295 comp_mode = set_mode;
7296 if (rtx_equal_p (cc_src, SET_SRC (set)))
7297 found = true;
7298 else if (GET_CODE (cc_src) == COMPARE
7299 && GET_CODE (SET_SRC (set)) == COMPARE
7300 && mode != set_mode
7301 && rtx_equal_p (XEXP (cc_src, 0),
7302 XEXP (SET_SRC (set), 0))
7303 && rtx_equal_p (XEXP (cc_src, 1),
7304 XEXP (SET_SRC (set), 1)))
7307 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7308 if (comp_mode != VOIDmode
7309 && (can_change_mode || comp_mode == mode))
7310 found = true;
7313 if (found)
7315 found_equiv = true;
7316 if (insn_count < ARRAY_SIZE (insns))
7318 insns[insn_count] = insn;
7319 modes[insn_count] = set_mode;
7320 last_insns[insn_count] = end;
7321 ++insn_count;
7323 if (mode != comp_mode)
7325 gcc_assert (can_change_mode);
7326 mode = comp_mode;
7328 /* The modified insn will be re-recognized later. */
7329 PUT_MODE (cc_src, mode);
7332 else
7334 if (set_mode != mode)
7336 /* We found a matching expression in the
7337 wrong mode, but we don't have room to
7338 store it in the array. Punt. This case
7339 should be rare. */
7340 break;
7342 /* INSN sets CC_REG to a value equal to CC_SRC
7343 with the right mode. We can simply delete
7344 it. */
7345 delete_insn (insn);
7348 /* We found an instruction to delete. Keep looking,
7349 in the hopes of finding a three-way jump. */
7350 continue;
7353 /* We found an instruction which sets the condition
7354 code, so don't look any farther. */
7355 break;
7358 /* If INSN sets CC_REG in some other way, don't look any
7359 farther. */
7360 if (reg_set_p (cc_reg, insn))
7361 break;
7364 /* If we fell off the bottom of the block, we can keep looking
7365 through successors. We pass CAN_CHANGE_MODE as false because
7366 we aren't prepared to handle compatibility between the
7367 further blocks and this block. */
7368 if (insn == end)
7370 machine_mode submode;
7372 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7373 if (submode != VOIDmode)
7375 gcc_assert (submode == mode);
7376 found_equiv = true;
7377 can_change_mode = false;
7382 if (! found_equiv)
7383 return VOIDmode;
7385 /* Now INSN_COUNT is the number of instructions we found which set
7386 CC_REG to a value equivalent to CC_SRC. The instructions are in
7387 INSNS. The modes used by those instructions are in MODES. */
7389 newreg = NULL_RTX;
7390 for (i = 0; i < insn_count; ++i)
7392 if (modes[i] != mode)
7394 /* We need to change the mode of CC_REG in INSNS[i] and
7395 subsequent instructions. */
7396 if (! newreg)
7398 if (GET_MODE (cc_reg) == mode)
7399 newreg = cc_reg;
7400 else
7401 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7403 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7404 newreg);
7407 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7410 return mode;
7413 /* If we have a fixed condition code register (or two), walk through
7414 the instructions and try to eliminate duplicate assignments. */
7416 static void
7417 cse_condition_code_reg (void)
7419 unsigned int cc_regno_1;
7420 unsigned int cc_regno_2;
7421 rtx cc_reg_1;
7422 rtx cc_reg_2;
7423 basic_block bb;
7425 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7426 return;
7428 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7429 if (cc_regno_2 != INVALID_REGNUM)
7430 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7431 else
7432 cc_reg_2 = NULL_RTX;
7434 FOR_EACH_BB_FN (bb, cfun)
7436 rtx_insn *last_insn;
7437 rtx cc_reg;
7438 rtx_insn *insn;
7439 rtx_insn *cc_src_insn;
7440 rtx cc_src;
7441 machine_mode mode;
7442 machine_mode orig_mode;
7444 /* Look for blocks which end with a conditional jump based on a
7445 condition code register. Then look for the instruction which
7446 sets the condition code register. Then look through the
7447 successor blocks for instructions which set the condition
7448 code register to the same value. There are other possible
7449 uses of the condition code register, but these are by far the
7450 most common and the ones which we are most likely to be able
7451 to optimize. */
7453 last_insn = BB_END (bb);
7454 if (!JUMP_P (last_insn))
7455 continue;
7457 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7458 cc_reg = cc_reg_1;
7459 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7460 cc_reg = cc_reg_2;
7461 else
7462 continue;
7464 cc_src_insn = NULL;
7465 cc_src = NULL_RTX;
7466 for (insn = PREV_INSN (last_insn);
7467 insn && insn != PREV_INSN (BB_HEAD (bb));
7468 insn = PREV_INSN (insn))
7470 rtx set;
7472 if (! INSN_P (insn))
7473 continue;
7474 set = single_set (insn);
7475 if (set
7476 && REG_P (SET_DEST (set))
7477 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7479 cc_src_insn = insn;
7480 cc_src = SET_SRC (set);
7481 break;
7483 else if (reg_set_p (cc_reg, insn))
7484 break;
7487 if (! cc_src_insn)
7488 continue;
7490 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7491 continue;
7493 /* Now CC_REG is a condition code register used for a
7494 conditional jump at the end of the block, and CC_SRC, in
7495 CC_SRC_INSN, is the value to which that condition code
7496 register is set, and CC_SRC is still meaningful at the end of
7497 the basic block. */
7499 orig_mode = GET_MODE (cc_src);
7500 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7501 if (mode != VOIDmode)
7503 gcc_assert (mode == GET_MODE (cc_src));
7504 if (mode != orig_mode)
7506 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7508 cse_change_cc_mode_insn (cc_src_insn, newreg);
7510 /* Do the same in the following insns that use the
7511 current value of CC_REG within BB. */
7512 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7513 NEXT_INSN (last_insn),
7514 newreg);
7521 /* Perform common subexpression elimination. Nonzero value from
7522 `cse_main' means that jumps were simplified and some code may now
7523 be unreachable, so do jump optimization again. */
7524 static unsigned int
7525 rest_of_handle_cse (void)
7527 int tem;
7529 if (dump_file)
7530 dump_flow_info (dump_file, dump_flags);
7532 tem = cse_main (get_insns (), max_reg_num ());
7534 /* If we are not running more CSE passes, then we are no longer
7535 expecting CSE to be run. But always rerun it in a cheap mode. */
7536 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7538 if (tem == 2)
7540 timevar_push (TV_JUMP);
7541 rebuild_jump_labels (get_insns ());
7542 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7543 timevar_pop (TV_JUMP);
7545 else if (tem == 1 || optimize > 1)
7546 cse_cfg_altered |= cleanup_cfg (0);
7548 return 0;
7551 namespace {
7553 const pass_data pass_data_cse =
7555 RTL_PASS, /* type */
7556 "cse1", /* name */
7557 OPTGROUP_NONE, /* optinfo_flags */
7558 TV_CSE, /* tv_id */
7559 0, /* properties_required */
7560 0, /* properties_provided */
7561 0, /* properties_destroyed */
7562 0, /* todo_flags_start */
7563 TODO_df_finish, /* todo_flags_finish */
7566 class pass_cse : public rtl_opt_pass
7568 public:
7569 pass_cse (gcc::context *ctxt)
7570 : rtl_opt_pass (pass_data_cse, ctxt)
7573 /* opt_pass methods: */
7574 bool gate (function *) final override { return optimize > 0; }
7575 unsigned int execute (function *) final override
7577 return rest_of_handle_cse ();
7580 }; // class pass_cse
7582 } // anon namespace
7584 rtl_opt_pass *
7585 make_pass_cse (gcc::context *ctxt)
7587 return new pass_cse (ctxt);
7591 /* Run second CSE pass after loop optimizations. */
7592 static unsigned int
7593 rest_of_handle_cse2 (void)
7595 int tem;
7597 if (dump_file)
7598 dump_flow_info (dump_file, dump_flags);
7600 tem = cse_main (get_insns (), max_reg_num ());
7602 /* Run a pass to eliminate duplicated assignments to condition code
7603 registers. We have to run this after bypass_jumps, because it
7604 makes it harder for that pass to determine whether a jump can be
7605 bypassed safely. */
7606 cse_condition_code_reg ();
7608 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7610 if (tem == 2)
7612 timevar_push (TV_JUMP);
7613 rebuild_jump_labels (get_insns ());
7614 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7615 timevar_pop (TV_JUMP);
7617 else if (tem == 1 || cse_cfg_altered)
7618 cse_cfg_altered |= cleanup_cfg (0);
7620 cse_not_expected = 1;
7621 return 0;
7625 namespace {
7627 const pass_data pass_data_cse2 =
7629 RTL_PASS, /* type */
7630 "cse2", /* name */
7631 OPTGROUP_NONE, /* optinfo_flags */
7632 TV_CSE2, /* tv_id */
7633 0, /* properties_required */
7634 0, /* properties_provided */
7635 0, /* properties_destroyed */
7636 0, /* todo_flags_start */
7637 TODO_df_finish, /* todo_flags_finish */
7640 class pass_cse2 : public rtl_opt_pass
7642 public:
7643 pass_cse2 (gcc::context *ctxt)
7644 : rtl_opt_pass (pass_data_cse2, ctxt)
7647 /* opt_pass methods: */
7648 bool gate (function *) final override
7650 return optimize > 0 && flag_rerun_cse_after_loop;
7653 unsigned int execute (function *) final override
7655 return rest_of_handle_cse2 ();
7658 }; // class pass_cse2
7660 } // anon namespace
7662 rtl_opt_pass *
7663 make_pass_cse2 (gcc::context *ctxt)
7665 return new pass_cse2 (ctxt);
7668 /* Run second CSE pass after loop optimizations. */
7669 static unsigned int
7670 rest_of_handle_cse_after_global_opts (void)
7672 int save_cfj;
7673 int tem;
7675 /* We only want to do local CSE, so don't follow jumps. */
7676 save_cfj = flag_cse_follow_jumps;
7677 flag_cse_follow_jumps = 0;
7679 rebuild_jump_labels (get_insns ());
7680 tem = cse_main (get_insns (), max_reg_num ());
7681 cse_cfg_altered |= purge_all_dead_edges ();
7682 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7684 cse_not_expected = !flag_rerun_cse_after_loop;
7686 /* If cse altered any jumps, rerun jump opts to clean things up. */
7687 if (tem == 2)
7689 timevar_push (TV_JUMP);
7690 rebuild_jump_labels (get_insns ());
7691 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7692 timevar_pop (TV_JUMP);
7694 else if (tem == 1 || cse_cfg_altered)
7695 cse_cfg_altered |= cleanup_cfg (0);
7697 flag_cse_follow_jumps = save_cfj;
7698 return 0;
7701 namespace {
7703 const pass_data pass_data_cse_after_global_opts =
7705 RTL_PASS, /* type */
7706 "cse_local", /* name */
7707 OPTGROUP_NONE, /* optinfo_flags */
7708 TV_CSE, /* tv_id */
7709 0, /* properties_required */
7710 0, /* properties_provided */
7711 0, /* properties_destroyed */
7712 0, /* todo_flags_start */
7713 TODO_df_finish, /* todo_flags_finish */
7716 class pass_cse_after_global_opts : public rtl_opt_pass
7718 public:
7719 pass_cse_after_global_opts (gcc::context *ctxt)
7720 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7723 /* opt_pass methods: */
7724 bool gate (function *) final override
7726 return optimize > 0 && flag_rerun_cse_after_global_opts;
7729 unsigned int execute (function *) final override
7731 return rest_of_handle_cse_after_global_opts ();
7734 }; // class pass_cse_after_global_opts
7736 } // anon namespace
7738 rtl_opt_pass *
7739 make_pass_cse_after_global_opts (gcc::context *ctxt)
7741 return new pass_cse_after_global_opts (ctxt);