1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
30 with Errout
; use Errout
;
31 with Exp_Tss
; use Exp_Tss
;
32 with Exp_Util
; use Exp_Util
;
33 with Fname
; use Fname
;
34 with Freeze
; use Freeze
;
35 with Impunit
; use Impunit
;
37 with Lib
.Load
; use Lib
.Load
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Namet
.Sp
; use Namet
.Sp
;
41 with Nlists
; use Nlists
;
42 with Nmake
; use Nmake
;
44 with Output
; use Output
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
47 with Rtsfind
; use Rtsfind
;
49 with Sem_Aux
; use Sem_Aux
;
50 with Sem_Cat
; use Sem_Cat
;
51 with Sem_Ch3
; use Sem_Ch3
;
52 with Sem_Ch4
; use Sem_Ch4
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch12
; use Sem_Ch12
;
55 with Sem_Ch13
; use Sem_Ch13
;
56 with Sem_Dim
; use Sem_Dim
;
57 with Sem_Disp
; use Sem_Disp
;
58 with Sem_Dist
; use Sem_Dist
;
59 with Sem_Eval
; use Sem_Eval
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Util
; use Sem_Util
;
62 with Sem_Type
; use Sem_Type
;
63 with Stand
; use Stand
;
64 with Sinfo
; use Sinfo
;
65 with Sinfo
.CN
; use Sinfo
.CN
;
66 with Snames
; use Snames
;
67 with Style
; use Style
;
69 with Targparm
; use Targparm
;
70 with Tbuild
; use Tbuild
;
71 with Uintp
; use Uintp
;
73 package body Sem_Ch8
is
75 ------------------------------------
76 -- Visibility and Name Resolution --
77 ------------------------------------
79 -- This package handles name resolution and the collection of possible
80 -- interpretations for overloaded names, prior to overload resolution.
82 -- Name resolution is the process that establishes a mapping between source
83 -- identifiers and the entities they denote at each point in the program.
84 -- Each entity is represented by a defining occurrence. Each identifier
85 -- that denotes an entity points to the corresponding defining occurrence.
86 -- This is the entity of the applied occurrence. Each occurrence holds
87 -- an index into the names table, where source identifiers are stored.
89 -- Each entry in the names table for an identifier or designator uses the
90 -- Info pointer to hold a link to the currently visible entity that has
91 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
92 -- in package Sem_Util). The visibility is initialized at the beginning of
93 -- semantic processing to make entities in package Standard immediately
94 -- visible. The visibility table is used in a more subtle way when
95 -- compiling subunits (see below).
97 -- Entities that have the same name (i.e. homonyms) are chained. In the
98 -- case of overloaded entities, this chain holds all the possible meanings
99 -- of a given identifier. The process of overload resolution uses type
100 -- information to select from this chain the unique meaning of a given
103 -- Entities are also chained in their scope, through the Next_Entity link.
104 -- As a consequence, the name space is organized as a sparse matrix, where
105 -- each row corresponds to a scope, and each column to a source identifier.
106 -- Open scopes, that is to say scopes currently being compiled, have their
107 -- corresponding rows of entities in order, innermost scope first.
109 -- The scopes of packages that are mentioned in context clauses appear in
110 -- no particular order, interspersed among open scopes. This is because
111 -- in the course of analyzing the context of a compilation, a package
112 -- declaration is first an open scope, and subsequently an element of the
113 -- context. If subunits or child units are present, a parent unit may
114 -- appear under various guises at various times in the compilation.
116 -- When the compilation of the innermost scope is complete, the entities
117 -- defined therein are no longer visible. If the scope is not a package
118 -- declaration, these entities are never visible subsequently, and can be
119 -- removed from visibility chains. If the scope is a package declaration,
120 -- its visible declarations may still be accessible. Therefore the entities
121 -- defined in such a scope are left on the visibility chains, and only
122 -- their visibility (immediately visibility or potential use-visibility)
125 -- The ordering of homonyms on their chain does not necessarily follow
126 -- the order of their corresponding scopes on the scope stack. For
127 -- example, if package P and the enclosing scope both contain entities
128 -- named E, then when compiling the package body the chain for E will
129 -- hold the global entity first, and the local one (corresponding to
130 -- the current inner scope) next. As a result, name resolution routines
131 -- do not assume any relative ordering of the homonym chains, either
132 -- for scope nesting or to order of appearance of context clauses.
134 -- When compiling a child unit, entities in the parent scope are always
135 -- immediately visible. When compiling the body of a child unit, private
136 -- entities in the parent must also be made immediately visible. There
137 -- are separate routines to make the visible and private declarations
138 -- visible at various times (see package Sem_Ch7).
140 -- +--------+ +-----+
141 -- | In use |-------->| EU1 |-------------------------->
142 -- +--------+ +-----+
144 -- +--------+ +-----+ +-----+
145 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
146 -- +--------+ +-----+ +-----+
148 -- +---------+ | +-----+
149 -- | with'ed |------------------------------>| EW2 |--->
150 -- +---------+ | +-----+
152 -- +--------+ +-----+ +-----+
153 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
154 -- +--------+ +-----+ +-----+
156 -- +--------+ +-----+ +-----+
157 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
158 -- +--------+ +-----+ +-----+
162 -- | | with'ed |----------------------------------------->
166 -- (innermost first) | |
167 -- +----------------------------+
168 -- Names table => | Id1 | | | | Id2 |
169 -- +----------------------------+
171 -- Name resolution must deal with several syntactic forms: simple names,
172 -- qualified names, indexed names, and various forms of calls.
174 -- Each identifier points to an entry in the names table. The resolution
175 -- of a simple name consists in traversing the homonym chain, starting
176 -- from the names table. If an entry is immediately visible, it is the one
177 -- designated by the identifier. If only potentially use-visible entities
178 -- are on the chain, we must verify that they do not hide each other. If
179 -- the entity we find is overloadable, we collect all other overloadable
180 -- entities on the chain as long as they are not hidden.
182 -- To resolve expanded names, we must find the entity at the intersection
183 -- of the entity chain for the scope (the prefix) and the homonym chain
184 -- for the selector. In general, homonym chains will be much shorter than
185 -- entity chains, so it is preferable to start from the names table as
186 -- well. If the entity found is overloadable, we must collect all other
187 -- interpretations that are defined in the scope denoted by the prefix.
189 -- For records, protected types, and tasks, their local entities are
190 -- removed from visibility chains on exit from the corresponding scope.
191 -- From the outside, these entities are always accessed by selected
192 -- notation, and the entity chain for the record type, protected type,
193 -- etc. is traversed sequentially in order to find the designated entity.
195 -- The discriminants of a type and the operations of a protected type or
196 -- task are unchained on exit from the first view of the type, (such as
197 -- a private or incomplete type declaration, or a protected type speci-
198 -- fication) and re-chained when compiling the second view.
200 -- In the case of operators, we do not make operators on derived types
201 -- explicit. As a result, the notation P."+" may denote either a user-
202 -- defined function with name "+", or else an implicit declaration of the
203 -- operator "+" in package P. The resolution of expanded names always
204 -- tries to resolve an operator name as such an implicitly defined entity,
205 -- in addition to looking for explicit declarations.
207 -- All forms of names that denote entities (simple names, expanded names,
208 -- character literals in some cases) have a Entity attribute, which
209 -- identifies the entity denoted by the name.
211 ---------------------
212 -- The Scope Stack --
213 ---------------------
215 -- The Scope stack keeps track of the scopes currently been compiled.
216 -- Every entity that contains declarations (including records) is placed
217 -- on the scope stack while it is being processed, and removed at the end.
218 -- Whenever a non-package scope is exited, the entities defined therein
219 -- are removed from the visibility table, so that entities in outer scopes
220 -- become visible (see previous description). On entry to Sem, the scope
221 -- stack only contains the package Standard. As usual, subunits complicate
222 -- this picture ever so slightly.
224 -- The Rtsfind mechanism can force a call to Semantics while another
225 -- compilation is in progress. The unit retrieved by Rtsfind must be
226 -- compiled in its own context, and has no access to the visibility of
227 -- the unit currently being compiled. The procedures Save_Scope_Stack and
228 -- Restore_Scope_Stack make entities in current open scopes invisible
229 -- before compiling the retrieved unit, and restore the compilation
230 -- environment afterwards.
232 ------------------------
233 -- Compiling subunits --
234 ------------------------
236 -- Subunits must be compiled in the environment of the corresponding stub,
237 -- that is to say with the same visibility into the parent (and its
238 -- context) that is available at the point of the stub declaration, but
239 -- with the additional visibility provided by the context clause of the
240 -- subunit itself. As a result, compilation of a subunit forces compilation
241 -- of the parent (see description in lib-). At the point of the stub
242 -- declaration, Analyze is called recursively to compile the proper body of
243 -- the subunit, but without reinitializing the names table, nor the scope
244 -- stack (i.e. standard is not pushed on the stack). In this fashion the
245 -- context of the subunit is added to the context of the parent, and the
246 -- subunit is compiled in the correct environment. Note that in the course
247 -- of processing the context of a subunit, Standard will appear twice on
248 -- the scope stack: once for the parent of the subunit, and once for the
249 -- unit in the context clause being compiled. However, the two sets of
250 -- entities are not linked by homonym chains, so that the compilation of
251 -- any context unit happens in a fresh visibility environment.
253 -------------------------------
254 -- Processing of USE Clauses --
255 -------------------------------
257 -- Every defining occurrence has a flag indicating if it is potentially use
258 -- visible. Resolution of simple names examines this flag. The processing
259 -- of use clauses consists in setting this flag on all visible entities
260 -- defined in the corresponding package. On exit from the scope of the use
261 -- clause, the corresponding flag must be reset. However, a package may
262 -- appear in several nested use clauses (pathological but legal, alas)
263 -- which forces us to use a slightly more involved scheme:
265 -- a) The defining occurrence for a package holds a flag -In_Use- to
266 -- indicate that it is currently in the scope of a use clause. If a
267 -- redundant use clause is encountered, then the corresponding occurrence
268 -- of the package name is flagged -Redundant_Use-.
270 -- b) On exit from a scope, the use clauses in its declarative part are
271 -- scanned. The visibility flag is reset in all entities declared in
272 -- package named in a use clause, as long as the package is not flagged
273 -- as being in a redundant use clause (in which case the outer use
274 -- clause is still in effect, and the direct visibility of its entities
275 -- must be retained).
277 -- Note that entities are not removed from their homonym chains on exit
278 -- from the package specification. A subsequent use clause does not need
279 -- to rechain the visible entities, but only to establish their direct
282 -----------------------------------
283 -- Handling private declarations --
284 -----------------------------------
286 -- The principle that each entity has a single defining occurrence clashes
287 -- with the presence of two separate definitions for private types: the
288 -- first is the private type declaration, and second is the full type
289 -- declaration. It is important that all references to the type point to
290 -- the same defining occurrence, namely the first one. To enforce the two
291 -- separate views of the entity, the corresponding information is swapped
292 -- between the two declarations. Outside of the package, the defining
293 -- occurrence only contains the private declaration information, while in
294 -- the private part and the body of the package the defining occurrence
295 -- contains the full declaration. To simplify the swap, the defining
296 -- occurrence that currently holds the private declaration points to the
297 -- full declaration. During semantic processing the defining occurrence
298 -- also points to a list of private dependents, that is to say access types
299 -- or composite types whose designated types or component types are
300 -- subtypes or derived types of the private type in question. After the
301 -- full declaration has been seen, the private dependents are updated to
302 -- indicate that they have full definitions.
304 ------------------------------------
305 -- Handling of Undefined Messages --
306 ------------------------------------
308 -- In normal mode, only the first use of an undefined identifier generates
309 -- a message. The table Urefs is used to record error messages that have
310 -- been issued so that second and subsequent ones do not generate further
311 -- messages. However, the second reference causes text to be added to the
312 -- original undefined message noting "(more references follow)". The
313 -- full error list option (-gnatf) forces messages to be generated for
314 -- every reference and disconnects the use of this table.
316 type Uref_Entry
is record
318 -- Node for identifier for which original message was posted. The
319 -- Chars field of this identifier is used to detect later references
320 -- to the same identifier.
323 -- Records error message Id of original undefined message. Reset to
324 -- No_Error_Msg after the second occurrence, where it is used to add
325 -- text to the original message as described above.
328 -- Set if the message is not visible rather than undefined
331 -- Records location of error message. Used to make sure that we do
332 -- not consider a, b : undefined as two separate instances, which
333 -- would otherwise happen, since the parser converts this sequence
334 -- to a : undefined; b : undefined.
338 package Urefs
is new Table
.Table
(
339 Table_Component_Type
=> Uref_Entry
,
340 Table_Index_Type
=> Nat
,
341 Table_Low_Bound
=> 1,
343 Table_Increment
=> 100,
344 Table_Name
=> "Urefs");
346 Candidate_Renaming
: Entity_Id
;
347 -- Holds a candidate interpretation that appears in a subprogram renaming
348 -- declaration and does not match the given specification, but matches at
349 -- least on the first formal. Allows better error message when given
350 -- specification omits defaulted parameters, a common error.
352 -----------------------
353 -- Local Subprograms --
354 -----------------------
356 procedure Analyze_Generic_Renaming
359 -- Common processing for all three kinds of generic renaming declarations.
360 -- Enter new name and indicate that it renames the generic unit.
362 procedure Analyze_Renamed_Character
366 -- Renamed entity is given by a character literal, which must belong
367 -- to the return type of the new entity. Is_Body indicates whether the
368 -- declaration is a renaming_as_body. If the original declaration has
369 -- already been frozen (because of an intervening body, e.g.) the body of
370 -- the function must be built now. The same applies to the following
371 -- various renaming procedures.
373 procedure Analyze_Renamed_Dereference
377 -- Renamed entity is given by an explicit dereference. Prefix must be a
378 -- conformant access_to_subprogram type.
380 procedure Analyze_Renamed_Entry
384 -- If the renamed entity in a subprogram renaming is an entry or protected
385 -- subprogram, build a body for the new entity whose only statement is a
386 -- call to the renamed entity.
388 procedure Analyze_Renamed_Family_Member
392 -- Used when the renamed entity is an indexed component. The prefix must
393 -- denote an entry family.
395 procedure Analyze_Renamed_Primitive_Operation
399 -- If the renamed entity in a subprogram renaming is a primitive operation
400 -- or a class-wide operation in prefix form, save the target object,
401 -- which must be added to the list of actuals in any subsequent call.
402 -- The renaming operation is intrinsic because the compiler must in
403 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
405 function Applicable_Use
(Pack_Name
: Node_Id
) return Boolean;
406 -- Common code to Use_One_Package and Set_Use, to determine whether use
407 -- clause must be processed. Pack_Name is an entity name that references
408 -- the package in question.
410 procedure Attribute_Renaming
(N
: Node_Id
);
411 -- Analyze renaming of attribute as subprogram. The renaming declaration N
412 -- is rewritten as a subprogram body that returns the attribute reference
413 -- applied to the formals of the function.
415 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
);
416 -- Set Entity, with style check if need be. For a discriminant reference,
417 -- replace by the corresponding discriminal, i.e. the parameter of the
418 -- initialization procedure that corresponds to the discriminant.
420 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
);
421 -- A renaming_as_body may occur after the entity of the original decla-
422 -- ration has been frozen. In that case, the body of the new entity must
423 -- be built now, because the usual mechanism of building the renamed
424 -- body at the point of freezing will not work. Subp is the subprogram
425 -- for which N provides the Renaming_As_Body.
427 procedure Check_In_Previous_With_Clause
430 -- N is a use_package clause and Nam the package name, or N is a use_type
431 -- clause and Nam is the prefix of the type name. In either case, verify
432 -- that the package is visible at that point in the context: either it
433 -- appears in a previous with_clause, or because it is a fully qualified
434 -- name and the root ancestor appears in a previous with_clause.
436 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
);
437 -- Verify that the entity in a renaming declaration that is a library unit
438 -- is itself a library unit and not a nested unit or subunit. Also check
439 -- that if the renaming is a child unit of a generic parent, then the
440 -- renamed unit must also be a child unit of that parent. Finally, verify
441 -- that a renamed generic unit is not an implicit child declared within
442 -- an instance of the parent.
444 procedure Chain_Use_Clause
(N
: Node_Id
);
445 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
446 -- the proper scope table entry. This is usually the current scope, but it
447 -- will be an inner scope when installing the use clauses of the private
448 -- declarations of a parent unit prior to compiling the private part of a
449 -- child unit. This chain is traversed when installing/removing use clauses
450 -- when compiling a subunit or instantiating a generic body on the fly,
451 -- when it is necessary to save and restore full environments.
453 function Enclosing_Instance
return Entity_Id
;
454 -- In an instance nested within another one, several semantic checks are
455 -- unnecessary because the legality of the nested instance has been checked
456 -- in the enclosing generic unit. This applies in particular to legality
457 -- checks on actuals for formal subprograms of the inner instance, which
458 -- are checked as subprogram renamings, and may be complicated by confusion
459 -- in private/full views. This function returns the instance enclosing the
460 -- current one if there is such, else it returns Empty.
462 -- If the renaming determines the entity for the default of a formal
463 -- subprogram nested within another instance, choose the innermost
464 -- candidate. This is because if the formal has a box, and we are within
465 -- an enclosing instance where some candidate interpretations are local
466 -- to this enclosing instance, we know that the default was properly
467 -- resolved when analyzing the generic, so we prefer the local
468 -- candidates to those that are external. This is not always the case
469 -- but is a reasonable heuristic on the use of nested generics. The
470 -- proper solution requires a full renaming model.
472 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean;
473 -- Find a type derived from Character or Wide_Character in the prefix of N.
474 -- Used to resolved qualified names whose selector is a character literal.
476 function Has_Private_With
(E
: Entity_Id
) return Boolean;
477 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
478 -- private with on E.
480 procedure Find_Expanded_Name
(N
: Node_Id
);
481 -- The input is a selected component known to be an expanded name. Verify
482 -- legality of selector given the scope denoted by prefix, and change node
483 -- N into a expanded name with a properly set Entity field.
485 function Find_Renamed_Entity
489 Is_Actual
: Boolean := False) return Entity_Id
;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean;
497 -- N is an expanded name whose selector is an operator name (e.g. P."+").
498 -- declarative part contains an implicit declaration of an operator if it
499 -- has a declaration of a type to which one of the predefined operators
500 -- apply. The existence of this routine is an implementation artifact. A
501 -- more straightforward but more space-consuming choice would be to make
502 -- all inherited operators explicit in the symbol table.
504 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
);
505 -- A subprogram defined by a renaming declaration inherits the parameter
506 -- profile of the renamed entity. The subtypes given in the subprogram
507 -- specification are discarded and replaced with those of the renamed
508 -- subprogram, which are then used to recheck the default values.
510 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean;
511 -- Prefix is appropriate for record if it is of a record type, or an access
514 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean;
515 -- True if it is of a task type, a protected type, or else an access to one
518 procedure Note_Redundant_Use
(Clause
: Node_Id
);
519 -- Mark the name in a use clause as redundant if the corresponding entity
520 -- is already use-visible. Emit a warning if the use clause comes from
521 -- source and the proper warnings are enabled.
523 procedure Premature_Usage
(N
: Node_Id
);
524 -- Diagnose usage of an entity before it is visible
526 procedure Use_One_Package
(P
: Entity_Id
; N
: Node_Id
);
527 -- Make visible entities declared in package P potentially use-visible
528 -- in the current context. Also used in the analysis of subunits, when
529 -- re-installing use clauses of parent units. N is the use_clause that
530 -- names P (and possibly other packages).
532 procedure Use_One_Type
(Id
: Node_Id
; Installed
: Boolean := False);
533 -- Id is the subtype mark from a use type clause. This procedure makes
534 -- the primitive operators of the type potentially use-visible. The
535 -- boolean flag Installed indicates that the clause is being reinstalled
536 -- after previous analysis, and primitive operations are already chained
537 -- on the Used_Operations list of the clause.
539 procedure Write_Info
;
540 -- Write debugging information on entities declared in current scope
542 --------------------------------
543 -- Analyze_Exception_Renaming --
544 --------------------------------
546 -- The language only allows a single identifier, but the tree holds an
547 -- identifier list. The parser has already issued an error message if
548 -- there is more than one element in the list.
550 procedure Analyze_Exception_Renaming
(N
: Node_Id
) is
551 Id
: constant Node_Id
:= Defining_Identifier
(N
);
552 Nam
: constant Node_Id
:= Name
(N
);
555 Check_SPARK_Restriction
("exception renaming is not allowed", N
);
560 Set_Ekind
(Id
, E_Exception
);
561 Set_Etype
(Id
, Standard_Exception_Type
);
562 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
564 if not Is_Entity_Name
(Nam
) or else
565 Ekind
(Entity
(Nam
)) /= E_Exception
567 Error_Msg_N
("invalid exception name in renaming", Nam
);
569 if Present
(Renamed_Object
(Entity
(Nam
))) then
570 Set_Renamed_Object
(Id
, Renamed_Object
(Entity
(Nam
)));
572 Set_Renamed_Object
(Id
, Entity
(Nam
));
576 -- Implementation-defined aspect specifications can appear in a renaming
577 -- declaration, but not language-defined ones. The call to procedure
578 -- Analyze_Aspect_Specifications will take care of this error check.
580 if Has_Aspects
(N
) then
581 Analyze_Aspect_Specifications
(N
, Id
);
583 end Analyze_Exception_Renaming
;
585 ---------------------------
586 -- Analyze_Expanded_Name --
587 ---------------------------
589 procedure Analyze_Expanded_Name
(N
: Node_Id
) is
591 -- If the entity pointer is already set, this is an internal node, or a
592 -- node that is analyzed more than once, after a tree modification. In
593 -- such a case there is no resolution to perform, just set the type. For
594 -- completeness, analyze prefix as well.
596 if Present
(Entity
(N
)) then
597 if Is_Type
(Entity
(N
)) then
598 Set_Etype
(N
, Entity
(N
));
600 Set_Etype
(N
, Etype
(Entity
(N
)));
603 Analyze
(Prefix
(N
));
606 Find_Expanded_Name
(N
);
609 Analyze_Dimension
(N
);
610 end Analyze_Expanded_Name
;
612 ---------------------------------------
613 -- Analyze_Generic_Function_Renaming --
614 ---------------------------------------
616 procedure Analyze_Generic_Function_Renaming
(N
: Node_Id
) is
618 Analyze_Generic_Renaming
(N
, E_Generic_Function
);
619 end Analyze_Generic_Function_Renaming
;
621 --------------------------------------
622 -- Analyze_Generic_Package_Renaming --
623 --------------------------------------
625 procedure Analyze_Generic_Package_Renaming
(N
: Node_Id
) is
627 -- Test for the Text_IO special unit case here, since we may be renaming
628 -- one of the subpackages of Text_IO, then join common routine.
630 Check_Text_IO_Special_Unit
(Name
(N
));
632 Analyze_Generic_Renaming
(N
, E_Generic_Package
);
633 end Analyze_Generic_Package_Renaming
;
635 ----------------------------------------
636 -- Analyze_Generic_Procedure_Renaming --
637 ----------------------------------------
639 procedure Analyze_Generic_Procedure_Renaming
(N
: Node_Id
) is
641 Analyze_Generic_Renaming
(N
, E_Generic_Procedure
);
642 end Analyze_Generic_Procedure_Renaming
;
644 ------------------------------
645 -- Analyze_Generic_Renaming --
646 ------------------------------
648 procedure Analyze_Generic_Renaming
652 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
654 Inst
: Boolean := False; -- prevent junk warning
657 if Name
(N
) = Error
then
661 Check_SPARK_Restriction
("generic renaming is not allowed", N
);
663 Generate_Definition
(New_P
);
665 if Current_Scope
/= Standard_Standard
then
666 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
669 if Nkind
(Name
(N
)) = N_Selected_Component
then
670 Check_Generic_Child_Unit
(Name
(N
), Inst
);
675 if not Is_Entity_Name
(Name
(N
)) then
676 Error_Msg_N
("expect entity name in renaming declaration", Name
(N
));
679 Old_P
:= Entity
(Name
(N
));
683 Set_Ekind
(New_P
, K
);
685 if Etype
(Old_P
) = Any_Type
then
688 elsif Ekind
(Old_P
) /= K
then
689 Error_Msg_N
("invalid generic unit name", Name
(N
));
692 if Present
(Renamed_Object
(Old_P
)) then
693 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
695 Set_Renamed_Object
(New_P
, Old_P
);
698 Set_Is_Pure
(New_P
, Is_Pure
(Old_P
));
699 Set_Is_Preelaborated
(New_P
, Is_Preelaborated
(Old_P
));
701 Set_Etype
(New_P
, Etype
(Old_P
));
702 Set_Has_Completion
(New_P
);
704 if In_Open_Scopes
(Old_P
) then
705 Error_Msg_N
("within its scope, generic denotes its instance", N
);
708 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
709 -- renamings and subsequent instantiations of Unchecked_Conversion.
711 if Ekind_In
(Old_P
, E_Generic_Function
, E_Generic_Procedure
) then
712 Set_Is_Intrinsic_Subprogram
713 (New_P
, Is_Intrinsic_Subprogram
(Old_P
));
716 Check_Library_Unit_Renaming
(N
, Old_P
);
719 -- Implementation-defined aspect specifications can appear in a renaming
720 -- declaration, but not language-defined ones. The call to procedure
721 -- Analyze_Aspect_Specifications will take care of this error check.
723 if Has_Aspects
(N
) then
724 Analyze_Aspect_Specifications
(N
, New_P
);
726 end Analyze_Generic_Renaming
;
728 -----------------------------
729 -- Analyze_Object_Renaming --
730 -----------------------------
732 procedure Analyze_Object_Renaming
(N
: Node_Id
) is
733 Loc
: constant Source_Ptr
:= Sloc
(N
);
734 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
736 Nam
: constant Node_Id
:= Name
(N
);
740 procedure Check_Constrained_Object
;
741 -- If the nominal type is unconstrained but the renamed object is
742 -- constrained, as can happen with renaming an explicit dereference or
743 -- a function return, build a constrained subtype from the object. If
744 -- the renaming is for a formal in an accept statement, the analysis
745 -- has already established its actual subtype. This is only relevant
746 -- if the renamed object is an explicit dereference.
748 function In_Generic_Scope
(E
: Entity_Id
) return Boolean;
749 -- Determine whether entity E is inside a generic cope
751 ------------------------------
752 -- Check_Constrained_Object --
753 ------------------------------
755 procedure Check_Constrained_Object
is
756 Typ
: constant Entity_Id
:= Etype
(Nam
);
760 if Nkind_In
(Nam
, N_Function_Call
, N_Explicit_Dereference
)
761 and then Is_Composite_Type
(Etype
(Nam
))
762 and then not Is_Constrained
(Etype
(Nam
))
763 and then not Has_Unknown_Discriminants
(Etype
(Nam
))
764 and then Expander_Active
766 -- If Actual_Subtype is already set, nothing to do
768 if Ekind_In
(Id
, E_Variable
, E_Constant
)
769 and then Present
(Actual_Subtype
(Id
))
773 -- A renaming of an unchecked union has no actual subtype
775 elsif Is_Unchecked_Union
(Typ
) then
778 -- If a record is limited its size is invariant. This is the case
779 -- in particular with record types with an access discirminant
780 -- that are used in iterators. This is an optimization, but it
781 -- also prevents typing anomalies when the prefix is further
782 -- expanded. Limited types with discriminants are included.
784 elsif Is_Limited_Record
(Typ
)
786 (Ekind
(Typ
) = E_Limited_Private_Type
787 and then Has_Discriminants
(Typ
)
788 and then Is_Access_Type
(Etype
(First_Discriminant
(Typ
))))
793 Subt
:= Make_Temporary
(Loc
, 'T');
794 Remove_Side_Effects
(Nam
);
796 Make_Subtype_Declaration
(Loc
,
797 Defining_Identifier
=> Subt
,
798 Subtype_Indication
=>
799 Make_Subtype_From_Expr
(Nam
, Typ
)));
800 Rewrite
(Subtype_Mark
(N
), New_Occurrence_Of
(Subt
, Loc
));
801 Set_Etype
(Nam
, Subt
);
803 -- Freeze subtype at once, to prevent order of elaboration
804 -- issues in the backend. The renamed object exists, so its
805 -- type is already frozen in any case.
807 Freeze_Before
(N
, Subt
);
810 end Check_Constrained_Object
;
812 ----------------------
813 -- In_Generic_Scope --
814 ----------------------
816 function In_Generic_Scope
(E
: Entity_Id
) return Boolean is
821 while Present
(S
) and then S
/= Standard_Standard
loop
822 if Is_Generic_Unit
(S
) then
830 end In_Generic_Scope
;
832 -- Start of processing for Analyze_Object_Renaming
839 Check_SPARK_Restriction
("object renaming is not allowed", N
);
841 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
844 -- The renaming of a component that depends on a discriminant requires
845 -- an actual subtype, because in subsequent use of the object Gigi will
846 -- be unable to locate the actual bounds. This explicit step is required
847 -- when the renaming is generated in removing side effects of an
848 -- already-analyzed expression.
850 if Nkind
(Nam
) = N_Selected_Component
and then Analyzed
(Nam
) then
852 Dec
:= Build_Actual_Subtype_Of_Component
(Etype
(Nam
), Nam
);
854 if Present
(Dec
) then
855 Insert_Action
(N
, Dec
);
856 T
:= Defining_Identifier
(Dec
);
860 -- Complete analysis of the subtype mark in any case, for ASIS use
862 if Present
(Subtype_Mark
(N
)) then
863 Find_Type
(Subtype_Mark
(N
));
866 elsif Present
(Subtype_Mark
(N
)) then
867 Find_Type
(Subtype_Mark
(N
));
868 T
:= Entity
(Subtype_Mark
(N
));
871 -- Reject renamings of conversions unless the type is tagged, or
872 -- the conversion is implicit (which can occur for cases of anonymous
873 -- access types in Ada 2012).
875 if Nkind
(Nam
) = N_Type_Conversion
876 and then Comes_From_Source
(Nam
)
877 and then not Is_Tagged_Type
(T
)
880 ("renaming of conversion only allowed for tagged types", Nam
);
885 -- If the renamed object is a function call of a limited type,
886 -- the expansion of the renaming is complicated by the presence
887 -- of various temporaries and subtypes that capture constraints
888 -- of the renamed object. Rewrite node as an object declaration,
889 -- whose expansion is simpler. Given that the object is limited
890 -- there is no copy involved and no performance hit.
892 if Nkind
(Nam
) = N_Function_Call
893 and then Is_Limited_View
(Etype
(Nam
))
894 and then not Is_Constrained
(Etype
(Nam
))
895 and then Comes_From_Source
(N
)
898 Set_Ekind
(Id
, E_Constant
);
900 Make_Object_Declaration
(Loc
,
901 Defining_Identifier
=> Id
,
902 Constant_Present
=> True,
903 Object_Definition
=> New_Occurrence_Of
(Etype
(Nam
), Loc
),
904 Expression
=> Relocate_Node
(Nam
)));
908 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
909 -- when renaming declaration has a named access type. The Ada 2012
910 -- coverage rules allow an anonymous access type in the context of
911 -- an expected named general access type, but the renaming rules
912 -- require the types to be the same. (An exception is when the type
913 -- of the renaming is also an anonymous access type, which can only
914 -- happen due to a renaming created by the expander.)
916 if Nkind
(Nam
) = N_Type_Conversion
917 and then not Comes_From_Source
(Nam
)
918 and then Ekind
(Etype
(Expression
(Nam
))) = E_Anonymous_Access_Type
919 and then Ekind
(T
) /= E_Anonymous_Access_Type
921 Wrong_Type
(Expression
(Nam
), T
); -- Should we give better error???
924 -- Check that a class-wide object is not being renamed as an object
925 -- of a specific type. The test for access types is needed to exclude
926 -- cases where the renamed object is a dynamically tagged access
927 -- result, such as occurs in certain expansions.
929 if Is_Tagged_Type
(T
) then
930 Check_Dynamically_Tagged_Expression
936 -- Ada 2005 (AI-230/AI-254): Access renaming
938 else pragma Assert
(Present
(Access_Definition
(N
)));
939 T
:= Access_Definition
941 N
=> Access_Definition
(N
));
945 -- Ada 2005 AI05-105: if the declaration has an anonymous access
946 -- type, the renamed object must also have an anonymous type, and
947 -- this is a name resolution rule. This was implicit in the last part
948 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
951 if not Is_Overloaded
(Nam
) then
952 if Ekind
(Etype
(Nam
)) /= Ekind
(T
) then
954 ("expect anonymous access type in object renaming", N
);
961 Typ
: Entity_Id
:= Empty
;
962 Seen
: Boolean := False;
965 Get_First_Interp
(Nam
, I
, It
);
966 while Present
(It
.Typ
) loop
968 -- Renaming is ambiguous if more than one candidate
969 -- interpretation is type-conformant with the context.
971 if Ekind
(It
.Typ
) = Ekind
(T
) then
972 if Ekind
(T
) = E_Anonymous_Access_Subprogram_Type
975 (Designated_Type
(T
), Designated_Type
(It
.Typ
))
981 ("ambiguous expression in renaming", Nam
);
984 elsif Ekind
(T
) = E_Anonymous_Access_Type
986 Covers
(Designated_Type
(T
), Designated_Type
(It
.Typ
))
992 ("ambiguous expression in renaming", Nam
);
996 if Covers
(T
, It
.Typ
) then
998 Set_Etype
(Nam
, Typ
);
999 Set_Is_Overloaded
(Nam
, False);
1003 Get_Next_Interp
(I
, It
);
1010 -- Ada 2005 (AI-231): In the case where the type is defined by an
1011 -- access_definition, the renamed entity shall be of an access-to-
1012 -- constant type if and only if the access_definition defines an
1013 -- access-to-constant type. ARM 8.5.1(4)
1015 if Constant_Present
(Access_Definition
(N
))
1016 and then not Is_Access_Constant
(Etype
(Nam
))
1018 Error_Msg_N
("(Ada 2005): the renamed object is not "
1019 & "access-to-constant (RM 8.5.1(6))", N
);
1021 elsif not Constant_Present
(Access_Definition
(N
))
1022 and then Is_Access_Constant
(Etype
(Nam
))
1024 Error_Msg_N
("(Ada 2005): the renamed object is not "
1025 & "access-to-variable (RM 8.5.1(6))", N
);
1028 if Is_Access_Subprogram_Type
(Etype
(Nam
)) then
1029 Check_Subtype_Conformant
1030 (Designated_Type
(T
), Designated_Type
(Etype
(Nam
)));
1032 elsif not Subtypes_Statically_Match
1033 (Designated_Type
(T
),
1034 Available_View
(Designated_Type
(Etype
(Nam
))))
1037 ("subtype of renamed object does not statically match", N
);
1041 -- Special processing for renaming function return object. Some errors
1042 -- and warnings are produced only for calls that come from source.
1044 if Nkind
(Nam
) = N_Function_Call
then
1047 -- Usage is illegal in Ada 83
1050 if Comes_From_Source
(Nam
) then
1052 ("(Ada 83) cannot rename function return object", Nam
);
1055 -- In Ada 95, warn for odd case of renaming parameterless function
1056 -- call if this is not a limited type (where this is useful).
1059 if Warn_On_Object_Renames_Function
1060 and then No
(Parameter_Associations
(Nam
))
1061 and then not Is_Limited_Type
(Etype
(Nam
))
1062 and then Comes_From_Source
(Nam
)
1065 ("renaming function result object is suspicious?R?", Nam
);
1067 ("\function & will be called only once?R?", Nam
,
1068 Entity
(Name
(Nam
)));
1069 Error_Msg_N
-- CODEFIX
1070 ("\suggest using an initialized constant "
1071 & "object instead?R?", Nam
);
1077 Check_Constrained_Object
;
1079 -- An object renaming requires an exact match of the type. Class-wide
1080 -- matching is not allowed.
1082 if Is_Class_Wide_Type
(T
)
1083 and then Base_Type
(Etype
(Nam
)) /= Base_Type
(T
)
1085 Wrong_Type
(Nam
, T
);
1090 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1092 if Nkind
(Nam
) = N_Explicit_Dereference
1093 and then Ekind
(Etype
(T2
)) = E_Incomplete_Type
1095 Error_Msg_NE
("invalid use of incomplete type&", Id
, T2
);
1098 elsif Ekind
(Etype
(T
)) = E_Incomplete_Type
then
1099 Error_Msg_NE
("invalid use of incomplete type&", Id
, T
);
1103 -- Ada 2005 (AI-327)
1105 if Ada_Version
>= Ada_2005
1106 and then Nkind
(Nam
) = N_Attribute_Reference
1107 and then Attribute_Name
(Nam
) = Name_Priority
1111 elsif Ada_Version
>= Ada_2005
and then Nkind
(Nam
) in N_Has_Entity
then
1114 Nam_Ent
: Entity_Id
;
1117 if Nkind
(Nam
) = N_Attribute_Reference
then
1118 Nam_Ent
:= Entity
(Prefix
(Nam
));
1120 Nam_Ent
:= Entity
(Nam
);
1123 Nam_Decl
:= Parent
(Nam_Ent
);
1125 if Has_Null_Exclusion
(N
)
1126 and then not Has_Null_Exclusion
(Nam_Decl
)
1128 -- Ada 2005 (AI-423): If the object name denotes a generic
1129 -- formal object of a generic unit G, and the object renaming
1130 -- declaration occurs within the body of G or within the body
1131 -- of a generic unit declared within the declarative region
1132 -- of G, then the declaration of the formal object of G must
1133 -- have a null exclusion or a null-excluding subtype.
1135 if Is_Formal_Object
(Nam_Ent
)
1136 and then In_Generic_Scope
(Id
)
1138 if not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1140 ("renamed formal does not exclude `NULL` "
1141 & "(RM 8.5.1(4.6/2))", N
);
1143 elsif In_Package_Body
(Scope
(Id
)) then
1145 ("formal object does not have a null exclusion"
1146 & "(RM 8.5.1(4.6/2))", N
);
1149 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1150 -- shall exclude null.
1152 elsif not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1154 ("renamed object does not exclude `NULL` "
1155 & "(RM 8.5.1(4.6/2))", N
);
1157 -- An instance is illegal if it contains a renaming that
1158 -- excludes null, and the actual does not. The renaming
1159 -- declaration has already indicated that the declaration
1160 -- of the renamed actual in the instance will raise
1161 -- constraint_error.
1163 elsif Nkind
(Nam_Decl
) = N_Object_Declaration
1164 and then In_Instance
1166 Present
(Corresponding_Generic_Association
(Nam_Decl
))
1167 and then Nkind
(Expression
(Nam_Decl
)) =
1168 N_Raise_Constraint_Error
1171 ("renamed actual does not exclude `NULL` "
1172 & "(RM 8.5.1(4.6/2))", N
);
1174 -- Finally, if there is a null exclusion, the subtype mark
1175 -- must not be null-excluding.
1177 elsif No
(Access_Definition
(N
))
1178 and then Can_Never_Be_Null
(T
)
1181 ("`NOT NULL` not allowed (& already excludes null)",
1186 elsif Can_Never_Be_Null
(T
)
1187 and then not Can_Never_Be_Null
(Etype
(Nam_Ent
))
1190 ("renamed object does not exclude `NULL` "
1191 & "(RM 8.5.1(4.6/2))", N
);
1193 elsif Has_Null_Exclusion
(N
)
1194 and then No
(Access_Definition
(N
))
1195 and then Can_Never_Be_Null
(T
)
1198 ("`NOT NULL` not allowed (& already excludes null)", N
, T
);
1203 -- Set the Ekind of the entity, unless it has been set already, as is
1204 -- the case for the iteration object over a container with no variable
1205 -- indexing. In that case it's been marked as a constant, and we do not
1206 -- want to change it to a variable.
1208 if Ekind
(Id
) /= E_Constant
then
1209 Set_Ekind
(Id
, E_Variable
);
1212 -- Initialize the object size and alignment. Note that we used to call
1213 -- Init_Size_Align here, but that's wrong for objects which have only
1214 -- an Esize, not an RM_Size field.
1216 Init_Object_Size_Align
(Id
);
1218 if T
= Any_Type
or else Etype
(Nam
) = Any_Type
then
1221 -- Verify that the renamed entity is an object or a function call. It
1222 -- may have been rewritten in several ways.
1224 elsif Is_Object_Reference
(Nam
) then
1225 if Comes_From_Source
(N
) then
1226 if Is_Dependent_Component_Of_Mutable_Object
(Nam
) then
1228 ("illegal renaming of discriminant-dependent component", Nam
);
1231 -- If the renaming comes from source and the renamed object is a
1232 -- dereference, then mark the prefix as needing debug information,
1233 -- since it might have been rewritten hence internally generated
1234 -- and Debug_Renaming_Declaration will link the renaming to it.
1236 if Nkind
(Nam
) = N_Explicit_Dereference
1237 and then Is_Entity_Name
(Prefix
(Nam
))
1239 Set_Debug_Info_Needed
(Entity
(Prefix
(Nam
)));
1243 -- A static function call may have been folded into a literal
1245 elsif Nkind
(Original_Node
(Nam
)) = N_Function_Call
1247 -- When expansion is disabled, attribute reference is not rewritten
1248 -- as function call. Otherwise it may be rewritten as a conversion,
1249 -- so check original node.
1251 or else (Nkind
(Original_Node
(Nam
)) = N_Attribute_Reference
1252 and then Is_Function_Attribute_Name
1253 (Attribute_Name
(Original_Node
(Nam
))))
1255 -- Weird but legal, equivalent to renaming a function call. Illegal
1256 -- if the literal is the result of constant-folding an attribute
1257 -- reference that is not a function.
1259 or else (Is_Entity_Name
(Nam
)
1260 and then Ekind
(Entity
(Nam
)) = E_Enumeration_Literal
1262 Nkind
(Original_Node
(Nam
)) /= N_Attribute_Reference
)
1264 or else (Nkind
(Nam
) = N_Type_Conversion
1265 and then Is_Tagged_Type
(Entity
(Subtype_Mark
(Nam
))))
1269 elsif Nkind
(Nam
) = N_Type_Conversion
then
1271 ("renaming of conversion only allowed for tagged types", Nam
);
1273 -- Ada 2005 (AI-327)
1275 elsif Ada_Version
>= Ada_2005
1276 and then Nkind
(Nam
) = N_Attribute_Reference
1277 and then Attribute_Name
(Nam
) = Name_Priority
1281 -- Allow internally generated x'Reference expression
1283 elsif Nkind
(Nam
) = N_Reference
then
1287 Error_Msg_N
("expect object name in renaming", Nam
);
1292 if not Is_Variable
(Nam
) then
1293 Set_Ekind
(Id
, E_Constant
);
1294 Set_Never_Set_In_Source
(Id
, True);
1295 Set_Is_True_Constant
(Id
, True);
1298 -- The entity of the renaming declaration needs to reflect whether the
1299 -- renamed object is volatile. Is_Volatile is set if the renamed object
1300 -- is volatile in the RM legality sense.
1302 Set_Is_Volatile
(Id
, Is_Volatile_Object
(Nam
));
1304 -- Treat as volatile if we just set the Volatile flag
1308 -- Or if we are renaming an entity which was marked this way
1310 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1312 or else (Is_Entity_Name
(Nam
)
1313 and then Treat_As_Volatile
(Entity
(Nam
)))
1315 Set_Treat_As_Volatile
(Id
, True);
1318 -- Now make the link to the renamed object
1320 Set_Renamed_Object
(Id
, Nam
);
1322 -- Implementation-defined aspect specifications can appear in a renaming
1323 -- declaration, but not language-defined ones. The call to procedure
1324 -- Analyze_Aspect_Specifications will take care of this error check.
1326 if Has_Aspects
(N
) then
1327 Analyze_Aspect_Specifications
(N
, Id
);
1330 -- Deal with dimensions
1332 Analyze_Dimension
(N
);
1333 end Analyze_Object_Renaming
;
1335 ------------------------------
1336 -- Analyze_Package_Renaming --
1337 ------------------------------
1339 procedure Analyze_Package_Renaming
(N
: Node_Id
) is
1340 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
1345 if Name
(N
) = Error
then
1349 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1351 Check_Text_IO_Special_Unit
(Name
(N
));
1353 if Current_Scope
/= Standard_Standard
then
1354 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
1360 if Is_Entity_Name
(Name
(N
)) then
1361 Old_P
:= Entity
(Name
(N
));
1366 if Etype
(Old_P
) = Any_Type
then
1367 Error_Msg_N
("expect package name in renaming", Name
(N
));
1369 elsif Ekind
(Old_P
) /= E_Package
1370 and then not (Ekind
(Old_P
) = E_Generic_Package
1371 and then In_Open_Scopes
(Old_P
))
1373 if Ekind
(Old_P
) = E_Generic_Package
then
1375 ("generic package cannot be renamed as a package", Name
(N
));
1377 Error_Msg_Sloc
:= Sloc
(Old_P
);
1379 ("expect package name in renaming, found& declared#",
1383 -- Set basic attributes to minimize cascaded errors
1385 Set_Ekind
(New_P
, E_Package
);
1386 Set_Etype
(New_P
, Standard_Void_Type
);
1388 -- Here for OK package renaming
1391 -- Entities in the old package are accessible through the renaming
1392 -- entity. The simplest implementation is to have both packages share
1395 Set_Ekind
(New_P
, E_Package
);
1396 Set_Etype
(New_P
, Standard_Void_Type
);
1398 if Present
(Renamed_Object
(Old_P
)) then
1399 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
1401 Set_Renamed_Object
(New_P
, Old_P
);
1404 Set_Has_Completion
(New_P
);
1406 Set_First_Entity
(New_P
, First_Entity
(Old_P
));
1407 Set_Last_Entity
(New_P
, Last_Entity
(Old_P
));
1408 Set_First_Private_Entity
(New_P
, First_Private_Entity
(Old_P
));
1409 Check_Library_Unit_Renaming
(N
, Old_P
);
1410 Generate_Reference
(Old_P
, Name
(N
));
1412 -- If the renaming is in the visible part of a package, then we set
1413 -- Renamed_In_Spec for the renamed package, to prevent giving
1414 -- warnings about no entities referenced. Such a warning would be
1415 -- overenthusiastic, since clients can see entities in the renamed
1416 -- package via the visible package renaming.
1419 Ent
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
1421 if Ekind
(Ent
) = E_Package
1422 and then not In_Private_Part
(Ent
)
1423 and then In_Extended_Main_Source_Unit
(N
)
1424 and then Ekind
(Old_P
) = E_Package
1426 Set_Renamed_In_Spec
(Old_P
);
1430 -- If this is the renaming declaration of a package instantiation
1431 -- within itself, it is the declaration that ends the list of actuals
1432 -- for the instantiation. At this point, the subtypes that rename
1433 -- the actuals are flagged as generic, to avoid spurious ambiguities
1434 -- if the actuals for two distinct formals happen to coincide. If
1435 -- the actual is a private type, the subtype has a private completion
1436 -- that is flagged in the same fashion.
1438 -- Resolution is identical to what is was in the original generic.
1439 -- On exit from the generic instance, these are turned into regular
1440 -- subtypes again, so they are compatible with types in their class.
1442 if not Is_Generic_Instance
(Old_P
) then
1445 Spec
:= Specification
(Unit_Declaration_Node
(Old_P
));
1448 if Nkind
(Spec
) = N_Package_Specification
1449 and then Present
(Generic_Parent
(Spec
))
1450 and then Old_P
= Current_Scope
1451 and then Chars
(New_P
) = Chars
(Generic_Parent
(Spec
))
1457 E
:= First_Entity
(Old_P
);
1458 while Present
(E
) and then E
/= New_P
loop
1460 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
1462 Set_Is_Generic_Actual_Type
(E
);
1464 if Is_Private_Type
(E
)
1465 and then Present
(Full_View
(E
))
1467 Set_Is_Generic_Actual_Type
(Full_View
(E
));
1477 -- Implementation-defined aspect specifications can appear in a renaming
1478 -- declaration, but not language-defined ones. The call to procedure
1479 -- Analyze_Aspect_Specifications will take care of this error check.
1481 if Has_Aspects
(N
) then
1482 Analyze_Aspect_Specifications
(N
, New_P
);
1484 end Analyze_Package_Renaming
;
1486 -------------------------------
1487 -- Analyze_Renamed_Character --
1488 -------------------------------
1490 procedure Analyze_Renamed_Character
1495 C
: constant Node_Id
:= Name
(N
);
1498 if Ekind
(New_S
) = E_Function
then
1499 Resolve
(C
, Etype
(New_S
));
1502 Check_Frozen_Renaming
(N
, New_S
);
1506 Error_Msg_N
("character literal can only be renamed as function", N
);
1508 end Analyze_Renamed_Character
;
1510 ---------------------------------
1511 -- Analyze_Renamed_Dereference --
1512 ---------------------------------
1514 procedure Analyze_Renamed_Dereference
1519 Nam
: constant Node_Id
:= Name
(N
);
1520 P
: constant Node_Id
:= Prefix
(Nam
);
1526 if not Is_Overloaded
(P
) then
1527 if Ekind
(Etype
(Nam
)) /= E_Subprogram_Type
1528 or else not Type_Conformant
(Etype
(Nam
), New_S
)
1530 Error_Msg_N
("designated type does not match specification", P
);
1539 Get_First_Interp
(Nam
, Ind
, It
);
1541 while Present
(It
.Nam
) loop
1543 if Ekind
(It
.Nam
) = E_Subprogram_Type
1544 and then Type_Conformant
(It
.Nam
, New_S
)
1546 if Typ
/= Any_Id
then
1547 Error_Msg_N
("ambiguous renaming", P
);
1554 Get_Next_Interp
(Ind
, It
);
1557 if Typ
= Any_Type
then
1558 Error_Msg_N
("designated type does not match specification", P
);
1563 Check_Frozen_Renaming
(N
, New_S
);
1567 end Analyze_Renamed_Dereference
;
1569 ---------------------------
1570 -- Analyze_Renamed_Entry --
1571 ---------------------------
1573 procedure Analyze_Renamed_Entry
1578 Nam
: constant Node_Id
:= Name
(N
);
1579 Sel
: constant Node_Id
:= Selector_Name
(Nam
);
1580 Is_Actual
: constant Boolean := Present
(Corresponding_Formal_Spec
(N
));
1584 if Entity
(Sel
) = Any_Id
then
1586 -- Selector is undefined on prefix. Error emitted already
1588 Set_Has_Completion
(New_S
);
1592 -- Otherwise find renamed entity and build body of New_S as a call to it
1594 Old_S
:= Find_Renamed_Entity
(N
, Selector_Name
(Nam
), New_S
);
1596 if Old_S
= Any_Id
then
1597 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1600 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1601 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1602 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1605 -- Only mode conformance required for a renaming_as_declaration
1607 Check_Mode_Conformant
(New_S
, Old_S
, N
);
1610 Inherit_Renamed_Profile
(New_S
, Old_S
);
1612 -- The prefix can be an arbitrary expression that yields a task or
1613 -- protected object, so it must be resolved.
1615 Resolve
(Prefix
(Nam
), Scope
(Old_S
));
1618 Set_Convention
(New_S
, Convention
(Old_S
));
1619 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1621 -- AI05-0225: If the renamed entity is a procedure or entry of a
1622 -- protected object, the target object must be a variable.
1624 if Ekind
(Scope
(Old_S
)) in Protected_Kind
1625 and then Ekind
(New_S
) = E_Procedure
1626 and then not Is_Variable
(Prefix
(Nam
))
1630 ("target object of protected operation used as actual for "
1631 & "formal procedure must be a variable", Nam
);
1634 ("target object of protected operation renamed as procedure, "
1635 & "must be a variable", Nam
);
1640 Check_Frozen_Renaming
(N
, New_S
);
1642 end Analyze_Renamed_Entry
;
1644 -----------------------------------
1645 -- Analyze_Renamed_Family_Member --
1646 -----------------------------------
1648 procedure Analyze_Renamed_Family_Member
1653 Nam
: constant Node_Id
:= Name
(N
);
1654 P
: constant Node_Id
:= Prefix
(Nam
);
1658 if (Is_Entity_Name
(P
) and then Ekind
(Entity
(P
)) = E_Entry_Family
)
1659 or else (Nkind
(P
) = N_Selected_Component
1660 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
)
1662 if Is_Entity_Name
(P
) then
1663 Old_S
:= Entity
(P
);
1665 Old_S
:= Entity
(Selector_Name
(P
));
1668 if not Entity_Matches_Spec
(Old_S
, New_S
) then
1669 Error_Msg_N
("entry family does not match specification", N
);
1672 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1673 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1674 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1678 Error_Msg_N
("no entry family matches specification", N
);
1681 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1684 Check_Frozen_Renaming
(N
, New_S
);
1686 end Analyze_Renamed_Family_Member
;
1688 -----------------------------------------
1689 -- Analyze_Renamed_Primitive_Operation --
1690 -----------------------------------------
1692 procedure Analyze_Renamed_Primitive_Operation
1701 Ctyp
: Conformance_Type
) return Boolean;
1702 -- Verify that the signatures of the renamed entity and the new entity
1703 -- match. The first formal of the renamed entity is skipped because it
1704 -- is the target object in any subsequent call.
1712 Ctyp
: Conformance_Type
) return Boolean
1718 if Ekind
(Subp
) /= Ekind
(New_S
) then
1722 Old_F
:= Next_Formal
(First_Formal
(Subp
));
1723 New_F
:= First_Formal
(New_S
);
1724 while Present
(Old_F
) and then Present
(New_F
) loop
1725 if not Conforming_Types
(Etype
(Old_F
), Etype
(New_F
), Ctyp
) then
1729 if Ctyp
>= Mode_Conformant
1730 and then Ekind
(Old_F
) /= Ekind
(New_F
)
1735 Next_Formal
(New_F
);
1736 Next_Formal
(Old_F
);
1742 -- Start of processing for Analyze_Renamed_Primitive_Operation
1745 if not Is_Overloaded
(Selector_Name
(Name
(N
))) then
1746 Old_S
:= Entity
(Selector_Name
(Name
(N
)));
1748 if not Conforms
(Old_S
, Type_Conformant
) then
1753 -- Find the operation that matches the given signature
1761 Get_First_Interp
(Selector_Name
(Name
(N
)), Ind
, It
);
1763 while Present
(It
.Nam
) loop
1764 if Conforms
(It
.Nam
, Type_Conformant
) then
1768 Get_Next_Interp
(Ind
, It
);
1773 if Old_S
= Any_Id
then
1774 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1778 if not Conforms
(Old_S
, Subtype_Conformant
) then
1779 Error_Msg_N
("subtype conformance error in renaming", N
);
1782 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1783 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1786 -- Only mode conformance required for a renaming_as_declaration
1788 if not Conforms
(Old_S
, Mode_Conformant
) then
1789 Error_Msg_N
("mode conformance error in renaming", N
);
1792 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1793 -- view of a subprogram is intrinsic, because the compiler has
1794 -- to generate a wrapper for any call to it. If the name in a
1795 -- subprogram renaming is a prefixed view, the entity is thus
1796 -- intrinsic, and 'Access cannot be applied to it.
1798 Set_Convention
(New_S
, Convention_Intrinsic
);
1801 -- Inherit_Renamed_Profile (New_S, Old_S);
1803 -- The prefix can be an arbitrary expression that yields an
1804 -- object, so it must be resolved.
1806 Resolve
(Prefix
(Name
(N
)));
1808 end Analyze_Renamed_Primitive_Operation
;
1810 ---------------------------------
1811 -- Analyze_Subprogram_Renaming --
1812 ---------------------------------
1814 procedure Analyze_Subprogram_Renaming
(N
: Node_Id
) is
1815 Formal_Spec
: constant Entity_Id
:= Corresponding_Formal_Spec
(N
);
1816 Is_Actual
: constant Boolean := Present
(Formal_Spec
);
1817 Nam
: constant Node_Id
:= Name
(N
);
1818 Save_AV
: constant Ada_Version_Type
:= Ada_Version
;
1819 Save_AVP
: constant Node_Id
:= Ada_Version_Pragma
;
1820 Save_AV_Exp
: constant Ada_Version_Type
:= Ada_Version_Explicit
;
1821 Spec
: constant Node_Id
:= Specification
(N
);
1823 Old_S
: Entity_Id
:= Empty
;
1824 Rename_Spec
: Entity_Id
;
1826 procedure Build_Class_Wide_Wrapper
1827 (Ren_Id
: out Entity_Id
;
1828 Wrap_Id
: out Entity_Id
);
1829 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1830 -- type with unknown discriminants and a generic primitive operation of
1831 -- the said type with a box require special processing when the actual
1832 -- is a class-wide type:
1835 -- type Formal_Typ (<>) is private;
1836 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1837 -- package Gen is ...
1839 -- package Inst is new Gen (Actual_Typ'Class);
1841 -- In this case the general renaming mechanism used in the prologue of
1842 -- an instance no longer applies:
1844 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1846 -- The above is replaced the following wrapper/renaming combination:
1848 -- procedure Prim_Op (Param : Formal_Typ) is -- wrapper
1850 -- Prim_Op (Param); -- primitive
1853 -- procedure Dummy (Param : Formal_Typ) renames Prim_Op;
1855 -- This transformation applies only if there is no explicit visible
1856 -- class-wide operation at the point of the instantiation. Ren_Id is
1857 -- the entity of the renaming declaration. Wrap_Id is the entity of
1858 -- the generated class-wide wrapper (or Any_Id).
1860 procedure Check_Null_Exclusion
1863 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1864 -- following AI rules:
1866 -- If Ren is a renaming of a formal subprogram and one of its
1867 -- parameters has a null exclusion, then the corresponding formal
1868 -- in Sub must also have one. Otherwise the subtype of the Sub's
1869 -- formal parameter must exclude null.
1871 -- If Ren is a renaming of a formal function and its return
1872 -- profile has a null exclusion, then Sub's return profile must
1873 -- have one. Otherwise the subtype of Sub's return profile must
1876 procedure Freeze_Actual_Profile
;
1877 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1878 -- types: a callable entity freezes its profile, unless it has an
1879 -- incomplete untagged formal (RM 13.14(10.2/3)).
1881 function Has_Class_Wide_Actual
return Boolean;
1882 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1883 -- defaulted formal subprogram where the actual for the controlling
1884 -- formal type is class-wide.
1886 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
;
1887 -- Find renamed entity when the declaration is a renaming_as_body and
1888 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1889 -- rule that a renaming_as_body is illegal if the declaration occurs
1890 -- before the subprogram it completes is frozen, and renaming indirectly
1891 -- renames the subprogram itself.(Defect Report 8652/0027).
1893 ------------------------------
1894 -- Build_Class_Wide_Wrapper --
1895 ------------------------------
1897 procedure Build_Class_Wide_Wrapper
1898 (Ren_Id
: out Entity_Id
;
1899 Wrap_Id
: out Entity_Id
)
1901 Loc
: constant Source_Ptr
:= Sloc
(N
);
1904 (Subp_Id
: Entity_Id
;
1905 Params
: List_Id
) return Node_Id
;
1906 -- Create a dispatching call to invoke routine Subp_Id with actuals
1907 -- built from the parameter specifications of list Params.
1909 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
;
1910 -- Create a subprogram specification based on the subprogram profile
1913 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
;
1914 -- Find a primitive subprogram of type Typ which matches the profile
1915 -- of the renaming declaration.
1917 procedure Interpretation_Error
(Subp_Id
: Entity_Id
);
1918 -- Emit a continuation error message suggesting subprogram Subp_Id as
1919 -- a possible interpretation.
1926 (Subp_Id
: Entity_Id
;
1927 Params
: List_Id
) return Node_Id
1929 Actuals
: constant List_Id
:= New_List
;
1930 Call_Ref
: constant Node_Id
:= New_Occurrence_Of
(Subp_Id
, Loc
);
1934 -- Build the actual parameters of the call
1936 Formal
:= First
(Params
);
1937 while Present
(Formal
) loop
1939 Make_Identifier
(Loc
, Chars
(Defining_Identifier
(Formal
))));
1944 -- return Subp_Id (Actuals);
1946 if Ekind_In
(Subp_Id
, E_Function
, E_Operator
) then
1948 Make_Simple_Return_Statement
(Loc
,
1950 Make_Function_Call
(Loc
,
1952 Parameter_Associations
=> Actuals
));
1955 -- Subp_Id (Actuals);
1959 Make_Procedure_Call_Statement
(Loc
,
1961 Parameter_Associations
=> Actuals
);
1969 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
is
1970 Params
: constant List_Id
:= Copy_Parameter_List
(Subp_Id
);
1971 Spec_Id
: constant Entity_Id
:=
1972 Make_Defining_Identifier
(Loc
, Chars
(Subp_Id
));
1975 if Ekind
(Formal_Spec
) = E_Procedure
then
1977 Make_Procedure_Specification
(Loc
,
1978 Defining_Unit_Name
=> Spec_Id
,
1979 Parameter_Specifications
=> Params
);
1982 Make_Function_Specification
(Loc
,
1983 Defining_Unit_Name
=> Spec_Id
,
1984 Parameter_Specifications
=> Params
,
1985 Result_Definition
=>
1986 New_Copy_Tree
(Result_Definition
(Spec
)));
1990 --------------------
1991 -- Find_Primitive --
1992 --------------------
1994 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
is
1995 procedure Replace_Parameter_Types
(Spec
: Node_Id
);
1996 -- Given a specification Spec, replace all class-wide parameter
1997 -- types with reference to type Typ.
1999 -----------------------------
2000 -- Replace_Parameter_Types --
2001 -----------------------------
2003 procedure Replace_Parameter_Types
(Spec
: Node_Id
) is
2005 Formal_Id
: Entity_Id
;
2006 Formal_Typ
: Node_Id
;
2009 Formal
:= First
(Parameter_Specifications
(Spec
));
2010 while Present
(Formal
) loop
2011 Formal_Id
:= Defining_Identifier
(Formal
);
2012 Formal_Typ
:= Parameter_Type
(Formal
);
2014 -- Create a new entity for each class-wide formal to prevent
2015 -- aliasing with the original renaming. Replace the type of
2016 -- such a parameter with the candidate type.
2018 if Nkind
(Formal_Typ
) = N_Identifier
2019 and then Is_Class_Wide_Type
(Etype
(Formal_Typ
))
2021 Set_Defining_Identifier
(Formal
,
2022 Make_Defining_Identifier
(Loc
, Chars
(Formal_Id
)));
2024 Set_Parameter_Type
(Formal
, New_Occurrence_Of
(Typ
, Loc
));
2029 end Replace_Parameter_Types
;
2033 Alt_Ren
: constant Node_Id
:= New_Copy_Tree
(N
);
2034 Alt_Nam
: constant Node_Id
:= Name
(Alt_Ren
);
2035 Alt_Spec
: constant Node_Id
:= Specification
(Alt_Ren
);
2036 Subp_Id
: Entity_Id
;
2038 -- Start of processing for Find_Primitive
2041 -- Each attempt to find a suitable primitive of a particular type
2042 -- operates on its own copy of the original renaming. As a result
2043 -- the original renaming is kept decoration and side-effect free.
2045 -- Inherit the overloaded status of the renamed subprogram name
2047 if Is_Overloaded
(Nam
) then
2048 Set_Is_Overloaded
(Alt_Nam
);
2049 Save_Interps
(Nam
, Alt_Nam
);
2052 -- The copied renaming is hidden from visibility to prevent the
2053 -- pollution of the enclosing context.
2055 Set_Defining_Unit_Name
(Alt_Spec
, Make_Temporary
(Loc
, 'R'));
2057 -- The types of all class-wide parameters must be changed to the
2060 Replace_Parameter_Types
(Alt_Spec
);
2062 -- Try to find a suitable primitive which matches the altered
2063 -- profile of the renaming specification.
2068 Nam
=> Name
(Alt_Ren
),
2069 New_S
=> Analyze_Subprogram_Specification
(Alt_Spec
),
2070 Is_Actual
=> Is_Actual
);
2072 -- Do not return Any_Id if the resolion of the altered profile
2073 -- failed as this complicates further checks on the caller side,
2074 -- return Empty instead.
2076 if Subp_Id
= Any_Id
then
2083 --------------------------
2084 -- Interpretation_Error --
2085 --------------------------
2087 procedure Interpretation_Error
(Subp_Id
: Entity_Id
) is
2089 Error_Msg_Sloc
:= Sloc
(Subp_Id
);
2091 ("\\possible interpretation: & defined #", Spec
, Formal_Spec
);
2092 end Interpretation_Error
;
2096 Actual_Typ
: Entity_Id
:= Empty
;
2097 -- The actual class-wide type for Formal_Typ
2099 CW_Prim_Op
: Entity_Id
;
2100 -- The class-wide primitive (if any) which corresponds to the renamed
2101 -- generic formal subprogram.
2103 Formal_Typ
: Entity_Id
:= Empty
;
2104 -- The generic formal type (if any) with unknown discriminants
2106 Root_Prim_Op
: Entity_Id
;
2107 -- The root type primitive (if any) which corresponds to the renamed
2108 -- generic formal subprogram.
2110 Body_Decl
: Node_Id
;
2112 Prim_Op
: Entity_Id
;
2113 Spec_Decl
: Node_Id
;
2115 -- Start of processing for Build_Class_Wide_Wrapper
2118 -- Analyze the specification of the renaming in case the generation
2119 -- of the class-wide wrapper fails.
2121 Ren_Id
:= Analyze_Subprogram_Specification
(Spec
);
2124 -- Do not attempt to build a wrapper if the renaming is in error
2126 if Error_Posted
(Nam
) then
2130 -- Analyze the renamed name, but do not resolve it. The resolution is
2131 -- completed once a suitable primitive is found.
2135 -- Step 1: Find the generic formal type with unknown discriminants
2136 -- and its corresponding class-wide actual type from the renamed
2137 -- generic formal subprogram.
2139 Formal
:= First_Formal
(Formal_Spec
);
2140 while Present
(Formal
) loop
2141 if Has_Unknown_Discriminants
(Etype
(Formal
))
2142 and then not Is_Class_Wide_Type
(Etype
(Formal
))
2143 and then Is_Class_Wide_Type
(Get_Instance_Of
(Etype
(Formal
)))
2145 Formal_Typ
:= Etype
(Formal
);
2146 Actual_Typ
:= Get_Instance_Of
(Formal_Typ
);
2150 Next_Formal
(Formal
);
2153 -- The specification of the generic formal subprogram should always
2154 -- contain a formal type with unknown discriminants whose actual is
2155 -- a class-wide type, otherwise this indicates a failure in routine
2156 -- Has_Class_Wide_Actual.
2158 pragma Assert
(Present
(Formal_Typ
));
2160 -- Step 2: Find the proper primitive which corresponds to the renamed
2161 -- generic formal subprogram.
2163 CW_Prim_Op
:= Find_Primitive
(Actual_Typ
);
2164 Root_Prim_Op
:= Find_Primitive
(Etype
(Actual_Typ
));
2166 -- The class-wide actual type has two primitives which correspond to
2167 -- the renamed generic formal subprogram:
2169 -- with procedure Prim_Op (Param : Formal_Typ);
2171 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2172 -- procedure Prim_Op (Param : Actual_Typ'Class);
2174 -- Even though the declaration of the two primitives is legal, a call
2175 -- to either one is ambiguous and therefore illegal.
2177 if Present
(CW_Prim_Op
) and then Present
(Root_Prim_Op
) then
2179 -- Deal with abstract primitives
2181 if Is_Abstract_Subprogram
(CW_Prim_Op
)
2182 or else Is_Abstract_Subprogram
(Root_Prim_Op
)
2184 -- An abstract subprogram cannot act as a generic actual, but
2185 -- the partial parameterization of the instance may hide the
2186 -- true nature of the actual. Emit an error when both options
2189 if Is_Abstract_Subprogram
(CW_Prim_Op
)
2190 and then Is_Abstract_Subprogram
(Root_Prim_Op
)
2193 ("abstract subprogram not allowed as generic actual",
2195 Interpretation_Error
(CW_Prim_Op
);
2196 Interpretation_Error
(Root_Prim_Op
);
2199 -- Otherwise choose the non-abstract version
2201 elsif Is_Abstract_Subprogram
(Root_Prim_Op
) then
2202 Prim_Op
:= CW_Prim_Op
;
2204 else pragma Assert
(Is_Abstract_Subprogram
(CW_Prim_Op
));
2205 Prim_Op
:= Root_Prim_Op
;
2208 -- If one of the candidate primitives is intrinsic, choose the
2209 -- other (which may also be intrinsic). Preference is given to
2210 -- the primitive of the root type.
2212 elsif Is_Intrinsic_Subprogram
(CW_Prim_Op
) then
2213 Prim_Op
:= Root_Prim_Op
;
2215 elsif Is_Intrinsic_Subprogram
(Root_Prim_Op
) then
2216 Prim_Op
:= CW_Prim_Op
;
2218 elsif CW_Prim_Op
= Root_Prim_Op
then
2219 Prim_Op
:= Root_Prim_Op
;
2221 -- Otherwise there are two perfectly good candidates which satisfy
2222 -- the profile of the renamed generic formal subprogram.
2226 ("ambiguous actual for generic subprogram &",
2228 Interpretation_Error
(CW_Prim_Op
);
2229 Interpretation_Error
(Root_Prim_Op
);
2233 elsif Present
(CW_Prim_Op
) then
2234 Prim_Op
:= CW_Prim_Op
;
2236 elsif Present
(Root_Prim_Op
) then
2237 Prim_Op
:= Root_Prim_Op
;
2239 -- Otherwise there are no candidate primitives. Let the caller
2240 -- diagnose the error.
2246 -- Set the proper entity of the renamed generic formal subprogram
2247 -- and reset its overloaded status now that resolution has finally
2250 Set_Entity
(Nam
, Prim_Op
);
2251 Set_Is_Overloaded
(Nam
, False);
2253 -- Step 3: Create the declaration and the body of the wrapper, insert
2254 -- all the pieces into the tree.
2257 Make_Subprogram_Declaration
(Loc
,
2258 Specification
=> Build_Spec
(Ren_Id
));
2261 Make_Subprogram_Body
(Loc
,
2262 Specification
=> Build_Spec
(Ren_Id
),
2263 Declarations
=> New_List
,
2264 Handled_Statement_Sequence
=>
2265 Make_Handled_Sequence_Of_Statements
(Loc
,
2266 Statements
=> New_List
(
2268 (Subp_Id
=> Prim_Op
,
2270 Parameter_Specifications
2271 (Specification
(Spec_Decl
))))));
2273 Insert_Before_And_Analyze
(N
, Spec_Decl
);
2274 Wrap_Id
:= Defining_Entity
(Spec_Decl
);
2276 -- The generated body does not freeze and must be analyzed when the
2277 -- class-wide wrapper is frozen. The body is only needed if expansion
2280 if Expander_Active
then
2281 Append_Freeze_Action
(Wrap_Id
, Body_Decl
);
2284 -- Step 4: Once the proper actual type and primitive operation are
2285 -- known, hide the renaming declaration from visibility by giving it
2288 Set_Defining_Unit_Name
(Spec
, Make_Temporary
(Loc
, 'R'));
2289 Ren_Id
:= Analyze_Subprogram_Specification
(Spec
);
2290 end Build_Class_Wide_Wrapper
;
2292 --------------------------
2293 -- Check_Null_Exclusion --
2294 --------------------------
2296 procedure Check_Null_Exclusion
2300 Ren_Formal
: Entity_Id
;
2301 Sub_Formal
: Entity_Id
;
2306 Ren_Formal
:= First_Formal
(Ren
);
2307 Sub_Formal
:= First_Formal
(Sub
);
2308 while Present
(Ren_Formal
) and then Present
(Sub_Formal
) loop
2309 if Has_Null_Exclusion
(Parent
(Ren_Formal
))
2311 not (Has_Null_Exclusion
(Parent
(Sub_Formal
))
2312 or else Can_Never_Be_Null
(Etype
(Sub_Formal
)))
2315 ("`NOT NULL` required for parameter &",
2316 Parent
(Sub_Formal
), Sub_Formal
);
2319 Next_Formal
(Ren_Formal
);
2320 Next_Formal
(Sub_Formal
);
2323 -- Return profile check
2325 if Nkind
(Parent
(Ren
)) = N_Function_Specification
2326 and then Nkind
(Parent
(Sub
)) = N_Function_Specification
2327 and then Has_Null_Exclusion
(Parent
(Ren
))
2328 and then not (Has_Null_Exclusion
(Parent
(Sub
))
2329 or else Can_Never_Be_Null
(Etype
(Sub
)))
2332 ("return must specify `NOT NULL`",
2333 Result_Definition
(Parent
(Sub
)));
2335 end Check_Null_Exclusion
;
2337 ---------------------------
2338 -- Freeze_Actual_Profile --
2339 ---------------------------
2341 procedure Freeze_Actual_Profile
is
2343 Has_Untagged_Inc
: Boolean;
2344 Instantiation_Node
: constant Node_Id
:= Parent
(N
);
2347 if Ada_Version
>= Ada_2012
then
2348 F
:= First_Formal
(Formal_Spec
);
2349 Has_Untagged_Inc
:= False;
2350 while Present
(F
) loop
2351 if Ekind
(Etype
(F
)) = E_Incomplete_Type
2352 and then not Is_Tagged_Type
(Etype
(F
))
2354 Has_Untagged_Inc
:= True;
2358 F
:= Next_Formal
(F
);
2361 if Ekind
(Formal_Spec
) = E_Function
2362 and then Ekind
(Etype
(Formal_Spec
)) = E_Incomplete_Type
2363 and then not Is_Tagged_Type
(Etype
(F
))
2365 Has_Untagged_Inc
:= True;
2368 if not Has_Untagged_Inc
then
2369 F
:= First_Formal
(Old_S
);
2370 while Present
(F
) loop
2371 Freeze_Before
(Instantiation_Node
, Etype
(F
));
2373 if Is_Incomplete_Or_Private_Type
(Etype
(F
))
2374 and then No
(Underlying_Type
(Etype
(F
)))
2376 -- Exclude generic types, or types derived from them.
2377 -- They will be frozen in the enclosing instance.
2379 if Is_Generic_Type
(Etype
(F
))
2380 or else Is_Generic_Type
(Root_Type
(Etype
(F
)))
2385 ("type& must be frozen before this point",
2386 Instantiation_Node
, Etype
(F
));
2390 F
:= Next_Formal
(F
);
2394 end Freeze_Actual_Profile
;
2396 ---------------------------
2397 -- Has_Class_Wide_Actual --
2398 ---------------------------
2400 function Has_Class_Wide_Actual
return Boolean is
2402 Formal_Typ
: Entity_Id
;
2406 Formal
:= First_Formal
(Formal_Spec
);
2407 while Present
(Formal
) loop
2408 Formal_Typ
:= Etype
(Formal
);
2410 if Has_Unknown_Discriminants
(Formal_Typ
)
2411 and then not Is_Class_Wide_Type
(Formal_Typ
)
2412 and then Is_Class_Wide_Type
(Get_Instance_Of
(Formal_Typ
))
2417 Next_Formal
(Formal
);
2422 end Has_Class_Wide_Actual
;
2424 -------------------------
2425 -- Original_Subprogram --
2426 -------------------------
2428 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
is
2429 Orig_Decl
: Node_Id
;
2430 Orig_Subp
: Entity_Id
;
2433 -- First case: renamed entity is itself a renaming
2435 if Present
(Alias
(Subp
)) then
2436 return Alias
(Subp
);
2438 elsif Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
2439 and then Present
(Corresponding_Body
(Unit_Declaration_Node
(Subp
)))
2441 -- Check if renamed entity is a renaming_as_body
2444 Unit_Declaration_Node
2445 (Corresponding_Body
(Unit_Declaration_Node
(Subp
)));
2447 if Nkind
(Orig_Decl
) = N_Subprogram_Renaming_Declaration
then
2448 Orig_Subp
:= Entity
(Name
(Orig_Decl
));
2450 if Orig_Subp
= Rename_Spec
then
2452 -- Circularity detected
2457 return (Original_Subprogram
(Orig_Subp
));
2465 end Original_Subprogram
;
2469 CW_Actual
: constant Boolean := Has_Class_Wide_Actual
;
2470 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2471 -- defaulted formal subprogram when the actual for a related formal
2472 -- type is class-wide.
2474 Inst_Node
: Node_Id
:= Empty
;
2477 -- Start of processing for Analyze_Subprogram_Renaming
2480 -- We must test for the attribute renaming case before the Analyze
2481 -- call because otherwise Sem_Attr will complain that the attribute
2482 -- is missing an argument when it is analyzed.
2484 if Nkind
(Nam
) = N_Attribute_Reference
then
2486 -- In the case of an abstract formal subprogram association, rewrite
2487 -- an actual given by a stream attribute as the name of the
2488 -- corresponding stream primitive of the type.
2490 -- In a generic context the stream operations are not generated, and
2491 -- this must be treated as a normal attribute reference, to be
2492 -- expanded in subsequent instantiations.
2495 and then Is_Abstract_Subprogram
(Formal_Spec
)
2496 and then Expander_Active
2499 Stream_Prim
: Entity_Id
;
2500 Prefix_Type
: constant Entity_Id
:= Entity
(Prefix
(Nam
));
2503 -- The class-wide forms of the stream attributes are not
2504 -- primitive dispatching operations (even though they
2505 -- internally dispatch to a stream attribute).
2507 if Is_Class_Wide_Type
(Prefix_Type
) then
2509 ("attribute must be a primitive dispatching operation",
2514 -- Retrieve the primitive subprogram associated with the
2515 -- attribute. This can only be a stream attribute, since those
2516 -- are the only ones that are dispatching (and the actual for
2517 -- an abstract formal subprogram must be dispatching
2521 case Attribute_Name
(Nam
) is
2524 Find_Prim_Op
(Prefix_Type
, TSS_Stream_Input
);
2527 Find_Prim_Op
(Prefix_Type
, TSS_Stream_Output
);
2530 Find_Prim_Op
(Prefix_Type
, TSS_Stream_Read
);
2533 Find_Prim_Op
(Prefix_Type
, TSS_Stream_Write
);
2536 ("attribute must be a primitive"
2537 & " dispatching operation", Nam
);
2543 -- If no operation was found, and the type is limited,
2544 -- the user should have defined one.
2546 when Program_Error
=>
2547 if Is_Limited_Type
(Prefix_Type
) then
2549 ("stream operation not defined for type&",
2553 -- Otherwise, compiler should have generated default
2560 -- Rewrite the attribute into the name of its corresponding
2561 -- primitive dispatching subprogram. We can then proceed with
2562 -- the usual processing for subprogram renamings.
2565 Prim_Name
: constant Node_Id
:=
2566 Make_Identifier
(Sloc
(Nam
),
2567 Chars
=> Chars
(Stream_Prim
));
2569 Set_Entity
(Prim_Name
, Stream_Prim
);
2570 Rewrite
(Nam
, Prim_Name
);
2575 -- Normal processing for a renaming of an attribute
2578 Attribute_Renaming
(N
);
2583 -- Check whether this declaration corresponds to the instantiation
2584 -- of a formal subprogram.
2586 -- If this is an instantiation, the corresponding actual is frozen and
2587 -- error messages can be made more precise. If this is a default
2588 -- subprogram, the entity is already established in the generic, and is
2589 -- not retrieved by visibility. If it is a default with a box, the
2590 -- candidate interpretations, if any, have been collected when building
2591 -- the renaming declaration. If overloaded, the proper interpretation is
2592 -- determined in Find_Renamed_Entity. If the entity is an operator,
2593 -- Find_Renamed_Entity applies additional visibility checks.
2596 Inst_Node
:= Unit_Declaration_Node
(Formal_Spec
);
2598 -- Check whether the renaming is for a defaulted actual subprogram
2599 -- with a class-wide actual.
2601 if CW_Actual
and then Box_Present
(Inst_Node
) then
2602 Build_Class_Wide_Wrapper
(New_S
, Old_S
);
2604 elsif Is_Entity_Name
(Nam
)
2605 and then Present
(Entity
(Nam
))
2606 and then not Comes_From_Source
(Nam
)
2607 and then not Is_Overloaded
(Nam
)
2609 Old_S
:= Entity
(Nam
);
2610 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2614 if Ekind
(Entity
(Nam
)) = E_Operator
then
2618 if Box_Present
(Inst_Node
) then
2619 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
2621 -- If there is an immediately visible homonym of the operator
2622 -- and the declaration has a default, this is worth a warning
2623 -- because the user probably did not intend to get the pre-
2624 -- defined operator, visible in the generic declaration. To
2625 -- find if there is an intended candidate, analyze the renaming
2626 -- again in the current context.
2628 elsif Scope
(Old_S
) = Standard_Standard
2629 and then Present
(Default_Name
(Inst_Node
))
2632 Decl
: constant Node_Id
:= New_Copy_Tree
(N
);
2636 Set_Entity
(Name
(Decl
), Empty
);
2637 Analyze
(Name
(Decl
));
2639 Find_Renamed_Entity
(Decl
, Name
(Decl
), New_S
, True);
2642 and then In_Open_Scopes
(Scope
(Hidden
))
2643 and then Is_Immediately_Visible
(Hidden
)
2644 and then Comes_From_Source
(Hidden
)
2645 and then Hidden
/= Old_S
2647 Error_Msg_Sloc
:= Sloc
(Hidden
);
2648 Error_Msg_N
("default subprogram is resolved " &
2649 "in the generic declaration " &
2650 "(RM 12.6(17))??", N
);
2651 Error_Msg_NE
("\and will not use & #??", N
, Hidden
);
2659 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2663 -- Renamed entity must be analyzed first, to avoid being hidden by
2664 -- new name (which might be the same in a generic instance).
2668 -- The renaming defines a new overloaded entity, which is analyzed
2669 -- like a subprogram declaration.
2671 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2674 if Current_Scope
/= Standard_Standard
then
2675 Set_Is_Pure
(New_S
, Is_Pure
(Current_Scope
));
2678 -- Set SPARK mode from current context
2680 Set_SPARK_Pragma
(New_S
, SPARK_Mode_Pragma
);
2681 Set_SPARK_Pragma_Inherited
(New_S
, True);
2683 Rename_Spec
:= Find_Corresponding_Spec
(N
);
2685 -- Case of Renaming_As_Body
2687 if Present
(Rename_Spec
) then
2689 -- Renaming declaration is the completion of the declaration of
2690 -- Rename_Spec. We build an actual body for it at the freezing point.
2692 Set_Corresponding_Spec
(N
, Rename_Spec
);
2694 -- Deal with special case of stream functions of abstract types
2697 if Nkind
(Unit_Declaration_Node
(Rename_Spec
)) =
2698 N_Abstract_Subprogram_Declaration
2700 -- Input stream functions are abstract if the object type is
2701 -- abstract. Similarly, all default stream functions for an
2702 -- interface type are abstract. However, these subprograms may
2703 -- receive explicit declarations in representation clauses, making
2704 -- the attribute subprograms usable as defaults in subsequent
2706 -- In this case we rewrite the declaration to make the subprogram
2707 -- non-abstract. We remove the previous declaration, and insert
2708 -- the new one at the point of the renaming, to prevent premature
2709 -- access to unfrozen types. The new declaration reuses the
2710 -- specification of the previous one, and must not be analyzed.
2713 (Is_Primitive
(Entity
(Nam
))
2715 Is_Abstract_Type
(Find_Dispatching_Type
(Entity
(Nam
))));
2717 Old_Decl
: constant Node_Id
:=
2718 Unit_Declaration_Node
(Rename_Spec
);
2719 New_Decl
: constant Node_Id
:=
2720 Make_Subprogram_Declaration
(Sloc
(N
),
2722 Relocate_Node
(Specification
(Old_Decl
)));
2725 Insert_After
(N
, New_Decl
);
2726 Set_Is_Abstract_Subprogram
(Rename_Spec
, False);
2727 Set_Analyzed
(New_Decl
);
2731 Set_Corresponding_Body
(Unit_Declaration_Node
(Rename_Spec
), New_S
);
2733 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
2734 Error_Msg_N
("(Ada 83) renaming cannot serve as a body", N
);
2737 Set_Convention
(New_S
, Convention
(Rename_Spec
));
2738 Check_Fully_Conformant
(New_S
, Rename_Spec
);
2739 Set_Public_Status
(New_S
);
2741 -- The specification does not introduce new formals, but only
2742 -- repeats the formals of the original subprogram declaration.
2743 -- For cross-reference purposes, and for refactoring tools, we
2744 -- treat the formals of the renaming declaration as body formals.
2746 Reference_Body_Formals
(Rename_Spec
, New_S
);
2748 -- Indicate that the entity in the declaration functions like the
2749 -- corresponding body, and is not a new entity. The body will be
2750 -- constructed later at the freeze point, so indicate that the
2751 -- completion has not been seen yet.
2753 Set_Contract
(New_S
, Empty
);
2754 Set_Ekind
(New_S
, E_Subprogram_Body
);
2755 New_S
:= Rename_Spec
;
2756 Set_Has_Completion
(Rename_Spec
, False);
2758 -- Ada 2005: check overriding indicator
2760 if Present
(Overridden_Operation
(Rename_Spec
)) then
2761 if Must_Not_Override
(Specification
(N
)) then
2763 ("subprogram& overrides inherited operation",
2766 Style_Check
and then not Must_Override
(Specification
(N
))
2768 Style
.Missing_Overriding
(N
, Rename_Spec
);
2771 elsif Must_Override
(Specification
(N
)) then
2772 Error_Msg_NE
("subprogram& is not overriding", N
, Rename_Spec
);
2775 -- Normal subprogram renaming (not renaming as body)
2778 Generate_Definition
(New_S
);
2779 New_Overloaded_Entity
(New_S
);
2781 if Is_Entity_Name
(Nam
)
2782 and then Is_Intrinsic_Subprogram
(Entity
(Nam
))
2786 Check_Delayed_Subprogram
(New_S
);
2790 -- There is no need for elaboration checks on the new entity, which may
2791 -- be called before the next freezing point where the body will appear.
2792 -- Elaboration checks refer to the real entity, not the one created by
2793 -- the renaming declaration.
2795 Set_Kill_Elaboration_Checks
(New_S
, True);
2797 -- If we had a previous error, indicate a completely is present to stop
2798 -- junk cascaded messages, but don't take any further action.
2800 if Etype
(Nam
) = Any_Type
then
2801 Set_Has_Completion
(New_S
);
2804 -- Case where name has the form of a selected component
2806 elsif Nkind
(Nam
) = N_Selected_Component
then
2808 -- A name which has the form A.B can designate an entry of task A, a
2809 -- protected operation of protected object A, or finally a primitive
2810 -- operation of object A. In the later case, A is an object of some
2811 -- tagged type, or an access type that denotes one such. To further
2812 -- distinguish these cases, note that the scope of a task entry or
2813 -- protected operation is type of the prefix.
2815 -- The prefix could be an overloaded function call that returns both
2816 -- kinds of operations. This overloading pathology is left to the
2817 -- dedicated reader ???
2820 T
: constant Entity_Id
:= Etype
(Prefix
(Nam
));
2828 and then Is_Tagged_Type
(Designated_Type
(T
))))
2829 and then Scope
(Entity
(Selector_Name
(Nam
))) /= T
2831 Analyze_Renamed_Primitive_Operation
2832 (N
, New_S
, Present
(Rename_Spec
));
2836 -- Renamed entity is an entry or protected operation. For those
2837 -- cases an explicit body is built (at the point of freezing of
2838 -- this entity) that contains a call to the renamed entity.
2840 -- This is not allowed for renaming as body if the renamed
2841 -- spec is already frozen (see RM 8.5.4(5) for details).
2843 if Present
(Rename_Spec
) and then Is_Frozen
(Rename_Spec
) then
2845 ("renaming-as-body cannot rename entry as subprogram", N
);
2847 ("\since & is already frozen (RM 8.5.4(5))",
2850 Analyze_Renamed_Entry
(N
, New_S
, Present
(Rename_Spec
));
2857 -- Case where name is an explicit dereference X.all
2859 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
2861 -- Renamed entity is designated by access_to_subprogram expression.
2862 -- Must build body to encapsulate call, as in the entry case.
2864 Analyze_Renamed_Dereference
(N
, New_S
, Present
(Rename_Spec
));
2867 -- Indexed component
2869 elsif Nkind
(Nam
) = N_Indexed_Component
then
2870 Analyze_Renamed_Family_Member
(N
, New_S
, Present
(Rename_Spec
));
2873 -- Character literal
2875 elsif Nkind
(Nam
) = N_Character_Literal
then
2876 Analyze_Renamed_Character
(N
, New_S
, Present
(Rename_Spec
));
2879 -- Only remaining case is where we have a non-entity name, or a renaming
2880 -- of some other non-overloadable entity.
2882 elsif not Is_Entity_Name
(Nam
)
2883 or else not Is_Overloadable
(Entity
(Nam
))
2885 -- Do not mention the renaming if it comes from an instance
2887 if not Is_Actual
then
2888 Error_Msg_N
("expect valid subprogram name in renaming", N
);
2890 Error_Msg_NE
("no visible subprogram for formal&", N
, Nam
);
2896 -- Find the renamed entity that matches the given specification. Disable
2897 -- Ada_83 because there is no requirement of full conformance between
2898 -- renamed entity and new entity, even though the same circuit is used.
2900 -- This is a bit of an odd case, which introduces a really irregular use
2901 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
2904 Ada_Version
:= Ada_Version_Type
'Max (Ada_Version
, Ada_95
);
2905 Ada_Version_Pragma
:= Empty
;
2906 Ada_Version_Explicit
:= Ada_Version
;
2909 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
2911 -- The visible operation may be an inherited abstract operation that
2912 -- was overridden in the private part, in which case a call will
2913 -- dispatch to the overriding operation. Use the overriding one in
2914 -- the renaming declaration, to prevent spurious errors below.
2916 if Is_Overloadable
(Old_S
)
2917 and then Is_Abstract_Subprogram
(Old_S
)
2918 and then No
(DTC_Entity
(Old_S
))
2919 and then Present
(Alias
(Old_S
))
2920 and then not Is_Abstract_Subprogram
(Alias
(Old_S
))
2921 and then Present
(Overridden_Operation
(Alias
(Old_S
)))
2923 Old_S
:= Alias
(Old_S
);
2926 -- When the renamed subprogram is overloaded and used as an actual
2927 -- of a generic, its entity is set to the first available homonym.
2928 -- We must first disambiguate the name, then set the proper entity.
2930 if Is_Actual
and then Is_Overloaded
(Nam
) then
2931 Set_Entity
(Nam
, Old_S
);
2935 -- Most common case: subprogram renames subprogram. No body is generated
2936 -- in this case, so we must indicate the declaration is complete as is.
2937 -- and inherit various attributes of the renamed subprogram.
2939 if No
(Rename_Spec
) then
2940 Set_Has_Completion
(New_S
);
2941 Set_Is_Imported
(New_S
, Is_Imported
(Entity
(Nam
)));
2942 Set_Is_Pure
(New_S
, Is_Pure
(Entity
(Nam
)));
2943 Set_Is_Preelaborated
(New_S
, Is_Preelaborated
(Entity
(Nam
)));
2945 -- Ada 2005 (AI-423): Check the consistency of null exclusions
2946 -- between a subprogram and its correct renaming.
2948 -- Note: the Any_Id check is a guard that prevents compiler crashes
2949 -- when performing a null exclusion check between a renaming and a
2950 -- renamed subprogram that has been found to be illegal.
2952 if Ada_Version
>= Ada_2005
and then Entity
(Nam
) /= Any_Id
then
2953 Check_Null_Exclusion
2955 Sub
=> Entity
(Nam
));
2958 -- Enforce the Ada 2005 rule that the renamed entity cannot require
2959 -- overriding. The flag Requires_Overriding is set very selectively
2960 -- and misses some other illegal cases. The additional conditions
2961 -- checked below are sufficient but not necessary ???
2963 -- The rule does not apply to the renaming generated for an actual
2964 -- subprogram in an instance.
2969 -- Guard against previous errors, and omit renamings of predefined
2972 elsif not Ekind_In
(Old_S
, E_Function
, E_Procedure
) then
2975 elsif Requires_Overriding
(Old_S
)
2977 (Is_Abstract_Subprogram
(Old_S
)
2978 and then Present
(Find_Dispatching_Type
(Old_S
))
2980 not Is_Abstract_Type
(Find_Dispatching_Type
(Old_S
)))
2983 ("renamed entity cannot be "
2984 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N
);
2988 if Old_S
/= Any_Id
then
2989 if Is_Actual
and then From_Default
(N
) then
2991 -- This is an implicit reference to the default actual
2993 Generate_Reference
(Old_S
, Nam
, Typ
=> 'i', Force
=> True);
2996 Generate_Reference
(Old_S
, Nam
);
2999 Check_Internal_Protected_Use
(N
, Old_S
);
3001 -- For a renaming-as-body, require subtype conformance, but if the
3002 -- declaration being completed has not been frozen, then inherit the
3003 -- convention of the renamed subprogram prior to checking conformance
3004 -- (unless the renaming has an explicit convention established; the
3005 -- rule stated in the RM doesn't seem to address this ???).
3007 if Present
(Rename_Spec
) then
3008 Generate_Reference
(Rename_Spec
, Defining_Entity
(Spec
), 'b');
3009 Style
.Check_Identifier
(Defining_Entity
(Spec
), Rename_Spec
);
3011 if not Is_Frozen
(Rename_Spec
) then
3012 if not Has_Convention_Pragma
(Rename_Spec
) then
3013 Set_Convention
(New_S
, Convention
(Old_S
));
3016 if Ekind
(Old_S
) /= E_Operator
then
3017 Check_Mode_Conformant
(New_S
, Old_S
, Spec
);
3020 if Original_Subprogram
(Old_S
) = Rename_Spec
then
3021 Error_Msg_N
("unfrozen subprogram cannot rename itself ", N
);
3024 Check_Subtype_Conformant
(New_S
, Old_S
, Spec
);
3027 Check_Frozen_Renaming
(N
, Rename_Spec
);
3029 -- Check explicitly that renamed entity is not intrinsic, because
3030 -- in a generic the renamed body is not built. In this case,
3031 -- the renaming_as_body is a completion.
3033 if Inside_A_Generic
then
3034 if Is_Frozen
(Rename_Spec
)
3035 and then Is_Intrinsic_Subprogram
(Old_S
)
3038 ("subprogram in renaming_as_body cannot be intrinsic",
3042 Set_Has_Completion
(Rename_Spec
);
3045 elsif Ekind
(Old_S
) /= E_Operator
then
3047 -- If this a defaulted subprogram for a class-wide actual there is
3048 -- no check for mode conformance, given that the signatures don't
3049 -- match (the source mentions T but the actual mentions T'Class).
3053 elsif not Is_Actual
or else No
(Enclosing_Instance
) then
3054 Check_Mode_Conformant
(New_S
, Old_S
);
3057 if Is_Actual
and then Error_Posted
(New_S
) then
3058 Error_Msg_NE
("invalid actual subprogram: & #!", N
, Old_S
);
3062 if No
(Rename_Spec
) then
3064 -- The parameter profile of the new entity is that of the renamed
3065 -- entity: the subtypes given in the specification are irrelevant.
3067 Inherit_Renamed_Profile
(New_S
, Old_S
);
3069 -- A call to the subprogram is transformed into a call to the
3070 -- renamed entity. This is transitive if the renamed entity is
3071 -- itself a renaming.
3073 if Present
(Alias
(Old_S
)) then
3074 Set_Alias
(New_S
, Alias
(Old_S
));
3076 Set_Alias
(New_S
, Old_S
);
3079 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3080 -- renaming as body, since the entity in this case is not an
3081 -- intrinsic (it calls an intrinsic, but we have a real body for
3082 -- this call, and it is in this body that the required intrinsic
3083 -- processing will take place).
3085 -- Also, if this is a renaming of inequality, the renamed operator
3086 -- is intrinsic, but what matters is the corresponding equality
3087 -- operator, which may be user-defined.
3089 Set_Is_Intrinsic_Subprogram
3091 Is_Intrinsic_Subprogram
(Old_S
)
3093 (Chars
(Old_S
) /= Name_Op_Ne
3094 or else Ekind
(Old_S
) = E_Operator
3095 or else Is_Intrinsic_Subprogram
3096 (Corresponding_Equality
(Old_S
))));
3098 if Ekind
(Alias
(New_S
)) = E_Operator
then
3099 Set_Has_Delayed_Freeze
(New_S
, False);
3102 -- If the renaming corresponds to an association for an abstract
3103 -- formal subprogram, then various attributes must be set to
3104 -- indicate that the renaming is an abstract dispatching operation
3105 -- with a controlling type.
3107 if Is_Actual
and then Is_Abstract_Subprogram
(Formal_Spec
) then
3109 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3110 -- see it as corresponding to a generic association for a
3111 -- formal abstract subprogram
3113 Set_Is_Abstract_Subprogram
(New_S
);
3116 New_S_Ctrl_Type
: constant Entity_Id
:=
3117 Find_Dispatching_Type
(New_S
);
3118 Old_S_Ctrl_Type
: constant Entity_Id
:=
3119 Find_Dispatching_Type
(Old_S
);
3122 if Old_S_Ctrl_Type
/= New_S_Ctrl_Type
then
3124 ("actual must be dispatching subprogram for type&",
3125 Nam
, New_S_Ctrl_Type
);
3128 Set_Is_Dispatching_Operation
(New_S
);
3129 Check_Controlling_Formals
(New_S_Ctrl_Type
, New_S
);
3131 -- If the actual in the formal subprogram is itself a
3132 -- formal abstract subprogram association, there's no
3133 -- dispatch table component or position to inherit.
3135 if Present
(DTC_Entity
(Old_S
)) then
3136 Set_DTC_Entity
(New_S
, DTC_Entity
(Old_S
));
3137 Set_DT_Position
(New_S
, DT_Position
(Old_S
));
3147 -- The following is illegal, because F hides whatever other F may
3149 -- function F (...) renames F;
3152 or else (Nkind
(Nam
) /= N_Expanded_Name
3153 and then Chars
(Old_S
) = Chars
(New_S
))
3155 Error_Msg_N
("subprogram cannot rename itself", N
);
3157 -- This is illegal even if we use a selector:
3158 -- function F (...) renames Pkg.F;
3159 -- because F is still hidden.
3161 elsif Nkind
(Nam
) = N_Expanded_Name
3162 and then Entity
(Prefix
(Nam
)) = Current_Scope
3163 and then Chars
(Selector_Name
(Nam
)) = Chars
(New_S
)
3165 -- This is an error, but we overlook the error and accept the
3166 -- renaming if the special Overriding_Renamings mode is in effect.
3168 if not Overriding_Renamings
then
3170 ("implicit operation& is not visible (RM 8.3 (15))",
3175 Set_Convention
(New_S
, Convention
(Old_S
));
3177 if Is_Abstract_Subprogram
(Old_S
) then
3178 if Present
(Rename_Spec
) then
3180 ("a renaming-as-body cannot rename an abstract subprogram",
3182 Set_Has_Completion
(Rename_Spec
);
3184 Set_Is_Abstract_Subprogram
(New_S
);
3188 Check_Library_Unit_Renaming
(N
, Old_S
);
3190 -- Pathological case: procedure renames entry in the scope of its
3191 -- task. Entry is given by simple name, but body must be built for
3192 -- procedure. Of course if called it will deadlock.
3194 if Ekind
(Old_S
) = E_Entry
then
3195 Set_Has_Completion
(New_S
, False);
3196 Set_Alias
(New_S
, Empty
);
3200 Freeze_Before
(N
, Old_S
);
3201 Freeze_Actual_Profile
;
3202 Set_Has_Delayed_Freeze
(New_S
, False);
3203 Freeze_Before
(N
, New_S
);
3205 -- An abstract subprogram is only allowed as an actual in the case
3206 -- where the formal subprogram is also abstract.
3208 if (Ekind
(Old_S
) = E_Procedure
or else Ekind
(Old_S
) = E_Function
)
3209 and then Is_Abstract_Subprogram
(Old_S
)
3210 and then not Is_Abstract_Subprogram
(Formal_Spec
)
3213 ("abstract subprogram not allowed as generic actual", Nam
);
3218 -- A common error is to assume that implicit operators for types are
3219 -- defined in Standard, or in the scope of a subtype. In those cases
3220 -- where the renamed entity is given with an expanded name, it is
3221 -- worth mentioning that operators for the type are not declared in
3222 -- the scope given by the prefix.
3224 if Nkind
(Nam
) = N_Expanded_Name
3225 and then Nkind
(Selector_Name
(Nam
)) = N_Operator_Symbol
3226 and then Scope
(Entity
(Nam
)) = Standard_Standard
3229 T
: constant Entity_Id
:=
3230 Base_Type
(Etype
(First_Formal
(New_S
)));
3232 Error_Msg_Node_2
:= Prefix
(Nam
);
3234 ("operator for type& is not declared in&", Prefix
(Nam
), T
);
3239 ("no visible subprogram matches the specification for&",
3243 if Present
(Candidate_Renaming
) then
3250 F1
:= First_Formal
(Candidate_Renaming
);
3251 F2
:= First_Formal
(New_S
);
3252 T1
:= First_Subtype
(Etype
(F1
));
3253 while Present
(F1
) and then Present
(F2
) loop
3258 if Present
(F1
) and then Present
(Default_Value
(F1
)) then
3259 if Present
(Next_Formal
(F1
)) then
3261 ("\missing specification for &" &
3262 " and other formals with defaults", Spec
, F1
);
3265 ("\missing specification for &", Spec
, F1
);
3269 if Nkind
(Nam
) = N_Operator_Symbol
3270 and then From_Default
(N
)
3272 Error_Msg_Node_2
:= T1
;
3274 ("default & on & is not directly visible",
3281 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3282 -- controlling access parameters are known non-null for the renamed
3283 -- subprogram. Test also applies to a subprogram instantiation that
3284 -- is dispatching. Test is skipped if some previous error was detected
3285 -- that set Old_S to Any_Id.
3287 if Ada_Version
>= Ada_2005
3288 and then Old_S
/= Any_Id
3289 and then not Is_Dispatching_Operation
(Old_S
)
3290 and then Is_Dispatching_Operation
(New_S
)
3297 Old_F
:= First_Formal
(Old_S
);
3298 New_F
:= First_Formal
(New_S
);
3299 while Present
(Old_F
) loop
3300 if Ekind
(Etype
(Old_F
)) = E_Anonymous_Access_Type
3301 and then Is_Controlling_Formal
(New_F
)
3302 and then not Can_Never_Be_Null
(Old_F
)
3304 Error_Msg_N
("access parameter is controlling,", New_F
);
3306 ("\corresponding parameter of& "
3307 & "must be explicitly null excluding", New_F
, Old_S
);
3310 Next_Formal
(Old_F
);
3311 Next_Formal
(New_F
);
3316 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3317 -- is to warn if an operator is being renamed as a different operator.
3318 -- If the operator is predefined, examine the kind of the entity, not
3319 -- the abbreviated declaration in Standard.
3321 if Comes_From_Source
(N
)
3322 and then Present
(Old_S
)
3323 and then (Nkind
(Old_S
) = N_Defining_Operator_Symbol
3324 or else Ekind
(Old_S
) = E_Operator
)
3325 and then Nkind
(New_S
) = N_Defining_Operator_Symbol
3326 and then Chars
(Old_S
) /= Chars
(New_S
)
3329 ("& is being renamed as a different operator??", N
, Old_S
);
3332 -- Check for renaming of obsolescent subprogram
3334 Check_Obsolescent_2005_Entity
(Entity
(Nam
), Nam
);
3336 -- Another warning or some utility: if the new subprogram as the same
3337 -- name as the old one, the old one is not hidden by an outer homograph,
3338 -- the new one is not a public symbol, and the old one is otherwise
3339 -- directly visible, the renaming is superfluous.
3341 if Chars
(Old_S
) = Chars
(New_S
)
3342 and then Comes_From_Source
(N
)
3343 and then Scope
(Old_S
) /= Standard_Standard
3344 and then Warn_On_Redundant_Constructs
3345 and then (Is_Immediately_Visible
(Old_S
)
3346 or else Is_Potentially_Use_Visible
(Old_S
))
3347 and then Is_Overloadable
(Current_Scope
)
3348 and then Chars
(Current_Scope
) /= Chars
(Old_S
)
3351 ("redundant renaming, entity is directly visible?r?", Name
(N
));
3354 -- Implementation-defined aspect specifications can appear in a renaming
3355 -- declaration, but not language-defined ones. The call to procedure
3356 -- Analyze_Aspect_Specifications will take care of this error check.
3358 if Has_Aspects
(N
) then
3359 Analyze_Aspect_Specifications
(N
, New_S
);
3362 Ada_Version
:= Save_AV
;
3363 Ada_Version_Pragma
:= Save_AVP
;
3364 Ada_Version_Explicit
:= Save_AV_Exp
;
3365 end Analyze_Subprogram_Renaming
;
3367 -------------------------
3368 -- Analyze_Use_Package --
3369 -------------------------
3371 -- Resolve the package names in the use clause, and make all the visible
3372 -- entities defined in the package potentially use-visible. If the package
3373 -- is already in use from a previous use clause, its visible entities are
3374 -- already use-visible. In that case, mark the occurrence as a redundant
3375 -- use. If the package is an open scope, i.e. if the use clause occurs
3376 -- within the package itself, ignore it.
3378 procedure Analyze_Use_Package
(N
: Node_Id
) is
3379 Pack_Name
: Node_Id
;
3382 -- Start of processing for Analyze_Use_Package
3385 Check_SPARK_Restriction
("use clause is not allowed", N
);
3387 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3389 -- Use clause not allowed in a spec of a predefined package declaration
3390 -- except that packages whose file name starts a-n are OK (these are
3391 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3393 if Is_Predefined_File_Name
(Unit_File_Name
(Current_Sem_Unit
))
3394 and then Name_Buffer
(1 .. 3) /= "a-n"
3396 Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) = N_Package_Declaration
3398 Error_Msg_N
("use clause not allowed in predefined spec", N
);
3401 -- Chain clause to list of use clauses in current scope
3403 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
3404 Chain_Use_Clause
(N
);
3407 -- Loop through package names to identify referenced packages
3409 Pack_Name
:= First
(Names
(N
));
3410 while Present
(Pack_Name
) loop
3411 Analyze
(Pack_Name
);
3413 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3414 and then Nkind
(Pack_Name
) = N_Expanded_Name
3420 Pref
:= Prefix
(Pack_Name
);
3421 while Nkind
(Pref
) = N_Expanded_Name
loop
3422 Pref
:= Prefix
(Pref
);
3425 if Entity
(Pref
) = Standard_Standard
then
3427 ("predefined package Standard cannot appear"
3428 & " in a context clause", Pref
);
3436 -- Loop through package names to mark all entities as potentially
3439 Pack_Name
:= First
(Names
(N
));
3440 while Present
(Pack_Name
) loop
3441 if Is_Entity_Name
(Pack_Name
) then
3442 Pack
:= Entity
(Pack_Name
);
3444 if Ekind
(Pack
) /= E_Package
and then Etype
(Pack
) /= Any_Type
then
3445 if Ekind
(Pack
) = E_Generic_Package
then
3446 Error_Msg_N
-- CODEFIX
3447 ("a generic package is not allowed in a use clause",
3450 Error_Msg_N
("& is not a usable package", Pack_Name
);
3454 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3455 Check_In_Previous_With_Clause
(N
, Pack_Name
);
3458 if Applicable_Use
(Pack_Name
) then
3459 Use_One_Package
(Pack
, N
);
3463 -- Report error because name denotes something other than a package
3466 Error_Msg_N
("& is not a package", Pack_Name
);
3471 end Analyze_Use_Package
;
3473 ----------------------
3474 -- Analyze_Use_Type --
3475 ----------------------
3477 procedure Analyze_Use_Type
(N
: Node_Id
) is
3482 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3484 -- Chain clause to list of use clauses in current scope
3486 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
3487 Chain_Use_Clause
(N
);
3490 -- If the Used_Operations list is already initialized, the clause has
3491 -- been analyzed previously, and it is begin reinstalled, for example
3492 -- when the clause appears in a package spec and we are compiling the
3493 -- corresponding package body. In that case, make the entities on the
3494 -- existing list use_visible, and mark the corresponding types In_Use.
3496 if Present
(Used_Operations
(N
)) then
3502 Mark
:= First
(Subtype_Marks
(N
));
3503 while Present
(Mark
) loop
3504 Use_One_Type
(Mark
, Installed
=> True);
3508 Elmt
:= First_Elmt
(Used_Operations
(N
));
3509 while Present
(Elmt
) loop
3510 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
3518 -- Otherwise, create new list and attach to it the operations that
3519 -- are made use-visible by the clause.
3521 Set_Used_Operations
(N
, New_Elmt_List
);
3522 Id
:= First
(Subtype_Marks
(N
));
3523 while Present
(Id
) loop
3527 if E
/= Any_Type
then
3530 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3531 if Nkind
(Id
) = N_Identifier
then
3532 Error_Msg_N
("type is not directly visible", Id
);
3534 elsif Is_Child_Unit
(Scope
(E
))
3535 and then Scope
(E
) /= System_Aux_Id
3537 Check_In_Previous_With_Clause
(N
, Prefix
(Id
));
3542 -- If the use_type_clause appears in a compilation unit context,
3543 -- check whether it comes from a unit that may appear in a
3544 -- limited_with_clause, for a better error message.
3546 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3547 and then Nkind
(Id
) /= N_Identifier
3553 function Mentioned
(Nam
: Node_Id
) return Boolean;
3554 -- Check whether the prefix of expanded name for the type
3555 -- appears in the prefix of some limited_with_clause.
3561 function Mentioned
(Nam
: Node_Id
) return Boolean is
3563 return Nkind
(Name
(Item
)) = N_Selected_Component
3564 and then Chars
(Prefix
(Name
(Item
))) = Chars
(Nam
);
3568 Pref
:= Prefix
(Id
);
3569 Item
:= First
(Context_Items
(Parent
(N
)));
3570 while Present
(Item
) and then Item
/= N
loop
3571 if Nkind
(Item
) = N_With_Clause
3572 and then Limited_Present
(Item
)
3573 and then Mentioned
(Pref
)
3576 (Get_Msg_Id
, "premature usage of incomplete type");
3587 end Analyze_Use_Type
;
3589 --------------------
3590 -- Applicable_Use --
3591 --------------------
3593 function Applicable_Use
(Pack_Name
: Node_Id
) return Boolean is
3594 Pack
: constant Entity_Id
:= Entity
(Pack_Name
);
3597 if In_Open_Scopes
(Pack
) then
3598 if Warn_On_Redundant_Constructs
and then Pack
= Current_Scope
then
3599 Error_Msg_NE
-- CODEFIX
3600 ("& is already use-visible within itself?r?", Pack_Name
, Pack
);
3605 elsif In_Use
(Pack
) then
3606 Note_Redundant_Use
(Pack_Name
);
3609 elsif Present
(Renamed_Object
(Pack
))
3610 and then In_Use
(Renamed_Object
(Pack
))
3612 Note_Redundant_Use
(Pack_Name
);
3620 ------------------------
3621 -- Attribute_Renaming --
3622 ------------------------
3624 procedure Attribute_Renaming
(N
: Node_Id
) is
3625 Loc
: constant Source_Ptr
:= Sloc
(N
);
3626 Nam
: constant Node_Id
:= Name
(N
);
3627 Spec
: constant Node_Id
:= Specification
(N
);
3628 New_S
: constant Entity_Id
:= Defining_Unit_Name
(Spec
);
3629 Aname
: constant Name_Id
:= Attribute_Name
(Nam
);
3631 Form_Num
: Nat
:= 0;
3632 Expr_List
: List_Id
:= No_List
;
3634 Attr_Node
: Node_Id
;
3635 Body_Node
: Node_Id
;
3636 Param_Spec
: Node_Id
;
3639 Generate_Definition
(New_S
);
3641 -- This procedure is called in the context of subprogram renaming, and
3642 -- thus the attribute must be one that is a subprogram. All of those
3643 -- have at least one formal parameter, with the exceptions of the GNAT
3644 -- attribute 'Img, which GNAT treats as renameable.
3646 if not Is_Non_Empty_List
(Parameter_Specifications
(Spec
)) then
3647 if Aname
/= Name_Img
then
3649 ("subprogram renaming an attribute must have formals", N
);
3654 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
3655 while Present
(Param_Spec
) loop
3656 Form_Num
:= Form_Num
+ 1;
3658 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
3659 Find_Type
(Parameter_Type
(Param_Spec
));
3661 -- The profile of the new entity denotes the base type (s) of
3662 -- the types given in the specification. For access parameters
3663 -- there are no subtypes involved.
3665 Rewrite
(Parameter_Type
(Param_Spec
),
3667 (Base_Type
(Entity
(Parameter_Type
(Param_Spec
))), Loc
));
3670 if No
(Expr_List
) then
3671 Expr_List
:= New_List
;
3674 Append_To
(Expr_List
,
3675 Make_Identifier
(Loc
,
3676 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
3678 -- The expressions in the attribute reference are not freeze
3679 -- points. Neither is the attribute as a whole, see below.
3681 Set_Must_Not_Freeze
(Last
(Expr_List
));
3686 -- Immediate error if too many formals. Other mismatches in number or
3687 -- types of parameters are detected when we analyze the body of the
3688 -- subprogram that we construct.
3690 if Form_Num
> 2 then
3691 Error_Msg_N
("too many formals for attribute", N
);
3693 -- Error if the attribute reference has expressions that look like
3694 -- formal parameters.
3696 elsif Present
(Expressions
(Nam
)) then
3697 Error_Msg_N
("illegal expressions in attribute reference", Nam
);
3700 Nam_In
(Aname
, Name_Compose
, Name_Exponent
, Name_Leading_Part
,
3701 Name_Pos
, Name_Round
, Name_Scaling
,
3704 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
3705 and then Present
(Corresponding_Formal_Spec
(N
))
3708 ("generic actual cannot be attribute involving universal type",
3712 ("attribute involving a universal type cannot be renamed",
3717 -- Rewrite attribute node to have a list of expressions corresponding to
3718 -- the subprogram formals. A renaming declaration is not a freeze point,
3719 -- and the analysis of the attribute reference should not freeze the
3720 -- type of the prefix. We use the original node in the renaming so that
3721 -- its source location is preserved, and checks on stream attributes are
3722 -- properly applied.
3724 Attr_Node
:= Relocate_Node
(Nam
);
3725 Set_Expressions
(Attr_Node
, Expr_List
);
3727 Set_Must_Not_Freeze
(Attr_Node
);
3728 Set_Must_Not_Freeze
(Prefix
(Nam
));
3730 -- Case of renaming a function
3732 if Nkind
(Spec
) = N_Function_Specification
then
3733 if Is_Procedure_Attribute_Name
(Aname
) then
3734 Error_Msg_N
("attribute can only be renamed as procedure", Nam
);
3738 Find_Type
(Result_Definition
(Spec
));
3739 Rewrite
(Result_Definition
(Spec
),
3741 (Base_Type
(Entity
(Result_Definition
(Spec
))), Loc
));
3744 Make_Subprogram_Body
(Loc
,
3745 Specification
=> Spec
,
3746 Declarations
=> New_List
,
3747 Handled_Statement_Sequence
=>
3748 Make_Handled_Sequence_Of_Statements
(Loc
,
3749 Statements
=> New_List
(
3750 Make_Simple_Return_Statement
(Loc
,
3751 Expression
=> Attr_Node
))));
3753 -- Case of renaming a procedure
3756 if not Is_Procedure_Attribute_Name
(Aname
) then
3757 Error_Msg_N
("attribute can only be renamed as function", Nam
);
3762 Make_Subprogram_Body
(Loc
,
3763 Specification
=> Spec
,
3764 Declarations
=> New_List
,
3765 Handled_Statement_Sequence
=>
3766 Make_Handled_Sequence_Of_Statements
(Loc
,
3767 Statements
=> New_List
(Attr_Node
)));
3770 -- In case of tagged types we add the body of the generated function to
3771 -- the freezing actions of the type (because in the general case such
3772 -- type is still not frozen). We exclude from this processing generic
3773 -- formal subprograms found in instantiations.
3775 -- We must exclude VM targets and restricted run-time libraries because
3776 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3777 -- available in those platforms. Note that we cannot use the function
3778 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3779 -- the ZFP run-time library is not defined as a profile, and we do not
3780 -- want to deal with AST_Handler in ZFP mode.
3782 if VM_Target
= No_VM
3783 and then not Configurable_Run_Time_Mode
3784 and then not Present
(Corresponding_Formal_Spec
(N
))
3785 and then Etype
(Nam
) /= RTE
(RE_AST_Handler
)
3788 P
: constant Node_Id
:= Prefix
(Nam
);
3791 -- The prefix of 'Img is an object that is evaluated for each call
3792 -- of the function that renames it.
3794 if Aname
= Name_Img
then
3795 Preanalyze_And_Resolve
(P
);
3797 -- For all other attribute renamings, the prefix is a subtype
3803 -- If the target type is not yet frozen, add the body to the
3804 -- actions to be elaborated at freeze time.
3806 if Is_Tagged_Type
(Etype
(P
))
3807 and then In_Open_Scopes
(Scope
(Etype
(P
)))
3809 Ensure_Freeze_Node
(Etype
(P
));
3810 Append_Freeze_Action
(Etype
(P
), Body_Node
);
3812 Rewrite
(N
, Body_Node
);
3814 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
3818 -- Generic formal subprograms or AST_Handler renaming
3821 Rewrite
(N
, Body_Node
);
3823 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
3826 if Is_Compilation_Unit
(New_S
) then
3828 ("a library unit can only rename another library unit", N
);
3831 -- We suppress elaboration warnings for the resulting entity, since
3832 -- clearly they are not needed, and more particularly, in the case
3833 -- of a generic formal subprogram, the resulting entity can appear
3834 -- after the instantiation itself, and thus look like a bogus case
3835 -- of access before elaboration.
3837 Set_Suppress_Elaboration_Warnings
(New_S
);
3839 end Attribute_Renaming
;
3841 ----------------------
3842 -- Chain_Use_Clause --
3843 ----------------------
3845 procedure Chain_Use_Clause
(N
: Node_Id
) is
3847 Level
: Int
:= Scope_Stack
.Last
;
3850 if not Is_Compilation_Unit
(Current_Scope
)
3851 or else not Is_Child_Unit
(Current_Scope
)
3853 null; -- Common case
3855 elsif Defining_Entity
(Parent
(N
)) = Current_Scope
then
3856 null; -- Common case for compilation unit
3859 -- If declaration appears in some other scope, it must be in some
3860 -- parent unit when compiling a child.
3862 Pack
:= Defining_Entity
(Parent
(N
));
3863 if not In_Open_Scopes
(Pack
) then
3864 null; -- default as well
3867 -- Find entry for parent unit in scope stack
3869 while Scope_Stack
.Table
(Level
).Entity
/= Pack
loop
3875 Set_Next_Use_Clause
(N
,
3876 Scope_Stack
.Table
(Level
).First_Use_Clause
);
3877 Scope_Stack
.Table
(Level
).First_Use_Clause
:= N
;
3878 end Chain_Use_Clause
;
3880 ---------------------------
3881 -- Check_Frozen_Renaming --
3882 ---------------------------
3884 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
) is
3889 if Is_Frozen
(Subp
) and then not Has_Completion
(Subp
) then
3892 (Parent
(Declaration_Node
(Subp
)), Defining_Entity
(N
));
3894 if Is_Entity_Name
(Name
(N
)) then
3895 Old_S
:= Entity
(Name
(N
));
3897 if not Is_Frozen
(Old_S
)
3898 and then Operating_Mode
/= Check_Semantics
3900 Append_Freeze_Action
(Old_S
, B_Node
);
3902 Insert_After
(N
, B_Node
);
3906 if Is_Intrinsic_Subprogram
(Old_S
) and then not In_Instance
then
3908 ("subprogram used in renaming_as_body cannot be intrinsic",
3913 Insert_After
(N
, B_Node
);
3917 end Check_Frozen_Renaming
;
3919 -------------------------------
3920 -- Set_Entity_Or_Discriminal --
3921 -------------------------------
3923 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
) is
3927 -- If the entity is not a discriminant, or else expansion is disabled,
3928 -- simply set the entity.
3930 if not In_Spec_Expression
3931 or else Ekind
(E
) /= E_Discriminant
3932 or else Inside_A_Generic
3934 Set_Entity_With_Checks
(N
, E
);
3936 -- The replacement of a discriminant by the corresponding discriminal
3937 -- is not done for a task discriminant that appears in a default
3938 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
3939 -- for details on their handling.
3941 elsif Is_Concurrent_Type
(Scope
(E
)) then
3944 and then not Nkind_In
(P
, N_Parameter_Specification
,
3945 N_Component_Declaration
)
3951 and then Nkind
(P
) = N_Parameter_Specification
3956 Set_Entity
(N
, Discriminal
(E
));
3959 -- Otherwise, this is a discriminant in a context in which
3960 -- it is a reference to the corresponding parameter of the
3961 -- init proc for the enclosing type.
3964 Set_Entity
(N
, Discriminal
(E
));
3966 end Set_Entity_Or_Discriminal
;
3968 -----------------------------------
3969 -- Check_In_Previous_With_Clause --
3970 -----------------------------------
3972 procedure Check_In_Previous_With_Clause
3976 Pack
: constant Entity_Id
:= Entity
(Original_Node
(Nam
));
3981 Item
:= First
(Context_Items
(Parent
(N
)));
3982 while Present
(Item
) and then Item
/= N
loop
3983 if Nkind
(Item
) = N_With_Clause
3985 -- Protect the frontend against previous critical errors
3987 and then Nkind
(Name
(Item
)) /= N_Selected_Component
3988 and then Entity
(Name
(Item
)) = Pack
3992 -- Find root library unit in with_clause
3994 while Nkind
(Par
) = N_Expanded_Name
loop
3995 Par
:= Prefix
(Par
);
3998 if Is_Child_Unit
(Entity
(Original_Node
(Par
))) then
3999 Error_Msg_NE
("& is not directly visible", Par
, Entity
(Par
));
4008 -- On exit, package is not mentioned in a previous with_clause.
4009 -- Check if its prefix is.
4011 if Nkind
(Nam
) = N_Expanded_Name
then
4012 Check_In_Previous_With_Clause
(N
, Prefix
(Nam
));
4014 elsif Pack
/= Any_Id
then
4015 Error_Msg_NE
("& is not visible", Nam
, Pack
);
4017 end Check_In_Previous_With_Clause
;
4019 ---------------------------------
4020 -- Check_Library_Unit_Renaming --
4021 ---------------------------------
4023 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
) is
4027 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4030 -- Check for library unit. Note that we used to check for the scope
4031 -- being Standard here, but that was wrong for Standard itself.
4033 elsif not Is_Compilation_Unit
(Old_E
)
4034 and then not Is_Child_Unit
(Old_E
)
4036 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4038 -- Entities defined in Standard (operators and boolean literals) cannot
4039 -- be renamed as library units.
4041 elsif Scope
(Old_E
) = Standard_Standard
4042 and then Sloc
(Old_E
) = Standard_Location
4044 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4046 elsif Present
(Parent_Spec
(N
))
4047 and then Nkind
(Unit
(Parent_Spec
(N
))) = N_Generic_Package_Declaration
4048 and then not Is_Child_Unit
(Old_E
)
4051 ("renamed unit must be a child unit of generic parent", Name
(N
));
4053 elsif Nkind
(N
) in N_Generic_Renaming_Declaration
4054 and then Nkind
(Name
(N
)) = N_Expanded_Name
4055 and then Is_Generic_Instance
(Entity
(Prefix
(Name
(N
))))
4056 and then Is_Generic_Unit
(Old_E
)
4059 ("renamed generic unit must be a library unit", Name
(N
));
4061 elsif Is_Package_Or_Generic_Package
(Old_E
) then
4063 -- Inherit categorization flags
4065 New_E
:= Defining_Entity
(N
);
4066 Set_Is_Pure
(New_E
, Is_Pure
(Old_E
));
4067 Set_Is_Preelaborated
(New_E
, Is_Preelaborated
(Old_E
));
4068 Set_Is_Remote_Call_Interface
(New_E
,
4069 Is_Remote_Call_Interface
(Old_E
));
4070 Set_Is_Remote_Types
(New_E
, Is_Remote_Types
(Old_E
));
4071 Set_Is_Shared_Passive
(New_E
, Is_Shared_Passive
(Old_E
));
4073 end Check_Library_Unit_Renaming
;
4075 ------------------------
4076 -- Enclosing_Instance --
4077 ------------------------
4079 function Enclosing_Instance
return Entity_Id
is
4083 if not Is_Generic_Instance
(Current_Scope
) then
4087 S
:= Scope
(Current_Scope
);
4088 while S
/= Standard_Standard
loop
4089 if Is_Generic_Instance
(S
) then
4097 end Enclosing_Instance
;
4103 procedure End_Scope
is
4109 Id
:= First_Entity
(Current_Scope
);
4110 while Present
(Id
) loop
4111 -- An entity in the current scope is not necessarily the first one
4112 -- on its homonym chain. Find its predecessor if any,
4113 -- If it is an internal entity, it will not be in the visibility
4114 -- chain altogether, and there is nothing to unchain.
4116 if Id
/= Current_Entity
(Id
) then
4117 Prev
:= Current_Entity
(Id
);
4118 while Present
(Prev
)
4119 and then Present
(Homonym
(Prev
))
4120 and then Homonym
(Prev
) /= Id
4122 Prev
:= Homonym
(Prev
);
4125 -- Skip to end of loop if Id is not in the visibility chain
4127 if No
(Prev
) or else Homonym
(Prev
) /= Id
then
4135 Set_Is_Immediately_Visible
(Id
, False);
4137 Outer
:= Homonym
(Id
);
4138 while Present
(Outer
) and then Scope
(Outer
) = Current_Scope
loop
4139 Outer
:= Homonym
(Outer
);
4142 -- Reset homonym link of other entities, but do not modify link
4143 -- between entities in current scope, so that the back-end can have
4144 -- a proper count of local overloadings.
4147 Set_Name_Entity_Id
(Chars
(Id
), Outer
);
4149 elsif Scope
(Prev
) /= Scope
(Id
) then
4150 Set_Homonym
(Prev
, Outer
);
4157 -- If the scope generated freeze actions, place them before the
4158 -- current declaration and analyze them. Type declarations and
4159 -- the bodies of initialization procedures can generate such nodes.
4160 -- We follow the parent chain until we reach a list node, which is
4161 -- the enclosing list of declarations. If the list appears within
4162 -- a protected definition, move freeze nodes outside the protected
4166 (Scope_Stack
.Table
(Scope_Stack
.Last
).Pending_Freeze_Actions
)
4170 L
: constant List_Id
:= Scope_Stack
.Table
4171 (Scope_Stack
.Last
).Pending_Freeze_Actions
;
4174 if Is_Itype
(Current_Scope
) then
4175 Decl
:= Associated_Node_For_Itype
(Current_Scope
);
4177 Decl
:= Parent
(Current_Scope
);
4182 while not (Is_List_Member
(Decl
))
4183 or else Nkind_In
(Parent
(Decl
), N_Protected_Definition
,
4186 Decl
:= Parent
(Decl
);
4189 Insert_List_Before_And_Analyze
(Decl
, L
);
4197 ---------------------
4198 -- End_Use_Clauses --
4199 ---------------------
4201 procedure End_Use_Clauses
(Clause
: Node_Id
) is
4205 -- Remove Use_Type clauses first, because they affect the
4206 -- visibility of operators in subsequent used packages.
4209 while Present
(U
) loop
4210 if Nkind
(U
) = N_Use_Type_Clause
then
4214 Next_Use_Clause
(U
);
4218 while Present
(U
) loop
4219 if Nkind
(U
) = N_Use_Package_Clause
then
4220 End_Use_Package
(U
);
4223 Next_Use_Clause
(U
);
4225 end End_Use_Clauses
;
4227 ---------------------
4228 -- End_Use_Package --
4229 ---------------------
4231 procedure End_Use_Package
(N
: Node_Id
) is
4232 Pack_Name
: Node_Id
;
4237 function Is_Primitive_Operator_In_Use
4239 F
: Entity_Id
) return Boolean;
4240 -- Check whether Op is a primitive operator of a use-visible type
4242 ----------------------------------
4243 -- Is_Primitive_Operator_In_Use --
4244 ----------------------------------
4246 function Is_Primitive_Operator_In_Use
4248 F
: Entity_Id
) return Boolean
4250 T
: constant Entity_Id
:= Base_Type
(Etype
(F
));
4252 return In_Use
(T
) and then Scope
(T
) = Scope
(Op
);
4253 end Is_Primitive_Operator_In_Use
;
4255 -- Start of processing for End_Use_Package
4258 Pack_Name
:= First
(Names
(N
));
4259 while Present
(Pack_Name
) loop
4261 -- Test that Pack_Name actually denotes a package before processing
4263 if Is_Entity_Name
(Pack_Name
)
4264 and then Ekind
(Entity
(Pack_Name
)) = E_Package
4266 Pack
:= Entity
(Pack_Name
);
4268 if In_Open_Scopes
(Pack
) then
4271 elsif not Redundant_Use
(Pack_Name
) then
4272 Set_In_Use
(Pack
, False);
4273 Set_Current_Use_Clause
(Pack
, Empty
);
4275 Id
:= First_Entity
(Pack
);
4276 while Present
(Id
) loop
4278 -- Preserve use-visibility of operators that are primitive
4279 -- operators of a type that is use-visible through an active
4282 if Nkind
(Id
) = N_Defining_Operator_Symbol
4284 (Is_Primitive_Operator_In_Use
(Id
, First_Formal
(Id
))
4286 (Present
(Next_Formal
(First_Formal
(Id
)))
4288 Is_Primitive_Operator_In_Use
4289 (Id
, Next_Formal
(First_Formal
(Id
)))))
4293 Set_Is_Potentially_Use_Visible
(Id
, False);
4296 if Is_Private_Type
(Id
)
4297 and then Present
(Full_View
(Id
))
4299 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4305 if Present
(Renamed_Object
(Pack
)) then
4306 Set_In_Use
(Renamed_Object
(Pack
), False);
4307 Set_Current_Use_Clause
(Renamed_Object
(Pack
), Empty
);
4310 if Chars
(Pack
) = Name_System
4311 and then Scope
(Pack
) = Standard_Standard
4312 and then Present_System_Aux
4314 Id
:= First_Entity
(System_Aux_Id
);
4315 while Present
(Id
) loop
4316 Set_Is_Potentially_Use_Visible
(Id
, False);
4318 if Is_Private_Type
(Id
)
4319 and then Present
(Full_View
(Id
))
4321 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4327 Set_In_Use
(System_Aux_Id
, False);
4331 Set_Redundant_Use
(Pack_Name
, False);
4338 if Present
(Hidden_By_Use_Clause
(N
)) then
4339 Elmt
:= First_Elmt
(Hidden_By_Use_Clause
(N
));
4340 while Present
(Elmt
) loop
4342 E
: constant Entity_Id
:= Node
(Elmt
);
4345 -- Reset either Use_Visibility or Direct_Visibility, depending
4346 -- on how the entity was hidden by the use clause.
4348 if In_Use
(Scope
(E
))
4349 and then Used_As_Generic_Actual
(Scope
(E
))
4351 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
4353 Set_Is_Immediately_Visible
(Node
(Elmt
));
4360 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
4362 end End_Use_Package
;
4368 procedure End_Use_Type
(N
: Node_Id
) is
4373 -- Start of processing for End_Use_Type
4376 Id
:= First
(Subtype_Marks
(N
));
4377 while Present
(Id
) loop
4379 -- A call to Rtsfind may occur while analyzing a use_type clause,
4380 -- in which case the type marks are not resolved yet, and there is
4381 -- nothing to remove.
4383 if not Is_Entity_Name
(Id
) or else No
(Entity
(Id
)) then
4389 if T
= Any_Type
or else From_Limited_With
(T
) then
4392 -- Note that the use_type clause may mention a subtype of the type
4393 -- whose primitive operations have been made visible. Here as
4394 -- elsewhere, it is the base type that matters for visibility.
4396 elsif In_Open_Scopes
(Scope
(Base_Type
(T
))) then
4399 elsif not Redundant_Use
(Id
) then
4400 Set_In_Use
(T
, False);
4401 Set_In_Use
(Base_Type
(T
), False);
4402 Set_Current_Use_Clause
(T
, Empty
);
4403 Set_Current_Use_Clause
(Base_Type
(T
), Empty
);
4410 if Is_Empty_Elmt_List
(Used_Operations
(N
)) then
4414 Elmt
:= First_Elmt
(Used_Operations
(N
));
4415 while Present
(Elmt
) loop
4416 Set_Is_Potentially_Use_Visible
(Node
(Elmt
), False);
4422 ----------------------
4423 -- Find_Direct_Name --
4424 ----------------------
4426 procedure Find_Direct_Name
(N
: Node_Id
) is
4431 Inst
: Entity_Id
:= Empty
;
4432 -- Enclosing instance, if any
4434 Homonyms
: Entity_Id
;
4435 -- Saves start of homonym chain
4437 Nvis_Entity
: Boolean;
4438 -- Set True to indicate that there is at least one entity on the homonym
4439 -- chain which, while not visible, is visible enough from the user point
4440 -- of view to warrant an error message of "not visible" rather than
4443 Nvis_Is_Private_Subprg
: Boolean := False;
4444 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4445 -- effect concerning library subprograms has been detected. Used to
4446 -- generate the precise error message.
4448 function From_Actual_Package
(E
: Entity_Id
) return Boolean;
4449 -- Returns true if the entity is an actual for a package that is itself
4450 -- an actual for a formal package of the current instance. Such an
4451 -- entity requires special handling because it may be use-visible but
4452 -- hides directly visible entities defined outside the instance, because
4453 -- the corresponding formal did so in the generic.
4455 function Is_Actual_Parameter
return Boolean;
4456 -- This function checks if the node N is an identifier that is an actual
4457 -- parameter of a procedure call. If so it returns True, otherwise it
4458 -- return False. The reason for this check is that at this stage we do
4459 -- not know what procedure is being called if the procedure might be
4460 -- overloaded, so it is premature to go setting referenced flags or
4461 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4462 -- for that processing
4464 function Known_But_Invisible
(E
: Entity_Id
) return Boolean;
4465 -- This function determines whether a reference to the entity E, which
4466 -- is not visible, can reasonably be considered to be known to the
4467 -- writer of the reference. This is a heuristic test, used only for
4468 -- the purposes of figuring out whether we prefer to complain that an
4469 -- entity is undefined or invisible (and identify the declaration of
4470 -- the invisible entity in the latter case). The point here is that we
4471 -- don't want to complain that something is invisible and then point to
4472 -- something entirely mysterious to the writer.
4474 procedure Nvis_Messages
;
4475 -- Called if there are no visible entries for N, but there is at least
4476 -- one non-directly visible, or hidden declaration. This procedure
4477 -- outputs an appropriate set of error messages.
4479 procedure Undefined
(Nvis
: Boolean);
4480 -- This function is called if the current node has no corresponding
4481 -- visible entity or entities. The value set in Msg indicates whether
4482 -- an error message was generated (multiple error messages for the
4483 -- same variable are generally suppressed, see body for details).
4484 -- Msg is True if an error message was generated, False if not. This
4485 -- value is used by the caller to determine whether or not to output
4486 -- additional messages where appropriate. The parameter is set False
4487 -- to get the message "X is undefined", and True to get the message
4488 -- "X is not visible".
4490 -------------------------
4491 -- From_Actual_Package --
4492 -------------------------
4494 function From_Actual_Package
(E
: Entity_Id
) return Boolean is
4495 Scop
: constant Entity_Id
:= Scope
(E
);
4496 -- Declared scope of candidate entity
4500 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean;
4501 -- Recursive function that does the work and examines actuals of
4502 -- actual packages of current instance.
4504 ------------------------
4505 -- Declared_In_Actual --
4506 ------------------------
4508 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean is
4512 if No
(Associated_Formal_Package
(Pack
)) then
4516 Act
:= First_Entity
(Pack
);
4517 while Present
(Act
) loop
4518 if Renamed_Object
(Pack
) = Scop
then
4521 -- Check for end of list of actuals.
4523 elsif Ekind
(Act
) = E_Package
4524 and then Renamed_Object
(Act
) = Pack
4528 elsif Ekind
(Act
) = E_Package
4529 and then Declared_In_Actual
(Act
)
4539 end Declared_In_Actual
;
4541 -- Start of processing for From_Actual_Package
4544 if not In_Instance
then
4548 Inst
:= Current_Scope
;
4549 while Present
(Inst
)
4550 and then Ekind
(Inst
) /= E_Package
4551 and then not Is_Generic_Instance
(Inst
)
4553 Inst
:= Scope
(Inst
);
4560 Act
:= First_Entity
(Inst
);
4561 while Present
(Act
) loop
4562 if Ekind
(Act
) = E_Package
4563 and then Declared_In_Actual
(Act
)
4573 end From_Actual_Package
;
4575 -------------------------
4576 -- Is_Actual_Parameter --
4577 -------------------------
4579 function Is_Actual_Parameter
return Boolean is
4582 Nkind
(N
) = N_Identifier
4584 (Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
4586 (Nkind
(Parent
(N
)) = N_Parameter_Association
4587 and then N
= Explicit_Actual_Parameter
(Parent
(N
))
4588 and then Nkind
(Parent
(Parent
(N
))) =
4589 N_Procedure_Call_Statement
));
4590 end Is_Actual_Parameter
;
4592 -------------------------
4593 -- Known_But_Invisible --
4594 -------------------------
4596 function Known_But_Invisible
(E
: Entity_Id
) return Boolean is
4597 Fname
: File_Name_Type
;
4600 -- Entities in Standard are always considered to be known
4602 if Sloc
(E
) <= Standard_Location
then
4605 -- An entity that does not come from source is always considered
4606 -- to be unknown, since it is an artifact of code expansion.
4608 elsif not Comes_From_Source
(E
) then
4611 -- In gnat internal mode, we consider all entities known. The
4612 -- historical reason behind this discrepancy is not known??? But the
4613 -- only effect is to modify the error message given, so it is not
4614 -- critical. Since it only affects the exact wording of error
4615 -- messages in illegal programs, we do not mention this as an
4616 -- effect of -gnatg, since it is not a language modification.
4618 elsif GNAT_Mode
then
4622 -- Here we have an entity that is not from package Standard, and
4623 -- which comes from Source. See if it comes from an internal file.
4625 Fname
:= Unit_File_Name
(Get_Source_Unit
(E
));
4627 -- Case of from internal file
4629 if Is_Internal_File_Name
(Fname
) then
4631 -- Private part entities in internal files are never considered
4632 -- to be known to the writer of normal application code.
4634 if Is_Hidden
(E
) then
4638 -- Entities from System packages other than System and
4639 -- System.Storage_Elements are not considered to be known.
4640 -- System.Auxxxx files are also considered known to the user.
4642 -- Should refine this at some point to generally distinguish
4643 -- between known and unknown internal files ???
4645 Get_Name_String
(Fname
);
4650 Name_Buffer
(1 .. 2) /= "s-"
4652 Name_Buffer
(3 .. 8) = "stoele"
4654 Name_Buffer
(3 .. 5) = "aux";
4656 -- If not an internal file, then entity is definitely known,
4657 -- even if it is in a private part (the message generated will
4658 -- note that it is in a private part)
4663 end Known_But_Invisible
;
4669 procedure Nvis_Messages
is
4670 Comp_Unit
: Node_Id
;
4672 Found
: Boolean := False;
4673 Hidden
: Boolean := False;
4677 -- Ada 2005 (AI-262): Generate a precise error concerning the
4678 -- Beaujolais effect that was previously detected
4680 if Nvis_Is_Private_Subprg
then
4682 pragma Assert
(Nkind
(E2
) = N_Defining_Identifier
4683 and then Ekind
(E2
) = E_Function
4684 and then Scope
(E2
) = Standard_Standard
4685 and then Has_Private_With
(E2
));
4687 -- Find the sloc corresponding to the private with'ed unit
4689 Comp_Unit
:= Cunit
(Current_Sem_Unit
);
4690 Error_Msg_Sloc
:= No_Location
;
4692 Item
:= First
(Context_Items
(Comp_Unit
));
4693 while Present
(Item
) loop
4694 if Nkind
(Item
) = N_With_Clause
4695 and then Private_Present
(Item
)
4696 and then Entity
(Name
(Item
)) = E2
4698 Error_Msg_Sloc
:= Sloc
(Item
);
4705 pragma Assert
(Error_Msg_Sloc
/= No_Location
);
4707 Error_Msg_N
("(Ada 2005): hidden by private with clause #", N
);
4711 Undefined
(Nvis
=> True);
4715 -- First loop does hidden declarations
4718 while Present
(Ent
) loop
4719 if Is_Potentially_Use_Visible
(Ent
) then
4721 Error_Msg_N
-- CODEFIX
4722 ("multiple use clauses cause hiding!", N
);
4726 Error_Msg_Sloc
:= Sloc
(Ent
);
4727 Error_Msg_N
-- CODEFIX
4728 ("hidden declaration#!", N
);
4731 Ent
:= Homonym
(Ent
);
4734 -- If we found hidden declarations, then that's enough, don't
4735 -- bother looking for non-visible declarations as well.
4741 -- Second loop does non-directly visible declarations
4744 while Present
(Ent
) loop
4745 if not Is_Potentially_Use_Visible
(Ent
) then
4747 -- Do not bother the user with unknown entities
4749 if not Known_But_Invisible
(Ent
) then
4753 Error_Msg_Sloc
:= Sloc
(Ent
);
4755 -- Output message noting that there is a non-visible
4756 -- declaration, distinguishing the private part case.
4758 if Is_Hidden
(Ent
) then
4759 Error_Msg_N
("non-visible (private) declaration#!", N
);
4761 -- If the entity is declared in a generic package, it
4762 -- cannot be visible, so there is no point in adding it
4763 -- to the list of candidates if another homograph from a
4764 -- non-generic package has been seen.
4766 elsif Ekind
(Scope
(Ent
)) = E_Generic_Package
4772 Error_Msg_N
-- CODEFIX
4773 ("non-visible declaration#!", N
);
4775 if Ekind
(Scope
(Ent
)) /= E_Generic_Package
then
4779 if Is_Compilation_Unit
(Ent
)
4781 Nkind
(Parent
(Parent
(N
))) = N_Use_Package_Clause
4783 Error_Msg_Qual_Level
:= 99;
4784 Error_Msg_NE
-- CODEFIX
4785 ("\\missing `WITH &;`", N
, Ent
);
4786 Error_Msg_Qual_Level
:= 0;
4789 if Ekind
(Ent
) = E_Discriminant
4790 and then Present
(Corresponding_Discriminant
(Ent
))
4791 and then Scope
(Corresponding_Discriminant
(Ent
)) =
4795 ("inherited discriminant not allowed here" &
4796 " (RM 3.8 (12), 3.8.1 (6))!", N
);
4800 -- Set entity and its containing package as referenced. We
4801 -- can't be sure of this, but this seems a better choice
4802 -- to avoid unused entity messages.
4804 if Comes_From_Source
(Ent
) then
4805 Set_Referenced
(Ent
);
4806 Set_Referenced
(Cunit_Entity
(Get_Source_Unit
(Ent
)));
4811 Ent
:= Homonym
(Ent
);
4820 procedure Undefined
(Nvis
: Boolean) is
4821 Emsg
: Error_Msg_Id
;
4824 -- We should never find an undefined internal name. If we do, then
4825 -- see if we have previous errors. If so, ignore on the grounds that
4826 -- it is probably a cascaded message (e.g. a block label from a badly
4827 -- formed block). If no previous errors, then we have a real internal
4828 -- error of some kind so raise an exception.
4830 if Is_Internal_Name
(Chars
(N
)) then
4831 if Total_Errors_Detected
/= 0 then
4834 raise Program_Error
;
4838 -- A very specialized error check, if the undefined variable is
4839 -- a case tag, and the case type is an enumeration type, check
4840 -- for a possible misspelling, and if so, modify the identifier
4842 -- Named aggregate should also be handled similarly ???
4844 if Nkind
(N
) = N_Identifier
4845 and then Nkind
(Parent
(N
)) = N_Case_Statement_Alternative
4848 Case_Stm
: constant Node_Id
:= Parent
(Parent
(N
));
4849 Case_Typ
: constant Entity_Id
:= Etype
(Expression
(Case_Stm
));
4854 if Is_Enumeration_Type
(Case_Typ
)
4855 and then not Is_Standard_Character_Type
(Case_Typ
)
4857 Lit
:= First_Literal
(Case_Typ
);
4858 Get_Name_String
(Chars
(Lit
));
4860 if Chars
(Lit
) /= Chars
(N
)
4861 and then Is_Bad_Spelling_Of
(Chars
(N
), Chars
(Lit
))
4863 Error_Msg_Node_2
:= Lit
;
4864 Error_Msg_N
-- CODEFIX
4865 ("& is undefined, assume misspelling of &", N
);
4866 Rewrite
(N
, New_Occurrence_Of
(Lit
, Sloc
(N
)));
4870 Lit
:= Next_Literal
(Lit
);
4875 -- Normal processing
4877 Set_Entity
(N
, Any_Id
);
4878 Set_Etype
(N
, Any_Type
);
4880 -- We use the table Urefs to keep track of entities for which we
4881 -- have issued errors for undefined references. Multiple errors
4882 -- for a single name are normally suppressed, however we modify
4883 -- the error message to alert the programmer to this effect.
4885 for J
in Urefs
.First
.. Urefs
.Last
loop
4886 if Chars
(N
) = Chars
(Urefs
.Table
(J
).Node
) then
4887 if Urefs
.Table
(J
).Err
/= No_Error_Msg
4888 and then Sloc
(N
) /= Urefs
.Table
(J
).Loc
4890 Error_Msg_Node_1
:= Urefs
.Table
(J
).Node
;
4892 if Urefs
.Table
(J
).Nvis
then
4893 Change_Error_Text
(Urefs
.Table
(J
).Err
,
4894 "& is not visible (more references follow)");
4896 Change_Error_Text
(Urefs
.Table
(J
).Err
,
4897 "& is undefined (more references follow)");
4900 Urefs
.Table
(J
).Err
:= No_Error_Msg
;
4903 -- Although we will set Msg False, and thus suppress the
4904 -- message, we also set Error_Posted True, to avoid any
4905 -- cascaded messages resulting from the undefined reference.
4908 Set_Error_Posted
(N
, True);
4913 -- If entry not found, this is first undefined occurrence
4916 Error_Msg_N
("& is not visible!", N
);
4920 Error_Msg_N
("& is undefined!", N
);
4923 -- A very bizarre special check, if the undefined identifier
4924 -- is put or put_line, then add a special error message (since
4925 -- this is a very common error for beginners to make).
4927 if Nam_In
(Chars
(N
), Name_Put
, Name_Put_Line
) then
4928 Error_Msg_N
-- CODEFIX
4929 ("\\possible missing `WITH Ada.Text_'I'O; " &
4930 "USE Ada.Text_'I'O`!", N
);
4932 -- Another special check if N is the prefix of a selected
4933 -- component which is a known unit, add message complaining
4934 -- about missing with for this unit.
4936 elsif Nkind
(Parent
(N
)) = N_Selected_Component
4937 and then N
= Prefix
(Parent
(N
))
4938 and then Is_Known_Unit
(Parent
(N
))
4940 Error_Msg_Node_2
:= Selector_Name
(Parent
(N
));
4941 Error_Msg_N
-- CODEFIX
4942 ("\\missing `WITH &.&;`", Prefix
(Parent
(N
)));
4945 -- Now check for possible misspellings
4949 Ematch
: Entity_Id
:= Empty
;
4951 Last_Name_Id
: constant Name_Id
:=
4952 Name_Id
(Nat
(First_Name_Id
) +
4953 Name_Entries_Count
- 1);
4956 for Nam
in First_Name_Id
.. Last_Name_Id
loop
4957 E
:= Get_Name_Entity_Id
(Nam
);
4960 and then (Is_Immediately_Visible
(E
)
4962 Is_Potentially_Use_Visible
(E
))
4964 if Is_Bad_Spelling_Of
(Chars
(N
), Nam
) then
4971 if Present
(Ematch
) then
4972 Error_Msg_NE
-- CODEFIX
4973 ("\possible misspelling of&", N
, Ematch
);
4978 -- Make entry in undefined references table unless the full errors
4979 -- switch is set, in which case by refraining from generating the
4980 -- table entry, we guarantee that we get an error message for every
4981 -- undefined reference.
4983 if not All_Errors_Mode
then
4994 -- Start of processing for Find_Direct_Name
4997 -- If the entity pointer is already set, this is an internal node, or
4998 -- a node that is analyzed more than once, after a tree modification.
4999 -- In such a case there is no resolution to perform, just set the type.
5001 if Present
(Entity
(N
)) then
5002 if Is_Type
(Entity
(N
)) then
5003 Set_Etype
(N
, Entity
(N
));
5007 Entyp
: constant Entity_Id
:= Etype
(Entity
(N
));
5010 -- One special case here. If the Etype field is already set,
5011 -- and references the packed array type corresponding to the
5012 -- etype of the referenced entity, then leave it alone. This
5013 -- happens for trees generated from Exp_Pakd, where expressions
5014 -- can be deliberately "mis-typed" to the packed array type.
5016 if Is_Array_Type
(Entyp
)
5017 and then Is_Packed
(Entyp
)
5018 and then Present
(Etype
(N
))
5019 and then Etype
(N
) = Packed_Array_Impl_Type
(Entyp
)
5023 -- If not that special case, then just reset the Etype
5026 Set_Etype
(N
, Etype
(Entity
(N
)));
5034 -- Here if Entity pointer was not set, we need full visibility analysis
5035 -- First we generate debugging output if the debug E flag is set.
5037 if Debug_Flag_E
then
5038 Write_Str
("Looking for ");
5039 Write_Name
(Chars
(N
));
5043 Homonyms
:= Current_Entity
(N
);
5044 Nvis_Entity
:= False;
5047 while Present
(E
) loop
5049 -- If entity is immediately visible or potentially use visible, then
5050 -- process the entity and we are done.
5052 if Is_Immediately_Visible
(E
) then
5053 goto Immediately_Visible_Entity
;
5055 elsif Is_Potentially_Use_Visible
(E
) then
5056 goto Potentially_Use_Visible_Entity
;
5058 -- Note if a known but invisible entity encountered
5060 elsif Known_But_Invisible
(E
) then
5061 Nvis_Entity
:= True;
5064 -- Move to next entity in chain and continue search
5069 -- If no entries on homonym chain that were potentially visible,
5070 -- and no entities reasonably considered as non-visible, then
5071 -- we have a plain undefined reference, with no additional
5072 -- explanation required.
5074 if not Nvis_Entity
then
5075 Undefined
(Nvis
=> False);
5077 -- Otherwise there is at least one entry on the homonym chain that
5078 -- is reasonably considered as being known and non-visible.
5086 -- Processing for a potentially use visible entry found. We must search
5087 -- the rest of the homonym chain for two reasons. First, if there is a
5088 -- directly visible entry, then none of the potentially use-visible
5089 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5090 -- for the case of multiple potentially use-visible entries hiding one
5091 -- another and as a result being non-directly visible (RM 8.4(11)).
5093 <<Potentially_Use_Visible_Entity
>> declare
5094 Only_One_Visible
: Boolean := True;
5095 All_Overloadable
: Boolean := Is_Overloadable
(E
);
5099 while Present
(E2
) loop
5100 if Is_Immediately_Visible
(E2
) then
5102 -- If the use-visible entity comes from the actual for a
5103 -- formal package, it hides a directly visible entity from
5104 -- outside the instance.
5106 if From_Actual_Package
(E
)
5107 and then Scope_Depth
(E2
) < Scope_Depth
(Inst
)
5112 goto Immediately_Visible_Entity
;
5115 elsif Is_Potentially_Use_Visible
(E2
) then
5116 Only_One_Visible
:= False;
5117 All_Overloadable
:= All_Overloadable
and Is_Overloadable
(E2
);
5119 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5120 -- that can occur in private_with clauses. Example:
5123 -- private with B; package A is
5124 -- package C is function B return Integer;
5126 -- V1 : Integer := B;
5127 -- private function B return Integer;
5128 -- V2 : Integer := B;
5131 -- V1 resolves to A.B, but V2 resolves to library unit B
5133 elsif Ekind
(E2
) = E_Function
5134 and then Scope
(E2
) = Standard_Standard
5135 and then Has_Private_With
(E2
)
5137 Only_One_Visible
:= False;
5138 All_Overloadable
:= False;
5139 Nvis_Is_Private_Subprg
:= True;
5146 -- On falling through this loop, we have checked that there are no
5147 -- immediately visible entities. Only_One_Visible is set if exactly
5148 -- one potentially use visible entity exists. All_Overloadable is
5149 -- set if all the potentially use visible entities are overloadable.
5150 -- The condition for legality is that either there is one potentially
5151 -- use visible entity, or if there is more than one, then all of them
5152 -- are overloadable.
5154 if Only_One_Visible
or All_Overloadable
then
5157 -- If there is more than one potentially use-visible entity and at
5158 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5159 -- Note that E points to the first such entity on the homonym list.
5160 -- Special case: if one of the entities is declared in an actual
5161 -- package, it was visible in the generic, and takes precedence over
5162 -- other entities that are potentially use-visible. Same if it is
5163 -- declared in a local instantiation of the current instance.
5168 -- Find current instance
5170 Inst
:= Current_Scope
;
5171 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
5172 if Is_Generic_Instance
(Inst
) then
5176 Inst
:= Scope
(Inst
);
5180 while Present
(E2
) loop
5181 if From_Actual_Package
(E2
)
5183 (Is_Generic_Instance
(Scope
(E2
))
5184 and then Scope_Depth
(Scope
(E2
)) > Scope_Depth
(Inst
))
5197 Is_Predefined_File_Name
(Unit_File_Name
(Current_Sem_Unit
))
5199 -- A use-clause in the body of a system file creates conflict
5200 -- with some entity in a user scope, while rtsfind is active.
5201 -- Keep only the entity coming from another predefined unit.
5204 while Present
(E2
) loop
5205 if Is_Predefined_File_Name
5206 (Unit_File_Name
(Get_Source_Unit
(Sloc
(E2
))))
5215 -- Entity must exist because predefined unit is correct
5217 raise Program_Error
;
5226 -- Come here with E set to the first immediately visible entity on
5227 -- the homonym chain. This is the one we want unless there is another
5228 -- immediately visible entity further on in the chain for an inner
5229 -- scope (RM 8.3(8)).
5231 <<Immediately_Visible_Entity
>> declare
5236 -- Find scope level of initial entity. When compiling through
5237 -- Rtsfind, the previous context is not completely invisible, and
5238 -- an outer entity may appear on the chain, whose scope is below
5239 -- the entry for Standard that delimits the current scope stack.
5240 -- Indicate that the level for this spurious entry is outside of
5241 -- the current scope stack.
5243 Level
:= Scope_Stack
.Last
;
5245 Scop
:= Scope_Stack
.Table
(Level
).Entity
;
5246 exit when Scop
= Scope
(E
);
5248 exit when Scop
= Standard_Standard
;
5251 -- Now search remainder of homonym chain for more inner entry
5252 -- If the entity is Standard itself, it has no scope, and we
5253 -- compare it with the stack entry directly.
5256 while Present
(E2
) loop
5257 if Is_Immediately_Visible
(E2
) then
5259 -- If a generic package contains a local declaration that
5260 -- has the same name as the generic, there may be a visibility
5261 -- conflict in an instance, where the local declaration must
5262 -- also hide the name of the corresponding package renaming.
5263 -- We check explicitly for a package declared by a renaming,
5264 -- whose renamed entity is an instance that is on the scope
5265 -- stack, and that contains a homonym in the same scope. Once
5266 -- we have found it, we know that the package renaming is not
5267 -- immediately visible, and that the identifier denotes the
5268 -- other entity (and its homonyms if overloaded).
5270 if Scope
(E
) = Scope
(E2
)
5271 and then Ekind
(E
) = E_Package
5272 and then Present
(Renamed_Object
(E
))
5273 and then Is_Generic_Instance
(Renamed_Object
(E
))
5274 and then In_Open_Scopes
(Renamed_Object
(E
))
5275 and then Comes_From_Source
(N
)
5277 Set_Is_Immediately_Visible
(E
, False);
5281 for J
in Level
+ 1 .. Scope_Stack
.Last
loop
5282 if Scope_Stack
.Table
(J
).Entity
= Scope
(E2
)
5283 or else Scope_Stack
.Table
(J
).Entity
= E2
5296 -- At the end of that loop, E is the innermost immediately
5297 -- visible entity, so we are all set.
5300 -- Come here with entity found, and stored in E
5304 -- Check violation of No_Wide_Characters restriction
5306 Check_Wide_Character_Restriction
(E
, N
);
5308 -- When distribution features are available (Get_PCS_Name /=
5309 -- Name_No_DSA), a remote access-to-subprogram type is converted
5310 -- into a record type holding whatever information is needed to
5311 -- perform a remote call on an RCI subprogram. In that case we
5312 -- rewrite any occurrence of the RAS type into the equivalent record
5313 -- type here. 'Access attribute references and RAS dereferences are
5314 -- then implemented using specific TSSs. However when distribution is
5315 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5316 -- generation of these TSSs, and we must keep the RAS type in its
5317 -- original access-to-subprogram form (since all calls through a
5318 -- value of such type will be local anyway in the absence of a PCS).
5320 if Comes_From_Source
(N
)
5321 and then Is_Remote_Access_To_Subprogram_Type
(E
)
5322 and then Ekind
(E
) = E_Access_Subprogram_Type
5323 and then Expander_Active
5324 and then Get_PCS_Name
/= Name_No_DSA
5327 New_Occurrence_Of
(Equivalent_Type
(E
), Sloc
(N
)));
5331 -- Set the entity. Note that the reason we call Set_Entity for the
5332 -- overloadable case, as opposed to Set_Entity_With_Checks is
5333 -- that in the overloaded case, the initial call can set the wrong
5334 -- homonym. The call that sets the right homonym is in Sem_Res and
5335 -- that call does use Set_Entity_With_Checks, so we don't miss
5338 if Is_Overloadable
(E
) then
5341 Set_Entity_With_Checks
(N
, E
);
5347 Set_Etype
(N
, Get_Full_View
(Etype
(E
)));
5350 if Debug_Flag_E
then
5351 Write_Str
(" found ");
5352 Write_Entity_Info
(E
, " ");
5355 -- If the Ekind of the entity is Void, it means that all homonyms
5356 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5357 -- test is skipped if the current scope is a record and the name is
5358 -- a pragma argument expression (case of Atomic and Volatile pragmas
5359 -- and possibly other similar pragmas added later, which are allowed
5360 -- to reference components in the current record).
5362 if Ekind
(E
) = E_Void
5364 (not Is_Record_Type
(Current_Scope
)
5365 or else Nkind
(Parent
(N
)) /= N_Pragma_Argument_Association
)
5367 Premature_Usage
(N
);
5369 -- If the entity is overloadable, collect all interpretations of the
5370 -- name for subsequent overload resolution. We optimize a bit here to
5371 -- do this only if we have an overloadable entity that is not on its
5372 -- own on the homonym chain.
5374 elsif Is_Overloadable
(E
)
5375 and then (Present
(Homonym
(E
)) or else Current_Entity
(N
) /= E
)
5377 Collect_Interps
(N
);
5379 -- If no homonyms were visible, the entity is unambiguous
5381 if not Is_Overloaded
(N
) then
5382 if not Is_Actual_Parameter
then
5383 Generate_Reference
(E
, N
);
5387 -- Case of non-overloadable entity, set the entity providing that
5388 -- we do not have the case of a discriminant reference within a
5389 -- default expression. Such references are replaced with the
5390 -- corresponding discriminal, which is the formal corresponding to
5391 -- to the discriminant in the initialization procedure.
5394 -- Entity is unambiguous, indicate that it is referenced here
5396 -- For a renaming of an object, always generate simple reference,
5397 -- we don't try to keep track of assignments in this case, except
5398 -- in SPARK mode where renamings are traversed for generating
5399 -- local effects of subprograms.
5402 and then Present
(Renamed_Object
(E
))
5403 and then not GNATprove_Mode
5405 Generate_Reference
(E
, N
);
5407 -- If the renamed entity is a private protected component,
5408 -- reference the original component as well. This needs to be
5409 -- done because the private renamings are installed before any
5410 -- analysis has occurred. Reference to a private component will
5411 -- resolve to the renaming and the original component will be
5412 -- left unreferenced, hence the following.
5414 if Is_Prival
(E
) then
5415 Generate_Reference
(Prival_Link
(E
), N
);
5418 -- One odd case is that we do not want to set the Referenced flag
5419 -- if the entity is a label, and the identifier is the label in
5420 -- the source, since this is not a reference from the point of
5421 -- view of the user.
5423 elsif Nkind
(Parent
(N
)) = N_Label
then
5425 R
: constant Boolean := Referenced
(E
);
5428 -- Generate reference unless this is an actual parameter
5429 -- (see comment below)
5431 if Is_Actual_Parameter
then
5432 Generate_Reference
(E
, N
);
5433 Set_Referenced
(E
, R
);
5437 -- Normal case, not a label: generate reference
5440 if not Is_Actual_Parameter
then
5442 -- Package or generic package is always a simple reference
5444 if Ekind_In
(E
, E_Package
, E_Generic_Package
) then
5445 Generate_Reference
(E
, N
, 'r');
5447 -- Else see if we have a left hand side
5452 Generate_Reference
(E
, N
, 'm');
5455 Generate_Reference
(E
, N
, 'r');
5457 -- If we don't know now, generate reference later
5460 Deferred_References
.Append
((E
, N
));
5465 Check_Nested_Access
(E
);
5468 Set_Entity_Or_Discriminal
(N
, E
);
5470 -- The name may designate a generalized reference, in which case
5471 -- the dereference interpretation will be included.
5473 if Ada_Version
>= Ada_2012
5475 (Nkind
(Parent
(N
)) in N_Subexpr
5476 or else Nkind_In
(Parent
(N
), N_Object_Declaration
,
5477 N_Assignment_Statement
))
5479 Check_Implicit_Dereference
(N
, Etype
(E
));
5483 end Find_Direct_Name
;
5485 ------------------------
5486 -- Find_Expanded_Name --
5487 ------------------------
5489 -- This routine searches the homonym chain of the entity until it finds
5490 -- an entity declared in the scope denoted by the prefix. If the entity
5491 -- is private, it may nevertheless be immediately visible, if we are in
5492 -- the scope of its declaration.
5494 procedure Find_Expanded_Name
(N
: Node_Id
) is
5495 function In_Pragmas_Depends_Or_Global
(N
: Node_Id
) return Boolean;
5496 -- Determine whether an arbitrary node N appears in pragmas [Refined_]
5497 -- Depends or [Refined_]Global.
5499 ----------------------------------
5500 -- In_Pragmas_Depends_Or_Global --
5501 ----------------------------------
5503 function In_Pragmas_Depends_Or_Global
(N
: Node_Id
) return Boolean is
5507 -- Climb the parent chain looking for a pragma
5510 while Present
(Par
) loop
5511 if Nkind
(Par
) = N_Pragma
5512 and then Nam_In
(Pragma_Name
(Par
), Name_Depends
,
5514 Name_Refined_Depends
,
5515 Name_Refined_Global
)
5519 -- Prevent the search from going too far
5521 elsif Is_Body_Or_Package_Declaration
(Par
) then
5525 Par
:= Parent
(Par
);
5529 end In_Pragmas_Depends_Or_Global
;
5533 Selector
: constant Node_Id
:= Selector_Name
(N
);
5534 Candidate
: Entity_Id
:= Empty
;
5538 -- Start of processing for Find_Expanded_Name
5541 P_Name
:= Entity
(Prefix
(N
));
5543 -- If the prefix is a renamed package, look for the entity in the
5544 -- original package.
5546 if Ekind
(P_Name
) = E_Package
5547 and then Present
(Renamed_Object
(P_Name
))
5549 P_Name
:= Renamed_Object
(P_Name
);
5551 -- Rewrite node with entity field pointing to renamed object
5553 Rewrite
(Prefix
(N
), New_Copy
(Prefix
(N
)));
5554 Set_Entity
(Prefix
(N
), P_Name
);
5556 -- If the prefix is an object of a concurrent type, look for
5557 -- the entity in the associated task or protected type.
5559 elsif Is_Concurrent_Type
(Etype
(P_Name
)) then
5560 P_Name
:= Etype
(P_Name
);
5563 Id
:= Current_Entity
(Selector
);
5566 Is_New_Candidate
: Boolean;
5569 while Present
(Id
) loop
5570 if Scope
(Id
) = P_Name
then
5572 Is_New_Candidate
:= True;
5574 -- Handle abstract views of states and variables. These are
5575 -- acceptable only when the reference to the view appears in
5576 -- pragmas [Refined_]Depends and [Refined_]Global.
5578 if Ekind
(Id
) = E_Abstract_State
5579 and then From_Limited_With
(Id
)
5580 and then Present
(Non_Limited_View
(Id
))
5582 if In_Pragmas_Depends_Or_Global
(N
) then
5583 Candidate
:= Non_Limited_View
(Id
);
5584 Is_New_Candidate
:= True;
5586 -- Hide candidate because it is not used in a proper context
5590 Is_New_Candidate
:= False;
5594 -- Ada 2005 (AI-217): Handle shadow entities associated with types
5595 -- declared in limited-withed nested packages. We don't need to
5596 -- handle E_Incomplete_Subtype entities because the entities in
5597 -- the limited view are always E_Incomplete_Type entities (see
5598 -- Build_Limited_Views). Regarding the expression used to evaluate
5599 -- the scope, it is important to note that the limited view also
5600 -- has shadow entities associated nested packages. For this reason
5601 -- the correct scope of the entity is the scope of the real entity
5602 -- The non-limited view may itself be incomplete, in which case
5603 -- get the full view if available.
5605 elsif Ekind
(Id
) = E_Incomplete_Type
5606 and then From_Limited_With
(Id
)
5607 and then Present
(Non_Limited_View
(Id
))
5608 and then Scope
(Non_Limited_View
(Id
)) = P_Name
5610 Candidate
:= Get_Full_View
(Non_Limited_View
(Id
));
5611 Is_New_Candidate
:= True;
5614 Is_New_Candidate
:= False;
5617 if Is_New_Candidate
then
5618 if Is_Child_Unit
(Id
) or else P_Name
= Standard_Standard
then
5619 exit when Is_Visible_Lib_Unit
(Id
);
5621 exit when not Is_Hidden
(Id
);
5624 exit when Is_Immediately_Visible
(Id
);
5632 and then Ekind_In
(P_Name
, E_Procedure
, E_Function
)
5633 and then Is_Generic_Instance
(P_Name
)
5635 -- Expanded name denotes entity in (instance of) generic subprogram.
5636 -- The entity may be in the subprogram instance, or may denote one of
5637 -- the formals, which is declared in the enclosing wrapper package.
5639 P_Name
:= Scope
(P_Name
);
5641 Id
:= Current_Entity
(Selector
);
5642 while Present
(Id
) loop
5643 exit when Scope
(Id
) = P_Name
;
5648 if No
(Id
) or else Chars
(Id
) /= Chars
(Selector
) then
5649 Set_Etype
(N
, Any_Type
);
5651 -- If we are looking for an entity defined in System, try to find it
5652 -- in the child package that may have been provided as an extension
5653 -- to System. The Extend_System pragma will have supplied the name of
5654 -- the extension, which may have to be loaded.
5656 if Chars
(P_Name
) = Name_System
5657 and then Scope
(P_Name
) = Standard_Standard
5658 and then Present
(System_Extend_Unit
)
5659 and then Present_System_Aux
(N
)
5661 Set_Entity
(Prefix
(N
), System_Aux_Id
);
5662 Find_Expanded_Name
(N
);
5665 elsif Nkind
(Selector
) = N_Operator_Symbol
5666 and then Has_Implicit_Operator
(N
)
5668 -- There is an implicit instance of the predefined operator in
5669 -- the given scope. The operator entity is defined in Standard.
5670 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5674 elsif Nkind
(Selector
) = N_Character_Literal
5675 and then Has_Implicit_Character_Literal
(N
)
5677 -- If there is no literal defined in the scope denoted by the
5678 -- prefix, the literal may belong to (a type derived from)
5679 -- Standard_Character, for which we have no explicit literals.
5684 -- If the prefix is a single concurrent object, use its name in
5685 -- the error message, rather than that of the anonymous type.
5687 if Is_Concurrent_Type
(P_Name
)
5688 and then Is_Internal_Name
(Chars
(P_Name
))
5690 Error_Msg_Node_2
:= Entity
(Prefix
(N
));
5692 Error_Msg_Node_2
:= P_Name
;
5695 if P_Name
= System_Aux_Id
then
5696 P_Name
:= Scope
(P_Name
);
5697 Set_Entity
(Prefix
(N
), P_Name
);
5700 if Present
(Candidate
) then
5702 -- If we know that the unit is a child unit we can give a more
5703 -- accurate error message.
5705 if Is_Child_Unit
(Candidate
) then
5707 -- If the candidate is a private child unit and we are in
5708 -- the visible part of a public unit, specialize the error
5709 -- message. There might be a private with_clause for it,
5710 -- but it is not currently active.
5712 if Is_Private_Descendant
(Candidate
)
5713 and then Ekind
(Current_Scope
) = E_Package
5714 and then not In_Private_Part
(Current_Scope
)
5715 and then not Is_Private_Descendant
(Current_Scope
)
5717 Error_Msg_N
("private child unit& is not visible here",
5720 -- Normal case where we have a missing with for a child unit
5723 Error_Msg_Qual_Level
:= 99;
5724 Error_Msg_NE
-- CODEFIX
5725 ("missing `WITH &;`", Selector
, Candidate
);
5726 Error_Msg_Qual_Level
:= 0;
5729 -- Here we don't know that this is a child unit
5732 Error_Msg_NE
("& is not a visible entity of&", N
, Selector
);
5736 -- Within the instantiation of a child unit, the prefix may
5737 -- denote the parent instance, but the selector has the name
5738 -- of the original child. That is to say, when A.B appears
5739 -- within an instantiation of generic child unit B, the scope
5740 -- stack includes an instance of A (P_Name) and an instance
5741 -- of B under some other name. We scan the scope to find this
5742 -- child instance, which is the desired entity.
5743 -- Note that the parent may itself be a child instance, if
5744 -- the reference is of the form A.B.C, in which case A.B has
5745 -- already been rewritten with the proper entity.
5747 if In_Open_Scopes
(P_Name
)
5748 and then Is_Generic_Instance
(P_Name
)
5751 Gen_Par
: constant Entity_Id
:=
5752 Generic_Parent
(Specification
5753 (Unit_Declaration_Node
(P_Name
)));
5754 S
: Entity_Id
:= Current_Scope
;
5758 for J
in reverse 0 .. Scope_Stack
.Last
loop
5759 S
:= Scope_Stack
.Table
(J
).Entity
;
5761 exit when S
= Standard_Standard
;
5763 if Ekind_In
(S
, E_Function
,
5767 P
:= Generic_Parent
(Specification
5768 (Unit_Declaration_Node
(S
)));
5770 -- Check that P is a generic child of the generic
5771 -- parent of the prefix.
5774 and then Chars
(P
) = Chars
(Selector
)
5775 and then Scope
(P
) = Gen_Par
5786 -- If this is a selection from Ada, System or Interfaces, then
5787 -- we assume a missing with for the corresponding package.
5789 if Is_Known_Unit
(N
) then
5790 if not Error_Posted
(N
) then
5791 Error_Msg_Node_2
:= Selector
;
5792 Error_Msg_N
-- CODEFIX
5793 ("missing `WITH &.&;`", Prefix
(N
));
5796 -- If this is a selection from a dummy package, then suppress
5797 -- the error message, of course the entity is missing if the
5798 -- package is missing.
5800 elsif Sloc
(Error_Msg_Node_2
) = No_Location
then
5803 -- Here we have the case of an undefined component
5807 -- The prefix may hide a homonym in the context that
5808 -- declares the desired entity. This error can use a
5809 -- specialized message.
5811 if In_Open_Scopes
(P_Name
) then
5813 H
: constant Entity_Id
:= Homonym
(P_Name
);
5817 and then Is_Compilation_Unit
(H
)
5819 (Is_Immediately_Visible
(H
)
5820 or else Is_Visible_Lib_Unit
(H
))
5822 Id
:= First_Entity
(H
);
5823 while Present
(Id
) loop
5824 if Chars
(Id
) = Chars
(Selector
) then
5825 Error_Msg_Qual_Level
:= 99;
5826 Error_Msg_Name_1
:= Chars
(Selector
);
5828 ("% not declared in&", N
, P_Name
);
5830 ("\use fully qualified name starting with "
5831 & "Standard to make& visible", N
, H
);
5832 Error_Msg_Qual_Level
:= 0;
5840 -- If not found, standard error message
5842 Error_Msg_NE
("& not declared in&", N
, Selector
);
5848 Error_Msg_NE
("& not declared in&", N
, Selector
);
5851 -- Check for misspelling of some entity in prefix
5853 Id
:= First_Entity
(P_Name
);
5854 while Present
(Id
) loop
5855 if Is_Bad_Spelling_Of
(Chars
(Id
), Chars
(Selector
))
5856 and then not Is_Internal_Name
(Chars
(Id
))
5858 Error_Msg_NE
-- CODEFIX
5859 ("possible misspelling of&", Selector
, Id
);
5866 -- Specialize the message if this may be an instantiation
5867 -- of a child unit that was not mentioned in the context.
5869 if Nkind
(Parent
(N
)) = N_Package_Instantiation
5870 and then Is_Generic_Instance
(Entity
(Prefix
(N
)))
5871 and then Is_Compilation_Unit
5872 (Generic_Parent
(Parent
(Entity
(Prefix
(N
)))))
5874 Error_Msg_Node_2
:= Selector
;
5875 Error_Msg_N
-- CODEFIX
5876 ("\missing `WITH &.&;`", Prefix
(N
));
5886 if Comes_From_Source
(N
)
5887 and then Is_Remote_Access_To_Subprogram_Type
(Id
)
5888 and then Ekind
(Id
) = E_Access_Subprogram_Type
5889 and then Present
(Equivalent_Type
(Id
))
5891 -- If we are not actually generating distribution code (i.e. the
5892 -- current PCS is the dummy non-distributed version), then the
5893 -- Equivalent_Type will be missing, and Id should be treated as
5894 -- a regular access-to-subprogram type.
5896 Id
:= Equivalent_Type
(Id
);
5897 Set_Chars
(Selector
, Chars
(Id
));
5900 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
5902 if Ekind
(P_Name
) = E_Package
and then From_Limited_With
(P_Name
) then
5903 if From_Limited_With
(Id
)
5904 or else Is_Type
(Id
)
5905 or else Ekind
(Id
) = E_Package
5910 ("limited withed package can only be used to access "
5911 & "incomplete types", N
);
5915 if Is_Task_Type
(P_Name
)
5916 and then ((Ekind
(Id
) = E_Entry
5917 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
)
5919 (Ekind
(Id
) = E_Entry_Family
5921 Nkind
(Parent
(Parent
(N
))) /= N_Attribute_Reference
))
5923 -- If both the task type and the entry are in scope, this may still
5924 -- be the expanded name of an entry formal.
5926 if In_Open_Scopes
(Id
)
5927 and then Nkind
(Parent
(N
)) = N_Selected_Component
5932 -- It is an entry call after all, either to the current task
5933 -- (which will deadlock) or to an enclosing task.
5935 Analyze_Selected_Component
(N
);
5940 Change_Selected_Component_To_Expanded_Name
(N
);
5942 -- Set appropriate type
5944 if Is_Type
(Id
) then
5947 Set_Etype
(N
, Get_Full_View
(Etype
(Id
)));
5950 -- Do style check and generate reference, but skip both steps if this
5951 -- entity has homonyms, since we may not have the right homonym set yet.
5952 -- The proper homonym will be set during the resolve phase.
5954 if Has_Homonym
(Id
) then
5958 Set_Entity_Or_Discriminal
(N
, Id
);
5962 Generate_Reference
(Id
, N
, 'm');
5964 Generate_Reference
(Id
, N
, 'r');
5966 Deferred_References
.Append
((Id
, N
));
5970 -- Check for violation of No_Wide_Characters
5972 Check_Wide_Character_Restriction
(Id
, N
);
5974 -- If the Ekind of the entity is Void, it means that all homonyms are
5975 -- hidden from all visibility (RM 8.3(5,14-20)).
5977 if Ekind
(Id
) = E_Void
then
5978 Premature_Usage
(N
);
5980 elsif Is_Overloadable
(Id
) and then Present
(Homonym
(Id
)) then
5982 H
: Entity_Id
:= Homonym
(Id
);
5985 while Present
(H
) loop
5986 if Scope
(H
) = Scope
(Id
)
5987 and then (not Is_Hidden
(H
)
5988 or else Is_Immediately_Visible
(H
))
5990 Collect_Interps
(N
);
5997 -- If an extension of System is present, collect possible explicit
5998 -- overloadings declared in the extension.
6000 if Chars
(P_Name
) = Name_System
6001 and then Scope
(P_Name
) = Standard_Standard
6002 and then Present
(System_Extend_Unit
)
6003 and then Present_System_Aux
(N
)
6005 H
:= Current_Entity
(Id
);
6007 while Present
(H
) loop
6008 if Scope
(H
) = System_Aux_Id
then
6009 Add_One_Interp
(N
, H
, Etype
(H
));
6018 if Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
6019 and then Scope
(Id
) /= Standard_Standard
6021 -- In addition to user-defined operators in the given scope, there
6022 -- may be an implicit instance of the predefined operator. The
6023 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6024 -- and added to the interpretations. Procedure Add_One_Interp will
6025 -- determine which hides which.
6027 if Has_Implicit_Operator
(N
) then
6032 -- If there is a single interpretation for N we can generate a
6033 -- reference to the unique entity found.
6035 if Is_Overloadable
(Id
) and then not Is_Overloaded
(N
) then
6036 Generate_Reference
(Id
, N
);
6038 end Find_Expanded_Name
;
6040 -------------------------
6041 -- Find_Renamed_Entity --
6042 -------------------------
6044 function Find_Renamed_Entity
6048 Is_Actual
: Boolean := False) return Entity_Id
6051 I1
: Interp_Index
:= 0; -- Suppress junk warnings
6057 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean;
6058 -- If the renamed entity is an implicit operator, check whether it is
6059 -- visible because its operand type is properly visible. This check
6060 -- applies to explicit renamed entities that appear in the source in a
6061 -- renaming declaration or a formal subprogram instance, but not to
6062 -- default generic actuals with a name.
6064 function Report_Overload
return Entity_Id
;
6065 -- List possible interpretations, and specialize message in the
6066 -- case of a generic actual.
6068 function Within
(Inner
, Outer
: Entity_Id
) return Boolean;
6069 -- Determine whether a candidate subprogram is defined within the
6070 -- enclosing instance. If yes, it has precedence over outer candidates.
6072 --------------------------
6073 -- Is_Visible_Operation --
6074 --------------------------
6076 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean is
6082 if Ekind
(Op
) /= E_Operator
6083 or else Scope
(Op
) /= Standard_Standard
6084 or else (In_Instance
6085 and then (not Is_Actual
6086 or else Present
(Enclosing_Instance
)))
6091 -- For a fixed point type operator, check the resulting type,
6092 -- because it may be a mixed mode integer * fixed operation.
6094 if Present
(Next_Formal
(First_Formal
(New_S
)))
6095 and then Is_Fixed_Point_Type
(Etype
(New_S
))
6097 Typ
:= Etype
(New_S
);
6099 Typ
:= Etype
(First_Formal
(New_S
));
6102 Btyp
:= Base_Type
(Typ
);
6104 if Nkind
(Nam
) /= N_Expanded_Name
then
6105 return (In_Open_Scopes
(Scope
(Btyp
))
6106 or else Is_Potentially_Use_Visible
(Btyp
)
6107 or else In_Use
(Btyp
)
6108 or else In_Use
(Scope
(Btyp
)));
6111 Scop
:= Entity
(Prefix
(Nam
));
6113 if Ekind
(Scop
) = E_Package
6114 and then Present
(Renamed_Object
(Scop
))
6116 Scop
:= Renamed_Object
(Scop
);
6119 -- Operator is visible if prefix of expanded name denotes
6120 -- scope of type, or else type is defined in System_Aux
6121 -- and the prefix denotes System.
6123 return Scope
(Btyp
) = Scop
6124 or else (Scope
(Btyp
) = System_Aux_Id
6125 and then Scope
(Scope
(Btyp
)) = Scop
);
6128 end Is_Visible_Operation
;
6134 function Within
(Inner
, Outer
: Entity_Id
) return Boolean is
6138 Sc
:= Scope
(Inner
);
6139 while Sc
/= Standard_Standard
loop
6150 ---------------------
6151 -- Report_Overload --
6152 ---------------------
6154 function Report_Overload
return Entity_Id
is
6157 Error_Msg_NE
-- CODEFIX
6158 ("ambiguous actual subprogram&, " &
6159 "possible interpretations:", N
, Nam
);
6161 Error_Msg_N
-- CODEFIX
6162 ("ambiguous subprogram, " &
6163 "possible interpretations:", N
);
6166 List_Interps
(Nam
, N
);
6168 end Report_Overload
;
6170 -- Start of processing for Find_Renamed_Entity
6174 Candidate_Renaming
:= Empty
;
6176 if Is_Overloaded
(Nam
) then
6177 Get_First_Interp
(Nam
, Ind
, It
);
6178 while Present
(It
.Nam
) loop
6179 if Entity_Matches_Spec
(It
.Nam
, New_S
)
6180 and then Is_Visible_Operation
(It
.Nam
)
6182 if Old_S
/= Any_Id
then
6184 -- Note: The call to Disambiguate only happens if a
6185 -- previous interpretation was found, in which case I1
6186 -- has received a value.
6188 It1
:= Disambiguate
(Nam
, I1
, Ind
, Etype
(Old_S
));
6190 if It1
= No_Interp
then
6191 Inst
:= Enclosing_Instance
;
6193 if Present
(Inst
) then
6194 if Within
(It
.Nam
, Inst
) then
6195 if Within
(Old_S
, Inst
) then
6197 -- Choose the innermost subprogram, which would
6198 -- have hidden the outer one in the generic.
6200 if Scope_Depth
(It
.Nam
) <
6209 elsif Within
(Old_S
, Inst
) then
6213 return Report_Overload
;
6216 -- If not within an instance, ambiguity is real
6219 return Report_Overload
;
6233 Present
(First_Formal
(It
.Nam
))
6234 and then Present
(First_Formal
(New_S
))
6235 and then (Base_Type
(Etype
(First_Formal
(It
.Nam
))) =
6236 Base_Type
(Etype
(First_Formal
(New_S
))))
6238 Candidate_Renaming
:= It
.Nam
;
6241 Get_Next_Interp
(Ind
, It
);
6244 Set_Entity
(Nam
, Old_S
);
6246 if Old_S
/= Any_Id
then
6247 Set_Is_Overloaded
(Nam
, False);
6250 -- Non-overloaded case
6253 if Is_Actual
and then Present
(Enclosing_Instance
) then
6254 Old_S
:= Entity
(Nam
);
6256 elsif Entity_Matches_Spec
(Entity
(Nam
), New_S
) then
6257 Candidate_Renaming
:= New_S
;
6259 if Is_Visible_Operation
(Entity
(Nam
)) then
6260 Old_S
:= Entity
(Nam
);
6263 elsif Present
(First_Formal
(Entity
(Nam
)))
6264 and then Present
(First_Formal
(New_S
))
6265 and then (Base_Type
(Etype
(First_Formal
(Entity
(Nam
)))) =
6266 Base_Type
(Etype
(First_Formal
(New_S
))))
6268 Candidate_Renaming
:= Entity
(Nam
);
6273 end Find_Renamed_Entity
;
6275 -----------------------------
6276 -- Find_Selected_Component --
6277 -----------------------------
6279 procedure Find_Selected_Component
(N
: Node_Id
) is
6280 P
: constant Node_Id
:= Prefix
(N
);
6283 -- Entity denoted by prefix
6290 function Is_Reference_In_Subunit
return Boolean;
6291 -- In a subunit, the scope depth is not a proper measure of hiding,
6292 -- because the context of the proper body may itself hide entities in
6293 -- parent units. This rare case requires inspecting the tree directly
6294 -- because the proper body is inserted in the main unit and its context
6295 -- is simply added to that of the parent.
6297 -----------------------------
6298 -- Is_Reference_In_Subunit --
6299 -----------------------------
6301 function Is_Reference_In_Subunit
return Boolean is
6303 Comp_Unit
: Node_Id
;
6307 while Present
(Comp_Unit
)
6308 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
6310 Comp_Unit
:= Parent
(Comp_Unit
);
6313 if No
(Comp_Unit
) or else Nkind
(Unit
(Comp_Unit
)) /= N_Subunit
then
6317 -- Now check whether the package is in the context of the subunit
6319 Clause
:= First
(Context_Items
(Comp_Unit
));
6320 while Present
(Clause
) loop
6321 if Nkind
(Clause
) = N_With_Clause
6322 and then Entity
(Name
(Clause
)) = P_Name
6327 Clause
:= Next
(Clause
);
6331 end Is_Reference_In_Subunit
;
6333 -- Start of processing for Find_Selected_Component
6338 if Nkind
(P
) = N_Error
then
6342 -- Selector name cannot be a character literal or an operator symbol in
6343 -- SPARK, except for the operator symbol in a renaming.
6345 if Restriction_Check_Required
(SPARK_05
) then
6346 if Nkind
(Selector_Name
(N
)) = N_Character_Literal
then
6347 Check_SPARK_Restriction
6348 ("character literal cannot be prefixed", N
);
6349 elsif Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
6350 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
6352 Check_SPARK_Restriction
("operator symbol cannot be prefixed", N
);
6356 -- If the selector already has an entity, the node has been constructed
6357 -- in the course of expansion, and is known to be valid. Do not verify
6358 -- that it is defined for the type (it may be a private component used
6359 -- in the expansion of record equality).
6361 if Present
(Entity
(Selector_Name
(N
))) then
6362 if No
(Etype
(N
)) or else Etype
(N
) = Any_Type
then
6364 Sel_Name
: constant Node_Id
:= Selector_Name
(N
);
6365 Selector
: constant Entity_Id
:= Entity
(Sel_Name
);
6369 Set_Etype
(Sel_Name
, Etype
(Selector
));
6371 if not Is_Entity_Name
(P
) then
6375 -- Build an actual subtype except for the first parameter
6376 -- of an init proc, where this actual subtype is by
6377 -- definition incorrect, since the object is uninitialized
6378 -- (and does not even have defined discriminants etc.)
6380 if Is_Entity_Name
(P
)
6381 and then Ekind
(Entity
(P
)) = E_Function
6383 Nam
:= New_Copy
(P
);
6385 if Is_Overloaded
(P
) then
6386 Save_Interps
(P
, Nam
);
6389 Rewrite
(P
, Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
6391 Analyze_Selected_Component
(N
);
6394 elsif Ekind
(Selector
) = E_Component
6395 and then (not Is_Entity_Name
(P
)
6396 or else Chars
(Entity
(P
)) /= Name_uInit
)
6398 -- Do not build the subtype when referencing components of
6399 -- dispatch table wrappers. Required to avoid generating
6400 -- elaboration code with HI runtimes. JVM and .NET use a
6401 -- modified version of Ada.Tags which does not contain RE_
6402 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
6403 -- Avoid raising RE_Not_Available exception in those cases.
6405 if VM_Target
= No_VM
6406 and then RTU_Loaded
(Ada_Tags
)
6408 ((RTE_Available
(RE_Dispatch_Table_Wrapper
)
6409 and then Scope
(Selector
) =
6410 RTE
(RE_Dispatch_Table_Wrapper
))
6412 (RTE_Available
(RE_No_Dispatch_Table_Wrapper
)
6413 and then Scope
(Selector
) =
6414 RTE
(RE_No_Dispatch_Table_Wrapper
)))
6419 Build_Actual_Subtype_Of_Component
6420 (Etype
(Selector
), N
);
6427 if No
(C_Etype
) then
6428 C_Etype
:= Etype
(Selector
);
6430 Insert_Action
(N
, C_Etype
);
6431 C_Etype
:= Defining_Identifier
(C_Etype
);
6434 Set_Etype
(N
, C_Etype
);
6437 -- If this is the name of an entry or protected operation, and
6438 -- the prefix is an access type, insert an explicit dereference,
6439 -- so that entry calls are treated uniformly.
6441 if Is_Access_Type
(Etype
(P
))
6442 and then Is_Concurrent_Type
(Designated_Type
(Etype
(P
)))
6445 New_P
: constant Node_Id
:=
6446 Make_Explicit_Dereference
(Sloc
(P
),
6447 Prefix
=> Relocate_Node
(P
));
6450 Set_Etype
(P
, Designated_Type
(Etype
(Prefix
(P
))));
6454 -- If the selected component appears within a default expression
6455 -- and it has an actual subtype, the pre-analysis has not yet
6456 -- completed its analysis, because Insert_Actions is disabled in
6457 -- that context. Within the init proc of the enclosing type we
6458 -- must complete this analysis, if an actual subtype was created.
6460 elsif Inside_Init_Proc
then
6462 Typ
: constant Entity_Id
:= Etype
(N
);
6463 Decl
: constant Node_Id
:= Declaration_Node
(Typ
);
6465 if Nkind
(Decl
) = N_Subtype_Declaration
6466 and then not Analyzed
(Decl
)
6467 and then Is_List_Member
(Decl
)
6468 and then No
(Parent
(Decl
))
6471 Insert_Action
(N
, Decl
);
6478 elsif Is_Entity_Name
(P
) then
6479 P_Name
:= Entity
(P
);
6481 -- The prefix may denote an enclosing type which is the completion
6482 -- of an incomplete type declaration.
6484 if Is_Type
(P_Name
) then
6485 Set_Entity
(P
, Get_Full_View
(P_Name
));
6486 Set_Etype
(P
, Entity
(P
));
6487 P_Name
:= Entity
(P
);
6490 P_Type
:= Base_Type
(Etype
(P
));
6492 if Debug_Flag_E
then
6493 Write_Str
("Found prefix type to be ");
6494 Write_Entity_Info
(P_Type
, " "); Write_Eol
;
6497 -- The designated type may be a limited view with no components.
6498 -- Check whether the non-limited view is available, because in some
6499 -- cases this will not be set when instlling the context.
6501 if Is_Access_Type
(P_Type
) then
6503 D
: constant Entity_Id
:= Directly_Designated_Type
(P_Type
);
6505 if Is_Incomplete_Type
(D
)
6506 and then not Is_Class_Wide_Type
(D
)
6507 and then From_Limited_With
(D
)
6508 and then Present
(Non_Limited_View
(D
))
6509 and then not Is_Class_Wide_Type
(Non_Limited_View
(D
))
6511 Set_Directly_Designated_Type
(P_Type
, Non_Limited_View
(D
));
6516 -- First check for components of a record object (not the
6517 -- result of a call, which is handled below).
6519 if Is_Appropriate_For_Record
(P_Type
)
6520 and then not Is_Overloadable
(P_Name
)
6521 and then not Is_Type
(P_Name
)
6523 -- Selected component of record. Type checking will validate
6524 -- name of selector.
6526 -- ??? Could we rewrite an implicit dereference into an explicit
6529 Analyze_Selected_Component
(N
);
6531 -- Reference to type name in predicate/invariant expression
6533 elsif Is_Appropriate_For_Entry_Prefix
(P_Type
)
6534 and then not In_Open_Scopes
(P_Name
)
6535 and then (not Is_Concurrent_Type
(Etype
(P_Name
))
6536 or else not In_Open_Scopes
(Etype
(P_Name
)))
6538 -- Call to protected operation or entry. Type checking is
6539 -- needed on the prefix.
6541 Analyze_Selected_Component
(N
);
6543 elsif (In_Open_Scopes
(P_Name
)
6544 and then Ekind
(P_Name
) /= E_Void
6545 and then not Is_Overloadable
(P_Name
))
6546 or else (Is_Concurrent_Type
(Etype
(P_Name
))
6547 and then In_Open_Scopes
(Etype
(P_Name
)))
6549 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6550 -- enclosing construct that is not a subprogram or accept.
6552 Find_Expanded_Name
(N
);
6554 elsif Ekind
(P_Name
) = E_Package
then
6555 Find_Expanded_Name
(N
);
6557 elsif Is_Overloadable
(P_Name
) then
6559 -- The subprogram may be a renaming (of an enclosing scope) as
6560 -- in the case of the name of the generic within an instantiation.
6562 if Ekind_In
(P_Name
, E_Procedure
, E_Function
)
6563 and then Present
(Alias
(P_Name
))
6564 and then Is_Generic_Instance
(Alias
(P_Name
))
6566 P_Name
:= Alias
(P_Name
);
6569 if Is_Overloaded
(P
) then
6571 -- The prefix must resolve to a unique enclosing construct
6574 Found
: Boolean := False;
6579 Get_First_Interp
(P
, Ind
, It
);
6580 while Present
(It
.Nam
) loop
6581 if In_Open_Scopes
(It
.Nam
) then
6584 "prefix must be unique enclosing scope", N
);
6585 Set_Entity
(N
, Any_Id
);
6586 Set_Etype
(N
, Any_Type
);
6595 Get_Next_Interp
(Ind
, It
);
6600 if In_Open_Scopes
(P_Name
) then
6601 Set_Entity
(P
, P_Name
);
6602 Set_Is_Overloaded
(P
, False);
6603 Find_Expanded_Name
(N
);
6606 -- If no interpretation as an expanded name is possible, it
6607 -- must be a selected component of a record returned by a
6608 -- function call. Reformat prefix as a function call, the rest
6609 -- is done by type resolution.
6611 -- Error if the prefix is procedure or entry, as is P.X
6613 if Ekind
(P_Name
) /= E_Function
6615 (not Is_Overloaded
(P
)
6616 or else Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
)
6618 -- Prefix may mention a package that is hidden by a local
6619 -- declaration: let the user know. Scan the full homonym
6620 -- chain, the candidate package may be anywhere on it.
6622 if Present
(Homonym
(Current_Entity
(P_Name
))) then
6623 P_Name
:= Current_Entity
(P_Name
);
6625 while Present
(P_Name
) loop
6626 exit when Ekind
(P_Name
) = E_Package
;
6627 P_Name
:= Homonym
(P_Name
);
6630 if Present
(P_Name
) then
6631 if not Is_Reference_In_Subunit
then
6632 Error_Msg_Sloc
:= Sloc
(Entity
(Prefix
(N
)));
6634 ("package& is hidden by declaration#", N
, P_Name
);
6637 Set_Entity
(Prefix
(N
), P_Name
);
6638 Find_Expanded_Name
(N
);
6642 P_Name
:= Entity
(Prefix
(N
));
6647 ("invalid prefix in selected component&", N
, P_Name
);
6648 Change_Selected_Component_To_Expanded_Name
(N
);
6649 Set_Entity
(N
, Any_Id
);
6650 Set_Etype
(N
, Any_Type
);
6652 -- Here we have a function call, so do the reformatting
6655 Nam
:= New_Copy
(P
);
6656 Save_Interps
(P
, Nam
);
6658 -- We use Replace here because this is one of those cases
6659 -- where the parser has missclassified the node, and we
6660 -- fix things up and then do the semantic analysis on the
6661 -- fixed up node. Normally we do this using one of the
6662 -- Sinfo.CN routines, but this is too tricky for that.
6664 -- Note that using Rewrite would be wrong, because we
6665 -- would have a tree where the original node is unanalyzed,
6666 -- and this violates the required interface for ASIS.
6669 Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
6671 -- Now analyze the reformatted node
6674 Analyze_Selected_Component
(N
);
6678 -- Remaining cases generate various error messages
6681 -- Format node as expanded name, to avoid cascaded errors
6683 Change_Selected_Component_To_Expanded_Name
(N
);
6684 Set_Entity
(N
, Any_Id
);
6685 Set_Etype
(N
, Any_Type
);
6687 -- Issue error message, but avoid this if error issued already.
6688 -- Use identifier of prefix if one is available.
6690 if P_Name
= Any_Id
then
6693 elsif Ekind
(P_Name
) = E_Void
then
6694 Premature_Usage
(P
);
6696 elsif Nkind
(P
) /= N_Attribute_Reference
then
6698 "invalid prefix in selected component&", P
);
6700 if Is_Access_Type
(P_Type
)
6701 and then Ekind
(Designated_Type
(P_Type
)) = E_Incomplete_Type
6704 ("\dereference must not be of an incomplete type " &
6710 "invalid prefix in selected component", P
);
6714 -- Selector name is restricted in SPARK
6716 if Nkind
(N
) = N_Expanded_Name
6717 and then Restriction_Check_Required
(SPARK_05
)
6719 if Is_Subprogram
(P_Name
) then
6720 Check_SPARK_Restriction
6721 ("prefix of expanded name cannot be a subprogram", P
);
6722 elsif Ekind
(P_Name
) = E_Loop
then
6723 Check_SPARK_Restriction
6724 ("prefix of expanded name cannot be a loop statement", P
);
6729 -- If prefix is not the name of an entity, it must be an expression,
6730 -- whose type is appropriate for a record. This is determined by
6733 Analyze_Selected_Component
(N
);
6736 Analyze_Dimension
(N
);
6737 end Find_Selected_Component
;
6743 procedure Find_Type
(N
: Node_Id
) is
6753 elsif Nkind
(N
) = N_Attribute_Reference
then
6755 -- Class attribute. This is not valid in Ada 83 mode, but we do not
6756 -- need to enforce that at this point, since the declaration of the
6757 -- tagged type in the prefix would have been flagged already.
6759 if Attribute_Name
(N
) = Name_Class
then
6760 Check_Restriction
(No_Dispatch
, N
);
6761 Find_Type
(Prefix
(N
));
6763 -- Propagate error from bad prefix
6765 if Etype
(Prefix
(N
)) = Any_Type
then
6766 Set_Entity
(N
, Any_Type
);
6767 Set_Etype
(N
, Any_Type
);
6771 T
:= Base_Type
(Entity
(Prefix
(N
)));
6773 -- Case where type is not known to be tagged. Its appearance in
6774 -- the prefix of the 'Class attribute indicates that the full view
6777 if not Is_Tagged_Type
(T
) then
6778 if Ekind
(T
) = E_Incomplete_Type
then
6780 -- It is legal to denote the class type of an incomplete
6781 -- type. The full type will have to be tagged, of course.
6782 -- In Ada 2005 this usage is declared obsolescent, so we
6783 -- warn accordingly. This usage is only legal if the type
6784 -- is completed in the current scope, and not for a limited
6787 if Ada_Version
>= Ada_2005
then
6789 -- Test whether the Available_View of a limited type view
6790 -- is tagged, since the limited view may not be marked as
6791 -- tagged if the type itself has an untagged incomplete
6792 -- type view in its package.
6794 if From_Limited_With
(T
)
6795 and then not Is_Tagged_Type
(Available_View
(T
))
6798 ("prefix of Class attribute must be tagged", N
);
6799 Set_Etype
(N
, Any_Type
);
6800 Set_Entity
(N
, Any_Type
);
6803 -- ??? This test is temporarily disabled (always
6804 -- False) because it causes an unwanted warning on
6805 -- GNAT sources (built with -gnatg, which includes
6806 -- Warn_On_Obsolescent_ Feature). Once this issue
6807 -- is cleared in the sources, it can be enabled.
6809 elsif Warn_On_Obsolescent_Feature
and then False then
6811 ("applying 'Class to an untagged incomplete type"
6812 & " is an obsolescent feature (RM J.11)?r?", N
);
6816 Set_Is_Tagged_Type
(T
);
6817 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
6818 Make_Class_Wide_Type
(T
);
6819 Set_Entity
(N
, Class_Wide_Type
(T
));
6820 Set_Etype
(N
, Class_Wide_Type
(T
));
6822 elsif Ekind
(T
) = E_Private_Type
6823 and then not Is_Generic_Type
(T
)
6824 and then In_Private_Part
(Scope
(T
))
6826 -- The Class attribute can be applied to an untagged private
6827 -- type fulfilled by a tagged type prior to the full type
6828 -- declaration (but only within the parent package's private
6829 -- part). Create the class-wide type now and check that the
6830 -- full type is tagged later during its analysis. Note that
6831 -- we do not mark the private type as tagged, unlike the
6832 -- case of incomplete types, because the type must still
6833 -- appear untagged to outside units.
6835 if No
(Class_Wide_Type
(T
)) then
6836 Make_Class_Wide_Type
(T
);
6839 Set_Entity
(N
, Class_Wide_Type
(T
));
6840 Set_Etype
(N
, Class_Wide_Type
(T
));
6843 -- Should we introduce a type Any_Tagged and use Wrong_Type
6844 -- here, it would be a bit more consistent???
6847 ("tagged type required, found}",
6848 Prefix
(N
), First_Subtype
(T
));
6849 Set_Entity
(N
, Any_Type
);
6853 -- Case of tagged type
6856 if Is_Concurrent_Type
(T
) then
6857 if No
(Corresponding_Record_Type
(Entity
(Prefix
(N
)))) then
6859 -- Previous error. Use current type, which at least
6860 -- provides some operations.
6862 C
:= Entity
(Prefix
(N
));
6865 C
:= Class_Wide_Type
6866 (Corresponding_Record_Type
(Entity
(Prefix
(N
))));
6870 C
:= Class_Wide_Type
(Entity
(Prefix
(N
)));
6873 Set_Entity_With_Checks
(N
, C
);
6874 Generate_Reference
(C
, N
);
6878 -- Base attribute, not allowed in Ada 83
6880 elsif Attribute_Name
(N
) = Name_Base
then
6881 Error_Msg_Name_1
:= Name_Base
;
6882 Check_SPARK_Restriction
6883 ("attribute% is only allowed as prefix of another attribute", N
);
6885 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
6887 ("(Ada 83) Base attribute not allowed in subtype mark", N
);
6890 Find_Type
(Prefix
(N
));
6891 Typ
:= Entity
(Prefix
(N
));
6893 if Ada_Version
>= Ada_95
6894 and then not Is_Scalar_Type
(Typ
)
6895 and then not Is_Generic_Type
(Typ
)
6898 ("prefix of Base attribute must be scalar type",
6901 elsif Warn_On_Redundant_Constructs
6902 and then Base_Type
(Typ
) = Typ
6904 Error_Msg_NE
-- CODEFIX
6905 ("redundant attribute, & is its own base type?r?", N
, Typ
);
6908 T
:= Base_Type
(Typ
);
6910 -- Rewrite attribute reference with type itself (see similar
6911 -- processing in Analyze_Attribute, case Base). Preserve prefix
6912 -- if present, for other legality checks.
6914 if Nkind
(Prefix
(N
)) = N_Expanded_Name
then
6916 Make_Expanded_Name
(Sloc
(N
),
6918 Prefix
=> New_Copy
(Prefix
(Prefix
(N
))),
6919 Selector_Name
=> New_Occurrence_Of
(T
, Sloc
(N
))));
6922 Rewrite
(N
, New_Occurrence_Of
(T
, Sloc
(N
)));
6929 elsif Attribute_Name
(N
) = Name_Stub_Type
then
6931 -- This is handled in Analyze_Attribute
6935 -- All other attributes are invalid in a subtype mark
6938 Error_Msg_N
("invalid attribute in subtype mark", N
);
6944 if Is_Entity_Name
(N
) then
6945 T_Name
:= Entity
(N
);
6947 Error_Msg_N
("subtype mark required in this context", N
);
6948 Set_Etype
(N
, Any_Type
);
6952 if T_Name
= Any_Id
or else Etype
(N
) = Any_Type
then
6954 -- Undefined id. Make it into a valid type
6956 Set_Entity
(N
, Any_Type
);
6958 elsif not Is_Type
(T_Name
)
6959 and then T_Name
/= Standard_Void_Type
6961 Error_Msg_Sloc
:= Sloc
(T_Name
);
6962 Error_Msg_N
("subtype mark required in this context", N
);
6963 Error_Msg_NE
("\\found & declared#", N
, T_Name
);
6964 Set_Entity
(N
, Any_Type
);
6967 -- If the type is an incomplete type created to handle
6968 -- anonymous access components of a record type, then the
6969 -- incomplete type is the visible entity and subsequent
6970 -- references will point to it. Mark the original full
6971 -- type as referenced, to prevent spurious warnings.
6973 if Is_Incomplete_Type
(T_Name
)
6974 and then Present
(Full_View
(T_Name
))
6975 and then not Comes_From_Source
(T_Name
)
6977 Set_Referenced
(Full_View
(T_Name
));
6980 T_Name
:= Get_Full_View
(T_Name
);
6982 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
6983 -- limited-with clauses
6985 if From_Limited_With
(T_Name
)
6986 and then Ekind
(T_Name
) in Incomplete_Kind
6987 and then Present
(Non_Limited_View
(T_Name
))
6988 and then Is_Interface
(Non_Limited_View
(T_Name
))
6990 T_Name
:= Non_Limited_View
(T_Name
);
6993 if In_Open_Scopes
(T_Name
) then
6994 if Ekind
(Base_Type
(T_Name
)) = E_Task_Type
then
6996 -- In Ada 2005, a task name can be used in an access
6997 -- definition within its own body. It cannot be used
6998 -- in the discriminant part of the task declaration,
6999 -- nor anywhere else in the declaration because entries
7000 -- cannot have access parameters.
7002 if Ada_Version
>= Ada_2005
7003 and then Nkind
(Parent
(N
)) = N_Access_Definition
7005 Set_Entity
(N
, T_Name
);
7006 Set_Etype
(N
, T_Name
);
7008 if Has_Completion
(T_Name
) then
7013 ("task type cannot be used as type mark " &
7014 "within its own declaration", N
);
7019 ("task type cannot be used as type mark " &
7020 "within its own spec or body", N
);
7023 elsif Ekind
(Base_Type
(T_Name
)) = E_Protected_Type
then
7025 -- In Ada 2005, a protected name can be used in an access
7026 -- definition within its own body.
7028 if Ada_Version
>= Ada_2005
7029 and then Nkind
(Parent
(N
)) = N_Access_Definition
7031 Set_Entity
(N
, T_Name
);
7032 Set_Etype
(N
, T_Name
);
7037 ("protected type cannot be used as type mark " &
7038 "within its own spec or body", N
);
7042 Error_Msg_N
("type declaration cannot refer to itself", N
);
7045 Set_Etype
(N
, Any_Type
);
7046 Set_Entity
(N
, Any_Type
);
7047 Set_Error_Posted
(T_Name
);
7051 Set_Entity
(N
, T_Name
);
7052 Set_Etype
(N
, T_Name
);
7056 if Present
(Etype
(N
)) and then Comes_From_Source
(N
) then
7057 if Is_Fixed_Point_Type
(Etype
(N
)) then
7058 Check_Restriction
(No_Fixed_Point
, N
);
7059 elsif Is_Floating_Point_Type
(Etype
(N
)) then
7060 Check_Restriction
(No_Floating_Point
, N
);
7065 ------------------------------------
7066 -- Has_Implicit_Character_Literal --
7067 ------------------------------------
7069 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean is
7071 Found
: Boolean := False;
7072 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7073 Priv_Id
: Entity_Id
:= Empty
;
7076 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7077 Priv_Id
:= First_Private_Entity
(P
);
7080 if P
= Standard_Standard
then
7081 Change_Selected_Component_To_Expanded_Name
(N
);
7082 Rewrite
(N
, Selector_Name
(N
));
7084 Set_Etype
(Original_Node
(N
), Standard_Character
);
7088 Id
:= First_Entity
(P
);
7089 while Present
(Id
) and then Id
/= Priv_Id
loop
7090 if Is_Standard_Character_Type
(Id
) and then Is_Base_Type
(Id
) then
7092 -- We replace the node with the literal itself, resolve as a
7093 -- character, and set the type correctly.
7096 Change_Selected_Component_To_Expanded_Name
(N
);
7097 Rewrite
(N
, Selector_Name
(N
));
7100 Set_Etype
(Original_Node
(N
), Id
);
7104 -- More than one type derived from Character in given scope.
7105 -- Collect all possible interpretations.
7107 Add_One_Interp
(N
, Id
, Id
);
7115 end Has_Implicit_Character_Literal
;
7117 ----------------------
7118 -- Has_Private_With --
7119 ----------------------
7121 function Has_Private_With
(E
: Entity_Id
) return Boolean is
7122 Comp_Unit
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
7126 Item
:= First
(Context_Items
(Comp_Unit
));
7127 while Present
(Item
) loop
7128 if Nkind
(Item
) = N_With_Clause
7129 and then Private_Present
(Item
)
7130 and then Entity
(Name
(Item
)) = E
7139 end Has_Private_With
;
7141 ---------------------------
7142 -- Has_Implicit_Operator --
7143 ---------------------------
7145 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean is
7146 Op_Id
: constant Name_Id
:= Chars
(Selector_Name
(N
));
7147 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7149 Priv_Id
: Entity_Id
:= Empty
;
7151 procedure Add_Implicit_Operator
7153 Op_Type
: Entity_Id
:= Empty
);
7154 -- Add implicit interpretation to node N, using the type for which a
7155 -- predefined operator exists. If the operator yields a boolean type,
7156 -- the Operand_Type is implicitly referenced by the operator, and a
7157 -- reference to it must be generated.
7159 ---------------------------
7160 -- Add_Implicit_Operator --
7161 ---------------------------
7163 procedure Add_Implicit_Operator
7165 Op_Type
: Entity_Id
:= Empty
)
7167 Predef_Op
: Entity_Id
;
7170 Predef_Op
:= Current_Entity
(Selector_Name
(N
));
7171 while Present
(Predef_Op
)
7172 and then Scope
(Predef_Op
) /= Standard_Standard
7174 Predef_Op
:= Homonym
(Predef_Op
);
7177 if Nkind
(N
) = N_Selected_Component
then
7178 Change_Selected_Component_To_Expanded_Name
(N
);
7181 -- If the context is an unanalyzed function call, determine whether
7182 -- a binary or unary interpretation is required.
7184 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
7186 Is_Binary_Call
: constant Boolean :=
7188 (Next
(First
(Expressions
(Parent
(N
)))));
7189 Is_Binary_Op
: constant Boolean :=
7191 (Predef_Op
) /= Last_Entity
(Predef_Op
);
7192 Predef_Op2
: constant Entity_Id
:= Homonym
(Predef_Op
);
7195 if Is_Binary_Call
then
7196 if Is_Binary_Op
then
7197 Add_One_Interp
(N
, Predef_Op
, T
);
7199 Add_One_Interp
(N
, Predef_Op2
, T
);
7203 if not Is_Binary_Op
then
7204 Add_One_Interp
(N
, Predef_Op
, T
);
7206 Add_One_Interp
(N
, Predef_Op2
, T
);
7212 Add_One_Interp
(N
, Predef_Op
, T
);
7214 -- For operators with unary and binary interpretations, if
7215 -- context is not a call, add both
7217 if Present
(Homonym
(Predef_Op
)) then
7218 Add_One_Interp
(N
, Homonym
(Predef_Op
), T
);
7222 -- The node is a reference to a predefined operator, and
7223 -- an implicit reference to the type of its operands.
7225 if Present
(Op_Type
) then
7226 Generate_Operator_Reference
(N
, Op_Type
);
7228 Generate_Operator_Reference
(N
, T
);
7230 end Add_Implicit_Operator
;
7232 -- Start of processing for Has_Implicit_Operator
7235 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7236 Priv_Id
:= First_Private_Entity
(P
);
7239 Id
:= First_Entity
(P
);
7243 -- Boolean operators: an implicit declaration exists if the scope
7244 -- contains a declaration for a derived Boolean type, or for an
7245 -- array of Boolean type.
7247 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor
=>
7248 while Id
/= Priv_Id
loop
7249 if Valid_Boolean_Arg
(Id
) and then Is_Base_Type
(Id
) then
7250 Add_Implicit_Operator
(Id
);
7257 -- Equality: look for any non-limited type (result is Boolean)
7259 when Name_Op_Eq | Name_Op_Ne
=>
7260 while Id
/= Priv_Id
loop
7262 and then not Is_Limited_Type
(Id
)
7263 and then Is_Base_Type
(Id
)
7265 Add_Implicit_Operator
(Standard_Boolean
, Id
);
7272 -- Comparison operators: scalar type, or array of scalar
7274 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge
=>
7275 while Id
/= Priv_Id
loop
7276 if (Is_Scalar_Type
(Id
)
7277 or else (Is_Array_Type
(Id
)
7278 and then Is_Scalar_Type
(Component_Type
(Id
))))
7279 and then Is_Base_Type
(Id
)
7281 Add_Implicit_Operator
(Standard_Boolean
, Id
);
7288 -- Arithmetic operators: any numeric type
7298 while Id
/= Priv_Id
loop
7299 if Is_Numeric_Type
(Id
) and then Is_Base_Type
(Id
) then
7300 Add_Implicit_Operator
(Id
);
7307 -- Concatenation: any one-dimensional array type
7309 when Name_Op_Concat
=>
7310 while Id
/= Priv_Id
loop
7311 if Is_Array_Type
(Id
)
7312 and then Number_Dimensions
(Id
) = 1
7313 and then Is_Base_Type
(Id
)
7315 Add_Implicit_Operator
(Id
);
7322 -- What is the others condition here? Should we be using a
7323 -- subtype of Name_Id that would restrict to operators ???
7325 when others => null;
7328 -- If we fall through, then we do not have an implicit operator
7332 end Has_Implicit_Operator
;
7334 -----------------------------------
7335 -- Has_Loop_In_Inner_Open_Scopes --
7336 -----------------------------------
7338 function Has_Loop_In_Inner_Open_Scopes
(S
: Entity_Id
) return Boolean is
7340 -- Several scope stacks are maintained by Scope_Stack. The base of the
7341 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7342 -- flag in the scope stack entry. Note that the scope stacks used to
7343 -- simply be delimited implicitly by the presence of Standard_Standard
7344 -- at their base, but there now are cases where this is not sufficient
7345 -- because Standard_Standard actually may appear in the middle of the
7346 -- active set of scopes.
7348 for J
in reverse 0 .. Scope_Stack
.Last
loop
7350 -- S was reached without seing a loop scope first
7352 if Scope_Stack
.Table
(J
).Entity
= S
then
7355 -- S was not yet reached, so it contains at least one inner loop
7357 elsif Ekind
(Scope_Stack
.Table
(J
).Entity
) = E_Loop
then
7361 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7362 -- cases where Standard_Standard appears in the middle of the active
7363 -- set of scopes. This affects the declaration and overriding of
7364 -- private inherited operations in instantiations of generic child
7367 pragma Assert
(not Scope_Stack
.Table
(J
).Is_Active_Stack_Base
);
7370 raise Program_Error
; -- unreachable
7371 end Has_Loop_In_Inner_Open_Scopes
;
7373 --------------------
7374 -- In_Open_Scopes --
7375 --------------------
7377 function In_Open_Scopes
(S
: Entity_Id
) return Boolean is
7379 -- Several scope stacks are maintained by Scope_Stack. The base of the
7380 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7381 -- flag in the scope stack entry. Note that the scope stacks used to
7382 -- simply be delimited implicitly by the presence of Standard_Standard
7383 -- at their base, but there now are cases where this is not sufficient
7384 -- because Standard_Standard actually may appear in the middle of the
7385 -- active set of scopes.
7387 for J
in reverse 0 .. Scope_Stack
.Last
loop
7388 if Scope_Stack
.Table
(J
).Entity
= S
then
7392 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7393 -- cases where Standard_Standard appears in the middle of the active
7394 -- set of scopes. This affects the declaration and overriding of
7395 -- private inherited operations in instantiations of generic child
7398 exit when Scope_Stack
.Table
(J
).Is_Active_Stack_Base
;
7404 -----------------------------
7405 -- Inherit_Renamed_Profile --
7406 -----------------------------
7408 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
) is
7415 if Ekind
(Old_S
) = E_Operator
then
7416 New_F
:= First_Formal
(New_S
);
7418 while Present
(New_F
) loop
7419 Set_Etype
(New_F
, Base_Type
(Etype
(New_F
)));
7420 Next_Formal
(New_F
);
7423 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
7426 New_F
:= First_Formal
(New_S
);
7427 Old_F
:= First_Formal
(Old_S
);
7429 while Present
(New_F
) loop
7430 New_T
:= Etype
(New_F
);
7431 Old_T
:= Etype
(Old_F
);
7433 -- If the new type is a renaming of the old one, as is the
7434 -- case for actuals in instances, retain its name, to simplify
7435 -- later disambiguation.
7437 if Nkind
(Parent
(New_T
)) = N_Subtype_Declaration
7438 and then Is_Entity_Name
(Subtype_Indication
(Parent
(New_T
)))
7439 and then Entity
(Subtype_Indication
(Parent
(New_T
))) = Old_T
7443 Set_Etype
(New_F
, Old_T
);
7446 Next_Formal
(New_F
);
7447 Next_Formal
(Old_F
);
7450 if Ekind_In
(Old_S
, E_Function
, E_Enumeration_Literal
) then
7451 Set_Etype
(New_S
, Etype
(Old_S
));
7454 end Inherit_Renamed_Profile
;
7460 procedure Initialize
is
7465 -------------------------
7466 -- Install_Use_Clauses --
7467 -------------------------
7469 procedure Install_Use_Clauses
7471 Force_Installation
: Boolean := False)
7479 while Present
(U
) loop
7481 -- Case of USE package
7483 if Nkind
(U
) = N_Use_Package_Clause
then
7484 P
:= First
(Names
(U
));
7485 while Present
(P
) loop
7488 if Ekind
(Id
) = E_Package
then
7490 Note_Redundant_Use
(P
);
7492 elsif Present
(Renamed_Object
(Id
))
7493 and then In_Use
(Renamed_Object
(Id
))
7495 Note_Redundant_Use
(P
);
7497 elsif Force_Installation
or else Applicable_Use
(P
) then
7498 Use_One_Package
(Id
, U
);
7509 P
:= First
(Subtype_Marks
(U
));
7510 while Present
(P
) loop
7511 if not Is_Entity_Name
(P
)
7512 or else No
(Entity
(P
))
7516 elsif Entity
(P
) /= Any_Type
then
7524 Next_Use_Clause
(U
);
7526 end Install_Use_Clauses
;
7528 -------------------------------------
7529 -- Is_Appropriate_For_Entry_Prefix --
7530 -------------------------------------
7532 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean is
7533 P_Type
: Entity_Id
:= T
;
7536 if Is_Access_Type
(P_Type
) then
7537 P_Type
:= Designated_Type
(P_Type
);
7540 return Is_Task_Type
(P_Type
) or else Is_Protected_Type
(P_Type
);
7541 end Is_Appropriate_For_Entry_Prefix
;
7543 -------------------------------
7544 -- Is_Appropriate_For_Record --
7545 -------------------------------
7547 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean is
7549 function Has_Components
(T1
: Entity_Id
) return Boolean;
7550 -- Determine if given type has components (i.e. is either a record
7551 -- type or a type that has discriminants).
7553 --------------------
7554 -- Has_Components --
7555 --------------------
7557 function Has_Components
(T1
: Entity_Id
) return Boolean is
7559 return Is_Record_Type
(T1
)
7560 or else (Is_Private_Type
(T1
) and then Has_Discriminants
(T1
))
7561 or else (Is_Task_Type
(T1
) and then Has_Discriminants
(T1
))
7562 or else (Is_Incomplete_Type
(T1
)
7563 and then From_Limited_With
(T1
)
7564 and then Present
(Non_Limited_View
(T1
))
7565 and then Is_Record_Type
7566 (Get_Full_View
(Non_Limited_View
(T1
))));
7569 -- Start of processing for Is_Appropriate_For_Record
7574 and then (Has_Components
(T
)
7575 or else (Is_Access_Type
(T
)
7576 and then Has_Components
(Designated_Type
(T
))));
7577 end Is_Appropriate_For_Record
;
7579 ------------------------
7580 -- Note_Redundant_Use --
7581 ------------------------
7583 procedure Note_Redundant_Use
(Clause
: Node_Id
) is
7584 Pack_Name
: constant Entity_Id
:= Entity
(Clause
);
7585 Cur_Use
: constant Node_Id
:= Current_Use_Clause
(Pack_Name
);
7586 Decl
: constant Node_Id
:= Parent
(Clause
);
7588 Prev_Use
: Node_Id
:= Empty
;
7589 Redundant
: Node_Id
:= Empty
;
7590 -- The Use_Clause which is actually redundant. In the simplest case it
7591 -- is Pack itself, but when we compile a body we install its context
7592 -- before that of its spec, in which case it is the use_clause in the
7593 -- spec that will appear to be redundant, and we want the warning to be
7594 -- placed on the body. Similar complications appear when the redundancy
7595 -- is between a child unit and one of its ancestors.
7598 Set_Redundant_Use
(Clause
, True);
7600 if not Comes_From_Source
(Clause
)
7602 or else not Warn_On_Redundant_Constructs
7607 if not Is_Compilation_Unit
(Current_Scope
) then
7609 -- If the use_clause is in an inner scope, it is made redundant by
7610 -- some clause in the current context, with one exception: If we're
7611 -- compiling a nested package body, and the use_clause comes from the
7612 -- corresponding spec, the clause is not necessarily fully redundant,
7613 -- so we should not warn. If a warning was warranted, it would have
7614 -- been given when the spec was processed.
7616 if Nkind
(Parent
(Decl
)) = N_Package_Specification
then
7618 Package_Spec_Entity
: constant Entity_Id
:=
7619 Defining_Unit_Name
(Parent
(Decl
));
7621 if In_Package_Body
(Package_Spec_Entity
) then
7627 Redundant
:= Clause
;
7628 Prev_Use
:= Cur_Use
;
7630 elsif Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) = N_Package_Body
then
7632 Cur_Unit
: constant Unit_Number_Type
:= Get_Source_Unit
(Cur_Use
);
7633 New_Unit
: constant Unit_Number_Type
:= Get_Source_Unit
(Clause
);
7637 if Cur_Unit
= New_Unit
then
7639 -- Redundant clause in same body
7641 Redundant
:= Clause
;
7642 Prev_Use
:= Cur_Use
;
7644 elsif Cur_Unit
= Current_Sem_Unit
then
7646 -- If the new clause is not in the current unit it has been
7647 -- analyzed first, and it makes the other one redundant.
7648 -- However, if the new clause appears in a subunit, Cur_Unit
7649 -- is still the parent, and in that case the redundant one
7650 -- is the one appearing in the subunit.
7652 if Nkind
(Unit
(Cunit
(New_Unit
))) = N_Subunit
then
7653 Redundant
:= Clause
;
7654 Prev_Use
:= Cur_Use
;
7656 -- Most common case: redundant clause in body,
7657 -- original clause in spec. Current scope is spec entity.
7662 Unit
(Library_Unit
(Cunit
(Current_Sem_Unit
))))
7664 Redundant
:= Cur_Use
;
7668 -- The new clause may appear in an unrelated unit, when
7669 -- the parents of a generic are being installed prior to
7670 -- instantiation. In this case there must be no warning.
7671 -- We detect this case by checking whether the current top
7672 -- of the stack is related to the current compilation.
7674 Scop
:= Current_Scope
;
7675 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
7676 if Is_Compilation_Unit
(Scop
)
7677 and then not Is_Child_Unit
(Scop
)
7681 elsif Scop
= Cunit_Entity
(Current_Sem_Unit
) then
7685 Scop
:= Scope
(Scop
);
7688 Redundant
:= Cur_Use
;
7692 elsif New_Unit
= Current_Sem_Unit
then
7693 Redundant
:= Clause
;
7694 Prev_Use
:= Cur_Use
;
7697 -- Neither is the current unit, so they appear in parent or
7698 -- sibling units. Warning will be emitted elsewhere.
7704 elsif Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) = N_Package_Declaration
7705 and then Present
(Parent_Spec
(Unit
(Cunit
(Current_Sem_Unit
))))
7707 -- Use_clause is in child unit of current unit, and the child unit
7708 -- appears in the context of the body of the parent, so it has been
7709 -- installed first, even though it is the redundant one. Depending on
7710 -- their placement in the context, the visible or the private parts
7711 -- of the two units, either might appear as redundant, but the
7712 -- message has to be on the current unit.
7714 if Get_Source_Unit
(Cur_Use
) = Current_Sem_Unit
then
7715 Redundant
:= Cur_Use
;
7718 Redundant
:= Clause
;
7719 Prev_Use
:= Cur_Use
;
7722 -- If the new use clause appears in the private part of a parent unit
7723 -- it may appear to be redundant w.r.t. a use clause in a child unit,
7724 -- but the previous use clause was needed in the visible part of the
7725 -- child, and no warning should be emitted.
7727 if Nkind
(Parent
(Decl
)) = N_Package_Specification
7729 List_Containing
(Decl
) = Private_Declarations
(Parent
(Decl
))
7732 Par
: constant Entity_Id
:= Defining_Entity
(Parent
(Decl
));
7733 Spec
: constant Node_Id
:=
7734 Specification
(Unit
(Cunit
(Current_Sem_Unit
)));
7737 if Is_Compilation_Unit
(Par
)
7738 and then Par
/= Cunit_Entity
(Current_Sem_Unit
)
7739 and then Parent
(Cur_Use
) = Spec
7741 List_Containing
(Cur_Use
) = Visible_Declarations
(Spec
)
7748 -- Finally, if the current use clause is in the context then
7749 -- the clause is redundant when it is nested within the unit.
7751 elsif Nkind
(Parent
(Cur_Use
)) = N_Compilation_Unit
7752 and then Nkind
(Parent
(Parent
(Clause
))) /= N_Compilation_Unit
7753 and then Get_Source_Unit
(Cur_Use
) = Get_Source_Unit
(Clause
)
7755 Redundant
:= Clause
;
7756 Prev_Use
:= Cur_Use
;
7762 if Present
(Redundant
) then
7763 Error_Msg_Sloc
:= Sloc
(Prev_Use
);
7764 Error_Msg_NE
-- CODEFIX
7765 ("& is already use-visible through previous use clause #??",
7766 Redundant
, Pack_Name
);
7768 end Note_Redundant_Use
;
7774 procedure Pop_Scope
is
7775 SST
: Scope_Stack_Entry
renames Scope_Stack
.Table
(Scope_Stack
.Last
);
7776 S
: constant Entity_Id
:= SST
.Entity
;
7779 if Debug_Flag_E
then
7783 -- Set Default_Storage_Pool field of the library unit if necessary
7785 if Ekind_In
(S
, E_Package
, E_Generic_Package
)
7787 Nkind
(Parent
(Unit_Declaration_Node
(S
))) = N_Compilation_Unit
7790 Aux
: constant Node_Id
:=
7791 Aux_Decls_Node
(Parent
(Unit_Declaration_Node
(S
)));
7793 if No
(Default_Storage_Pool
(Aux
)) then
7794 Set_Default_Storage_Pool
(Aux
, Default_Pool
);
7799 Scope_Suppress
:= SST
.Save_Scope_Suppress
;
7800 Local_Suppress_Stack_Top
:= SST
.Save_Local_Suppress_Stack_Top
;
7801 Check_Policy_List
:= SST
.Save_Check_Policy_List
;
7802 Default_Pool
:= SST
.Save_Default_Storage_Pool
;
7803 SPARK_Mode
:= SST
.Save_SPARK_Mode
;
7804 SPARK_Mode_Pragma
:= SST
.Save_SPARK_Mode_Pragma
;
7805 Default_SSO
:= SST
.Save_Default_SSO
;
7806 Uneval_Old
:= SST
.Save_Uneval_Old
;
7808 if Debug_Flag_W
then
7809 Write_Str
("<-- exiting scope: ");
7810 Write_Name
(Chars
(Current_Scope
));
7811 Write_Str
(", Depth=");
7812 Write_Int
(Int
(Scope_Stack
.Last
));
7816 End_Use_Clauses
(SST
.First_Use_Clause
);
7818 -- If the actions to be wrapped are still there they will get lost
7819 -- causing incomplete code to be generated. It is better to abort in
7820 -- this case (and we do the abort even with assertions off since the
7821 -- penalty is incorrect code generation).
7823 if SST
.Actions_To_Be_Wrapped
/= Scope_Actions
'(others => No_List) then
7824 raise Program_Error;
7827 -- Free last subprogram name if allocated, and pop scope
7829 Free (SST.Last_Subprogram_Name);
7830 Scope_Stack.Decrement_Last;
7837 procedure Push_Scope (S : Entity_Id) is
7838 E : constant Entity_Id := Scope (S);
7841 if Ekind (S) = E_Void then
7844 -- Set scope depth if not a non-concurrent type, and we have not yet set
7845 -- the scope depth. This means that we have the first occurrence of the
7846 -- scope, and this is where the depth is set.
7848 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
7849 and then not Scope_Depth_Set (S)
7851 if S = Standard_Standard then
7852 Set_Scope_Depth_Value (S, Uint_0);
7854 elsif Is_Child_Unit (S) then
7855 Set_Scope_Depth_Value (S, Uint_1);
7857 elsif not Is_Record_Type (Current_Scope) then
7858 if Ekind (S) = E_Loop then
7859 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
7861 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
7866 Scope_Stack.Increment_Last;
7869 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7873 SST.Save_Scope_Suppress := Scope_Suppress;
7874 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
7875 SST.Save_Check_Policy_List := Check_Policy_List;
7876 SST.Save_Default_Storage_Pool := Default_Pool;
7877 SST.Save_SPARK_Mode := SPARK_Mode;
7878 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
7879 SST.Save_Default_SSO := Default_SSO;
7880 SST.Save_Uneval_Old := Uneval_Old;
7882 if Scope_Stack.Last > Scope_Stack.First then
7883 SST.Component_Alignment_Default := Scope_Stack.Table
7884 (Scope_Stack.Last - 1).
7885 Component_Alignment_Default;
7888 SST.Last_Subprogram_Name := null;
7889 SST.Is_Transient := False;
7890 SST.Node_To_Be_Wrapped := Empty;
7891 SST.Pending_Freeze_Actions := No_List;
7892 SST.Actions_To_Be_Wrapped := (others => No_List);
7893 SST.First_Use_Clause := Empty;
7894 SST.Is_Active_Stack_Base := False;
7895 SST.Previous_Visibility := False;
7896 SST.Locked_Shared_Objects := No_Elist;
7899 if Debug_Flag_W then
7900 Write_Str ("--> new scope: ");
7901 Write_Name (Chars (Current_Scope));
7902 Write_Str (", Id=");
7903 Write_Int (Int (Current_Scope));
7904 Write_Str (", Depth=");
7905 Write_Int (Int (Scope_Stack.Last));
7909 -- Deal with copying flags from the previous scope to this one. This is
7910 -- not necessary if either scope is standard, or if the new scope is a
7913 if S /= Standard_Standard
7914 and then Scope (S) /= Standard_Standard
7915 and then not Is_Child_Unit (S)
7917 if Nkind (E) not in N_Entity then
7921 -- Copy categorization flags from Scope (S) to S, this is not done
7922 -- when Scope (S) is Standard_Standard since propagation is from
7923 -- library unit entity inwards. Copy other relevant attributes as
7924 -- well (Discard_Names in particular).
7926 -- We only propagate inwards for library level entities,
7927 -- inner level subprograms do not inherit the categorization.
7929 if Is_Library_Level_Entity (S) then
7930 Set_Is_Preelaborated (S, Is_Preelaborated (E));
7931 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
7932 Set_Discard_Names (S, Discard_Names (E));
7933 Set_Suppress_Value_Tracking_On_Call
7934 (S, Suppress_Value_Tracking_On_Call (E));
7935 Set_Categorization_From_Scope (E => S, Scop => E);
7939 if Is_Child_Unit (S)
7940 and then Present (E)
7941 and then Ekind_In (E, E_Package, E_Generic_Package)
7943 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
7946 Aux : constant Node_Id :=
7947 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
7949 if Present (Default_Storage_Pool (Aux)) then
7950 Default_Pool := Default_Storage_Pool (Aux);
7956 ---------------------
7957 -- Premature_Usage --
7958 ---------------------
7960 procedure Premature_Usage (N : Node_Id) is
7961 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
7962 E : Entity_Id := Entity (N);
7965 -- Within an instance, the analysis of the actual for a formal object
7966 -- does not see the name of the object itself. This is significant only
7967 -- if the object is an aggregate, where its analysis does not do any
7968 -- name resolution on component associations. (see 4717-008). In such a
7969 -- case, look for the visible homonym on the chain.
7971 if In_Instance and then Present (Homonym (E)) then
7973 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
7979 Set_Etype (N, Etype (E));
7984 if Kind = N_Component_Declaration then
7986 ("component&! cannot be used before end of record declaration", N);
7988 elsif Kind = N_Parameter_Specification then
7990 ("formal parameter&! cannot be used before end of specification",
7993 elsif Kind = N_Discriminant_Specification then
7995 ("discriminant&! cannot be used before end of discriminant part",
7998 elsif Kind = N_Procedure_Specification
7999 or else Kind = N_Function_Specification
8002 ("subprogram&! cannot be used before end of its declaration",
8005 elsif Kind = N_Full_Type_Declaration then
8007 ("type& cannot be used before end of its declaration!", N);
8011 ("object& cannot be used before end of its declaration!", N);
8013 end Premature_Usage;
8015 ------------------------
8016 -- Present_System_Aux --
8017 ------------------------
8019 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8021 Aux_Name : Unit_Name_Type;
8022 Unum : Unit_Number_Type;
8027 function Find_System (C_Unit : Node_Id) return Entity_Id;
8028 -- Scan context clause of compilation unit to find with_clause
8035 function Find_System (C_Unit : Node_Id) return Entity_Id is
8036 With_Clause : Node_Id;
8039 With_Clause := First (Context_Items (C_Unit));
8040 while Present (With_Clause) loop
8041 if (Nkind (With_Clause) = N_With_Clause
8042 and then Chars (Name (With_Clause)) = Name_System)
8043 and then Comes_From_Source (With_Clause)
8054 -- Start of processing for Present_System_Aux
8057 -- The child unit may have been loaded and analyzed already
8059 if Present (System_Aux_Id) then
8062 -- If no previous pragma for System.Aux, nothing to load
8064 elsif No (System_Extend_Unit) then
8067 -- Use the unit name given in the pragma to retrieve the unit.
8068 -- Verify that System itself appears in the context clause of the
8069 -- current compilation. If System is not present, an error will
8070 -- have been reported already.
8073 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8075 The_Unit := Unit (Cunit (Current_Sem_Unit));
8079 (Nkind (The_Unit) = N_Package_Body
8080 or else (Nkind (The_Unit) = N_Subprogram_Body
8081 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8083 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8086 if No (With_Sys) and then Present (N) then
8088 -- If we are compiling a subunit, we need to examine its
8089 -- context as well (Current_Sem_Unit is the parent unit);
8091 The_Unit := Parent (N);
8092 while Nkind (The_Unit) /= N_Compilation_Unit loop
8093 The_Unit := Parent (The_Unit);
8096 if Nkind (Unit (The_Unit)) = N_Subunit then
8097 With_Sys := Find_System (The_Unit);
8101 if No (With_Sys) then
8105 Loc := Sloc (With_Sys);
8106 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8107 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8108 Name_Buffer (1 .. 7) := "system.";
8109 Name_Buffer (Name_Len + 8) := '%';
8110 Name_Buffer (Name_Len + 9) := 's
';
8111 Name_Len := Name_Len + 9;
8112 Aux_Name := Name_Find;
8116 (Load_Name => Aux_Name,
8119 Error_Node => With_Sys);
8121 if Unum /= No_Unit then
8122 Semantics (Cunit (Unum));
8124 Defining_Entity (Specification (Unit (Cunit (Unum))));
8127 Make_With_Clause (Loc,
8129 Make_Expanded_Name (Loc,
8130 Chars => Chars (System_Aux_Id),
8131 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8132 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8134 Set_Entity (Name (Withn), System_Aux_Id);
8136 Set_Library_Unit (Withn, Cunit (Unum));
8137 Set_Corresponding_Spec (Withn, System_Aux_Id);
8138 Set_First_Name (Withn, True);
8139 Set_Implicit_With (Withn, True);
8141 Insert_After (With_Sys, Withn);
8142 Mark_Rewrite_Insertion (Withn);
8143 Set_Context_Installed (Withn);
8147 -- Here if unit load failed
8150 Error_Msg_Name_1 := Name_System;
8151 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8153 ("extension package `%.%` does not exist",
8154 Opt.System_Extend_Unit);
8158 end Present_System_Aux;
8160 -------------------------
8161 -- Restore_Scope_Stack --
8162 -------------------------
8164 procedure Restore_Scope_Stack
8166 Handle_Use : Boolean := True)
8168 SS_Last : constant Int := Scope_Stack.Last;
8172 -- Restore visibility of previous scope stack, if any, using the list
8173 -- we saved (we use Remove, since this list will not be used again).
8176 Elmt := Last_Elmt (List);
8177 exit when Elmt = No_Elmt;
8178 Set_Is_Immediately_Visible (Node (Elmt));
8179 Remove_Last_Elmt (List);
8182 -- Restore use clauses
8184 if SS_Last >= Scope_Stack.First
8185 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8188 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8190 end Restore_Scope_Stack;
8192 ----------------------
8193 -- Save_Scope_Stack --
8194 ----------------------
8196 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8197 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8198 -- from immediate visibility entities and Restore_Scope_Stack took care
8199 -- of restoring their visibility analyzing the context of each entity. The
8200 -- problem of such approach is that it was fragile and caused unexpected
8201 -- visibility problems, and indeed one test was found where there was a
8204 -- Furthermore, the following experiment was carried out:
8206 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8207 -- entities whose attribute Is_Immediately_Visible is modified
8208 -- from True to False.
8210 -- - Restore_Scope_Stack was modified to store in another Elist2
8211 -- all the entities whose attribute Is_Immediately_Visible is
8212 -- modified from False to True.
8214 -- - Extra code was added to verify that all the elements of Elist1
8215 -- are found in Elist2
8217 -- This test shows that there may be more occurrences of this problem which
8218 -- have not yet been detected. As a result, we replaced that approach by
8219 -- the current one in which Save_Scope_Stack returns the list of entities
8220 -- whose visibility is changed, and that list is passed to Restore_Scope_
8221 -- Stack to undo that change. This approach is simpler and safer, although
8222 -- it consumes more memory.
8224 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8225 Result : constant Elist_Id := New_Elmt_List;
8228 SS_Last : constant Int := Scope_Stack.Last;
8230 procedure Remove_From_Visibility (E : Entity_Id);
8231 -- If E is immediately visible then append it to the result and remove
8232 -- it temporarily from visibility.
8234 ----------------------------
8235 -- Remove_From_Visibility --
8236 ----------------------------
8238 procedure Remove_From_Visibility (E : Entity_Id) is
8240 if Is_Immediately_Visible (E) then
8241 Append_Elmt (E, Result);
8242 Set_Is_Immediately_Visible (E, False);
8244 end Remove_From_Visibility;
8246 -- Start of processing for Save_Scope_Stack
8249 if SS_Last >= Scope_Stack.First
8250 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8253 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8256 -- If the call is from within a compilation unit, as when called from
8257 -- Rtsfind, make current entries in scope stack invisible while we
8258 -- analyze the new unit.
8260 for J in reverse 0 .. SS_Last loop
8261 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8262 or else No (Scope_Stack.Table (J).Entity);
8264 S := Scope_Stack.Table (J).Entity;
8266 Remove_From_Visibility (S);
8268 E := First_Entity (S);
8269 while Present (E) loop
8270 Remove_From_Visibility (E);
8278 end Save_Scope_Stack;
8284 procedure Set_Use (L : List_Id) is
8286 Pack_Name : Node_Id;
8293 while Present (Decl) loop
8294 if Nkind (Decl) = N_Use_Package_Clause then
8295 Chain_Use_Clause (Decl);
8297 Pack_Name := First (Names (Decl));
8298 while Present (Pack_Name) loop
8299 Pack := Entity (Pack_Name);
8301 if Ekind (Pack) = E_Package
8302 and then Applicable_Use (Pack_Name)
8304 Use_One_Package (Pack, Decl);
8310 elsif Nkind (Decl) = N_Use_Type_Clause then
8311 Chain_Use_Clause (Decl);
8313 Id := First (Subtype_Marks (Decl));
8314 while Present (Id) loop
8315 if Entity (Id) /= Any_Type then
8328 ---------------------
8329 -- Use_One_Package --
8330 ---------------------
8332 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8335 Current_Instance : Entity_Id := Empty;
8337 Private_With_OK : Boolean := False;
8340 if Ekind (P) /= E_Package then
8345 Set_Current_Use_Clause (P, N);
8347 -- Ada 2005 (AI-50217): Check restriction
8349 if From_Limited_With (P) then
8350 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8353 -- Find enclosing instance, if any
8356 Current_Instance := Current_Scope;
8357 while not Is_Generic_Instance (Current_Instance) loop
8358 Current_Instance := Scope (Current_Instance);
8361 if No (Hidden_By_Use_Clause (N)) then
8362 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8366 -- If unit is a package renaming, indicate that the renamed
8367 -- package is also in use (the flags on both entities must
8368 -- remain consistent, and a subsequent use of either of them
8369 -- should be recognized as redundant).
8371 if Present (Renamed_Object (P)) then
8372 Set_In_Use (Renamed_Object (P));
8373 Set_Current_Use_Clause (Renamed_Object (P), N);
8374 Real_P := Renamed_Object (P);
8379 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8380 -- found in the private part of a package specification
8382 if In_Private_Part (Current_Scope)
8383 and then Has_Private_With (P)
8384 and then Is_Child_Unit (Current_Scope)
8385 and then Is_Child_Unit (P)
8386 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8388 Private_With_OK := True;
8391 -- Loop through entities in one package making them potentially
8394 Id := First_Entity (P);
8396 and then (Id /= First_Private_Entity (P)
8397 or else Private_With_OK) -- Ada 2005 (AI-262)
8399 Prev := Current_Entity (Id);
8400 while Present (Prev) loop
8401 if Is_Immediately_Visible (Prev)
8402 and then (not Is_Overloadable (Prev)
8403 or else not Is_Overloadable (Id)
8404 or else (Type_Conformant (Id, Prev)))
8406 if No (Current_Instance) then
8408 -- Potentially use-visible entity remains hidden
8410 goto Next_Usable_Entity;
8412 -- A use clause within an instance hides outer global entities,
8413 -- which are not used to resolve local entities in the
8414 -- instance. Note that the predefined entities in Standard
8415 -- could not have been hidden in the generic by a use clause,
8416 -- and therefore remain visible. Other compilation units whose
8417 -- entities appear in Standard must be hidden in an instance.
8419 -- To determine whether an entity is external to the instance
8420 -- we compare the scope depth of its scope with that of the
8421 -- current instance. However, a generic actual of a subprogram
8422 -- instance is declared in the wrapper package but will not be
8423 -- hidden by a use-visible entity. similarly, an entity that is
8424 -- declared in an enclosing instance will not be hidden by an
8425 -- an entity declared in a generic actual, which can only have
8426 -- been use-visible in the generic and will not have hidden the
8427 -- entity in the generic parent.
8429 -- If Id is called Standard, the predefined package with the
8430 -- same name is in the homonym chain. It has to be ignored
8431 -- because it has no defined scope (being the only entity in
8432 -- the system with this mandated behavior).
8434 elsif not Is_Hidden (Id)
8435 and then Present (Scope (Prev))
8436 and then not Is_Wrapper_Package (Scope (Prev))
8437 and then Scope_Depth (Scope (Prev)) <
8438 Scope_Depth (Current_Instance)
8439 and then (Scope (Prev) /= Standard_Standard
8440 or else Sloc (Prev) > Standard_Location)
8442 if In_Open_Scopes (Scope (Prev))
8443 and then Is_Generic_Instance (Scope (Prev))
8444 and then Present (Associated_Formal_Package (P))
8449 Set_Is_Potentially_Use_Visible (Id);
8450 Set_Is_Immediately_Visible (Prev, False);
8451 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8455 -- A user-defined operator is not use-visible if the predefined
8456 -- operator for the type is immediately visible, which is the case
8457 -- if the type of the operand is in an open scope. This does not
8458 -- apply to user-defined operators that have operands of different
8459 -- types, because the predefined mixed mode operations (multiply
8460 -- and divide) apply to universal types and do not hide anything.
8462 elsif Ekind (Prev) = E_Operator
8463 and then Operator_Matches_Spec (Prev, Id)
8464 and then In_Open_Scopes
8465 (Scope (Base_Type (Etype (First_Formal (Id)))))
8466 and then (No (Next_Formal (First_Formal (Id)))
8467 or else Etype (First_Formal (Id)) =
8468 Etype (Next_Formal (First_Formal (Id)))
8469 or else Chars (Prev) = Name_Op_Expon)
8471 goto Next_Usable_Entity;
8473 -- In an instance, two homonyms may become use_visible through the
8474 -- actuals of distinct formal packages. In the generic, only the
8475 -- current one would have been visible, so make the other one
8478 elsif Present (Current_Instance)
8479 and then Is_Potentially_Use_Visible (Prev)
8480 and then not Is_Overloadable (Prev)
8481 and then Scope (Id) /= Scope (Prev)
8482 and then Used_As_Generic_Actual (Scope (Prev))
8483 and then Used_As_Generic_Actual (Scope (Id))
8484 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8485 Current_Use_Clause (Scope (Id)))
8487 Set_Is_Potentially_Use_Visible (Prev, False);
8488 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8491 Prev := Homonym (Prev);
8494 -- On exit, we know entity is not hidden, unless it is private
8496 if not Is_Hidden (Id)
8497 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8499 Set_Is_Potentially_Use_Visible (Id);
8501 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8502 Set_Is_Potentially_Use_Visible (Full_View (Id));
8506 <<Next_Usable_Entity>>
8510 -- Child units are also made use-visible by a use clause, but they may
8511 -- appear after all visible declarations in the parent entity list.
8513 while Present (Id) loop
8514 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8515 Set_Is_Potentially_Use_Visible (Id);
8521 if Chars (Real_P) = Name_System
8522 and then Scope (Real_P) = Standard_Standard
8523 and then Present_System_Aux (N)
8525 Use_One_Package (System_Aux_Id, N);
8528 end Use_One_Package;
8534 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8536 Is_Known_Used : Boolean;
8540 function Spec_Reloaded_For_Body return Boolean;
8541 -- Determine whether the compilation unit is a package body and the use
8542 -- type clause is in the spec of the same package. Even though the spec
8543 -- was analyzed first, its context is reloaded when analysing the body.
8545 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8546 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8547 -- class-wide operations of ancestor types are use-visible if the
8548 -- ancestor type is visible.
8550 ----------------------------
8551 -- Spec_Reloaded_For_Body --
8552 ----------------------------
8554 function Spec_Reloaded_For_Body return Boolean is
8556 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8558 Spec : constant Node_Id :=
8559 Parent (List_Containing (Parent (Id)));
8562 -- Check whether type is declared in a package specification,
8563 -- and current unit is the corresponding package body. The
8564 -- use clauses themselves may be within a nested package.
8567 Nkind (Spec) = N_Package_Specification
8569 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8570 Cunit_Entity (Current_Sem_Unit));
8575 end Spec_Reloaded_For_Body;
8577 -------------------------------
8578 -- Use_Class_Wide_Operations --
8579 -------------------------------
8581 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8585 function Is_Class_Wide_Operation_Of
8587 T : Entity_Id) return Boolean;
8588 -- Determine whether a subprogram has a class-wide parameter or
8589 -- result that is T'Class.
8591 ---------------------------------
8592 -- Is_Class_Wide_Operation_Of --
8593 ---------------------------------
8595 function Is_Class_Wide_Operation_Of
8597 T : Entity_Id) return Boolean
8602 Formal := First_Formal (Op);
8603 while Present (Formal) loop
8604 if Etype (Formal) = Class_Wide_Type (T) then
8607 Next_Formal (Formal);
8610 if Etype (Op) = Class_Wide_Type (T) then
8615 end Is_Class_Wide_Operation_Of;
8617 -- Start of processing for Use_Class_Wide_Operations
8620 Scop := Scope (Typ);
8621 if not Is_Hidden (Scop) then
8622 Ent := First_Entity (Scop);
8623 while Present (Ent) loop
8624 if Is_Overloadable (Ent)
8625 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8626 and then not Is_Potentially_Use_Visible (Ent)
8628 Set_Is_Potentially_Use_Visible (Ent);
8629 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8636 if Is_Derived_Type (Typ) then
8637 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8639 end Use_Class_Wide_Operations;
8641 -- Start of processing for Use_One_Type
8644 -- It is the type determined by the subtype mark (8.4(8)) whose
8645 -- operations become potentially use-visible.
8647 T := Base_Type (Entity (Id));
8649 -- Either the type itself is used, the package where it is declared
8650 -- is in use or the entity is declared in the current package, thus
8655 or else In_Use (Scope (T))
8656 or else Scope (T) = Current_Scope;
8658 Set_Redundant_Use (Id,
8659 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8661 if Ekind (T) = E_Incomplete_Type then
8662 Error_Msg_N ("premature usage of incomplete type", Id);
8664 elsif In_Open_Scopes (Scope (T)) then
8667 -- A limited view cannot appear in a use_type clause. However, an access
8668 -- type whose designated type is limited has the flag but is not itself
8669 -- a limited view unless we only have a limited view of its enclosing
8672 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
8674 ("incomplete type from limited view "
8675 & "cannot appear in use clause", Id);
8677 -- If the subtype mark designates a subtype in a different package,
8678 -- we have to check that the parent type is visible, otherwise the
8679 -- use type clause is a noop. Not clear how to do that???
8681 elsif not Redundant_Use (Id) then
8684 -- If T is tagged, primitive operators on class-wide operands
8685 -- are also available.
8687 if Is_Tagged_Type (T) then
8688 Set_In_Use (Class_Wide_Type (T));
8691 Set_Current_Use_Clause (T, Parent (Id));
8693 -- Iterate over primitive operations of the type. If an operation is
8694 -- already use_visible, it is the result of a previous use_clause,
8695 -- and already appears on the corresponding entity chain. If the
8696 -- clause is being reinstalled, operations are already use-visible.
8702 Op_List := Collect_Primitive_Operations (T);
8703 Elmt := First_Elmt (Op_List);
8704 while Present (Elmt) loop
8705 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8706 or else Chars (Node (Elmt)) in Any_Operator_Name)
8707 and then not Is_Hidden (Node (Elmt))
8708 and then not Is_Potentially_Use_Visible (Node (Elmt))
8710 Set_Is_Potentially_Use_Visible (Node (Elmt));
8711 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8713 elsif Ada_Version >= Ada_2012
8714 and then All_Present (Parent (Id))
8715 and then not Is_Hidden (Node (Elmt))
8716 and then not Is_Potentially_Use_Visible (Node (Elmt))
8718 Set_Is_Potentially_Use_Visible (Node (Elmt));
8719 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8726 if Ada_Version >= Ada_2012
8727 and then All_Present (Parent (Id))
8728 and then Is_Tagged_Type (T)
8730 Use_Class_Wide_Operations (T);
8734 -- If warning on redundant constructs, check for unnecessary WITH
8736 if Warn_On_Redundant_Constructs
8737 and then Is_Known_Used
8739 -- with P; with P; use P;
8740 -- package P is package X is package body X is
8741 -- type T ... use P.T;
8743 -- The compilation unit is the body of X. GNAT first compiles the
8744 -- spec of X, then proceeds to the body. At that point P is marked
8745 -- as use visible. The analysis then reinstalls the spec along with
8746 -- its context. The use clause P.T is now recognized as redundant,
8747 -- but in the wrong context. Do not emit a warning in such cases.
8748 -- Do not emit a warning either if we are in an instance, there is
8749 -- no redundancy between an outer use_clause and one that appears
8750 -- within the generic.
8752 and then not Spec_Reloaded_For_Body
8753 and then not In_Instance
8755 -- The type already has a use clause
8759 -- Case where we know the current use clause for the type
8761 if Present (Current_Use_Clause (T)) then
8762 Use_Clause_Known : declare
8763 Clause1 : constant Node_Id := Parent (Id);
8764 Clause2 : constant Node_Id := Current_Use_Clause (T);
8771 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
8772 -- Return the appropriate entity for determining which unit
8773 -- has a deeper scope: the defining entity for U, unless U
8774 -- is a package instance, in which case we retrieve the
8775 -- entity of the instance spec.
8777 --------------------
8778 -- Entity_Of_Unit --
8779 --------------------
8781 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
8783 if Nkind (U) = N_Package_Instantiation
8784 and then Analyzed (U)
8786 return Defining_Entity (Instance_Spec (U));
8788 return Defining_Entity (U);
8792 -- Start of processing for Use_Clause_Known
8795 -- If both current use type clause and the use type clause
8796 -- for the type are at the compilation unit level, one of
8797 -- the units must be an ancestor of the other, and the
8798 -- warning belongs on the descendant.
8800 if Nkind (Parent (Clause1)) = N_Compilation_Unit
8802 Nkind (Parent (Clause2)) = N_Compilation_Unit
8804 -- If the unit is a subprogram body that acts as spec,
8805 -- the context clause is shared with the constructed
8806 -- subprogram spec. Clearly there is no redundancy.
8808 if Clause1 = Clause2 then
8812 Unit1 := Unit (Parent (Clause1));
8813 Unit2 := Unit (Parent (Clause2));
8815 -- If both clauses are on same unit, or one is the body
8816 -- of the other, or one of them is in a subunit, report
8817 -- redundancy on the later one.
8819 if Unit1 = Unit2 then
8820 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8821 Error_Msg_NE -- CODEFIX
8822 ("& is already use-visible through previous "
8823 & "use_type_clause #??", Clause1, T);
8826 elsif Nkind (Unit1) = N_Subunit then
8827 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8828 Error_Msg_NE -- CODEFIX
8829 ("& is already use-visible through previous "
8830 & "use_type_clause #??", Clause1, T);
8833 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
8834 and then Nkind (Unit1) /= Nkind (Unit2)
8835 and then Nkind (Unit1) /= N_Subunit
8837 Error_Msg_Sloc := Sloc (Clause1);
8838 Error_Msg_NE -- CODEFIX
8839 ("& is already use-visible through previous "
8840 & "use_type_clause #??", Current_Use_Clause (T), T);
8844 -- There is a redundant use type clause in a child unit.
8845 -- Determine which of the units is more deeply nested.
8846 -- If a unit is a package instance, retrieve the entity
8847 -- and its scope from the instance spec.
8849 Ent1 := Entity_Of_Unit (Unit1);
8850 Ent2 := Entity_Of_Unit (Unit2);
8852 if Scope (Ent2) = Standard_Standard then
8853 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8856 elsif Scope (Ent1) = Standard_Standard then
8857 Error_Msg_Sloc := Sloc (Id);
8860 -- If both units are child units, we determine which one
8861 -- is the descendant by the scope distance to the
8862 -- ultimate parent unit.
8872 and then Present (S2)
8873 and then S1 /= Standard_Standard
8874 and then S2 /= Standard_Standard
8880 if S1 = Standard_Standard then
8881 Error_Msg_Sloc := Sloc (Id);
8884 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8890 Error_Msg_NE -- CODEFIX
8891 ("& is already use-visible through previous "
8892 & "use_type_clause #??", Err_No, Id);
8894 -- Case where current use type clause and the use type
8895 -- clause for the type are not both at the compilation unit
8896 -- level. In this case we don't have location information.
8899 Error_Msg_NE -- CODEFIX
8900 ("& is already use-visible through previous "
8901 & "use type clause??", Id, T);
8903 end Use_Clause_Known;
8905 -- Here if Current_Use_Clause is not set for T, another case
8906 -- where we do not have the location information available.
8909 Error_Msg_NE -- CODEFIX
8910 ("& is already use-visible through previous "
8911 & "use type clause??", Id, T);
8914 -- The package where T is declared is already used
8916 elsif In_Use (Scope (T)) then
8917 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
8918 Error_Msg_NE -- CODEFIX
8919 ("& is already use-visible through package use clause #??",
8922 -- The current scope is the package where T is declared
8925 Error_Msg_Node_2 := Scope (T);
8926 Error_Msg_NE -- CODEFIX
8927 ("& is already use-visible inside package &??", Id, T);
8936 procedure Write_Info is
8937 Id : Entity_Id := First_Entity (Current_Scope);
8940 -- No point in dumping standard entities
8942 if Current_Scope = Standard_Standard then
8946 Write_Str ("========================================================");
8948 Write_Str (" Defined Entities in ");
8949 Write_Name (Chars (Current_Scope));
8951 Write_Str ("========================================================");
8955 Write_Str ("-- none --");
8959 while Present (Id) loop
8960 Write_Entity_Info (Id, " ");
8965 if Scope (Current_Scope) = Standard_Standard then
8967 -- Print information on the current unit itself
8969 Write_Entity_Info (Current_Scope, " ");
8982 for J in reverse 1 .. Scope_Stack.Last loop
8983 S := Scope_Stack.Table (J).Entity;
8984 Write_Int (Int (S));
8985 Write_Str (" === ");
8986 Write_Name (Chars (S));
8995 procedure we (S : Entity_Id) is
8998 E := First_Entity (S);
8999 while Present (E) loop
9000 Write_Int (Int (E));
9001 Write_Str (" === ");
9002 Write_Name (Chars (E));