PR middle-end/61455
[official-gcc.git] / gcc / ada / sem_ch8.adb
blob4a5bafcbc8cb1d8b535bad0f1f008296baeba78d
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Freeze; use Freeze;
35 with Impunit; use Impunit;
36 with Lib; use Lib;
37 with Lib.Load; use Lib.Load;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch3; use Sem_Ch3;
52 with Sem_Ch4; use Sem_Ch4;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch12; use Sem_Ch12;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Dist; use Sem_Dist;
59 with Sem_Eval; use Sem_Eval;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sem_Type; use Sem_Type;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Sinfo.CN; use Sinfo.CN;
66 with Snames; use Snames;
67 with Style; use Style;
68 with Table;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Uintp; use Uintp;
73 package body Sem_Ch8 is
75 ------------------------------------
76 -- Visibility and Name Resolution --
77 ------------------------------------
79 -- This package handles name resolution and the collection of possible
80 -- interpretations for overloaded names, prior to overload resolution.
82 -- Name resolution is the process that establishes a mapping between source
83 -- identifiers and the entities they denote at each point in the program.
84 -- Each entity is represented by a defining occurrence. Each identifier
85 -- that denotes an entity points to the corresponding defining occurrence.
86 -- This is the entity of the applied occurrence. Each occurrence holds
87 -- an index into the names table, where source identifiers are stored.
89 -- Each entry in the names table for an identifier or designator uses the
90 -- Info pointer to hold a link to the currently visible entity that has
91 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
92 -- in package Sem_Util). The visibility is initialized at the beginning of
93 -- semantic processing to make entities in package Standard immediately
94 -- visible. The visibility table is used in a more subtle way when
95 -- compiling subunits (see below).
97 -- Entities that have the same name (i.e. homonyms) are chained. In the
98 -- case of overloaded entities, this chain holds all the possible meanings
99 -- of a given identifier. The process of overload resolution uses type
100 -- information to select from this chain the unique meaning of a given
101 -- identifier.
103 -- Entities are also chained in their scope, through the Next_Entity link.
104 -- As a consequence, the name space is organized as a sparse matrix, where
105 -- each row corresponds to a scope, and each column to a source identifier.
106 -- Open scopes, that is to say scopes currently being compiled, have their
107 -- corresponding rows of entities in order, innermost scope first.
109 -- The scopes of packages that are mentioned in context clauses appear in
110 -- no particular order, interspersed among open scopes. This is because
111 -- in the course of analyzing the context of a compilation, a package
112 -- declaration is first an open scope, and subsequently an element of the
113 -- context. If subunits or child units are present, a parent unit may
114 -- appear under various guises at various times in the compilation.
116 -- When the compilation of the innermost scope is complete, the entities
117 -- defined therein are no longer visible. If the scope is not a package
118 -- declaration, these entities are never visible subsequently, and can be
119 -- removed from visibility chains. If the scope is a package declaration,
120 -- its visible declarations may still be accessible. Therefore the entities
121 -- defined in such a scope are left on the visibility chains, and only
122 -- their visibility (immediately visibility or potential use-visibility)
123 -- is affected.
125 -- The ordering of homonyms on their chain does not necessarily follow
126 -- the order of their corresponding scopes on the scope stack. For
127 -- example, if package P and the enclosing scope both contain entities
128 -- named E, then when compiling the package body the chain for E will
129 -- hold the global entity first, and the local one (corresponding to
130 -- the current inner scope) next. As a result, name resolution routines
131 -- do not assume any relative ordering of the homonym chains, either
132 -- for scope nesting or to order of appearance of context clauses.
134 -- When compiling a child unit, entities in the parent scope are always
135 -- immediately visible. When compiling the body of a child unit, private
136 -- entities in the parent must also be made immediately visible. There
137 -- are separate routines to make the visible and private declarations
138 -- visible at various times (see package Sem_Ch7).
140 -- +--------+ +-----+
141 -- | In use |-------->| EU1 |-------------------------->
142 -- +--------+ +-----+
143 -- | |
144 -- +--------+ +-----+ +-----+
145 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
146 -- +--------+ +-----+ +-----+
147 -- | |
148 -- +---------+ | +-----+
149 -- | with'ed |------------------------------>| EW2 |--->
150 -- +---------+ | +-----+
151 -- | |
152 -- +--------+ +-----+ +-----+
153 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
154 -- +--------+ +-----+ +-----+
155 -- | |
156 -- +--------+ +-----+ +-----+
157 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
158 -- +--------+ +-----+ +-----+
159 -- ^ | |
160 -- | | |
161 -- | +---------+ | |
162 -- | | with'ed |----------------------------------------->
163 -- | +---------+ | |
164 -- | | |
165 -- Scope stack | |
166 -- (innermost first) | |
167 -- +----------------------------+
168 -- Names table => | Id1 | | | | Id2 |
169 -- +----------------------------+
171 -- Name resolution must deal with several syntactic forms: simple names,
172 -- qualified names, indexed names, and various forms of calls.
174 -- Each identifier points to an entry in the names table. The resolution
175 -- of a simple name consists in traversing the homonym chain, starting
176 -- from the names table. If an entry is immediately visible, it is the one
177 -- designated by the identifier. If only potentially use-visible entities
178 -- are on the chain, we must verify that they do not hide each other. If
179 -- the entity we find is overloadable, we collect all other overloadable
180 -- entities on the chain as long as they are not hidden.
182 -- To resolve expanded names, we must find the entity at the intersection
183 -- of the entity chain for the scope (the prefix) and the homonym chain
184 -- for the selector. In general, homonym chains will be much shorter than
185 -- entity chains, so it is preferable to start from the names table as
186 -- well. If the entity found is overloadable, we must collect all other
187 -- interpretations that are defined in the scope denoted by the prefix.
189 -- For records, protected types, and tasks, their local entities are
190 -- removed from visibility chains on exit from the corresponding scope.
191 -- From the outside, these entities are always accessed by selected
192 -- notation, and the entity chain for the record type, protected type,
193 -- etc. is traversed sequentially in order to find the designated entity.
195 -- The discriminants of a type and the operations of a protected type or
196 -- task are unchained on exit from the first view of the type, (such as
197 -- a private or incomplete type declaration, or a protected type speci-
198 -- fication) and re-chained when compiling the second view.
200 -- In the case of operators, we do not make operators on derived types
201 -- explicit. As a result, the notation P."+" may denote either a user-
202 -- defined function with name "+", or else an implicit declaration of the
203 -- operator "+" in package P. The resolution of expanded names always
204 -- tries to resolve an operator name as such an implicitly defined entity,
205 -- in addition to looking for explicit declarations.
207 -- All forms of names that denote entities (simple names, expanded names,
208 -- character literals in some cases) have a Entity attribute, which
209 -- identifies the entity denoted by the name.
211 ---------------------
212 -- The Scope Stack --
213 ---------------------
215 -- The Scope stack keeps track of the scopes currently been compiled.
216 -- Every entity that contains declarations (including records) is placed
217 -- on the scope stack while it is being processed, and removed at the end.
218 -- Whenever a non-package scope is exited, the entities defined therein
219 -- are removed from the visibility table, so that entities in outer scopes
220 -- become visible (see previous description). On entry to Sem, the scope
221 -- stack only contains the package Standard. As usual, subunits complicate
222 -- this picture ever so slightly.
224 -- The Rtsfind mechanism can force a call to Semantics while another
225 -- compilation is in progress. The unit retrieved by Rtsfind must be
226 -- compiled in its own context, and has no access to the visibility of
227 -- the unit currently being compiled. The procedures Save_Scope_Stack and
228 -- Restore_Scope_Stack make entities in current open scopes invisible
229 -- before compiling the retrieved unit, and restore the compilation
230 -- environment afterwards.
232 ------------------------
233 -- Compiling subunits --
234 ------------------------
236 -- Subunits must be compiled in the environment of the corresponding stub,
237 -- that is to say with the same visibility into the parent (and its
238 -- context) that is available at the point of the stub declaration, but
239 -- with the additional visibility provided by the context clause of the
240 -- subunit itself. As a result, compilation of a subunit forces compilation
241 -- of the parent (see description in lib-). At the point of the stub
242 -- declaration, Analyze is called recursively to compile the proper body of
243 -- the subunit, but without reinitializing the names table, nor the scope
244 -- stack (i.e. standard is not pushed on the stack). In this fashion the
245 -- context of the subunit is added to the context of the parent, and the
246 -- subunit is compiled in the correct environment. Note that in the course
247 -- of processing the context of a subunit, Standard will appear twice on
248 -- the scope stack: once for the parent of the subunit, and once for the
249 -- unit in the context clause being compiled. However, the two sets of
250 -- entities are not linked by homonym chains, so that the compilation of
251 -- any context unit happens in a fresh visibility environment.
253 -------------------------------
254 -- Processing of USE Clauses --
255 -------------------------------
257 -- Every defining occurrence has a flag indicating if it is potentially use
258 -- visible. Resolution of simple names examines this flag. The processing
259 -- of use clauses consists in setting this flag on all visible entities
260 -- defined in the corresponding package. On exit from the scope of the use
261 -- clause, the corresponding flag must be reset. However, a package may
262 -- appear in several nested use clauses (pathological but legal, alas)
263 -- which forces us to use a slightly more involved scheme:
265 -- a) The defining occurrence for a package holds a flag -In_Use- to
266 -- indicate that it is currently in the scope of a use clause. If a
267 -- redundant use clause is encountered, then the corresponding occurrence
268 -- of the package name is flagged -Redundant_Use-.
270 -- b) On exit from a scope, the use clauses in its declarative part are
271 -- scanned. The visibility flag is reset in all entities declared in
272 -- package named in a use clause, as long as the package is not flagged
273 -- as being in a redundant use clause (in which case the outer use
274 -- clause is still in effect, and the direct visibility of its entities
275 -- must be retained).
277 -- Note that entities are not removed from their homonym chains on exit
278 -- from the package specification. A subsequent use clause does not need
279 -- to rechain the visible entities, but only to establish their direct
280 -- visibility.
282 -----------------------------------
283 -- Handling private declarations --
284 -----------------------------------
286 -- The principle that each entity has a single defining occurrence clashes
287 -- with the presence of two separate definitions for private types: the
288 -- first is the private type declaration, and second is the full type
289 -- declaration. It is important that all references to the type point to
290 -- the same defining occurrence, namely the first one. To enforce the two
291 -- separate views of the entity, the corresponding information is swapped
292 -- between the two declarations. Outside of the package, the defining
293 -- occurrence only contains the private declaration information, while in
294 -- the private part and the body of the package the defining occurrence
295 -- contains the full declaration. To simplify the swap, the defining
296 -- occurrence that currently holds the private declaration points to the
297 -- full declaration. During semantic processing the defining occurrence
298 -- also points to a list of private dependents, that is to say access types
299 -- or composite types whose designated types or component types are
300 -- subtypes or derived types of the private type in question. After the
301 -- full declaration has been seen, the private dependents are updated to
302 -- indicate that they have full definitions.
304 ------------------------------------
305 -- Handling of Undefined Messages --
306 ------------------------------------
308 -- In normal mode, only the first use of an undefined identifier generates
309 -- a message. The table Urefs is used to record error messages that have
310 -- been issued so that second and subsequent ones do not generate further
311 -- messages. However, the second reference causes text to be added to the
312 -- original undefined message noting "(more references follow)". The
313 -- full error list option (-gnatf) forces messages to be generated for
314 -- every reference and disconnects the use of this table.
316 type Uref_Entry is record
317 Node : Node_Id;
318 -- Node for identifier for which original message was posted. The
319 -- Chars field of this identifier is used to detect later references
320 -- to the same identifier.
322 Err : Error_Msg_Id;
323 -- Records error message Id of original undefined message. Reset to
324 -- No_Error_Msg after the second occurrence, where it is used to add
325 -- text to the original message as described above.
327 Nvis : Boolean;
328 -- Set if the message is not visible rather than undefined
330 Loc : Source_Ptr;
331 -- Records location of error message. Used to make sure that we do
332 -- not consider a, b : undefined as two separate instances, which
333 -- would otherwise happen, since the parser converts this sequence
334 -- to a : undefined; b : undefined.
336 end record;
338 package Urefs is new Table.Table (
339 Table_Component_Type => Uref_Entry,
340 Table_Index_Type => Nat,
341 Table_Low_Bound => 1,
342 Table_Initial => 10,
343 Table_Increment => 100,
344 Table_Name => "Urefs");
346 Candidate_Renaming : Entity_Id;
347 -- Holds a candidate interpretation that appears in a subprogram renaming
348 -- declaration and does not match the given specification, but matches at
349 -- least on the first formal. Allows better error message when given
350 -- specification omits defaulted parameters, a common error.
352 -----------------------
353 -- Local Subprograms --
354 -----------------------
356 procedure Analyze_Generic_Renaming
357 (N : Node_Id;
358 K : Entity_Kind);
359 -- Common processing for all three kinds of generic renaming declarations.
360 -- Enter new name and indicate that it renames the generic unit.
362 procedure Analyze_Renamed_Character
363 (N : Node_Id;
364 New_S : Entity_Id;
365 Is_Body : Boolean);
366 -- Renamed entity is given by a character literal, which must belong
367 -- to the return type of the new entity. Is_Body indicates whether the
368 -- declaration is a renaming_as_body. If the original declaration has
369 -- already been frozen (because of an intervening body, e.g.) the body of
370 -- the function must be built now. The same applies to the following
371 -- various renaming procedures.
373 procedure Analyze_Renamed_Dereference
374 (N : Node_Id;
375 New_S : Entity_Id;
376 Is_Body : Boolean);
377 -- Renamed entity is given by an explicit dereference. Prefix must be a
378 -- conformant access_to_subprogram type.
380 procedure Analyze_Renamed_Entry
381 (N : Node_Id;
382 New_S : Entity_Id;
383 Is_Body : Boolean);
384 -- If the renamed entity in a subprogram renaming is an entry or protected
385 -- subprogram, build a body for the new entity whose only statement is a
386 -- call to the renamed entity.
388 procedure Analyze_Renamed_Family_Member
389 (N : Node_Id;
390 New_S : Entity_Id;
391 Is_Body : Boolean);
392 -- Used when the renamed entity is an indexed component. The prefix must
393 -- denote an entry family.
395 procedure Analyze_Renamed_Primitive_Operation
396 (N : Node_Id;
397 New_S : Entity_Id;
398 Is_Body : Boolean);
399 -- If the renamed entity in a subprogram renaming is a primitive operation
400 -- or a class-wide operation in prefix form, save the target object,
401 -- which must be added to the list of actuals in any subsequent call.
402 -- The renaming operation is intrinsic because the compiler must in
403 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
405 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
406 -- Common code to Use_One_Package and Set_Use, to determine whether use
407 -- clause must be processed. Pack_Name is an entity name that references
408 -- the package in question.
410 procedure Attribute_Renaming (N : Node_Id);
411 -- Analyze renaming of attribute as subprogram. The renaming declaration N
412 -- is rewritten as a subprogram body that returns the attribute reference
413 -- applied to the formals of the function.
415 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
416 -- Set Entity, with style check if need be. For a discriminant reference,
417 -- replace by the corresponding discriminal, i.e. the parameter of the
418 -- initialization procedure that corresponds to the discriminant.
420 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
421 -- A renaming_as_body may occur after the entity of the original decla-
422 -- ration has been frozen. In that case, the body of the new entity must
423 -- be built now, because the usual mechanism of building the renamed
424 -- body at the point of freezing will not work. Subp is the subprogram
425 -- for which N provides the Renaming_As_Body.
427 procedure Check_In_Previous_With_Clause
428 (N : Node_Id;
429 Nam : Node_Id);
430 -- N is a use_package clause and Nam the package name, or N is a use_type
431 -- clause and Nam is the prefix of the type name. In either case, verify
432 -- that the package is visible at that point in the context: either it
433 -- appears in a previous with_clause, or because it is a fully qualified
434 -- name and the root ancestor appears in a previous with_clause.
436 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
437 -- Verify that the entity in a renaming declaration that is a library unit
438 -- is itself a library unit and not a nested unit or subunit. Also check
439 -- that if the renaming is a child unit of a generic parent, then the
440 -- renamed unit must also be a child unit of that parent. Finally, verify
441 -- that a renamed generic unit is not an implicit child declared within
442 -- an instance of the parent.
444 procedure Chain_Use_Clause (N : Node_Id);
445 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
446 -- the proper scope table entry. This is usually the current scope, but it
447 -- will be an inner scope when installing the use clauses of the private
448 -- declarations of a parent unit prior to compiling the private part of a
449 -- child unit. This chain is traversed when installing/removing use clauses
450 -- when compiling a subunit or instantiating a generic body on the fly,
451 -- when it is necessary to save and restore full environments.
453 function Enclosing_Instance return Entity_Id;
454 -- In an instance nested within another one, several semantic checks are
455 -- unnecessary because the legality of the nested instance has been checked
456 -- in the enclosing generic unit. This applies in particular to legality
457 -- checks on actuals for formal subprograms of the inner instance, which
458 -- are checked as subprogram renamings, and may be complicated by confusion
459 -- in private/full views. This function returns the instance enclosing the
460 -- current one if there is such, else it returns Empty.
462 -- If the renaming determines the entity for the default of a formal
463 -- subprogram nested within another instance, choose the innermost
464 -- candidate. This is because if the formal has a box, and we are within
465 -- an enclosing instance where some candidate interpretations are local
466 -- to this enclosing instance, we know that the default was properly
467 -- resolved when analyzing the generic, so we prefer the local
468 -- candidates to those that are external. This is not always the case
469 -- but is a reasonable heuristic on the use of nested generics. The
470 -- proper solution requires a full renaming model.
472 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
473 -- Find a type derived from Character or Wide_Character in the prefix of N.
474 -- Used to resolved qualified names whose selector is a character literal.
476 function Has_Private_With (E : Entity_Id) return Boolean;
477 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
478 -- private with on E.
480 procedure Find_Expanded_Name (N : Node_Id);
481 -- The input is a selected component known to be an expanded name. Verify
482 -- legality of selector given the scope denoted by prefix, and change node
483 -- N into a expanded name with a properly set Entity field.
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Operator (N : Node_Id) return Boolean;
497 -- N is an expanded name whose selector is an operator name (e.g. P."+").
498 -- declarative part contains an implicit declaration of an operator if it
499 -- has a declaration of a type to which one of the predefined operators
500 -- apply. The existence of this routine is an implementation artifact. A
501 -- more straightforward but more space-consuming choice would be to make
502 -- all inherited operators explicit in the symbol table.
504 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
505 -- A subprogram defined by a renaming declaration inherits the parameter
506 -- profile of the renamed entity. The subtypes given in the subprogram
507 -- specification are discarded and replaced with those of the renamed
508 -- subprogram, which are then used to recheck the default values.
510 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
511 -- Prefix is appropriate for record if it is of a record type, or an access
512 -- to such.
514 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
515 -- True if it is of a task type, a protected type, or else an access to one
516 -- of these types.
518 procedure Note_Redundant_Use (Clause : Node_Id);
519 -- Mark the name in a use clause as redundant if the corresponding entity
520 -- is already use-visible. Emit a warning if the use clause comes from
521 -- source and the proper warnings are enabled.
523 procedure Premature_Usage (N : Node_Id);
524 -- Diagnose usage of an entity before it is visible
526 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
527 -- Make visible entities declared in package P potentially use-visible
528 -- in the current context. Also used in the analysis of subunits, when
529 -- re-installing use clauses of parent units. N is the use_clause that
530 -- names P (and possibly other packages).
532 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
533 -- Id is the subtype mark from a use type clause. This procedure makes
534 -- the primitive operators of the type potentially use-visible. The
535 -- boolean flag Installed indicates that the clause is being reinstalled
536 -- after previous analysis, and primitive operations are already chained
537 -- on the Used_Operations list of the clause.
539 procedure Write_Info;
540 -- Write debugging information on entities declared in current scope
542 --------------------------------
543 -- Analyze_Exception_Renaming --
544 --------------------------------
546 -- The language only allows a single identifier, but the tree holds an
547 -- identifier list. The parser has already issued an error message if
548 -- there is more than one element in the list.
550 procedure Analyze_Exception_Renaming (N : Node_Id) is
551 Id : constant Node_Id := Defining_Identifier (N);
552 Nam : constant Node_Id := Name (N);
554 begin
555 Check_SPARK_Restriction ("exception renaming is not allowed", N);
557 Enter_Name (Id);
558 Analyze (Nam);
560 Set_Ekind (Id, E_Exception);
561 Set_Etype (Id, Standard_Exception_Type);
562 Set_Is_Pure (Id, Is_Pure (Current_Scope));
564 if not Is_Entity_Name (Nam) or else
565 Ekind (Entity (Nam)) /= E_Exception
566 then
567 Error_Msg_N ("invalid exception name in renaming", Nam);
568 else
569 if Present (Renamed_Object (Entity (Nam))) then
570 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
571 else
572 Set_Renamed_Object (Id, Entity (Nam));
573 end if;
574 end if;
576 -- Implementation-defined aspect specifications can appear in a renaming
577 -- declaration, but not language-defined ones. The call to procedure
578 -- Analyze_Aspect_Specifications will take care of this error check.
580 if Has_Aspects (N) then
581 Analyze_Aspect_Specifications (N, Id);
582 end if;
583 end Analyze_Exception_Renaming;
585 ---------------------------
586 -- Analyze_Expanded_Name --
587 ---------------------------
589 procedure Analyze_Expanded_Name (N : Node_Id) is
590 begin
591 -- If the entity pointer is already set, this is an internal node, or a
592 -- node that is analyzed more than once, after a tree modification. In
593 -- such a case there is no resolution to perform, just set the type. For
594 -- completeness, analyze prefix as well.
596 if Present (Entity (N)) then
597 if Is_Type (Entity (N)) then
598 Set_Etype (N, Entity (N));
599 else
600 Set_Etype (N, Etype (Entity (N)));
601 end if;
603 Analyze (Prefix (N));
604 return;
605 else
606 Find_Expanded_Name (N);
607 end if;
609 Analyze_Dimension (N);
610 end Analyze_Expanded_Name;
612 ---------------------------------------
613 -- Analyze_Generic_Function_Renaming --
614 ---------------------------------------
616 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
617 begin
618 Analyze_Generic_Renaming (N, E_Generic_Function);
619 end Analyze_Generic_Function_Renaming;
621 --------------------------------------
622 -- Analyze_Generic_Package_Renaming --
623 --------------------------------------
625 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
626 begin
627 -- Test for the Text_IO special unit case here, since we may be renaming
628 -- one of the subpackages of Text_IO, then join common routine.
630 Check_Text_IO_Special_Unit (Name (N));
632 Analyze_Generic_Renaming (N, E_Generic_Package);
633 end Analyze_Generic_Package_Renaming;
635 ----------------------------------------
636 -- Analyze_Generic_Procedure_Renaming --
637 ----------------------------------------
639 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
640 begin
641 Analyze_Generic_Renaming (N, E_Generic_Procedure);
642 end Analyze_Generic_Procedure_Renaming;
644 ------------------------------
645 -- Analyze_Generic_Renaming --
646 ------------------------------
648 procedure Analyze_Generic_Renaming
649 (N : Node_Id;
650 K : Entity_Kind)
652 New_P : constant Entity_Id := Defining_Entity (N);
653 Old_P : Entity_Id;
654 Inst : Boolean := False; -- prevent junk warning
656 begin
657 if Name (N) = Error then
658 return;
659 end if;
661 Check_SPARK_Restriction ("generic renaming is not allowed", N);
663 Generate_Definition (New_P);
665 if Current_Scope /= Standard_Standard then
666 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
667 end if;
669 if Nkind (Name (N)) = N_Selected_Component then
670 Check_Generic_Child_Unit (Name (N), Inst);
671 else
672 Analyze (Name (N));
673 end if;
675 if not Is_Entity_Name (Name (N)) then
676 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
677 Old_P := Any_Id;
678 else
679 Old_P := Entity (Name (N));
680 end if;
682 Enter_Name (New_P);
683 Set_Ekind (New_P, K);
685 if Etype (Old_P) = Any_Type then
686 null;
688 elsif Ekind (Old_P) /= K then
689 Error_Msg_N ("invalid generic unit name", Name (N));
691 else
692 if Present (Renamed_Object (Old_P)) then
693 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
694 else
695 Set_Renamed_Object (New_P, Old_P);
696 end if;
698 Set_Is_Pure (New_P, Is_Pure (Old_P));
699 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
701 Set_Etype (New_P, Etype (Old_P));
702 Set_Has_Completion (New_P);
704 if In_Open_Scopes (Old_P) then
705 Error_Msg_N ("within its scope, generic denotes its instance", N);
706 end if;
708 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
709 -- renamings and subsequent instantiations of Unchecked_Conversion.
711 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
712 Set_Is_Intrinsic_Subprogram
713 (New_P, Is_Intrinsic_Subprogram (Old_P));
714 end if;
716 Check_Library_Unit_Renaming (N, Old_P);
717 end if;
719 -- Implementation-defined aspect specifications can appear in a renaming
720 -- declaration, but not language-defined ones. The call to procedure
721 -- Analyze_Aspect_Specifications will take care of this error check.
723 if Has_Aspects (N) then
724 Analyze_Aspect_Specifications (N, New_P);
725 end if;
726 end Analyze_Generic_Renaming;
728 -----------------------------
729 -- Analyze_Object_Renaming --
730 -----------------------------
732 procedure Analyze_Object_Renaming (N : Node_Id) is
733 Loc : constant Source_Ptr := Sloc (N);
734 Id : constant Entity_Id := Defining_Identifier (N);
735 Dec : Node_Id;
736 Nam : constant Node_Id := Name (N);
737 T : Entity_Id;
738 T2 : Entity_Id;
740 procedure Check_Constrained_Object;
741 -- If the nominal type is unconstrained but the renamed object is
742 -- constrained, as can happen with renaming an explicit dereference or
743 -- a function return, build a constrained subtype from the object. If
744 -- the renaming is for a formal in an accept statement, the analysis
745 -- has already established its actual subtype. This is only relevant
746 -- if the renamed object is an explicit dereference.
748 function In_Generic_Scope (E : Entity_Id) return Boolean;
749 -- Determine whether entity E is inside a generic cope
751 ------------------------------
752 -- Check_Constrained_Object --
753 ------------------------------
755 procedure Check_Constrained_Object is
756 Typ : constant Entity_Id := Etype (Nam);
757 Subt : Entity_Id;
759 begin
760 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
761 and then Is_Composite_Type (Etype (Nam))
762 and then not Is_Constrained (Etype (Nam))
763 and then not Has_Unknown_Discriminants (Etype (Nam))
764 and then Expander_Active
765 then
766 -- If Actual_Subtype is already set, nothing to do
768 if Ekind_In (Id, E_Variable, E_Constant)
769 and then Present (Actual_Subtype (Id))
770 then
771 null;
773 -- A renaming of an unchecked union has no actual subtype
775 elsif Is_Unchecked_Union (Typ) then
776 null;
778 -- If a record is limited its size is invariant. This is the case
779 -- in particular with record types with an access discirminant
780 -- that are used in iterators. This is an optimization, but it
781 -- also prevents typing anomalies when the prefix is further
782 -- expanded. Limited types with discriminants are included.
784 elsif Is_Limited_Record (Typ)
785 or else
786 (Ekind (Typ) = E_Limited_Private_Type
787 and then Has_Discriminants (Typ)
788 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
789 then
790 null;
792 else
793 Subt := Make_Temporary (Loc, 'T');
794 Remove_Side_Effects (Nam);
795 Insert_Action (N,
796 Make_Subtype_Declaration (Loc,
797 Defining_Identifier => Subt,
798 Subtype_Indication =>
799 Make_Subtype_From_Expr (Nam, Typ)));
800 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
801 Set_Etype (Nam, Subt);
803 -- Freeze subtype at once, to prevent order of elaboration
804 -- issues in the backend. The renamed object exists, so its
805 -- type is already frozen in any case.
807 Freeze_Before (N, Subt);
808 end if;
809 end if;
810 end Check_Constrained_Object;
812 ----------------------
813 -- In_Generic_Scope --
814 ----------------------
816 function In_Generic_Scope (E : Entity_Id) return Boolean is
817 S : Entity_Id;
819 begin
820 S := Scope (E);
821 while Present (S) and then S /= Standard_Standard loop
822 if Is_Generic_Unit (S) then
823 return True;
824 end if;
826 S := Scope (S);
827 end loop;
829 return False;
830 end In_Generic_Scope;
832 -- Start of processing for Analyze_Object_Renaming
834 begin
835 if Nam = Error then
836 return;
837 end if;
839 Check_SPARK_Restriction ("object renaming is not allowed", N);
841 Set_Is_Pure (Id, Is_Pure (Current_Scope));
842 Enter_Name (Id);
844 -- The renaming of a component that depends on a discriminant requires
845 -- an actual subtype, because in subsequent use of the object Gigi will
846 -- be unable to locate the actual bounds. This explicit step is required
847 -- when the renaming is generated in removing side effects of an
848 -- already-analyzed expression.
850 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
851 T := Etype (Nam);
852 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
854 if Present (Dec) then
855 Insert_Action (N, Dec);
856 T := Defining_Identifier (Dec);
857 Set_Etype (Nam, T);
858 end if;
860 -- Complete analysis of the subtype mark in any case, for ASIS use
862 if Present (Subtype_Mark (N)) then
863 Find_Type (Subtype_Mark (N));
864 end if;
866 elsif Present (Subtype_Mark (N)) then
867 Find_Type (Subtype_Mark (N));
868 T := Entity (Subtype_Mark (N));
869 Analyze (Nam);
871 -- Reject renamings of conversions unless the type is tagged, or
872 -- the conversion is implicit (which can occur for cases of anonymous
873 -- access types in Ada 2012).
875 if Nkind (Nam) = N_Type_Conversion
876 and then Comes_From_Source (Nam)
877 and then not Is_Tagged_Type (T)
878 then
879 Error_Msg_N
880 ("renaming of conversion only allowed for tagged types", Nam);
881 end if;
883 Resolve (Nam, T);
885 -- If the renamed object is a function call of a limited type,
886 -- the expansion of the renaming is complicated by the presence
887 -- of various temporaries and subtypes that capture constraints
888 -- of the renamed object. Rewrite node as an object declaration,
889 -- whose expansion is simpler. Given that the object is limited
890 -- there is no copy involved and no performance hit.
892 if Nkind (Nam) = N_Function_Call
893 and then Is_Limited_View (Etype (Nam))
894 and then not Is_Constrained (Etype (Nam))
895 and then Comes_From_Source (N)
896 then
897 Set_Etype (Id, T);
898 Set_Ekind (Id, E_Constant);
899 Rewrite (N,
900 Make_Object_Declaration (Loc,
901 Defining_Identifier => Id,
902 Constant_Present => True,
903 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
904 Expression => Relocate_Node (Nam)));
905 return;
906 end if;
908 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
909 -- when renaming declaration has a named access type. The Ada 2012
910 -- coverage rules allow an anonymous access type in the context of
911 -- an expected named general access type, but the renaming rules
912 -- require the types to be the same. (An exception is when the type
913 -- of the renaming is also an anonymous access type, which can only
914 -- happen due to a renaming created by the expander.)
916 if Nkind (Nam) = N_Type_Conversion
917 and then not Comes_From_Source (Nam)
918 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
919 and then Ekind (T) /= E_Anonymous_Access_Type
920 then
921 Wrong_Type (Expression (Nam), T); -- Should we give better error???
922 end if;
924 -- Check that a class-wide object is not being renamed as an object
925 -- of a specific type. The test for access types is needed to exclude
926 -- cases where the renamed object is a dynamically tagged access
927 -- result, such as occurs in certain expansions.
929 if Is_Tagged_Type (T) then
930 Check_Dynamically_Tagged_Expression
931 (Expr => Nam,
932 Typ => T,
933 Related_Nod => N);
934 end if;
936 -- Ada 2005 (AI-230/AI-254): Access renaming
938 else pragma Assert (Present (Access_Definition (N)));
939 T := Access_Definition
940 (Related_Nod => N,
941 N => Access_Definition (N));
943 Analyze (Nam);
945 -- Ada 2005 AI05-105: if the declaration has an anonymous access
946 -- type, the renamed object must also have an anonymous type, and
947 -- this is a name resolution rule. This was implicit in the last part
948 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
949 -- recent AI.
951 if not Is_Overloaded (Nam) then
952 if Ekind (Etype (Nam)) /= Ekind (T) then
953 Error_Msg_N
954 ("expect anonymous access type in object renaming", N);
955 end if;
957 else
958 declare
959 I : Interp_Index;
960 It : Interp;
961 Typ : Entity_Id := Empty;
962 Seen : Boolean := False;
964 begin
965 Get_First_Interp (Nam, I, It);
966 while Present (It.Typ) loop
968 -- Renaming is ambiguous if more than one candidate
969 -- interpretation is type-conformant with the context.
971 if Ekind (It.Typ) = Ekind (T) then
972 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
973 and then
974 Type_Conformant
975 (Designated_Type (T), Designated_Type (It.Typ))
976 then
977 if not Seen then
978 Seen := True;
979 else
980 Error_Msg_N
981 ("ambiguous expression in renaming", Nam);
982 end if;
984 elsif Ekind (T) = E_Anonymous_Access_Type
985 and then
986 Covers (Designated_Type (T), Designated_Type (It.Typ))
987 then
988 if not Seen then
989 Seen := True;
990 else
991 Error_Msg_N
992 ("ambiguous expression in renaming", Nam);
993 end if;
994 end if;
996 if Covers (T, It.Typ) then
997 Typ := It.Typ;
998 Set_Etype (Nam, Typ);
999 Set_Is_Overloaded (Nam, False);
1000 end if;
1001 end if;
1003 Get_Next_Interp (I, It);
1004 end loop;
1005 end;
1006 end if;
1008 Resolve (Nam, T);
1010 -- Ada 2005 (AI-231): In the case where the type is defined by an
1011 -- access_definition, the renamed entity shall be of an access-to-
1012 -- constant type if and only if the access_definition defines an
1013 -- access-to-constant type. ARM 8.5.1(4)
1015 if Constant_Present (Access_Definition (N))
1016 and then not Is_Access_Constant (Etype (Nam))
1017 then
1018 Error_Msg_N ("(Ada 2005): the renamed object is not "
1019 & "access-to-constant (RM 8.5.1(6))", N);
1021 elsif not Constant_Present (Access_Definition (N))
1022 and then Is_Access_Constant (Etype (Nam))
1023 then
1024 Error_Msg_N ("(Ada 2005): the renamed object is not "
1025 & "access-to-variable (RM 8.5.1(6))", N);
1026 end if;
1028 if Is_Access_Subprogram_Type (Etype (Nam)) then
1029 Check_Subtype_Conformant
1030 (Designated_Type (T), Designated_Type (Etype (Nam)));
1032 elsif not Subtypes_Statically_Match
1033 (Designated_Type (T),
1034 Available_View (Designated_Type (Etype (Nam))))
1035 then
1036 Error_Msg_N
1037 ("subtype of renamed object does not statically match", N);
1038 end if;
1039 end if;
1041 -- Special processing for renaming function return object. Some errors
1042 -- and warnings are produced only for calls that come from source.
1044 if Nkind (Nam) = N_Function_Call then
1045 case Ada_Version is
1047 -- Usage is illegal in Ada 83
1049 when Ada_83 =>
1050 if Comes_From_Source (Nam) then
1051 Error_Msg_N
1052 ("(Ada 83) cannot rename function return object", Nam);
1053 end if;
1055 -- In Ada 95, warn for odd case of renaming parameterless function
1056 -- call if this is not a limited type (where this is useful).
1058 when others =>
1059 if Warn_On_Object_Renames_Function
1060 and then No (Parameter_Associations (Nam))
1061 and then not Is_Limited_Type (Etype (Nam))
1062 and then Comes_From_Source (Nam)
1063 then
1064 Error_Msg_N
1065 ("renaming function result object is suspicious?R?", Nam);
1066 Error_Msg_NE
1067 ("\function & will be called only once?R?", Nam,
1068 Entity (Name (Nam)));
1069 Error_Msg_N -- CODEFIX
1070 ("\suggest using an initialized constant "
1071 & "object instead?R?", Nam);
1072 end if;
1074 end case;
1075 end if;
1077 Check_Constrained_Object;
1079 -- An object renaming requires an exact match of the type. Class-wide
1080 -- matching is not allowed.
1082 if Is_Class_Wide_Type (T)
1083 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1084 then
1085 Wrong_Type (Nam, T);
1086 end if;
1088 T2 := Etype (Nam);
1090 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1092 if Nkind (Nam) = N_Explicit_Dereference
1093 and then Ekind (Etype (T2)) = E_Incomplete_Type
1094 then
1095 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1096 return;
1098 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1099 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1100 return;
1101 end if;
1103 -- Ada 2005 (AI-327)
1105 if Ada_Version >= Ada_2005
1106 and then Nkind (Nam) = N_Attribute_Reference
1107 and then Attribute_Name (Nam) = Name_Priority
1108 then
1109 null;
1111 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1112 declare
1113 Nam_Decl : Node_Id;
1114 Nam_Ent : Entity_Id;
1116 begin
1117 if Nkind (Nam) = N_Attribute_Reference then
1118 Nam_Ent := Entity (Prefix (Nam));
1119 else
1120 Nam_Ent := Entity (Nam);
1121 end if;
1123 Nam_Decl := Parent (Nam_Ent);
1125 if Has_Null_Exclusion (N)
1126 and then not Has_Null_Exclusion (Nam_Decl)
1127 then
1128 -- Ada 2005 (AI-423): If the object name denotes a generic
1129 -- formal object of a generic unit G, and the object renaming
1130 -- declaration occurs within the body of G or within the body
1131 -- of a generic unit declared within the declarative region
1132 -- of G, then the declaration of the formal object of G must
1133 -- have a null exclusion or a null-excluding subtype.
1135 if Is_Formal_Object (Nam_Ent)
1136 and then In_Generic_Scope (Id)
1137 then
1138 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1139 Error_Msg_N
1140 ("renamed formal does not exclude `NULL` "
1141 & "(RM 8.5.1(4.6/2))", N);
1143 elsif In_Package_Body (Scope (Id)) then
1144 Error_Msg_N
1145 ("formal object does not have a null exclusion"
1146 & "(RM 8.5.1(4.6/2))", N);
1147 end if;
1149 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1150 -- shall exclude null.
1152 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1153 Error_Msg_N
1154 ("renamed object does not exclude `NULL` "
1155 & "(RM 8.5.1(4.6/2))", N);
1157 -- An instance is illegal if it contains a renaming that
1158 -- excludes null, and the actual does not. The renaming
1159 -- declaration has already indicated that the declaration
1160 -- of the renamed actual in the instance will raise
1161 -- constraint_error.
1163 elsif Nkind (Nam_Decl) = N_Object_Declaration
1164 and then In_Instance
1165 and then
1166 Present (Corresponding_Generic_Association (Nam_Decl))
1167 and then Nkind (Expression (Nam_Decl)) =
1168 N_Raise_Constraint_Error
1169 then
1170 Error_Msg_N
1171 ("renamed actual does not exclude `NULL` "
1172 & "(RM 8.5.1(4.6/2))", N);
1174 -- Finally, if there is a null exclusion, the subtype mark
1175 -- must not be null-excluding.
1177 elsif No (Access_Definition (N))
1178 and then Can_Never_Be_Null (T)
1179 then
1180 Error_Msg_NE
1181 ("`NOT NULL` not allowed (& already excludes null)",
1182 N, T);
1184 end if;
1186 elsif Can_Never_Be_Null (T)
1187 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1188 then
1189 Error_Msg_N
1190 ("renamed object does not exclude `NULL` "
1191 & "(RM 8.5.1(4.6/2))", N);
1193 elsif Has_Null_Exclusion (N)
1194 and then No (Access_Definition (N))
1195 and then Can_Never_Be_Null (T)
1196 then
1197 Error_Msg_NE
1198 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1199 end if;
1200 end;
1201 end if;
1203 -- Set the Ekind of the entity, unless it has been set already, as is
1204 -- the case for the iteration object over a container with no variable
1205 -- indexing. In that case it's been marked as a constant, and we do not
1206 -- want to change it to a variable.
1208 if Ekind (Id) /= E_Constant then
1209 Set_Ekind (Id, E_Variable);
1210 end if;
1212 -- Initialize the object size and alignment. Note that we used to call
1213 -- Init_Size_Align here, but that's wrong for objects which have only
1214 -- an Esize, not an RM_Size field.
1216 Init_Object_Size_Align (Id);
1218 if T = Any_Type or else Etype (Nam) = Any_Type then
1219 return;
1221 -- Verify that the renamed entity is an object or a function call. It
1222 -- may have been rewritten in several ways.
1224 elsif Is_Object_Reference (Nam) then
1225 if Comes_From_Source (N) then
1226 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1227 Error_Msg_N
1228 ("illegal renaming of discriminant-dependent component", Nam);
1229 end if;
1231 -- If the renaming comes from source and the renamed object is a
1232 -- dereference, then mark the prefix as needing debug information,
1233 -- since it might have been rewritten hence internally generated
1234 -- and Debug_Renaming_Declaration will link the renaming to it.
1236 if Nkind (Nam) = N_Explicit_Dereference
1237 and then Is_Entity_Name (Prefix (Nam))
1238 then
1239 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1240 end if;
1241 end if;
1243 -- A static function call may have been folded into a literal
1245 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1247 -- When expansion is disabled, attribute reference is not rewritten
1248 -- as function call. Otherwise it may be rewritten as a conversion,
1249 -- so check original node.
1251 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1252 and then Is_Function_Attribute_Name
1253 (Attribute_Name (Original_Node (Nam))))
1255 -- Weird but legal, equivalent to renaming a function call. Illegal
1256 -- if the literal is the result of constant-folding an attribute
1257 -- reference that is not a function.
1259 or else (Is_Entity_Name (Nam)
1260 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1261 and then
1262 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1264 or else (Nkind (Nam) = N_Type_Conversion
1265 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1266 then
1267 null;
1269 elsif Nkind (Nam) = N_Type_Conversion then
1270 Error_Msg_N
1271 ("renaming of conversion only allowed for tagged types", Nam);
1273 -- Ada 2005 (AI-327)
1275 elsif Ada_Version >= Ada_2005
1276 and then Nkind (Nam) = N_Attribute_Reference
1277 and then Attribute_Name (Nam) = Name_Priority
1278 then
1279 null;
1281 -- Allow internally generated x'Reference expression
1283 elsif Nkind (Nam) = N_Reference then
1284 null;
1286 else
1287 Error_Msg_N ("expect object name in renaming", Nam);
1288 end if;
1290 Set_Etype (Id, T2);
1292 if not Is_Variable (Nam) then
1293 Set_Ekind (Id, E_Constant);
1294 Set_Never_Set_In_Source (Id, True);
1295 Set_Is_True_Constant (Id, True);
1296 end if;
1298 -- The entity of the renaming declaration needs to reflect whether the
1299 -- renamed object is volatile. Is_Volatile is set if the renamed object
1300 -- is volatile in the RM legality sense.
1302 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1304 -- Treat as volatile if we just set the Volatile flag
1306 if Is_Volatile (Id)
1308 -- Or if we are renaming an entity which was marked this way
1310 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1312 or else (Is_Entity_Name (Nam)
1313 and then Treat_As_Volatile (Entity (Nam)))
1314 then
1315 Set_Treat_As_Volatile (Id, True);
1316 end if;
1318 -- Now make the link to the renamed object
1320 Set_Renamed_Object (Id, Nam);
1322 -- Implementation-defined aspect specifications can appear in a renaming
1323 -- declaration, but not language-defined ones. The call to procedure
1324 -- Analyze_Aspect_Specifications will take care of this error check.
1326 if Has_Aspects (N) then
1327 Analyze_Aspect_Specifications (N, Id);
1328 end if;
1330 -- Deal with dimensions
1332 Analyze_Dimension (N);
1333 end Analyze_Object_Renaming;
1335 ------------------------------
1336 -- Analyze_Package_Renaming --
1337 ------------------------------
1339 procedure Analyze_Package_Renaming (N : Node_Id) is
1340 New_P : constant Entity_Id := Defining_Entity (N);
1341 Old_P : Entity_Id;
1342 Spec : Node_Id;
1344 begin
1345 if Name (N) = Error then
1346 return;
1347 end if;
1349 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1351 Check_Text_IO_Special_Unit (Name (N));
1353 if Current_Scope /= Standard_Standard then
1354 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1355 end if;
1357 Enter_Name (New_P);
1358 Analyze (Name (N));
1360 if Is_Entity_Name (Name (N)) then
1361 Old_P := Entity (Name (N));
1362 else
1363 Old_P := Any_Id;
1364 end if;
1366 if Etype (Old_P) = Any_Type then
1367 Error_Msg_N ("expect package name in renaming", Name (N));
1369 elsif Ekind (Old_P) /= E_Package
1370 and then not (Ekind (Old_P) = E_Generic_Package
1371 and then In_Open_Scopes (Old_P))
1372 then
1373 if Ekind (Old_P) = E_Generic_Package then
1374 Error_Msg_N
1375 ("generic package cannot be renamed as a package", Name (N));
1376 else
1377 Error_Msg_Sloc := Sloc (Old_P);
1378 Error_Msg_NE
1379 ("expect package name in renaming, found& declared#",
1380 Name (N), Old_P);
1381 end if;
1383 -- Set basic attributes to minimize cascaded errors
1385 Set_Ekind (New_P, E_Package);
1386 Set_Etype (New_P, Standard_Void_Type);
1388 -- Here for OK package renaming
1390 else
1391 -- Entities in the old package are accessible through the renaming
1392 -- entity. The simplest implementation is to have both packages share
1393 -- the entity list.
1395 Set_Ekind (New_P, E_Package);
1396 Set_Etype (New_P, Standard_Void_Type);
1398 if Present (Renamed_Object (Old_P)) then
1399 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1400 else
1401 Set_Renamed_Object (New_P, Old_P);
1402 end if;
1404 Set_Has_Completion (New_P);
1406 Set_First_Entity (New_P, First_Entity (Old_P));
1407 Set_Last_Entity (New_P, Last_Entity (Old_P));
1408 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1409 Check_Library_Unit_Renaming (N, Old_P);
1410 Generate_Reference (Old_P, Name (N));
1412 -- If the renaming is in the visible part of a package, then we set
1413 -- Renamed_In_Spec for the renamed package, to prevent giving
1414 -- warnings about no entities referenced. Such a warning would be
1415 -- overenthusiastic, since clients can see entities in the renamed
1416 -- package via the visible package renaming.
1418 declare
1419 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1420 begin
1421 if Ekind (Ent) = E_Package
1422 and then not In_Private_Part (Ent)
1423 and then In_Extended_Main_Source_Unit (N)
1424 and then Ekind (Old_P) = E_Package
1425 then
1426 Set_Renamed_In_Spec (Old_P);
1427 end if;
1428 end;
1430 -- If this is the renaming declaration of a package instantiation
1431 -- within itself, it is the declaration that ends the list of actuals
1432 -- for the instantiation. At this point, the subtypes that rename
1433 -- the actuals are flagged as generic, to avoid spurious ambiguities
1434 -- if the actuals for two distinct formals happen to coincide. If
1435 -- the actual is a private type, the subtype has a private completion
1436 -- that is flagged in the same fashion.
1438 -- Resolution is identical to what is was in the original generic.
1439 -- On exit from the generic instance, these are turned into regular
1440 -- subtypes again, so they are compatible with types in their class.
1442 if not Is_Generic_Instance (Old_P) then
1443 return;
1444 else
1445 Spec := Specification (Unit_Declaration_Node (Old_P));
1446 end if;
1448 if Nkind (Spec) = N_Package_Specification
1449 and then Present (Generic_Parent (Spec))
1450 and then Old_P = Current_Scope
1451 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1452 then
1453 declare
1454 E : Entity_Id;
1456 begin
1457 E := First_Entity (Old_P);
1458 while Present (E) and then E /= New_P loop
1459 if Is_Type (E)
1460 and then Nkind (Parent (E)) = N_Subtype_Declaration
1461 then
1462 Set_Is_Generic_Actual_Type (E);
1464 if Is_Private_Type (E)
1465 and then Present (Full_View (E))
1466 then
1467 Set_Is_Generic_Actual_Type (Full_View (E));
1468 end if;
1469 end if;
1471 Next_Entity (E);
1472 end loop;
1473 end;
1474 end if;
1475 end if;
1477 -- Implementation-defined aspect specifications can appear in a renaming
1478 -- declaration, but not language-defined ones. The call to procedure
1479 -- Analyze_Aspect_Specifications will take care of this error check.
1481 if Has_Aspects (N) then
1482 Analyze_Aspect_Specifications (N, New_P);
1483 end if;
1484 end Analyze_Package_Renaming;
1486 -------------------------------
1487 -- Analyze_Renamed_Character --
1488 -------------------------------
1490 procedure Analyze_Renamed_Character
1491 (N : Node_Id;
1492 New_S : Entity_Id;
1493 Is_Body : Boolean)
1495 C : constant Node_Id := Name (N);
1497 begin
1498 if Ekind (New_S) = E_Function then
1499 Resolve (C, Etype (New_S));
1501 if Is_Body then
1502 Check_Frozen_Renaming (N, New_S);
1503 end if;
1505 else
1506 Error_Msg_N ("character literal can only be renamed as function", N);
1507 end if;
1508 end Analyze_Renamed_Character;
1510 ---------------------------------
1511 -- Analyze_Renamed_Dereference --
1512 ---------------------------------
1514 procedure Analyze_Renamed_Dereference
1515 (N : Node_Id;
1516 New_S : Entity_Id;
1517 Is_Body : Boolean)
1519 Nam : constant Node_Id := Name (N);
1520 P : constant Node_Id := Prefix (Nam);
1521 Typ : Entity_Id;
1522 Ind : Interp_Index;
1523 It : Interp;
1525 begin
1526 if not Is_Overloaded (P) then
1527 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1528 or else not Type_Conformant (Etype (Nam), New_S)
1529 then
1530 Error_Msg_N ("designated type does not match specification", P);
1531 else
1532 Resolve (P);
1533 end if;
1535 return;
1537 else
1538 Typ := Any_Type;
1539 Get_First_Interp (Nam, Ind, It);
1541 while Present (It.Nam) loop
1543 if Ekind (It.Nam) = E_Subprogram_Type
1544 and then Type_Conformant (It.Nam, New_S)
1545 then
1546 if Typ /= Any_Id then
1547 Error_Msg_N ("ambiguous renaming", P);
1548 return;
1549 else
1550 Typ := It.Nam;
1551 end if;
1552 end if;
1554 Get_Next_Interp (Ind, It);
1555 end loop;
1557 if Typ = Any_Type then
1558 Error_Msg_N ("designated type does not match specification", P);
1559 else
1560 Resolve (N, Typ);
1562 if Is_Body then
1563 Check_Frozen_Renaming (N, New_S);
1564 end if;
1565 end if;
1566 end if;
1567 end Analyze_Renamed_Dereference;
1569 ---------------------------
1570 -- Analyze_Renamed_Entry --
1571 ---------------------------
1573 procedure Analyze_Renamed_Entry
1574 (N : Node_Id;
1575 New_S : Entity_Id;
1576 Is_Body : Boolean)
1578 Nam : constant Node_Id := Name (N);
1579 Sel : constant Node_Id := Selector_Name (Nam);
1580 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1581 Old_S : Entity_Id;
1583 begin
1584 if Entity (Sel) = Any_Id then
1586 -- Selector is undefined on prefix. Error emitted already
1588 Set_Has_Completion (New_S);
1589 return;
1590 end if;
1592 -- Otherwise find renamed entity and build body of New_S as a call to it
1594 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1596 if Old_S = Any_Id then
1597 Error_Msg_N (" no subprogram or entry matches specification", N);
1598 else
1599 if Is_Body then
1600 Check_Subtype_Conformant (New_S, Old_S, N);
1601 Generate_Reference (New_S, Defining_Entity (N), 'b');
1602 Style.Check_Identifier (Defining_Entity (N), New_S);
1604 else
1605 -- Only mode conformance required for a renaming_as_declaration
1607 Check_Mode_Conformant (New_S, Old_S, N);
1608 end if;
1610 Inherit_Renamed_Profile (New_S, Old_S);
1612 -- The prefix can be an arbitrary expression that yields a task or
1613 -- protected object, so it must be resolved.
1615 Resolve (Prefix (Nam), Scope (Old_S));
1616 end if;
1618 Set_Convention (New_S, Convention (Old_S));
1619 Set_Has_Completion (New_S, Inside_A_Generic);
1621 -- AI05-0225: If the renamed entity is a procedure or entry of a
1622 -- protected object, the target object must be a variable.
1624 if Ekind (Scope (Old_S)) in Protected_Kind
1625 and then Ekind (New_S) = E_Procedure
1626 and then not Is_Variable (Prefix (Nam))
1627 then
1628 if Is_Actual then
1629 Error_Msg_N
1630 ("target object of protected operation used as actual for "
1631 & "formal procedure must be a variable", Nam);
1632 else
1633 Error_Msg_N
1634 ("target object of protected operation renamed as procedure, "
1635 & "must be a variable", Nam);
1636 end if;
1637 end if;
1639 if Is_Body then
1640 Check_Frozen_Renaming (N, New_S);
1641 end if;
1642 end Analyze_Renamed_Entry;
1644 -----------------------------------
1645 -- Analyze_Renamed_Family_Member --
1646 -----------------------------------
1648 procedure Analyze_Renamed_Family_Member
1649 (N : Node_Id;
1650 New_S : Entity_Id;
1651 Is_Body : Boolean)
1653 Nam : constant Node_Id := Name (N);
1654 P : constant Node_Id := Prefix (Nam);
1655 Old_S : Entity_Id;
1657 begin
1658 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1659 or else (Nkind (P) = N_Selected_Component
1660 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1661 then
1662 if Is_Entity_Name (P) then
1663 Old_S := Entity (P);
1664 else
1665 Old_S := Entity (Selector_Name (P));
1666 end if;
1668 if not Entity_Matches_Spec (Old_S, New_S) then
1669 Error_Msg_N ("entry family does not match specification", N);
1671 elsif Is_Body then
1672 Check_Subtype_Conformant (New_S, Old_S, N);
1673 Generate_Reference (New_S, Defining_Entity (N), 'b');
1674 Style.Check_Identifier (Defining_Entity (N), New_S);
1675 end if;
1677 else
1678 Error_Msg_N ("no entry family matches specification", N);
1679 end if;
1681 Set_Has_Completion (New_S, Inside_A_Generic);
1683 if Is_Body then
1684 Check_Frozen_Renaming (N, New_S);
1685 end if;
1686 end Analyze_Renamed_Family_Member;
1688 -----------------------------------------
1689 -- Analyze_Renamed_Primitive_Operation --
1690 -----------------------------------------
1692 procedure Analyze_Renamed_Primitive_Operation
1693 (N : Node_Id;
1694 New_S : Entity_Id;
1695 Is_Body : Boolean)
1697 Old_S : Entity_Id;
1699 function Conforms
1700 (Subp : Entity_Id;
1701 Ctyp : Conformance_Type) return Boolean;
1702 -- Verify that the signatures of the renamed entity and the new entity
1703 -- match. The first formal of the renamed entity is skipped because it
1704 -- is the target object in any subsequent call.
1706 --------------
1707 -- Conforms --
1708 --------------
1710 function Conforms
1711 (Subp : Entity_Id;
1712 Ctyp : Conformance_Type) return Boolean
1714 Old_F : Entity_Id;
1715 New_F : Entity_Id;
1717 begin
1718 if Ekind (Subp) /= Ekind (New_S) then
1719 return False;
1720 end if;
1722 Old_F := Next_Formal (First_Formal (Subp));
1723 New_F := First_Formal (New_S);
1724 while Present (Old_F) and then Present (New_F) loop
1725 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1726 return False;
1727 end if;
1729 if Ctyp >= Mode_Conformant
1730 and then Ekind (Old_F) /= Ekind (New_F)
1731 then
1732 return False;
1733 end if;
1735 Next_Formal (New_F);
1736 Next_Formal (Old_F);
1737 end loop;
1739 return True;
1740 end Conforms;
1742 -- Start of processing for Analyze_Renamed_Primitive_Operation
1744 begin
1745 if not Is_Overloaded (Selector_Name (Name (N))) then
1746 Old_S := Entity (Selector_Name (Name (N)));
1748 if not Conforms (Old_S, Type_Conformant) then
1749 Old_S := Any_Id;
1750 end if;
1752 else
1753 -- Find the operation that matches the given signature
1755 declare
1756 It : Interp;
1757 Ind : Interp_Index;
1759 begin
1760 Old_S := Any_Id;
1761 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1763 while Present (It.Nam) loop
1764 if Conforms (It.Nam, Type_Conformant) then
1765 Old_S := It.Nam;
1766 end if;
1768 Get_Next_Interp (Ind, It);
1769 end loop;
1770 end;
1771 end if;
1773 if Old_S = Any_Id then
1774 Error_Msg_N (" no subprogram or entry matches specification", N);
1776 else
1777 if Is_Body then
1778 if not Conforms (Old_S, Subtype_Conformant) then
1779 Error_Msg_N ("subtype conformance error in renaming", N);
1780 end if;
1782 Generate_Reference (New_S, Defining_Entity (N), 'b');
1783 Style.Check_Identifier (Defining_Entity (N), New_S);
1785 else
1786 -- Only mode conformance required for a renaming_as_declaration
1788 if not Conforms (Old_S, Mode_Conformant) then
1789 Error_Msg_N ("mode conformance error in renaming", N);
1790 end if;
1792 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1793 -- view of a subprogram is intrinsic, because the compiler has
1794 -- to generate a wrapper for any call to it. If the name in a
1795 -- subprogram renaming is a prefixed view, the entity is thus
1796 -- intrinsic, and 'Access cannot be applied to it.
1798 Set_Convention (New_S, Convention_Intrinsic);
1799 end if;
1801 -- Inherit_Renamed_Profile (New_S, Old_S);
1803 -- The prefix can be an arbitrary expression that yields an
1804 -- object, so it must be resolved.
1806 Resolve (Prefix (Name (N)));
1807 end if;
1808 end Analyze_Renamed_Primitive_Operation;
1810 ---------------------------------
1811 -- Analyze_Subprogram_Renaming --
1812 ---------------------------------
1814 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1815 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1816 Is_Actual : constant Boolean := Present (Formal_Spec);
1817 Nam : constant Node_Id := Name (N);
1818 Save_AV : constant Ada_Version_Type := Ada_Version;
1819 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1820 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1821 Spec : constant Node_Id := Specification (N);
1823 Old_S : Entity_Id := Empty;
1824 Rename_Spec : Entity_Id;
1826 procedure Build_Class_Wide_Wrapper
1827 (Ren_Id : out Entity_Id;
1828 Wrap_Id : out Entity_Id);
1829 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1830 -- type with unknown discriminants and a generic primitive operation of
1831 -- the said type with a box require special processing when the actual
1832 -- is a class-wide type:
1834 -- generic
1835 -- type Formal_Typ (<>) is private;
1836 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1837 -- package Gen is ...
1839 -- package Inst is new Gen (Actual_Typ'Class);
1841 -- In this case the general renaming mechanism used in the prologue of
1842 -- an instance no longer applies:
1844 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1846 -- The above is replaced the following wrapper/renaming combination:
1848 -- procedure Prim_Op (Param : Formal_Typ) is -- wrapper
1849 -- begin
1850 -- Prim_Op (Param); -- primitive
1851 -- end Wrapper;
1853 -- procedure Dummy (Param : Formal_Typ) renames Prim_Op;
1855 -- This transformation applies only if there is no explicit visible
1856 -- class-wide operation at the point of the instantiation. Ren_Id is
1857 -- the entity of the renaming declaration. Wrap_Id is the entity of
1858 -- the generated class-wide wrapper (or Any_Id).
1860 procedure Check_Null_Exclusion
1861 (Ren : Entity_Id;
1862 Sub : Entity_Id);
1863 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1864 -- following AI rules:
1866 -- If Ren is a renaming of a formal subprogram and one of its
1867 -- parameters has a null exclusion, then the corresponding formal
1868 -- in Sub must also have one. Otherwise the subtype of the Sub's
1869 -- formal parameter must exclude null.
1871 -- If Ren is a renaming of a formal function and its return
1872 -- profile has a null exclusion, then Sub's return profile must
1873 -- have one. Otherwise the subtype of Sub's return profile must
1874 -- exclude null.
1876 procedure Freeze_Actual_Profile;
1877 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1878 -- types: a callable entity freezes its profile, unless it has an
1879 -- incomplete untagged formal (RM 13.14(10.2/3)).
1881 function Has_Class_Wide_Actual return Boolean;
1882 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1883 -- defaulted formal subprogram where the actual for the controlling
1884 -- formal type is class-wide.
1886 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1887 -- Find renamed entity when the declaration is a renaming_as_body and
1888 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1889 -- rule that a renaming_as_body is illegal if the declaration occurs
1890 -- before the subprogram it completes is frozen, and renaming indirectly
1891 -- renames the subprogram itself.(Defect Report 8652/0027).
1893 ------------------------------
1894 -- Build_Class_Wide_Wrapper --
1895 ------------------------------
1897 procedure Build_Class_Wide_Wrapper
1898 (Ren_Id : out Entity_Id;
1899 Wrap_Id : out Entity_Id)
1901 Loc : constant Source_Ptr := Sloc (N);
1903 function Build_Call
1904 (Subp_Id : Entity_Id;
1905 Params : List_Id) return Node_Id;
1906 -- Create a dispatching call to invoke routine Subp_Id with actuals
1907 -- built from the parameter specifications of list Params.
1909 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1910 -- Create a subprogram specification based on the subprogram profile
1911 -- of Subp_Id.
1913 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1914 -- Find a primitive subprogram of type Typ which matches the profile
1915 -- of the renaming declaration.
1917 procedure Interpretation_Error (Subp_Id : Entity_Id);
1918 -- Emit a continuation error message suggesting subprogram Subp_Id as
1919 -- a possible interpretation.
1921 ----------------
1922 -- Build_Call --
1923 ----------------
1925 function Build_Call
1926 (Subp_Id : Entity_Id;
1927 Params : List_Id) return Node_Id
1929 Actuals : constant List_Id := New_List;
1930 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
1931 Formal : Node_Id;
1933 begin
1934 -- Build the actual parameters of the call
1936 Formal := First (Params);
1937 while Present (Formal) loop
1938 Append_To (Actuals,
1939 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
1940 Next (Formal);
1941 end loop;
1943 -- Generate:
1944 -- return Subp_Id (Actuals);
1946 if Ekind_In (Subp_Id, E_Function, E_Operator) then
1947 return
1948 Make_Simple_Return_Statement (Loc,
1949 Expression =>
1950 Make_Function_Call (Loc,
1951 Name => Call_Ref,
1952 Parameter_Associations => Actuals));
1954 -- Generate:
1955 -- Subp_Id (Actuals);
1957 else
1958 return
1959 Make_Procedure_Call_Statement (Loc,
1960 Name => Call_Ref,
1961 Parameter_Associations => Actuals);
1962 end if;
1963 end Build_Call;
1965 ----------------
1966 -- Build_Spec --
1967 ----------------
1969 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
1970 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
1971 Spec_Id : constant Entity_Id :=
1972 Make_Defining_Identifier (Loc, Chars (Subp_Id));
1974 begin
1975 if Ekind (Formal_Spec) = E_Procedure then
1976 return
1977 Make_Procedure_Specification (Loc,
1978 Defining_Unit_Name => Spec_Id,
1979 Parameter_Specifications => Params);
1980 else
1981 return
1982 Make_Function_Specification (Loc,
1983 Defining_Unit_Name => Spec_Id,
1984 Parameter_Specifications => Params,
1985 Result_Definition =>
1986 New_Copy_Tree (Result_Definition (Spec)));
1987 end if;
1988 end Build_Spec;
1990 --------------------
1991 -- Find_Primitive --
1992 --------------------
1994 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
1995 procedure Replace_Parameter_Types (Spec : Node_Id);
1996 -- Given a specification Spec, replace all class-wide parameter
1997 -- types with reference to type Typ.
1999 -----------------------------
2000 -- Replace_Parameter_Types --
2001 -----------------------------
2003 procedure Replace_Parameter_Types (Spec : Node_Id) is
2004 Formal : Node_Id;
2005 Formal_Id : Entity_Id;
2006 Formal_Typ : Node_Id;
2008 begin
2009 Formal := First (Parameter_Specifications (Spec));
2010 while Present (Formal) loop
2011 Formal_Id := Defining_Identifier (Formal);
2012 Formal_Typ := Parameter_Type (Formal);
2014 -- Create a new entity for each class-wide formal to prevent
2015 -- aliasing with the original renaming. Replace the type of
2016 -- such a parameter with the candidate type.
2018 if Nkind (Formal_Typ) = N_Identifier
2019 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2020 then
2021 Set_Defining_Identifier (Formal,
2022 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2024 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2025 end if;
2027 Next (Formal);
2028 end loop;
2029 end Replace_Parameter_Types;
2031 -- Local variables
2033 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2034 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2035 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2036 Subp_Id : Entity_Id;
2038 -- Start of processing for Find_Primitive
2040 begin
2041 -- Each attempt to find a suitable primitive of a particular type
2042 -- operates on its own copy of the original renaming. As a result
2043 -- the original renaming is kept decoration and side-effect free.
2045 -- Inherit the overloaded status of the renamed subprogram name
2047 if Is_Overloaded (Nam) then
2048 Set_Is_Overloaded (Alt_Nam);
2049 Save_Interps (Nam, Alt_Nam);
2050 end if;
2052 -- The copied renaming is hidden from visibility to prevent the
2053 -- pollution of the enclosing context.
2055 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2057 -- The types of all class-wide parameters must be changed to the
2058 -- candidate type.
2060 Replace_Parameter_Types (Alt_Spec);
2062 -- Try to find a suitable primitive which matches the altered
2063 -- profile of the renaming specification.
2065 Subp_Id :=
2066 Find_Renamed_Entity
2067 (N => Alt_Ren,
2068 Nam => Name (Alt_Ren),
2069 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2070 Is_Actual => Is_Actual);
2072 -- Do not return Any_Id if the resolion of the altered profile
2073 -- failed as this complicates further checks on the caller side,
2074 -- return Empty instead.
2076 if Subp_Id = Any_Id then
2077 return Empty;
2078 else
2079 return Subp_Id;
2080 end if;
2081 end Find_Primitive;
2083 --------------------------
2084 -- Interpretation_Error --
2085 --------------------------
2087 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2088 begin
2089 Error_Msg_Sloc := Sloc (Subp_Id);
2090 Error_Msg_NE
2091 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2092 end Interpretation_Error;
2094 -- Local variables
2096 Actual_Typ : Entity_Id := Empty;
2097 -- The actual class-wide type for Formal_Typ
2099 CW_Prim_Op : Entity_Id;
2100 -- The class-wide primitive (if any) which corresponds to the renamed
2101 -- generic formal subprogram.
2103 Formal_Typ : Entity_Id := Empty;
2104 -- The generic formal type (if any) with unknown discriminants
2106 Root_Prim_Op : Entity_Id;
2107 -- The root type primitive (if any) which corresponds to the renamed
2108 -- generic formal subprogram.
2110 Body_Decl : Node_Id;
2111 Formal : Node_Id;
2112 Prim_Op : Entity_Id;
2113 Spec_Decl : Node_Id;
2115 -- Start of processing for Build_Class_Wide_Wrapper
2117 begin
2118 -- Analyze the specification of the renaming in case the generation
2119 -- of the class-wide wrapper fails.
2121 Ren_Id := Analyze_Subprogram_Specification (Spec);
2122 Wrap_Id := Any_Id;
2124 -- Do not attempt to build a wrapper if the renaming is in error
2126 if Error_Posted (Nam) then
2127 return;
2128 end if;
2130 -- Analyze the renamed name, but do not resolve it. The resolution is
2131 -- completed once a suitable primitive is found.
2133 Analyze (Nam);
2135 -- Step 1: Find the generic formal type with unknown discriminants
2136 -- and its corresponding class-wide actual type from the renamed
2137 -- generic formal subprogram.
2139 Formal := First_Formal (Formal_Spec);
2140 while Present (Formal) loop
2141 if Has_Unknown_Discriminants (Etype (Formal))
2142 and then not Is_Class_Wide_Type (Etype (Formal))
2143 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2144 then
2145 Formal_Typ := Etype (Formal);
2146 Actual_Typ := Get_Instance_Of (Formal_Typ);
2147 exit;
2148 end if;
2150 Next_Formal (Formal);
2151 end loop;
2153 -- The specification of the generic formal subprogram should always
2154 -- contain a formal type with unknown discriminants whose actual is
2155 -- a class-wide type, otherwise this indicates a failure in routine
2156 -- Has_Class_Wide_Actual.
2158 pragma Assert (Present (Formal_Typ));
2160 -- Step 2: Find the proper primitive which corresponds to the renamed
2161 -- generic formal subprogram.
2163 CW_Prim_Op := Find_Primitive (Actual_Typ);
2164 Root_Prim_Op := Find_Primitive (Etype (Actual_Typ));
2166 -- The class-wide actual type has two primitives which correspond to
2167 -- the renamed generic formal subprogram:
2169 -- with procedure Prim_Op (Param : Formal_Typ);
2171 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2172 -- procedure Prim_Op (Param : Actual_Typ'Class);
2174 -- Even though the declaration of the two primitives is legal, a call
2175 -- to either one is ambiguous and therefore illegal.
2177 if Present (CW_Prim_Op) and then Present (Root_Prim_Op) then
2179 -- Deal with abstract primitives
2181 if Is_Abstract_Subprogram (CW_Prim_Op)
2182 or else Is_Abstract_Subprogram (Root_Prim_Op)
2183 then
2184 -- An abstract subprogram cannot act as a generic actual, but
2185 -- the partial parameterization of the instance may hide the
2186 -- true nature of the actual. Emit an error when both options
2187 -- are abstract.
2189 if Is_Abstract_Subprogram (CW_Prim_Op)
2190 and then Is_Abstract_Subprogram (Root_Prim_Op)
2191 then
2192 Error_Msg_NE
2193 ("abstract subprogram not allowed as generic actual",
2194 Spec, Formal_Spec);
2195 Interpretation_Error (CW_Prim_Op);
2196 Interpretation_Error (Root_Prim_Op);
2197 return;
2199 -- Otherwise choose the non-abstract version
2201 elsif Is_Abstract_Subprogram (Root_Prim_Op) then
2202 Prim_Op := CW_Prim_Op;
2204 else pragma Assert (Is_Abstract_Subprogram (CW_Prim_Op));
2205 Prim_Op := Root_Prim_Op;
2206 end if;
2208 -- If one of the candidate primitives is intrinsic, choose the
2209 -- other (which may also be intrinsic). Preference is given to
2210 -- the primitive of the root type.
2212 elsif Is_Intrinsic_Subprogram (CW_Prim_Op) then
2213 Prim_Op := Root_Prim_Op;
2215 elsif Is_Intrinsic_Subprogram (Root_Prim_Op) then
2216 Prim_Op := CW_Prim_Op;
2218 elsif CW_Prim_Op = Root_Prim_Op then
2219 Prim_Op := Root_Prim_Op;
2221 -- Otherwise there are two perfectly good candidates which satisfy
2222 -- the profile of the renamed generic formal subprogram.
2224 else
2225 Error_Msg_NE
2226 ("ambiguous actual for generic subprogram &",
2227 Spec, Formal_Spec);
2228 Interpretation_Error (CW_Prim_Op);
2229 Interpretation_Error (Root_Prim_Op);
2230 return;
2231 end if;
2233 elsif Present (CW_Prim_Op) then
2234 Prim_Op := CW_Prim_Op;
2236 elsif Present (Root_Prim_Op) then
2237 Prim_Op := Root_Prim_Op;
2239 -- Otherwise there are no candidate primitives. Let the caller
2240 -- diagnose the error.
2242 else
2243 return;
2244 end if;
2246 -- Set the proper entity of the renamed generic formal subprogram
2247 -- and reset its overloaded status now that resolution has finally
2248 -- taken place.
2250 Set_Entity (Nam, Prim_Op);
2251 Set_Is_Overloaded (Nam, False);
2253 -- Step 3: Create the declaration and the body of the wrapper, insert
2254 -- all the pieces into the tree.
2256 Spec_Decl :=
2257 Make_Subprogram_Declaration (Loc,
2258 Specification => Build_Spec (Ren_Id));
2260 Body_Decl :=
2261 Make_Subprogram_Body (Loc,
2262 Specification => Build_Spec (Ren_Id),
2263 Declarations => New_List,
2264 Handled_Statement_Sequence =>
2265 Make_Handled_Sequence_Of_Statements (Loc,
2266 Statements => New_List (
2267 Build_Call
2268 (Subp_Id => Prim_Op,
2269 Params =>
2270 Parameter_Specifications
2271 (Specification (Spec_Decl))))));
2273 Insert_Before_And_Analyze (N, Spec_Decl);
2274 Wrap_Id := Defining_Entity (Spec_Decl);
2276 -- The generated body does not freeze and must be analyzed when the
2277 -- class-wide wrapper is frozen. The body is only needed if expansion
2278 -- is enabled.
2280 if Expander_Active then
2281 Append_Freeze_Action (Wrap_Id, Body_Decl);
2282 end if;
2284 -- Step 4: Once the proper actual type and primitive operation are
2285 -- known, hide the renaming declaration from visibility by giving it
2286 -- a dummy name.
2288 Set_Defining_Unit_Name (Spec, Make_Temporary (Loc, 'R'));
2289 Ren_Id := Analyze_Subprogram_Specification (Spec);
2290 end Build_Class_Wide_Wrapper;
2292 --------------------------
2293 -- Check_Null_Exclusion --
2294 --------------------------
2296 procedure Check_Null_Exclusion
2297 (Ren : Entity_Id;
2298 Sub : Entity_Id)
2300 Ren_Formal : Entity_Id;
2301 Sub_Formal : Entity_Id;
2303 begin
2304 -- Parameter check
2306 Ren_Formal := First_Formal (Ren);
2307 Sub_Formal := First_Formal (Sub);
2308 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2309 if Has_Null_Exclusion (Parent (Ren_Formal))
2310 and then
2311 not (Has_Null_Exclusion (Parent (Sub_Formal))
2312 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2313 then
2314 Error_Msg_NE
2315 ("`NOT NULL` required for parameter &",
2316 Parent (Sub_Formal), Sub_Formal);
2317 end if;
2319 Next_Formal (Ren_Formal);
2320 Next_Formal (Sub_Formal);
2321 end loop;
2323 -- Return profile check
2325 if Nkind (Parent (Ren)) = N_Function_Specification
2326 and then Nkind (Parent (Sub)) = N_Function_Specification
2327 and then Has_Null_Exclusion (Parent (Ren))
2328 and then not (Has_Null_Exclusion (Parent (Sub))
2329 or else Can_Never_Be_Null (Etype (Sub)))
2330 then
2331 Error_Msg_N
2332 ("return must specify `NOT NULL`",
2333 Result_Definition (Parent (Sub)));
2334 end if;
2335 end Check_Null_Exclusion;
2337 ---------------------------
2338 -- Freeze_Actual_Profile --
2339 ---------------------------
2341 procedure Freeze_Actual_Profile is
2342 F : Entity_Id;
2343 Has_Untagged_Inc : Boolean;
2344 Instantiation_Node : constant Node_Id := Parent (N);
2346 begin
2347 if Ada_Version >= Ada_2012 then
2348 F := First_Formal (Formal_Spec);
2349 Has_Untagged_Inc := False;
2350 while Present (F) loop
2351 if Ekind (Etype (F)) = E_Incomplete_Type
2352 and then not Is_Tagged_Type (Etype (F))
2353 then
2354 Has_Untagged_Inc := True;
2355 exit;
2356 end if;
2358 F := Next_Formal (F);
2359 end loop;
2361 if Ekind (Formal_Spec) = E_Function
2362 and then Ekind (Etype (Formal_Spec)) = E_Incomplete_Type
2363 and then not Is_Tagged_Type (Etype (F))
2364 then
2365 Has_Untagged_Inc := True;
2366 end if;
2368 if not Has_Untagged_Inc then
2369 F := First_Formal (Old_S);
2370 while Present (F) loop
2371 Freeze_Before (Instantiation_Node, Etype (F));
2373 if Is_Incomplete_Or_Private_Type (Etype (F))
2374 and then No (Underlying_Type (Etype (F)))
2375 then
2376 -- Exclude generic types, or types derived from them.
2377 -- They will be frozen in the enclosing instance.
2379 if Is_Generic_Type (Etype (F))
2380 or else Is_Generic_Type (Root_Type (Etype (F)))
2381 then
2382 null;
2383 else
2384 Error_Msg_NE
2385 ("type& must be frozen before this point",
2386 Instantiation_Node, Etype (F));
2387 end if;
2388 end if;
2390 F := Next_Formal (F);
2391 end loop;
2392 end if;
2393 end if;
2394 end Freeze_Actual_Profile;
2396 ---------------------------
2397 -- Has_Class_Wide_Actual --
2398 ---------------------------
2400 function Has_Class_Wide_Actual return Boolean is
2401 Formal : Entity_Id;
2402 Formal_Typ : Entity_Id;
2404 begin
2405 if Is_Actual then
2406 Formal := First_Formal (Formal_Spec);
2407 while Present (Formal) loop
2408 Formal_Typ := Etype (Formal);
2410 if Has_Unknown_Discriminants (Formal_Typ)
2411 and then not Is_Class_Wide_Type (Formal_Typ)
2412 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2413 then
2414 return True;
2415 end if;
2417 Next_Formal (Formal);
2418 end loop;
2419 end if;
2421 return False;
2422 end Has_Class_Wide_Actual;
2424 -------------------------
2425 -- Original_Subprogram --
2426 -------------------------
2428 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2429 Orig_Decl : Node_Id;
2430 Orig_Subp : Entity_Id;
2432 begin
2433 -- First case: renamed entity is itself a renaming
2435 if Present (Alias (Subp)) then
2436 return Alias (Subp);
2438 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2439 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2440 then
2441 -- Check if renamed entity is a renaming_as_body
2443 Orig_Decl :=
2444 Unit_Declaration_Node
2445 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2447 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2448 Orig_Subp := Entity (Name (Orig_Decl));
2450 if Orig_Subp = Rename_Spec then
2452 -- Circularity detected
2454 return Orig_Subp;
2456 else
2457 return (Original_Subprogram (Orig_Subp));
2458 end if;
2459 else
2460 return Subp;
2461 end if;
2462 else
2463 return Subp;
2464 end if;
2465 end Original_Subprogram;
2467 -- Local variables
2469 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2470 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2471 -- defaulted formal subprogram when the actual for a related formal
2472 -- type is class-wide.
2474 Inst_Node : Node_Id := Empty;
2475 New_S : Entity_Id;
2477 -- Start of processing for Analyze_Subprogram_Renaming
2479 begin
2480 -- We must test for the attribute renaming case before the Analyze
2481 -- call because otherwise Sem_Attr will complain that the attribute
2482 -- is missing an argument when it is analyzed.
2484 if Nkind (Nam) = N_Attribute_Reference then
2486 -- In the case of an abstract formal subprogram association, rewrite
2487 -- an actual given by a stream attribute as the name of the
2488 -- corresponding stream primitive of the type.
2490 -- In a generic context the stream operations are not generated, and
2491 -- this must be treated as a normal attribute reference, to be
2492 -- expanded in subsequent instantiations.
2494 if Is_Actual
2495 and then Is_Abstract_Subprogram (Formal_Spec)
2496 and then Expander_Active
2497 then
2498 declare
2499 Stream_Prim : Entity_Id;
2500 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2502 begin
2503 -- The class-wide forms of the stream attributes are not
2504 -- primitive dispatching operations (even though they
2505 -- internally dispatch to a stream attribute).
2507 if Is_Class_Wide_Type (Prefix_Type) then
2508 Error_Msg_N
2509 ("attribute must be a primitive dispatching operation",
2510 Nam);
2511 return;
2512 end if;
2514 -- Retrieve the primitive subprogram associated with the
2515 -- attribute. This can only be a stream attribute, since those
2516 -- are the only ones that are dispatching (and the actual for
2517 -- an abstract formal subprogram must be dispatching
2518 -- operation).
2520 begin
2521 case Attribute_Name (Nam) is
2522 when Name_Input =>
2523 Stream_Prim :=
2524 Find_Prim_Op (Prefix_Type, TSS_Stream_Input);
2525 when Name_Output =>
2526 Stream_Prim :=
2527 Find_Prim_Op (Prefix_Type, TSS_Stream_Output);
2528 when Name_Read =>
2529 Stream_Prim :=
2530 Find_Prim_Op (Prefix_Type, TSS_Stream_Read);
2531 when Name_Write =>
2532 Stream_Prim :=
2533 Find_Prim_Op (Prefix_Type, TSS_Stream_Write);
2534 when others =>
2535 Error_Msg_N
2536 ("attribute must be a primitive"
2537 & " dispatching operation", Nam);
2538 return;
2539 end case;
2541 exception
2543 -- If no operation was found, and the type is limited,
2544 -- the user should have defined one.
2546 when Program_Error =>
2547 if Is_Limited_Type (Prefix_Type) then
2548 Error_Msg_NE
2549 ("stream operation not defined for type&",
2550 N, Prefix_Type);
2551 return;
2553 -- Otherwise, compiler should have generated default
2555 else
2556 raise;
2557 end if;
2558 end;
2560 -- Rewrite the attribute into the name of its corresponding
2561 -- primitive dispatching subprogram. We can then proceed with
2562 -- the usual processing for subprogram renamings.
2564 declare
2565 Prim_Name : constant Node_Id :=
2566 Make_Identifier (Sloc (Nam),
2567 Chars => Chars (Stream_Prim));
2568 begin
2569 Set_Entity (Prim_Name, Stream_Prim);
2570 Rewrite (Nam, Prim_Name);
2571 Analyze (Nam);
2572 end;
2573 end;
2575 -- Normal processing for a renaming of an attribute
2577 else
2578 Attribute_Renaming (N);
2579 return;
2580 end if;
2581 end if;
2583 -- Check whether this declaration corresponds to the instantiation
2584 -- of a formal subprogram.
2586 -- If this is an instantiation, the corresponding actual is frozen and
2587 -- error messages can be made more precise. If this is a default
2588 -- subprogram, the entity is already established in the generic, and is
2589 -- not retrieved by visibility. If it is a default with a box, the
2590 -- candidate interpretations, if any, have been collected when building
2591 -- the renaming declaration. If overloaded, the proper interpretation is
2592 -- determined in Find_Renamed_Entity. If the entity is an operator,
2593 -- Find_Renamed_Entity applies additional visibility checks.
2595 if Is_Actual then
2596 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2598 -- Check whether the renaming is for a defaulted actual subprogram
2599 -- with a class-wide actual.
2601 if CW_Actual and then Box_Present (Inst_Node) then
2602 Build_Class_Wide_Wrapper (New_S, Old_S);
2604 elsif Is_Entity_Name (Nam)
2605 and then Present (Entity (Nam))
2606 and then not Comes_From_Source (Nam)
2607 and then not Is_Overloaded (Nam)
2608 then
2609 Old_S := Entity (Nam);
2610 New_S := Analyze_Subprogram_Specification (Spec);
2612 -- Operator case
2614 if Ekind (Entity (Nam)) = E_Operator then
2616 -- Box present
2618 if Box_Present (Inst_Node) then
2619 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2621 -- If there is an immediately visible homonym of the operator
2622 -- and the declaration has a default, this is worth a warning
2623 -- because the user probably did not intend to get the pre-
2624 -- defined operator, visible in the generic declaration. To
2625 -- find if there is an intended candidate, analyze the renaming
2626 -- again in the current context.
2628 elsif Scope (Old_S) = Standard_Standard
2629 and then Present (Default_Name (Inst_Node))
2630 then
2631 declare
2632 Decl : constant Node_Id := New_Copy_Tree (N);
2633 Hidden : Entity_Id;
2635 begin
2636 Set_Entity (Name (Decl), Empty);
2637 Analyze (Name (Decl));
2638 Hidden :=
2639 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2641 if Present (Hidden)
2642 and then In_Open_Scopes (Scope (Hidden))
2643 and then Is_Immediately_Visible (Hidden)
2644 and then Comes_From_Source (Hidden)
2645 and then Hidden /= Old_S
2646 then
2647 Error_Msg_Sloc := Sloc (Hidden);
2648 Error_Msg_N ("default subprogram is resolved " &
2649 "in the generic declaration " &
2650 "(RM 12.6(17))??", N);
2651 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2652 end if;
2653 end;
2654 end if;
2655 end if;
2657 else
2658 Analyze (Nam);
2659 New_S := Analyze_Subprogram_Specification (Spec);
2660 end if;
2662 else
2663 -- Renamed entity must be analyzed first, to avoid being hidden by
2664 -- new name (which might be the same in a generic instance).
2666 Analyze (Nam);
2668 -- The renaming defines a new overloaded entity, which is analyzed
2669 -- like a subprogram declaration.
2671 New_S := Analyze_Subprogram_Specification (Spec);
2672 end if;
2674 if Current_Scope /= Standard_Standard then
2675 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2676 end if;
2678 -- Set SPARK mode from current context
2680 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2681 Set_SPARK_Pragma_Inherited (New_S, True);
2683 Rename_Spec := Find_Corresponding_Spec (N);
2685 -- Case of Renaming_As_Body
2687 if Present (Rename_Spec) then
2689 -- Renaming declaration is the completion of the declaration of
2690 -- Rename_Spec. We build an actual body for it at the freezing point.
2692 Set_Corresponding_Spec (N, Rename_Spec);
2694 -- Deal with special case of stream functions of abstract types
2695 -- and interfaces.
2697 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2698 N_Abstract_Subprogram_Declaration
2699 then
2700 -- Input stream functions are abstract if the object type is
2701 -- abstract. Similarly, all default stream functions for an
2702 -- interface type are abstract. However, these subprograms may
2703 -- receive explicit declarations in representation clauses, making
2704 -- the attribute subprograms usable as defaults in subsequent
2705 -- type extensions.
2706 -- In this case we rewrite the declaration to make the subprogram
2707 -- non-abstract. We remove the previous declaration, and insert
2708 -- the new one at the point of the renaming, to prevent premature
2709 -- access to unfrozen types. The new declaration reuses the
2710 -- specification of the previous one, and must not be analyzed.
2712 pragma Assert
2713 (Is_Primitive (Entity (Nam))
2714 and then
2715 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2716 declare
2717 Old_Decl : constant Node_Id :=
2718 Unit_Declaration_Node (Rename_Spec);
2719 New_Decl : constant Node_Id :=
2720 Make_Subprogram_Declaration (Sloc (N),
2721 Specification =>
2722 Relocate_Node (Specification (Old_Decl)));
2723 begin
2724 Remove (Old_Decl);
2725 Insert_After (N, New_Decl);
2726 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2727 Set_Analyzed (New_Decl);
2728 end;
2729 end if;
2731 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2733 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2734 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2735 end if;
2737 Set_Convention (New_S, Convention (Rename_Spec));
2738 Check_Fully_Conformant (New_S, Rename_Spec);
2739 Set_Public_Status (New_S);
2741 -- The specification does not introduce new formals, but only
2742 -- repeats the formals of the original subprogram declaration.
2743 -- For cross-reference purposes, and for refactoring tools, we
2744 -- treat the formals of the renaming declaration as body formals.
2746 Reference_Body_Formals (Rename_Spec, New_S);
2748 -- Indicate that the entity in the declaration functions like the
2749 -- corresponding body, and is not a new entity. The body will be
2750 -- constructed later at the freeze point, so indicate that the
2751 -- completion has not been seen yet.
2753 Set_Contract (New_S, Empty);
2754 Set_Ekind (New_S, E_Subprogram_Body);
2755 New_S := Rename_Spec;
2756 Set_Has_Completion (Rename_Spec, False);
2758 -- Ada 2005: check overriding indicator
2760 if Present (Overridden_Operation (Rename_Spec)) then
2761 if Must_Not_Override (Specification (N)) then
2762 Error_Msg_NE
2763 ("subprogram& overrides inherited operation",
2764 N, Rename_Spec);
2765 elsif
2766 Style_Check and then not Must_Override (Specification (N))
2767 then
2768 Style.Missing_Overriding (N, Rename_Spec);
2769 end if;
2771 elsif Must_Override (Specification (N)) then
2772 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2773 end if;
2775 -- Normal subprogram renaming (not renaming as body)
2777 else
2778 Generate_Definition (New_S);
2779 New_Overloaded_Entity (New_S);
2781 if Is_Entity_Name (Nam)
2782 and then Is_Intrinsic_Subprogram (Entity (Nam))
2783 then
2784 null;
2785 else
2786 Check_Delayed_Subprogram (New_S);
2787 end if;
2788 end if;
2790 -- There is no need for elaboration checks on the new entity, which may
2791 -- be called before the next freezing point where the body will appear.
2792 -- Elaboration checks refer to the real entity, not the one created by
2793 -- the renaming declaration.
2795 Set_Kill_Elaboration_Checks (New_S, True);
2797 -- If we had a previous error, indicate a completely is present to stop
2798 -- junk cascaded messages, but don't take any further action.
2800 if Etype (Nam) = Any_Type then
2801 Set_Has_Completion (New_S);
2802 return;
2804 -- Case where name has the form of a selected component
2806 elsif Nkind (Nam) = N_Selected_Component then
2808 -- A name which has the form A.B can designate an entry of task A, a
2809 -- protected operation of protected object A, or finally a primitive
2810 -- operation of object A. In the later case, A is an object of some
2811 -- tagged type, or an access type that denotes one such. To further
2812 -- distinguish these cases, note that the scope of a task entry or
2813 -- protected operation is type of the prefix.
2815 -- The prefix could be an overloaded function call that returns both
2816 -- kinds of operations. This overloading pathology is left to the
2817 -- dedicated reader ???
2819 declare
2820 T : constant Entity_Id := Etype (Prefix (Nam));
2822 begin
2823 if Present (T)
2824 and then
2825 (Is_Tagged_Type (T)
2826 or else
2827 (Is_Access_Type (T)
2828 and then Is_Tagged_Type (Designated_Type (T))))
2829 and then Scope (Entity (Selector_Name (Nam))) /= T
2830 then
2831 Analyze_Renamed_Primitive_Operation
2832 (N, New_S, Present (Rename_Spec));
2833 return;
2835 else
2836 -- Renamed entity is an entry or protected operation. For those
2837 -- cases an explicit body is built (at the point of freezing of
2838 -- this entity) that contains a call to the renamed entity.
2840 -- This is not allowed for renaming as body if the renamed
2841 -- spec is already frozen (see RM 8.5.4(5) for details).
2843 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
2844 Error_Msg_N
2845 ("renaming-as-body cannot rename entry as subprogram", N);
2846 Error_Msg_NE
2847 ("\since & is already frozen (RM 8.5.4(5))",
2848 N, Rename_Spec);
2849 else
2850 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
2851 end if;
2853 return;
2854 end if;
2855 end;
2857 -- Case where name is an explicit dereference X.all
2859 elsif Nkind (Nam) = N_Explicit_Dereference then
2861 -- Renamed entity is designated by access_to_subprogram expression.
2862 -- Must build body to encapsulate call, as in the entry case.
2864 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
2865 return;
2867 -- Indexed component
2869 elsif Nkind (Nam) = N_Indexed_Component then
2870 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
2871 return;
2873 -- Character literal
2875 elsif Nkind (Nam) = N_Character_Literal then
2876 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
2877 return;
2879 -- Only remaining case is where we have a non-entity name, or a renaming
2880 -- of some other non-overloadable entity.
2882 elsif not Is_Entity_Name (Nam)
2883 or else not Is_Overloadable (Entity (Nam))
2884 then
2885 -- Do not mention the renaming if it comes from an instance
2887 if not Is_Actual then
2888 Error_Msg_N ("expect valid subprogram name in renaming", N);
2889 else
2890 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
2891 end if;
2893 return;
2894 end if;
2896 -- Find the renamed entity that matches the given specification. Disable
2897 -- Ada_83 because there is no requirement of full conformance between
2898 -- renamed entity and new entity, even though the same circuit is used.
2900 -- This is a bit of an odd case, which introduces a really irregular use
2901 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
2902 -- this. ???
2904 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
2905 Ada_Version_Pragma := Empty;
2906 Ada_Version_Explicit := Ada_Version;
2908 if No (Old_S) then
2909 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2911 -- The visible operation may be an inherited abstract operation that
2912 -- was overridden in the private part, in which case a call will
2913 -- dispatch to the overriding operation. Use the overriding one in
2914 -- the renaming declaration, to prevent spurious errors below.
2916 if Is_Overloadable (Old_S)
2917 and then Is_Abstract_Subprogram (Old_S)
2918 and then No (DTC_Entity (Old_S))
2919 and then Present (Alias (Old_S))
2920 and then not Is_Abstract_Subprogram (Alias (Old_S))
2921 and then Present (Overridden_Operation (Alias (Old_S)))
2922 then
2923 Old_S := Alias (Old_S);
2924 end if;
2926 -- When the renamed subprogram is overloaded and used as an actual
2927 -- of a generic, its entity is set to the first available homonym.
2928 -- We must first disambiguate the name, then set the proper entity.
2930 if Is_Actual and then Is_Overloaded (Nam) then
2931 Set_Entity (Nam, Old_S);
2932 end if;
2933 end if;
2935 -- Most common case: subprogram renames subprogram. No body is generated
2936 -- in this case, so we must indicate the declaration is complete as is.
2937 -- and inherit various attributes of the renamed subprogram.
2939 if No (Rename_Spec) then
2940 Set_Has_Completion (New_S);
2941 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
2942 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
2943 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
2945 -- Ada 2005 (AI-423): Check the consistency of null exclusions
2946 -- between a subprogram and its correct renaming.
2948 -- Note: the Any_Id check is a guard that prevents compiler crashes
2949 -- when performing a null exclusion check between a renaming and a
2950 -- renamed subprogram that has been found to be illegal.
2952 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
2953 Check_Null_Exclusion
2954 (Ren => New_S,
2955 Sub => Entity (Nam));
2956 end if;
2958 -- Enforce the Ada 2005 rule that the renamed entity cannot require
2959 -- overriding. The flag Requires_Overriding is set very selectively
2960 -- and misses some other illegal cases. The additional conditions
2961 -- checked below are sufficient but not necessary ???
2963 -- The rule does not apply to the renaming generated for an actual
2964 -- subprogram in an instance.
2966 if Is_Actual then
2967 null;
2969 -- Guard against previous errors, and omit renamings of predefined
2970 -- operators.
2972 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
2973 null;
2975 elsif Requires_Overriding (Old_S)
2976 or else
2977 (Is_Abstract_Subprogram (Old_S)
2978 and then Present (Find_Dispatching_Type (Old_S))
2979 and then
2980 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
2981 then
2982 Error_Msg_N
2983 ("renamed entity cannot be "
2984 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N);
2985 end if;
2986 end if;
2988 if Old_S /= Any_Id then
2989 if Is_Actual and then From_Default (N) then
2991 -- This is an implicit reference to the default actual
2993 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
2995 else
2996 Generate_Reference (Old_S, Nam);
2997 end if;
2999 Check_Internal_Protected_Use (N, Old_S);
3001 -- For a renaming-as-body, require subtype conformance, but if the
3002 -- declaration being completed has not been frozen, then inherit the
3003 -- convention of the renamed subprogram prior to checking conformance
3004 -- (unless the renaming has an explicit convention established; the
3005 -- rule stated in the RM doesn't seem to address this ???).
3007 if Present (Rename_Spec) then
3008 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3009 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3011 if not Is_Frozen (Rename_Spec) then
3012 if not Has_Convention_Pragma (Rename_Spec) then
3013 Set_Convention (New_S, Convention (Old_S));
3014 end if;
3016 if Ekind (Old_S) /= E_Operator then
3017 Check_Mode_Conformant (New_S, Old_S, Spec);
3018 end if;
3020 if Original_Subprogram (Old_S) = Rename_Spec then
3021 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3022 end if;
3023 else
3024 Check_Subtype_Conformant (New_S, Old_S, Spec);
3025 end if;
3027 Check_Frozen_Renaming (N, Rename_Spec);
3029 -- Check explicitly that renamed entity is not intrinsic, because
3030 -- in a generic the renamed body is not built. In this case,
3031 -- the renaming_as_body is a completion.
3033 if Inside_A_Generic then
3034 if Is_Frozen (Rename_Spec)
3035 and then Is_Intrinsic_Subprogram (Old_S)
3036 then
3037 Error_Msg_N
3038 ("subprogram in renaming_as_body cannot be intrinsic",
3039 Name (N));
3040 end if;
3042 Set_Has_Completion (Rename_Spec);
3043 end if;
3045 elsif Ekind (Old_S) /= E_Operator then
3047 -- If this a defaulted subprogram for a class-wide actual there is
3048 -- no check for mode conformance, given that the signatures don't
3049 -- match (the source mentions T but the actual mentions T'Class).
3051 if CW_Actual then
3052 null;
3053 elsif not Is_Actual or else No (Enclosing_Instance) then
3054 Check_Mode_Conformant (New_S, Old_S);
3055 end if;
3057 if Is_Actual and then Error_Posted (New_S) then
3058 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3059 end if;
3060 end if;
3062 if No (Rename_Spec) then
3064 -- The parameter profile of the new entity is that of the renamed
3065 -- entity: the subtypes given in the specification are irrelevant.
3067 Inherit_Renamed_Profile (New_S, Old_S);
3069 -- A call to the subprogram is transformed into a call to the
3070 -- renamed entity. This is transitive if the renamed entity is
3071 -- itself a renaming.
3073 if Present (Alias (Old_S)) then
3074 Set_Alias (New_S, Alias (Old_S));
3075 else
3076 Set_Alias (New_S, Old_S);
3077 end if;
3079 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3080 -- renaming as body, since the entity in this case is not an
3081 -- intrinsic (it calls an intrinsic, but we have a real body for
3082 -- this call, and it is in this body that the required intrinsic
3083 -- processing will take place).
3085 -- Also, if this is a renaming of inequality, the renamed operator
3086 -- is intrinsic, but what matters is the corresponding equality
3087 -- operator, which may be user-defined.
3089 Set_Is_Intrinsic_Subprogram
3090 (New_S,
3091 Is_Intrinsic_Subprogram (Old_S)
3092 and then
3093 (Chars (Old_S) /= Name_Op_Ne
3094 or else Ekind (Old_S) = E_Operator
3095 or else Is_Intrinsic_Subprogram
3096 (Corresponding_Equality (Old_S))));
3098 if Ekind (Alias (New_S)) = E_Operator then
3099 Set_Has_Delayed_Freeze (New_S, False);
3100 end if;
3102 -- If the renaming corresponds to an association for an abstract
3103 -- formal subprogram, then various attributes must be set to
3104 -- indicate that the renaming is an abstract dispatching operation
3105 -- with a controlling type.
3107 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3109 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3110 -- see it as corresponding to a generic association for a
3111 -- formal abstract subprogram
3113 Set_Is_Abstract_Subprogram (New_S);
3115 declare
3116 New_S_Ctrl_Type : constant Entity_Id :=
3117 Find_Dispatching_Type (New_S);
3118 Old_S_Ctrl_Type : constant Entity_Id :=
3119 Find_Dispatching_Type (Old_S);
3121 begin
3122 if Old_S_Ctrl_Type /= New_S_Ctrl_Type then
3123 Error_Msg_NE
3124 ("actual must be dispatching subprogram for type&",
3125 Nam, New_S_Ctrl_Type);
3127 else
3128 Set_Is_Dispatching_Operation (New_S);
3129 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3131 -- If the actual in the formal subprogram is itself a
3132 -- formal abstract subprogram association, there's no
3133 -- dispatch table component or position to inherit.
3135 if Present (DTC_Entity (Old_S)) then
3136 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3137 Set_DT_Position (New_S, DT_Position (Old_S));
3138 end if;
3139 end if;
3140 end;
3141 end if;
3142 end if;
3144 if Is_Actual then
3145 null;
3147 -- The following is illegal, because F hides whatever other F may
3148 -- be around:
3149 -- function F (...) renames F;
3151 elsif Old_S = New_S
3152 or else (Nkind (Nam) /= N_Expanded_Name
3153 and then Chars (Old_S) = Chars (New_S))
3154 then
3155 Error_Msg_N ("subprogram cannot rename itself", N);
3157 -- This is illegal even if we use a selector:
3158 -- function F (...) renames Pkg.F;
3159 -- because F is still hidden.
3161 elsif Nkind (Nam) = N_Expanded_Name
3162 and then Entity (Prefix (Nam)) = Current_Scope
3163 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3164 then
3165 -- This is an error, but we overlook the error and accept the
3166 -- renaming if the special Overriding_Renamings mode is in effect.
3168 if not Overriding_Renamings then
3169 Error_Msg_NE
3170 ("implicit operation& is not visible (RM 8.3 (15))",
3171 Nam, Old_S);
3172 end if;
3173 end if;
3175 Set_Convention (New_S, Convention (Old_S));
3177 if Is_Abstract_Subprogram (Old_S) then
3178 if Present (Rename_Spec) then
3179 Error_Msg_N
3180 ("a renaming-as-body cannot rename an abstract subprogram",
3182 Set_Has_Completion (Rename_Spec);
3183 else
3184 Set_Is_Abstract_Subprogram (New_S);
3185 end if;
3186 end if;
3188 Check_Library_Unit_Renaming (N, Old_S);
3190 -- Pathological case: procedure renames entry in the scope of its
3191 -- task. Entry is given by simple name, but body must be built for
3192 -- procedure. Of course if called it will deadlock.
3194 if Ekind (Old_S) = E_Entry then
3195 Set_Has_Completion (New_S, False);
3196 Set_Alias (New_S, Empty);
3197 end if;
3199 if Is_Actual then
3200 Freeze_Before (N, Old_S);
3201 Freeze_Actual_Profile;
3202 Set_Has_Delayed_Freeze (New_S, False);
3203 Freeze_Before (N, New_S);
3205 -- An abstract subprogram is only allowed as an actual in the case
3206 -- where the formal subprogram is also abstract.
3208 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3209 and then Is_Abstract_Subprogram (Old_S)
3210 and then not Is_Abstract_Subprogram (Formal_Spec)
3211 then
3212 Error_Msg_N
3213 ("abstract subprogram not allowed as generic actual", Nam);
3214 end if;
3215 end if;
3217 else
3218 -- A common error is to assume that implicit operators for types are
3219 -- defined in Standard, or in the scope of a subtype. In those cases
3220 -- where the renamed entity is given with an expanded name, it is
3221 -- worth mentioning that operators for the type are not declared in
3222 -- the scope given by the prefix.
3224 if Nkind (Nam) = N_Expanded_Name
3225 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3226 and then Scope (Entity (Nam)) = Standard_Standard
3227 then
3228 declare
3229 T : constant Entity_Id :=
3230 Base_Type (Etype (First_Formal (New_S)));
3231 begin
3232 Error_Msg_Node_2 := Prefix (Nam);
3233 Error_Msg_NE
3234 ("operator for type& is not declared in&", Prefix (Nam), T);
3235 end;
3237 else
3238 Error_Msg_NE
3239 ("no visible subprogram matches the specification for&",
3240 Spec, New_S);
3241 end if;
3243 if Present (Candidate_Renaming) then
3244 declare
3245 F1 : Entity_Id;
3246 F2 : Entity_Id;
3247 T1 : Entity_Id;
3249 begin
3250 F1 := First_Formal (Candidate_Renaming);
3251 F2 := First_Formal (New_S);
3252 T1 := First_Subtype (Etype (F1));
3253 while Present (F1) and then Present (F2) loop
3254 Next_Formal (F1);
3255 Next_Formal (F2);
3256 end loop;
3258 if Present (F1) and then Present (Default_Value (F1)) then
3259 if Present (Next_Formal (F1)) then
3260 Error_Msg_NE
3261 ("\missing specification for &" &
3262 " and other formals with defaults", Spec, F1);
3263 else
3264 Error_Msg_NE
3265 ("\missing specification for &", Spec, F1);
3266 end if;
3267 end if;
3269 if Nkind (Nam) = N_Operator_Symbol
3270 and then From_Default (N)
3271 then
3272 Error_Msg_Node_2 := T1;
3273 Error_Msg_NE
3274 ("default & on & is not directly visible",
3275 Nam, Nam);
3276 end if;
3277 end;
3278 end if;
3279 end if;
3281 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3282 -- controlling access parameters are known non-null for the renamed
3283 -- subprogram. Test also applies to a subprogram instantiation that
3284 -- is dispatching. Test is skipped if some previous error was detected
3285 -- that set Old_S to Any_Id.
3287 if Ada_Version >= Ada_2005
3288 and then Old_S /= Any_Id
3289 and then not Is_Dispatching_Operation (Old_S)
3290 and then Is_Dispatching_Operation (New_S)
3291 then
3292 declare
3293 Old_F : Entity_Id;
3294 New_F : Entity_Id;
3296 begin
3297 Old_F := First_Formal (Old_S);
3298 New_F := First_Formal (New_S);
3299 while Present (Old_F) loop
3300 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3301 and then Is_Controlling_Formal (New_F)
3302 and then not Can_Never_Be_Null (Old_F)
3303 then
3304 Error_Msg_N ("access parameter is controlling,", New_F);
3305 Error_Msg_NE
3306 ("\corresponding parameter of& "
3307 & "must be explicitly null excluding", New_F, Old_S);
3308 end if;
3310 Next_Formal (Old_F);
3311 Next_Formal (New_F);
3312 end loop;
3313 end;
3314 end if;
3316 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3317 -- is to warn if an operator is being renamed as a different operator.
3318 -- If the operator is predefined, examine the kind of the entity, not
3319 -- the abbreviated declaration in Standard.
3321 if Comes_From_Source (N)
3322 and then Present (Old_S)
3323 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3324 or else Ekind (Old_S) = E_Operator)
3325 and then Nkind (New_S) = N_Defining_Operator_Symbol
3326 and then Chars (Old_S) /= Chars (New_S)
3327 then
3328 Error_Msg_NE
3329 ("& is being renamed as a different operator??", N, Old_S);
3330 end if;
3332 -- Check for renaming of obsolescent subprogram
3334 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3336 -- Another warning or some utility: if the new subprogram as the same
3337 -- name as the old one, the old one is not hidden by an outer homograph,
3338 -- the new one is not a public symbol, and the old one is otherwise
3339 -- directly visible, the renaming is superfluous.
3341 if Chars (Old_S) = Chars (New_S)
3342 and then Comes_From_Source (N)
3343 and then Scope (Old_S) /= Standard_Standard
3344 and then Warn_On_Redundant_Constructs
3345 and then (Is_Immediately_Visible (Old_S)
3346 or else Is_Potentially_Use_Visible (Old_S))
3347 and then Is_Overloadable (Current_Scope)
3348 and then Chars (Current_Scope) /= Chars (Old_S)
3349 then
3350 Error_Msg_N
3351 ("redundant renaming, entity is directly visible?r?", Name (N));
3352 end if;
3354 -- Implementation-defined aspect specifications can appear in a renaming
3355 -- declaration, but not language-defined ones. The call to procedure
3356 -- Analyze_Aspect_Specifications will take care of this error check.
3358 if Has_Aspects (N) then
3359 Analyze_Aspect_Specifications (N, New_S);
3360 end if;
3362 Ada_Version := Save_AV;
3363 Ada_Version_Pragma := Save_AVP;
3364 Ada_Version_Explicit := Save_AV_Exp;
3365 end Analyze_Subprogram_Renaming;
3367 -------------------------
3368 -- Analyze_Use_Package --
3369 -------------------------
3371 -- Resolve the package names in the use clause, and make all the visible
3372 -- entities defined in the package potentially use-visible. If the package
3373 -- is already in use from a previous use clause, its visible entities are
3374 -- already use-visible. In that case, mark the occurrence as a redundant
3375 -- use. If the package is an open scope, i.e. if the use clause occurs
3376 -- within the package itself, ignore it.
3378 procedure Analyze_Use_Package (N : Node_Id) is
3379 Pack_Name : Node_Id;
3380 Pack : Entity_Id;
3382 -- Start of processing for Analyze_Use_Package
3384 begin
3385 Check_SPARK_Restriction ("use clause is not allowed", N);
3387 Set_Hidden_By_Use_Clause (N, No_Elist);
3389 -- Use clause not allowed in a spec of a predefined package declaration
3390 -- except that packages whose file name starts a-n are OK (these are
3391 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3393 if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
3394 and then Name_Buffer (1 .. 3) /= "a-n"
3395 and then
3396 Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
3397 then
3398 Error_Msg_N ("use clause not allowed in predefined spec", N);
3399 end if;
3401 -- Chain clause to list of use clauses in current scope
3403 if Nkind (Parent (N)) /= N_Compilation_Unit then
3404 Chain_Use_Clause (N);
3405 end if;
3407 -- Loop through package names to identify referenced packages
3409 Pack_Name := First (Names (N));
3410 while Present (Pack_Name) loop
3411 Analyze (Pack_Name);
3413 if Nkind (Parent (N)) = N_Compilation_Unit
3414 and then Nkind (Pack_Name) = N_Expanded_Name
3415 then
3416 declare
3417 Pref : Node_Id;
3419 begin
3420 Pref := Prefix (Pack_Name);
3421 while Nkind (Pref) = N_Expanded_Name loop
3422 Pref := Prefix (Pref);
3423 end loop;
3425 if Entity (Pref) = Standard_Standard then
3426 Error_Msg_N
3427 ("predefined package Standard cannot appear"
3428 & " in a context clause", Pref);
3429 end if;
3430 end;
3431 end if;
3433 Next (Pack_Name);
3434 end loop;
3436 -- Loop through package names to mark all entities as potentially
3437 -- use visible.
3439 Pack_Name := First (Names (N));
3440 while Present (Pack_Name) loop
3441 if Is_Entity_Name (Pack_Name) then
3442 Pack := Entity (Pack_Name);
3444 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3445 if Ekind (Pack) = E_Generic_Package then
3446 Error_Msg_N -- CODEFIX
3447 ("a generic package is not allowed in a use clause",
3448 Pack_Name);
3449 else
3450 Error_Msg_N ("& is not a usable package", Pack_Name);
3451 end if;
3453 else
3454 if Nkind (Parent (N)) = N_Compilation_Unit then
3455 Check_In_Previous_With_Clause (N, Pack_Name);
3456 end if;
3458 if Applicable_Use (Pack_Name) then
3459 Use_One_Package (Pack, N);
3460 end if;
3461 end if;
3463 -- Report error because name denotes something other than a package
3465 else
3466 Error_Msg_N ("& is not a package", Pack_Name);
3467 end if;
3469 Next (Pack_Name);
3470 end loop;
3471 end Analyze_Use_Package;
3473 ----------------------
3474 -- Analyze_Use_Type --
3475 ----------------------
3477 procedure Analyze_Use_Type (N : Node_Id) is
3478 E : Entity_Id;
3479 Id : Node_Id;
3481 begin
3482 Set_Hidden_By_Use_Clause (N, No_Elist);
3484 -- Chain clause to list of use clauses in current scope
3486 if Nkind (Parent (N)) /= N_Compilation_Unit then
3487 Chain_Use_Clause (N);
3488 end if;
3490 -- If the Used_Operations list is already initialized, the clause has
3491 -- been analyzed previously, and it is begin reinstalled, for example
3492 -- when the clause appears in a package spec and we are compiling the
3493 -- corresponding package body. In that case, make the entities on the
3494 -- existing list use_visible, and mark the corresponding types In_Use.
3496 if Present (Used_Operations (N)) then
3497 declare
3498 Mark : Node_Id;
3499 Elmt : Elmt_Id;
3501 begin
3502 Mark := First (Subtype_Marks (N));
3503 while Present (Mark) loop
3504 Use_One_Type (Mark, Installed => True);
3505 Next (Mark);
3506 end loop;
3508 Elmt := First_Elmt (Used_Operations (N));
3509 while Present (Elmt) loop
3510 Set_Is_Potentially_Use_Visible (Node (Elmt));
3511 Next_Elmt (Elmt);
3512 end loop;
3513 end;
3515 return;
3516 end if;
3518 -- Otherwise, create new list and attach to it the operations that
3519 -- are made use-visible by the clause.
3521 Set_Used_Operations (N, New_Elmt_List);
3522 Id := First (Subtype_Marks (N));
3523 while Present (Id) loop
3524 Find_Type (Id);
3525 E := Entity (Id);
3527 if E /= Any_Type then
3528 Use_One_Type (Id);
3530 if Nkind (Parent (N)) = N_Compilation_Unit then
3531 if Nkind (Id) = N_Identifier then
3532 Error_Msg_N ("type is not directly visible", Id);
3534 elsif Is_Child_Unit (Scope (E))
3535 and then Scope (E) /= System_Aux_Id
3536 then
3537 Check_In_Previous_With_Clause (N, Prefix (Id));
3538 end if;
3539 end if;
3541 else
3542 -- If the use_type_clause appears in a compilation unit context,
3543 -- check whether it comes from a unit that may appear in a
3544 -- limited_with_clause, for a better error message.
3546 if Nkind (Parent (N)) = N_Compilation_Unit
3547 and then Nkind (Id) /= N_Identifier
3548 then
3549 declare
3550 Item : Node_Id;
3551 Pref : Node_Id;
3553 function Mentioned (Nam : Node_Id) return Boolean;
3554 -- Check whether the prefix of expanded name for the type
3555 -- appears in the prefix of some limited_with_clause.
3557 ---------------
3558 -- Mentioned --
3559 ---------------
3561 function Mentioned (Nam : Node_Id) return Boolean is
3562 begin
3563 return Nkind (Name (Item)) = N_Selected_Component
3564 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3565 end Mentioned;
3567 begin
3568 Pref := Prefix (Id);
3569 Item := First (Context_Items (Parent (N)));
3570 while Present (Item) and then Item /= N loop
3571 if Nkind (Item) = N_With_Clause
3572 and then Limited_Present (Item)
3573 and then Mentioned (Pref)
3574 then
3575 Change_Error_Text
3576 (Get_Msg_Id, "premature usage of incomplete type");
3577 end if;
3579 Next (Item);
3580 end loop;
3581 end;
3582 end if;
3583 end if;
3585 Next (Id);
3586 end loop;
3587 end Analyze_Use_Type;
3589 --------------------
3590 -- Applicable_Use --
3591 --------------------
3593 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3594 Pack : constant Entity_Id := Entity (Pack_Name);
3596 begin
3597 if In_Open_Scopes (Pack) then
3598 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3599 Error_Msg_NE -- CODEFIX
3600 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3601 end if;
3603 return False;
3605 elsif In_Use (Pack) then
3606 Note_Redundant_Use (Pack_Name);
3607 return False;
3609 elsif Present (Renamed_Object (Pack))
3610 and then In_Use (Renamed_Object (Pack))
3611 then
3612 Note_Redundant_Use (Pack_Name);
3613 return False;
3615 else
3616 return True;
3617 end if;
3618 end Applicable_Use;
3620 ------------------------
3621 -- Attribute_Renaming --
3622 ------------------------
3624 procedure Attribute_Renaming (N : Node_Id) is
3625 Loc : constant Source_Ptr := Sloc (N);
3626 Nam : constant Node_Id := Name (N);
3627 Spec : constant Node_Id := Specification (N);
3628 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3629 Aname : constant Name_Id := Attribute_Name (Nam);
3631 Form_Num : Nat := 0;
3632 Expr_List : List_Id := No_List;
3634 Attr_Node : Node_Id;
3635 Body_Node : Node_Id;
3636 Param_Spec : Node_Id;
3638 begin
3639 Generate_Definition (New_S);
3641 -- This procedure is called in the context of subprogram renaming, and
3642 -- thus the attribute must be one that is a subprogram. All of those
3643 -- have at least one formal parameter, with the exceptions of the GNAT
3644 -- attribute 'Img, which GNAT treats as renameable.
3646 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3647 if Aname /= Name_Img then
3648 Error_Msg_N
3649 ("subprogram renaming an attribute must have formals", N);
3650 return;
3651 end if;
3653 else
3654 Param_Spec := First (Parameter_Specifications (Spec));
3655 while Present (Param_Spec) loop
3656 Form_Num := Form_Num + 1;
3658 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3659 Find_Type (Parameter_Type (Param_Spec));
3661 -- The profile of the new entity denotes the base type (s) of
3662 -- the types given in the specification. For access parameters
3663 -- there are no subtypes involved.
3665 Rewrite (Parameter_Type (Param_Spec),
3666 New_Occurrence_Of
3667 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3668 end if;
3670 if No (Expr_List) then
3671 Expr_List := New_List;
3672 end if;
3674 Append_To (Expr_List,
3675 Make_Identifier (Loc,
3676 Chars => Chars (Defining_Identifier (Param_Spec))));
3678 -- The expressions in the attribute reference are not freeze
3679 -- points. Neither is the attribute as a whole, see below.
3681 Set_Must_Not_Freeze (Last (Expr_List));
3682 Next (Param_Spec);
3683 end loop;
3684 end if;
3686 -- Immediate error if too many formals. Other mismatches in number or
3687 -- types of parameters are detected when we analyze the body of the
3688 -- subprogram that we construct.
3690 if Form_Num > 2 then
3691 Error_Msg_N ("too many formals for attribute", N);
3693 -- Error if the attribute reference has expressions that look like
3694 -- formal parameters.
3696 elsif Present (Expressions (Nam)) then
3697 Error_Msg_N ("illegal expressions in attribute reference", Nam);
3699 elsif
3700 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
3701 Name_Pos, Name_Round, Name_Scaling,
3702 Name_Val)
3703 then
3704 if Nkind (N) = N_Subprogram_Renaming_Declaration
3705 and then Present (Corresponding_Formal_Spec (N))
3706 then
3707 Error_Msg_N
3708 ("generic actual cannot be attribute involving universal type",
3709 Nam);
3710 else
3711 Error_Msg_N
3712 ("attribute involving a universal type cannot be renamed",
3713 Nam);
3714 end if;
3715 end if;
3717 -- Rewrite attribute node to have a list of expressions corresponding to
3718 -- the subprogram formals. A renaming declaration is not a freeze point,
3719 -- and the analysis of the attribute reference should not freeze the
3720 -- type of the prefix. We use the original node in the renaming so that
3721 -- its source location is preserved, and checks on stream attributes are
3722 -- properly applied.
3724 Attr_Node := Relocate_Node (Nam);
3725 Set_Expressions (Attr_Node, Expr_List);
3727 Set_Must_Not_Freeze (Attr_Node);
3728 Set_Must_Not_Freeze (Prefix (Nam));
3730 -- Case of renaming a function
3732 if Nkind (Spec) = N_Function_Specification then
3733 if Is_Procedure_Attribute_Name (Aname) then
3734 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
3735 return;
3736 end if;
3738 Find_Type (Result_Definition (Spec));
3739 Rewrite (Result_Definition (Spec),
3740 New_Occurrence_Of
3741 (Base_Type (Entity (Result_Definition (Spec))), Loc));
3743 Body_Node :=
3744 Make_Subprogram_Body (Loc,
3745 Specification => Spec,
3746 Declarations => New_List,
3747 Handled_Statement_Sequence =>
3748 Make_Handled_Sequence_Of_Statements (Loc,
3749 Statements => New_List (
3750 Make_Simple_Return_Statement (Loc,
3751 Expression => Attr_Node))));
3753 -- Case of renaming a procedure
3755 else
3756 if not Is_Procedure_Attribute_Name (Aname) then
3757 Error_Msg_N ("attribute can only be renamed as function", Nam);
3758 return;
3759 end if;
3761 Body_Node :=
3762 Make_Subprogram_Body (Loc,
3763 Specification => Spec,
3764 Declarations => New_List,
3765 Handled_Statement_Sequence =>
3766 Make_Handled_Sequence_Of_Statements (Loc,
3767 Statements => New_List (Attr_Node)));
3768 end if;
3770 -- In case of tagged types we add the body of the generated function to
3771 -- the freezing actions of the type (because in the general case such
3772 -- type is still not frozen). We exclude from this processing generic
3773 -- formal subprograms found in instantiations.
3775 -- We must exclude VM targets and restricted run-time libraries because
3776 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3777 -- available in those platforms. Note that we cannot use the function
3778 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3779 -- the ZFP run-time library is not defined as a profile, and we do not
3780 -- want to deal with AST_Handler in ZFP mode.
3782 if VM_Target = No_VM
3783 and then not Configurable_Run_Time_Mode
3784 and then not Present (Corresponding_Formal_Spec (N))
3785 and then Etype (Nam) /= RTE (RE_AST_Handler)
3786 then
3787 declare
3788 P : constant Node_Id := Prefix (Nam);
3790 begin
3791 -- The prefix of 'Img is an object that is evaluated for each call
3792 -- of the function that renames it.
3794 if Aname = Name_Img then
3795 Preanalyze_And_Resolve (P);
3797 -- For all other attribute renamings, the prefix is a subtype
3799 else
3800 Find_Type (P);
3801 end if;
3803 -- If the target type is not yet frozen, add the body to the
3804 -- actions to be elaborated at freeze time.
3806 if Is_Tagged_Type (Etype (P))
3807 and then In_Open_Scopes (Scope (Etype (P)))
3808 then
3809 Ensure_Freeze_Node (Etype (P));
3810 Append_Freeze_Action (Etype (P), Body_Node);
3811 else
3812 Rewrite (N, Body_Node);
3813 Analyze (N);
3814 Set_Etype (New_S, Base_Type (Etype (New_S)));
3815 end if;
3816 end;
3818 -- Generic formal subprograms or AST_Handler renaming
3820 else
3821 Rewrite (N, Body_Node);
3822 Analyze (N);
3823 Set_Etype (New_S, Base_Type (Etype (New_S)));
3824 end if;
3826 if Is_Compilation_Unit (New_S) then
3827 Error_Msg_N
3828 ("a library unit can only rename another library unit", N);
3829 end if;
3831 -- We suppress elaboration warnings for the resulting entity, since
3832 -- clearly they are not needed, and more particularly, in the case
3833 -- of a generic formal subprogram, the resulting entity can appear
3834 -- after the instantiation itself, and thus look like a bogus case
3835 -- of access before elaboration.
3837 Set_Suppress_Elaboration_Warnings (New_S);
3839 end Attribute_Renaming;
3841 ----------------------
3842 -- Chain_Use_Clause --
3843 ----------------------
3845 procedure Chain_Use_Clause (N : Node_Id) is
3846 Pack : Entity_Id;
3847 Level : Int := Scope_Stack.Last;
3849 begin
3850 if not Is_Compilation_Unit (Current_Scope)
3851 or else not Is_Child_Unit (Current_Scope)
3852 then
3853 null; -- Common case
3855 elsif Defining_Entity (Parent (N)) = Current_Scope then
3856 null; -- Common case for compilation unit
3858 else
3859 -- If declaration appears in some other scope, it must be in some
3860 -- parent unit when compiling a child.
3862 Pack := Defining_Entity (Parent (N));
3863 if not In_Open_Scopes (Pack) then
3864 null; -- default as well
3866 else
3867 -- Find entry for parent unit in scope stack
3869 while Scope_Stack.Table (Level).Entity /= Pack loop
3870 Level := Level - 1;
3871 end loop;
3872 end if;
3873 end if;
3875 Set_Next_Use_Clause (N,
3876 Scope_Stack.Table (Level).First_Use_Clause);
3877 Scope_Stack.Table (Level).First_Use_Clause := N;
3878 end Chain_Use_Clause;
3880 ---------------------------
3881 -- Check_Frozen_Renaming --
3882 ---------------------------
3884 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
3885 B_Node : Node_Id;
3886 Old_S : Entity_Id;
3888 begin
3889 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
3890 B_Node :=
3891 Build_Renamed_Body
3892 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
3894 if Is_Entity_Name (Name (N)) then
3895 Old_S := Entity (Name (N));
3897 if not Is_Frozen (Old_S)
3898 and then Operating_Mode /= Check_Semantics
3899 then
3900 Append_Freeze_Action (Old_S, B_Node);
3901 else
3902 Insert_After (N, B_Node);
3903 Analyze (B_Node);
3904 end if;
3906 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
3907 Error_Msg_N
3908 ("subprogram used in renaming_as_body cannot be intrinsic",
3909 Name (N));
3910 end if;
3912 else
3913 Insert_After (N, B_Node);
3914 Analyze (B_Node);
3915 end if;
3916 end if;
3917 end Check_Frozen_Renaming;
3919 -------------------------------
3920 -- Set_Entity_Or_Discriminal --
3921 -------------------------------
3923 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
3924 P : Node_Id;
3926 begin
3927 -- If the entity is not a discriminant, or else expansion is disabled,
3928 -- simply set the entity.
3930 if not In_Spec_Expression
3931 or else Ekind (E) /= E_Discriminant
3932 or else Inside_A_Generic
3933 then
3934 Set_Entity_With_Checks (N, E);
3936 -- The replacement of a discriminant by the corresponding discriminal
3937 -- is not done for a task discriminant that appears in a default
3938 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
3939 -- for details on their handling.
3941 elsif Is_Concurrent_Type (Scope (E)) then
3942 P := Parent (N);
3943 while Present (P)
3944 and then not Nkind_In (P, N_Parameter_Specification,
3945 N_Component_Declaration)
3946 loop
3947 P := Parent (P);
3948 end loop;
3950 if Present (P)
3951 and then Nkind (P) = N_Parameter_Specification
3952 then
3953 null;
3955 else
3956 Set_Entity (N, Discriminal (E));
3957 end if;
3959 -- Otherwise, this is a discriminant in a context in which
3960 -- it is a reference to the corresponding parameter of the
3961 -- init proc for the enclosing type.
3963 else
3964 Set_Entity (N, Discriminal (E));
3965 end if;
3966 end Set_Entity_Or_Discriminal;
3968 -----------------------------------
3969 -- Check_In_Previous_With_Clause --
3970 -----------------------------------
3972 procedure Check_In_Previous_With_Clause
3973 (N : Node_Id;
3974 Nam : Entity_Id)
3976 Pack : constant Entity_Id := Entity (Original_Node (Nam));
3977 Item : Node_Id;
3978 Par : Node_Id;
3980 begin
3981 Item := First (Context_Items (Parent (N)));
3982 while Present (Item) and then Item /= N loop
3983 if Nkind (Item) = N_With_Clause
3985 -- Protect the frontend against previous critical errors
3987 and then Nkind (Name (Item)) /= N_Selected_Component
3988 and then Entity (Name (Item)) = Pack
3989 then
3990 Par := Nam;
3992 -- Find root library unit in with_clause
3994 while Nkind (Par) = N_Expanded_Name loop
3995 Par := Prefix (Par);
3996 end loop;
3998 if Is_Child_Unit (Entity (Original_Node (Par))) then
3999 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4000 else
4001 return;
4002 end if;
4003 end if;
4005 Next (Item);
4006 end loop;
4008 -- On exit, package is not mentioned in a previous with_clause.
4009 -- Check if its prefix is.
4011 if Nkind (Nam) = N_Expanded_Name then
4012 Check_In_Previous_With_Clause (N, Prefix (Nam));
4014 elsif Pack /= Any_Id then
4015 Error_Msg_NE ("& is not visible", Nam, Pack);
4016 end if;
4017 end Check_In_Previous_With_Clause;
4019 ---------------------------------
4020 -- Check_Library_Unit_Renaming --
4021 ---------------------------------
4023 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4024 New_E : Entity_Id;
4026 begin
4027 if Nkind (Parent (N)) /= N_Compilation_Unit then
4028 return;
4030 -- Check for library unit. Note that we used to check for the scope
4031 -- being Standard here, but that was wrong for Standard itself.
4033 elsif not Is_Compilation_Unit (Old_E)
4034 and then not Is_Child_Unit (Old_E)
4035 then
4036 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4038 -- Entities defined in Standard (operators and boolean literals) cannot
4039 -- be renamed as library units.
4041 elsif Scope (Old_E) = Standard_Standard
4042 and then Sloc (Old_E) = Standard_Location
4043 then
4044 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4046 elsif Present (Parent_Spec (N))
4047 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4048 and then not Is_Child_Unit (Old_E)
4049 then
4050 Error_Msg_N
4051 ("renamed unit must be a child unit of generic parent", Name (N));
4053 elsif Nkind (N) in N_Generic_Renaming_Declaration
4054 and then Nkind (Name (N)) = N_Expanded_Name
4055 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4056 and then Is_Generic_Unit (Old_E)
4057 then
4058 Error_Msg_N
4059 ("renamed generic unit must be a library unit", Name (N));
4061 elsif Is_Package_Or_Generic_Package (Old_E) then
4063 -- Inherit categorization flags
4065 New_E := Defining_Entity (N);
4066 Set_Is_Pure (New_E, Is_Pure (Old_E));
4067 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4068 Set_Is_Remote_Call_Interface (New_E,
4069 Is_Remote_Call_Interface (Old_E));
4070 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4071 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4072 end if;
4073 end Check_Library_Unit_Renaming;
4075 ------------------------
4076 -- Enclosing_Instance --
4077 ------------------------
4079 function Enclosing_Instance return Entity_Id is
4080 S : Entity_Id;
4082 begin
4083 if not Is_Generic_Instance (Current_Scope) then
4084 return Empty;
4085 end if;
4087 S := Scope (Current_Scope);
4088 while S /= Standard_Standard loop
4089 if Is_Generic_Instance (S) then
4090 return S;
4091 end if;
4093 S := Scope (S);
4094 end loop;
4096 return Empty;
4097 end Enclosing_Instance;
4099 ---------------
4100 -- End_Scope --
4101 ---------------
4103 procedure End_Scope is
4104 Id : Entity_Id;
4105 Prev : Entity_Id;
4106 Outer : Entity_Id;
4108 begin
4109 Id := First_Entity (Current_Scope);
4110 while Present (Id) loop
4111 -- An entity in the current scope is not necessarily the first one
4112 -- on its homonym chain. Find its predecessor if any,
4113 -- If it is an internal entity, it will not be in the visibility
4114 -- chain altogether, and there is nothing to unchain.
4116 if Id /= Current_Entity (Id) then
4117 Prev := Current_Entity (Id);
4118 while Present (Prev)
4119 and then Present (Homonym (Prev))
4120 and then Homonym (Prev) /= Id
4121 loop
4122 Prev := Homonym (Prev);
4123 end loop;
4125 -- Skip to end of loop if Id is not in the visibility chain
4127 if No (Prev) or else Homonym (Prev) /= Id then
4128 goto Next_Ent;
4129 end if;
4131 else
4132 Prev := Empty;
4133 end if;
4135 Set_Is_Immediately_Visible (Id, False);
4137 Outer := Homonym (Id);
4138 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4139 Outer := Homonym (Outer);
4140 end loop;
4142 -- Reset homonym link of other entities, but do not modify link
4143 -- between entities in current scope, so that the back-end can have
4144 -- a proper count of local overloadings.
4146 if No (Prev) then
4147 Set_Name_Entity_Id (Chars (Id), Outer);
4149 elsif Scope (Prev) /= Scope (Id) then
4150 Set_Homonym (Prev, Outer);
4151 end if;
4153 <<Next_Ent>>
4154 Next_Entity (Id);
4155 end loop;
4157 -- If the scope generated freeze actions, place them before the
4158 -- current declaration and analyze them. Type declarations and
4159 -- the bodies of initialization procedures can generate such nodes.
4160 -- We follow the parent chain until we reach a list node, which is
4161 -- the enclosing list of declarations. If the list appears within
4162 -- a protected definition, move freeze nodes outside the protected
4163 -- type altogether.
4165 if Present
4166 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4167 then
4168 declare
4169 Decl : Node_Id;
4170 L : constant List_Id := Scope_Stack.Table
4171 (Scope_Stack.Last).Pending_Freeze_Actions;
4173 begin
4174 if Is_Itype (Current_Scope) then
4175 Decl := Associated_Node_For_Itype (Current_Scope);
4176 else
4177 Decl := Parent (Current_Scope);
4178 end if;
4180 Pop_Scope;
4182 while not (Is_List_Member (Decl))
4183 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4184 N_Task_Definition)
4185 loop
4186 Decl := Parent (Decl);
4187 end loop;
4189 Insert_List_Before_And_Analyze (Decl, L);
4190 end;
4192 else
4193 Pop_Scope;
4194 end if;
4195 end End_Scope;
4197 ---------------------
4198 -- End_Use_Clauses --
4199 ---------------------
4201 procedure End_Use_Clauses (Clause : Node_Id) is
4202 U : Node_Id;
4204 begin
4205 -- Remove Use_Type clauses first, because they affect the
4206 -- visibility of operators in subsequent used packages.
4208 U := Clause;
4209 while Present (U) loop
4210 if Nkind (U) = N_Use_Type_Clause then
4211 End_Use_Type (U);
4212 end if;
4214 Next_Use_Clause (U);
4215 end loop;
4217 U := Clause;
4218 while Present (U) loop
4219 if Nkind (U) = N_Use_Package_Clause then
4220 End_Use_Package (U);
4221 end if;
4223 Next_Use_Clause (U);
4224 end loop;
4225 end End_Use_Clauses;
4227 ---------------------
4228 -- End_Use_Package --
4229 ---------------------
4231 procedure End_Use_Package (N : Node_Id) is
4232 Pack_Name : Node_Id;
4233 Pack : Entity_Id;
4234 Id : Entity_Id;
4235 Elmt : Elmt_Id;
4237 function Is_Primitive_Operator_In_Use
4238 (Op : Entity_Id;
4239 F : Entity_Id) return Boolean;
4240 -- Check whether Op is a primitive operator of a use-visible type
4242 ----------------------------------
4243 -- Is_Primitive_Operator_In_Use --
4244 ----------------------------------
4246 function Is_Primitive_Operator_In_Use
4247 (Op : Entity_Id;
4248 F : Entity_Id) return Boolean
4250 T : constant Entity_Id := Base_Type (Etype (F));
4251 begin
4252 return In_Use (T) and then Scope (T) = Scope (Op);
4253 end Is_Primitive_Operator_In_Use;
4255 -- Start of processing for End_Use_Package
4257 begin
4258 Pack_Name := First (Names (N));
4259 while Present (Pack_Name) loop
4261 -- Test that Pack_Name actually denotes a package before processing
4263 if Is_Entity_Name (Pack_Name)
4264 and then Ekind (Entity (Pack_Name)) = E_Package
4265 then
4266 Pack := Entity (Pack_Name);
4268 if In_Open_Scopes (Pack) then
4269 null;
4271 elsif not Redundant_Use (Pack_Name) then
4272 Set_In_Use (Pack, False);
4273 Set_Current_Use_Clause (Pack, Empty);
4275 Id := First_Entity (Pack);
4276 while Present (Id) loop
4278 -- Preserve use-visibility of operators that are primitive
4279 -- operators of a type that is use-visible through an active
4280 -- use_type clause.
4282 if Nkind (Id) = N_Defining_Operator_Symbol
4283 and then
4284 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4285 or else
4286 (Present (Next_Formal (First_Formal (Id)))
4287 and then
4288 Is_Primitive_Operator_In_Use
4289 (Id, Next_Formal (First_Formal (Id)))))
4290 then
4291 null;
4292 else
4293 Set_Is_Potentially_Use_Visible (Id, False);
4294 end if;
4296 if Is_Private_Type (Id)
4297 and then Present (Full_View (Id))
4298 then
4299 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4300 end if;
4302 Next_Entity (Id);
4303 end loop;
4305 if Present (Renamed_Object (Pack)) then
4306 Set_In_Use (Renamed_Object (Pack), False);
4307 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4308 end if;
4310 if Chars (Pack) = Name_System
4311 and then Scope (Pack) = Standard_Standard
4312 and then Present_System_Aux
4313 then
4314 Id := First_Entity (System_Aux_Id);
4315 while Present (Id) loop
4316 Set_Is_Potentially_Use_Visible (Id, False);
4318 if Is_Private_Type (Id)
4319 and then Present (Full_View (Id))
4320 then
4321 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4322 end if;
4324 Next_Entity (Id);
4325 end loop;
4327 Set_In_Use (System_Aux_Id, False);
4328 end if;
4330 else
4331 Set_Redundant_Use (Pack_Name, False);
4332 end if;
4333 end if;
4335 Next (Pack_Name);
4336 end loop;
4338 if Present (Hidden_By_Use_Clause (N)) then
4339 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4340 while Present (Elmt) loop
4341 declare
4342 E : constant Entity_Id := Node (Elmt);
4344 begin
4345 -- Reset either Use_Visibility or Direct_Visibility, depending
4346 -- on how the entity was hidden by the use clause.
4348 if In_Use (Scope (E))
4349 and then Used_As_Generic_Actual (Scope (E))
4350 then
4351 Set_Is_Potentially_Use_Visible (Node (Elmt));
4352 else
4353 Set_Is_Immediately_Visible (Node (Elmt));
4354 end if;
4356 Next_Elmt (Elmt);
4357 end;
4358 end loop;
4360 Set_Hidden_By_Use_Clause (N, No_Elist);
4361 end if;
4362 end End_Use_Package;
4364 ------------------
4365 -- End_Use_Type --
4366 ------------------
4368 procedure End_Use_Type (N : Node_Id) is
4369 Elmt : Elmt_Id;
4370 Id : Entity_Id;
4371 T : Entity_Id;
4373 -- Start of processing for End_Use_Type
4375 begin
4376 Id := First (Subtype_Marks (N));
4377 while Present (Id) loop
4379 -- A call to Rtsfind may occur while analyzing a use_type clause,
4380 -- in which case the type marks are not resolved yet, and there is
4381 -- nothing to remove.
4383 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4384 goto Continue;
4385 end if;
4387 T := Entity (Id);
4389 if T = Any_Type or else From_Limited_With (T) then
4390 null;
4392 -- Note that the use_type clause may mention a subtype of the type
4393 -- whose primitive operations have been made visible. Here as
4394 -- elsewhere, it is the base type that matters for visibility.
4396 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4397 null;
4399 elsif not Redundant_Use (Id) then
4400 Set_In_Use (T, False);
4401 Set_In_Use (Base_Type (T), False);
4402 Set_Current_Use_Clause (T, Empty);
4403 Set_Current_Use_Clause (Base_Type (T), Empty);
4404 end if;
4406 <<Continue>>
4407 Next (Id);
4408 end loop;
4410 if Is_Empty_Elmt_List (Used_Operations (N)) then
4411 return;
4413 else
4414 Elmt := First_Elmt (Used_Operations (N));
4415 while Present (Elmt) loop
4416 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4417 Next_Elmt (Elmt);
4418 end loop;
4419 end if;
4420 end End_Use_Type;
4422 ----------------------
4423 -- Find_Direct_Name --
4424 ----------------------
4426 procedure Find_Direct_Name (N : Node_Id) is
4427 E : Entity_Id;
4428 E2 : Entity_Id;
4429 Msg : Boolean;
4431 Inst : Entity_Id := Empty;
4432 -- Enclosing instance, if any
4434 Homonyms : Entity_Id;
4435 -- Saves start of homonym chain
4437 Nvis_Entity : Boolean;
4438 -- Set True to indicate that there is at least one entity on the homonym
4439 -- chain which, while not visible, is visible enough from the user point
4440 -- of view to warrant an error message of "not visible" rather than
4441 -- undefined.
4443 Nvis_Is_Private_Subprg : Boolean := False;
4444 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4445 -- effect concerning library subprograms has been detected. Used to
4446 -- generate the precise error message.
4448 function From_Actual_Package (E : Entity_Id) return Boolean;
4449 -- Returns true if the entity is an actual for a package that is itself
4450 -- an actual for a formal package of the current instance. Such an
4451 -- entity requires special handling because it may be use-visible but
4452 -- hides directly visible entities defined outside the instance, because
4453 -- the corresponding formal did so in the generic.
4455 function Is_Actual_Parameter return Boolean;
4456 -- This function checks if the node N is an identifier that is an actual
4457 -- parameter of a procedure call. If so it returns True, otherwise it
4458 -- return False. The reason for this check is that at this stage we do
4459 -- not know what procedure is being called if the procedure might be
4460 -- overloaded, so it is premature to go setting referenced flags or
4461 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4462 -- for that processing
4464 function Known_But_Invisible (E : Entity_Id) return Boolean;
4465 -- This function determines whether a reference to the entity E, which
4466 -- is not visible, can reasonably be considered to be known to the
4467 -- writer of the reference. This is a heuristic test, used only for
4468 -- the purposes of figuring out whether we prefer to complain that an
4469 -- entity is undefined or invisible (and identify the declaration of
4470 -- the invisible entity in the latter case). The point here is that we
4471 -- don't want to complain that something is invisible and then point to
4472 -- something entirely mysterious to the writer.
4474 procedure Nvis_Messages;
4475 -- Called if there are no visible entries for N, but there is at least
4476 -- one non-directly visible, or hidden declaration. This procedure
4477 -- outputs an appropriate set of error messages.
4479 procedure Undefined (Nvis : Boolean);
4480 -- This function is called if the current node has no corresponding
4481 -- visible entity or entities. The value set in Msg indicates whether
4482 -- an error message was generated (multiple error messages for the
4483 -- same variable are generally suppressed, see body for details).
4484 -- Msg is True if an error message was generated, False if not. This
4485 -- value is used by the caller to determine whether or not to output
4486 -- additional messages where appropriate. The parameter is set False
4487 -- to get the message "X is undefined", and True to get the message
4488 -- "X is not visible".
4490 -------------------------
4491 -- From_Actual_Package --
4492 -------------------------
4494 function From_Actual_Package (E : Entity_Id) return Boolean is
4495 Scop : constant Entity_Id := Scope (E);
4496 -- Declared scope of candidate entity
4498 Act : Entity_Id;
4500 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4501 -- Recursive function that does the work and examines actuals of
4502 -- actual packages of current instance.
4504 ------------------------
4505 -- Declared_In_Actual --
4506 ------------------------
4508 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4509 Act : Entity_Id;
4511 begin
4512 if No (Associated_Formal_Package (Pack)) then
4513 return False;
4515 else
4516 Act := First_Entity (Pack);
4517 while Present (Act) loop
4518 if Renamed_Object (Pack) = Scop then
4519 return True;
4521 -- Check for end of list of actuals.
4523 elsif Ekind (Act) = E_Package
4524 and then Renamed_Object (Act) = Pack
4525 then
4526 return False;
4528 elsif Ekind (Act) = E_Package
4529 and then Declared_In_Actual (Act)
4530 then
4531 return True;
4532 end if;
4534 Next_Entity (Act);
4535 end loop;
4537 return False;
4538 end if;
4539 end Declared_In_Actual;
4541 -- Start of processing for From_Actual_Package
4543 begin
4544 if not In_Instance then
4545 return False;
4547 else
4548 Inst := Current_Scope;
4549 while Present (Inst)
4550 and then Ekind (Inst) /= E_Package
4551 and then not Is_Generic_Instance (Inst)
4552 loop
4553 Inst := Scope (Inst);
4554 end loop;
4556 if No (Inst) then
4557 return False;
4558 end if;
4560 Act := First_Entity (Inst);
4561 while Present (Act) loop
4562 if Ekind (Act) = E_Package
4563 and then Declared_In_Actual (Act)
4564 then
4565 return True;
4566 end if;
4568 Next_Entity (Act);
4569 end loop;
4571 return False;
4572 end if;
4573 end From_Actual_Package;
4575 -------------------------
4576 -- Is_Actual_Parameter --
4577 -------------------------
4579 function Is_Actual_Parameter return Boolean is
4580 begin
4581 return
4582 Nkind (N) = N_Identifier
4583 and then
4584 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4585 or else
4586 (Nkind (Parent (N)) = N_Parameter_Association
4587 and then N = Explicit_Actual_Parameter (Parent (N))
4588 and then Nkind (Parent (Parent (N))) =
4589 N_Procedure_Call_Statement));
4590 end Is_Actual_Parameter;
4592 -------------------------
4593 -- Known_But_Invisible --
4594 -------------------------
4596 function Known_But_Invisible (E : Entity_Id) return Boolean is
4597 Fname : File_Name_Type;
4599 begin
4600 -- Entities in Standard are always considered to be known
4602 if Sloc (E) <= Standard_Location then
4603 return True;
4605 -- An entity that does not come from source is always considered
4606 -- to be unknown, since it is an artifact of code expansion.
4608 elsif not Comes_From_Source (E) then
4609 return False;
4611 -- In gnat internal mode, we consider all entities known. The
4612 -- historical reason behind this discrepancy is not known??? But the
4613 -- only effect is to modify the error message given, so it is not
4614 -- critical. Since it only affects the exact wording of error
4615 -- messages in illegal programs, we do not mention this as an
4616 -- effect of -gnatg, since it is not a language modification.
4618 elsif GNAT_Mode then
4619 return True;
4620 end if;
4622 -- Here we have an entity that is not from package Standard, and
4623 -- which comes from Source. See if it comes from an internal file.
4625 Fname := Unit_File_Name (Get_Source_Unit (E));
4627 -- Case of from internal file
4629 if Is_Internal_File_Name (Fname) then
4631 -- Private part entities in internal files are never considered
4632 -- to be known to the writer of normal application code.
4634 if Is_Hidden (E) then
4635 return False;
4636 end if;
4638 -- Entities from System packages other than System and
4639 -- System.Storage_Elements are not considered to be known.
4640 -- System.Auxxxx files are also considered known to the user.
4642 -- Should refine this at some point to generally distinguish
4643 -- between known and unknown internal files ???
4645 Get_Name_String (Fname);
4647 return
4648 Name_Len < 2
4649 or else
4650 Name_Buffer (1 .. 2) /= "s-"
4651 or else
4652 Name_Buffer (3 .. 8) = "stoele"
4653 or else
4654 Name_Buffer (3 .. 5) = "aux";
4656 -- If not an internal file, then entity is definitely known,
4657 -- even if it is in a private part (the message generated will
4658 -- note that it is in a private part)
4660 else
4661 return True;
4662 end if;
4663 end Known_But_Invisible;
4665 -------------------
4666 -- Nvis_Messages --
4667 -------------------
4669 procedure Nvis_Messages is
4670 Comp_Unit : Node_Id;
4671 Ent : Entity_Id;
4672 Found : Boolean := False;
4673 Hidden : Boolean := False;
4674 Item : Node_Id;
4676 begin
4677 -- Ada 2005 (AI-262): Generate a precise error concerning the
4678 -- Beaujolais effect that was previously detected
4680 if Nvis_Is_Private_Subprg then
4682 pragma Assert (Nkind (E2) = N_Defining_Identifier
4683 and then Ekind (E2) = E_Function
4684 and then Scope (E2) = Standard_Standard
4685 and then Has_Private_With (E2));
4687 -- Find the sloc corresponding to the private with'ed unit
4689 Comp_Unit := Cunit (Current_Sem_Unit);
4690 Error_Msg_Sloc := No_Location;
4692 Item := First (Context_Items (Comp_Unit));
4693 while Present (Item) loop
4694 if Nkind (Item) = N_With_Clause
4695 and then Private_Present (Item)
4696 and then Entity (Name (Item)) = E2
4697 then
4698 Error_Msg_Sloc := Sloc (Item);
4699 exit;
4700 end if;
4702 Next (Item);
4703 end loop;
4705 pragma Assert (Error_Msg_Sloc /= No_Location);
4707 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
4708 return;
4709 end if;
4711 Undefined (Nvis => True);
4713 if Msg then
4715 -- First loop does hidden declarations
4717 Ent := Homonyms;
4718 while Present (Ent) loop
4719 if Is_Potentially_Use_Visible (Ent) then
4720 if not Hidden then
4721 Error_Msg_N -- CODEFIX
4722 ("multiple use clauses cause hiding!", N);
4723 Hidden := True;
4724 end if;
4726 Error_Msg_Sloc := Sloc (Ent);
4727 Error_Msg_N -- CODEFIX
4728 ("hidden declaration#!", N);
4729 end if;
4731 Ent := Homonym (Ent);
4732 end loop;
4734 -- If we found hidden declarations, then that's enough, don't
4735 -- bother looking for non-visible declarations as well.
4737 if Hidden then
4738 return;
4739 end if;
4741 -- Second loop does non-directly visible declarations
4743 Ent := Homonyms;
4744 while Present (Ent) loop
4745 if not Is_Potentially_Use_Visible (Ent) then
4747 -- Do not bother the user with unknown entities
4749 if not Known_But_Invisible (Ent) then
4750 goto Continue;
4751 end if;
4753 Error_Msg_Sloc := Sloc (Ent);
4755 -- Output message noting that there is a non-visible
4756 -- declaration, distinguishing the private part case.
4758 if Is_Hidden (Ent) then
4759 Error_Msg_N ("non-visible (private) declaration#!", N);
4761 -- If the entity is declared in a generic package, it
4762 -- cannot be visible, so there is no point in adding it
4763 -- to the list of candidates if another homograph from a
4764 -- non-generic package has been seen.
4766 elsif Ekind (Scope (Ent)) = E_Generic_Package
4767 and then Found
4768 then
4769 null;
4771 else
4772 Error_Msg_N -- CODEFIX
4773 ("non-visible declaration#!", N);
4775 if Ekind (Scope (Ent)) /= E_Generic_Package then
4776 Found := True;
4777 end if;
4779 if Is_Compilation_Unit (Ent)
4780 and then
4781 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
4782 then
4783 Error_Msg_Qual_Level := 99;
4784 Error_Msg_NE -- CODEFIX
4785 ("\\missing `WITH &;`", N, Ent);
4786 Error_Msg_Qual_Level := 0;
4787 end if;
4789 if Ekind (Ent) = E_Discriminant
4790 and then Present (Corresponding_Discriminant (Ent))
4791 and then Scope (Corresponding_Discriminant (Ent)) =
4792 Etype (Scope (Ent))
4793 then
4794 Error_Msg_N
4795 ("inherited discriminant not allowed here" &
4796 " (RM 3.8 (12), 3.8.1 (6))!", N);
4797 end if;
4798 end if;
4800 -- Set entity and its containing package as referenced. We
4801 -- can't be sure of this, but this seems a better choice
4802 -- to avoid unused entity messages.
4804 if Comes_From_Source (Ent) then
4805 Set_Referenced (Ent);
4806 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
4807 end if;
4808 end if;
4810 <<Continue>>
4811 Ent := Homonym (Ent);
4812 end loop;
4813 end if;
4814 end Nvis_Messages;
4816 ---------------
4817 -- Undefined --
4818 ---------------
4820 procedure Undefined (Nvis : Boolean) is
4821 Emsg : Error_Msg_Id;
4823 begin
4824 -- We should never find an undefined internal name. If we do, then
4825 -- see if we have previous errors. If so, ignore on the grounds that
4826 -- it is probably a cascaded message (e.g. a block label from a badly
4827 -- formed block). If no previous errors, then we have a real internal
4828 -- error of some kind so raise an exception.
4830 if Is_Internal_Name (Chars (N)) then
4831 if Total_Errors_Detected /= 0 then
4832 return;
4833 else
4834 raise Program_Error;
4835 end if;
4836 end if;
4838 -- A very specialized error check, if the undefined variable is
4839 -- a case tag, and the case type is an enumeration type, check
4840 -- for a possible misspelling, and if so, modify the identifier
4842 -- Named aggregate should also be handled similarly ???
4844 if Nkind (N) = N_Identifier
4845 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
4846 then
4847 declare
4848 Case_Stm : constant Node_Id := Parent (Parent (N));
4849 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
4851 Lit : Node_Id;
4853 begin
4854 if Is_Enumeration_Type (Case_Typ)
4855 and then not Is_Standard_Character_Type (Case_Typ)
4856 then
4857 Lit := First_Literal (Case_Typ);
4858 Get_Name_String (Chars (Lit));
4860 if Chars (Lit) /= Chars (N)
4861 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
4862 then
4863 Error_Msg_Node_2 := Lit;
4864 Error_Msg_N -- CODEFIX
4865 ("& is undefined, assume misspelling of &", N);
4866 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
4867 return;
4868 end if;
4870 Lit := Next_Literal (Lit);
4871 end if;
4872 end;
4873 end if;
4875 -- Normal processing
4877 Set_Entity (N, Any_Id);
4878 Set_Etype (N, Any_Type);
4880 -- We use the table Urefs to keep track of entities for which we
4881 -- have issued errors for undefined references. Multiple errors
4882 -- for a single name are normally suppressed, however we modify
4883 -- the error message to alert the programmer to this effect.
4885 for J in Urefs.First .. Urefs.Last loop
4886 if Chars (N) = Chars (Urefs.Table (J).Node) then
4887 if Urefs.Table (J).Err /= No_Error_Msg
4888 and then Sloc (N) /= Urefs.Table (J).Loc
4889 then
4890 Error_Msg_Node_1 := Urefs.Table (J).Node;
4892 if Urefs.Table (J).Nvis then
4893 Change_Error_Text (Urefs.Table (J).Err,
4894 "& is not visible (more references follow)");
4895 else
4896 Change_Error_Text (Urefs.Table (J).Err,
4897 "& is undefined (more references follow)");
4898 end if;
4900 Urefs.Table (J).Err := No_Error_Msg;
4901 end if;
4903 -- Although we will set Msg False, and thus suppress the
4904 -- message, we also set Error_Posted True, to avoid any
4905 -- cascaded messages resulting from the undefined reference.
4907 Msg := False;
4908 Set_Error_Posted (N, True);
4909 return;
4910 end if;
4911 end loop;
4913 -- If entry not found, this is first undefined occurrence
4915 if Nvis then
4916 Error_Msg_N ("& is not visible!", N);
4917 Emsg := Get_Msg_Id;
4919 else
4920 Error_Msg_N ("& is undefined!", N);
4921 Emsg := Get_Msg_Id;
4923 -- A very bizarre special check, if the undefined identifier
4924 -- is put or put_line, then add a special error message (since
4925 -- this is a very common error for beginners to make).
4927 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
4928 Error_Msg_N -- CODEFIX
4929 ("\\possible missing `WITH Ada.Text_'I'O; " &
4930 "USE Ada.Text_'I'O`!", N);
4932 -- Another special check if N is the prefix of a selected
4933 -- component which is a known unit, add message complaining
4934 -- about missing with for this unit.
4936 elsif Nkind (Parent (N)) = N_Selected_Component
4937 and then N = Prefix (Parent (N))
4938 and then Is_Known_Unit (Parent (N))
4939 then
4940 Error_Msg_Node_2 := Selector_Name (Parent (N));
4941 Error_Msg_N -- CODEFIX
4942 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
4943 end if;
4945 -- Now check for possible misspellings
4947 declare
4948 E : Entity_Id;
4949 Ematch : Entity_Id := Empty;
4951 Last_Name_Id : constant Name_Id :=
4952 Name_Id (Nat (First_Name_Id) +
4953 Name_Entries_Count - 1);
4955 begin
4956 for Nam in First_Name_Id .. Last_Name_Id loop
4957 E := Get_Name_Entity_Id (Nam);
4959 if Present (E)
4960 and then (Is_Immediately_Visible (E)
4961 or else
4962 Is_Potentially_Use_Visible (E))
4963 then
4964 if Is_Bad_Spelling_Of (Chars (N), Nam) then
4965 Ematch := E;
4966 exit;
4967 end if;
4968 end if;
4969 end loop;
4971 if Present (Ematch) then
4972 Error_Msg_NE -- CODEFIX
4973 ("\possible misspelling of&", N, Ematch);
4974 end if;
4975 end;
4976 end if;
4978 -- Make entry in undefined references table unless the full errors
4979 -- switch is set, in which case by refraining from generating the
4980 -- table entry, we guarantee that we get an error message for every
4981 -- undefined reference.
4983 if not All_Errors_Mode then
4984 Urefs.Append (
4985 (Node => N,
4986 Err => Emsg,
4987 Nvis => Nvis,
4988 Loc => Sloc (N)));
4989 end if;
4991 Msg := True;
4992 end Undefined;
4994 -- Start of processing for Find_Direct_Name
4996 begin
4997 -- If the entity pointer is already set, this is an internal node, or
4998 -- a node that is analyzed more than once, after a tree modification.
4999 -- In such a case there is no resolution to perform, just set the type.
5001 if Present (Entity (N)) then
5002 if Is_Type (Entity (N)) then
5003 Set_Etype (N, Entity (N));
5005 else
5006 declare
5007 Entyp : constant Entity_Id := Etype (Entity (N));
5009 begin
5010 -- One special case here. If the Etype field is already set,
5011 -- and references the packed array type corresponding to the
5012 -- etype of the referenced entity, then leave it alone. This
5013 -- happens for trees generated from Exp_Pakd, where expressions
5014 -- can be deliberately "mis-typed" to the packed array type.
5016 if Is_Array_Type (Entyp)
5017 and then Is_Packed (Entyp)
5018 and then Present (Etype (N))
5019 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5020 then
5021 null;
5023 -- If not that special case, then just reset the Etype
5025 else
5026 Set_Etype (N, Etype (Entity (N)));
5027 end if;
5028 end;
5029 end if;
5031 return;
5032 end if;
5034 -- Here if Entity pointer was not set, we need full visibility analysis
5035 -- First we generate debugging output if the debug E flag is set.
5037 if Debug_Flag_E then
5038 Write_Str ("Looking for ");
5039 Write_Name (Chars (N));
5040 Write_Eol;
5041 end if;
5043 Homonyms := Current_Entity (N);
5044 Nvis_Entity := False;
5046 E := Homonyms;
5047 while Present (E) loop
5049 -- If entity is immediately visible or potentially use visible, then
5050 -- process the entity and we are done.
5052 if Is_Immediately_Visible (E) then
5053 goto Immediately_Visible_Entity;
5055 elsif Is_Potentially_Use_Visible (E) then
5056 goto Potentially_Use_Visible_Entity;
5058 -- Note if a known but invisible entity encountered
5060 elsif Known_But_Invisible (E) then
5061 Nvis_Entity := True;
5062 end if;
5064 -- Move to next entity in chain and continue search
5066 E := Homonym (E);
5067 end loop;
5069 -- If no entries on homonym chain that were potentially visible,
5070 -- and no entities reasonably considered as non-visible, then
5071 -- we have a plain undefined reference, with no additional
5072 -- explanation required.
5074 if not Nvis_Entity then
5075 Undefined (Nvis => False);
5077 -- Otherwise there is at least one entry on the homonym chain that
5078 -- is reasonably considered as being known and non-visible.
5080 else
5081 Nvis_Messages;
5082 end if;
5084 return;
5086 -- Processing for a potentially use visible entry found. We must search
5087 -- the rest of the homonym chain for two reasons. First, if there is a
5088 -- directly visible entry, then none of the potentially use-visible
5089 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5090 -- for the case of multiple potentially use-visible entries hiding one
5091 -- another and as a result being non-directly visible (RM 8.4(11)).
5093 <<Potentially_Use_Visible_Entity>> declare
5094 Only_One_Visible : Boolean := True;
5095 All_Overloadable : Boolean := Is_Overloadable (E);
5097 begin
5098 E2 := Homonym (E);
5099 while Present (E2) loop
5100 if Is_Immediately_Visible (E2) then
5102 -- If the use-visible entity comes from the actual for a
5103 -- formal package, it hides a directly visible entity from
5104 -- outside the instance.
5106 if From_Actual_Package (E)
5107 and then Scope_Depth (E2) < Scope_Depth (Inst)
5108 then
5109 goto Found;
5110 else
5111 E := E2;
5112 goto Immediately_Visible_Entity;
5113 end if;
5115 elsif Is_Potentially_Use_Visible (E2) then
5116 Only_One_Visible := False;
5117 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5119 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5120 -- that can occur in private_with clauses. Example:
5122 -- with A;
5123 -- private with B; package A is
5124 -- package C is function B return Integer;
5125 -- use A; end A;
5126 -- V1 : Integer := B;
5127 -- private function B return Integer;
5128 -- V2 : Integer := B;
5129 -- end C;
5131 -- V1 resolves to A.B, but V2 resolves to library unit B
5133 elsif Ekind (E2) = E_Function
5134 and then Scope (E2) = Standard_Standard
5135 and then Has_Private_With (E2)
5136 then
5137 Only_One_Visible := False;
5138 All_Overloadable := False;
5139 Nvis_Is_Private_Subprg := True;
5140 exit;
5141 end if;
5143 E2 := Homonym (E2);
5144 end loop;
5146 -- On falling through this loop, we have checked that there are no
5147 -- immediately visible entities. Only_One_Visible is set if exactly
5148 -- one potentially use visible entity exists. All_Overloadable is
5149 -- set if all the potentially use visible entities are overloadable.
5150 -- The condition for legality is that either there is one potentially
5151 -- use visible entity, or if there is more than one, then all of them
5152 -- are overloadable.
5154 if Only_One_Visible or All_Overloadable then
5155 goto Found;
5157 -- If there is more than one potentially use-visible entity and at
5158 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5159 -- Note that E points to the first such entity on the homonym list.
5160 -- Special case: if one of the entities is declared in an actual
5161 -- package, it was visible in the generic, and takes precedence over
5162 -- other entities that are potentially use-visible. Same if it is
5163 -- declared in a local instantiation of the current instance.
5165 else
5166 if In_Instance then
5168 -- Find current instance
5170 Inst := Current_Scope;
5171 while Present (Inst) and then Inst /= Standard_Standard loop
5172 if Is_Generic_Instance (Inst) then
5173 exit;
5174 end if;
5176 Inst := Scope (Inst);
5177 end loop;
5179 E2 := E;
5180 while Present (E2) loop
5181 if From_Actual_Package (E2)
5182 or else
5183 (Is_Generic_Instance (Scope (E2))
5184 and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
5185 then
5186 E := E2;
5187 goto Found;
5188 end if;
5190 E2 := Homonym (E2);
5191 end loop;
5193 Nvis_Messages;
5194 return;
5196 elsif
5197 Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
5198 then
5199 -- A use-clause in the body of a system file creates conflict
5200 -- with some entity in a user scope, while rtsfind is active.
5201 -- Keep only the entity coming from another predefined unit.
5203 E2 := E;
5204 while Present (E2) loop
5205 if Is_Predefined_File_Name
5206 (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
5207 then
5208 E := E2;
5209 goto Found;
5210 end if;
5212 E2 := Homonym (E2);
5213 end loop;
5215 -- Entity must exist because predefined unit is correct
5217 raise Program_Error;
5219 else
5220 Nvis_Messages;
5221 return;
5222 end if;
5223 end if;
5224 end;
5226 -- Come here with E set to the first immediately visible entity on
5227 -- the homonym chain. This is the one we want unless there is another
5228 -- immediately visible entity further on in the chain for an inner
5229 -- scope (RM 8.3(8)).
5231 <<Immediately_Visible_Entity>> declare
5232 Level : Int;
5233 Scop : Entity_Id;
5235 begin
5236 -- Find scope level of initial entity. When compiling through
5237 -- Rtsfind, the previous context is not completely invisible, and
5238 -- an outer entity may appear on the chain, whose scope is below
5239 -- the entry for Standard that delimits the current scope stack.
5240 -- Indicate that the level for this spurious entry is outside of
5241 -- the current scope stack.
5243 Level := Scope_Stack.Last;
5244 loop
5245 Scop := Scope_Stack.Table (Level).Entity;
5246 exit when Scop = Scope (E);
5247 Level := Level - 1;
5248 exit when Scop = Standard_Standard;
5249 end loop;
5251 -- Now search remainder of homonym chain for more inner entry
5252 -- If the entity is Standard itself, it has no scope, and we
5253 -- compare it with the stack entry directly.
5255 E2 := Homonym (E);
5256 while Present (E2) loop
5257 if Is_Immediately_Visible (E2) then
5259 -- If a generic package contains a local declaration that
5260 -- has the same name as the generic, there may be a visibility
5261 -- conflict in an instance, where the local declaration must
5262 -- also hide the name of the corresponding package renaming.
5263 -- We check explicitly for a package declared by a renaming,
5264 -- whose renamed entity is an instance that is on the scope
5265 -- stack, and that contains a homonym in the same scope. Once
5266 -- we have found it, we know that the package renaming is not
5267 -- immediately visible, and that the identifier denotes the
5268 -- other entity (and its homonyms if overloaded).
5270 if Scope (E) = Scope (E2)
5271 and then Ekind (E) = E_Package
5272 and then Present (Renamed_Object (E))
5273 and then Is_Generic_Instance (Renamed_Object (E))
5274 and then In_Open_Scopes (Renamed_Object (E))
5275 and then Comes_From_Source (N)
5276 then
5277 Set_Is_Immediately_Visible (E, False);
5278 E := E2;
5280 else
5281 for J in Level + 1 .. Scope_Stack.Last loop
5282 if Scope_Stack.Table (J).Entity = Scope (E2)
5283 or else Scope_Stack.Table (J).Entity = E2
5284 then
5285 Level := J;
5286 E := E2;
5287 exit;
5288 end if;
5289 end loop;
5290 end if;
5291 end if;
5293 E2 := Homonym (E2);
5294 end loop;
5296 -- At the end of that loop, E is the innermost immediately
5297 -- visible entity, so we are all set.
5298 end;
5300 -- Come here with entity found, and stored in E
5302 <<Found>> begin
5304 -- Check violation of No_Wide_Characters restriction
5306 Check_Wide_Character_Restriction (E, N);
5308 -- When distribution features are available (Get_PCS_Name /=
5309 -- Name_No_DSA), a remote access-to-subprogram type is converted
5310 -- into a record type holding whatever information is needed to
5311 -- perform a remote call on an RCI subprogram. In that case we
5312 -- rewrite any occurrence of the RAS type into the equivalent record
5313 -- type here. 'Access attribute references and RAS dereferences are
5314 -- then implemented using specific TSSs. However when distribution is
5315 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5316 -- generation of these TSSs, and we must keep the RAS type in its
5317 -- original access-to-subprogram form (since all calls through a
5318 -- value of such type will be local anyway in the absence of a PCS).
5320 if Comes_From_Source (N)
5321 and then Is_Remote_Access_To_Subprogram_Type (E)
5322 and then Ekind (E) = E_Access_Subprogram_Type
5323 and then Expander_Active
5324 and then Get_PCS_Name /= Name_No_DSA
5325 then
5326 Rewrite (N,
5327 New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5328 return;
5329 end if;
5331 -- Set the entity. Note that the reason we call Set_Entity for the
5332 -- overloadable case, as opposed to Set_Entity_With_Checks is
5333 -- that in the overloaded case, the initial call can set the wrong
5334 -- homonym. The call that sets the right homonym is in Sem_Res and
5335 -- that call does use Set_Entity_With_Checks, so we don't miss
5336 -- a style check.
5338 if Is_Overloadable (E) then
5339 Set_Entity (N, E);
5340 else
5341 Set_Entity_With_Checks (N, E);
5342 end if;
5344 if Is_Type (E) then
5345 Set_Etype (N, E);
5346 else
5347 Set_Etype (N, Get_Full_View (Etype (E)));
5348 end if;
5350 if Debug_Flag_E then
5351 Write_Str (" found ");
5352 Write_Entity_Info (E, " ");
5353 end if;
5355 -- If the Ekind of the entity is Void, it means that all homonyms
5356 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5357 -- test is skipped if the current scope is a record and the name is
5358 -- a pragma argument expression (case of Atomic and Volatile pragmas
5359 -- and possibly other similar pragmas added later, which are allowed
5360 -- to reference components in the current record).
5362 if Ekind (E) = E_Void
5363 and then
5364 (not Is_Record_Type (Current_Scope)
5365 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5366 then
5367 Premature_Usage (N);
5369 -- If the entity is overloadable, collect all interpretations of the
5370 -- name for subsequent overload resolution. We optimize a bit here to
5371 -- do this only if we have an overloadable entity that is not on its
5372 -- own on the homonym chain.
5374 elsif Is_Overloadable (E)
5375 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5376 then
5377 Collect_Interps (N);
5379 -- If no homonyms were visible, the entity is unambiguous
5381 if not Is_Overloaded (N) then
5382 if not Is_Actual_Parameter then
5383 Generate_Reference (E, N);
5384 end if;
5385 end if;
5387 -- Case of non-overloadable entity, set the entity providing that
5388 -- we do not have the case of a discriminant reference within a
5389 -- default expression. Such references are replaced with the
5390 -- corresponding discriminal, which is the formal corresponding to
5391 -- to the discriminant in the initialization procedure.
5393 else
5394 -- Entity is unambiguous, indicate that it is referenced here
5396 -- For a renaming of an object, always generate simple reference,
5397 -- we don't try to keep track of assignments in this case, except
5398 -- in SPARK mode where renamings are traversed for generating
5399 -- local effects of subprograms.
5401 if Is_Object (E)
5402 and then Present (Renamed_Object (E))
5403 and then not GNATprove_Mode
5404 then
5405 Generate_Reference (E, N);
5407 -- If the renamed entity is a private protected component,
5408 -- reference the original component as well. This needs to be
5409 -- done because the private renamings are installed before any
5410 -- analysis has occurred. Reference to a private component will
5411 -- resolve to the renaming and the original component will be
5412 -- left unreferenced, hence the following.
5414 if Is_Prival (E) then
5415 Generate_Reference (Prival_Link (E), N);
5416 end if;
5418 -- One odd case is that we do not want to set the Referenced flag
5419 -- if the entity is a label, and the identifier is the label in
5420 -- the source, since this is not a reference from the point of
5421 -- view of the user.
5423 elsif Nkind (Parent (N)) = N_Label then
5424 declare
5425 R : constant Boolean := Referenced (E);
5427 begin
5428 -- Generate reference unless this is an actual parameter
5429 -- (see comment below)
5431 if Is_Actual_Parameter then
5432 Generate_Reference (E, N);
5433 Set_Referenced (E, R);
5434 end if;
5435 end;
5437 -- Normal case, not a label: generate reference
5439 else
5440 if not Is_Actual_Parameter then
5442 -- Package or generic package is always a simple reference
5444 if Ekind_In (E, E_Package, E_Generic_Package) then
5445 Generate_Reference (E, N, 'r');
5447 -- Else see if we have a left hand side
5449 else
5450 case Is_LHS (N) is
5451 when Yes =>
5452 Generate_Reference (E, N, 'm');
5454 when No =>
5455 Generate_Reference (E, N, 'r');
5457 -- If we don't know now, generate reference later
5459 when Unknown =>
5460 Deferred_References.Append ((E, N));
5461 end case;
5462 end if;
5463 end if;
5465 Check_Nested_Access (E);
5466 end if;
5468 Set_Entity_Or_Discriminal (N, E);
5470 -- The name may designate a generalized reference, in which case
5471 -- the dereference interpretation will be included.
5473 if Ada_Version >= Ada_2012
5474 and then
5475 (Nkind (Parent (N)) in N_Subexpr
5476 or else Nkind_In (Parent (N), N_Object_Declaration,
5477 N_Assignment_Statement))
5478 then
5479 Check_Implicit_Dereference (N, Etype (E));
5480 end if;
5481 end if;
5482 end;
5483 end Find_Direct_Name;
5485 ------------------------
5486 -- Find_Expanded_Name --
5487 ------------------------
5489 -- This routine searches the homonym chain of the entity until it finds
5490 -- an entity declared in the scope denoted by the prefix. If the entity
5491 -- is private, it may nevertheless be immediately visible, if we are in
5492 -- the scope of its declaration.
5494 procedure Find_Expanded_Name (N : Node_Id) is
5495 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean;
5496 -- Determine whether an arbitrary node N appears in pragmas [Refined_]
5497 -- Depends or [Refined_]Global.
5499 ----------------------------------
5500 -- In_Pragmas_Depends_Or_Global --
5501 ----------------------------------
5503 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean is
5504 Par : Node_Id;
5506 begin
5507 -- Climb the parent chain looking for a pragma
5509 Par := N;
5510 while Present (Par) loop
5511 if Nkind (Par) = N_Pragma
5512 and then Nam_In (Pragma_Name (Par), Name_Depends,
5513 Name_Global,
5514 Name_Refined_Depends,
5515 Name_Refined_Global)
5516 then
5517 return True;
5519 -- Prevent the search from going too far
5521 elsif Is_Body_Or_Package_Declaration (Par) then
5522 return False;
5523 end if;
5525 Par := Parent (Par);
5526 end loop;
5528 return False;
5529 end In_Pragmas_Depends_Or_Global;
5531 -- Local variables
5533 Selector : constant Node_Id := Selector_Name (N);
5534 Candidate : Entity_Id := Empty;
5535 P_Name : Entity_Id;
5536 Id : Entity_Id;
5538 -- Start of processing for Find_Expanded_Name
5540 begin
5541 P_Name := Entity (Prefix (N));
5543 -- If the prefix is a renamed package, look for the entity in the
5544 -- original package.
5546 if Ekind (P_Name) = E_Package
5547 and then Present (Renamed_Object (P_Name))
5548 then
5549 P_Name := Renamed_Object (P_Name);
5551 -- Rewrite node with entity field pointing to renamed object
5553 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5554 Set_Entity (Prefix (N), P_Name);
5556 -- If the prefix is an object of a concurrent type, look for
5557 -- the entity in the associated task or protected type.
5559 elsif Is_Concurrent_Type (Etype (P_Name)) then
5560 P_Name := Etype (P_Name);
5561 end if;
5563 Id := Current_Entity (Selector);
5565 declare
5566 Is_New_Candidate : Boolean;
5568 begin
5569 while Present (Id) loop
5570 if Scope (Id) = P_Name then
5571 Candidate := Id;
5572 Is_New_Candidate := True;
5574 -- Handle abstract views of states and variables. These are
5575 -- acceptable only when the reference to the view appears in
5576 -- pragmas [Refined_]Depends and [Refined_]Global.
5578 if Ekind (Id) = E_Abstract_State
5579 and then From_Limited_With (Id)
5580 and then Present (Non_Limited_View (Id))
5581 then
5582 if In_Pragmas_Depends_Or_Global (N) then
5583 Candidate := Non_Limited_View (Id);
5584 Is_New_Candidate := True;
5586 -- Hide candidate because it is not used in a proper context
5588 else
5589 Candidate := Empty;
5590 Is_New_Candidate := False;
5591 end if;
5592 end if;
5594 -- Ada 2005 (AI-217): Handle shadow entities associated with types
5595 -- declared in limited-withed nested packages. We don't need to
5596 -- handle E_Incomplete_Subtype entities because the entities in
5597 -- the limited view are always E_Incomplete_Type entities (see
5598 -- Build_Limited_Views). Regarding the expression used to evaluate
5599 -- the scope, it is important to note that the limited view also
5600 -- has shadow entities associated nested packages. For this reason
5601 -- the correct scope of the entity is the scope of the real entity
5602 -- The non-limited view may itself be incomplete, in which case
5603 -- get the full view if available.
5605 elsif Ekind (Id) = E_Incomplete_Type
5606 and then From_Limited_With (Id)
5607 and then Present (Non_Limited_View (Id))
5608 and then Scope (Non_Limited_View (Id)) = P_Name
5609 then
5610 Candidate := Get_Full_View (Non_Limited_View (Id));
5611 Is_New_Candidate := True;
5613 else
5614 Is_New_Candidate := False;
5615 end if;
5617 if Is_New_Candidate then
5618 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
5619 exit when Is_Visible_Lib_Unit (Id);
5620 else
5621 exit when not Is_Hidden (Id);
5622 end if;
5624 exit when Is_Immediately_Visible (Id);
5625 end if;
5627 Id := Homonym (Id);
5628 end loop;
5629 end;
5631 if No (Id)
5632 and then Ekind_In (P_Name, E_Procedure, E_Function)
5633 and then Is_Generic_Instance (P_Name)
5634 then
5635 -- Expanded name denotes entity in (instance of) generic subprogram.
5636 -- The entity may be in the subprogram instance, or may denote one of
5637 -- the formals, which is declared in the enclosing wrapper package.
5639 P_Name := Scope (P_Name);
5641 Id := Current_Entity (Selector);
5642 while Present (Id) loop
5643 exit when Scope (Id) = P_Name;
5644 Id := Homonym (Id);
5645 end loop;
5646 end if;
5648 if No (Id) or else Chars (Id) /= Chars (Selector) then
5649 Set_Etype (N, Any_Type);
5651 -- If we are looking for an entity defined in System, try to find it
5652 -- in the child package that may have been provided as an extension
5653 -- to System. The Extend_System pragma will have supplied the name of
5654 -- the extension, which may have to be loaded.
5656 if Chars (P_Name) = Name_System
5657 and then Scope (P_Name) = Standard_Standard
5658 and then Present (System_Extend_Unit)
5659 and then Present_System_Aux (N)
5660 then
5661 Set_Entity (Prefix (N), System_Aux_Id);
5662 Find_Expanded_Name (N);
5663 return;
5665 elsif Nkind (Selector) = N_Operator_Symbol
5666 and then Has_Implicit_Operator (N)
5667 then
5668 -- There is an implicit instance of the predefined operator in
5669 -- the given scope. The operator entity is defined in Standard.
5670 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5672 return;
5674 elsif Nkind (Selector) = N_Character_Literal
5675 and then Has_Implicit_Character_Literal (N)
5676 then
5677 -- If there is no literal defined in the scope denoted by the
5678 -- prefix, the literal may belong to (a type derived from)
5679 -- Standard_Character, for which we have no explicit literals.
5681 return;
5683 else
5684 -- If the prefix is a single concurrent object, use its name in
5685 -- the error message, rather than that of the anonymous type.
5687 if Is_Concurrent_Type (P_Name)
5688 and then Is_Internal_Name (Chars (P_Name))
5689 then
5690 Error_Msg_Node_2 := Entity (Prefix (N));
5691 else
5692 Error_Msg_Node_2 := P_Name;
5693 end if;
5695 if P_Name = System_Aux_Id then
5696 P_Name := Scope (P_Name);
5697 Set_Entity (Prefix (N), P_Name);
5698 end if;
5700 if Present (Candidate) then
5702 -- If we know that the unit is a child unit we can give a more
5703 -- accurate error message.
5705 if Is_Child_Unit (Candidate) then
5707 -- If the candidate is a private child unit and we are in
5708 -- the visible part of a public unit, specialize the error
5709 -- message. There might be a private with_clause for it,
5710 -- but it is not currently active.
5712 if Is_Private_Descendant (Candidate)
5713 and then Ekind (Current_Scope) = E_Package
5714 and then not In_Private_Part (Current_Scope)
5715 and then not Is_Private_Descendant (Current_Scope)
5716 then
5717 Error_Msg_N ("private child unit& is not visible here",
5718 Selector);
5720 -- Normal case where we have a missing with for a child unit
5722 else
5723 Error_Msg_Qual_Level := 99;
5724 Error_Msg_NE -- CODEFIX
5725 ("missing `WITH &;`", Selector, Candidate);
5726 Error_Msg_Qual_Level := 0;
5727 end if;
5729 -- Here we don't know that this is a child unit
5731 else
5732 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
5733 end if;
5735 else
5736 -- Within the instantiation of a child unit, the prefix may
5737 -- denote the parent instance, but the selector has the name
5738 -- of the original child. That is to say, when A.B appears
5739 -- within an instantiation of generic child unit B, the scope
5740 -- stack includes an instance of A (P_Name) and an instance
5741 -- of B under some other name. We scan the scope to find this
5742 -- child instance, which is the desired entity.
5743 -- Note that the parent may itself be a child instance, if
5744 -- the reference is of the form A.B.C, in which case A.B has
5745 -- already been rewritten with the proper entity.
5747 if In_Open_Scopes (P_Name)
5748 and then Is_Generic_Instance (P_Name)
5749 then
5750 declare
5751 Gen_Par : constant Entity_Id :=
5752 Generic_Parent (Specification
5753 (Unit_Declaration_Node (P_Name)));
5754 S : Entity_Id := Current_Scope;
5755 P : Entity_Id;
5757 begin
5758 for J in reverse 0 .. Scope_Stack.Last loop
5759 S := Scope_Stack.Table (J).Entity;
5761 exit when S = Standard_Standard;
5763 if Ekind_In (S, E_Function,
5764 E_Package,
5765 E_Procedure)
5766 then
5767 P := Generic_Parent (Specification
5768 (Unit_Declaration_Node (S)));
5770 -- Check that P is a generic child of the generic
5771 -- parent of the prefix.
5773 if Present (P)
5774 and then Chars (P) = Chars (Selector)
5775 and then Scope (P) = Gen_Par
5776 then
5777 Id := S;
5778 goto Found;
5779 end if;
5780 end if;
5782 end loop;
5783 end;
5784 end if;
5786 -- If this is a selection from Ada, System or Interfaces, then
5787 -- we assume a missing with for the corresponding package.
5789 if Is_Known_Unit (N) then
5790 if not Error_Posted (N) then
5791 Error_Msg_Node_2 := Selector;
5792 Error_Msg_N -- CODEFIX
5793 ("missing `WITH &.&;`", Prefix (N));
5794 end if;
5796 -- If this is a selection from a dummy package, then suppress
5797 -- the error message, of course the entity is missing if the
5798 -- package is missing.
5800 elsif Sloc (Error_Msg_Node_2) = No_Location then
5801 null;
5803 -- Here we have the case of an undefined component
5805 else
5807 -- The prefix may hide a homonym in the context that
5808 -- declares the desired entity. This error can use a
5809 -- specialized message.
5811 if In_Open_Scopes (P_Name) then
5812 declare
5813 H : constant Entity_Id := Homonym (P_Name);
5815 begin
5816 if Present (H)
5817 and then Is_Compilation_Unit (H)
5818 and then
5819 (Is_Immediately_Visible (H)
5820 or else Is_Visible_Lib_Unit (H))
5821 then
5822 Id := First_Entity (H);
5823 while Present (Id) loop
5824 if Chars (Id) = Chars (Selector) then
5825 Error_Msg_Qual_Level := 99;
5826 Error_Msg_Name_1 := Chars (Selector);
5827 Error_Msg_NE
5828 ("% not declared in&", N, P_Name);
5829 Error_Msg_NE
5830 ("\use fully qualified name starting with "
5831 & "Standard to make& visible", N, H);
5832 Error_Msg_Qual_Level := 0;
5833 goto Done;
5834 end if;
5836 Next_Entity (Id);
5837 end loop;
5838 end if;
5840 -- If not found, standard error message
5842 Error_Msg_NE ("& not declared in&", N, Selector);
5844 <<Done>> null;
5845 end;
5847 else
5848 Error_Msg_NE ("& not declared in&", N, Selector);
5849 end if;
5851 -- Check for misspelling of some entity in prefix
5853 Id := First_Entity (P_Name);
5854 while Present (Id) loop
5855 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
5856 and then not Is_Internal_Name (Chars (Id))
5857 then
5858 Error_Msg_NE -- CODEFIX
5859 ("possible misspelling of&", Selector, Id);
5860 exit;
5861 end if;
5863 Next_Entity (Id);
5864 end loop;
5866 -- Specialize the message if this may be an instantiation
5867 -- of a child unit that was not mentioned in the context.
5869 if Nkind (Parent (N)) = N_Package_Instantiation
5870 and then Is_Generic_Instance (Entity (Prefix (N)))
5871 and then Is_Compilation_Unit
5872 (Generic_Parent (Parent (Entity (Prefix (N)))))
5873 then
5874 Error_Msg_Node_2 := Selector;
5875 Error_Msg_N -- CODEFIX
5876 ("\missing `WITH &.&;`", Prefix (N));
5877 end if;
5878 end if;
5879 end if;
5881 Id := Any_Id;
5882 end if;
5883 end if;
5885 <<Found>>
5886 if Comes_From_Source (N)
5887 and then Is_Remote_Access_To_Subprogram_Type (Id)
5888 and then Ekind (Id) = E_Access_Subprogram_Type
5889 and then Present (Equivalent_Type (Id))
5890 then
5891 -- If we are not actually generating distribution code (i.e. the
5892 -- current PCS is the dummy non-distributed version), then the
5893 -- Equivalent_Type will be missing, and Id should be treated as
5894 -- a regular access-to-subprogram type.
5896 Id := Equivalent_Type (Id);
5897 Set_Chars (Selector, Chars (Id));
5898 end if;
5900 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
5902 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
5903 if From_Limited_With (Id)
5904 or else Is_Type (Id)
5905 or else Ekind (Id) = E_Package
5906 then
5907 null;
5908 else
5909 Error_Msg_N
5910 ("limited withed package can only be used to access "
5911 & "incomplete types", N);
5912 end if;
5913 end if;
5915 if Is_Task_Type (P_Name)
5916 and then ((Ekind (Id) = E_Entry
5917 and then Nkind (Parent (N)) /= N_Attribute_Reference)
5918 or else
5919 (Ekind (Id) = E_Entry_Family
5920 and then
5921 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
5922 then
5923 -- If both the task type and the entry are in scope, this may still
5924 -- be the expanded name of an entry formal.
5926 if In_Open_Scopes (Id)
5927 and then Nkind (Parent (N)) = N_Selected_Component
5928 then
5929 null;
5931 else
5932 -- It is an entry call after all, either to the current task
5933 -- (which will deadlock) or to an enclosing task.
5935 Analyze_Selected_Component (N);
5936 return;
5937 end if;
5938 end if;
5940 Change_Selected_Component_To_Expanded_Name (N);
5942 -- Set appropriate type
5944 if Is_Type (Id) then
5945 Set_Etype (N, Id);
5946 else
5947 Set_Etype (N, Get_Full_View (Etype (Id)));
5948 end if;
5950 -- Do style check and generate reference, but skip both steps if this
5951 -- entity has homonyms, since we may not have the right homonym set yet.
5952 -- The proper homonym will be set during the resolve phase.
5954 if Has_Homonym (Id) then
5955 Set_Entity (N, Id);
5957 else
5958 Set_Entity_Or_Discriminal (N, Id);
5960 case Is_LHS (N) is
5961 when Yes =>
5962 Generate_Reference (Id, N, 'm');
5963 when No =>
5964 Generate_Reference (Id, N, 'r');
5965 when Unknown =>
5966 Deferred_References.Append ((Id, N));
5967 end case;
5968 end if;
5970 -- Check for violation of No_Wide_Characters
5972 Check_Wide_Character_Restriction (Id, N);
5974 -- If the Ekind of the entity is Void, it means that all homonyms are
5975 -- hidden from all visibility (RM 8.3(5,14-20)).
5977 if Ekind (Id) = E_Void then
5978 Premature_Usage (N);
5980 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
5981 declare
5982 H : Entity_Id := Homonym (Id);
5984 begin
5985 while Present (H) loop
5986 if Scope (H) = Scope (Id)
5987 and then (not Is_Hidden (H)
5988 or else Is_Immediately_Visible (H))
5989 then
5990 Collect_Interps (N);
5991 exit;
5992 end if;
5994 H := Homonym (H);
5995 end loop;
5997 -- If an extension of System is present, collect possible explicit
5998 -- overloadings declared in the extension.
6000 if Chars (P_Name) = Name_System
6001 and then Scope (P_Name) = Standard_Standard
6002 and then Present (System_Extend_Unit)
6003 and then Present_System_Aux (N)
6004 then
6005 H := Current_Entity (Id);
6007 while Present (H) loop
6008 if Scope (H) = System_Aux_Id then
6009 Add_One_Interp (N, H, Etype (H));
6010 end if;
6012 H := Homonym (H);
6013 end loop;
6014 end if;
6015 end;
6016 end if;
6018 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6019 and then Scope (Id) /= Standard_Standard
6020 then
6021 -- In addition to user-defined operators in the given scope, there
6022 -- may be an implicit instance of the predefined operator. The
6023 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6024 -- and added to the interpretations. Procedure Add_One_Interp will
6025 -- determine which hides which.
6027 if Has_Implicit_Operator (N) then
6028 null;
6029 end if;
6030 end if;
6032 -- If there is a single interpretation for N we can generate a
6033 -- reference to the unique entity found.
6035 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6036 Generate_Reference (Id, N);
6037 end if;
6038 end Find_Expanded_Name;
6040 -------------------------
6041 -- Find_Renamed_Entity --
6042 -------------------------
6044 function Find_Renamed_Entity
6045 (N : Node_Id;
6046 Nam : Node_Id;
6047 New_S : Entity_Id;
6048 Is_Actual : Boolean := False) return Entity_Id
6050 Ind : Interp_Index;
6051 I1 : Interp_Index := 0; -- Suppress junk warnings
6052 It : Interp;
6053 It1 : Interp;
6054 Old_S : Entity_Id;
6055 Inst : Entity_Id;
6057 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6058 -- If the renamed entity is an implicit operator, check whether it is
6059 -- visible because its operand type is properly visible. This check
6060 -- applies to explicit renamed entities that appear in the source in a
6061 -- renaming declaration or a formal subprogram instance, but not to
6062 -- default generic actuals with a name.
6064 function Report_Overload return Entity_Id;
6065 -- List possible interpretations, and specialize message in the
6066 -- case of a generic actual.
6068 function Within (Inner, Outer : Entity_Id) return Boolean;
6069 -- Determine whether a candidate subprogram is defined within the
6070 -- enclosing instance. If yes, it has precedence over outer candidates.
6072 --------------------------
6073 -- Is_Visible_Operation --
6074 --------------------------
6076 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6077 Scop : Entity_Id;
6078 Typ : Entity_Id;
6079 Btyp : Entity_Id;
6081 begin
6082 if Ekind (Op) /= E_Operator
6083 or else Scope (Op) /= Standard_Standard
6084 or else (In_Instance
6085 and then (not Is_Actual
6086 or else Present (Enclosing_Instance)))
6087 then
6088 return True;
6090 else
6091 -- For a fixed point type operator, check the resulting type,
6092 -- because it may be a mixed mode integer * fixed operation.
6094 if Present (Next_Formal (First_Formal (New_S)))
6095 and then Is_Fixed_Point_Type (Etype (New_S))
6096 then
6097 Typ := Etype (New_S);
6098 else
6099 Typ := Etype (First_Formal (New_S));
6100 end if;
6102 Btyp := Base_Type (Typ);
6104 if Nkind (Nam) /= N_Expanded_Name then
6105 return (In_Open_Scopes (Scope (Btyp))
6106 or else Is_Potentially_Use_Visible (Btyp)
6107 or else In_Use (Btyp)
6108 or else In_Use (Scope (Btyp)));
6110 else
6111 Scop := Entity (Prefix (Nam));
6113 if Ekind (Scop) = E_Package
6114 and then Present (Renamed_Object (Scop))
6115 then
6116 Scop := Renamed_Object (Scop);
6117 end if;
6119 -- Operator is visible if prefix of expanded name denotes
6120 -- scope of type, or else type is defined in System_Aux
6121 -- and the prefix denotes System.
6123 return Scope (Btyp) = Scop
6124 or else (Scope (Btyp) = System_Aux_Id
6125 and then Scope (Scope (Btyp)) = Scop);
6126 end if;
6127 end if;
6128 end Is_Visible_Operation;
6130 ------------
6131 -- Within --
6132 ------------
6134 function Within (Inner, Outer : Entity_Id) return Boolean is
6135 Sc : Entity_Id;
6137 begin
6138 Sc := Scope (Inner);
6139 while Sc /= Standard_Standard loop
6140 if Sc = Outer then
6141 return True;
6142 else
6143 Sc := Scope (Sc);
6144 end if;
6145 end loop;
6147 return False;
6148 end Within;
6150 ---------------------
6151 -- Report_Overload --
6152 ---------------------
6154 function Report_Overload return Entity_Id is
6155 begin
6156 if Is_Actual then
6157 Error_Msg_NE -- CODEFIX
6158 ("ambiguous actual subprogram&, " &
6159 "possible interpretations:", N, Nam);
6160 else
6161 Error_Msg_N -- CODEFIX
6162 ("ambiguous subprogram, " &
6163 "possible interpretations:", N);
6164 end if;
6166 List_Interps (Nam, N);
6167 return Old_S;
6168 end Report_Overload;
6170 -- Start of processing for Find_Renamed_Entity
6172 begin
6173 Old_S := Any_Id;
6174 Candidate_Renaming := Empty;
6176 if Is_Overloaded (Nam) then
6177 Get_First_Interp (Nam, Ind, It);
6178 while Present (It.Nam) loop
6179 if Entity_Matches_Spec (It.Nam, New_S)
6180 and then Is_Visible_Operation (It.Nam)
6181 then
6182 if Old_S /= Any_Id then
6184 -- Note: The call to Disambiguate only happens if a
6185 -- previous interpretation was found, in which case I1
6186 -- has received a value.
6188 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6190 if It1 = No_Interp then
6191 Inst := Enclosing_Instance;
6193 if Present (Inst) then
6194 if Within (It.Nam, Inst) then
6195 if Within (Old_S, Inst) then
6197 -- Choose the innermost subprogram, which would
6198 -- have hidden the outer one in the generic.
6200 if Scope_Depth (It.Nam) <
6201 Scope_Depth (Old_S)
6202 then
6203 return Old_S;
6204 else
6205 return It.Nam;
6206 end if;
6207 end if;
6209 elsif Within (Old_S, Inst) then
6210 return (Old_S);
6212 else
6213 return Report_Overload;
6214 end if;
6216 -- If not within an instance, ambiguity is real
6218 else
6219 return Report_Overload;
6220 end if;
6222 else
6223 Old_S := It1.Nam;
6224 exit;
6225 end if;
6227 else
6228 I1 := Ind;
6229 Old_S := It.Nam;
6230 end if;
6232 elsif
6233 Present (First_Formal (It.Nam))
6234 and then Present (First_Formal (New_S))
6235 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6236 Base_Type (Etype (First_Formal (New_S))))
6237 then
6238 Candidate_Renaming := It.Nam;
6239 end if;
6241 Get_Next_Interp (Ind, It);
6242 end loop;
6244 Set_Entity (Nam, Old_S);
6246 if Old_S /= Any_Id then
6247 Set_Is_Overloaded (Nam, False);
6248 end if;
6250 -- Non-overloaded case
6252 else
6253 if Is_Actual and then Present (Enclosing_Instance) then
6254 Old_S := Entity (Nam);
6256 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6257 Candidate_Renaming := New_S;
6259 if Is_Visible_Operation (Entity (Nam)) then
6260 Old_S := Entity (Nam);
6261 end if;
6263 elsif Present (First_Formal (Entity (Nam)))
6264 and then Present (First_Formal (New_S))
6265 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6266 Base_Type (Etype (First_Formal (New_S))))
6267 then
6268 Candidate_Renaming := Entity (Nam);
6269 end if;
6270 end if;
6272 return Old_S;
6273 end Find_Renamed_Entity;
6275 -----------------------------
6276 -- Find_Selected_Component --
6277 -----------------------------
6279 procedure Find_Selected_Component (N : Node_Id) is
6280 P : constant Node_Id := Prefix (N);
6282 P_Name : Entity_Id;
6283 -- Entity denoted by prefix
6285 P_Type : Entity_Id;
6286 -- and its type
6288 Nam : Node_Id;
6290 function Is_Reference_In_Subunit return Boolean;
6291 -- In a subunit, the scope depth is not a proper measure of hiding,
6292 -- because the context of the proper body may itself hide entities in
6293 -- parent units. This rare case requires inspecting the tree directly
6294 -- because the proper body is inserted in the main unit and its context
6295 -- is simply added to that of the parent.
6297 -----------------------------
6298 -- Is_Reference_In_Subunit --
6299 -----------------------------
6301 function Is_Reference_In_Subunit return Boolean is
6302 Clause : Node_Id;
6303 Comp_Unit : Node_Id;
6305 begin
6306 Comp_Unit := N;
6307 while Present (Comp_Unit)
6308 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6309 loop
6310 Comp_Unit := Parent (Comp_Unit);
6311 end loop;
6313 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6314 return False;
6315 end if;
6317 -- Now check whether the package is in the context of the subunit
6319 Clause := First (Context_Items (Comp_Unit));
6320 while Present (Clause) loop
6321 if Nkind (Clause) = N_With_Clause
6322 and then Entity (Name (Clause)) = P_Name
6323 then
6324 return True;
6325 end if;
6327 Clause := Next (Clause);
6328 end loop;
6330 return False;
6331 end Is_Reference_In_Subunit;
6333 -- Start of processing for Find_Selected_Component
6335 begin
6336 Analyze (P);
6338 if Nkind (P) = N_Error then
6339 return;
6340 end if;
6342 -- Selector name cannot be a character literal or an operator symbol in
6343 -- SPARK, except for the operator symbol in a renaming.
6345 if Restriction_Check_Required (SPARK_05) then
6346 if Nkind (Selector_Name (N)) = N_Character_Literal then
6347 Check_SPARK_Restriction
6348 ("character literal cannot be prefixed", N);
6349 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6350 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6351 then
6352 Check_SPARK_Restriction ("operator symbol cannot be prefixed", N);
6353 end if;
6354 end if;
6356 -- If the selector already has an entity, the node has been constructed
6357 -- in the course of expansion, and is known to be valid. Do not verify
6358 -- that it is defined for the type (it may be a private component used
6359 -- in the expansion of record equality).
6361 if Present (Entity (Selector_Name (N))) then
6362 if No (Etype (N)) or else Etype (N) = Any_Type then
6363 declare
6364 Sel_Name : constant Node_Id := Selector_Name (N);
6365 Selector : constant Entity_Id := Entity (Sel_Name);
6366 C_Etype : Node_Id;
6368 begin
6369 Set_Etype (Sel_Name, Etype (Selector));
6371 if not Is_Entity_Name (P) then
6372 Resolve (P);
6373 end if;
6375 -- Build an actual subtype except for the first parameter
6376 -- of an init proc, where this actual subtype is by
6377 -- definition incorrect, since the object is uninitialized
6378 -- (and does not even have defined discriminants etc.)
6380 if Is_Entity_Name (P)
6381 and then Ekind (Entity (P)) = E_Function
6382 then
6383 Nam := New_Copy (P);
6385 if Is_Overloaded (P) then
6386 Save_Interps (P, Nam);
6387 end if;
6389 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6390 Analyze_Call (P);
6391 Analyze_Selected_Component (N);
6392 return;
6394 elsif Ekind (Selector) = E_Component
6395 and then (not Is_Entity_Name (P)
6396 or else Chars (Entity (P)) /= Name_uInit)
6397 then
6398 -- Do not build the subtype when referencing components of
6399 -- dispatch table wrappers. Required to avoid generating
6400 -- elaboration code with HI runtimes. JVM and .NET use a
6401 -- modified version of Ada.Tags which does not contain RE_
6402 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
6403 -- Avoid raising RE_Not_Available exception in those cases.
6405 if VM_Target = No_VM
6406 and then RTU_Loaded (Ada_Tags)
6407 and then
6408 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6409 and then Scope (Selector) =
6410 RTE (RE_Dispatch_Table_Wrapper))
6411 or else
6412 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6413 and then Scope (Selector) =
6414 RTE (RE_No_Dispatch_Table_Wrapper)))
6415 then
6416 C_Etype := Empty;
6417 else
6418 C_Etype :=
6419 Build_Actual_Subtype_Of_Component
6420 (Etype (Selector), N);
6421 end if;
6423 else
6424 C_Etype := Empty;
6425 end if;
6427 if No (C_Etype) then
6428 C_Etype := Etype (Selector);
6429 else
6430 Insert_Action (N, C_Etype);
6431 C_Etype := Defining_Identifier (C_Etype);
6432 end if;
6434 Set_Etype (N, C_Etype);
6435 end;
6437 -- If this is the name of an entry or protected operation, and
6438 -- the prefix is an access type, insert an explicit dereference,
6439 -- so that entry calls are treated uniformly.
6441 if Is_Access_Type (Etype (P))
6442 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6443 then
6444 declare
6445 New_P : constant Node_Id :=
6446 Make_Explicit_Dereference (Sloc (P),
6447 Prefix => Relocate_Node (P));
6448 begin
6449 Rewrite (P, New_P);
6450 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6451 end;
6452 end if;
6454 -- If the selected component appears within a default expression
6455 -- and it has an actual subtype, the pre-analysis has not yet
6456 -- completed its analysis, because Insert_Actions is disabled in
6457 -- that context. Within the init proc of the enclosing type we
6458 -- must complete this analysis, if an actual subtype was created.
6460 elsif Inside_Init_Proc then
6461 declare
6462 Typ : constant Entity_Id := Etype (N);
6463 Decl : constant Node_Id := Declaration_Node (Typ);
6464 begin
6465 if Nkind (Decl) = N_Subtype_Declaration
6466 and then not Analyzed (Decl)
6467 and then Is_List_Member (Decl)
6468 and then No (Parent (Decl))
6469 then
6470 Remove (Decl);
6471 Insert_Action (N, Decl);
6472 end if;
6473 end;
6474 end if;
6476 return;
6478 elsif Is_Entity_Name (P) then
6479 P_Name := Entity (P);
6481 -- The prefix may denote an enclosing type which is the completion
6482 -- of an incomplete type declaration.
6484 if Is_Type (P_Name) then
6485 Set_Entity (P, Get_Full_View (P_Name));
6486 Set_Etype (P, Entity (P));
6487 P_Name := Entity (P);
6488 end if;
6490 P_Type := Base_Type (Etype (P));
6492 if Debug_Flag_E then
6493 Write_Str ("Found prefix type to be ");
6494 Write_Entity_Info (P_Type, " "); Write_Eol;
6495 end if;
6497 -- The designated type may be a limited view with no components.
6498 -- Check whether the non-limited view is available, because in some
6499 -- cases this will not be set when instlling the context.
6501 if Is_Access_Type (P_Type) then
6502 declare
6503 D : constant Entity_Id := Directly_Designated_Type (P_Type);
6504 begin
6505 if Is_Incomplete_Type (D)
6506 and then not Is_Class_Wide_Type (D)
6507 and then From_Limited_With (D)
6508 and then Present (Non_Limited_View (D))
6509 and then not Is_Class_Wide_Type (Non_Limited_View (D))
6510 then
6511 Set_Directly_Designated_Type (P_Type, Non_Limited_View (D));
6512 end if;
6513 end;
6514 end if;
6516 -- First check for components of a record object (not the
6517 -- result of a call, which is handled below).
6519 if Is_Appropriate_For_Record (P_Type)
6520 and then not Is_Overloadable (P_Name)
6521 and then not Is_Type (P_Name)
6522 then
6523 -- Selected component of record. Type checking will validate
6524 -- name of selector.
6526 -- ??? Could we rewrite an implicit dereference into an explicit
6527 -- one here?
6529 Analyze_Selected_Component (N);
6531 -- Reference to type name in predicate/invariant expression
6533 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6534 and then not In_Open_Scopes (P_Name)
6535 and then (not Is_Concurrent_Type (Etype (P_Name))
6536 or else not In_Open_Scopes (Etype (P_Name)))
6537 then
6538 -- Call to protected operation or entry. Type checking is
6539 -- needed on the prefix.
6541 Analyze_Selected_Component (N);
6543 elsif (In_Open_Scopes (P_Name)
6544 and then Ekind (P_Name) /= E_Void
6545 and then not Is_Overloadable (P_Name))
6546 or else (Is_Concurrent_Type (Etype (P_Name))
6547 and then In_Open_Scopes (Etype (P_Name)))
6548 then
6549 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6550 -- enclosing construct that is not a subprogram or accept.
6552 Find_Expanded_Name (N);
6554 elsif Ekind (P_Name) = E_Package then
6555 Find_Expanded_Name (N);
6557 elsif Is_Overloadable (P_Name) then
6559 -- The subprogram may be a renaming (of an enclosing scope) as
6560 -- in the case of the name of the generic within an instantiation.
6562 if Ekind_In (P_Name, E_Procedure, E_Function)
6563 and then Present (Alias (P_Name))
6564 and then Is_Generic_Instance (Alias (P_Name))
6565 then
6566 P_Name := Alias (P_Name);
6567 end if;
6569 if Is_Overloaded (P) then
6571 -- The prefix must resolve to a unique enclosing construct
6573 declare
6574 Found : Boolean := False;
6575 Ind : Interp_Index;
6576 It : Interp;
6578 begin
6579 Get_First_Interp (P, Ind, It);
6580 while Present (It.Nam) loop
6581 if In_Open_Scopes (It.Nam) then
6582 if Found then
6583 Error_Msg_N (
6584 "prefix must be unique enclosing scope", N);
6585 Set_Entity (N, Any_Id);
6586 Set_Etype (N, Any_Type);
6587 return;
6589 else
6590 Found := True;
6591 P_Name := It.Nam;
6592 end if;
6593 end if;
6595 Get_Next_Interp (Ind, It);
6596 end loop;
6597 end;
6598 end if;
6600 if In_Open_Scopes (P_Name) then
6601 Set_Entity (P, P_Name);
6602 Set_Is_Overloaded (P, False);
6603 Find_Expanded_Name (N);
6605 else
6606 -- If no interpretation as an expanded name is possible, it
6607 -- must be a selected component of a record returned by a
6608 -- function call. Reformat prefix as a function call, the rest
6609 -- is done by type resolution.
6611 -- Error if the prefix is procedure or entry, as is P.X
6613 if Ekind (P_Name) /= E_Function
6614 and then
6615 (not Is_Overloaded (P)
6616 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
6617 then
6618 -- Prefix may mention a package that is hidden by a local
6619 -- declaration: let the user know. Scan the full homonym
6620 -- chain, the candidate package may be anywhere on it.
6622 if Present (Homonym (Current_Entity (P_Name))) then
6623 P_Name := Current_Entity (P_Name);
6625 while Present (P_Name) loop
6626 exit when Ekind (P_Name) = E_Package;
6627 P_Name := Homonym (P_Name);
6628 end loop;
6630 if Present (P_Name) then
6631 if not Is_Reference_In_Subunit then
6632 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
6633 Error_Msg_NE
6634 ("package& is hidden by declaration#", N, P_Name);
6635 end if;
6637 Set_Entity (Prefix (N), P_Name);
6638 Find_Expanded_Name (N);
6639 return;
6641 else
6642 P_Name := Entity (Prefix (N));
6643 end if;
6644 end if;
6646 Error_Msg_NE
6647 ("invalid prefix in selected component&", N, P_Name);
6648 Change_Selected_Component_To_Expanded_Name (N);
6649 Set_Entity (N, Any_Id);
6650 Set_Etype (N, Any_Type);
6652 -- Here we have a function call, so do the reformatting
6654 else
6655 Nam := New_Copy (P);
6656 Save_Interps (P, Nam);
6658 -- We use Replace here because this is one of those cases
6659 -- where the parser has missclassified the node, and we
6660 -- fix things up and then do the semantic analysis on the
6661 -- fixed up node. Normally we do this using one of the
6662 -- Sinfo.CN routines, but this is too tricky for that.
6664 -- Note that using Rewrite would be wrong, because we
6665 -- would have a tree where the original node is unanalyzed,
6666 -- and this violates the required interface for ASIS.
6668 Replace (P,
6669 Make_Function_Call (Sloc (P), Name => Nam));
6671 -- Now analyze the reformatted node
6673 Analyze_Call (P);
6674 Analyze_Selected_Component (N);
6675 end if;
6676 end if;
6678 -- Remaining cases generate various error messages
6680 else
6681 -- Format node as expanded name, to avoid cascaded errors
6683 Change_Selected_Component_To_Expanded_Name (N);
6684 Set_Entity (N, Any_Id);
6685 Set_Etype (N, Any_Type);
6687 -- Issue error message, but avoid this if error issued already.
6688 -- Use identifier of prefix if one is available.
6690 if P_Name = Any_Id then
6691 null;
6693 elsif Ekind (P_Name) = E_Void then
6694 Premature_Usage (P);
6696 elsif Nkind (P) /= N_Attribute_Reference then
6697 Error_Msg_N (
6698 "invalid prefix in selected component&", P);
6700 if Is_Access_Type (P_Type)
6701 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
6702 then
6703 Error_Msg_N
6704 ("\dereference must not be of an incomplete type " &
6705 "(RM 3.10.1)", P);
6706 end if;
6708 else
6709 Error_Msg_N (
6710 "invalid prefix in selected component", P);
6711 end if;
6712 end if;
6714 -- Selector name is restricted in SPARK
6716 if Nkind (N) = N_Expanded_Name
6717 and then Restriction_Check_Required (SPARK_05)
6718 then
6719 if Is_Subprogram (P_Name) then
6720 Check_SPARK_Restriction
6721 ("prefix of expanded name cannot be a subprogram", P);
6722 elsif Ekind (P_Name) = E_Loop then
6723 Check_SPARK_Restriction
6724 ("prefix of expanded name cannot be a loop statement", P);
6725 end if;
6726 end if;
6728 else
6729 -- If prefix is not the name of an entity, it must be an expression,
6730 -- whose type is appropriate for a record. This is determined by
6731 -- type resolution.
6733 Analyze_Selected_Component (N);
6734 end if;
6736 Analyze_Dimension (N);
6737 end Find_Selected_Component;
6739 ---------------
6740 -- Find_Type --
6741 ---------------
6743 procedure Find_Type (N : Node_Id) is
6744 C : Entity_Id;
6745 Typ : Entity_Id;
6746 T : Entity_Id;
6747 T_Name : Entity_Id;
6749 begin
6750 if N = Error then
6751 return;
6753 elsif Nkind (N) = N_Attribute_Reference then
6755 -- Class attribute. This is not valid in Ada 83 mode, but we do not
6756 -- need to enforce that at this point, since the declaration of the
6757 -- tagged type in the prefix would have been flagged already.
6759 if Attribute_Name (N) = Name_Class then
6760 Check_Restriction (No_Dispatch, N);
6761 Find_Type (Prefix (N));
6763 -- Propagate error from bad prefix
6765 if Etype (Prefix (N)) = Any_Type then
6766 Set_Entity (N, Any_Type);
6767 Set_Etype (N, Any_Type);
6768 return;
6769 end if;
6771 T := Base_Type (Entity (Prefix (N)));
6773 -- Case where type is not known to be tagged. Its appearance in
6774 -- the prefix of the 'Class attribute indicates that the full view
6775 -- will be tagged.
6777 if not Is_Tagged_Type (T) then
6778 if Ekind (T) = E_Incomplete_Type then
6780 -- It is legal to denote the class type of an incomplete
6781 -- type. The full type will have to be tagged, of course.
6782 -- In Ada 2005 this usage is declared obsolescent, so we
6783 -- warn accordingly. This usage is only legal if the type
6784 -- is completed in the current scope, and not for a limited
6785 -- view of a type.
6787 if Ada_Version >= Ada_2005 then
6789 -- Test whether the Available_View of a limited type view
6790 -- is tagged, since the limited view may not be marked as
6791 -- tagged if the type itself has an untagged incomplete
6792 -- type view in its package.
6794 if From_Limited_With (T)
6795 and then not Is_Tagged_Type (Available_View (T))
6796 then
6797 Error_Msg_N
6798 ("prefix of Class attribute must be tagged", N);
6799 Set_Etype (N, Any_Type);
6800 Set_Entity (N, Any_Type);
6801 return;
6803 -- ??? This test is temporarily disabled (always
6804 -- False) because it causes an unwanted warning on
6805 -- GNAT sources (built with -gnatg, which includes
6806 -- Warn_On_Obsolescent_ Feature). Once this issue
6807 -- is cleared in the sources, it can be enabled.
6809 elsif Warn_On_Obsolescent_Feature and then False then
6810 Error_Msg_N
6811 ("applying 'Class to an untagged incomplete type"
6812 & " is an obsolescent feature (RM J.11)?r?", N);
6813 end if;
6814 end if;
6816 Set_Is_Tagged_Type (T);
6817 Set_Direct_Primitive_Operations (T, New_Elmt_List);
6818 Make_Class_Wide_Type (T);
6819 Set_Entity (N, Class_Wide_Type (T));
6820 Set_Etype (N, Class_Wide_Type (T));
6822 elsif Ekind (T) = E_Private_Type
6823 and then not Is_Generic_Type (T)
6824 and then In_Private_Part (Scope (T))
6825 then
6826 -- The Class attribute can be applied to an untagged private
6827 -- type fulfilled by a tagged type prior to the full type
6828 -- declaration (but only within the parent package's private
6829 -- part). Create the class-wide type now and check that the
6830 -- full type is tagged later during its analysis. Note that
6831 -- we do not mark the private type as tagged, unlike the
6832 -- case of incomplete types, because the type must still
6833 -- appear untagged to outside units.
6835 if No (Class_Wide_Type (T)) then
6836 Make_Class_Wide_Type (T);
6837 end if;
6839 Set_Entity (N, Class_Wide_Type (T));
6840 Set_Etype (N, Class_Wide_Type (T));
6842 else
6843 -- Should we introduce a type Any_Tagged and use Wrong_Type
6844 -- here, it would be a bit more consistent???
6846 Error_Msg_NE
6847 ("tagged type required, found}",
6848 Prefix (N), First_Subtype (T));
6849 Set_Entity (N, Any_Type);
6850 return;
6851 end if;
6853 -- Case of tagged type
6855 else
6856 if Is_Concurrent_Type (T) then
6857 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
6859 -- Previous error. Use current type, which at least
6860 -- provides some operations.
6862 C := Entity (Prefix (N));
6864 else
6865 C := Class_Wide_Type
6866 (Corresponding_Record_Type (Entity (Prefix (N))));
6867 end if;
6869 else
6870 C := Class_Wide_Type (Entity (Prefix (N)));
6871 end if;
6873 Set_Entity_With_Checks (N, C);
6874 Generate_Reference (C, N);
6875 Set_Etype (N, C);
6876 end if;
6878 -- Base attribute, not allowed in Ada 83
6880 elsif Attribute_Name (N) = Name_Base then
6881 Error_Msg_Name_1 := Name_Base;
6882 Check_SPARK_Restriction
6883 ("attribute% is only allowed as prefix of another attribute", N);
6885 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
6886 Error_Msg_N
6887 ("(Ada 83) Base attribute not allowed in subtype mark", N);
6889 else
6890 Find_Type (Prefix (N));
6891 Typ := Entity (Prefix (N));
6893 if Ada_Version >= Ada_95
6894 and then not Is_Scalar_Type (Typ)
6895 and then not Is_Generic_Type (Typ)
6896 then
6897 Error_Msg_N
6898 ("prefix of Base attribute must be scalar type",
6899 Prefix (N));
6901 elsif Warn_On_Redundant_Constructs
6902 and then Base_Type (Typ) = Typ
6903 then
6904 Error_Msg_NE -- CODEFIX
6905 ("redundant attribute, & is its own base type?r?", N, Typ);
6906 end if;
6908 T := Base_Type (Typ);
6910 -- Rewrite attribute reference with type itself (see similar
6911 -- processing in Analyze_Attribute, case Base). Preserve prefix
6912 -- if present, for other legality checks.
6914 if Nkind (Prefix (N)) = N_Expanded_Name then
6915 Rewrite (N,
6916 Make_Expanded_Name (Sloc (N),
6917 Chars => Chars (T),
6918 Prefix => New_Copy (Prefix (Prefix (N))),
6919 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
6921 else
6922 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
6923 end if;
6925 Set_Entity (N, T);
6926 Set_Etype (N, T);
6927 end if;
6929 elsif Attribute_Name (N) = Name_Stub_Type then
6931 -- This is handled in Analyze_Attribute
6933 Analyze (N);
6935 -- All other attributes are invalid in a subtype mark
6937 else
6938 Error_Msg_N ("invalid attribute in subtype mark", N);
6939 end if;
6941 else
6942 Analyze (N);
6944 if Is_Entity_Name (N) then
6945 T_Name := Entity (N);
6946 else
6947 Error_Msg_N ("subtype mark required in this context", N);
6948 Set_Etype (N, Any_Type);
6949 return;
6950 end if;
6952 if T_Name = Any_Id or else Etype (N) = Any_Type then
6954 -- Undefined id. Make it into a valid type
6956 Set_Entity (N, Any_Type);
6958 elsif not Is_Type (T_Name)
6959 and then T_Name /= Standard_Void_Type
6960 then
6961 Error_Msg_Sloc := Sloc (T_Name);
6962 Error_Msg_N ("subtype mark required in this context", N);
6963 Error_Msg_NE ("\\found & declared#", N, T_Name);
6964 Set_Entity (N, Any_Type);
6966 else
6967 -- If the type is an incomplete type created to handle
6968 -- anonymous access components of a record type, then the
6969 -- incomplete type is the visible entity and subsequent
6970 -- references will point to it. Mark the original full
6971 -- type as referenced, to prevent spurious warnings.
6973 if Is_Incomplete_Type (T_Name)
6974 and then Present (Full_View (T_Name))
6975 and then not Comes_From_Source (T_Name)
6976 then
6977 Set_Referenced (Full_View (T_Name));
6978 end if;
6980 T_Name := Get_Full_View (T_Name);
6982 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
6983 -- limited-with clauses
6985 if From_Limited_With (T_Name)
6986 and then Ekind (T_Name) in Incomplete_Kind
6987 and then Present (Non_Limited_View (T_Name))
6988 and then Is_Interface (Non_Limited_View (T_Name))
6989 then
6990 T_Name := Non_Limited_View (T_Name);
6991 end if;
6993 if In_Open_Scopes (T_Name) then
6994 if Ekind (Base_Type (T_Name)) = E_Task_Type then
6996 -- In Ada 2005, a task name can be used in an access
6997 -- definition within its own body. It cannot be used
6998 -- in the discriminant part of the task declaration,
6999 -- nor anywhere else in the declaration because entries
7000 -- cannot have access parameters.
7002 if Ada_Version >= Ada_2005
7003 and then Nkind (Parent (N)) = N_Access_Definition
7004 then
7005 Set_Entity (N, T_Name);
7006 Set_Etype (N, T_Name);
7008 if Has_Completion (T_Name) then
7009 return;
7011 else
7012 Error_Msg_N
7013 ("task type cannot be used as type mark " &
7014 "within its own declaration", N);
7015 end if;
7017 else
7018 Error_Msg_N
7019 ("task type cannot be used as type mark " &
7020 "within its own spec or body", N);
7021 end if;
7023 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7025 -- In Ada 2005, a protected name can be used in an access
7026 -- definition within its own body.
7028 if Ada_Version >= Ada_2005
7029 and then Nkind (Parent (N)) = N_Access_Definition
7030 then
7031 Set_Entity (N, T_Name);
7032 Set_Etype (N, T_Name);
7033 return;
7035 else
7036 Error_Msg_N
7037 ("protected type cannot be used as type mark " &
7038 "within its own spec or body", N);
7039 end if;
7041 else
7042 Error_Msg_N ("type declaration cannot refer to itself", N);
7043 end if;
7045 Set_Etype (N, Any_Type);
7046 Set_Entity (N, Any_Type);
7047 Set_Error_Posted (T_Name);
7048 return;
7049 end if;
7051 Set_Entity (N, T_Name);
7052 Set_Etype (N, T_Name);
7053 end if;
7054 end if;
7056 if Present (Etype (N)) and then Comes_From_Source (N) then
7057 if Is_Fixed_Point_Type (Etype (N)) then
7058 Check_Restriction (No_Fixed_Point, N);
7059 elsif Is_Floating_Point_Type (Etype (N)) then
7060 Check_Restriction (No_Floating_Point, N);
7061 end if;
7062 end if;
7063 end Find_Type;
7065 ------------------------------------
7066 -- Has_Implicit_Character_Literal --
7067 ------------------------------------
7069 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7070 Id : Entity_Id;
7071 Found : Boolean := False;
7072 P : constant Entity_Id := Entity (Prefix (N));
7073 Priv_Id : Entity_Id := Empty;
7075 begin
7076 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7077 Priv_Id := First_Private_Entity (P);
7078 end if;
7080 if P = Standard_Standard then
7081 Change_Selected_Component_To_Expanded_Name (N);
7082 Rewrite (N, Selector_Name (N));
7083 Analyze (N);
7084 Set_Etype (Original_Node (N), Standard_Character);
7085 return True;
7086 end if;
7088 Id := First_Entity (P);
7089 while Present (Id) and then Id /= Priv_Id loop
7090 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7092 -- We replace the node with the literal itself, resolve as a
7093 -- character, and set the type correctly.
7095 if not Found then
7096 Change_Selected_Component_To_Expanded_Name (N);
7097 Rewrite (N, Selector_Name (N));
7098 Analyze (N);
7099 Set_Etype (N, Id);
7100 Set_Etype (Original_Node (N), Id);
7101 Found := True;
7103 else
7104 -- More than one type derived from Character in given scope.
7105 -- Collect all possible interpretations.
7107 Add_One_Interp (N, Id, Id);
7108 end if;
7109 end if;
7111 Next_Entity (Id);
7112 end loop;
7114 return Found;
7115 end Has_Implicit_Character_Literal;
7117 ----------------------
7118 -- Has_Private_With --
7119 ----------------------
7121 function Has_Private_With (E : Entity_Id) return Boolean is
7122 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7123 Item : Node_Id;
7125 begin
7126 Item := First (Context_Items (Comp_Unit));
7127 while Present (Item) loop
7128 if Nkind (Item) = N_With_Clause
7129 and then Private_Present (Item)
7130 and then Entity (Name (Item)) = E
7131 then
7132 return True;
7133 end if;
7135 Next (Item);
7136 end loop;
7138 return False;
7139 end Has_Private_With;
7141 ---------------------------
7142 -- Has_Implicit_Operator --
7143 ---------------------------
7145 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7146 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7147 P : constant Entity_Id := Entity (Prefix (N));
7148 Id : Entity_Id;
7149 Priv_Id : Entity_Id := Empty;
7151 procedure Add_Implicit_Operator
7152 (T : Entity_Id;
7153 Op_Type : Entity_Id := Empty);
7154 -- Add implicit interpretation to node N, using the type for which a
7155 -- predefined operator exists. If the operator yields a boolean type,
7156 -- the Operand_Type is implicitly referenced by the operator, and a
7157 -- reference to it must be generated.
7159 ---------------------------
7160 -- Add_Implicit_Operator --
7161 ---------------------------
7163 procedure Add_Implicit_Operator
7164 (T : Entity_Id;
7165 Op_Type : Entity_Id := Empty)
7167 Predef_Op : Entity_Id;
7169 begin
7170 Predef_Op := Current_Entity (Selector_Name (N));
7171 while Present (Predef_Op)
7172 and then Scope (Predef_Op) /= Standard_Standard
7173 loop
7174 Predef_Op := Homonym (Predef_Op);
7175 end loop;
7177 if Nkind (N) = N_Selected_Component then
7178 Change_Selected_Component_To_Expanded_Name (N);
7179 end if;
7181 -- If the context is an unanalyzed function call, determine whether
7182 -- a binary or unary interpretation is required.
7184 if Nkind (Parent (N)) = N_Indexed_Component then
7185 declare
7186 Is_Binary_Call : constant Boolean :=
7187 Present
7188 (Next (First (Expressions (Parent (N)))));
7189 Is_Binary_Op : constant Boolean :=
7190 First_Entity
7191 (Predef_Op) /= Last_Entity (Predef_Op);
7192 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7194 begin
7195 if Is_Binary_Call then
7196 if Is_Binary_Op then
7197 Add_One_Interp (N, Predef_Op, T);
7198 else
7199 Add_One_Interp (N, Predef_Op2, T);
7200 end if;
7202 else
7203 if not Is_Binary_Op then
7204 Add_One_Interp (N, Predef_Op, T);
7205 else
7206 Add_One_Interp (N, Predef_Op2, T);
7207 end if;
7208 end if;
7209 end;
7211 else
7212 Add_One_Interp (N, Predef_Op, T);
7214 -- For operators with unary and binary interpretations, if
7215 -- context is not a call, add both
7217 if Present (Homonym (Predef_Op)) then
7218 Add_One_Interp (N, Homonym (Predef_Op), T);
7219 end if;
7220 end if;
7222 -- The node is a reference to a predefined operator, and
7223 -- an implicit reference to the type of its operands.
7225 if Present (Op_Type) then
7226 Generate_Operator_Reference (N, Op_Type);
7227 else
7228 Generate_Operator_Reference (N, T);
7229 end if;
7230 end Add_Implicit_Operator;
7232 -- Start of processing for Has_Implicit_Operator
7234 begin
7235 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7236 Priv_Id := First_Private_Entity (P);
7237 end if;
7239 Id := First_Entity (P);
7241 case Op_Id is
7243 -- Boolean operators: an implicit declaration exists if the scope
7244 -- contains a declaration for a derived Boolean type, or for an
7245 -- array of Boolean type.
7247 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor =>
7248 while Id /= Priv_Id loop
7249 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7250 Add_Implicit_Operator (Id);
7251 return True;
7252 end if;
7254 Next_Entity (Id);
7255 end loop;
7257 -- Equality: look for any non-limited type (result is Boolean)
7259 when Name_Op_Eq | Name_Op_Ne =>
7260 while Id /= Priv_Id loop
7261 if Is_Type (Id)
7262 and then not Is_Limited_Type (Id)
7263 and then Is_Base_Type (Id)
7264 then
7265 Add_Implicit_Operator (Standard_Boolean, Id);
7266 return True;
7267 end if;
7269 Next_Entity (Id);
7270 end loop;
7272 -- Comparison operators: scalar type, or array of scalar
7274 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge =>
7275 while Id /= Priv_Id loop
7276 if (Is_Scalar_Type (Id)
7277 or else (Is_Array_Type (Id)
7278 and then Is_Scalar_Type (Component_Type (Id))))
7279 and then Is_Base_Type (Id)
7280 then
7281 Add_Implicit_Operator (Standard_Boolean, Id);
7282 return True;
7283 end if;
7285 Next_Entity (Id);
7286 end loop;
7288 -- Arithmetic operators: any numeric type
7290 when Name_Op_Abs |
7291 Name_Op_Add |
7292 Name_Op_Mod |
7293 Name_Op_Rem |
7294 Name_Op_Subtract |
7295 Name_Op_Multiply |
7296 Name_Op_Divide |
7297 Name_Op_Expon =>
7298 while Id /= Priv_Id loop
7299 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7300 Add_Implicit_Operator (Id);
7301 return True;
7302 end if;
7304 Next_Entity (Id);
7305 end loop;
7307 -- Concatenation: any one-dimensional array type
7309 when Name_Op_Concat =>
7310 while Id /= Priv_Id loop
7311 if Is_Array_Type (Id)
7312 and then Number_Dimensions (Id) = 1
7313 and then Is_Base_Type (Id)
7314 then
7315 Add_Implicit_Operator (Id);
7316 return True;
7317 end if;
7319 Next_Entity (Id);
7320 end loop;
7322 -- What is the others condition here? Should we be using a
7323 -- subtype of Name_Id that would restrict to operators ???
7325 when others => null;
7326 end case;
7328 -- If we fall through, then we do not have an implicit operator
7330 return False;
7332 end Has_Implicit_Operator;
7334 -----------------------------------
7335 -- Has_Loop_In_Inner_Open_Scopes --
7336 -----------------------------------
7338 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7339 begin
7340 -- Several scope stacks are maintained by Scope_Stack. The base of the
7341 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7342 -- flag in the scope stack entry. Note that the scope stacks used to
7343 -- simply be delimited implicitly by the presence of Standard_Standard
7344 -- at their base, but there now are cases where this is not sufficient
7345 -- because Standard_Standard actually may appear in the middle of the
7346 -- active set of scopes.
7348 for J in reverse 0 .. Scope_Stack.Last loop
7350 -- S was reached without seing a loop scope first
7352 if Scope_Stack.Table (J).Entity = S then
7353 return False;
7355 -- S was not yet reached, so it contains at least one inner loop
7357 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
7358 return True;
7359 end if;
7361 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7362 -- cases where Standard_Standard appears in the middle of the active
7363 -- set of scopes. This affects the declaration and overriding of
7364 -- private inherited operations in instantiations of generic child
7365 -- units.
7367 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
7368 end loop;
7370 raise Program_Error; -- unreachable
7371 end Has_Loop_In_Inner_Open_Scopes;
7373 --------------------
7374 -- In_Open_Scopes --
7375 --------------------
7377 function In_Open_Scopes (S : Entity_Id) return Boolean is
7378 begin
7379 -- Several scope stacks are maintained by Scope_Stack. The base of the
7380 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7381 -- flag in the scope stack entry. Note that the scope stacks used to
7382 -- simply be delimited implicitly by the presence of Standard_Standard
7383 -- at their base, but there now are cases where this is not sufficient
7384 -- because Standard_Standard actually may appear in the middle of the
7385 -- active set of scopes.
7387 for J in reverse 0 .. Scope_Stack.Last loop
7388 if Scope_Stack.Table (J).Entity = S then
7389 return True;
7390 end if;
7392 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7393 -- cases where Standard_Standard appears in the middle of the active
7394 -- set of scopes. This affects the declaration and overriding of
7395 -- private inherited operations in instantiations of generic child
7396 -- units.
7398 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
7399 end loop;
7401 return False;
7402 end In_Open_Scopes;
7404 -----------------------------
7405 -- Inherit_Renamed_Profile --
7406 -----------------------------
7408 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
7409 New_F : Entity_Id;
7410 Old_F : Entity_Id;
7411 Old_T : Entity_Id;
7412 New_T : Entity_Id;
7414 begin
7415 if Ekind (Old_S) = E_Operator then
7416 New_F := First_Formal (New_S);
7418 while Present (New_F) loop
7419 Set_Etype (New_F, Base_Type (Etype (New_F)));
7420 Next_Formal (New_F);
7421 end loop;
7423 Set_Etype (New_S, Base_Type (Etype (New_S)));
7425 else
7426 New_F := First_Formal (New_S);
7427 Old_F := First_Formal (Old_S);
7429 while Present (New_F) loop
7430 New_T := Etype (New_F);
7431 Old_T := Etype (Old_F);
7433 -- If the new type is a renaming of the old one, as is the
7434 -- case for actuals in instances, retain its name, to simplify
7435 -- later disambiguation.
7437 if Nkind (Parent (New_T)) = N_Subtype_Declaration
7438 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
7439 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
7440 then
7441 null;
7442 else
7443 Set_Etype (New_F, Old_T);
7444 end if;
7446 Next_Formal (New_F);
7447 Next_Formal (Old_F);
7448 end loop;
7450 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
7451 Set_Etype (New_S, Etype (Old_S));
7452 end if;
7453 end if;
7454 end Inherit_Renamed_Profile;
7456 ----------------
7457 -- Initialize --
7458 ----------------
7460 procedure Initialize is
7461 begin
7462 Urefs.Init;
7463 end Initialize;
7465 -------------------------
7466 -- Install_Use_Clauses --
7467 -------------------------
7469 procedure Install_Use_Clauses
7470 (Clause : Node_Id;
7471 Force_Installation : Boolean := False)
7473 U : Node_Id;
7474 P : Node_Id;
7475 Id : Entity_Id;
7477 begin
7478 U := Clause;
7479 while Present (U) loop
7481 -- Case of USE package
7483 if Nkind (U) = N_Use_Package_Clause then
7484 P := First (Names (U));
7485 while Present (P) loop
7486 Id := Entity (P);
7488 if Ekind (Id) = E_Package then
7489 if In_Use (Id) then
7490 Note_Redundant_Use (P);
7492 elsif Present (Renamed_Object (Id))
7493 and then In_Use (Renamed_Object (Id))
7494 then
7495 Note_Redundant_Use (P);
7497 elsif Force_Installation or else Applicable_Use (P) then
7498 Use_One_Package (Id, U);
7500 end if;
7501 end if;
7503 Next (P);
7504 end loop;
7506 -- Case of USE TYPE
7508 else
7509 P := First (Subtype_Marks (U));
7510 while Present (P) loop
7511 if not Is_Entity_Name (P)
7512 or else No (Entity (P))
7513 then
7514 null;
7516 elsif Entity (P) /= Any_Type then
7517 Use_One_Type (P);
7518 end if;
7520 Next (P);
7521 end loop;
7522 end if;
7524 Next_Use_Clause (U);
7525 end loop;
7526 end Install_Use_Clauses;
7528 -------------------------------------
7529 -- Is_Appropriate_For_Entry_Prefix --
7530 -------------------------------------
7532 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
7533 P_Type : Entity_Id := T;
7535 begin
7536 if Is_Access_Type (P_Type) then
7537 P_Type := Designated_Type (P_Type);
7538 end if;
7540 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
7541 end Is_Appropriate_For_Entry_Prefix;
7543 -------------------------------
7544 -- Is_Appropriate_For_Record --
7545 -------------------------------
7547 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
7549 function Has_Components (T1 : Entity_Id) return Boolean;
7550 -- Determine if given type has components (i.e. is either a record
7551 -- type or a type that has discriminants).
7553 --------------------
7554 -- Has_Components --
7555 --------------------
7557 function Has_Components (T1 : Entity_Id) return Boolean is
7558 begin
7559 return Is_Record_Type (T1)
7560 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
7561 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
7562 or else (Is_Incomplete_Type (T1)
7563 and then From_Limited_With (T1)
7564 and then Present (Non_Limited_View (T1))
7565 and then Is_Record_Type
7566 (Get_Full_View (Non_Limited_View (T1))));
7567 end Has_Components;
7569 -- Start of processing for Is_Appropriate_For_Record
7571 begin
7572 return
7573 Present (T)
7574 and then (Has_Components (T)
7575 or else (Is_Access_Type (T)
7576 and then Has_Components (Designated_Type (T))));
7577 end Is_Appropriate_For_Record;
7579 ------------------------
7580 -- Note_Redundant_Use --
7581 ------------------------
7583 procedure Note_Redundant_Use (Clause : Node_Id) is
7584 Pack_Name : constant Entity_Id := Entity (Clause);
7585 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
7586 Decl : constant Node_Id := Parent (Clause);
7588 Prev_Use : Node_Id := Empty;
7589 Redundant : Node_Id := Empty;
7590 -- The Use_Clause which is actually redundant. In the simplest case it
7591 -- is Pack itself, but when we compile a body we install its context
7592 -- before that of its spec, in which case it is the use_clause in the
7593 -- spec that will appear to be redundant, and we want the warning to be
7594 -- placed on the body. Similar complications appear when the redundancy
7595 -- is between a child unit and one of its ancestors.
7597 begin
7598 Set_Redundant_Use (Clause, True);
7600 if not Comes_From_Source (Clause)
7601 or else In_Instance
7602 or else not Warn_On_Redundant_Constructs
7603 then
7604 return;
7605 end if;
7607 if not Is_Compilation_Unit (Current_Scope) then
7609 -- If the use_clause is in an inner scope, it is made redundant by
7610 -- some clause in the current context, with one exception: If we're
7611 -- compiling a nested package body, and the use_clause comes from the
7612 -- corresponding spec, the clause is not necessarily fully redundant,
7613 -- so we should not warn. If a warning was warranted, it would have
7614 -- been given when the spec was processed.
7616 if Nkind (Parent (Decl)) = N_Package_Specification then
7617 declare
7618 Package_Spec_Entity : constant Entity_Id :=
7619 Defining_Unit_Name (Parent (Decl));
7620 begin
7621 if In_Package_Body (Package_Spec_Entity) then
7622 return;
7623 end if;
7624 end;
7625 end if;
7627 Redundant := Clause;
7628 Prev_Use := Cur_Use;
7630 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
7631 declare
7632 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
7633 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
7634 Scop : Entity_Id;
7636 begin
7637 if Cur_Unit = New_Unit then
7639 -- Redundant clause in same body
7641 Redundant := Clause;
7642 Prev_Use := Cur_Use;
7644 elsif Cur_Unit = Current_Sem_Unit then
7646 -- If the new clause is not in the current unit it has been
7647 -- analyzed first, and it makes the other one redundant.
7648 -- However, if the new clause appears in a subunit, Cur_Unit
7649 -- is still the parent, and in that case the redundant one
7650 -- is the one appearing in the subunit.
7652 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
7653 Redundant := Clause;
7654 Prev_Use := Cur_Use;
7656 -- Most common case: redundant clause in body,
7657 -- original clause in spec. Current scope is spec entity.
7659 elsif
7660 Current_Scope =
7661 Defining_Entity (
7662 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
7663 then
7664 Redundant := Cur_Use;
7665 Prev_Use := Clause;
7667 else
7668 -- The new clause may appear in an unrelated unit, when
7669 -- the parents of a generic are being installed prior to
7670 -- instantiation. In this case there must be no warning.
7671 -- We detect this case by checking whether the current top
7672 -- of the stack is related to the current compilation.
7674 Scop := Current_Scope;
7675 while Present (Scop) and then Scop /= Standard_Standard loop
7676 if Is_Compilation_Unit (Scop)
7677 and then not Is_Child_Unit (Scop)
7678 then
7679 return;
7681 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
7682 exit;
7683 end if;
7685 Scop := Scope (Scop);
7686 end loop;
7688 Redundant := Cur_Use;
7689 Prev_Use := Clause;
7690 end if;
7692 elsif New_Unit = Current_Sem_Unit then
7693 Redundant := Clause;
7694 Prev_Use := Cur_Use;
7696 else
7697 -- Neither is the current unit, so they appear in parent or
7698 -- sibling units. Warning will be emitted elsewhere.
7700 return;
7701 end if;
7702 end;
7704 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
7705 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
7706 then
7707 -- Use_clause is in child unit of current unit, and the child unit
7708 -- appears in the context of the body of the parent, so it has been
7709 -- installed first, even though it is the redundant one. Depending on
7710 -- their placement in the context, the visible or the private parts
7711 -- of the two units, either might appear as redundant, but the
7712 -- message has to be on the current unit.
7714 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
7715 Redundant := Cur_Use;
7716 Prev_Use := Clause;
7717 else
7718 Redundant := Clause;
7719 Prev_Use := Cur_Use;
7720 end if;
7722 -- If the new use clause appears in the private part of a parent unit
7723 -- it may appear to be redundant w.r.t. a use clause in a child unit,
7724 -- but the previous use clause was needed in the visible part of the
7725 -- child, and no warning should be emitted.
7727 if Nkind (Parent (Decl)) = N_Package_Specification
7728 and then
7729 List_Containing (Decl) = Private_Declarations (Parent (Decl))
7730 then
7731 declare
7732 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
7733 Spec : constant Node_Id :=
7734 Specification (Unit (Cunit (Current_Sem_Unit)));
7736 begin
7737 if Is_Compilation_Unit (Par)
7738 and then Par /= Cunit_Entity (Current_Sem_Unit)
7739 and then Parent (Cur_Use) = Spec
7740 and then
7741 List_Containing (Cur_Use) = Visible_Declarations (Spec)
7742 then
7743 return;
7744 end if;
7745 end;
7746 end if;
7748 -- Finally, if the current use clause is in the context then
7749 -- the clause is redundant when it is nested within the unit.
7751 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
7752 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
7753 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
7754 then
7755 Redundant := Clause;
7756 Prev_Use := Cur_Use;
7758 else
7759 null;
7760 end if;
7762 if Present (Redundant) then
7763 Error_Msg_Sloc := Sloc (Prev_Use);
7764 Error_Msg_NE -- CODEFIX
7765 ("& is already use-visible through previous use clause #??",
7766 Redundant, Pack_Name);
7767 end if;
7768 end Note_Redundant_Use;
7770 ---------------
7771 -- Pop_Scope --
7772 ---------------
7774 procedure Pop_Scope is
7775 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7776 S : constant Entity_Id := SST.Entity;
7778 begin
7779 if Debug_Flag_E then
7780 Write_Info;
7781 end if;
7783 -- Set Default_Storage_Pool field of the library unit if necessary
7785 if Ekind_In (S, E_Package, E_Generic_Package)
7786 and then
7787 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
7788 then
7789 declare
7790 Aux : constant Node_Id :=
7791 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
7792 begin
7793 if No (Default_Storage_Pool (Aux)) then
7794 Set_Default_Storage_Pool (Aux, Default_Pool);
7795 end if;
7796 end;
7797 end if;
7799 Scope_Suppress := SST.Save_Scope_Suppress;
7800 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
7801 Check_Policy_List := SST.Save_Check_Policy_List;
7802 Default_Pool := SST.Save_Default_Storage_Pool;
7803 SPARK_Mode := SST.Save_SPARK_Mode;
7804 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
7805 Default_SSO := SST.Save_Default_SSO;
7806 Uneval_Old := SST.Save_Uneval_Old;
7808 if Debug_Flag_W then
7809 Write_Str ("<-- exiting scope: ");
7810 Write_Name (Chars (Current_Scope));
7811 Write_Str (", Depth=");
7812 Write_Int (Int (Scope_Stack.Last));
7813 Write_Eol;
7814 end if;
7816 End_Use_Clauses (SST.First_Use_Clause);
7818 -- If the actions to be wrapped are still there they will get lost
7819 -- causing incomplete code to be generated. It is better to abort in
7820 -- this case (and we do the abort even with assertions off since the
7821 -- penalty is incorrect code generation).
7823 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
7824 raise Program_Error;
7825 end if;
7827 -- Free last subprogram name if allocated, and pop scope
7829 Free (SST.Last_Subprogram_Name);
7830 Scope_Stack.Decrement_Last;
7831 end Pop_Scope;
7833 ---------------
7834 -- Push_Scope --
7835 ---------------
7837 procedure Push_Scope (S : Entity_Id) is
7838 E : constant Entity_Id := Scope (S);
7840 begin
7841 if Ekind (S) = E_Void then
7842 null;
7844 -- Set scope depth if not a non-concurrent type, and we have not yet set
7845 -- the scope depth. This means that we have the first occurrence of the
7846 -- scope, and this is where the depth is set.
7848 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
7849 and then not Scope_Depth_Set (S)
7850 then
7851 if S = Standard_Standard then
7852 Set_Scope_Depth_Value (S, Uint_0);
7854 elsif Is_Child_Unit (S) then
7855 Set_Scope_Depth_Value (S, Uint_1);
7857 elsif not Is_Record_Type (Current_Scope) then
7858 if Ekind (S) = E_Loop then
7859 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
7860 else
7861 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
7862 end if;
7863 end if;
7864 end if;
7866 Scope_Stack.Increment_Last;
7868 declare
7869 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7871 begin
7872 SST.Entity := S;
7873 SST.Save_Scope_Suppress := Scope_Suppress;
7874 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
7875 SST.Save_Check_Policy_List := Check_Policy_List;
7876 SST.Save_Default_Storage_Pool := Default_Pool;
7877 SST.Save_SPARK_Mode := SPARK_Mode;
7878 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
7879 SST.Save_Default_SSO := Default_SSO;
7880 SST.Save_Uneval_Old := Uneval_Old;
7882 if Scope_Stack.Last > Scope_Stack.First then
7883 SST.Component_Alignment_Default := Scope_Stack.Table
7884 (Scope_Stack.Last - 1).
7885 Component_Alignment_Default;
7886 end if;
7888 SST.Last_Subprogram_Name := null;
7889 SST.Is_Transient := False;
7890 SST.Node_To_Be_Wrapped := Empty;
7891 SST.Pending_Freeze_Actions := No_List;
7892 SST.Actions_To_Be_Wrapped := (others => No_List);
7893 SST.First_Use_Clause := Empty;
7894 SST.Is_Active_Stack_Base := False;
7895 SST.Previous_Visibility := False;
7896 SST.Locked_Shared_Objects := No_Elist;
7897 end;
7899 if Debug_Flag_W then
7900 Write_Str ("--> new scope: ");
7901 Write_Name (Chars (Current_Scope));
7902 Write_Str (", Id=");
7903 Write_Int (Int (Current_Scope));
7904 Write_Str (", Depth=");
7905 Write_Int (Int (Scope_Stack.Last));
7906 Write_Eol;
7907 end if;
7909 -- Deal with copying flags from the previous scope to this one. This is
7910 -- not necessary if either scope is standard, or if the new scope is a
7911 -- child unit.
7913 if S /= Standard_Standard
7914 and then Scope (S) /= Standard_Standard
7915 and then not Is_Child_Unit (S)
7916 then
7917 if Nkind (E) not in N_Entity then
7918 return;
7919 end if;
7921 -- Copy categorization flags from Scope (S) to S, this is not done
7922 -- when Scope (S) is Standard_Standard since propagation is from
7923 -- library unit entity inwards. Copy other relevant attributes as
7924 -- well (Discard_Names in particular).
7926 -- We only propagate inwards for library level entities,
7927 -- inner level subprograms do not inherit the categorization.
7929 if Is_Library_Level_Entity (S) then
7930 Set_Is_Preelaborated (S, Is_Preelaborated (E));
7931 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
7932 Set_Discard_Names (S, Discard_Names (E));
7933 Set_Suppress_Value_Tracking_On_Call
7934 (S, Suppress_Value_Tracking_On_Call (E));
7935 Set_Categorization_From_Scope (E => S, Scop => E);
7936 end if;
7937 end if;
7939 if Is_Child_Unit (S)
7940 and then Present (E)
7941 and then Ekind_In (E, E_Package, E_Generic_Package)
7942 and then
7943 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
7944 then
7945 declare
7946 Aux : constant Node_Id :=
7947 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
7948 begin
7949 if Present (Default_Storage_Pool (Aux)) then
7950 Default_Pool := Default_Storage_Pool (Aux);
7951 end if;
7952 end;
7953 end if;
7954 end Push_Scope;
7956 ---------------------
7957 -- Premature_Usage --
7958 ---------------------
7960 procedure Premature_Usage (N : Node_Id) is
7961 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
7962 E : Entity_Id := Entity (N);
7964 begin
7965 -- Within an instance, the analysis of the actual for a formal object
7966 -- does not see the name of the object itself. This is significant only
7967 -- if the object is an aggregate, where its analysis does not do any
7968 -- name resolution on component associations. (see 4717-008). In such a
7969 -- case, look for the visible homonym on the chain.
7971 if In_Instance and then Present (Homonym (E)) then
7972 E := Homonym (E);
7973 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
7974 E := Homonym (E);
7975 end loop;
7977 if Present (E) then
7978 Set_Entity (N, E);
7979 Set_Etype (N, Etype (E));
7980 return;
7981 end if;
7982 end if;
7984 if Kind = N_Component_Declaration then
7985 Error_Msg_N
7986 ("component&! cannot be used before end of record declaration", N);
7988 elsif Kind = N_Parameter_Specification then
7989 Error_Msg_N
7990 ("formal parameter&! cannot be used before end of specification",
7993 elsif Kind = N_Discriminant_Specification then
7994 Error_Msg_N
7995 ("discriminant&! cannot be used before end of discriminant part",
7998 elsif Kind = N_Procedure_Specification
7999 or else Kind = N_Function_Specification
8000 then
8001 Error_Msg_N
8002 ("subprogram&! cannot be used before end of its declaration",
8005 elsif Kind = N_Full_Type_Declaration then
8006 Error_Msg_N
8007 ("type& cannot be used before end of its declaration!", N);
8009 else
8010 Error_Msg_N
8011 ("object& cannot be used before end of its declaration!", N);
8012 end if;
8013 end Premature_Usage;
8015 ------------------------
8016 -- Present_System_Aux --
8017 ------------------------
8019 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8020 Loc : Source_Ptr;
8021 Aux_Name : Unit_Name_Type;
8022 Unum : Unit_Number_Type;
8023 Withn : Node_Id;
8024 With_Sys : Node_Id;
8025 The_Unit : Node_Id;
8027 function Find_System (C_Unit : Node_Id) return Entity_Id;
8028 -- Scan context clause of compilation unit to find with_clause
8029 -- for System.
8031 -----------------
8032 -- Find_System --
8033 -----------------
8035 function Find_System (C_Unit : Node_Id) return Entity_Id is
8036 With_Clause : Node_Id;
8038 begin
8039 With_Clause := First (Context_Items (C_Unit));
8040 while Present (With_Clause) loop
8041 if (Nkind (With_Clause) = N_With_Clause
8042 and then Chars (Name (With_Clause)) = Name_System)
8043 and then Comes_From_Source (With_Clause)
8044 then
8045 return With_Clause;
8046 end if;
8048 Next (With_Clause);
8049 end loop;
8051 return Empty;
8052 end Find_System;
8054 -- Start of processing for Present_System_Aux
8056 begin
8057 -- The child unit may have been loaded and analyzed already
8059 if Present (System_Aux_Id) then
8060 return True;
8062 -- If no previous pragma for System.Aux, nothing to load
8064 elsif No (System_Extend_Unit) then
8065 return False;
8067 -- Use the unit name given in the pragma to retrieve the unit.
8068 -- Verify that System itself appears in the context clause of the
8069 -- current compilation. If System is not present, an error will
8070 -- have been reported already.
8072 else
8073 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8075 The_Unit := Unit (Cunit (Current_Sem_Unit));
8077 if No (With_Sys)
8078 and then
8079 (Nkind (The_Unit) = N_Package_Body
8080 or else (Nkind (The_Unit) = N_Subprogram_Body
8081 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8082 then
8083 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8084 end if;
8086 if No (With_Sys) and then Present (N) then
8088 -- If we are compiling a subunit, we need to examine its
8089 -- context as well (Current_Sem_Unit is the parent unit);
8091 The_Unit := Parent (N);
8092 while Nkind (The_Unit) /= N_Compilation_Unit loop
8093 The_Unit := Parent (The_Unit);
8094 end loop;
8096 if Nkind (Unit (The_Unit)) = N_Subunit then
8097 With_Sys := Find_System (The_Unit);
8098 end if;
8099 end if;
8101 if No (With_Sys) then
8102 return False;
8103 end if;
8105 Loc := Sloc (With_Sys);
8106 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8107 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8108 Name_Buffer (1 .. 7) := "system.";
8109 Name_Buffer (Name_Len + 8) := '%';
8110 Name_Buffer (Name_Len + 9) := 's';
8111 Name_Len := Name_Len + 9;
8112 Aux_Name := Name_Find;
8114 Unum :=
8115 Load_Unit
8116 (Load_Name => Aux_Name,
8117 Required => False,
8118 Subunit => False,
8119 Error_Node => With_Sys);
8121 if Unum /= No_Unit then
8122 Semantics (Cunit (Unum));
8123 System_Aux_Id :=
8124 Defining_Entity (Specification (Unit (Cunit (Unum))));
8126 Withn :=
8127 Make_With_Clause (Loc,
8128 Name =>
8129 Make_Expanded_Name (Loc,
8130 Chars => Chars (System_Aux_Id),
8131 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8132 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8134 Set_Entity (Name (Withn), System_Aux_Id);
8136 Set_Library_Unit (Withn, Cunit (Unum));
8137 Set_Corresponding_Spec (Withn, System_Aux_Id);
8138 Set_First_Name (Withn, True);
8139 Set_Implicit_With (Withn, True);
8141 Insert_After (With_Sys, Withn);
8142 Mark_Rewrite_Insertion (Withn);
8143 Set_Context_Installed (Withn);
8145 return True;
8147 -- Here if unit load failed
8149 else
8150 Error_Msg_Name_1 := Name_System;
8151 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8152 Error_Msg_N
8153 ("extension package `%.%` does not exist",
8154 Opt.System_Extend_Unit);
8155 return False;
8156 end if;
8157 end if;
8158 end Present_System_Aux;
8160 -------------------------
8161 -- Restore_Scope_Stack --
8162 -------------------------
8164 procedure Restore_Scope_Stack
8165 (List : Elist_Id;
8166 Handle_Use : Boolean := True)
8168 SS_Last : constant Int := Scope_Stack.Last;
8169 Elmt : Elmt_Id;
8171 begin
8172 -- Restore visibility of previous scope stack, if any, using the list
8173 -- we saved (we use Remove, since this list will not be used again).
8175 loop
8176 Elmt := Last_Elmt (List);
8177 exit when Elmt = No_Elmt;
8178 Set_Is_Immediately_Visible (Node (Elmt));
8179 Remove_Last_Elmt (List);
8180 end loop;
8182 -- Restore use clauses
8184 if SS_Last >= Scope_Stack.First
8185 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8186 and then Handle_Use
8187 then
8188 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8189 end if;
8190 end Restore_Scope_Stack;
8192 ----------------------
8193 -- Save_Scope_Stack --
8194 ----------------------
8196 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8197 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8198 -- from immediate visibility entities and Restore_Scope_Stack took care
8199 -- of restoring their visibility analyzing the context of each entity. The
8200 -- problem of such approach is that it was fragile and caused unexpected
8201 -- visibility problems, and indeed one test was found where there was a
8202 -- real problem.
8204 -- Furthermore, the following experiment was carried out:
8206 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8207 -- entities whose attribute Is_Immediately_Visible is modified
8208 -- from True to False.
8210 -- - Restore_Scope_Stack was modified to store in another Elist2
8211 -- all the entities whose attribute Is_Immediately_Visible is
8212 -- modified from False to True.
8214 -- - Extra code was added to verify that all the elements of Elist1
8215 -- are found in Elist2
8217 -- This test shows that there may be more occurrences of this problem which
8218 -- have not yet been detected. As a result, we replaced that approach by
8219 -- the current one in which Save_Scope_Stack returns the list of entities
8220 -- whose visibility is changed, and that list is passed to Restore_Scope_
8221 -- Stack to undo that change. This approach is simpler and safer, although
8222 -- it consumes more memory.
8224 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8225 Result : constant Elist_Id := New_Elmt_List;
8226 E : Entity_Id;
8227 S : Entity_Id;
8228 SS_Last : constant Int := Scope_Stack.Last;
8230 procedure Remove_From_Visibility (E : Entity_Id);
8231 -- If E is immediately visible then append it to the result and remove
8232 -- it temporarily from visibility.
8234 ----------------------------
8235 -- Remove_From_Visibility --
8236 ----------------------------
8238 procedure Remove_From_Visibility (E : Entity_Id) is
8239 begin
8240 if Is_Immediately_Visible (E) then
8241 Append_Elmt (E, Result);
8242 Set_Is_Immediately_Visible (E, False);
8243 end if;
8244 end Remove_From_Visibility;
8246 -- Start of processing for Save_Scope_Stack
8248 begin
8249 if SS_Last >= Scope_Stack.First
8250 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8251 then
8252 if Handle_Use then
8253 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8254 end if;
8256 -- If the call is from within a compilation unit, as when called from
8257 -- Rtsfind, make current entries in scope stack invisible while we
8258 -- analyze the new unit.
8260 for J in reverse 0 .. SS_Last loop
8261 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8262 or else No (Scope_Stack.Table (J).Entity);
8264 S := Scope_Stack.Table (J).Entity;
8266 Remove_From_Visibility (S);
8268 E := First_Entity (S);
8269 while Present (E) loop
8270 Remove_From_Visibility (E);
8271 Next_Entity (E);
8272 end loop;
8273 end loop;
8275 end if;
8277 return Result;
8278 end Save_Scope_Stack;
8280 -------------
8281 -- Set_Use --
8282 -------------
8284 procedure Set_Use (L : List_Id) is
8285 Decl : Node_Id;
8286 Pack_Name : Node_Id;
8287 Pack : Entity_Id;
8288 Id : Entity_Id;
8290 begin
8291 if Present (L) then
8292 Decl := First (L);
8293 while Present (Decl) loop
8294 if Nkind (Decl) = N_Use_Package_Clause then
8295 Chain_Use_Clause (Decl);
8297 Pack_Name := First (Names (Decl));
8298 while Present (Pack_Name) loop
8299 Pack := Entity (Pack_Name);
8301 if Ekind (Pack) = E_Package
8302 and then Applicable_Use (Pack_Name)
8303 then
8304 Use_One_Package (Pack, Decl);
8305 end if;
8307 Next (Pack_Name);
8308 end loop;
8310 elsif Nkind (Decl) = N_Use_Type_Clause then
8311 Chain_Use_Clause (Decl);
8313 Id := First (Subtype_Marks (Decl));
8314 while Present (Id) loop
8315 if Entity (Id) /= Any_Type then
8316 Use_One_Type (Id);
8317 end if;
8319 Next (Id);
8320 end loop;
8321 end if;
8323 Next (Decl);
8324 end loop;
8325 end if;
8326 end Set_Use;
8328 ---------------------
8329 -- Use_One_Package --
8330 ---------------------
8332 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8333 Id : Entity_Id;
8334 Prev : Entity_Id;
8335 Current_Instance : Entity_Id := Empty;
8336 Real_P : Entity_Id;
8337 Private_With_OK : Boolean := False;
8339 begin
8340 if Ekind (P) /= E_Package then
8341 return;
8342 end if;
8344 Set_In_Use (P);
8345 Set_Current_Use_Clause (P, N);
8347 -- Ada 2005 (AI-50217): Check restriction
8349 if From_Limited_With (P) then
8350 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8351 end if;
8353 -- Find enclosing instance, if any
8355 if In_Instance then
8356 Current_Instance := Current_Scope;
8357 while not Is_Generic_Instance (Current_Instance) loop
8358 Current_Instance := Scope (Current_Instance);
8359 end loop;
8361 if No (Hidden_By_Use_Clause (N)) then
8362 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8363 end if;
8364 end if;
8366 -- If unit is a package renaming, indicate that the renamed
8367 -- package is also in use (the flags on both entities must
8368 -- remain consistent, and a subsequent use of either of them
8369 -- should be recognized as redundant).
8371 if Present (Renamed_Object (P)) then
8372 Set_In_Use (Renamed_Object (P));
8373 Set_Current_Use_Clause (Renamed_Object (P), N);
8374 Real_P := Renamed_Object (P);
8375 else
8376 Real_P := P;
8377 end if;
8379 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8380 -- found in the private part of a package specification
8382 if In_Private_Part (Current_Scope)
8383 and then Has_Private_With (P)
8384 and then Is_Child_Unit (Current_Scope)
8385 and then Is_Child_Unit (P)
8386 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8387 then
8388 Private_With_OK := True;
8389 end if;
8391 -- Loop through entities in one package making them potentially
8392 -- use-visible.
8394 Id := First_Entity (P);
8395 while Present (Id)
8396 and then (Id /= First_Private_Entity (P)
8397 or else Private_With_OK) -- Ada 2005 (AI-262)
8398 loop
8399 Prev := Current_Entity (Id);
8400 while Present (Prev) loop
8401 if Is_Immediately_Visible (Prev)
8402 and then (not Is_Overloadable (Prev)
8403 or else not Is_Overloadable (Id)
8404 or else (Type_Conformant (Id, Prev)))
8405 then
8406 if No (Current_Instance) then
8408 -- Potentially use-visible entity remains hidden
8410 goto Next_Usable_Entity;
8412 -- A use clause within an instance hides outer global entities,
8413 -- which are not used to resolve local entities in the
8414 -- instance. Note that the predefined entities in Standard
8415 -- could not have been hidden in the generic by a use clause,
8416 -- and therefore remain visible. Other compilation units whose
8417 -- entities appear in Standard must be hidden in an instance.
8419 -- To determine whether an entity is external to the instance
8420 -- we compare the scope depth of its scope with that of the
8421 -- current instance. However, a generic actual of a subprogram
8422 -- instance is declared in the wrapper package but will not be
8423 -- hidden by a use-visible entity. similarly, an entity that is
8424 -- declared in an enclosing instance will not be hidden by an
8425 -- an entity declared in a generic actual, which can only have
8426 -- been use-visible in the generic and will not have hidden the
8427 -- entity in the generic parent.
8429 -- If Id is called Standard, the predefined package with the
8430 -- same name is in the homonym chain. It has to be ignored
8431 -- because it has no defined scope (being the only entity in
8432 -- the system with this mandated behavior).
8434 elsif not Is_Hidden (Id)
8435 and then Present (Scope (Prev))
8436 and then not Is_Wrapper_Package (Scope (Prev))
8437 and then Scope_Depth (Scope (Prev)) <
8438 Scope_Depth (Current_Instance)
8439 and then (Scope (Prev) /= Standard_Standard
8440 or else Sloc (Prev) > Standard_Location)
8441 then
8442 if In_Open_Scopes (Scope (Prev))
8443 and then Is_Generic_Instance (Scope (Prev))
8444 and then Present (Associated_Formal_Package (P))
8445 then
8446 null;
8448 else
8449 Set_Is_Potentially_Use_Visible (Id);
8450 Set_Is_Immediately_Visible (Prev, False);
8451 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8452 end if;
8453 end if;
8455 -- A user-defined operator is not use-visible if the predefined
8456 -- operator for the type is immediately visible, which is the case
8457 -- if the type of the operand is in an open scope. This does not
8458 -- apply to user-defined operators that have operands of different
8459 -- types, because the predefined mixed mode operations (multiply
8460 -- and divide) apply to universal types and do not hide anything.
8462 elsif Ekind (Prev) = E_Operator
8463 and then Operator_Matches_Spec (Prev, Id)
8464 and then In_Open_Scopes
8465 (Scope (Base_Type (Etype (First_Formal (Id)))))
8466 and then (No (Next_Formal (First_Formal (Id)))
8467 or else Etype (First_Formal (Id)) =
8468 Etype (Next_Formal (First_Formal (Id)))
8469 or else Chars (Prev) = Name_Op_Expon)
8470 then
8471 goto Next_Usable_Entity;
8473 -- In an instance, two homonyms may become use_visible through the
8474 -- actuals of distinct formal packages. In the generic, only the
8475 -- current one would have been visible, so make the other one
8476 -- not use_visible.
8478 elsif Present (Current_Instance)
8479 and then Is_Potentially_Use_Visible (Prev)
8480 and then not Is_Overloadable (Prev)
8481 and then Scope (Id) /= Scope (Prev)
8482 and then Used_As_Generic_Actual (Scope (Prev))
8483 and then Used_As_Generic_Actual (Scope (Id))
8484 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8485 Current_Use_Clause (Scope (Id)))
8486 then
8487 Set_Is_Potentially_Use_Visible (Prev, False);
8488 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8489 end if;
8491 Prev := Homonym (Prev);
8492 end loop;
8494 -- On exit, we know entity is not hidden, unless it is private
8496 if not Is_Hidden (Id)
8497 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8498 then
8499 Set_Is_Potentially_Use_Visible (Id);
8501 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8502 Set_Is_Potentially_Use_Visible (Full_View (Id));
8503 end if;
8504 end if;
8506 <<Next_Usable_Entity>>
8507 Next_Entity (Id);
8508 end loop;
8510 -- Child units are also made use-visible by a use clause, but they may
8511 -- appear after all visible declarations in the parent entity list.
8513 while Present (Id) loop
8514 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8515 Set_Is_Potentially_Use_Visible (Id);
8516 end if;
8518 Next_Entity (Id);
8519 end loop;
8521 if Chars (Real_P) = Name_System
8522 and then Scope (Real_P) = Standard_Standard
8523 and then Present_System_Aux (N)
8524 then
8525 Use_One_Package (System_Aux_Id, N);
8526 end if;
8528 end Use_One_Package;
8530 ------------------
8531 -- Use_One_Type --
8532 ------------------
8534 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8535 Elmt : Elmt_Id;
8536 Is_Known_Used : Boolean;
8537 Op_List : Elist_Id;
8538 T : Entity_Id;
8540 function Spec_Reloaded_For_Body return Boolean;
8541 -- Determine whether the compilation unit is a package body and the use
8542 -- type clause is in the spec of the same package. Even though the spec
8543 -- was analyzed first, its context is reloaded when analysing the body.
8545 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8546 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8547 -- class-wide operations of ancestor types are use-visible if the
8548 -- ancestor type is visible.
8550 ----------------------------
8551 -- Spec_Reloaded_For_Body --
8552 ----------------------------
8554 function Spec_Reloaded_For_Body return Boolean is
8555 begin
8556 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8557 declare
8558 Spec : constant Node_Id :=
8559 Parent (List_Containing (Parent (Id)));
8561 begin
8562 -- Check whether type is declared in a package specification,
8563 -- and current unit is the corresponding package body. The
8564 -- use clauses themselves may be within a nested package.
8566 return
8567 Nkind (Spec) = N_Package_Specification
8568 and then
8569 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8570 Cunit_Entity (Current_Sem_Unit));
8571 end;
8572 end if;
8574 return False;
8575 end Spec_Reloaded_For_Body;
8577 -------------------------------
8578 -- Use_Class_Wide_Operations --
8579 -------------------------------
8581 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8582 Scop : Entity_Id;
8583 Ent : Entity_Id;
8585 function Is_Class_Wide_Operation_Of
8586 (Op : Entity_Id;
8587 T : Entity_Id) return Boolean;
8588 -- Determine whether a subprogram has a class-wide parameter or
8589 -- result that is T'Class.
8591 ---------------------------------
8592 -- Is_Class_Wide_Operation_Of --
8593 ---------------------------------
8595 function Is_Class_Wide_Operation_Of
8596 (Op : Entity_Id;
8597 T : Entity_Id) return Boolean
8599 Formal : Entity_Id;
8601 begin
8602 Formal := First_Formal (Op);
8603 while Present (Formal) loop
8604 if Etype (Formal) = Class_Wide_Type (T) then
8605 return True;
8606 end if;
8607 Next_Formal (Formal);
8608 end loop;
8610 if Etype (Op) = Class_Wide_Type (T) then
8611 return True;
8612 end if;
8614 return False;
8615 end Is_Class_Wide_Operation_Of;
8617 -- Start of processing for Use_Class_Wide_Operations
8619 begin
8620 Scop := Scope (Typ);
8621 if not Is_Hidden (Scop) then
8622 Ent := First_Entity (Scop);
8623 while Present (Ent) loop
8624 if Is_Overloadable (Ent)
8625 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8626 and then not Is_Potentially_Use_Visible (Ent)
8627 then
8628 Set_Is_Potentially_Use_Visible (Ent);
8629 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8630 end if;
8632 Next_Entity (Ent);
8633 end loop;
8634 end if;
8636 if Is_Derived_Type (Typ) then
8637 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8638 end if;
8639 end Use_Class_Wide_Operations;
8641 -- Start of processing for Use_One_Type
8643 begin
8644 -- It is the type determined by the subtype mark (8.4(8)) whose
8645 -- operations become potentially use-visible.
8647 T := Base_Type (Entity (Id));
8649 -- Either the type itself is used, the package where it is declared
8650 -- is in use or the entity is declared in the current package, thus
8651 -- use-visible.
8653 Is_Known_Used :=
8654 In_Use (T)
8655 or else In_Use (Scope (T))
8656 or else Scope (T) = Current_Scope;
8658 Set_Redundant_Use (Id,
8659 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8661 if Ekind (T) = E_Incomplete_Type then
8662 Error_Msg_N ("premature usage of incomplete type", Id);
8664 elsif In_Open_Scopes (Scope (T)) then
8665 null;
8667 -- A limited view cannot appear in a use_type clause. However, an access
8668 -- type whose designated type is limited has the flag but is not itself
8669 -- a limited view unless we only have a limited view of its enclosing
8670 -- package.
8672 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
8673 Error_Msg_N
8674 ("incomplete type from limited view "
8675 & "cannot appear in use clause", Id);
8677 -- If the subtype mark designates a subtype in a different package,
8678 -- we have to check that the parent type is visible, otherwise the
8679 -- use type clause is a noop. Not clear how to do that???
8681 elsif not Redundant_Use (Id) then
8682 Set_In_Use (T);
8684 -- If T is tagged, primitive operators on class-wide operands
8685 -- are also available.
8687 if Is_Tagged_Type (T) then
8688 Set_In_Use (Class_Wide_Type (T));
8689 end if;
8691 Set_Current_Use_Clause (T, Parent (Id));
8693 -- Iterate over primitive operations of the type. If an operation is
8694 -- already use_visible, it is the result of a previous use_clause,
8695 -- and already appears on the corresponding entity chain. If the
8696 -- clause is being reinstalled, operations are already use-visible.
8698 if Installed then
8699 null;
8701 else
8702 Op_List := Collect_Primitive_Operations (T);
8703 Elmt := First_Elmt (Op_List);
8704 while Present (Elmt) loop
8705 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8706 or else Chars (Node (Elmt)) in Any_Operator_Name)
8707 and then not Is_Hidden (Node (Elmt))
8708 and then not Is_Potentially_Use_Visible (Node (Elmt))
8709 then
8710 Set_Is_Potentially_Use_Visible (Node (Elmt));
8711 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8713 elsif Ada_Version >= Ada_2012
8714 and then All_Present (Parent (Id))
8715 and then not Is_Hidden (Node (Elmt))
8716 and then not Is_Potentially_Use_Visible (Node (Elmt))
8717 then
8718 Set_Is_Potentially_Use_Visible (Node (Elmt));
8719 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8720 end if;
8722 Next_Elmt (Elmt);
8723 end loop;
8724 end if;
8726 if Ada_Version >= Ada_2012
8727 and then All_Present (Parent (Id))
8728 and then Is_Tagged_Type (T)
8729 then
8730 Use_Class_Wide_Operations (T);
8731 end if;
8732 end if;
8734 -- If warning on redundant constructs, check for unnecessary WITH
8736 if Warn_On_Redundant_Constructs
8737 and then Is_Known_Used
8739 -- with P; with P; use P;
8740 -- package P is package X is package body X is
8741 -- type T ... use P.T;
8743 -- The compilation unit is the body of X. GNAT first compiles the
8744 -- spec of X, then proceeds to the body. At that point P is marked
8745 -- as use visible. The analysis then reinstalls the spec along with
8746 -- its context. The use clause P.T is now recognized as redundant,
8747 -- but in the wrong context. Do not emit a warning in such cases.
8748 -- Do not emit a warning either if we are in an instance, there is
8749 -- no redundancy between an outer use_clause and one that appears
8750 -- within the generic.
8752 and then not Spec_Reloaded_For_Body
8753 and then not In_Instance
8754 then
8755 -- The type already has a use clause
8757 if In_Use (T) then
8759 -- Case where we know the current use clause for the type
8761 if Present (Current_Use_Clause (T)) then
8762 Use_Clause_Known : declare
8763 Clause1 : constant Node_Id := Parent (Id);
8764 Clause2 : constant Node_Id := Current_Use_Clause (T);
8765 Ent1 : Entity_Id;
8766 Ent2 : Entity_Id;
8767 Err_No : Node_Id;
8768 Unit1 : Node_Id;
8769 Unit2 : Node_Id;
8771 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
8772 -- Return the appropriate entity for determining which unit
8773 -- has a deeper scope: the defining entity for U, unless U
8774 -- is a package instance, in which case we retrieve the
8775 -- entity of the instance spec.
8777 --------------------
8778 -- Entity_Of_Unit --
8779 --------------------
8781 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
8782 begin
8783 if Nkind (U) = N_Package_Instantiation
8784 and then Analyzed (U)
8785 then
8786 return Defining_Entity (Instance_Spec (U));
8787 else
8788 return Defining_Entity (U);
8789 end if;
8790 end Entity_Of_Unit;
8792 -- Start of processing for Use_Clause_Known
8794 begin
8795 -- If both current use type clause and the use type clause
8796 -- for the type are at the compilation unit level, one of
8797 -- the units must be an ancestor of the other, and the
8798 -- warning belongs on the descendant.
8800 if Nkind (Parent (Clause1)) = N_Compilation_Unit
8801 and then
8802 Nkind (Parent (Clause2)) = N_Compilation_Unit
8803 then
8804 -- If the unit is a subprogram body that acts as spec,
8805 -- the context clause is shared with the constructed
8806 -- subprogram spec. Clearly there is no redundancy.
8808 if Clause1 = Clause2 then
8809 return;
8810 end if;
8812 Unit1 := Unit (Parent (Clause1));
8813 Unit2 := Unit (Parent (Clause2));
8815 -- If both clauses are on same unit, or one is the body
8816 -- of the other, or one of them is in a subunit, report
8817 -- redundancy on the later one.
8819 if Unit1 = Unit2 then
8820 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8821 Error_Msg_NE -- CODEFIX
8822 ("& is already use-visible through previous "
8823 & "use_type_clause #??", Clause1, T);
8824 return;
8826 elsif Nkind (Unit1) = N_Subunit then
8827 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8828 Error_Msg_NE -- CODEFIX
8829 ("& is already use-visible through previous "
8830 & "use_type_clause #??", Clause1, T);
8831 return;
8833 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
8834 and then Nkind (Unit1) /= Nkind (Unit2)
8835 and then Nkind (Unit1) /= N_Subunit
8836 then
8837 Error_Msg_Sloc := Sloc (Clause1);
8838 Error_Msg_NE -- CODEFIX
8839 ("& is already use-visible through previous "
8840 & "use_type_clause #??", Current_Use_Clause (T), T);
8841 return;
8842 end if;
8844 -- There is a redundant use type clause in a child unit.
8845 -- Determine which of the units is more deeply nested.
8846 -- If a unit is a package instance, retrieve the entity
8847 -- and its scope from the instance spec.
8849 Ent1 := Entity_Of_Unit (Unit1);
8850 Ent2 := Entity_Of_Unit (Unit2);
8852 if Scope (Ent2) = Standard_Standard then
8853 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8854 Err_No := Clause1;
8856 elsif Scope (Ent1) = Standard_Standard then
8857 Error_Msg_Sloc := Sloc (Id);
8858 Err_No := Clause2;
8860 -- If both units are child units, we determine which one
8861 -- is the descendant by the scope distance to the
8862 -- ultimate parent unit.
8864 else
8865 declare
8866 S1, S2 : Entity_Id;
8868 begin
8869 S1 := Scope (Ent1);
8870 S2 := Scope (Ent2);
8871 while Present (S1)
8872 and then Present (S2)
8873 and then S1 /= Standard_Standard
8874 and then S2 /= Standard_Standard
8875 loop
8876 S1 := Scope (S1);
8877 S2 := Scope (S2);
8878 end loop;
8880 if S1 = Standard_Standard then
8881 Error_Msg_Sloc := Sloc (Id);
8882 Err_No := Clause2;
8883 else
8884 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8885 Err_No := Clause1;
8886 end if;
8887 end;
8888 end if;
8890 Error_Msg_NE -- CODEFIX
8891 ("& is already use-visible through previous "
8892 & "use_type_clause #??", Err_No, Id);
8894 -- Case where current use type clause and the use type
8895 -- clause for the type are not both at the compilation unit
8896 -- level. In this case we don't have location information.
8898 else
8899 Error_Msg_NE -- CODEFIX
8900 ("& is already use-visible through previous "
8901 & "use type clause??", Id, T);
8902 end if;
8903 end Use_Clause_Known;
8905 -- Here if Current_Use_Clause is not set for T, another case
8906 -- where we do not have the location information available.
8908 else
8909 Error_Msg_NE -- CODEFIX
8910 ("& is already use-visible through previous "
8911 & "use type clause??", Id, T);
8912 end if;
8914 -- The package where T is declared is already used
8916 elsif In_Use (Scope (T)) then
8917 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
8918 Error_Msg_NE -- CODEFIX
8919 ("& is already use-visible through package use clause #??",
8920 Id, T);
8922 -- The current scope is the package where T is declared
8924 else
8925 Error_Msg_Node_2 := Scope (T);
8926 Error_Msg_NE -- CODEFIX
8927 ("& is already use-visible inside package &??", Id, T);
8928 end if;
8929 end if;
8930 end Use_One_Type;
8932 ----------------
8933 -- Write_Info --
8934 ----------------
8936 procedure Write_Info is
8937 Id : Entity_Id := First_Entity (Current_Scope);
8939 begin
8940 -- No point in dumping standard entities
8942 if Current_Scope = Standard_Standard then
8943 return;
8944 end if;
8946 Write_Str ("========================================================");
8947 Write_Eol;
8948 Write_Str (" Defined Entities in ");
8949 Write_Name (Chars (Current_Scope));
8950 Write_Eol;
8951 Write_Str ("========================================================");
8952 Write_Eol;
8954 if No (Id) then
8955 Write_Str ("-- none --");
8956 Write_Eol;
8958 else
8959 while Present (Id) loop
8960 Write_Entity_Info (Id, " ");
8961 Next_Entity (Id);
8962 end loop;
8963 end if;
8965 if Scope (Current_Scope) = Standard_Standard then
8967 -- Print information on the current unit itself
8969 Write_Entity_Info (Current_Scope, " ");
8970 end if;
8972 Write_Eol;
8973 end Write_Info;
8975 --------
8976 -- ws --
8977 --------
8979 procedure ws is
8980 S : Entity_Id;
8981 begin
8982 for J in reverse 1 .. Scope_Stack.Last loop
8983 S := Scope_Stack.Table (J).Entity;
8984 Write_Int (Int (S));
8985 Write_Str (" === ");
8986 Write_Name (Chars (S));
8987 Write_Eol;
8988 end loop;
8989 end ws;
8991 --------
8992 -- we --
8993 --------
8995 procedure we (S : Entity_Id) is
8996 E : Entity_Id;
8997 begin
8998 E := First_Entity (S);
8999 while Present (E) loop
9000 Write_Int (Int (E));
9001 Write_Str (" === ");
9002 Write_Name (Chars (E));
9003 Write_Eol;
9004 Next_Entity (E);
9005 end loop;
9006 end we;
9007 end Sem_Ch8;