1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Jason Merrill <jason@cygnus.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
31 #ifndef _Unwind_Find_FDE
34 #include "coretypes.h"
38 #define NO_BASE_OF_ENCODED_VALUE
39 #include "unwind-pe.h"
40 #include "unwind-dw2-fde.h"
44 /* The unseen_objects list contains objects that have been registered
45 but not yet categorized in any way. The seen_objects list has had
46 it's pc_begin and count fields initialized at minimum, and is sorted
47 by decreasing value of pc_begin. */
48 static struct object
*unseen_objects
;
49 static struct object
*seen_objects
;
51 #ifdef __GTHREAD_MUTEX_INIT
52 static __gthread_mutex_t object_mutex
= __GTHREAD_MUTEX_INIT
;
54 static __gthread_mutex_t object_mutex
;
57 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
59 init_object_mutex (void)
61 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex
);
65 init_object_mutex_once (void)
67 static __gthread_once_t once
= __GTHREAD_ONCE_INIT
;
68 __gthread_once (&once
, init_object_mutex
);
71 #define init_object_mutex_once()
74 /* Called from crtbegin.o to register the unwind info for an object. */
77 __register_frame_info_bases (void *begin
, struct object
*ob
,
78 void *tbase
, void *dbase
)
80 /* If .eh_frame is empty, don't register at all. */
81 if (*(uword
*) begin
== 0)
84 ob
->pc_begin
= (void *)-1;
89 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
90 #ifdef DWARF2_OBJECT_END_PTR_EXTENSION
94 init_object_mutex_once ();
95 __gthread_mutex_lock (&object_mutex
);
97 ob
->next
= unseen_objects
;
100 __gthread_mutex_unlock (&object_mutex
);
104 __register_frame_info (void *begin
, struct object
*ob
)
106 __register_frame_info_bases (begin
, ob
, 0, 0);
110 __register_frame (void *begin
)
114 /* If .eh_frame is empty, don't register at all. */
115 if (*(uword
*) begin
== 0)
118 ob
= (struct object
*) malloc (sizeof (struct object
));
119 __register_frame_info (begin
, ob
);
122 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
123 for different translation units. Called from the file generated by
127 __register_frame_info_table_bases (void *begin
, struct object
*ob
,
128 void *tbase
, void *dbase
)
130 ob
->pc_begin
= (void *)-1;
135 ob
->s
.b
.from_array
= 1;
136 ob
->s
.b
.encoding
= DW_EH_PE_omit
;
138 init_object_mutex_once ();
139 __gthread_mutex_lock (&object_mutex
);
141 ob
->next
= unseen_objects
;
144 __gthread_mutex_unlock (&object_mutex
);
148 __register_frame_info_table (void *begin
, struct object
*ob
)
150 __register_frame_info_table_bases (begin
, ob
, 0, 0);
154 __register_frame_table (void *begin
)
156 struct object
*ob
= (struct object
*) malloc (sizeof (struct object
));
157 __register_frame_info_table (begin
, ob
);
160 /* Called from crtbegin.o to deregister the unwind info for an object. */
161 /* ??? Glibc has for a while now exported __register_frame_info and
162 __deregister_frame_info. If we call __register_frame_info_bases
163 from crtbegin (wherein it is declared weak), and this object does
164 not get pulled from libgcc.a for other reasons, then the
165 invocation of __deregister_frame_info will be resolved from glibc.
166 Since the registration did not happen there, we'll abort.
168 Therefore, declare a new deregistration entry point that does the
169 exact same thing, but will resolve to the same library as
170 implements __register_frame_info_bases. */
173 __deregister_frame_info_bases (void *begin
)
176 struct object
*ob
= 0;
178 /* If .eh_frame is empty, we haven't registered. */
179 if (*(uword
*) begin
== 0)
182 init_object_mutex_once ();
183 __gthread_mutex_lock (&object_mutex
);
185 for (p
= &unseen_objects
; *p
; p
= &(*p
)->next
)
186 if ((*p
)->u
.single
== begin
)
193 for (p
= &seen_objects
; *p
; p
= &(*p
)->next
)
194 if ((*p
)->s
.b
.sorted
)
196 if ((*p
)->u
.sort
->orig_data
== begin
)
206 if ((*p
)->u
.single
== begin
)
214 __gthread_mutex_unlock (&object_mutex
);
218 __gthread_mutex_unlock (&object_mutex
);
223 __deregister_frame_info (void *begin
)
225 return __deregister_frame_info_bases (begin
);
229 __deregister_frame (void *begin
)
231 /* If .eh_frame is empty, we haven't registered. */
232 if (*(uword
*) begin
!= 0)
233 free (__deregister_frame_info (begin
));
237 /* Like base_of_encoded_value, but take the base from a struct object
238 instead of an _Unwind_Context. */
241 base_from_object (unsigned char encoding
, struct object
*ob
)
243 if (encoding
== DW_EH_PE_omit
)
246 switch (encoding
& 0x70)
248 case DW_EH_PE_absptr
:
250 case DW_EH_PE_aligned
:
253 case DW_EH_PE_textrel
:
254 return (_Unwind_Ptr
) ob
->tbase
;
255 case DW_EH_PE_datarel
:
256 return (_Unwind_Ptr
) ob
->dbase
;
261 /* Return the FDE pointer encoding from the CIE. */
262 /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
265 get_cie_encoding (struct dwarf_cie
*cie
)
267 const unsigned char *aug
, *p
;
272 aug
= cie
->augmentation
;
274 return DW_EH_PE_absptr
;
276 p
= aug
+ strlen (aug
) + 1; /* Skip the augmentation string. */
277 p
= read_uleb128 (p
, &utmp
); /* Skip code alignment. */
278 p
= read_sleb128 (p
, &stmp
); /* Skip data alignment. */
279 p
++; /* Skip return address column. */
281 aug
++; /* Skip 'z' */
282 p
= read_uleb128 (p
, &utmp
); /* Skip augmentation length. */
285 /* This is what we're looking for. */
288 /* Personality encoding and pointer. */
289 else if (*aug
== 'P')
291 /* ??? Avoid dereferencing indirect pointers, since we're
292 faking the base address. Gotta keep DW_EH_PE_aligned
294 p
= read_encoded_value_with_base (*p
& 0x7F, 0, p
+ 1, &dummy
);
297 else if (*aug
== 'L')
299 /* Otherwise end of string, or unknown augmentation. */
301 return DW_EH_PE_absptr
;
307 get_fde_encoding (struct dwarf_fde
*f
)
309 return get_cie_encoding (get_cie (f
));
313 /* Sorting an array of FDEs by address.
314 (Ideally we would have the linker sort the FDEs so we don't have to do
315 it at run time. But the linkers are not yet prepared for this.) */
317 /* Comparison routines. Three variants of increasing complexity. */
320 fde_unencoded_compare (struct object
*ob
__attribute__((unused
)),
323 _Unwind_Ptr x_ptr
= *(_Unwind_Ptr
*) x
->pc_begin
;
324 _Unwind_Ptr y_ptr
= *(_Unwind_Ptr
*) y
->pc_begin
;
334 fde_single_encoding_compare (struct object
*ob
, fde
*x
, fde
*y
)
336 _Unwind_Ptr base
, x_ptr
, y_ptr
;
338 base
= base_from_object (ob
->s
.b
.encoding
, ob
);
339 read_encoded_value_with_base (ob
->s
.b
.encoding
, base
, x
->pc_begin
, &x_ptr
);
340 read_encoded_value_with_base (ob
->s
.b
.encoding
, base
, y
->pc_begin
, &y_ptr
);
350 fde_mixed_encoding_compare (struct object
*ob
, fde
*x
, fde
*y
)
352 int x_encoding
, y_encoding
;
353 _Unwind_Ptr x_ptr
, y_ptr
;
355 x_encoding
= get_fde_encoding (x
);
356 read_encoded_value_with_base (x_encoding
, base_from_object (x_encoding
, ob
),
357 x
->pc_begin
, &x_ptr
);
359 y_encoding
= get_fde_encoding (y
);
360 read_encoded_value_with_base (y_encoding
, base_from_object (y_encoding
, ob
),
361 y
->pc_begin
, &y_ptr
);
370 typedef int (*fde_compare_t
) (struct object
*, fde
*, fde
*);
373 /* This is a special mix of insertion sort and heap sort, optimized for
374 the data sets that actually occur. They look like
375 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
376 I.e. a linearly increasing sequence (coming from functions in the text
377 section), with additionally a few unordered elements (coming from functions
378 in gnu_linkonce sections) whose values are higher than the values in the
379 surrounding linear sequence (but not necessarily higher than the values
380 at the end of the linear sequence!).
381 The worst-case total run time is O(N) + O(n log (n)), where N is the
382 total number of FDEs and n is the number of erratic ones. */
384 struct fde_accumulator
386 struct fde_vector
*linear
;
387 struct fde_vector
*erratic
;
391 start_fde_sort (struct fde_accumulator
*accu
, size_t count
)
397 size
= sizeof (struct fde_vector
) + sizeof (fde
*) * count
;
398 if ((accu
->linear
= (struct fde_vector
*) malloc (size
)))
400 accu
->linear
->count
= 0;
401 if ((accu
->erratic
= (struct fde_vector
*) malloc (size
)))
402 accu
->erratic
->count
= 0;
410 fde_insert (struct fde_accumulator
*accu
, fde
*this_fde
)
413 accu
->linear
->array
[accu
->linear
->count
++] = this_fde
;
416 /* Split LINEAR into a linear sequence with low values and an erratic
417 sequence with high values, put the linear one (of longest possible
418 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
420 Because the longest linear sequence we are trying to locate within the
421 incoming LINEAR array can be interspersed with (high valued) erratic
422 entries. We construct a chain indicating the sequenced entries.
423 To avoid having to allocate this chain, we overlay it onto the space of
424 the ERRATIC array during construction. A final pass iterates over the
425 chain to determine what should be placed in the ERRATIC array, and
426 what is the linear sequence. This overlay is safe from aliasing. */
429 fde_split (struct object
*ob
, fde_compare_t fde_compare
,
430 struct fde_vector
*linear
, struct fde_vector
*erratic
)
433 size_t count
= linear
->count
;
434 fde
**chain_end
= &marker
;
437 /* This should optimize out, but it is wise to make sure this assumption
438 is correct. Should these have different sizes, we cannot cast between
439 them and the overlaying onto ERRATIC will not work. */
440 if (sizeof (fde
*) != sizeof (fde
**))
443 for (i
= 0; i
< count
; i
++)
447 for (probe
= chain_end
;
448 probe
!= &marker
&& fde_compare (ob
, linear
->array
[i
], *probe
) < 0;
451 chain_end
= (fde
**) erratic
->array
[probe
- linear
->array
];
452 erratic
->array
[probe
- linear
->array
] = NULL
;
454 erratic
->array
[i
] = (fde
*) chain_end
;
455 chain_end
= &linear
->array
[i
];
458 /* Each entry in LINEAR which is part of the linear sequence we have
459 discovered will correspond to a non-NULL entry in the chain we built in
460 the ERRATIC array. */
461 for (i
= j
= k
= 0; i
< count
; i
++)
462 if (erratic
->array
[i
])
463 linear
->array
[j
++] = linear
->array
[i
];
465 erratic
->array
[k
++] = linear
->array
[i
];
470 #define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
472 /* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
473 for the first (root) node; push it down to its rightful place. */
476 frame_downheap (struct object
*ob
, fde_compare_t fde_compare
, fde
**a
,
481 for (i
= lo
, j
= 2*i
+1;
485 if (j
+1 < hi
&& fde_compare (ob
, a
[j
], a
[j
+1]) < 0)
488 if (fde_compare (ob
, a
[i
], a
[j
]) < 0)
498 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
499 use a name that does not conflict. */
502 frame_heapsort (struct object
*ob
, fde_compare_t fde_compare
,
503 struct fde_vector
*erratic
)
505 /* For a description of this algorithm, see:
506 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
508 fde
** a
= erratic
->array
;
509 /* A portion of the array is called a "heap" if for all i>=0:
510 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
511 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
512 size_t n
= erratic
->count
;
515 /* Expand our heap incrementally from the end of the array, heapifying
516 each resulting semi-heap as we go. After each step, a[m] is the top
518 for (m
= n
/2-1; m
>= 0; --m
)
519 frame_downheap (ob
, fde_compare
, a
, m
, n
);
521 /* Shrink our heap incrementally from the end of the array, first
522 swapping out the largest element a[0] and then re-heapifying the
523 resulting semi-heap. After each step, a[0..m) is a heap. */
524 for (m
= n
-1; m
>= 1; --m
)
527 frame_downheap (ob
, fde_compare
, a
, 0, m
);
532 /* Merge V1 and V2, both sorted, and put the result into V1. */
534 fde_merge (struct object
*ob
, fde_compare_t fde_compare
,
535 struct fde_vector
*v1
, struct fde_vector
*v2
)
547 fde2
= v2
->array
[i2
];
548 while (i1
> 0 && fde_compare (ob
, v1
->array
[i1
-1], fde2
) > 0)
550 v1
->array
[i1
+i2
] = v1
->array
[i1
-1];
553 v1
->array
[i1
+i2
] = fde2
;
556 v1
->count
+= v2
->count
;
561 end_fde_sort (struct object
*ob
, struct fde_accumulator
*accu
, size_t count
)
563 fde_compare_t fde_compare
;
565 if (accu
->linear
&& accu
->linear
->count
!= count
)
568 if (ob
->s
.b
.mixed_encoding
)
569 fde_compare
= fde_mixed_encoding_compare
;
570 else if (ob
->s
.b
.encoding
== DW_EH_PE_absptr
)
571 fde_compare
= fde_unencoded_compare
;
573 fde_compare
= fde_single_encoding_compare
;
577 fde_split (ob
, fde_compare
, accu
->linear
, accu
->erratic
);
578 if (accu
->linear
->count
+ accu
->erratic
->count
!= count
)
580 frame_heapsort (ob
, fde_compare
, accu
->erratic
);
581 fde_merge (ob
, fde_compare
, accu
->linear
, accu
->erratic
);
582 free (accu
->erratic
);
586 /* We've not managed to malloc an erratic array,
587 so heap sort in the linear one. */
588 frame_heapsort (ob
, fde_compare
, accu
->linear
);
593 /* Update encoding, mixed_encoding, and pc_begin for OB for the
594 fde array beginning at THIS_FDE. Return the number of fdes
595 encountered along the way. */
598 classify_object_over_fdes (struct object
*ob
, fde
*this_fde
)
600 struct dwarf_cie
*last_cie
= 0;
602 int encoding
= DW_EH_PE_absptr
;
603 _Unwind_Ptr base
= 0;
605 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
607 struct dwarf_cie
*this_cie
;
608 _Unwind_Ptr mask
, pc_begin
;
611 if (this_fde
->CIE_delta
== 0)
614 /* Determine the encoding for this FDE. Note mixed encoded
615 objects for later. */
616 this_cie
= get_cie (this_fde
);
617 if (this_cie
!= last_cie
)
620 encoding
= get_cie_encoding (this_cie
);
621 base
= base_from_object (encoding
, ob
);
622 if (ob
->s
.b
.encoding
== DW_EH_PE_omit
)
623 ob
->s
.b
.encoding
= encoding
;
624 else if (ob
->s
.b
.encoding
!= encoding
)
625 ob
->s
.b
.mixed_encoding
= 1;
628 read_encoded_value_with_base (encoding
, base
, this_fde
->pc_begin
,
631 /* Take care to ignore link-once functions that were removed.
632 In these cases, the function address will be NULL, but if
633 the encoding is smaller than a pointer a true NULL may not
634 be representable. Assume 0 in the representable bits is NULL. */
635 mask
= size_of_encoded_value (encoding
);
636 if (mask
< sizeof (void *))
637 mask
= (1L << (mask
<< 3)) - 1;
641 if ((pc_begin
& mask
) == 0)
645 if ((void *) pc_begin
< ob
->pc_begin
)
646 ob
->pc_begin
= (void *) pc_begin
;
653 add_fdes (struct object
*ob
, struct fde_accumulator
*accu
, fde
*this_fde
)
655 struct dwarf_cie
*last_cie
= 0;
656 int encoding
= ob
->s
.b
.encoding
;
657 _Unwind_Ptr base
= base_from_object (ob
->s
.b
.encoding
, ob
);
659 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
661 struct dwarf_cie
*this_cie
;
664 if (this_fde
->CIE_delta
== 0)
667 if (ob
->s
.b
.mixed_encoding
)
669 /* Determine the encoding for this FDE. Note mixed encoded
670 objects for later. */
671 this_cie
= get_cie (this_fde
);
672 if (this_cie
!= last_cie
)
675 encoding
= get_cie_encoding (this_cie
);
676 base
= base_from_object (encoding
, ob
);
680 if (encoding
== DW_EH_PE_absptr
)
682 if (*(_Unwind_Ptr
*) this_fde
->pc_begin
== 0)
687 _Unwind_Ptr pc_begin
, mask
;
689 read_encoded_value_with_base (encoding
, base
, this_fde
->pc_begin
,
692 /* Take care to ignore link-once functions that were removed.
693 In these cases, the function address will be NULL, but if
694 the encoding is smaller than a pointer a true NULL may not
695 be representable. Assume 0 in the representable bits is NULL. */
696 mask
= size_of_encoded_value (encoding
);
697 if (mask
< sizeof (void *))
698 mask
= (1L << (mask
<< 3)) - 1;
702 if ((pc_begin
& mask
) == 0)
706 fde_insert (accu
, this_fde
);
710 /* Set up a sorted array of pointers to FDEs for a loaded object. We
711 count up the entries before allocating the array because it's likely to
712 be faster. We can be called multiple times, should we have failed to
713 allocate a sorted fde array on a previous occasion. */
716 init_object (struct object
* ob
)
718 struct fde_accumulator accu
;
721 count
= ob
->s
.b
.count
;
724 if (ob
->s
.b
.from_array
)
726 fde
**p
= ob
->u
.array
;
727 for (count
= 0; *p
; ++p
)
728 count
+= classify_object_over_fdes (ob
, *p
);
731 count
= classify_object_over_fdes (ob
, ob
->u
.single
);
733 /* The count field we have in the main struct object is somewhat
734 limited, but should suffice for virtually all cases. If the
735 counted value doesn't fit, re-write a zero. The worst that
736 happens is that we re-count next time -- admittedly non-trivial
737 in that this implies some 2M fdes, but at least we function. */
738 ob
->s
.b
.count
= count
;
739 if (ob
->s
.b
.count
!= count
)
743 if (!start_fde_sort (&accu
, count
))
746 if (ob
->s
.b
.from_array
)
749 for (p
= ob
->u
.array
; *p
; ++p
)
750 add_fdes (ob
, &accu
, *p
);
753 add_fdes (ob
, &accu
, ob
->u
.single
);
755 end_fde_sort (ob
, &accu
, count
);
757 /* Save the original fde pointer, since this is the key by which the
758 DSO will deregister the object. */
759 accu
.linear
->orig_data
= ob
->u
.single
;
760 ob
->u
.sort
= accu
.linear
;
765 /* A linear search through a set of FDEs for the given PC. This is
766 used when there was insufficient memory to allocate and sort an
770 linear_search_fdes (struct object
*ob
, fde
*this_fde
, void *pc
)
772 struct dwarf_cie
*last_cie
= 0;
773 int encoding
= ob
->s
.b
.encoding
;
774 _Unwind_Ptr base
= base_from_object (ob
->s
.b
.encoding
, ob
);
776 for (; ! last_fde (ob
, this_fde
); this_fde
= next_fde (this_fde
))
778 struct dwarf_cie
*this_cie
;
779 _Unwind_Ptr pc_begin
, pc_range
;
782 if (this_fde
->CIE_delta
== 0)
785 if (ob
->s
.b
.mixed_encoding
)
787 /* Determine the encoding for this FDE. Note mixed encoded
788 objects for later. */
789 this_cie
= get_cie (this_fde
);
790 if (this_cie
!= last_cie
)
793 encoding
= get_cie_encoding (this_cie
);
794 base
= base_from_object (encoding
, ob
);
798 if (encoding
== DW_EH_PE_absptr
)
800 pc_begin
= ((_Unwind_Ptr
*) this_fde
->pc_begin
)[0];
801 pc_range
= ((_Unwind_Ptr
*) this_fde
->pc_begin
)[1];
810 p
= read_encoded_value_with_base (encoding
, base
,
811 this_fde
->pc_begin
, &pc_begin
);
812 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
814 /* Take care to ignore link-once functions that were removed.
815 In these cases, the function address will be NULL, but if
816 the encoding is smaller than a pointer a true NULL may not
817 be representable. Assume 0 in the representable bits is NULL. */
818 mask
= size_of_encoded_value (encoding
);
819 if (mask
< sizeof (void *))
820 mask
= (1L << (mask
<< 3)) - 1;
824 if ((pc_begin
& mask
) == 0)
828 if ((_Unwind_Ptr
) pc
- pc_begin
< pc_range
)
835 /* Binary search for an FDE containing the given PC. Here are three
836 implementations of increasing complexity. */
839 binary_search_unencoded_fdes (struct object
*ob
, void *pc
)
841 struct fde_vector
*vec
= ob
->u
.sort
;
844 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
846 size_t i
= (lo
+ hi
) / 2;
847 fde
*f
= vec
->array
[i
];
851 pc_begin
= ((void **) f
->pc_begin
)[0];
852 pc_range
= ((uaddr
*) f
->pc_begin
)[1];
856 else if (pc
>= pc_begin
+ pc_range
)
866 binary_search_single_encoding_fdes (struct object
*ob
, void *pc
)
868 struct fde_vector
*vec
= ob
->u
.sort
;
869 int encoding
= ob
->s
.b
.encoding
;
870 _Unwind_Ptr base
= base_from_object (encoding
, ob
);
873 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
875 size_t i
= (lo
+ hi
) / 2;
876 fde
*f
= vec
->array
[i
];
877 _Unwind_Ptr pc_begin
, pc_range
;
880 p
= read_encoded_value_with_base (encoding
, base
, f
->pc_begin
,
882 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
884 if ((_Unwind_Ptr
) pc
< pc_begin
)
886 else if ((_Unwind_Ptr
) pc
>= pc_begin
+ pc_range
)
896 binary_search_mixed_encoding_fdes (struct object
*ob
, void *pc
)
898 struct fde_vector
*vec
= ob
->u
.sort
;
901 for (lo
= 0, hi
= vec
->count
; lo
< hi
; )
903 size_t i
= (lo
+ hi
) / 2;
904 fde
*f
= vec
->array
[i
];
905 _Unwind_Ptr pc_begin
, pc_range
;
909 encoding
= get_fde_encoding (f
);
910 p
= read_encoded_value_with_base (encoding
,
911 base_from_object (encoding
, ob
),
912 f
->pc_begin
, &pc_begin
);
913 read_encoded_value_with_base (encoding
& 0x0F, 0, p
, &pc_range
);
915 if ((_Unwind_Ptr
) pc
< pc_begin
)
917 else if ((_Unwind_Ptr
) pc
>= pc_begin
+ pc_range
)
927 search_object (struct object
* ob
, void *pc
)
929 /* If the data hasn't been sorted, try to do this now. We may have
930 more memory available than last time we tried. */
931 if (! ob
->s
.b
.sorted
)
935 /* Despite the above comment, the normal reason to get here is
936 that we've not processed this object before. A quick range
937 check is in order. */
938 if (pc
< ob
->pc_begin
)
944 if (ob
->s
.b
.mixed_encoding
)
945 return binary_search_mixed_encoding_fdes (ob
, pc
);
946 else if (ob
->s
.b
.encoding
== DW_EH_PE_absptr
)
947 return binary_search_unencoded_fdes (ob
, pc
);
949 return binary_search_single_encoding_fdes (ob
, pc
);
953 /* Long slow labourious linear search, cos we've no memory. */
954 if (ob
->s
.b
.from_array
)
957 for (p
= ob
->u
.array
; *p
; p
++)
959 fde
*f
= linear_search_fdes (ob
, *p
, pc
);
966 return linear_search_fdes (ob
, ob
->u
.single
, pc
);
971 _Unwind_Find_FDE (void *pc
, struct dwarf_eh_bases
*bases
)
976 init_object_mutex_once ();
977 __gthread_mutex_lock (&object_mutex
);
979 /* Linear search through the classified objects, to find the one
980 containing the pc. Note that pc_begin is sorted descending, and
981 we expect objects to be non-overlapping. */
982 for (ob
= seen_objects
; ob
; ob
= ob
->next
)
983 if (pc
>= ob
->pc_begin
)
985 f
= search_object (ob
, pc
);
991 /* Classify and search the objects we've not yet processed. */
992 while ((ob
= unseen_objects
))
996 unseen_objects
= ob
->next
;
997 f
= search_object (ob
, pc
);
999 /* Insert the object into the classified list. */
1000 for (p
= &seen_objects
; *p
; p
= &(*p
)->next
)
1001 if ((*p
)->pc_begin
< ob
->pc_begin
)
1011 __gthread_mutex_unlock (&object_mutex
);
1017 bases
->tbase
= ob
->tbase
;
1018 bases
->dbase
= ob
->dbase
;
1020 encoding
= ob
->s
.b
.encoding
;
1021 if (ob
->s
.b
.mixed_encoding
)
1022 encoding
= get_fde_encoding (f
);
1023 read_encoded_value_with_base (encoding
, base_from_object (encoding
, ob
),
1024 f
->pc_begin
, (_Unwind_Ptr
*)&bases
->func
);