2009-07-17 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / config / pa / pa.h
blob3b0ddeda64aea2fa134568cb8872efd674d7bc2c
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
6 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
7 Software Science at the University of Utah.
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
25 /* For long call handling. */
26 extern unsigned long total_code_bytes;
28 /* Which processor to schedule for. */
30 enum processor_type
32 PROCESSOR_700,
33 PROCESSOR_7100,
34 PROCESSOR_7100LC,
35 PROCESSOR_7200,
36 PROCESSOR_7300,
37 PROCESSOR_8000
40 /* For -mschedule= option. */
41 extern enum processor_type pa_cpu;
43 /* For -munix= option. */
44 extern int flag_pa_unix;
46 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
48 /* Print subsidiary information on the compiler version in use. */
50 #define TARGET_VERSION fputs (" (hppa)", stderr);
52 #define TARGET_PA_10 (!TARGET_PA_11 && !TARGET_PA_20)
54 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
55 #ifndef TARGET_64BIT
56 #define TARGET_64BIT 0
57 #endif
59 /* Generate code for ELF32 ABI. */
60 #ifndef TARGET_ELF32
61 #define TARGET_ELF32 0
62 #endif
64 /* Generate code for SOM 32bit ABI. */
65 #ifndef TARGET_SOM
66 #define TARGET_SOM 0
67 #endif
69 /* HP-UX UNIX features. */
70 #ifndef TARGET_HPUX
71 #define TARGET_HPUX 0
72 #endif
74 /* HP-UX 10.10 UNIX 95 features. */
75 #ifndef TARGET_HPUX_10_10
76 #define TARGET_HPUX_10_10 0
77 #endif
79 /* HP-UX 11.* features (11.00, 11.11, 11.23, etc.) */
80 #ifndef TARGET_HPUX_11
81 #define TARGET_HPUX_11 0
82 #endif
84 /* HP-UX 11i multibyte and UNIX 98 extensions. */
85 #ifndef TARGET_HPUX_11_11
86 #define TARGET_HPUX_11_11 0
87 #endif
89 /* The following three defines are potential target switches. The current
90 defines are optimal given the current capabilities of GAS and GNU ld. */
92 /* Define to a C expression evaluating to true to use long absolute calls.
93 Currently, only the HP assembler and SOM linker support long absolute
94 calls. They are used only in non-pic code. */
95 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
97 /* Define to a C expression evaluating to true to use long PIC symbol
98 difference calls. Long PIC symbol difference calls are only used with
99 the HP assembler and linker. The HP assembler detects this instruction
100 sequence and treats it as long pc-relative call. Currently, GAS only
101 allows a difference of two symbols in the same subspace, and it doesn't
102 detect the sequence as a pc-relative call. */
103 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS && TARGET_HPUX)
105 /* Define to a C expression evaluating to true to use long PIC
106 pc-relative calls. Long PIC pc-relative calls are only used with
107 GAS. Currently, they are usable for calls which bind local to a
108 module but not for external calls. */
109 #define TARGET_LONG_PIC_PCREL_CALL 0
111 /* Define to a C expression evaluating to true to use SOM secondary
112 definition symbols for weak support. Linker support for secondary
113 definition symbols is buggy prior to HP-UX 11.X. */
114 #define TARGET_SOM_SDEF 0
116 /* Define to a C expression evaluating to true to save the entry value
117 of SP in the current frame marker. This is normally unnecessary.
118 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
119 HP compilers don't use this flag but it is supported by the assembler.
120 We set this flag to indicate that register %r3 has been saved at the
121 start of the frame. Thus, when the HP unwind library is used, we
122 need to generate additional code to save SP into the frame marker. */
123 #define TARGET_HPUX_UNWIND_LIBRARY 0
125 #ifndef TARGET_DEFAULT
126 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
127 #endif
129 #ifndef TARGET_CPU_DEFAULT
130 #define TARGET_CPU_DEFAULT 0
131 #endif
133 #ifndef TARGET_SCHED_DEFAULT
134 #define TARGET_SCHED_DEFAULT PROCESSOR_8000
135 #endif
137 /* Support for a compile-time default CPU, et cetera. The rules are:
138 --with-schedule is ignored if -mschedule is specified.
139 --with-arch is ignored if -march is specified. */
140 #define OPTION_DEFAULT_SPECS \
141 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
142 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
144 /* Specify the dialect of assembler to use. New mnemonics is dialect one
145 and the old mnemonics are dialect zero. */
146 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
148 #define OVERRIDE_OPTIONS override_options ()
150 /* Override some settings from dbxelf.h. */
152 /* We do not have to be compatible with dbx, so we enable gdb extensions
153 by default. */
154 #define DEFAULT_GDB_EXTENSIONS 1
156 /* This used to be zero (no max length), but big enums and such can
157 cause huge strings which killed gas.
159 We also have to avoid lossage in dbxout.c -- it does not compute the
160 string size accurately, so we are real conservative here. */
161 #undef DBX_CONTIN_LENGTH
162 #define DBX_CONTIN_LENGTH 3000
164 /* GDB always assumes the current function's frame begins at the value
165 of the stack pointer upon entry to the current function. Accessing
166 local variables and parameters passed on the stack is done using the
167 base of the frame + an offset provided by GCC.
169 For functions which have frame pointers this method works fine;
170 the (frame pointer) == (stack pointer at function entry) and GCC provides
171 an offset relative to the frame pointer.
173 This loses for functions without a frame pointer; GCC provides an offset
174 which is relative to the stack pointer after adjusting for the function's
175 frame size. GDB would prefer the offset to be relative to the value of
176 the stack pointer at the function's entry. Yuk! */
177 #define DEBUGGER_AUTO_OFFSET(X) \
178 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
179 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
181 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
182 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
183 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
185 #define TARGET_CPU_CPP_BUILTINS() \
186 do { \
187 builtin_assert("cpu=hppa"); \
188 builtin_assert("machine=hppa"); \
189 builtin_define("__hppa"); \
190 builtin_define("__hppa__"); \
191 if (TARGET_PA_20) \
192 builtin_define("_PA_RISC2_0"); \
193 else if (TARGET_PA_11) \
194 builtin_define("_PA_RISC1_1"); \
195 else \
196 builtin_define("_PA_RISC1_0"); \
197 } while (0)
199 /* An old set of OS defines for various BSD-like systems. */
200 #define TARGET_OS_CPP_BUILTINS() \
201 do \
203 builtin_define_std ("REVARGV"); \
204 builtin_define_std ("hp800"); \
205 builtin_define_std ("hp9000"); \
206 builtin_define_std ("hp9k8"); \
207 if (!c_dialect_cxx () && !flag_iso) \
208 builtin_define ("hppa"); \
209 builtin_define_std ("spectrum"); \
210 builtin_define_std ("unix"); \
211 builtin_assert ("system=bsd"); \
212 builtin_assert ("system=unix"); \
214 while (0)
216 #define CC1_SPEC "%{pg:} %{p:}"
218 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
220 /* We don't want -lg. */
221 #ifndef LIB_SPEC
222 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
223 #endif
225 /* This macro defines command-line switches that modify the default
226 target name.
228 The definition is be an initializer for an array of structures. Each
229 array element has have three elements: the switch name, one of the
230 enumeration codes ADD or DELETE to indicate whether the string should be
231 inserted or deleted, and the string to be inserted or deleted. */
232 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
234 /* Make gcc agree with <machine/ansi.h> */
236 #define SIZE_TYPE "unsigned int"
237 #define PTRDIFF_TYPE "int"
238 #define WCHAR_TYPE "unsigned int"
239 #define WCHAR_TYPE_SIZE 32
241 /* Show we can debug even without a frame pointer. */
242 #define CAN_DEBUG_WITHOUT_FP
244 /* target machine storage layout */
245 typedef struct GTY(()) machine_function
247 /* Flag indicating that a .NSUBSPA directive has been output for
248 this function. */
249 int in_nsubspa;
250 } machine_function;
252 /* Define this macro if it is advisable to hold scalars in registers
253 in a wider mode than that declared by the program. In such cases,
254 the value is constrained to be within the bounds of the declared
255 type, but kept valid in the wider mode. The signedness of the
256 extension may differ from that of the type. */
258 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
259 if (GET_MODE_CLASS (MODE) == MODE_INT \
260 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
261 (MODE) = word_mode;
263 /* Define this if most significant bit is lowest numbered
264 in instructions that operate on numbered bit-fields. */
265 #define BITS_BIG_ENDIAN 1
267 /* Define this if most significant byte of a word is the lowest numbered. */
268 /* That is true on the HP-PA. */
269 #define BYTES_BIG_ENDIAN 1
271 /* Define this if most significant word of a multiword number is lowest
272 numbered. */
273 #define WORDS_BIG_ENDIAN 1
275 #define MAX_BITS_PER_WORD 64
277 /* Width of a word, in units (bytes). */
278 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
280 /* Minimum number of units in a word. If this is undefined, the default
281 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
282 smallest value that UNITS_PER_WORD can have at run-time.
284 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
285 building of various TImode routines in libgcc. The HP runtime
286 specification doesn't provide the alignment requirements and calling
287 conventions for TImode variables. */
288 #define MIN_UNITS_PER_WORD 4
290 /* The widest floating point format supported by the hardware. Note that
291 setting this influences some Ada floating point type sizes, currently
292 required for GNAT to operate properly. */
293 #define WIDEST_HARDWARE_FP_SIZE 64
295 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
296 #define PARM_BOUNDARY BITS_PER_WORD
298 /* Largest alignment required for any stack parameter, in bits.
299 Don't define this if it is equal to PARM_BOUNDARY */
300 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
302 /* Boundary (in *bits*) on which stack pointer is always aligned;
303 certain optimizations in combine depend on this.
305 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
306 the stack on the 32 and 64-bit ports, respectively. However, we
307 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
308 in main. Thus, we treat the former as the preferred alignment. */
309 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
310 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
312 /* Allocation boundary (in *bits*) for the code of a function. */
313 #define FUNCTION_BOUNDARY BITS_PER_WORD
315 /* Alignment of field after `int : 0' in a structure. */
316 #define EMPTY_FIELD_BOUNDARY 32
318 /* Every structure's size must be a multiple of this. */
319 #define STRUCTURE_SIZE_BOUNDARY 8
321 /* A bit-field declared as `int' forces `int' alignment for the struct. */
322 #define PCC_BITFIELD_TYPE_MATTERS 1
324 /* No data type wants to be aligned rounder than this. */
325 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
327 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
328 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
329 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
331 /* Make arrays of chars word-aligned for the same reasons. */
332 #define DATA_ALIGNMENT(TYPE, ALIGN) \
333 (TREE_CODE (TYPE) == ARRAY_TYPE \
334 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
335 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
337 /* Set this nonzero if move instructions will actually fail to work
338 when given unaligned data. */
339 #define STRICT_ALIGNMENT 1
341 /* Value is 1 if it is a good idea to tie two pseudo registers
342 when one has mode MODE1 and one has mode MODE2.
343 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
344 for any hard reg, then this must be 0 for correct output. */
345 #define MODES_TIEABLE_P(MODE1, MODE2) \
346 pa_modes_tieable_p (MODE1, MODE2)
348 /* Specify the registers used for certain standard purposes.
349 The values of these macros are register numbers. */
351 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
352 /* #define PC_REGNUM */
354 /* Register to use for pushing function arguments. */
355 #define STACK_POINTER_REGNUM 30
357 /* Base register for access to local variables of the function. */
358 #define FRAME_POINTER_REGNUM 3
360 /* Don't allow hard registers to be renamed into r2 unless r2
361 is already live or already being saved (due to eh). */
363 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
364 ((NEW_REG) != 2 || df_regs_ever_live_p (2) || crtl->calls_eh_return)
366 /* C statement to store the difference between the frame pointer
367 and the stack pointer values immediately after the function prologue.
369 Note, we always pretend that this is a leaf function because if
370 it's not, there's no point in trying to eliminate the
371 frame pointer. If it is a leaf function, we guessed right! */
372 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
373 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
375 /* Base register for access to arguments of the function. */
376 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
378 /* Register in which static-chain is passed to a function. */
379 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
381 /* Register used to address the offset table for position-independent
382 data references. */
383 #define PIC_OFFSET_TABLE_REGNUM \
384 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
386 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
388 /* Function to return the rtx used to save the pic offset table register
389 across function calls. */
390 extern struct rtx_def *hppa_pic_save_rtx (void);
392 #define DEFAULT_PCC_STRUCT_RETURN 0
394 /* Register in which address to store a structure value
395 is passed to a function. */
396 #define PA_STRUCT_VALUE_REGNUM 28
398 /* Describe how we implement __builtin_eh_return. */
399 #define EH_RETURN_DATA_REGNO(N) \
400 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
401 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
402 #define EH_RETURN_HANDLER_RTX pa_eh_return_handler_rtx ()
404 /* Offset from the frame pointer register value to the top of stack. */
405 #define FRAME_POINTER_CFA_OFFSET(FNDECL) 0
407 /* A C expression whose value is RTL representing the location of the
408 incoming return address at the beginning of any function, before the
409 prologue. You only need to define this macro if you want to support
410 call frame debugging information like that provided by DWARF 2. */
411 #define INCOMING_RETURN_ADDR_RTX (gen_rtx_REG (word_mode, 2))
412 #define DWARF_FRAME_RETURN_COLUMN (DWARF_FRAME_REGNUM (2))
414 /* A C expression whose value is an integer giving a DWARF 2 column
415 number that may be used as an alternate return column. This should
416 be defined only if DWARF_FRAME_RETURN_COLUMN is set to a general
417 register, but an alternate column needs to be used for signal frames.
419 Column 0 is not used but unfortunately its register size is set to
420 4 bytes (sizeof CCmode) so it can't be used on 64-bit targets. */
421 #define DWARF_ALT_FRAME_RETURN_COLUMN FIRST_PSEUDO_REGISTER
423 /* This macro chooses the encoding of pointers embedded in the exception
424 handling sections. If at all possible, this should be defined such
425 that the exception handling section will not require dynamic relocations,
426 and so may be read-only.
428 Because the HP assembler auto aligns, it is necessary to use
429 DW_EH_PE_aligned. It's not possible to make the data read-only
430 on the HP-UX SOM port since the linker requires fixups for label
431 differences in different sections to be word aligned. However,
432 the SOM linker can do unaligned fixups for absolute pointers.
433 We also need aligned pointers for global and function pointers.
435 Although the HP-UX 64-bit ELF linker can handle unaligned pc-relative
436 fixups, the runtime doesn't have a consistent relationship between
437 text and data for dynamically loaded objects. Thus, it's not possible
438 to use pc-relative encoding for pointers on this target. It may be
439 possible to use segment relative encodings but GAS doesn't currently
440 have a mechanism to generate these encodings. For other targets, we
441 use pc-relative encoding for pointers. If the pointer might require
442 dynamic relocation, we make it indirect. */
443 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE,GLOBAL) \
444 (TARGET_GAS && !TARGET_HPUX \
445 ? (DW_EH_PE_pcrel \
446 | ((GLOBAL) || (CODE) == 2 ? DW_EH_PE_indirect : 0) \
447 | (TARGET_64BIT ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)) \
448 : (!TARGET_GAS || (GLOBAL) || (CODE) == 2 \
449 ? DW_EH_PE_aligned : DW_EH_PE_absptr))
451 /* Handle special EH pointer encodings. Absolute, pc-relative, and
452 indirect are handled automatically. We output pc-relative, and
453 indirect pc-relative ourself since we need some special magic to
454 generate pc-relative relocations, and to handle indirect function
455 pointers. */
456 #define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
457 do { \
458 if (((ENCODING) & 0x70) == DW_EH_PE_pcrel) \
460 fputs (integer_asm_op (SIZE, FALSE), FILE); \
461 if ((ENCODING) & DW_EH_PE_indirect) \
462 output_addr_const (FILE, get_deferred_plabel (ADDR)); \
463 else \
464 assemble_name (FILE, XSTR ((ADDR), 0)); \
465 fputs ("+8-$PIC_pcrel$0", FILE); \
466 goto DONE; \
468 } while (0)
471 /* The class value for index registers, and the one for base regs. */
472 #define INDEX_REG_CLASS GENERAL_REGS
473 #define BASE_REG_CLASS GENERAL_REGS
475 #define FP_REG_CLASS_P(CLASS) \
476 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
478 /* True if register is floating-point. */
479 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
481 /* Given an rtx X being reloaded into a reg required to be
482 in class CLASS, return the class of reg to actually use.
483 In general this is just CLASS; but on some machines
484 in some cases it is preferable to use a more restrictive class. */
485 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
487 #define MAYBE_FP_REG_CLASS_P(CLASS) \
488 reg_classes_intersect_p ((CLASS), FP_REGS)
491 /* Stack layout; function entry, exit and calling. */
493 /* Define this if pushing a word on the stack
494 makes the stack pointer a smaller address. */
495 /* #define STACK_GROWS_DOWNWARD */
497 /* Believe it or not. */
498 #define ARGS_GROW_DOWNWARD
500 /* Define this to nonzero if the nominal address of the stack frame
501 is at the high-address end of the local variables;
502 that is, each additional local variable allocated
503 goes at a more negative offset in the frame. */
504 #define FRAME_GROWS_DOWNWARD 0
506 /* Offset within stack frame to start allocating local variables at.
507 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
508 first local allocated. Otherwise, it is the offset to the BEGINNING
509 of the first local allocated.
511 On the 32-bit ports, we reserve one slot for the previous frame
512 pointer and one fill slot. The fill slot is for compatibility
513 with HP compiled programs. On the 64-bit ports, we reserve one
514 slot for the previous frame pointer. */
515 #define STARTING_FRAME_OFFSET 8
517 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
518 of the stack. The default is to align it to STACK_BOUNDARY. */
519 #define STACK_ALIGNMENT_NEEDED 0
521 /* If we generate an insn to push BYTES bytes,
522 this says how many the stack pointer really advances by.
523 On the HP-PA, don't define this because there are no push insns. */
524 /* #define PUSH_ROUNDING(BYTES) */
526 /* Offset of first parameter from the argument pointer register value.
527 This value will be negated because the arguments grow down.
528 Also note that on STACK_GROWS_UPWARD machines (such as this one)
529 this is the distance from the frame pointer to the end of the first
530 argument, not it's beginning. To get the real offset of the first
531 argument, the size of the argument must be added. */
533 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
535 /* When a parameter is passed in a register, stack space is still
536 allocated for it. */
537 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
539 /* Define this if the above stack space is to be considered part of the
540 space allocated by the caller. */
541 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
543 /* Keep the stack pointer constant throughout the function.
544 This is both an optimization and a necessity: longjmp
545 doesn't behave itself when the stack pointer moves within
546 the function! */
547 #define ACCUMULATE_OUTGOING_ARGS 1
549 /* The weird HPPA calling conventions require a minimum of 48 bytes on
550 the stack: 16 bytes for register saves, and 32 bytes for magic.
551 This is the difference between the logical top of stack and the
552 actual sp.
554 On the 64-bit port, the HP C compiler allocates a 48-byte frame
555 marker, although the runtime documentation only describes a 16
556 byte marker. For compatibility, we allocate 48 bytes. */
557 #define STACK_POINTER_OFFSET \
558 (TARGET_64BIT ? -(crtl->outgoing_args_size + 48): -32)
560 #define STACK_DYNAMIC_OFFSET(FNDECL) \
561 (TARGET_64BIT \
562 ? (STACK_POINTER_OFFSET) \
563 : ((STACK_POINTER_OFFSET) - crtl->outgoing_args_size))
565 /* Value is 1 if returning from a function call automatically
566 pops the arguments described by the number-of-args field in the call.
567 FUNDECL is the declaration node of the function (as a tree),
568 FUNTYPE is the data type of the function (as a tree),
569 or for a library call it is an identifier node for the subroutine name. */
571 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
573 /* Define how to find the value returned by a function.
574 VALTYPE is the data type of the value (as a tree).
575 If the precise function being called is known, FUNC is its FUNCTION_DECL;
576 otherwise, FUNC is 0. */
578 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
580 /* Define how to find the value returned by a library function
581 assuming the value has mode MODE. */
583 #define LIBCALL_VALUE(MODE) \
584 gen_rtx_REG (MODE, \
585 (! TARGET_SOFT_FLOAT \
586 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
588 /* 1 if N is a possible register number for a function value
589 as seen by the caller. */
591 #define FUNCTION_VALUE_REGNO_P(N) \
592 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
595 /* Define a data type for recording info about an argument list
596 during the scan of that argument list. This data type should
597 hold all necessary information about the function itself
598 and about the args processed so far, enough to enable macros
599 such as FUNCTION_ARG to determine where the next arg should go.
601 On the HP-PA, the WORDS field holds the number of words
602 of arguments scanned so far (including the invisible argument,
603 if any, which holds the structure-value-address). Thus, 4 or
604 more means all following args should go on the stack.
606 The INCOMING field tracks whether this is an "incoming" or
607 "outgoing" argument.
609 The INDIRECT field indicates whether this is is an indirect
610 call or not.
612 The NARGS_PROTOTYPE field indicates that an argument does not
613 have a prototype when it less than or equal to 0. */
615 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
617 #define CUMULATIVE_ARGS struct hppa_args
619 /* Initialize a variable CUM of type CUMULATIVE_ARGS
620 for a call to a function whose data type is FNTYPE.
621 For a library call, FNTYPE is 0. */
623 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
624 (CUM).words = 0, \
625 (CUM).incoming = 0, \
626 (CUM).indirect = (FNTYPE) && !(FNDECL), \
627 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
628 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
629 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
630 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
631 : 0)
635 /* Similar, but when scanning the definition of a procedure. We always
636 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
638 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
639 (CUM).words = 0, \
640 (CUM).incoming = 1, \
641 (CUM).indirect = 0, \
642 (CUM).nargs_prototype = 1000
644 /* Figure out the size in words of the function argument. The size
645 returned by this macro should always be greater than zero because
646 we pass variable and zero sized objects by reference. */
648 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
649 ((((MODE) != BLKmode \
650 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
651 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
653 /* Update the data in CUM to advance over an argument
654 of mode MODE and data type TYPE.
655 (TYPE is null for libcalls where that information may not be available.) */
657 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
658 { (CUM).nargs_prototype--; \
659 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
660 + (((CUM).words & 01) && (TYPE) != 0 \
661 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
664 /* Determine where to put an argument to a function.
665 Value is zero to push the argument on the stack,
666 or a hard register in which to store the argument.
668 MODE is the argument's machine mode.
669 TYPE is the data type of the argument (as a tree).
670 This is null for libcalls where that information may
671 not be available.
672 CUM is a variable of type CUMULATIVE_ARGS which gives info about
673 the preceding args and about the function being called.
674 NAMED is nonzero if this argument is a named parameter
675 (otherwise it is an extra parameter matching an ellipsis).
677 On the HP-PA the first four words of args are normally in registers
678 and the rest are pushed. But any arg that won't entirely fit in regs
679 is pushed.
681 Arguments passed in registers are either 1 or 2 words long.
683 The caller must make a distinction between calls to explicitly named
684 functions and calls through pointers to functions -- the conventions
685 are different! Calls through pointers to functions only use general
686 registers for the first four argument words.
688 Of course all this is different for the portable runtime model
689 HP wants everyone to use for ELF. Ugh. Here's a quick description
690 of how it's supposed to work.
692 1) callee side remains unchanged. It expects integer args to be
693 in the integer registers, float args in the float registers and
694 unnamed args in integer registers.
696 2) caller side now depends on if the function being called has
697 a prototype in scope (rather than if it's being called indirectly).
699 2a) If there is a prototype in scope, then arguments are passed
700 according to their type (ints in integer registers, floats in float
701 registers, unnamed args in integer registers.
703 2b) If there is no prototype in scope, then floating point arguments
704 are passed in both integer and float registers. egad.
706 FYI: The portable parameter passing conventions are almost exactly like
707 the standard parameter passing conventions on the RS6000. That's why
708 you'll see lots of similar code in rs6000.h. */
710 /* If defined, a C expression which determines whether, and in which
711 direction, to pad out an argument with extra space. */
712 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
714 /* Specify padding for the last element of a block move between registers
715 and memory.
717 The 64-bit runtime specifies that objects need to be left justified
718 (i.e., the normal justification for a big endian target). The 32-bit
719 runtime specifies right justification for objects smaller than 64 bits.
720 We use a DImode register in the parallel for 5 to 7 byte structures
721 so that there is only one element. This allows the object to be
722 correctly padded. */
723 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
724 function_arg_padding ((MODE), (TYPE))
726 /* Do not expect to understand this without reading it several times. I'm
727 tempted to try and simply it, but I worry about breaking something. */
729 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
730 function_arg (&CUM, MODE, TYPE, NAMED)
732 /* If defined, a C expression that gives the alignment boundary, in
733 bits, of an argument with the specified mode and type. If it is
734 not defined, `PARM_BOUNDARY' is used for all arguments. */
736 /* Arguments larger than one word are double word aligned. */
738 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
739 (((TYPE) \
740 ? (integer_zerop (TYPE_SIZE (TYPE)) \
741 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
742 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
743 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
744 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
747 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
748 as assembly via FUNCTION_PROFILER. Just output a local label.
749 We can't use the function label because the GAS SOM target can't
750 handle the difference of a global symbol and a local symbol. */
752 #ifndef FUNC_BEGIN_PROLOG_LABEL
753 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
754 #endif
756 #define FUNCTION_PROFILER(FILE, LABEL) \
757 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
759 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
760 void hppa_profile_hook (int label_no);
762 /* The profile counter if emitted must come before the prologue. */
763 #define PROFILE_BEFORE_PROLOGUE 1
765 /* We never want final.c to emit profile counters. When profile
766 counters are required, we have to defer emitting them to the end
767 of the current file. */
768 #define NO_PROFILE_COUNTERS 1
770 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
771 the stack pointer does not matter. The value is tested only in
772 functions that have frame pointers.
773 No definition is equivalent to always zero. */
775 extern int may_call_alloca;
777 #define EXIT_IGNORE_STACK \
778 (get_frame_size () != 0 \
779 || cfun->calls_alloca || crtl->outgoing_args_size)
781 /* Output assembler code for a block containing the constant parts
782 of a trampoline, leaving space for the variable parts.\
784 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
785 and then branches to the specified routine.
787 This code template is copied from text segment to stack location
788 and then patched with INITIALIZE_TRAMPOLINE to contain
789 valid values, and then entered as a subroutine.
791 It is best to keep this as small as possible to avoid having to
792 flush multiple lines in the cache. */
794 #define TRAMPOLINE_TEMPLATE(FILE) \
796 if (!TARGET_64BIT) \
798 fputs ("\tldw 36(%r22),%r21\n", FILE); \
799 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
800 if (ASSEMBLER_DIALECT == 0) \
801 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
802 else \
803 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
804 fputs ("\tldw 4(%r21),%r19\n", FILE); \
805 fputs ("\tldw 0(%r21),%r21\n", FILE); \
806 if (TARGET_PA_20) \
808 fputs ("\tbve (%r21)\n", FILE); \
809 fputs ("\tldw 40(%r22),%r29\n", FILE); \
810 fputs ("\t.word 0\n", FILE); \
811 fputs ("\t.word 0\n", FILE); \
813 else \
815 fputs ("\tldsid (%r21),%r1\n", FILE); \
816 fputs ("\tmtsp %r1,%sr0\n", FILE); \
817 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
818 fputs ("\tldw 40(%r22),%r29\n", FILE); \
820 fputs ("\t.word 0\n", FILE); \
821 fputs ("\t.word 0\n", FILE); \
822 fputs ("\t.word 0\n", FILE); \
823 fputs ("\t.word 0\n", FILE); \
825 else \
827 fputs ("\t.dword 0\n", FILE); \
828 fputs ("\t.dword 0\n", FILE); \
829 fputs ("\t.dword 0\n", FILE); \
830 fputs ("\t.dword 0\n", FILE); \
831 fputs ("\tmfia %r31\n", FILE); \
832 fputs ("\tldd 24(%r31),%r1\n", FILE); \
833 fputs ("\tldd 24(%r1),%r27\n", FILE); \
834 fputs ("\tldd 16(%r1),%r1\n", FILE); \
835 fputs ("\tbve (%r1)\n", FILE); \
836 fputs ("\tldd 32(%r31),%r31\n", FILE); \
837 fputs ("\t.dword 0 ; fptr\n", FILE); \
838 fputs ("\t.dword 0 ; static link\n", FILE); \
842 /* Length in units of the trampoline for entering a nested function. */
844 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
846 /* Length in units of the trampoline instruction code. */
848 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
850 /* Minimum length of a cache line. A length of 16 will work on all
851 PA-RISC processors. All PA 1.1 processors have a cache line of
852 32 bytes. Most but not all PA 2.0 processors have a cache line
853 of 64 bytes. As cache flushes are expensive and we don't support
854 PA 1.0, we use a minimum length of 32. */
856 #define MIN_CACHELINE_SIZE 32
858 /* Emit RTL insns to initialize the variable parts of a trampoline.
859 FNADDR is an RTX for the address of the function's pure code.
860 CXT is an RTX for the static chain value for the function.
862 Move the function address to the trampoline template at offset 36.
863 Move the static chain value to trampoline template at offset 40.
864 Move the trampoline address to trampoline template at offset 44.
865 Move r19 to trampoline template at offset 48. The latter two
866 words create a plabel for the indirect call to the trampoline.
868 A similar sequence is used for the 64-bit port but the plabel is
869 at the beginning of the trampoline.
871 Finally, the cache entries for the trampoline code are flushed.
872 This is necessary to ensure that the trampoline instruction sequence
873 is written to memory prior to any attempts at prefetching the code
874 sequence. */
876 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
878 rtx start_addr = gen_reg_rtx (Pmode); \
879 rtx end_addr = gen_reg_rtx (Pmode); \
880 rtx line_length = gen_reg_rtx (Pmode); \
881 rtx tmp; \
883 if (!TARGET_64BIT) \
885 tmp = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
886 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
887 tmp = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
888 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
890 /* Create a fat pointer for the trampoline. */ \
891 tmp = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
892 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP)); \
893 tmp = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
894 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
895 gen_rtx_REG (Pmode, 19)); \
897 /* fdc and fic only use registers for the address to flush, \
898 they do not accept integer displacements. We align the \
899 start and end addresses to the beginning of their respective \
900 cache lines to minimize the number of lines flushed. */ \
901 tmp = force_reg (Pmode, (TRAMP)); \
902 emit_insn (gen_andsi3 (start_addr, tmp, \
903 GEN_INT (-MIN_CACHELINE_SIZE))); \
904 tmp = force_reg (Pmode, \
905 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
906 emit_insn (gen_andsi3 (end_addr, tmp, \
907 GEN_INT (-MIN_CACHELINE_SIZE))); \
908 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
909 emit_insn (gen_dcacheflushsi (start_addr, end_addr, line_length));\
910 emit_insn (gen_icacheflushsi (start_addr, end_addr, line_length, \
911 gen_reg_rtx (Pmode), \
912 gen_reg_rtx (Pmode))); \
914 else \
916 tmp = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
917 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
918 tmp = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
919 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
921 /* Create a fat pointer for the trampoline. */ \
922 tmp = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
923 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
924 force_reg (Pmode, plus_constant ((TRAMP), 32))); \
925 tmp = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
926 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
927 gen_rtx_REG (Pmode, 27)); \
929 /* fdc and fic only use registers for the address to flush, \
930 they do not accept integer displacements. We align the \
931 start and end addresses to the beginning of their respective \
932 cache lines to minimize the number of lines flushed. */ \
933 tmp = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
934 emit_insn (gen_anddi3 (start_addr, tmp, \
935 GEN_INT (-MIN_CACHELINE_SIZE))); \
936 tmp = force_reg (Pmode, \
937 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
938 emit_insn (gen_anddi3 (end_addr, tmp, \
939 GEN_INT (-MIN_CACHELINE_SIZE))); \
940 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
941 emit_insn (gen_dcacheflushdi (start_addr, end_addr, line_length));\
942 emit_insn (gen_icacheflushdi (start_addr, end_addr, line_length, \
943 gen_reg_rtx (Pmode), \
944 gen_reg_rtx (Pmode))); \
948 /* Perform any machine-specific adjustment in the address of the trampoline.
949 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
950 Adjust the trampoline address to point to the plabel at offset 44. */
952 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
953 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
955 /* Addressing modes, and classification of registers for them.
957 Using autoincrement addressing modes on PA8000 class machines is
958 not profitable. */
960 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
961 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
963 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
964 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
966 /* Macros to check register numbers against specific register classes. */
968 /* The following macros assume that X is a hard or pseudo reg number.
969 They give nonzero only if X is a hard reg of the suitable class
970 or a pseudo reg currently allocated to a suitable hard reg.
971 Since they use reg_renumber, they are safe only once reg_renumber
972 has been allocated, which happens in local-alloc.c. */
974 #define REGNO_OK_FOR_INDEX_P(X) \
975 ((X) && ((X) < 32 \
976 || (X >= FIRST_PSEUDO_REGISTER \
977 && reg_renumber \
978 && (unsigned) reg_renumber[X] < 32)))
979 #define REGNO_OK_FOR_BASE_P(X) \
980 ((X) && ((X) < 32 \
981 || (X >= FIRST_PSEUDO_REGISTER \
982 && reg_renumber \
983 && (unsigned) reg_renumber[X] < 32)))
984 #define REGNO_OK_FOR_FP_P(X) \
985 (FP_REGNO_P (X) \
986 || (X >= FIRST_PSEUDO_REGISTER \
987 && reg_renumber \
988 && FP_REGNO_P (reg_renumber[X])))
990 /* Now macros that check whether X is a register and also,
991 strictly, whether it is in a specified class.
993 These macros are specific to the HP-PA, and may be used only
994 in code for printing assembler insns and in conditions for
995 define_optimization. */
997 /* 1 if X is an fp register. */
999 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1001 /* Maximum number of registers that can appear in a valid memory address. */
1003 #define MAX_REGS_PER_ADDRESS 2
1005 /* Non-TLS symbolic references. */
1006 #define PA_SYMBOL_REF_TLS_P(RTX) \
1007 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
1009 /* Recognize any constant value that is a valid address except
1010 for symbolic addresses. We get better CSE by rejecting them
1011 here and allowing hppa_legitimize_address to break them up. We
1012 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1014 #define CONSTANT_ADDRESS_P(X) \
1015 ((GET_CODE (X) == LABEL_REF \
1016 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (X)) \
1017 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1018 || GET_CODE (X) == HIGH) \
1019 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1021 /* A C expression that is nonzero if we are using the new HP assembler. */
1023 #ifndef NEW_HP_ASSEMBLER
1024 #define NEW_HP_ASSEMBLER 0
1025 #endif
1027 /* The macros below define the immediate range for CONST_INTS on
1028 the 64-bit port. Constants in this range can be loaded in three
1029 instructions using a ldil/ldo/depdi sequence. Constants outside
1030 this range are forced to the constant pool prior to reload. */
1032 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1033 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1034 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
1035 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1037 /* A C expression that is nonzero if X is a legitimate constant for an
1038 immediate operand.
1040 We include all constant integers and constant doubles, but not
1041 floating-point, except for floating-point zero. We reject LABEL_REFs
1042 if we're not using gas or the new HP assembler.
1044 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS
1045 that need more than three instructions to load prior to reload. This
1046 limit is somewhat arbitrary. It takes three instructions to load a
1047 CONST_INT from memory but two are memory accesses. It may be better
1048 to increase the allowed range for CONST_INTS. We may also be able
1049 to handle CONST_DOUBLES. */
1051 #define LEGITIMATE_CONSTANT_P(X) \
1052 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1053 || (X) == CONST0_RTX (GET_MODE (X))) \
1054 && (NEW_HP_ASSEMBLER \
1055 || TARGET_GAS \
1056 || GET_CODE (X) != LABEL_REF) \
1057 && (!TARGET_64BIT \
1058 || GET_CODE (X) != CONST_DOUBLE) \
1059 && (!TARGET_64BIT \
1060 || HOST_BITS_PER_WIDE_INT <= 32 \
1061 || GET_CODE (X) != CONST_INT \
1062 || reload_in_progress \
1063 || reload_completed \
1064 || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X)) \
1065 || cint_ok_for_move (INTVAL (X))) \
1066 && !function_label_operand (X, VOIDmode))
1068 /* Target flags set on a symbol_ref. */
1070 /* Set by ASM_OUTPUT_SYMBOL_REF when a symbol_ref is output. */
1071 #define SYMBOL_FLAG_REFERENCED (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
1072 #define SYMBOL_REF_REFERENCED_P(RTX) \
1073 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_REFERENCED) != 0)
1075 /* Defines for constraints.md. */
1077 /* Return 1 iff OP is a scaled or unscaled index address. */
1078 #define IS_INDEX_ADDR_P(OP) \
1079 (GET_CODE (OP) == PLUS \
1080 && GET_MODE (OP) == Pmode \
1081 && (GET_CODE (XEXP (OP, 0)) == MULT \
1082 || GET_CODE (XEXP (OP, 1)) == MULT \
1083 || (REG_P (XEXP (OP, 0)) \
1084 && REG_P (XEXP (OP, 1)))))
1086 /* Return 1 iff OP is a LO_SUM DLT address. */
1087 #define IS_LO_SUM_DLT_ADDR_P(OP) \
1088 (GET_CODE (OP) == LO_SUM \
1089 && GET_MODE (OP) == Pmode \
1090 && REG_P (XEXP (OP, 0)) \
1091 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
1092 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1094 /* Nonzero if 14-bit offsets can be used for all loads and stores.
1095 This is not possible when generating PA 1.x code as floating point
1096 loads and stores only support 5-bit offsets. Note that we do not
1097 forbid the use of 14-bit offsets in GO_IF_LEGITIMATE_ADDRESS.
1098 Instead, we use pa_secondary_reload() to reload integer mode
1099 REG+D memory addresses used in floating point loads and stores.
1101 FIXME: the ELF32 linker clobbers the LSB of the FP register number
1102 in PA 2.0 floating-point insns with long displacements. This is
1103 because R_PARISC_DPREL14WR and other relocations like it are not
1104 yet supported by GNU ld. For now, we reject long displacements
1105 on this target. */
1107 #define INT14_OK_STRICT \
1108 (TARGET_SOFT_FLOAT \
1109 || TARGET_DISABLE_FPREGS \
1110 || (TARGET_PA_20 && !TARGET_ELF32))
1112 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1113 and check its validity for a certain class.
1114 We have two alternate definitions for each of them.
1115 The usual definition accepts all pseudo regs; the other rejects
1116 them unless they have been allocated suitable hard regs.
1117 The symbol REG_OK_STRICT causes the latter definition to be used.
1119 Most source files want to accept pseudo regs in the hope that
1120 they will get allocated to the class that the insn wants them to be in.
1121 Source files for reload pass need to be strict.
1122 After reload, it makes no difference, since pseudo regs have
1123 been eliminated by then. */
1125 #ifndef REG_OK_STRICT
1127 /* Nonzero if X is a hard reg that can be used as an index
1128 or if it is a pseudo reg. */
1129 #define REG_OK_FOR_INDEX_P(X) \
1130 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1132 /* Nonzero if X is a hard reg that can be used as a base reg
1133 or if it is a pseudo reg. */
1134 #define REG_OK_FOR_BASE_P(X) \
1135 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1137 #else
1139 /* Nonzero if X is a hard reg that can be used as an index. */
1140 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1142 /* Nonzero if X is a hard reg that can be used as a base reg. */
1143 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1145 #endif
1147 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1148 valid memory address for an instruction. The MODE argument is the
1149 machine mode for the MEM expression that wants to use this address.
1151 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1152 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
1153 available with floating point loads and stores, and integer loads.
1154 We get better code by allowing indexed addresses in the initial
1155 RTL generation.
1157 The acceptance of indexed addresses as legitimate implies that we
1158 must provide patterns for doing indexed integer stores, or the move
1159 expanders must force the address of an indexed store to a register.
1160 We have adopted the latter approach.
1162 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1163 the base register is a valid pointer for indexed instructions.
1164 On targets that have non-equivalent space registers, we have to
1165 know at the time of assembler output which register in a REG+REG
1166 pair is the base register. The REG_POINTER flag is sometimes lost
1167 in reload and the following passes, so it can't be relied on during
1168 code generation. Thus, we either have to canonicalize the order
1169 of the registers in REG+REG indexed addresses, or treat REG+REG
1170 addresses separately and provide patterns for both permutations.
1172 The latter approach requires several hundred additional lines of
1173 code in pa.md. The downside to canonicalizing is that a PLUS
1174 in the wrong order can't combine to form to make a scaled indexed
1175 memory operand. As we won't need to canonicalize the operands if
1176 the REG_POINTER lossage can be fixed, it seems better canonicalize.
1178 We initially break out scaled indexed addresses in canonical order
1179 in emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
1180 scaled indexed addresses during RTL generation. However, fold_rtx
1181 has its own opinion on how the operands of a PLUS should be ordered.
1182 If one of the operands is equivalent to a constant, it will make
1183 that operand the second operand. As the base register is likely to
1184 be equivalent to a SYMBOL_REF, we have made it the second operand.
1186 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1187 operands are in the order INDEX+BASE on targets with non-equivalent
1188 space registers, and in any order on targets with equivalent space
1189 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1191 We treat a SYMBOL_REF as legitimate if it is part of the current
1192 function's constant-pool, because such addresses can actually be
1193 output as REG+SMALLINT. */
1195 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1196 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1198 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1199 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1201 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1202 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1204 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1205 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1207 #if HOST_BITS_PER_WIDE_INT > 32
1208 #define VAL_32_BITS_P(X) \
1209 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
1210 < (unsigned HOST_WIDE_INT) 2 << 31)
1211 #else
1212 #define VAL_32_BITS_P(X) 1
1213 #endif
1214 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1216 /* These are the modes that we allow for scaled indexing. */
1217 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1218 ((TARGET_64BIT && (MODE) == DImode) \
1219 || (MODE) == SImode \
1220 || (MODE) == HImode \
1221 || (MODE) == SFmode \
1222 || (MODE) == DFmode)
1224 /* These are the modes that we allow for unscaled indexing. */
1225 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1226 ((TARGET_64BIT && (MODE) == DImode) \
1227 || (MODE) == SImode \
1228 || (MODE) == HImode \
1229 || (MODE) == QImode \
1230 || (MODE) == SFmode \
1231 || (MODE) == DFmode)
1233 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1235 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1236 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1237 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1238 && REG_P (XEXP (X, 0)) \
1239 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1240 goto ADDR; \
1241 else if (GET_CODE (X) == PLUS) \
1243 rtx base = 0, index = 0; \
1244 if (REG_P (XEXP (X, 1)) \
1245 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1246 base = XEXP (X, 1), index = XEXP (X, 0); \
1247 else if (REG_P (XEXP (X, 0)) \
1248 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1249 base = XEXP (X, 0), index = XEXP (X, 1); \
1250 if (base \
1251 && GET_CODE (index) == CONST_INT \
1252 && ((INT_14_BITS (index) \
1253 && (((MODE) != DImode \
1254 && (MODE) != SFmode \
1255 && (MODE) != DFmode) \
1256 /* The base register for DImode loads and stores \
1257 with long displacements must be aligned because \
1258 the lower three bits in the displacement are \
1259 assumed to be zero. */ \
1260 || ((MODE) == DImode \
1261 && (!TARGET_64BIT \
1262 || (INTVAL (index) % 8) == 0)) \
1263 /* Similarly, the base register for SFmode/DFmode \
1264 loads and stores with long displacements must \
1265 be aligned. */ \
1266 || (((MODE) == SFmode || (MODE) == DFmode) \
1267 && INT14_OK_STRICT \
1268 && (INTVAL (index) % GET_MODE_SIZE (MODE)) == 0))) \
1269 || INT_5_BITS (index))) \
1270 goto ADDR; \
1271 if (!TARGET_DISABLE_INDEXING \
1272 /* Only accept the "canonical" INDEX+BASE operand order \
1273 on targets with non-equivalent space registers. */ \
1274 && (TARGET_NO_SPACE_REGS \
1275 ? (base && REG_P (index)) \
1276 : (base == XEXP (X, 1) && REG_P (index) \
1277 && (reload_completed \
1278 || (reload_in_progress && HARD_REGISTER_P (base)) \
1279 || REG_POINTER (base)) \
1280 && (reload_completed \
1281 || (reload_in_progress && HARD_REGISTER_P (index)) \
1282 || !REG_POINTER (index)))) \
1283 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \
1284 && REG_OK_FOR_INDEX_P (index) \
1285 && borx_reg_operand (base, Pmode) \
1286 && borx_reg_operand (index, Pmode)) \
1287 goto ADDR; \
1288 if (!TARGET_DISABLE_INDEXING \
1289 && base \
1290 && GET_CODE (index) == MULT \
1291 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \
1292 && REG_P (XEXP (index, 0)) \
1293 && GET_MODE (XEXP (index, 0)) == Pmode \
1294 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \
1295 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1296 && INTVAL (XEXP (index, 1)) \
1297 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
1298 && borx_reg_operand (base, Pmode)) \
1299 goto ADDR; \
1301 else if (GET_CODE (X) == LO_SUM \
1302 && GET_CODE (XEXP (X, 0)) == REG \
1303 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1304 && CONSTANT_P (XEXP (X, 1)) \
1305 && (TARGET_SOFT_FLOAT \
1306 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1307 || (TARGET_PA_20 \
1308 && !TARGET_ELF32 \
1309 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1310 || ((MODE) != SFmode \
1311 && (MODE) != DFmode))) \
1312 goto ADDR; \
1313 else if (GET_CODE (X) == LO_SUM \
1314 && GET_CODE (XEXP (X, 0)) == SUBREG \
1315 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \
1316 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \
1317 && CONSTANT_P (XEXP (X, 1)) \
1318 && (TARGET_SOFT_FLOAT \
1319 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1320 || (TARGET_PA_20 \
1321 && !TARGET_ELF32 \
1322 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1323 || ((MODE) != SFmode \
1324 && (MODE) != DFmode))) \
1325 goto ADDR; \
1326 else if (GET_CODE (X) == LABEL_REF \
1327 || (GET_CODE (X) == CONST_INT \
1328 && INT_5_BITS (X))) \
1329 goto ADDR; \
1330 /* Needed for -fPIC */ \
1331 else if (GET_CODE (X) == LO_SUM \
1332 && GET_CODE (XEXP (X, 0)) == REG \
1333 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1334 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1335 && (TARGET_SOFT_FLOAT \
1336 || (TARGET_PA_20 && !TARGET_ELF32) \
1337 || ((MODE) != SFmode \
1338 && (MODE) != DFmode))) \
1339 goto ADDR; \
1342 /* Look for machine dependent ways to make the invalid address AD a
1343 valid address.
1345 For the PA, transform:
1347 memory(X + <large int>)
1349 into:
1351 if (<large int> & mask) >= 16
1352 Y = (<large int> & ~mask) + mask + 1 Round up.
1353 else
1354 Y = (<large int> & ~mask) Round down.
1355 Z = X + Y
1356 memory (Z + (<large int> - Y));
1358 This makes reload inheritance and reload_cse work better since Z
1359 can be reused.
1361 There may be more opportunities to improve code with this hook. */
1362 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1363 do { \
1364 long offset, newoffset, mask; \
1365 rtx new_rtx, temp = NULL_RTX; \
1367 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1368 ? (INT14_OK_STRICT ? 0x3fff : 0x1f) : 0x3fff); \
1370 if (optimize && GET_CODE (AD) == PLUS) \
1371 temp = simplify_binary_operation (PLUS, Pmode, \
1372 XEXP (AD, 0), XEXP (AD, 1)); \
1374 new_rtx = temp ? temp : AD; \
1376 if (optimize \
1377 && GET_CODE (new_rtx) == PLUS \
1378 && GET_CODE (XEXP (new_rtx, 0)) == REG \
1379 && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT) \
1381 offset = INTVAL (XEXP ((new_rtx), 1)); \
1383 /* Choose rounding direction. Round up if we are >= halfway. */ \
1384 if ((offset & mask) >= ((mask + 1) / 2)) \
1385 newoffset = (offset & ~mask) + mask + 1; \
1386 else \
1387 newoffset = offset & ~mask; \
1389 /* Ensure that long displacements are aligned. */ \
1390 if (mask == 0x3fff \
1391 && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1392 || (TARGET_64BIT && (MODE) == DImode))) \
1393 newoffset &= ~(GET_MODE_SIZE (MODE) - 1); \
1395 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \
1397 temp = gen_rtx_PLUS (Pmode, XEXP (new_rtx, 0), \
1398 GEN_INT (newoffset)); \
1399 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1400 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1401 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1402 (OPNUM), (TYPE)); \
1403 goto WIN; \
1406 } while (0)
1410 #define TARGET_ASM_SELECT_SECTION pa_select_section
1412 /* Return a nonzero value if DECL has a section attribute. */
1413 #define IN_NAMED_SECTION_P(DECL) \
1414 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1415 && DECL_SECTION_NAME (DECL) != NULL_TREE)
1417 /* Define this macro if references to a symbol must be treated
1418 differently depending on something about the variable or
1419 function named by the symbol (such as what section it is in).
1421 The macro definition, if any, is executed immediately after the
1422 rtl for DECL or other node is created.
1423 The value of the rtl will be a `mem' whose address is a
1424 `symbol_ref'.
1426 The usual thing for this macro to do is to a flag in the
1427 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1428 name string in the `symbol_ref' (if one bit is not enough
1429 information).
1431 On the HP-PA we use this to indicate if a symbol is in text or
1432 data space. Also, function labels need special treatment. */
1434 #define TEXT_SPACE_P(DECL)\
1435 (TREE_CODE (DECL) == FUNCTION_DECL \
1436 || (TREE_CODE (DECL) == VAR_DECL \
1437 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1438 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1439 && !flag_pic) \
1440 || CONSTANT_CLASS_P (DECL))
1442 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1444 /* Specify the machine mode that this machine uses for the index in the
1445 tablejump instruction. For small tables, an element consists of a
1446 ia-relative branch and its delay slot. When -mbig-switch is specified,
1447 we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1448 for both 32 and 64-bit pic code. */
1449 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1451 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
1452 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1454 /* Define this as 1 if `char' should by default be signed; else as 0. */
1455 #define DEFAULT_SIGNED_CHAR 1
1457 /* Max number of bytes we can move from memory to memory
1458 in one reasonably fast instruction. */
1459 #define MOVE_MAX 8
1461 /* Higher than the default as we prefer to use simple move insns
1462 (better scheduling and delay slot filling) and because our
1463 built-in block move is really a 2X unrolled loop.
1465 Believe it or not, this has to be big enough to allow for copying all
1466 arguments passed in registers to avoid infinite recursion during argument
1467 setup for a function call. Why? Consider how we copy the stack slots
1468 reserved for parameters when they may be trashed by a call. */
1469 #define MOVE_RATIO(speed) (TARGET_64BIT ? 8 : 4)
1471 /* Define if operations between registers always perform the operation
1472 on the full register even if a narrower mode is specified. */
1473 #define WORD_REGISTER_OPERATIONS
1475 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1476 will either zero-extend or sign-extend. The value of this macro should
1477 be the code that says which one of the two operations is implicitly
1478 done, UNKNOWN if none. */
1479 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1481 /* Nonzero if access to memory by bytes is slow and undesirable. */
1482 #define SLOW_BYTE_ACCESS 1
1484 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1485 is done just by pretending it is already truncated. */
1486 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1488 /* Specify the machine mode that pointers have.
1489 After generation of rtl, the compiler makes no further distinction
1490 between pointers and any other objects of this machine mode. */
1491 #define Pmode word_mode
1493 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1494 return the mode to be used for the comparison. For floating-point, CCFPmode
1495 should be used. CC_NOOVmode should be used when the first operand is a
1496 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1497 needed. */
1498 #define SELECT_CC_MODE(OP,X,Y) \
1499 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1501 /* A function address in a call instruction
1502 is a byte address (for indexing purposes)
1503 so give the MEM rtx a byte's mode. */
1504 #define FUNCTION_MODE SImode
1506 /* Define this if addresses of constant functions
1507 shouldn't be put through pseudo regs where they can be cse'd.
1508 Desirable on machines where ordinary constants are expensive
1509 but a CALL with constant address is cheap. */
1510 #define NO_FUNCTION_CSE
1512 /* Define this to be nonzero if shift instructions ignore all but the low-order
1513 few bits. */
1514 #define SHIFT_COUNT_TRUNCATED 1
1516 /* Compute extra cost of moving data between one register class
1517 and another.
1519 Make moves from SAR so expensive they should never happen. We used to
1520 have 0xffff here, but that generates overflow in rare cases.
1522 Copies involving a FP register and a non-FP register are relatively
1523 expensive because they must go through memory.
1525 Other copies are reasonably cheap. */
1526 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1527 (CLASS1 == SHIFT_REGS ? 0x100 \
1528 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1529 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1530 : 2)
1532 /* Adjust the cost of branches. */
1533 #define BRANCH_COST(speed_p, predictable_p) (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1535 /* Handling the special cases is going to get too complicated for a macro,
1536 just call `pa_adjust_insn_length' to do the real work. */
1537 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1538 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1540 /* Millicode insns are actually function calls with some special
1541 constraints on arguments and register usage.
1543 Millicode calls always expect their arguments in the integer argument
1544 registers, and always return their result in %r29 (ret1). They
1545 are expected to clobber their arguments, %r1, %r29, and the return
1546 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1548 This macro tells reorg that the references to arguments and
1549 millicode calls do not appear to happen until after the millicode call.
1550 This allows reorg to put insns which set the argument registers into the
1551 delay slot of the millicode call -- thus they act more like traditional
1552 CALL_INSNs.
1554 Note we cannot consider side effects of the insn to be delayed because
1555 the branch and link insn will clobber the return pointer. If we happened
1556 to use the return pointer in the delay slot of the call, then we lose.
1558 get_attr_type will try to recognize the given insn, so make sure to
1559 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1560 in particular. */
1561 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1564 /* Control the assembler format that we output. */
1566 /* A C string constant describing how to begin a comment in the target
1567 assembler language. The compiler assumes that the comment will end at
1568 the end of the line. */
1570 #define ASM_COMMENT_START ";"
1572 /* Output to assembler file text saying following lines
1573 may contain character constants, extra white space, comments, etc. */
1575 #define ASM_APP_ON ""
1577 /* Output to assembler file text saying following lines
1578 no longer contain unusual constructs. */
1580 #define ASM_APP_OFF ""
1582 /* This is how to output the definition of a user-level label named NAME,
1583 such as the label on a static function or variable NAME. */
1585 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1586 do { \
1587 assemble_name ((FILE), (NAME)); \
1588 if (TARGET_GAS) \
1589 fputs (":\n", (FILE)); \
1590 else \
1591 fputc ('\n', (FILE)); \
1592 } while (0)
1594 /* This is how to output a reference to a user-level label named NAME.
1595 `assemble_name' uses this. */
1597 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1598 do { \
1599 const char *xname = (NAME); \
1600 if (FUNCTION_NAME_P (NAME)) \
1601 xname += 1; \
1602 if (xname[0] == '*') \
1603 xname += 1; \
1604 else \
1605 fputs (user_label_prefix, FILE); \
1606 fputs (xname, FILE); \
1607 } while (0)
1609 /* This how we output the symbol_ref X. */
1611 #define ASM_OUTPUT_SYMBOL_REF(FILE,X) \
1612 do { \
1613 SYMBOL_REF_FLAGS (X) |= SYMBOL_FLAG_REFERENCED; \
1614 assemble_name (FILE, XSTR (X, 0)); \
1615 } while (0)
1617 /* This is how to store into the string LABEL
1618 the symbol_ref name of an internal numbered label where
1619 PREFIX is the class of label and NUM is the number within the class.
1620 This is suitable for output with `assemble_name'. */
1622 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1623 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1625 /* Output the definition of a compiler-generated label named NAME. */
1627 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,NAME) \
1628 do { \
1629 assemble_name_raw ((FILE), (NAME)); \
1630 if (TARGET_GAS) \
1631 fputs (":\n", (FILE)); \
1632 else \
1633 fputc ('\n', (FILE)); \
1634 } while (0)
1636 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1638 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1639 output_ascii ((FILE), (P), (SIZE))
1641 /* Jump tables are always placed in the text section. Technically, it
1642 is possible to put them in the readonly data section when -mbig-switch
1643 is specified. This has the benefit of getting the table out of .text
1644 and reducing branch lengths as a result. The downside is that an
1645 additional insn (addil) is needed to access the table when generating
1646 PIC code. The address difference table also has to use 32-bit
1647 pc-relative relocations. Currently, GAS does not support these
1648 relocations, although it is easily modified to do this operation.
1649 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1650 when using ELF GAS. A simple difference can be used when using
1651 SOM GAS or the HP assembler. The final downside is GDB complains
1652 about the nesting of the label for the table when debugging. */
1654 #define JUMP_TABLES_IN_TEXT_SECTION 1
1656 /* This is how to output an element of a case-vector that is absolute. */
1658 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1659 if (TARGET_BIG_SWITCH) \
1660 fprintf (FILE, "\t.word L$%04d\n", VALUE); \
1661 else \
1662 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1664 /* This is how to output an element of a case-vector that is relative.
1665 Since we always place jump tables in the text section, the difference
1666 is absolute and requires no relocation. */
1668 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1669 if (TARGET_BIG_SWITCH) \
1670 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \
1671 else \
1672 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1674 /* This is how to output an assembler line that says to advance the
1675 location counter to a multiple of 2**LOG bytes. */
1677 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1678 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1680 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1681 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
1682 (unsigned HOST_WIDE_INT)(SIZE))
1684 /* This says how to output an assembler line to define an uninitialized
1685 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
1686 This macro exists to properly support languages like C++ which do not
1687 have common data. */
1689 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1690 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
1692 /* This says how to output an assembler line to define a global common symbol
1693 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1695 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
1696 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
1698 /* This says how to output an assembler line to define a local common symbol
1699 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
1700 controls how the assembler definitions of uninitialized static variables
1701 are output. */
1703 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1704 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
1706 /* All HP assemblers use "!" to separate logical lines. */
1707 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == '!')
1709 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1710 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1712 /* Print operand X (an rtx) in assembler syntax to file FILE.
1713 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1714 For `%' followed by punctuation, CODE is the punctuation and X is null.
1716 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1717 and an immediate zero should be represented as `r0'.
1719 Several % codes are defined:
1720 O an operation
1721 C compare conditions
1722 N extract conditions
1723 M modifier to handle preincrement addressing for memory refs.
1724 F modifier to handle preincrement addressing for fp memory refs */
1726 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1729 /* Print a memory address as an operand to reference that memory location. */
1731 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1732 { rtx addr = ADDR; \
1733 switch (GET_CODE (addr)) \
1735 case REG: \
1736 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1737 break; \
1738 case PLUS: \
1739 gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT); \
1740 fprintf (FILE, "%d(%s)", (int)INTVAL (XEXP (addr, 1)), \
1741 reg_names [REGNO (XEXP (addr, 0))]); \
1742 break; \
1743 case LO_SUM: \
1744 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1745 fputs ("R'", FILE); \
1746 else if (flag_pic == 0) \
1747 fputs ("RR'", FILE); \
1748 else \
1749 fputs ("RT'", FILE); \
1750 output_global_address (FILE, XEXP (addr, 1), 0); \
1751 fputs ("(", FILE); \
1752 output_operand (XEXP (addr, 0), 0); \
1753 fputs (")", FILE); \
1754 break; \
1755 case CONST_INT: \
1756 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
1757 break; \
1758 default: \
1759 output_addr_const (FILE, addr); \
1763 /* Find the return address associated with the frame given by
1764 FRAMEADDR. */
1765 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1766 (return_addr_rtx (COUNT, FRAMEADDR))
1768 /* Used to mask out junk bits from the return address, such as
1769 processor state, interrupt status, condition codes and the like. */
1770 #define MASK_RETURN_ADDR \
1771 /* The privilege level is in the two low order bits, mask em out \
1772 of the return address. */ \
1773 (GEN_INT (-4))
1775 /* The number of Pmode words for the setjmp buffer. */
1776 #define JMP_BUF_SIZE 50
1778 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
1779 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
1780 "__canonicalize_funcptr_for_compare"
1782 #ifdef HAVE_AS_TLS
1783 #undef TARGET_HAVE_TLS
1784 #define TARGET_HAVE_TLS true
1785 #endif