2009-07-17 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / config / m68k / m68k.c
blobec371e56a01f5d7f41309dcc350e56b2cc7a4e59
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "real.h"
32 #include "insn-config.h"
33 #include "conditions.h"
34 #include "output.h"
35 #include "insn-attr.h"
36 #include "recog.h"
37 #include "toplev.h"
38 #include "expr.h"
39 #include "reload.h"
40 #include "tm_p.h"
41 #include "target.h"
42 #include "target-def.h"
43 #include "debug.h"
44 #include "flags.h"
45 #include "df.h"
46 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
47 #include "sched-int.h"
48 #include "insn-codes.h"
49 #include "ggc.h"
51 enum reg_class regno_reg_class[] =
53 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
54 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
55 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
56 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
57 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
58 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
59 ADDR_REGS
63 /* The minimum number of integer registers that we want to save with the
64 movem instruction. Using two movel instructions instead of a single
65 moveml is about 15% faster for the 68020 and 68030 at no expense in
66 code size. */
67 #define MIN_MOVEM_REGS 3
69 /* The minimum number of floating point registers that we want to save
70 with the fmovem instruction. */
71 #define MIN_FMOVEM_REGS 1
73 /* Structure describing stack frame layout. */
74 struct m68k_frame
76 /* Stack pointer to frame pointer offset. */
77 HOST_WIDE_INT offset;
79 /* Offset of FPU registers. */
80 HOST_WIDE_INT foffset;
82 /* Frame size in bytes (rounded up). */
83 HOST_WIDE_INT size;
85 /* Data and address register. */
86 int reg_no;
87 unsigned int reg_mask;
89 /* FPU registers. */
90 int fpu_no;
91 unsigned int fpu_mask;
93 /* Offsets relative to ARG_POINTER. */
94 HOST_WIDE_INT frame_pointer_offset;
95 HOST_WIDE_INT stack_pointer_offset;
97 /* Function which the above information refers to. */
98 int funcdef_no;
101 /* Current frame information calculated by m68k_compute_frame_layout(). */
102 static struct m68k_frame current_frame;
104 /* Structure describing an m68k address.
106 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
107 with null fields evaluating to 0. Here:
109 - BASE satisfies m68k_legitimate_base_reg_p
110 - INDEX satisfies m68k_legitimate_index_reg_p
111 - OFFSET satisfies m68k_legitimate_constant_address_p
113 INDEX is either HImode or SImode. The other fields are SImode.
115 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
116 the address is (BASE)+. */
117 struct m68k_address {
118 enum rtx_code code;
119 rtx base;
120 rtx index;
121 rtx offset;
122 int scale;
125 static int m68k_sched_adjust_cost (rtx, rtx, rtx, int);
126 static int m68k_sched_issue_rate (void);
127 static int m68k_sched_variable_issue (FILE *, int, rtx, int);
128 static void m68k_sched_md_init_global (FILE *, int, int);
129 static void m68k_sched_md_finish_global (FILE *, int);
130 static void m68k_sched_md_init (FILE *, int, int);
131 static void m68k_sched_dfa_pre_advance_cycle (void);
132 static void m68k_sched_dfa_post_advance_cycle (void);
133 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
135 static bool m68k_legitimate_address_p (enum machine_mode, rtx, bool);
136 static bool m68k_handle_option (size_t, const char *, int);
137 static rtx find_addr_reg (rtx);
138 static const char *singlemove_string (rtx *);
139 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
140 HOST_WIDE_INT, tree);
141 static rtx m68k_struct_value_rtx (tree, int);
142 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
143 tree args, int flags,
144 bool *no_add_attrs);
145 static void m68k_compute_frame_layout (void);
146 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
147 static bool m68k_ok_for_sibcall_p (tree, tree);
148 static bool m68k_tls_symbol_p (rtx);
149 static rtx m68k_legitimize_address (rtx, rtx, enum machine_mode);
150 static bool m68k_rtx_costs (rtx, int, int, int *, bool);
151 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
152 static bool m68k_return_in_memory (const_tree, const_tree);
153 #endif
154 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
157 /* Specify the identification number of the library being built */
158 const char *m68k_library_id_string = "_current_shared_library_a5_offset_";
160 /* Initialize the GCC target structure. */
162 #if INT_OP_GROUP == INT_OP_DOT_WORD
163 #undef TARGET_ASM_ALIGNED_HI_OP
164 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
165 #endif
167 #if INT_OP_GROUP == INT_OP_NO_DOT
168 #undef TARGET_ASM_BYTE_OP
169 #define TARGET_ASM_BYTE_OP "\tbyte\t"
170 #undef TARGET_ASM_ALIGNED_HI_OP
171 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
172 #undef TARGET_ASM_ALIGNED_SI_OP
173 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
174 #endif
176 #if INT_OP_GROUP == INT_OP_DC
177 #undef TARGET_ASM_BYTE_OP
178 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
179 #undef TARGET_ASM_ALIGNED_HI_OP
180 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
181 #undef TARGET_ASM_ALIGNED_SI_OP
182 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
183 #endif
185 #undef TARGET_ASM_UNALIGNED_HI_OP
186 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
187 #undef TARGET_ASM_UNALIGNED_SI_OP
188 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
190 #undef TARGET_ASM_OUTPUT_MI_THUNK
191 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
192 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
193 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
195 #undef TARGET_ASM_FILE_START_APP_OFF
196 #define TARGET_ASM_FILE_START_APP_OFF true
198 #undef TARGET_LEGITIMIZE_ADDRESS
199 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
201 #undef TARGET_SCHED_ADJUST_COST
202 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
204 #undef TARGET_SCHED_ISSUE_RATE
205 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
207 #undef TARGET_SCHED_VARIABLE_ISSUE
208 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
210 #undef TARGET_SCHED_INIT_GLOBAL
211 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
213 #undef TARGET_SCHED_FINISH_GLOBAL
214 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
216 #undef TARGET_SCHED_INIT
217 #define TARGET_SCHED_INIT m68k_sched_md_init
219 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
220 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
222 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
223 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
225 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
226 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
227 m68k_sched_first_cycle_multipass_dfa_lookahead
229 #undef TARGET_HANDLE_OPTION
230 #define TARGET_HANDLE_OPTION m68k_handle_option
232 #undef TARGET_RTX_COSTS
233 #define TARGET_RTX_COSTS m68k_rtx_costs
235 #undef TARGET_ATTRIBUTE_TABLE
236 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
238 #undef TARGET_PROMOTE_PROTOTYPES
239 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
241 #undef TARGET_STRUCT_VALUE_RTX
242 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
244 #undef TARGET_CANNOT_FORCE_CONST_MEM
245 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_illegitimate_symbolic_constant_p
247 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
248 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
250 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
251 #undef TARGET_RETURN_IN_MEMORY
252 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
253 #endif
255 #ifdef HAVE_AS_TLS
256 #undef TARGET_HAVE_TLS
257 #define TARGET_HAVE_TLS (true)
259 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
260 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
261 #endif
263 #undef TARGET_LEGITIMATE_ADDRESS_P
264 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
266 static const struct attribute_spec m68k_attribute_table[] =
268 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
269 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
270 { "interrupt_handler", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
271 { "interrupt_thread", 0, 0, true, false, false, m68k_handle_fndecl_attribute },
272 { NULL, 0, 0, false, false, false, NULL }
275 struct gcc_target targetm = TARGET_INITIALIZER;
277 /* Base flags for 68k ISAs. */
278 #define FL_FOR_isa_00 FL_ISA_68000
279 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
280 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
281 generated 68881 code for 68020 and 68030 targets unless explicitly told
282 not to. */
283 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
284 | FL_BITFIELD | FL_68881)
285 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
286 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
288 /* Base flags for ColdFire ISAs. */
289 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
290 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
291 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
292 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
293 /* ISA_C is not upwardly compatible with ISA_B. */
294 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
296 enum m68k_isa
298 /* Traditional 68000 instruction sets. */
299 isa_00,
300 isa_10,
301 isa_20,
302 isa_40,
303 isa_cpu32,
304 /* ColdFire instruction set variants. */
305 isa_a,
306 isa_aplus,
307 isa_b,
308 isa_c,
309 isa_max
312 /* Information about one of the -march, -mcpu or -mtune arguments. */
313 struct m68k_target_selection
315 /* The argument being described. */
316 const char *name;
318 /* For -mcpu, this is the device selected by the option.
319 For -mtune and -march, it is a representative device
320 for the microarchitecture or ISA respectively. */
321 enum target_device device;
323 /* The M68K_DEVICE fields associated with DEVICE. See the comment
324 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
325 const char *family;
326 enum uarch_type microarch;
327 enum m68k_isa isa;
328 unsigned long flags;
331 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
332 static const struct m68k_target_selection all_devices[] =
334 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
335 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
336 #include "m68k-devices.def"
337 #undef M68K_DEVICE
338 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
341 /* A list of all ISAs, mapping each one to a representative device.
342 Used for -march selection. */
343 static const struct m68k_target_selection all_isas[] =
345 { "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
346 { "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
347 { "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
348 { "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
349 { "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
350 { "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
351 { "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
352 { "isaa", mcf5206e, NULL, ucfv2, isa_a, (FL_FOR_isa_a
353 | FL_CF_HWDIV) },
354 { "isaaplus", mcf5271, NULL, ucfv2, isa_aplus, (FL_FOR_isa_aplus
355 | FL_CF_HWDIV) },
356 { "isab", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
357 { "isac", unk_device, NULL, ucfv4, isa_c, (FL_FOR_isa_c
358 | FL_CF_HWDIV) },
359 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
362 /* A list of all microarchitectures, mapping each one to a representative
363 device. Used for -mtune selection. */
364 static const struct m68k_target_selection all_microarchs[] =
366 { "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
367 { "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
368 { "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
369 { "68020-40", m68020, NULL, u68020_40, isa_20, FL_FOR_isa_20 },
370 { "68020-60", m68020, NULL, u68020_60, isa_20, FL_FOR_isa_20 },
371 { "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
372 { "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
373 { "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
374 { "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
375 { "cfv1", mcf51qe, NULL, ucfv1, isa_c, FL_FOR_isa_c },
376 { "cfv2", mcf5206, NULL, ucfv2, isa_a, FL_FOR_isa_a },
377 { "cfv3", mcf5307, NULL, ucfv3, isa_a, (FL_FOR_isa_a
378 | FL_CF_HWDIV) },
379 { "cfv4", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
380 { "cfv4e", mcf547x, NULL, ucfv4e, isa_b, (FL_FOR_isa_b
381 | FL_CF_USP
382 | FL_CF_EMAC
383 | FL_CF_FPU) },
384 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
387 /* The entries associated with the -mcpu, -march and -mtune settings,
388 or null for options that have not been used. */
389 const struct m68k_target_selection *m68k_cpu_entry;
390 const struct m68k_target_selection *m68k_arch_entry;
391 const struct m68k_target_selection *m68k_tune_entry;
393 /* Which CPU we are generating code for. */
394 enum target_device m68k_cpu;
396 /* Which microarchitecture to tune for. */
397 enum uarch_type m68k_tune;
399 /* Which FPU to use. */
400 enum fpu_type m68k_fpu;
402 /* The set of FL_* flags that apply to the target processor. */
403 unsigned int m68k_cpu_flags;
405 /* The set of FL_* flags that apply to the processor to be tuned for. */
406 unsigned int m68k_tune_flags;
408 /* Asm templates for calling or jumping to an arbitrary symbolic address,
409 or NULL if such calls or jumps are not supported. The address is held
410 in operand 0. */
411 const char *m68k_symbolic_call;
412 const char *m68k_symbolic_jump;
414 /* Enum variable that corresponds to m68k_symbolic_call values. */
415 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
418 /* See whether TABLE has an entry with name NAME. Return true and
419 store the entry in *ENTRY if so, otherwise return false and
420 leave *ENTRY alone. */
422 static bool
423 m68k_find_selection (const struct m68k_target_selection **entry,
424 const struct m68k_target_selection *table,
425 const char *name)
427 size_t i;
429 for (i = 0; table[i].name; i++)
430 if (strcmp (table[i].name, name) == 0)
432 *entry = table + i;
433 return true;
435 return false;
438 /* Implement TARGET_HANDLE_OPTION. */
440 static bool
441 m68k_handle_option (size_t code, const char *arg, int value)
443 switch (code)
445 case OPT_march_:
446 return m68k_find_selection (&m68k_arch_entry, all_isas, arg);
448 case OPT_mcpu_:
449 return m68k_find_selection (&m68k_cpu_entry, all_devices, arg);
451 case OPT_mtune_:
452 return m68k_find_selection (&m68k_tune_entry, all_microarchs, arg);
454 case OPT_m5200:
455 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206");
457 case OPT_m5206e:
458 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5206e");
460 case OPT_m528x:
461 return m68k_find_selection (&m68k_cpu_entry, all_devices, "528x");
463 case OPT_m5307:
464 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5307");
466 case OPT_m5407:
467 return m68k_find_selection (&m68k_cpu_entry, all_devices, "5407");
469 case OPT_mcfv4e:
470 return m68k_find_selection (&m68k_cpu_entry, all_devices, "547x");
472 case OPT_m68000:
473 case OPT_mc68000:
474 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68000");
476 case OPT_m68010:
477 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68010");
479 case OPT_m68020:
480 case OPT_mc68020:
481 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68020");
483 case OPT_m68020_40:
484 return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
485 "68020-40")
486 && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
488 case OPT_m68020_60:
489 return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
490 "68020-60")
491 && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
493 case OPT_m68030:
494 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68030");
496 case OPT_m68040:
497 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68040");
499 case OPT_m68060:
500 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68060");
502 case OPT_m68302:
503 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68302");
505 case OPT_m68332:
506 case OPT_mcpu32:
507 return m68k_find_selection (&m68k_cpu_entry, all_devices, "68332");
509 case OPT_mshared_library_id_:
510 if (value > MAX_LIBRARY_ID)
511 error ("-mshared-library-id=%s is not between 0 and %d",
512 arg, MAX_LIBRARY_ID);
513 else
515 char *tmp;
516 asprintf (&tmp, "%d", (value * -4) - 4);
517 m68k_library_id_string = tmp;
519 return true;
521 default:
522 return true;
526 /* Sometimes certain combinations of command options do not make
527 sense on a particular target machine. You can define a macro
528 `OVERRIDE_OPTIONS' to take account of this. This macro, if
529 defined, is executed once just after all the command options have
530 been parsed.
532 Don't use this macro to turn on various extra optimizations for
533 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
535 void
536 override_options (void)
538 const struct m68k_target_selection *entry;
539 unsigned long target_mask;
541 /* User can choose:
543 -mcpu=
544 -march=
545 -mtune=
547 -march=ARCH should generate code that runs any processor
548 implementing architecture ARCH. -mcpu=CPU should override -march
549 and should generate code that runs on processor CPU, making free
550 use of any instructions that CPU understands. -mtune=UARCH applies
551 on top of -mcpu or -march and optimizes the code for UARCH. It does
552 not change the target architecture. */
553 if (m68k_cpu_entry)
555 /* Complain if the -march setting is for a different microarchitecture,
556 or includes flags that the -mcpu setting doesn't. */
557 if (m68k_arch_entry
558 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
559 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
560 warning (0, "-mcpu=%s conflicts with -march=%s",
561 m68k_cpu_entry->name, m68k_arch_entry->name);
563 entry = m68k_cpu_entry;
565 else
566 entry = m68k_arch_entry;
568 if (!entry)
569 entry = all_devices + TARGET_CPU_DEFAULT;
571 m68k_cpu_flags = entry->flags;
573 /* Use the architecture setting to derive default values for
574 certain flags. */
575 target_mask = 0;
577 /* ColdFire is lenient about alignment. */
578 if (!TARGET_COLDFIRE)
579 target_mask |= MASK_STRICT_ALIGNMENT;
581 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
582 target_mask |= MASK_BITFIELD;
583 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
584 target_mask |= MASK_CF_HWDIV;
585 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
586 target_mask |= MASK_HARD_FLOAT;
587 target_flags |= target_mask & ~target_flags_explicit;
589 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
590 m68k_cpu = entry->device;
591 if (m68k_tune_entry)
593 m68k_tune = m68k_tune_entry->microarch;
594 m68k_tune_flags = m68k_tune_entry->flags;
596 #ifdef M68K_DEFAULT_TUNE
597 else if (!m68k_cpu_entry && !m68k_arch_entry)
599 enum target_device dev;
600 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
601 m68k_tune_flags = all_devices[dev]->flags;
603 #endif
604 else
606 m68k_tune = entry->microarch;
607 m68k_tune_flags = entry->flags;
610 /* Set the type of FPU. */
611 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
612 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
613 : FPUTYPE_68881);
615 /* Sanity check to ensure that msep-data and mid-sahred-library are not
616 * both specified together. Doing so simply doesn't make sense.
618 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
619 error ("cannot specify both -msep-data and -mid-shared-library");
621 /* If we're generating code for a separate A5 relative data segment,
622 * we've got to enable -fPIC as well. This might be relaxable to
623 * -fpic but it hasn't been tested properly.
625 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
626 flag_pic = 2;
628 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
629 error if the target does not support them. */
630 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
631 error ("-mpcrel -fPIC is not currently supported on selected cpu");
633 /* ??? A historic way of turning on pic, or is this intended to
634 be an embedded thing that doesn't have the same name binding
635 significance that it does on hosted ELF systems? */
636 if (TARGET_PCREL && flag_pic == 0)
637 flag_pic = 1;
639 if (!flag_pic)
641 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
643 m68k_symbolic_jump = "jra %a0";
645 else if (TARGET_ID_SHARED_LIBRARY)
646 /* All addresses must be loaded from the GOT. */
648 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
650 if (TARGET_PCREL)
651 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
652 else
653 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
655 if (TARGET_ISAC)
656 /* No unconditional long branch */;
657 else if (TARGET_PCREL)
658 m68k_symbolic_jump = "bra%.l %c0";
659 else
660 m68k_symbolic_jump = "bra%.l %p0";
661 /* Turn off function cse if we are doing PIC. We always want
662 function call to be done as `bsr foo@PLTPC'. */
663 /* ??? It's traditional to do this for -mpcrel too, but it isn't
664 clear how intentional that is. */
665 flag_no_function_cse = 1;
668 switch (m68k_symbolic_call_var)
670 case M68K_SYMBOLIC_CALL_JSR:
671 m68k_symbolic_call = "jsr %a0";
672 break;
674 case M68K_SYMBOLIC_CALL_BSR_C:
675 m68k_symbolic_call = "bsr%.l %c0";
676 break;
678 case M68K_SYMBOLIC_CALL_BSR_P:
679 m68k_symbolic_call = "bsr%.l %p0";
680 break;
682 case M68K_SYMBOLIC_CALL_NONE:
683 gcc_assert (m68k_symbolic_call == NULL);
684 break;
686 default:
687 gcc_unreachable ();
690 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
691 if (align_labels > 2)
693 warning (0, "-falign-labels=%d is not supported", align_labels);
694 align_labels = 0;
696 if (align_loops > 2)
698 warning (0, "-falign-loops=%d is not supported", align_loops);
699 align_loops = 0;
701 #endif
703 SUBTARGET_OVERRIDE_OPTIONS;
705 /* Setup scheduling options. */
706 if (TUNE_CFV1)
707 m68k_sched_cpu = CPU_CFV1;
708 else if (TUNE_CFV2)
709 m68k_sched_cpu = CPU_CFV2;
710 else if (TUNE_CFV3)
711 m68k_sched_cpu = CPU_CFV3;
712 else if (TUNE_CFV4)
713 m68k_sched_cpu = CPU_CFV4;
714 else
716 m68k_sched_cpu = CPU_UNKNOWN;
717 flag_schedule_insns = 0;
718 flag_schedule_insns_after_reload = 0;
719 flag_modulo_sched = 0;
722 if (m68k_sched_cpu != CPU_UNKNOWN)
724 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
725 m68k_sched_mac = MAC_CF_EMAC;
726 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
727 m68k_sched_mac = MAC_CF_MAC;
728 else
729 m68k_sched_mac = MAC_NO;
733 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
734 given argument and NAME is the argument passed to -mcpu. Return NULL
735 if -mcpu was not passed. */
737 const char *
738 m68k_cpp_cpu_ident (const char *prefix)
740 if (!m68k_cpu_entry)
741 return NULL;
742 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
745 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
746 given argument and NAME is the name of the representative device for
747 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
749 const char *
750 m68k_cpp_cpu_family (const char *prefix)
752 if (!m68k_cpu_entry)
753 return NULL;
754 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
757 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
758 "interrupt_handler" attribute and interrupt_thread if FUNC has an
759 "interrupt_thread" attribute. Otherwise, return
760 m68k_fk_normal_function. */
762 enum m68k_function_kind
763 m68k_get_function_kind (tree func)
765 tree a;
767 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
769 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
770 if (a != NULL_TREE)
771 return m68k_fk_interrupt_handler;
773 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
774 if (a != NULL_TREE)
775 return m68k_fk_interrupt_handler;
777 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
778 if (a != NULL_TREE)
779 return m68k_fk_interrupt_thread;
781 return m68k_fk_normal_function;
784 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
785 struct attribute_spec.handler. */
786 static tree
787 m68k_handle_fndecl_attribute (tree *node, tree name,
788 tree args ATTRIBUTE_UNUSED,
789 int flags ATTRIBUTE_UNUSED,
790 bool *no_add_attrs)
792 if (TREE_CODE (*node) != FUNCTION_DECL)
794 warning (OPT_Wattributes, "%qE attribute only applies to functions",
795 name);
796 *no_add_attrs = true;
799 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
801 error ("multiple interrupt attributes not allowed");
802 *no_add_attrs = true;
805 if (!TARGET_FIDOA
806 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
808 error ("interrupt_thread is available only on fido");
809 *no_add_attrs = true;
812 return NULL_TREE;
815 static void
816 m68k_compute_frame_layout (void)
818 int regno, saved;
819 unsigned int mask;
820 enum m68k_function_kind func_kind =
821 m68k_get_function_kind (current_function_decl);
822 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
823 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
825 /* Only compute the frame once per function.
826 Don't cache information until reload has been completed. */
827 if (current_frame.funcdef_no == current_function_funcdef_no
828 && reload_completed)
829 return;
831 current_frame.size = (get_frame_size () + 3) & -4;
833 mask = saved = 0;
835 /* Interrupt thread does not need to save any register. */
836 if (!interrupt_thread)
837 for (regno = 0; regno < 16; regno++)
838 if (m68k_save_reg (regno, interrupt_handler))
840 mask |= 1 << (regno - D0_REG);
841 saved++;
843 current_frame.offset = saved * 4;
844 current_frame.reg_no = saved;
845 current_frame.reg_mask = mask;
847 current_frame.foffset = 0;
848 mask = saved = 0;
849 if (TARGET_HARD_FLOAT)
851 /* Interrupt thread does not need to save any register. */
852 if (!interrupt_thread)
853 for (regno = 16; regno < 24; regno++)
854 if (m68k_save_reg (regno, interrupt_handler))
856 mask |= 1 << (regno - FP0_REG);
857 saved++;
859 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
860 current_frame.offset += current_frame.foffset;
862 current_frame.fpu_no = saved;
863 current_frame.fpu_mask = mask;
865 /* Remember what function this frame refers to. */
866 current_frame.funcdef_no = current_function_funcdef_no;
869 HOST_WIDE_INT
870 m68k_initial_elimination_offset (int from, int to)
872 int argptr_offset;
873 /* The arg pointer points 8 bytes before the start of the arguments,
874 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
875 frame pointer in most frames. */
876 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
877 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
878 return argptr_offset;
880 m68k_compute_frame_layout ();
882 gcc_assert (to == STACK_POINTER_REGNUM);
883 switch (from)
885 case ARG_POINTER_REGNUM:
886 return current_frame.offset + current_frame.size - argptr_offset;
887 case FRAME_POINTER_REGNUM:
888 return current_frame.offset + current_frame.size;
889 default:
890 gcc_unreachable ();
894 /* Refer to the array `regs_ever_live' to determine which registers
895 to save; `regs_ever_live[I]' is nonzero if register number I
896 is ever used in the function. This function is responsible for
897 knowing which registers should not be saved even if used.
898 Return true if we need to save REGNO. */
900 static bool
901 m68k_save_reg (unsigned int regno, bool interrupt_handler)
903 if (flag_pic && regno == PIC_REG)
905 if (crtl->saves_all_registers)
906 return true;
907 if (crtl->uses_pic_offset_table)
908 return true;
909 /* Reload may introduce constant pool references into a function
910 that thitherto didn't need a PIC register. Note that the test
911 above will not catch that case because we will only set
912 crtl->uses_pic_offset_table when emitting
913 the address reloads. */
914 if (crtl->uses_const_pool)
915 return true;
918 if (crtl->calls_eh_return)
920 unsigned int i;
921 for (i = 0; ; i++)
923 unsigned int test = EH_RETURN_DATA_REGNO (i);
924 if (test == INVALID_REGNUM)
925 break;
926 if (test == regno)
927 return true;
931 /* Fixed regs we never touch. */
932 if (fixed_regs[regno])
933 return false;
935 /* The frame pointer (if it is such) is handled specially. */
936 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
937 return false;
939 /* Interrupt handlers must also save call_used_regs
940 if they are live or when calling nested functions. */
941 if (interrupt_handler)
943 if (df_regs_ever_live_p (regno))
944 return true;
946 if (!current_function_is_leaf && call_used_regs[regno])
947 return true;
950 /* Never need to save registers that aren't touched. */
951 if (!df_regs_ever_live_p (regno))
952 return false;
954 /* Otherwise save everything that isn't call-clobbered. */
955 return !call_used_regs[regno];
958 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
959 the lowest memory address. COUNT is the number of registers to be
960 moved, with register REGNO + I being moved if bit I of MASK is set.
961 STORE_P specifies the direction of the move and ADJUST_STACK_P says
962 whether or not this is pre-decrement (if STORE_P) or post-increment
963 (if !STORE_P) operation. */
965 static rtx
966 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
967 unsigned int count, unsigned int regno,
968 unsigned int mask, bool store_p, bool adjust_stack_p)
970 int i;
971 rtx body, addr, src, operands[2];
972 enum machine_mode mode;
974 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
975 mode = reg_raw_mode[regno];
976 i = 0;
978 if (adjust_stack_p)
980 src = plus_constant (base, (count
981 * GET_MODE_SIZE (mode)
982 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
983 XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
986 for (; mask != 0; mask >>= 1, regno++)
987 if (mask & 1)
989 addr = plus_constant (base, offset);
990 operands[!store_p] = gen_frame_mem (mode, addr);
991 operands[store_p] = gen_rtx_REG (mode, regno);
992 XVECEXP (body, 0, i++)
993 = gen_rtx_SET (VOIDmode, operands[0], operands[1]);
994 offset += GET_MODE_SIZE (mode);
996 gcc_assert (i == XVECLEN (body, 0));
998 return emit_insn (body);
1001 /* Make INSN a frame-related instruction. */
1003 static void
1004 m68k_set_frame_related (rtx insn)
1006 rtx body;
1007 int i;
1009 RTX_FRAME_RELATED_P (insn) = 1;
1010 body = PATTERN (insn);
1011 if (GET_CODE (body) == PARALLEL)
1012 for (i = 0; i < XVECLEN (body, 0); i++)
1013 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
1016 /* Emit RTL for the "prologue" define_expand. */
1018 void
1019 m68k_expand_prologue (void)
1021 HOST_WIDE_INT fsize_with_regs;
1022 rtx limit, src, dest, insn;
1024 m68k_compute_frame_layout ();
1026 /* If the stack limit is a symbol, we can check it here,
1027 before actually allocating the space. */
1028 if (crtl->limit_stack
1029 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
1031 limit = plus_constant (stack_limit_rtx, current_frame.size + 4);
1032 if (!LEGITIMATE_CONSTANT_P (limit))
1034 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1035 limit = gen_rtx_REG (Pmode, D0_REG);
1037 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
1038 stack_pointer_rtx, limit),
1039 stack_pointer_rtx, limit,
1040 const1_rtx));
1043 fsize_with_regs = current_frame.size;
1044 if (TARGET_COLDFIRE)
1046 /* ColdFire's move multiple instructions do not allow pre-decrement
1047 addressing. Add the size of movem saves to the initial stack
1048 allocation instead. */
1049 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1050 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1051 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1052 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1055 if (frame_pointer_needed)
1057 if (fsize_with_regs == 0 && TUNE_68040)
1059 /* On the 68040, two separate moves are faster than link.w 0. */
1060 dest = gen_frame_mem (Pmode,
1061 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1062 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1063 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1064 stack_pointer_rtx));
1066 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1067 m68k_set_frame_related
1068 (emit_insn (gen_link (frame_pointer_rtx,
1069 GEN_INT (-4 - fsize_with_regs))));
1070 else
1072 m68k_set_frame_related
1073 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1074 m68k_set_frame_related
1075 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1076 stack_pointer_rtx,
1077 GEN_INT (-fsize_with_regs))));
1080 /* If the frame pointer is needed, emit a special barrier that
1081 will prevent the scheduler from moving stores to the frame
1082 before the stack adjustment. */
1083 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1085 else if (fsize_with_regs != 0)
1086 m68k_set_frame_related
1087 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1088 stack_pointer_rtx,
1089 GEN_INT (-fsize_with_regs))));
1091 if (current_frame.fpu_mask)
1093 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1094 if (TARGET_68881)
1095 m68k_set_frame_related
1096 (m68k_emit_movem (stack_pointer_rtx,
1097 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1098 current_frame.fpu_no, FP0_REG,
1099 current_frame.fpu_mask, true, true));
1100 else
1102 int offset;
1104 /* If we're using moveml to save the integer registers,
1105 the stack pointer will point to the bottom of the moveml
1106 save area. Find the stack offset of the first FP register. */
1107 if (current_frame.reg_no < MIN_MOVEM_REGS)
1108 offset = 0;
1109 else
1110 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1111 m68k_set_frame_related
1112 (m68k_emit_movem (stack_pointer_rtx, offset,
1113 current_frame.fpu_no, FP0_REG,
1114 current_frame.fpu_mask, true, false));
1118 /* If the stack limit is not a symbol, check it here.
1119 This has the disadvantage that it may be too late... */
1120 if (crtl->limit_stack)
1122 if (REG_P (stack_limit_rtx))
1123 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1124 stack_limit_rtx),
1125 stack_pointer_rtx, stack_limit_rtx,
1126 const1_rtx));
1128 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1129 warning (0, "stack limit expression is not supported");
1132 if (current_frame.reg_no < MIN_MOVEM_REGS)
1134 /* Store each register separately in the same order moveml does. */
1135 int i;
1137 for (i = 16; i-- > 0; )
1138 if (current_frame.reg_mask & (1 << i))
1140 src = gen_rtx_REG (SImode, D0_REG + i);
1141 dest = gen_frame_mem (SImode,
1142 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1143 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1146 else
1148 if (TARGET_COLDFIRE)
1149 /* The required register save space has already been allocated.
1150 The first register should be stored at (%sp). */
1151 m68k_set_frame_related
1152 (m68k_emit_movem (stack_pointer_rtx, 0,
1153 current_frame.reg_no, D0_REG,
1154 current_frame.reg_mask, true, false));
1155 else
1156 m68k_set_frame_related
1157 (m68k_emit_movem (stack_pointer_rtx,
1158 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1159 current_frame.reg_no, D0_REG,
1160 current_frame.reg_mask, true, true));
1163 if (!TARGET_SEP_DATA
1164 && crtl->uses_pic_offset_table)
1165 insn = emit_insn (gen_load_got (pic_offset_table_rtx));
1168 /* Return true if a simple (return) instruction is sufficient for this
1169 instruction (i.e. if no epilogue is needed). */
1171 bool
1172 m68k_use_return_insn (void)
1174 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1175 return false;
1177 m68k_compute_frame_layout ();
1178 return current_frame.offset == 0;
1181 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1182 SIBCALL_P says which.
1184 The function epilogue should not depend on the current stack pointer!
1185 It should use the frame pointer only, if there is a frame pointer.
1186 This is mandatory because of alloca; we also take advantage of it to
1187 omit stack adjustments before returning. */
1189 void
1190 m68k_expand_epilogue (bool sibcall_p)
1192 HOST_WIDE_INT fsize, fsize_with_regs;
1193 bool big, restore_from_sp;
1195 m68k_compute_frame_layout ();
1197 fsize = current_frame.size;
1198 big = false;
1199 restore_from_sp = false;
1201 /* FIXME : current_function_is_leaf below is too strong.
1202 What we really need to know there is if there could be pending
1203 stack adjustment needed at that point. */
1204 restore_from_sp = (!frame_pointer_needed
1205 || (!cfun->calls_alloca
1206 && current_function_is_leaf));
1208 /* fsize_with_regs is the size we need to adjust the sp when
1209 popping the frame. */
1210 fsize_with_regs = fsize;
1211 if (TARGET_COLDFIRE && restore_from_sp)
1213 /* ColdFire's move multiple instructions do not allow post-increment
1214 addressing. Add the size of movem loads to the final deallocation
1215 instead. */
1216 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1217 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1218 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1219 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1222 if (current_frame.offset + fsize >= 0x8000
1223 && !restore_from_sp
1224 && (current_frame.reg_mask || current_frame.fpu_mask))
1226 if (TARGET_COLDFIRE
1227 && (current_frame.reg_no >= MIN_MOVEM_REGS
1228 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1230 /* ColdFire's move multiple instructions do not support the
1231 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1232 stack-based restore. */
1233 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1234 GEN_INT (-(current_frame.offset + fsize)));
1235 emit_insn (gen_addsi3 (stack_pointer_rtx,
1236 gen_rtx_REG (Pmode, A1_REG),
1237 frame_pointer_rtx));
1238 restore_from_sp = true;
1240 else
1242 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1243 fsize = 0;
1244 big = true;
1248 if (current_frame.reg_no < MIN_MOVEM_REGS)
1250 /* Restore each register separately in the same order moveml does. */
1251 int i;
1252 HOST_WIDE_INT offset;
1254 offset = current_frame.offset + fsize;
1255 for (i = 0; i < 16; i++)
1256 if (current_frame.reg_mask & (1 << i))
1258 rtx addr;
1260 if (big)
1262 /* Generate the address -OFFSET(%fp,%a1.l). */
1263 addr = gen_rtx_REG (Pmode, A1_REG);
1264 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1265 addr = plus_constant (addr, -offset);
1267 else if (restore_from_sp)
1268 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1269 else
1270 addr = plus_constant (frame_pointer_rtx, -offset);
1271 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1272 gen_frame_mem (SImode, addr));
1273 offset -= GET_MODE_SIZE (SImode);
1276 else if (current_frame.reg_mask)
1278 if (big)
1279 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1280 gen_rtx_REG (Pmode, A1_REG),
1281 frame_pointer_rtx),
1282 -(current_frame.offset + fsize),
1283 current_frame.reg_no, D0_REG,
1284 current_frame.reg_mask, false, false);
1285 else if (restore_from_sp)
1286 m68k_emit_movem (stack_pointer_rtx, 0,
1287 current_frame.reg_no, D0_REG,
1288 current_frame.reg_mask, false,
1289 !TARGET_COLDFIRE);
1290 else
1291 m68k_emit_movem (frame_pointer_rtx,
1292 -(current_frame.offset + fsize),
1293 current_frame.reg_no, D0_REG,
1294 current_frame.reg_mask, false, false);
1297 if (current_frame.fpu_no > 0)
1299 if (big)
1300 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1301 gen_rtx_REG (Pmode, A1_REG),
1302 frame_pointer_rtx),
1303 -(current_frame.foffset + fsize),
1304 current_frame.fpu_no, FP0_REG,
1305 current_frame.fpu_mask, false, false);
1306 else if (restore_from_sp)
1308 if (TARGET_COLDFIRE)
1310 int offset;
1312 /* If we used moveml to restore the integer registers, the
1313 stack pointer will still point to the bottom of the moveml
1314 save area. Find the stack offset of the first FP
1315 register. */
1316 if (current_frame.reg_no < MIN_MOVEM_REGS)
1317 offset = 0;
1318 else
1319 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1320 m68k_emit_movem (stack_pointer_rtx, offset,
1321 current_frame.fpu_no, FP0_REG,
1322 current_frame.fpu_mask, false, false);
1324 else
1325 m68k_emit_movem (stack_pointer_rtx, 0,
1326 current_frame.fpu_no, FP0_REG,
1327 current_frame.fpu_mask, false, true);
1329 else
1330 m68k_emit_movem (frame_pointer_rtx,
1331 -(current_frame.foffset + fsize),
1332 current_frame.fpu_no, FP0_REG,
1333 current_frame.fpu_mask, false, false);
1336 if (frame_pointer_needed)
1337 emit_insn (gen_unlink (frame_pointer_rtx));
1338 else if (fsize_with_regs)
1339 emit_insn (gen_addsi3 (stack_pointer_rtx,
1340 stack_pointer_rtx,
1341 GEN_INT (fsize_with_regs)));
1343 if (crtl->calls_eh_return)
1344 emit_insn (gen_addsi3 (stack_pointer_rtx,
1345 stack_pointer_rtx,
1346 EH_RETURN_STACKADJ_RTX));
1348 if (!sibcall_p)
1349 emit_jump_insn (gen_rtx_RETURN (VOIDmode));
1352 /* Return true if X is a valid comparison operator for the dbcc
1353 instruction.
1355 Note it rejects floating point comparison operators.
1356 (In the future we could use Fdbcc).
1358 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1361 valid_dbcc_comparison_p_2 (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
1363 switch (GET_CODE (x))
1365 case EQ: case NE: case GTU: case LTU:
1366 case GEU: case LEU:
1367 return 1;
1369 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1370 conservative */
1371 case GT: case LT: case GE: case LE:
1372 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1373 default:
1374 return 0;
1378 /* Return nonzero if flags are currently in the 68881 flag register. */
1380 flags_in_68881 (void)
1382 /* We could add support for these in the future */
1383 return cc_status.flags & CC_IN_68881;
1386 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1388 static bool
1389 m68k_ok_for_sibcall_p (tree decl, tree exp)
1391 enum m68k_function_kind kind;
1393 /* We cannot use sibcalls for nested functions because we use the
1394 static chain register for indirect calls. */
1395 if (CALL_EXPR_STATIC_CHAIN (exp))
1396 return false;
1398 kind = m68k_get_function_kind (current_function_decl);
1399 if (kind == m68k_fk_normal_function)
1400 /* We can always sibcall from a normal function, because it's
1401 undefined if it is calling an interrupt function. */
1402 return true;
1404 /* Otherwise we can only sibcall if the function kind is known to be
1405 the same. */
1406 if (decl && m68k_get_function_kind (decl) == kind)
1407 return true;
1409 return false;
1412 /* Convert X to a legitimate function call memory reference and return the
1413 result. */
1416 m68k_legitimize_call_address (rtx x)
1418 gcc_assert (MEM_P (x));
1419 if (call_operand (XEXP (x, 0), VOIDmode))
1420 return x;
1421 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1424 /* Likewise for sibling calls. */
1427 m68k_legitimize_sibcall_address (rtx x)
1429 gcc_assert (MEM_P (x));
1430 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1431 return x;
1433 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1434 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1437 /* Convert X to a legitimate address and return it if successful. Otherwise
1438 return X.
1440 For the 68000, we handle X+REG by loading X into a register R and
1441 using R+REG. R will go in an address reg and indexing will be used.
1442 However, if REG is a broken-out memory address or multiplication,
1443 nothing needs to be done because REG can certainly go in an address reg. */
1445 static rtx
1446 m68k_legitimize_address (rtx x, rtx oldx, enum machine_mode mode)
1448 if (m68k_tls_symbol_p (x))
1449 return m68k_legitimize_tls_address (x);
1451 if (GET_CODE (x) == PLUS)
1453 int ch = (x) != (oldx);
1454 int copied = 0;
1456 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1458 if (GET_CODE (XEXP (x, 0)) == MULT)
1460 COPY_ONCE (x);
1461 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1463 if (GET_CODE (XEXP (x, 1)) == MULT)
1465 COPY_ONCE (x);
1466 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1468 if (ch)
1470 if (GET_CODE (XEXP (x, 1)) == REG
1471 && GET_CODE (XEXP (x, 0)) == REG)
1473 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1475 COPY_ONCE (x);
1476 x = force_operand (x, 0);
1478 return x;
1480 if (memory_address_p (mode, x))
1481 return x;
1483 if (GET_CODE (XEXP (x, 0)) == REG
1484 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1485 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1486 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1488 rtx temp = gen_reg_rtx (Pmode);
1489 rtx val = force_operand (XEXP (x, 1), 0);
1490 emit_move_insn (temp, val);
1491 COPY_ONCE (x);
1492 XEXP (x, 1) = temp;
1493 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1494 && GET_CODE (XEXP (x, 0)) == REG)
1495 x = force_operand (x, 0);
1497 else if (GET_CODE (XEXP (x, 1)) == REG
1498 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1499 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1500 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1502 rtx temp = gen_reg_rtx (Pmode);
1503 rtx val = force_operand (XEXP (x, 0), 0);
1504 emit_move_insn (temp, val);
1505 COPY_ONCE (x);
1506 XEXP (x, 0) = temp;
1507 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1508 && GET_CODE (XEXP (x, 1)) == REG)
1509 x = force_operand (x, 0);
1513 return x;
1517 /* Output a dbCC; jCC sequence. Note we do not handle the
1518 floating point version of this sequence (Fdbcc). We also
1519 do not handle alternative conditions when CC_NO_OVERFLOW is
1520 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1521 kick those out before we get here. */
1523 void
1524 output_dbcc_and_branch (rtx *operands)
1526 switch (GET_CODE (operands[3]))
1528 case EQ:
1529 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1530 break;
1532 case NE:
1533 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1534 break;
1536 case GT:
1537 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1538 break;
1540 case GTU:
1541 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1542 break;
1544 case LT:
1545 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1546 break;
1548 case LTU:
1549 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1550 break;
1552 case GE:
1553 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1554 break;
1556 case GEU:
1557 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1558 break;
1560 case LE:
1561 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1562 break;
1564 case LEU:
1565 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1566 break;
1568 default:
1569 gcc_unreachable ();
1572 /* If the decrement is to be done in SImode, then we have
1573 to compensate for the fact that dbcc decrements in HImode. */
1574 switch (GET_MODE (operands[0]))
1576 case SImode:
1577 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1578 break;
1580 case HImode:
1581 break;
1583 default:
1584 gcc_unreachable ();
1588 const char *
1589 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1591 rtx loperands[7];
1592 enum rtx_code op_code = GET_CODE (op);
1594 /* This does not produce a useful cc. */
1595 CC_STATUS_INIT;
1597 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1598 below. Swap the operands and change the op if these requirements
1599 are not fulfilled. */
1600 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1602 rtx tmp = operand1;
1604 operand1 = operand2;
1605 operand2 = tmp;
1606 op_code = swap_condition (op_code);
1608 loperands[0] = operand1;
1609 if (GET_CODE (operand1) == REG)
1610 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1611 else
1612 loperands[1] = adjust_address (operand1, SImode, 4);
1613 if (operand2 != const0_rtx)
1615 loperands[2] = operand2;
1616 if (GET_CODE (operand2) == REG)
1617 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1618 else
1619 loperands[3] = adjust_address (operand2, SImode, 4);
1621 loperands[4] = gen_label_rtx ();
1622 if (operand2 != const0_rtx)
1623 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1624 else
1626 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1627 output_asm_insn ("tst%.l %0", loperands);
1628 else
1629 output_asm_insn ("cmp%.w #0,%0", loperands);
1631 output_asm_insn ("jne %l4", loperands);
1633 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1634 output_asm_insn ("tst%.l %1", loperands);
1635 else
1636 output_asm_insn ("cmp%.w #0,%1", loperands);
1639 loperands[5] = dest;
1641 switch (op_code)
1643 case EQ:
1644 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1645 CODE_LABEL_NUMBER (loperands[4]));
1646 output_asm_insn ("seq %5", loperands);
1647 break;
1649 case NE:
1650 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1651 CODE_LABEL_NUMBER (loperands[4]));
1652 output_asm_insn ("sne %5", loperands);
1653 break;
1655 case GT:
1656 loperands[6] = gen_label_rtx ();
1657 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1658 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1659 CODE_LABEL_NUMBER (loperands[4]));
1660 output_asm_insn ("sgt %5", loperands);
1661 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1662 CODE_LABEL_NUMBER (loperands[6]));
1663 break;
1665 case GTU:
1666 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1667 CODE_LABEL_NUMBER (loperands[4]));
1668 output_asm_insn ("shi %5", loperands);
1669 break;
1671 case LT:
1672 loperands[6] = gen_label_rtx ();
1673 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1674 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1675 CODE_LABEL_NUMBER (loperands[4]));
1676 output_asm_insn ("slt %5", loperands);
1677 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1678 CODE_LABEL_NUMBER (loperands[6]));
1679 break;
1681 case LTU:
1682 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1683 CODE_LABEL_NUMBER (loperands[4]));
1684 output_asm_insn ("scs %5", loperands);
1685 break;
1687 case GE:
1688 loperands[6] = gen_label_rtx ();
1689 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1690 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1691 CODE_LABEL_NUMBER (loperands[4]));
1692 output_asm_insn ("sge %5", loperands);
1693 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1694 CODE_LABEL_NUMBER (loperands[6]));
1695 break;
1697 case GEU:
1698 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1699 CODE_LABEL_NUMBER (loperands[4]));
1700 output_asm_insn ("scc %5", loperands);
1701 break;
1703 case LE:
1704 loperands[6] = gen_label_rtx ();
1705 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1706 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1707 CODE_LABEL_NUMBER (loperands[4]));
1708 output_asm_insn ("sle %5", loperands);
1709 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1710 CODE_LABEL_NUMBER (loperands[6]));
1711 break;
1713 case LEU:
1714 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1715 CODE_LABEL_NUMBER (loperands[4]));
1716 output_asm_insn ("sls %5", loperands);
1717 break;
1719 default:
1720 gcc_unreachable ();
1722 return "";
1725 const char *
1726 output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
1728 operands[0] = countop;
1729 operands[1] = dataop;
1731 if (GET_CODE (countop) == CONST_INT)
1733 register int count = INTVAL (countop);
1734 /* If COUNT is bigger than size of storage unit in use,
1735 advance to the containing unit of same size. */
1736 if (count > signpos)
1738 int offset = (count & ~signpos) / 8;
1739 count = count & signpos;
1740 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1742 if (count == signpos)
1743 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1744 else
1745 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1747 /* These three statements used to use next_insns_test_no...
1748 but it appears that this should do the same job. */
1749 if (count == 31
1750 && next_insn_tests_no_inequality (insn))
1751 return "tst%.l %1";
1752 if (count == 15
1753 && next_insn_tests_no_inequality (insn))
1754 return "tst%.w %1";
1755 if (count == 7
1756 && next_insn_tests_no_inequality (insn))
1757 return "tst%.b %1";
1758 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1759 On some m68k variants unfortunately that's slower than btst.
1760 On 68000 and higher, that should also work for all HImode operands. */
1761 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1763 if (count == 3 && DATA_REG_P (operands[1])
1764 && next_insn_tests_no_inequality (insn))
1766 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1767 return "move%.w %1,%%ccr";
1769 if (count == 2 && DATA_REG_P (operands[1])
1770 && next_insn_tests_no_inequality (insn))
1772 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1773 return "move%.w %1,%%ccr";
1775 /* count == 1 followed by bvc/bvs and
1776 count == 0 followed by bcc/bcs are also possible, but need
1777 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1780 cc_status.flags = CC_NOT_NEGATIVE;
1782 return "btst %0,%1";
1785 /* Return true if X is a legitimate base register. STRICT_P says
1786 whether we need strict checking. */
1788 bool
1789 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1791 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1792 if (!strict_p && GET_CODE (x) == SUBREG)
1793 x = SUBREG_REG (x);
1795 return (REG_P (x)
1796 && (strict_p
1797 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1798 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1801 /* Return true if X is a legitimate index register. STRICT_P says
1802 whether we need strict checking. */
1804 bool
1805 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1807 if (!strict_p && GET_CODE (x) == SUBREG)
1808 x = SUBREG_REG (x);
1810 return (REG_P (x)
1811 && (strict_p
1812 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1813 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1816 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1817 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1818 ADDRESS if so. STRICT_P says whether we need strict checking. */
1820 static bool
1821 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1823 int scale;
1825 /* Check for a scale factor. */
1826 scale = 1;
1827 if ((TARGET_68020 || TARGET_COLDFIRE)
1828 && GET_CODE (x) == MULT
1829 && GET_CODE (XEXP (x, 1)) == CONST_INT
1830 && (INTVAL (XEXP (x, 1)) == 2
1831 || INTVAL (XEXP (x, 1)) == 4
1832 || (INTVAL (XEXP (x, 1)) == 8
1833 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1835 scale = INTVAL (XEXP (x, 1));
1836 x = XEXP (x, 0);
1839 /* Check for a word extension. */
1840 if (!TARGET_COLDFIRE
1841 && GET_CODE (x) == SIGN_EXTEND
1842 && GET_MODE (XEXP (x, 0)) == HImode)
1843 x = XEXP (x, 0);
1845 if (m68k_legitimate_index_reg_p (x, strict_p))
1847 address->scale = scale;
1848 address->index = x;
1849 return true;
1852 return false;
1855 /* Return true if X is an illegitimate symbolic constant. */
1857 bool
1858 m68k_illegitimate_symbolic_constant_p (rtx x)
1860 rtx base, offset;
1862 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1864 split_const (x, &base, &offset);
1865 if (GET_CODE (base) == SYMBOL_REF
1866 && !offset_within_block_p (base, INTVAL (offset)))
1867 return true;
1869 return m68k_tls_reference_p (x, false);
1872 /* Return true if X is a legitimate constant address that can reach
1873 bytes in the range [X, X + REACH). STRICT_P says whether we need
1874 strict checking. */
1876 static bool
1877 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1879 rtx base, offset;
1881 if (!CONSTANT_ADDRESS_P (x))
1882 return false;
1884 if (flag_pic
1885 && !(strict_p && TARGET_PCREL)
1886 && symbolic_operand (x, VOIDmode))
1887 return false;
1889 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1891 split_const (x, &base, &offset);
1892 if (GET_CODE (base) == SYMBOL_REF
1893 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1894 return false;
1897 return !m68k_tls_reference_p (x, false);
1900 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1901 labels will become jump tables. */
1903 static bool
1904 m68k_jump_table_ref_p (rtx x)
1906 if (GET_CODE (x) != LABEL_REF)
1907 return false;
1909 x = XEXP (x, 0);
1910 if (!NEXT_INSN (x) && !PREV_INSN (x))
1911 return true;
1913 x = next_nonnote_insn (x);
1914 return x && JUMP_TABLE_DATA_P (x);
1917 /* Return true if X is a legitimate address for values of mode MODE.
1918 STRICT_P says whether strict checking is needed. If the address
1919 is valid, describe its components in *ADDRESS. */
1921 static bool
1922 m68k_decompose_address (enum machine_mode mode, rtx x,
1923 bool strict_p, struct m68k_address *address)
1925 unsigned int reach;
1927 memset (address, 0, sizeof (*address));
1929 if (mode == BLKmode)
1930 reach = 1;
1931 else
1932 reach = GET_MODE_SIZE (mode);
1934 /* Check for (An) (mode 2). */
1935 if (m68k_legitimate_base_reg_p (x, strict_p))
1937 address->base = x;
1938 return true;
1941 /* Check for -(An) and (An)+ (modes 3 and 4). */
1942 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
1943 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1945 address->code = GET_CODE (x);
1946 address->base = XEXP (x, 0);
1947 return true;
1950 /* Check for (d16,An) (mode 5). */
1951 if (GET_CODE (x) == PLUS
1952 && GET_CODE (XEXP (x, 1)) == CONST_INT
1953 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
1954 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
1956 address->base = XEXP (x, 0);
1957 address->offset = XEXP (x, 1);
1958 return true;
1961 /* Check for GOT loads. These are (bd,An,Xn) addresses if
1962 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
1963 addresses. */
1964 if (GET_CODE (x) == PLUS
1965 && XEXP (x, 0) == pic_offset_table_rtx)
1967 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
1968 they are invalid in this context. */
1969 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
1971 address->base = XEXP (x, 0);
1972 address->offset = XEXP (x, 1);
1973 return true;
1977 /* The ColdFire FPU only accepts addressing modes 2-5. */
1978 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1979 return false;
1981 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
1982 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
1983 All these modes are variations of mode 7. */
1984 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
1986 address->offset = x;
1987 return true;
1990 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
1991 tablejumps.
1993 ??? do_tablejump creates these addresses before placing the target
1994 label, so we have to assume that unplaced labels are jump table
1995 references. It seems unlikely that we would ever generate indexed
1996 accesses to unplaced labels in other cases. */
1997 if (GET_CODE (x) == PLUS
1998 && m68k_jump_table_ref_p (XEXP (x, 1))
1999 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2001 address->offset = XEXP (x, 1);
2002 return true;
2005 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2006 (bd,An,Xn.SIZE*SCALE) addresses. */
2008 if (TARGET_68020)
2010 /* Check for a nonzero base displacement. */
2011 if (GET_CODE (x) == PLUS
2012 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2014 address->offset = XEXP (x, 1);
2015 x = XEXP (x, 0);
2018 /* Check for a suppressed index register. */
2019 if (m68k_legitimate_base_reg_p (x, strict_p))
2021 address->base = x;
2022 return true;
2025 /* Check for a suppressed base register. Do not allow this case
2026 for non-symbolic offsets as it effectively gives gcc freedom
2027 to treat data registers as base registers, which can generate
2028 worse code. */
2029 if (address->offset
2030 && symbolic_operand (address->offset, VOIDmode)
2031 && m68k_decompose_index (x, strict_p, address))
2032 return true;
2034 else
2036 /* Check for a nonzero base displacement. */
2037 if (GET_CODE (x) == PLUS
2038 && GET_CODE (XEXP (x, 1)) == CONST_INT
2039 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2041 address->offset = XEXP (x, 1);
2042 x = XEXP (x, 0);
2046 /* We now expect the sum of a base and an index. */
2047 if (GET_CODE (x) == PLUS)
2049 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2050 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2052 address->base = XEXP (x, 0);
2053 return true;
2056 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2057 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2059 address->base = XEXP (x, 1);
2060 return true;
2063 return false;
2066 /* Return true if X is a legitimate address for values of mode MODE.
2067 STRICT_P says whether strict checking is needed. */
2069 bool
2070 m68k_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
2072 struct m68k_address address;
2074 return m68k_decompose_address (mode, x, strict_p, &address);
2077 /* Return true if X is a memory, describing its address in ADDRESS if so.
2078 Apply strict checking if called during or after reload. */
2080 static bool
2081 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2083 return (MEM_P (x)
2084 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2085 reload_in_progress || reload_completed,
2086 address));
2089 /* Return true if X matches the 'Q' constraint. It must be a memory
2090 with a base address and no constant offset or index. */
2092 bool
2093 m68k_matches_q_p (rtx x)
2095 struct m68k_address address;
2097 return (m68k_legitimate_mem_p (x, &address)
2098 && address.code == UNKNOWN
2099 && address.base
2100 && !address.offset
2101 && !address.index);
2104 /* Return true if X matches the 'U' constraint. It must be a base address
2105 with a constant offset and no index. */
2107 bool
2108 m68k_matches_u_p (rtx x)
2110 struct m68k_address address;
2112 return (m68k_legitimate_mem_p (x, &address)
2113 && address.code == UNKNOWN
2114 && address.base
2115 && address.offset
2116 && !address.index);
2119 /* Return GOT pointer. */
2121 static rtx
2122 m68k_get_gp (void)
2124 if (pic_offset_table_rtx == NULL_RTX)
2125 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2127 crtl->uses_pic_offset_table = 1;
2129 return pic_offset_table_rtx;
2132 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2133 wrappers. */
2134 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2135 RELOC_TLSIE, RELOC_TLSLE };
2137 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2139 /* Wrap symbol X into unspec representing relocation RELOC.
2140 BASE_REG - register that should be added to the result.
2141 TEMP_REG - if non-null, temporary register. */
2143 static rtx
2144 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2146 bool use_x_p;
2148 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2150 if (TARGET_COLDFIRE && use_x_p)
2151 /* When compiling with -mx{got, tls} switch the code will look like this:
2153 move.l <X>@<RELOC>,<TEMP_REG>
2154 add.l <BASE_REG>,<TEMP_REG> */
2156 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2157 to put @RELOC after reference. */
2158 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2159 UNSPEC_RELOC32);
2160 x = gen_rtx_CONST (Pmode, x);
2162 if (temp_reg == NULL)
2164 gcc_assert (can_create_pseudo_p ());
2165 temp_reg = gen_reg_rtx (Pmode);
2168 emit_move_insn (temp_reg, x);
2169 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2170 x = temp_reg;
2172 else
2174 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2175 UNSPEC_RELOC16);
2176 x = gen_rtx_CONST (Pmode, x);
2178 x = gen_rtx_PLUS (Pmode, base_reg, x);
2181 return x;
2184 /* Helper for m68k_unwrap_symbol.
2185 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2186 sets *RELOC_PTR to relocation type for the symbol. */
2188 static rtx
2189 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2190 enum m68k_reloc *reloc_ptr)
2192 if (GET_CODE (orig) == CONST)
2194 rtx x;
2195 enum m68k_reloc dummy;
2197 x = XEXP (orig, 0);
2199 if (reloc_ptr == NULL)
2200 reloc_ptr = &dummy;
2202 /* Handle an addend. */
2203 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2204 && CONST_INT_P (XEXP (x, 1)))
2205 x = XEXP (x, 0);
2207 if (GET_CODE (x) == UNSPEC)
2209 switch (XINT (x, 1))
2211 case UNSPEC_RELOC16:
2212 orig = XVECEXP (x, 0, 0);
2213 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2214 break;
2216 case UNSPEC_RELOC32:
2217 if (unwrap_reloc32_p)
2219 orig = XVECEXP (x, 0, 0);
2220 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2222 break;
2224 default:
2225 break;
2230 return orig;
2233 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2234 UNSPEC_RELOC32 wrappers. */
2237 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2239 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2242 /* Helper for m68k_final_prescan_insn. */
2244 static int
2245 m68k_final_prescan_insn_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2247 rtx x = *x_ptr;
2249 if (m68k_unwrap_symbol (x, true) != x)
2250 /* For rationale of the below, see comment in m68k_final_prescan_insn. */
2252 rtx plus;
2254 gcc_assert (GET_CODE (x) == CONST);
2255 plus = XEXP (x, 0);
2257 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2259 rtx unspec;
2260 rtx addend;
2262 unspec = XEXP (plus, 0);
2263 gcc_assert (GET_CODE (unspec) == UNSPEC);
2264 addend = XEXP (plus, 1);
2265 gcc_assert (CONST_INT_P (addend));
2267 /* We now have all the pieces, rearrange them. */
2269 /* Move symbol to plus. */
2270 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2272 /* Move plus inside unspec. */
2273 XVECEXP (unspec, 0, 0) = plus;
2275 /* Move unspec to top level of const. */
2276 XEXP (x, 0) = unspec;
2279 return -1;
2282 return 0;
2285 /* Prescan insn before outputing assembler for it. */
2287 void
2288 m68k_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED,
2289 rtx *operands, int n_operands)
2291 int i;
2293 /* Combine and, possibly, other optimizations may do good job
2294 converting
2295 (const (unspec [(symbol)]))
2296 into
2297 (const (plus (unspec [(symbol)])
2298 (const_int N))).
2299 The problem with this is emitting @TLS or @GOT decorations.
2300 The decoration is emitted when processing (unspec), so the
2301 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2303 It seems that the easiest solution to this is to convert such
2304 operands to
2305 (const (unspec [(plus (symbol)
2306 (const_int N))])).
2307 Note, that the top level of operand remains intact, so we don't have
2308 to patch up anything outside of the operand. */
2310 for (i = 0; i < n_operands; ++i)
2312 rtx op;
2314 op = operands[i];
2316 for_each_rtx (&op, m68k_final_prescan_insn_1, NULL);
2320 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2321 If REG is non-null, use it; generate new pseudo otherwise. */
2323 static rtx
2324 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2326 rtx insn;
2328 if (reg == NULL_RTX)
2330 gcc_assert (can_create_pseudo_p ());
2331 reg = gen_reg_rtx (Pmode);
2334 insn = emit_move_insn (reg, x);
2335 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2336 by loop. */
2337 set_unique_reg_note (insn, REG_EQUAL, orig);
2339 return reg;
2342 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2343 GOT slot. */
2345 static rtx
2346 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2348 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2350 x = gen_rtx_MEM (Pmode, x);
2351 MEM_READONLY_P (x) = 1;
2353 return x;
2356 /* Legitimize PIC addresses. If the address is already
2357 position-independent, we return ORIG. Newly generated
2358 position-independent addresses go to REG. If we need more
2359 than one register, we lose.
2361 An address is legitimized by making an indirect reference
2362 through the Global Offset Table with the name of the symbol
2363 used as an offset.
2365 The assembler and linker are responsible for placing the
2366 address of the symbol in the GOT. The function prologue
2367 is responsible for initializing a5 to the starting address
2368 of the GOT.
2370 The assembler is also responsible for translating a symbol name
2371 into a constant displacement from the start of the GOT.
2373 A quick example may make things a little clearer:
2375 When not generating PIC code to store the value 12345 into _foo
2376 we would generate the following code:
2378 movel #12345, _foo
2380 When generating PIC two transformations are made. First, the compiler
2381 loads the address of foo into a register. So the first transformation makes:
2383 lea _foo, a0
2384 movel #12345, a0@
2386 The code in movsi will intercept the lea instruction and call this
2387 routine which will transform the instructions into:
2389 movel a5@(_foo:w), a0
2390 movel #12345, a0@
2393 That (in a nutshell) is how *all* symbol and label references are
2394 handled. */
2397 legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
2398 rtx reg)
2400 rtx pic_ref = orig;
2402 /* First handle a simple SYMBOL_REF or LABEL_REF */
2403 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2405 gcc_assert (reg);
2407 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2408 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2410 else if (GET_CODE (orig) == CONST)
2412 rtx base;
2414 /* Make sure this has not already been legitimized. */
2415 if (m68k_unwrap_symbol (orig, true) != orig)
2416 return orig;
2418 gcc_assert (reg);
2420 /* legitimize both operands of the PLUS */
2421 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2423 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2424 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2425 base == reg ? 0 : reg);
2427 if (GET_CODE (orig) == CONST_INT)
2428 pic_ref = plus_constant (base, INTVAL (orig));
2429 else
2430 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2433 return pic_ref;
2436 /* The __tls_get_addr symbol. */
2437 static GTY(()) rtx m68k_tls_get_addr;
2439 /* Return SYMBOL_REF for __tls_get_addr. */
2441 static rtx
2442 m68k_get_tls_get_addr (void)
2444 if (m68k_tls_get_addr == NULL_RTX)
2445 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2447 return m68k_tls_get_addr;
2450 /* Return libcall result in A0 instead of usual D0. */
2451 static bool m68k_libcall_value_in_a0_p = false;
2453 /* Emit instruction sequence that calls __tls_get_addr. X is
2454 the TLS symbol we are referencing and RELOC is the symbol type to use
2455 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2456 emitted. A pseudo register with result of __tls_get_addr call is
2457 returned. */
2459 static rtx
2460 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2462 rtx a0;
2463 rtx insns;
2464 rtx dest;
2466 /* Emit the call sequence. */
2467 start_sequence ();
2469 /* FIXME: Unfortunately, emit_library_call_value does not
2470 consider (plus (%a5) (const (unspec))) to be a good enough
2471 operand for push, so it forces it into a register. The bad
2472 thing about this is that combiner, due to copy propagation and other
2473 optimizations, sometimes can not later fix this. As a consequence,
2474 additional register may be allocated resulting in a spill.
2475 For reference, see args processing loops in
2476 calls.c:emit_library_call_value_1.
2477 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2478 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2480 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2481 is the simpliest way of generating a call. The difference between
2482 __tls_get_addr() and libcall is that the result is returned in D0
2483 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2484 which temporarily switches returning the result to A0. */
2486 m68k_libcall_value_in_a0_p = true;
2487 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2488 Pmode, 1, x, Pmode);
2489 m68k_libcall_value_in_a0_p = false;
2491 insns = get_insns ();
2492 end_sequence ();
2494 gcc_assert (can_create_pseudo_p ());
2495 dest = gen_reg_rtx (Pmode);
2496 emit_libcall_block (insns, dest, a0, eqv);
2498 return dest;
2501 /* The __tls_get_addr symbol. */
2502 static GTY(()) rtx m68k_read_tp;
2504 /* Return SYMBOL_REF for __m68k_read_tp. */
2506 static rtx
2507 m68k_get_m68k_read_tp (void)
2509 if (m68k_read_tp == NULL_RTX)
2510 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2512 return m68k_read_tp;
2515 /* Emit instruction sequence that calls __m68k_read_tp.
2516 A pseudo register with result of __m68k_read_tp call is returned. */
2518 static rtx
2519 m68k_call_m68k_read_tp (void)
2521 rtx a0;
2522 rtx eqv;
2523 rtx insns;
2524 rtx dest;
2526 start_sequence ();
2528 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2529 is the simpliest way of generating a call. The difference between
2530 __m68k_read_tp() and libcall is that the result is returned in D0
2531 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2532 which temporarily switches returning the result to A0. */
2534 /* Emit the call sequence. */
2535 m68k_libcall_value_in_a0_p = true;
2536 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2537 Pmode, 0);
2538 m68k_libcall_value_in_a0_p = false;
2539 insns = get_insns ();
2540 end_sequence ();
2542 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2543 share the m68k_read_tp result with other IE/LE model accesses. */
2544 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2546 gcc_assert (can_create_pseudo_p ());
2547 dest = gen_reg_rtx (Pmode);
2548 emit_libcall_block (insns, dest, a0, eqv);
2550 return dest;
2553 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2554 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2555 ColdFire. */
2558 m68k_legitimize_tls_address (rtx orig)
2560 switch (SYMBOL_REF_TLS_MODEL (orig))
2562 case TLS_MODEL_GLOBAL_DYNAMIC:
2563 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2564 break;
2566 case TLS_MODEL_LOCAL_DYNAMIC:
2568 rtx eqv;
2569 rtx a0;
2570 rtx x;
2572 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2573 share the LDM result with other LD model accesses. */
2574 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2575 UNSPEC_RELOC32);
2577 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2579 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2581 if (can_create_pseudo_p ())
2582 x = m68k_move_to_reg (x, orig, NULL_RTX);
2584 orig = x;
2585 break;
2588 case TLS_MODEL_INITIAL_EXEC:
2590 rtx a0;
2591 rtx x;
2593 a0 = m68k_call_m68k_read_tp ();
2595 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2596 x = gen_rtx_PLUS (Pmode, x, a0);
2598 if (can_create_pseudo_p ())
2599 x = m68k_move_to_reg (x, orig, NULL_RTX);
2601 orig = x;
2602 break;
2605 case TLS_MODEL_LOCAL_EXEC:
2607 rtx a0;
2608 rtx x;
2610 a0 = m68k_call_m68k_read_tp ();
2612 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2614 if (can_create_pseudo_p ())
2615 x = m68k_move_to_reg (x, orig, NULL_RTX);
2617 orig = x;
2618 break;
2621 default:
2622 gcc_unreachable ();
2625 return orig;
2628 /* Return true if X is a TLS symbol. */
2630 static bool
2631 m68k_tls_symbol_p (rtx x)
2633 if (!TARGET_HAVE_TLS)
2634 return false;
2636 if (GET_CODE (x) != SYMBOL_REF)
2637 return false;
2639 return SYMBOL_REF_TLS_MODEL (x) != 0;
2642 /* Helper for m68k_tls_referenced_p. */
2644 static int
2645 m68k_tls_reference_p_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2647 /* Note: this is not the same as m68k_tls_symbol_p. */
2648 if (GET_CODE (*x_ptr) == SYMBOL_REF)
2649 return SYMBOL_REF_TLS_MODEL (*x_ptr) != 0 ? 1 : 0;
2651 /* Don't recurse into legitimate TLS references. */
2652 if (m68k_tls_reference_p (*x_ptr, true))
2653 return -1;
2655 return 0;
2658 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2659 though illegitimate one.
2660 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2662 bool
2663 m68k_tls_reference_p (rtx x, bool legitimate_p)
2665 if (!TARGET_HAVE_TLS)
2666 return false;
2668 if (!legitimate_p)
2669 return for_each_rtx (&x, m68k_tls_reference_p_1, NULL) == 1 ? true : false;
2670 else
2672 enum m68k_reloc reloc = RELOC_GOT;
2674 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2675 && TLS_RELOC_P (reloc));
2681 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2683 /* Return the type of move that should be used for integer I. */
2685 M68K_CONST_METHOD
2686 m68k_const_method (HOST_WIDE_INT i)
2688 unsigned u;
2690 if (USE_MOVQ (i))
2691 return MOVQ;
2693 /* The ColdFire doesn't have byte or word operations. */
2694 /* FIXME: This may not be useful for the m68060 either. */
2695 if (!TARGET_COLDFIRE)
2697 /* if -256 < N < 256 but N is not in range for a moveq
2698 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2699 if (USE_MOVQ (i ^ 0xff))
2700 return NOTB;
2701 /* Likewise, try with not.w */
2702 if (USE_MOVQ (i ^ 0xffff))
2703 return NOTW;
2704 /* This is the only value where neg.w is useful */
2705 if (i == -65408)
2706 return NEGW;
2709 /* Try also with swap. */
2710 u = i;
2711 if (USE_MOVQ ((u >> 16) | (u << 16)))
2712 return SWAP;
2714 if (TARGET_ISAB)
2716 /* Try using MVZ/MVS with an immediate value to load constants. */
2717 if (i >= 0 && i <= 65535)
2718 return MVZ;
2719 if (i >= -32768 && i <= 32767)
2720 return MVS;
2723 /* Otherwise, use move.l */
2724 return MOVL;
2727 /* Return the cost of moving constant I into a data register. */
2729 static int
2730 const_int_cost (HOST_WIDE_INT i)
2732 switch (m68k_const_method (i))
2734 case MOVQ:
2735 /* Constants between -128 and 127 are cheap due to moveq. */
2736 return 0;
2737 case MVZ:
2738 case MVS:
2739 case NOTB:
2740 case NOTW:
2741 case NEGW:
2742 case SWAP:
2743 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2744 return 1;
2745 case MOVL:
2746 return 2;
2747 default:
2748 gcc_unreachable ();
2752 static bool
2753 m68k_rtx_costs (rtx x, int code, int outer_code, int *total,
2754 bool speed ATTRIBUTE_UNUSED)
2756 switch (code)
2758 case CONST_INT:
2759 /* Constant zero is super cheap due to clr instruction. */
2760 if (x == const0_rtx)
2761 *total = 0;
2762 else
2763 *total = const_int_cost (INTVAL (x));
2764 return true;
2766 case CONST:
2767 case LABEL_REF:
2768 case SYMBOL_REF:
2769 *total = 3;
2770 return true;
2772 case CONST_DOUBLE:
2773 /* Make 0.0 cheaper than other floating constants to
2774 encourage creating tstsf and tstdf insns. */
2775 if (outer_code == COMPARE
2776 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2777 *total = 4;
2778 else
2779 *total = 5;
2780 return true;
2782 /* These are vaguely right for a 68020. */
2783 /* The costs for long multiply have been adjusted to work properly
2784 in synth_mult on the 68020, relative to an average of the time
2785 for add and the time for shift, taking away a little more because
2786 sometimes move insns are needed. */
2787 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2788 terms. */
2789 #define MULL_COST \
2790 (TUNE_68060 ? 2 \
2791 : TUNE_68040 ? 5 \
2792 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2793 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2794 : TUNE_CFV2 ? 8 \
2795 : TARGET_COLDFIRE ? 3 : 13)
2797 #define MULW_COST \
2798 (TUNE_68060 ? 2 \
2799 : TUNE_68040 ? 3 \
2800 : TUNE_68000_10 ? 5 \
2801 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2802 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2803 : TUNE_CFV2 ? 8 \
2804 : TARGET_COLDFIRE ? 2 : 8)
2806 #define DIVW_COST \
2807 (TARGET_CF_HWDIV ? 11 \
2808 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2810 case PLUS:
2811 /* An lea costs about three times as much as a simple add. */
2812 if (GET_MODE (x) == SImode
2813 && GET_CODE (XEXP (x, 1)) == REG
2814 && GET_CODE (XEXP (x, 0)) == MULT
2815 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2816 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2817 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2818 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2819 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2821 /* lea an@(dx:l:i),am */
2822 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2823 return true;
2825 return false;
2827 case ASHIFT:
2828 case ASHIFTRT:
2829 case LSHIFTRT:
2830 if (TUNE_68060)
2832 *total = COSTS_N_INSNS(1);
2833 return true;
2835 if (TUNE_68000_10)
2837 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2839 if (INTVAL (XEXP (x, 1)) < 16)
2840 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2841 else
2842 /* We're using clrw + swap for these cases. */
2843 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2845 else
2846 *total = COSTS_N_INSNS (10); /* Worst case. */
2847 return true;
2849 /* A shift by a big integer takes an extra instruction. */
2850 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2851 && (INTVAL (XEXP (x, 1)) == 16))
2853 *total = COSTS_N_INSNS (2); /* clrw;swap */
2854 return true;
2856 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2857 && !(INTVAL (XEXP (x, 1)) > 0
2858 && INTVAL (XEXP (x, 1)) <= 8))
2860 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2861 return true;
2863 return false;
2865 case MULT:
2866 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2867 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2868 && GET_MODE (x) == SImode)
2869 *total = COSTS_N_INSNS (MULW_COST);
2870 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2871 *total = COSTS_N_INSNS (MULW_COST);
2872 else
2873 *total = COSTS_N_INSNS (MULL_COST);
2874 return true;
2876 case DIV:
2877 case UDIV:
2878 case MOD:
2879 case UMOD:
2880 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2881 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2882 else if (TARGET_CF_HWDIV)
2883 *total = COSTS_N_INSNS (18);
2884 else
2885 *total = COSTS_N_INSNS (43); /* div.l */
2886 return true;
2888 case ZERO_EXTRACT:
2889 if (outer_code == COMPARE)
2890 *total = 0;
2891 return false;
2893 default:
2894 return false;
2898 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2899 OPERANDS[0]. */
2901 static const char *
2902 output_move_const_into_data_reg (rtx *operands)
2904 HOST_WIDE_INT i;
2906 i = INTVAL (operands[1]);
2907 switch (m68k_const_method (i))
2909 case MVZ:
2910 return "mvzw %1,%0";
2911 case MVS:
2912 return "mvsw %1,%0";
2913 case MOVQ:
2914 return "moveq %1,%0";
2915 case NOTB:
2916 CC_STATUS_INIT;
2917 operands[1] = GEN_INT (i ^ 0xff);
2918 return "moveq %1,%0\n\tnot%.b %0";
2919 case NOTW:
2920 CC_STATUS_INIT;
2921 operands[1] = GEN_INT (i ^ 0xffff);
2922 return "moveq %1,%0\n\tnot%.w %0";
2923 case NEGW:
2924 CC_STATUS_INIT;
2925 return "moveq #-128,%0\n\tneg%.w %0";
2926 case SWAP:
2928 unsigned u = i;
2930 operands[1] = GEN_INT ((u << 16) | (u >> 16));
2931 return "moveq %1,%0\n\tswap %0";
2933 case MOVL:
2934 return "move%.l %1,%0";
2935 default:
2936 gcc_unreachable ();
2940 /* Return true if I can be handled by ISA B's mov3q instruction. */
2942 bool
2943 valid_mov3q_const (HOST_WIDE_INT i)
2945 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
2948 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
2949 I is the value of OPERANDS[1]. */
2951 static const char *
2952 output_move_simode_const (rtx *operands)
2954 rtx dest;
2955 HOST_WIDE_INT src;
2957 dest = operands[0];
2958 src = INTVAL (operands[1]);
2959 if (src == 0
2960 && (DATA_REG_P (dest) || MEM_P (dest))
2961 /* clr insns on 68000 read before writing. */
2962 && ((TARGET_68010 || TARGET_COLDFIRE)
2963 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
2964 return "clr%.l %0";
2965 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
2966 return "mov3q%.l %1,%0";
2967 else if (src == 0 && ADDRESS_REG_P (dest))
2968 return "sub%.l %0,%0";
2969 else if (DATA_REG_P (dest))
2970 return output_move_const_into_data_reg (operands);
2971 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
2973 if (valid_mov3q_const (src))
2974 return "mov3q%.l %1,%0";
2975 return "move%.w %1,%0";
2977 else if (MEM_P (dest)
2978 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
2979 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
2980 && IN_RANGE (src, -0x8000, 0x7fff))
2982 if (valid_mov3q_const (src))
2983 return "mov3q%.l %1,%-";
2984 return "pea %a1";
2986 return "move%.l %1,%0";
2989 const char *
2990 output_move_simode (rtx *operands)
2992 if (GET_CODE (operands[1]) == CONST_INT)
2993 return output_move_simode_const (operands);
2994 else if ((GET_CODE (operands[1]) == SYMBOL_REF
2995 || GET_CODE (operands[1]) == CONST)
2996 && push_operand (operands[0], SImode))
2997 return "pea %a1";
2998 else if ((GET_CODE (operands[1]) == SYMBOL_REF
2999 || GET_CODE (operands[1]) == CONST)
3000 && ADDRESS_REG_P (operands[0]))
3001 return "lea %a1,%0";
3002 return "move%.l %1,%0";
3005 const char *
3006 output_move_himode (rtx *operands)
3008 if (GET_CODE (operands[1]) == CONST_INT)
3010 if (operands[1] == const0_rtx
3011 && (DATA_REG_P (operands[0])
3012 || GET_CODE (operands[0]) == MEM)
3013 /* clr insns on 68000 read before writing. */
3014 && ((TARGET_68010 || TARGET_COLDFIRE)
3015 || !(GET_CODE (operands[0]) == MEM
3016 && MEM_VOLATILE_P (operands[0]))))
3017 return "clr%.w %0";
3018 else if (operands[1] == const0_rtx
3019 && ADDRESS_REG_P (operands[0]))
3020 return "sub%.l %0,%0";
3021 else if (DATA_REG_P (operands[0])
3022 && INTVAL (operands[1]) < 128
3023 && INTVAL (operands[1]) >= -128)
3024 return "moveq %1,%0";
3025 else if (INTVAL (operands[1]) < 0x8000
3026 && INTVAL (operands[1]) >= -0x8000)
3027 return "move%.w %1,%0";
3029 else if (CONSTANT_P (operands[1]))
3030 return "move%.l %1,%0";
3031 return "move%.w %1,%0";
3034 const char *
3035 output_move_qimode (rtx *operands)
3037 /* 68k family always modifies the stack pointer by at least 2, even for
3038 byte pushes. The 5200 (ColdFire) does not do this. */
3040 /* This case is generated by pushqi1 pattern now. */
3041 gcc_assert (!(GET_CODE (operands[0]) == MEM
3042 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3043 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3044 && ! ADDRESS_REG_P (operands[1])
3045 && ! TARGET_COLDFIRE));
3047 /* clr and st insns on 68000 read before writing. */
3048 if (!ADDRESS_REG_P (operands[0])
3049 && ((TARGET_68010 || TARGET_COLDFIRE)
3050 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3052 if (operands[1] == const0_rtx)
3053 return "clr%.b %0";
3054 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3055 && GET_CODE (operands[1]) == CONST_INT
3056 && (INTVAL (operands[1]) & 255) == 255)
3058 CC_STATUS_INIT;
3059 return "st %0";
3062 if (GET_CODE (operands[1]) == CONST_INT
3063 && DATA_REG_P (operands[0])
3064 && INTVAL (operands[1]) < 128
3065 && INTVAL (operands[1]) >= -128)
3066 return "moveq %1,%0";
3067 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3068 return "sub%.l %0,%0";
3069 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3070 return "move%.l %1,%0";
3071 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3072 from address registers. */
3073 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3074 return "move%.w %1,%0";
3075 return "move%.b %1,%0";
3078 const char *
3079 output_move_stricthi (rtx *operands)
3081 if (operands[1] == const0_rtx
3082 /* clr insns on 68000 read before writing. */
3083 && ((TARGET_68010 || TARGET_COLDFIRE)
3084 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3085 return "clr%.w %0";
3086 return "move%.w %1,%0";
3089 const char *
3090 output_move_strictqi (rtx *operands)
3092 if (operands[1] == const0_rtx
3093 /* clr insns on 68000 read before writing. */
3094 && ((TARGET_68010 || TARGET_COLDFIRE)
3095 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3096 return "clr%.b %0";
3097 return "move%.b %1,%0";
3100 /* Return the best assembler insn template
3101 for moving operands[1] into operands[0] as a fullword. */
3103 static const char *
3104 singlemove_string (rtx *operands)
3106 if (GET_CODE (operands[1]) == CONST_INT)
3107 return output_move_simode_const (operands);
3108 return "move%.l %1,%0";
3112 /* Output assembler or rtl code to perform a doubleword move insn
3113 with operands OPERANDS.
3114 Pointers to 3 helper functions should be specified:
3115 HANDLE_REG_ADJUST to adjust a register by a small value,
3116 HANDLE_COMPADR to compute an address and
3117 HANDLE_MOVSI to move 4 bytes. */
3119 static void
3120 handle_move_double (rtx operands[2],
3121 void (*handle_reg_adjust) (rtx, int),
3122 void (*handle_compadr) (rtx [2]),
3123 void (*handle_movsi) (rtx [2]))
3125 enum
3127 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3128 } optype0, optype1;
3129 rtx latehalf[2];
3130 rtx middlehalf[2];
3131 rtx xops[2];
3132 rtx addreg0 = 0, addreg1 = 0;
3133 int dest_overlapped_low = 0;
3134 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3136 middlehalf[0] = 0;
3137 middlehalf[1] = 0;
3139 /* First classify both operands. */
3141 if (REG_P (operands[0]))
3142 optype0 = REGOP;
3143 else if (offsettable_memref_p (operands[0]))
3144 optype0 = OFFSOP;
3145 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3146 optype0 = POPOP;
3147 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3148 optype0 = PUSHOP;
3149 else if (GET_CODE (operands[0]) == MEM)
3150 optype0 = MEMOP;
3151 else
3152 optype0 = RNDOP;
3154 if (REG_P (operands[1]))
3155 optype1 = REGOP;
3156 else if (CONSTANT_P (operands[1]))
3157 optype1 = CNSTOP;
3158 else if (offsettable_memref_p (operands[1]))
3159 optype1 = OFFSOP;
3160 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3161 optype1 = POPOP;
3162 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3163 optype1 = PUSHOP;
3164 else if (GET_CODE (operands[1]) == MEM)
3165 optype1 = MEMOP;
3166 else
3167 optype1 = RNDOP;
3169 /* Check for the cases that the operand constraints are not supposed
3170 to allow to happen. Generating code for these cases is
3171 painful. */
3172 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3174 /* If one operand is decrementing and one is incrementing
3175 decrement the former register explicitly
3176 and change that operand into ordinary indexing. */
3178 if (optype0 == PUSHOP && optype1 == POPOP)
3180 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3182 handle_reg_adjust (operands[0], -size);
3184 if (GET_MODE (operands[1]) == XFmode)
3185 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3186 else if (GET_MODE (operands[0]) == DFmode)
3187 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3188 else
3189 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3190 optype0 = OFFSOP;
3192 if (optype0 == POPOP && optype1 == PUSHOP)
3194 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3196 handle_reg_adjust (operands[1], -size);
3198 if (GET_MODE (operands[1]) == XFmode)
3199 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3200 else if (GET_MODE (operands[1]) == DFmode)
3201 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3202 else
3203 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3204 optype1 = OFFSOP;
3207 /* If an operand is an unoffsettable memory ref, find a register
3208 we can increment temporarily to make it refer to the second word. */
3210 if (optype0 == MEMOP)
3211 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3213 if (optype1 == MEMOP)
3214 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3216 /* Ok, we can do one word at a time.
3217 Normally we do the low-numbered word first,
3218 but if either operand is autodecrementing then we
3219 do the high-numbered word first.
3221 In either case, set up in LATEHALF the operands to use
3222 for the high-numbered word and in some cases alter the
3223 operands in OPERANDS to be suitable for the low-numbered word. */
3225 if (size == 12)
3227 if (optype0 == REGOP)
3229 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3230 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3232 else if (optype0 == OFFSOP)
3234 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3235 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3237 else
3239 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3240 latehalf[0] = adjust_address (operands[0], SImode, 0);
3243 if (optype1 == REGOP)
3245 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3246 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3248 else if (optype1 == OFFSOP)
3250 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3251 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3253 else if (optype1 == CNSTOP)
3255 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3257 REAL_VALUE_TYPE r;
3258 long l[3];
3260 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
3261 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
3262 operands[1] = GEN_INT (l[0]);
3263 middlehalf[1] = GEN_INT (l[1]);
3264 latehalf[1] = GEN_INT (l[2]);
3266 else
3268 /* No non-CONST_DOUBLE constant should ever appear
3269 here. */
3270 gcc_assert (!CONSTANT_P (operands[1]));
3273 else
3275 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3276 latehalf[1] = adjust_address (operands[1], SImode, 0);
3279 else
3280 /* size is not 12: */
3282 if (optype0 == REGOP)
3283 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3284 else if (optype0 == OFFSOP)
3285 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3286 else
3287 latehalf[0] = adjust_address (operands[0], SImode, 0);
3289 if (optype1 == REGOP)
3290 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3291 else if (optype1 == OFFSOP)
3292 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3293 else if (optype1 == CNSTOP)
3294 split_double (operands[1], &operands[1], &latehalf[1]);
3295 else
3296 latehalf[1] = adjust_address (operands[1], SImode, 0);
3299 /* If insn is effectively movd N(sp),-(sp) then we will do the
3300 high word first. We should use the adjusted operand 1 (which is N+4(sp))
3301 for the low word as well, to compensate for the first decrement of sp. */
3302 if (optype0 == PUSHOP
3303 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
3304 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
3305 operands[1] = middlehalf[1] = latehalf[1];
3307 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3308 if the upper part of reg N does not appear in the MEM, arrange to
3309 emit the move late-half first. Otherwise, compute the MEM address
3310 into the upper part of N and use that as a pointer to the memory
3311 operand. */
3312 if (optype0 == REGOP
3313 && (optype1 == OFFSOP || optype1 == MEMOP))
3315 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3317 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3318 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3320 /* If both halves of dest are used in the src memory address,
3321 compute the address into latehalf of dest.
3322 Note that this can't happen if the dest is two data regs. */
3323 compadr:
3324 xops[0] = latehalf[0];
3325 xops[1] = XEXP (operands[1], 0);
3327 handle_compadr (xops);
3328 if (GET_MODE (operands[1]) == XFmode)
3330 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3331 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3332 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3334 else
3336 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3337 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3340 else if (size == 12
3341 && reg_overlap_mentioned_p (middlehalf[0],
3342 XEXP (operands[1], 0)))
3344 /* Check for two regs used by both source and dest.
3345 Note that this can't happen if the dest is all data regs.
3346 It can happen if the dest is d6, d7, a0.
3347 But in that case, latehalf is an addr reg, so
3348 the code at compadr does ok. */
3350 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3351 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3352 goto compadr;
3354 /* JRV says this can't happen: */
3355 gcc_assert (!addreg0 && !addreg1);
3357 /* Only the middle reg conflicts; simply put it last. */
3358 handle_movsi (operands);
3359 handle_movsi (latehalf);
3360 handle_movsi (middlehalf);
3362 return;
3364 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3365 /* If the low half of dest is mentioned in the source memory
3366 address, the arrange to emit the move late half first. */
3367 dest_overlapped_low = 1;
3370 /* If one or both operands autodecrementing,
3371 do the two words, high-numbered first. */
3373 /* Likewise, the first move would clobber the source of the second one,
3374 do them in the other order. This happens only for registers;
3375 such overlap can't happen in memory unless the user explicitly
3376 sets it up, and that is an undefined circumstance. */
3378 if (optype0 == PUSHOP || optype1 == PUSHOP
3379 || (optype0 == REGOP && optype1 == REGOP
3380 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3381 || REGNO (operands[0]) == REGNO (latehalf[1])))
3382 || dest_overlapped_low)
3384 /* Make any unoffsettable addresses point at high-numbered word. */
3385 if (addreg0)
3386 handle_reg_adjust (addreg0, size - 4);
3387 if (addreg1)
3388 handle_reg_adjust (addreg1, size - 4);
3390 /* Do that word. */
3391 handle_movsi (latehalf);
3393 /* Undo the adds we just did. */
3394 if (addreg0)
3395 handle_reg_adjust (addreg0, -4);
3396 if (addreg1)
3397 handle_reg_adjust (addreg1, -4);
3399 if (size == 12)
3401 handle_movsi (middlehalf);
3403 if (addreg0)
3404 handle_reg_adjust (addreg0, -4);
3405 if (addreg1)
3406 handle_reg_adjust (addreg1, -4);
3409 /* Do low-numbered word. */
3411 handle_movsi (operands);
3412 return;
3415 /* Normal case: do the two words, low-numbered first. */
3417 handle_movsi (operands);
3419 /* Do the middle one of the three words for long double */
3420 if (size == 12)
3422 if (addreg0)
3423 handle_reg_adjust (addreg0, 4);
3424 if (addreg1)
3425 handle_reg_adjust (addreg1, 4);
3427 handle_movsi (middlehalf);
3430 /* Make any unoffsettable addresses point at high-numbered word. */
3431 if (addreg0)
3432 handle_reg_adjust (addreg0, 4);
3433 if (addreg1)
3434 handle_reg_adjust (addreg1, 4);
3436 /* Do that word. */
3437 handle_movsi (latehalf);
3439 /* Undo the adds we just did. */
3440 if (addreg0)
3441 handle_reg_adjust (addreg0, -(size - 4));
3442 if (addreg1)
3443 handle_reg_adjust (addreg1, -(size - 4));
3445 return;
3448 /* Output assembler code to adjust REG by N. */
3449 static void
3450 output_reg_adjust (rtx reg, int n)
3452 const char *s;
3454 gcc_assert (GET_MODE (reg) == SImode
3455 && -12 <= n && n != 0 && n <= 12);
3457 switch (n)
3459 case 12:
3460 s = "add%.l #12,%0";
3461 break;
3463 case 8:
3464 s = "addq%.l #8,%0";
3465 break;
3467 case 4:
3468 s = "addq%.l #4,%0";
3469 break;
3471 case -12:
3472 s = "sub%.l #12,%0";
3473 break;
3475 case -8:
3476 s = "subq%.l #8,%0";
3477 break;
3479 case -4:
3480 s = "subq%.l #4,%0";
3481 break;
3483 default:
3484 gcc_unreachable ();
3485 s = NULL;
3488 output_asm_insn (s, &reg);
3491 /* Emit rtl code to adjust REG by N. */
3492 static void
3493 emit_reg_adjust (rtx reg1, int n)
3495 rtx reg2;
3497 gcc_assert (GET_MODE (reg1) == SImode
3498 && -12 <= n && n != 0 && n <= 12);
3500 reg1 = copy_rtx (reg1);
3501 reg2 = copy_rtx (reg1);
3503 if (n < 0)
3504 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3505 else if (n > 0)
3506 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3507 else
3508 gcc_unreachable ();
3511 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3512 static void
3513 output_compadr (rtx operands[2])
3515 output_asm_insn ("lea %a1,%0", operands);
3518 /* Output the best assembler insn for moving operands[1] into operands[0]
3519 as a fullword. */
3520 static void
3521 output_movsi (rtx operands[2])
3523 output_asm_insn (singlemove_string (operands), operands);
3526 /* Copy OP and change its mode to MODE. */
3527 static rtx
3528 copy_operand (rtx op, enum machine_mode mode)
3530 /* ??? This looks really ugly. There must be a better way
3531 to change a mode on the operand. */
3532 if (GET_MODE (op) != VOIDmode)
3534 if (REG_P (op))
3535 op = gen_rtx_REG (mode, REGNO (op));
3536 else
3538 op = copy_rtx (op);
3539 PUT_MODE (op, mode);
3543 return op;
3546 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3547 static void
3548 emit_movsi (rtx operands[2])
3550 operands[0] = copy_operand (operands[0], SImode);
3551 operands[1] = copy_operand (operands[1], SImode);
3553 emit_insn (gen_movsi (operands[0], operands[1]));
3556 /* Output assembler code to perform a doubleword move insn
3557 with operands OPERANDS. */
3558 const char *
3559 output_move_double (rtx *operands)
3561 handle_move_double (operands,
3562 output_reg_adjust, output_compadr, output_movsi);
3564 return "";
3567 /* Output rtl code to perform a doubleword move insn
3568 with operands OPERANDS. */
3569 void
3570 m68k_emit_move_double (rtx operands[2])
3572 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3575 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3576 new rtx with the correct mode. */
3578 static rtx
3579 force_mode (enum machine_mode mode, rtx orig)
3581 if (mode == GET_MODE (orig))
3582 return orig;
3584 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3585 abort ();
3587 return gen_rtx_REG (mode, REGNO (orig));
3590 static int
3591 fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3593 return reg_renumber && FP_REG_P (op);
3596 /* Emit insns to move operands[1] into operands[0].
3598 Return 1 if we have written out everything that needs to be done to
3599 do the move. Otherwise, return 0 and the caller will emit the move
3600 normally.
3602 Note SCRATCH_REG may not be in the proper mode depending on how it
3603 will be used. This routine is responsible for creating a new copy
3604 of SCRATCH_REG in the proper mode. */
3607 emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
3609 register rtx operand0 = operands[0];
3610 register rtx operand1 = operands[1];
3611 register rtx tem;
3613 if (scratch_reg
3614 && reload_in_progress && GET_CODE (operand0) == REG
3615 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3616 operand0 = reg_equiv_mem[REGNO (operand0)];
3617 else if (scratch_reg
3618 && reload_in_progress && GET_CODE (operand0) == SUBREG
3619 && GET_CODE (SUBREG_REG (operand0)) == REG
3620 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3622 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3623 the code which tracks sets/uses for delete_output_reload. */
3624 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3625 reg_equiv_mem [REGNO (SUBREG_REG (operand0))],
3626 SUBREG_BYTE (operand0));
3627 operand0 = alter_subreg (&temp);
3630 if (scratch_reg
3631 && reload_in_progress && GET_CODE (operand1) == REG
3632 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3633 operand1 = reg_equiv_mem[REGNO (operand1)];
3634 else if (scratch_reg
3635 && reload_in_progress && GET_CODE (operand1) == SUBREG
3636 && GET_CODE (SUBREG_REG (operand1)) == REG
3637 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3639 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3640 the code which tracks sets/uses for delete_output_reload. */
3641 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3642 reg_equiv_mem [REGNO (SUBREG_REG (operand1))],
3643 SUBREG_BYTE (operand1));
3644 operand1 = alter_subreg (&temp);
3647 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3648 && ((tem = find_replacement (&XEXP (operand0, 0)))
3649 != XEXP (operand0, 0)))
3650 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3651 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3652 && ((tem = find_replacement (&XEXP (operand1, 0)))
3653 != XEXP (operand1, 0)))
3654 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3656 /* Handle secondary reloads for loads/stores of FP registers where
3657 the address is symbolic by using the scratch register */
3658 if (fp_reg_operand (operand0, mode)
3659 && ((GET_CODE (operand1) == MEM
3660 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3661 || ((GET_CODE (operand1) == SUBREG
3662 && GET_CODE (XEXP (operand1, 0)) == MEM
3663 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3664 && scratch_reg)
3666 if (GET_CODE (operand1) == SUBREG)
3667 operand1 = XEXP (operand1, 0);
3669 /* SCRATCH_REG will hold an address. We want
3670 it in SImode regardless of what mode it was originally given
3671 to us. */
3672 scratch_reg = force_mode (SImode, scratch_reg);
3674 /* D might not fit in 14 bits either; for such cases load D into
3675 scratch reg. */
3676 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3678 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3679 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3680 Pmode,
3681 XEXP (XEXP (operand1, 0), 0),
3682 scratch_reg));
3684 else
3685 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3686 emit_insn (gen_rtx_SET (VOIDmode, operand0,
3687 gen_rtx_MEM (mode, scratch_reg)));
3688 return 1;
3690 else if (fp_reg_operand (operand1, mode)
3691 && ((GET_CODE (operand0) == MEM
3692 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3693 || ((GET_CODE (operand0) == SUBREG)
3694 && GET_CODE (XEXP (operand0, 0)) == MEM
3695 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3696 && scratch_reg)
3698 if (GET_CODE (operand0) == SUBREG)
3699 operand0 = XEXP (operand0, 0);
3701 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3702 it in SIMODE regardless of what mode it was originally given
3703 to us. */
3704 scratch_reg = force_mode (SImode, scratch_reg);
3706 /* D might not fit in 14 bits either; for such cases load D into
3707 scratch reg. */
3708 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3710 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3711 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3712 0)),
3713 Pmode,
3714 XEXP (XEXP (operand0, 0),
3716 scratch_reg));
3718 else
3719 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3720 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg),
3721 operand1));
3722 return 1;
3724 /* Handle secondary reloads for loads of FP registers from constant
3725 expressions by forcing the constant into memory.
3727 use scratch_reg to hold the address of the memory location.
3729 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3730 NO_REGS when presented with a const_int and an register class
3731 containing only FP registers. Doing so unfortunately creates
3732 more problems than it solves. Fix this for 2.5. */
3733 else if (fp_reg_operand (operand0, mode)
3734 && CONSTANT_P (operand1)
3735 && scratch_reg)
3737 rtx xoperands[2];
3739 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3740 it in SIMODE regardless of what mode it was originally given
3741 to us. */
3742 scratch_reg = force_mode (SImode, scratch_reg);
3744 /* Force the constant into memory and put the address of the
3745 memory location into scratch_reg. */
3746 xoperands[0] = scratch_reg;
3747 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3748 emit_insn (gen_rtx_SET (mode, scratch_reg, xoperands[1]));
3750 /* Now load the destination register. */
3751 emit_insn (gen_rtx_SET (mode, operand0,
3752 gen_rtx_MEM (mode, scratch_reg)));
3753 return 1;
3756 /* Now have insn-emit do whatever it normally does. */
3757 return 0;
3760 /* Split one or more DImode RTL references into pairs of SImode
3761 references. The RTL can be REG, offsettable MEM, integer constant, or
3762 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3763 split and "num" is its length. lo_half and hi_half are output arrays
3764 that parallel "operands". */
3766 void
3767 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3769 while (num--)
3771 rtx op = operands[num];
3773 /* simplify_subreg refuses to split volatile memory addresses,
3774 but we still have to handle it. */
3775 if (GET_CODE (op) == MEM)
3777 lo_half[num] = adjust_address (op, SImode, 4);
3778 hi_half[num] = adjust_address (op, SImode, 0);
3780 else
3782 lo_half[num] = simplify_gen_subreg (SImode, op,
3783 GET_MODE (op) == VOIDmode
3784 ? DImode : GET_MODE (op), 4);
3785 hi_half[num] = simplify_gen_subreg (SImode, op,
3786 GET_MODE (op) == VOIDmode
3787 ? DImode : GET_MODE (op), 0);
3792 /* Split X into a base and a constant offset, storing them in *BASE
3793 and *OFFSET respectively. */
3795 static void
3796 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3798 *offset = 0;
3799 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3801 *offset += INTVAL (XEXP (x, 1));
3802 x = XEXP (x, 0);
3804 *base = x;
3807 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3808 instruction. STORE_P says whether the move is a load or store.
3810 If the instruction uses post-increment or pre-decrement addressing,
3811 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3812 adjustment. This adjustment will be made by the first element of
3813 PARALLEL, with the loads or stores starting at element 1. If the
3814 instruction does not use post-increment or pre-decrement addressing,
3815 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3816 start at element 0. */
3818 bool
3819 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3820 HOST_WIDE_INT automod_offset, bool store_p)
3822 rtx base, mem_base, set, mem, reg, last_reg;
3823 HOST_WIDE_INT offset, mem_offset;
3824 int i, first, len;
3825 enum reg_class rclass;
3827 len = XVECLEN (pattern, 0);
3828 first = (automod_base != NULL);
3830 if (automod_base)
3832 /* Stores must be pre-decrement and loads must be post-increment. */
3833 if (store_p != (automod_offset < 0))
3834 return false;
3836 /* Work out the base and offset for lowest memory location. */
3837 base = automod_base;
3838 offset = (automod_offset < 0 ? automod_offset : 0);
3840 else
3842 /* Allow any valid base and offset in the first access. */
3843 base = NULL;
3844 offset = 0;
3847 last_reg = NULL;
3848 rclass = NO_REGS;
3849 for (i = first; i < len; i++)
3851 /* We need a plain SET. */
3852 set = XVECEXP (pattern, 0, i);
3853 if (GET_CODE (set) != SET)
3854 return false;
3856 /* Check that we have a memory location... */
3857 mem = XEXP (set, !store_p);
3858 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3859 return false;
3861 /* ...with the right address. */
3862 if (base == NULL)
3864 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3865 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3866 There are no mode restrictions for 680x0 besides the
3867 automodification rules enforced above. */
3868 if (TARGET_COLDFIRE
3869 && !m68k_legitimate_base_reg_p (base, reload_completed))
3870 return false;
3872 else
3874 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3875 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3876 return false;
3879 /* Check that we have a register of the required mode and class. */
3880 reg = XEXP (set, store_p);
3881 if (!REG_P (reg)
3882 || !HARD_REGISTER_P (reg)
3883 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3884 return false;
3886 if (last_reg)
3888 /* The register must belong to RCLASS and have a higher number
3889 than the register in the previous SET. */
3890 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3891 || REGNO (last_reg) >= REGNO (reg))
3892 return false;
3894 else
3896 /* Work out which register class we need. */
3897 if (INT_REGNO_P (REGNO (reg)))
3898 rclass = GENERAL_REGS;
3899 else if (FP_REGNO_P (REGNO (reg)))
3900 rclass = FP_REGS;
3901 else
3902 return false;
3905 last_reg = reg;
3906 offset += GET_MODE_SIZE (GET_MODE (reg));
3909 /* If we have an automodification, check whether the final offset is OK. */
3910 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3911 return false;
3913 /* Reject unprofitable cases. */
3914 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3915 return false;
3917 return true;
3920 /* Return the assembly code template for a movem or fmovem instruction
3921 whose pattern is given by PATTERN. Store the template's operands
3922 in OPERANDS.
3924 If the instruction uses post-increment or pre-decrement addressing,
3925 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3926 is true if this is a store instruction. */
3928 const char *
3929 m68k_output_movem (rtx *operands, rtx pattern,
3930 HOST_WIDE_INT automod_offset, bool store_p)
3932 unsigned int mask;
3933 int i, first;
3935 gcc_assert (GET_CODE (pattern) == PARALLEL);
3936 mask = 0;
3937 first = (automod_offset != 0);
3938 for (i = first; i < XVECLEN (pattern, 0); i++)
3940 /* When using movem with pre-decrement addressing, register X + D0_REG
3941 is controlled by bit 15 - X. For all other addressing modes,
3942 register X + D0_REG is controlled by bit X. Confusingly, the
3943 register mask for fmovem is in the opposite order to that for
3944 movem. */
3945 unsigned int regno;
3947 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
3948 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
3949 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
3950 if (automod_offset < 0)
3952 if (FP_REGNO_P (regno))
3953 mask |= 1 << (regno - FP0_REG);
3954 else
3955 mask |= 1 << (15 - (regno - D0_REG));
3957 else
3959 if (FP_REGNO_P (regno))
3960 mask |= 1 << (7 - (regno - FP0_REG));
3961 else
3962 mask |= 1 << (regno - D0_REG);
3965 CC_STATUS_INIT;
3967 if (automod_offset == 0)
3968 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
3969 else if (automod_offset < 0)
3970 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
3971 else
3972 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
3973 operands[1] = GEN_INT (mask);
3974 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
3976 if (store_p)
3977 return "fmovem %1,%a0";
3978 else
3979 return "fmovem %a0,%1";
3981 else
3983 if (store_p)
3984 return "movem%.l %1,%a0";
3985 else
3986 return "movem%.l %a0,%1";
3990 /* Return a REG that occurs in ADDR with coefficient 1.
3991 ADDR can be effectively incremented by incrementing REG. */
3993 static rtx
3994 find_addr_reg (rtx addr)
3996 while (GET_CODE (addr) == PLUS)
3998 if (GET_CODE (XEXP (addr, 0)) == REG)
3999 addr = XEXP (addr, 0);
4000 else if (GET_CODE (XEXP (addr, 1)) == REG)
4001 addr = XEXP (addr, 1);
4002 else if (CONSTANT_P (XEXP (addr, 0)))
4003 addr = XEXP (addr, 1);
4004 else if (CONSTANT_P (XEXP (addr, 1)))
4005 addr = XEXP (addr, 0);
4006 else
4007 gcc_unreachable ();
4009 gcc_assert (GET_CODE (addr) == REG);
4010 return addr;
4013 /* Output assembler code to perform a 32-bit 3-operand add. */
4015 const char *
4016 output_addsi3 (rtx *operands)
4018 if (! operands_match_p (operands[0], operands[1]))
4020 if (!ADDRESS_REG_P (operands[1]))
4022 rtx tmp = operands[1];
4024 operands[1] = operands[2];
4025 operands[2] = tmp;
4028 /* These insns can result from reloads to access
4029 stack slots over 64k from the frame pointer. */
4030 if (GET_CODE (operands[2]) == CONST_INT
4031 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4032 return "move%.l %2,%0\n\tadd%.l %1,%0";
4033 if (GET_CODE (operands[2]) == REG)
4034 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4035 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4037 if (GET_CODE (operands[2]) == CONST_INT)
4039 if (INTVAL (operands[2]) > 0
4040 && INTVAL (operands[2]) <= 8)
4041 return "addq%.l %2,%0";
4042 if (INTVAL (operands[2]) < 0
4043 && INTVAL (operands[2]) >= -8)
4045 operands[2] = GEN_INT (- INTVAL (operands[2]));
4046 return "subq%.l %2,%0";
4048 /* On the CPU32 it is faster to use two addql instructions to
4049 add a small integer (8 < N <= 16) to a register.
4050 Likewise for subql. */
4051 if (TUNE_CPU32 && REG_P (operands[0]))
4053 if (INTVAL (operands[2]) > 8
4054 && INTVAL (operands[2]) <= 16)
4056 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4057 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4059 if (INTVAL (operands[2]) < -8
4060 && INTVAL (operands[2]) >= -16)
4062 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4063 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4066 if (ADDRESS_REG_P (operands[0])
4067 && INTVAL (operands[2]) >= -0x8000
4068 && INTVAL (operands[2]) < 0x8000)
4070 if (TUNE_68040)
4071 return "add%.w %2,%0";
4072 else
4073 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4076 return "add%.l %2,%0";
4079 /* Store in cc_status the expressions that the condition codes will
4080 describe after execution of an instruction whose pattern is EXP.
4081 Do not alter them if the instruction would not alter the cc's. */
4083 /* On the 68000, all the insns to store in an address register fail to
4084 set the cc's. However, in some cases these instructions can make it
4085 possibly invalid to use the saved cc's. In those cases we clear out
4086 some or all of the saved cc's so they won't be used. */
4088 void
4089 notice_update_cc (rtx exp, rtx insn)
4091 if (GET_CODE (exp) == SET)
4093 if (GET_CODE (SET_SRC (exp)) == CALL)
4094 CC_STATUS_INIT;
4095 else if (ADDRESS_REG_P (SET_DEST (exp)))
4097 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4098 cc_status.value1 = 0;
4099 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4100 cc_status.value2 = 0;
4102 /* fmoves to memory or data registers do not set the condition
4103 codes. Normal moves _do_ set the condition codes, but not in
4104 a way that is appropriate for comparison with 0, because -0.0
4105 would be treated as a negative nonzero number. Note that it
4106 isn't appropriate to conditionalize this restriction on
4107 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4108 we care about the difference between -0.0 and +0.0. */
4109 else if (!FP_REG_P (SET_DEST (exp))
4110 && SET_DEST (exp) != cc0_rtx
4111 && (FP_REG_P (SET_SRC (exp))
4112 || GET_CODE (SET_SRC (exp)) == FIX
4113 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4114 CC_STATUS_INIT;
4115 /* A pair of move insns doesn't produce a useful overall cc. */
4116 else if (!FP_REG_P (SET_DEST (exp))
4117 && !FP_REG_P (SET_SRC (exp))
4118 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4119 && (GET_CODE (SET_SRC (exp)) == REG
4120 || GET_CODE (SET_SRC (exp)) == MEM
4121 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4122 CC_STATUS_INIT;
4123 else if (SET_DEST (exp) != pc_rtx)
4125 cc_status.flags = 0;
4126 cc_status.value1 = SET_DEST (exp);
4127 cc_status.value2 = SET_SRC (exp);
4130 else if (GET_CODE (exp) == PARALLEL
4131 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4133 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4134 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4136 if (ADDRESS_REG_P (dest))
4137 CC_STATUS_INIT;
4138 else if (dest != pc_rtx)
4140 cc_status.flags = 0;
4141 cc_status.value1 = dest;
4142 cc_status.value2 = src;
4145 else
4146 CC_STATUS_INIT;
4147 if (cc_status.value2 != 0
4148 && ADDRESS_REG_P (cc_status.value2)
4149 && GET_MODE (cc_status.value2) == QImode)
4150 CC_STATUS_INIT;
4151 if (cc_status.value2 != 0)
4152 switch (GET_CODE (cc_status.value2))
4154 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4155 case ROTATE: case ROTATERT:
4156 /* These instructions always clear the overflow bit, and set
4157 the carry to the bit shifted out. */
4158 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4159 break;
4161 case PLUS: case MINUS: case MULT:
4162 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4163 if (GET_MODE (cc_status.value2) != VOIDmode)
4164 cc_status.flags |= CC_NO_OVERFLOW;
4165 break;
4166 case ZERO_EXTEND:
4167 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4168 ends with a move insn moving r2 in r2's mode.
4169 Thus, the cc's are set for r2.
4170 This can set N bit spuriously. */
4171 cc_status.flags |= CC_NOT_NEGATIVE;
4173 default:
4174 break;
4176 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4177 && cc_status.value2
4178 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4179 cc_status.value2 = 0;
4180 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4181 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4182 cc_status.flags = CC_IN_68881;
4183 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4184 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4186 cc_status.flags = CC_IN_68881;
4187 if (!FP_REG_P (XEXP (cc_status.value2, 0)))
4188 cc_status.flags |= CC_REVERSED;
4192 const char *
4193 output_move_const_double (rtx *operands)
4195 int code = standard_68881_constant_p (operands[1]);
4197 if (code != 0)
4199 static char buf[40];
4201 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4202 return buf;
4204 return "fmove%.d %1,%0";
4207 const char *
4208 output_move_const_single (rtx *operands)
4210 int code = standard_68881_constant_p (operands[1]);
4212 if (code != 0)
4214 static char buf[40];
4216 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4217 return buf;
4219 return "fmove%.s %f1,%0";
4222 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4223 from the "fmovecr" instruction.
4224 The value, anded with 0xff, gives the code to use in fmovecr
4225 to get the desired constant. */
4227 /* This code has been fixed for cross-compilation. */
4229 static int inited_68881_table = 0;
4231 static const char *const strings_68881[7] = {
4232 "0.0",
4233 "1.0",
4234 "10.0",
4235 "100.0",
4236 "10000.0",
4237 "1e8",
4238 "1e16"
4241 static const int codes_68881[7] = {
4242 0x0f,
4243 0x32,
4244 0x33,
4245 0x34,
4246 0x35,
4247 0x36,
4248 0x37
4251 REAL_VALUE_TYPE values_68881[7];
4253 /* Set up values_68881 array by converting the decimal values
4254 strings_68881 to binary. */
4256 void
4257 init_68881_table (void)
4259 int i;
4260 REAL_VALUE_TYPE r;
4261 enum machine_mode mode;
4263 mode = SFmode;
4264 for (i = 0; i < 7; i++)
4266 if (i == 6)
4267 mode = DFmode;
4268 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4269 values_68881[i] = r;
4271 inited_68881_table = 1;
4275 standard_68881_constant_p (rtx x)
4277 REAL_VALUE_TYPE r;
4278 int i;
4280 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4281 used at all on those chips. */
4282 if (TUNE_68040_60)
4283 return 0;
4285 if (! inited_68881_table)
4286 init_68881_table ();
4288 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4290 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
4291 is rejected. */
4292 for (i = 0; i < 6; i++)
4294 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
4295 return (codes_68881[i]);
4298 if (GET_MODE (x) == SFmode)
4299 return 0;
4301 if (REAL_VALUES_EQUAL (r, values_68881[6]))
4302 return (codes_68881[6]);
4304 /* larger powers of ten in the constants ram are not used
4305 because they are not equal to a `double' C constant. */
4306 return 0;
4309 /* If X is a floating-point constant, return the logarithm of X base 2,
4310 or 0 if X is not a power of 2. */
4313 floating_exact_log2 (rtx x)
4315 REAL_VALUE_TYPE r, r1;
4316 int exp;
4318 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4320 if (REAL_VALUES_LESS (r, dconst1))
4321 return 0;
4323 exp = real_exponent (&r);
4324 real_2expN (&r1, exp, DFmode);
4325 if (REAL_VALUES_EQUAL (r1, r))
4326 return exp;
4328 return 0;
4331 /* A C compound statement to output to stdio stream STREAM the
4332 assembler syntax for an instruction operand X. X is an RTL
4333 expression.
4335 CODE is a value that can be used to specify one of several ways
4336 of printing the operand. It is used when identical operands
4337 must be printed differently depending on the context. CODE
4338 comes from the `%' specification that was used to request
4339 printing of the operand. If the specification was just `%DIGIT'
4340 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4341 is the ASCII code for LTR.
4343 If X is a register, this macro should print the register's name.
4344 The names can be found in an array `reg_names' whose type is
4345 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4347 When the machine description has a specification `%PUNCT' (a `%'
4348 followed by a punctuation character), this macro is called with
4349 a null pointer for X and the punctuation character for CODE.
4351 The m68k specific codes are:
4353 '.' for dot needed in Motorola-style opcode names.
4354 '-' for an operand pushing on the stack:
4355 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4356 '+' for an operand pushing on the stack:
4357 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4358 '@' for a reference to the top word on the stack:
4359 sp@, (sp) or (%sp) depending on the style of syntax.
4360 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4361 but & in SGS syntax).
4362 '!' for the cc register (used in an `and to cc' insn).
4363 '$' for the letter `s' in an op code, but only on the 68040.
4364 '&' for the letter `d' in an op code, but only on the 68040.
4365 '/' for register prefix needed by longlong.h.
4366 '?' for m68k_library_id_string
4368 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4369 'd' to force memory addressing to be absolute, not relative.
4370 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4371 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4372 or print pair of registers as rx:ry.
4373 'p' print an address with @PLTPC attached, but only if the operand
4374 is not locally-bound. */
4376 void
4377 print_operand (FILE *file, rtx op, int letter)
4379 if (letter == '.')
4381 if (MOTOROLA)
4382 fprintf (file, ".");
4384 else if (letter == '#')
4385 asm_fprintf (file, "%I");
4386 else if (letter == '-')
4387 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4388 else if (letter == '+')
4389 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4390 else if (letter == '@')
4391 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4392 else if (letter == '!')
4393 asm_fprintf (file, "%Rfpcr");
4394 else if (letter == '$')
4396 if (TARGET_68040)
4397 fprintf (file, "s");
4399 else if (letter == '&')
4401 if (TARGET_68040)
4402 fprintf (file, "d");
4404 else if (letter == '/')
4405 asm_fprintf (file, "%R");
4406 else if (letter == '?')
4407 asm_fprintf (file, m68k_library_id_string);
4408 else if (letter == 'p')
4410 output_addr_const (file, op);
4411 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4412 fprintf (file, "@PLTPC");
4414 else if (GET_CODE (op) == REG)
4416 if (letter == 'R')
4417 /* Print out the second register name of a register pair.
4418 I.e., R (6) => 7. */
4419 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4420 else
4421 fputs (M68K_REGNAME(REGNO (op)), file);
4423 else if (GET_CODE (op) == MEM)
4425 output_address (XEXP (op, 0));
4426 if (letter == 'd' && ! TARGET_68020
4427 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4428 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4429 && INTVAL (XEXP (op, 0)) < 0x8000
4430 && INTVAL (XEXP (op, 0)) >= -0x8000))
4431 fprintf (file, MOTOROLA ? ".l" : ":l");
4433 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4435 REAL_VALUE_TYPE r;
4436 long l;
4437 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4438 REAL_VALUE_TO_TARGET_SINGLE (r, l);
4439 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4441 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4443 REAL_VALUE_TYPE r;
4444 long l[3];
4445 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4446 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
4447 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4448 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4450 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4452 REAL_VALUE_TYPE r;
4453 long l[2];
4454 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4455 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
4456 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4458 else
4460 /* Use `print_operand_address' instead of `output_addr_const'
4461 to ensure that we print relevant PIC stuff. */
4462 asm_fprintf (file, "%I");
4463 if (TARGET_PCREL
4464 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4465 print_operand_address (file, op);
4466 else
4467 output_addr_const (file, op);
4471 /* Return string for TLS relocation RELOC. */
4473 static const char *
4474 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4476 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4477 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4479 switch (reloc)
4481 case RELOC_GOT:
4482 if (MOTOROLA)
4484 if (flag_pic == 1 && TARGET_68020)
4485 return "@GOT.w";
4486 else
4487 return "@GOT";
4489 else
4491 if (TARGET_68020)
4493 switch (flag_pic)
4495 case 1:
4496 return ":w";
4497 case 2:
4498 return ":l";
4499 default:
4500 return "";
4505 case RELOC_TLSGD:
4506 return "@TLSGD";
4508 case RELOC_TLSLDM:
4509 return "@TLSLDM";
4511 case RELOC_TLSLDO:
4512 return "@TLSLDO";
4514 case RELOC_TLSIE:
4515 return "@TLSIE";
4517 case RELOC_TLSLE:
4518 return "@TLSLE";
4520 default:
4521 gcc_unreachable ();
4525 /* m68k implementation of OUTPUT_ADDR_CONST_EXTRA. */
4527 bool
4528 m68k_output_addr_const_extra (FILE *file, rtx x)
4530 if (GET_CODE (x) == UNSPEC)
4532 switch (XINT (x, 1))
4534 case UNSPEC_RELOC16:
4535 case UNSPEC_RELOC32:
4536 output_addr_const (file, XVECEXP (x, 0, 0));
4537 fputs (m68k_get_reloc_decoration (INTVAL (XVECEXP (x, 0, 1))), file);
4538 return true;
4540 default:
4541 break;
4545 return false;
4548 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4550 static void
4551 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4553 gcc_assert (size == 4);
4554 fputs ("\t.long\t", file);
4555 output_addr_const (file, x);
4556 fputs ("@TLSLDO+0x8000", file);
4560 /* A C compound statement to output to stdio stream STREAM the
4561 assembler syntax for an instruction operand that is a memory
4562 reference whose address is ADDR. ADDR is an RTL expression.
4564 Note that this contains a kludge that knows that the only reason
4565 we have an address (plus (label_ref...) (reg...)) when not generating
4566 PIC code is in the insn before a tablejump, and we know that m68k.md
4567 generates a label LInnn: on such an insn.
4569 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4570 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4572 This routine is responsible for distinguishing between -fpic and -fPIC
4573 style relocations in an address. When generating -fpic code the
4574 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4575 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4577 void
4578 print_operand_address (FILE *file, rtx addr)
4580 struct m68k_address address;
4582 if (!m68k_decompose_address (QImode, addr, true, &address))
4583 gcc_unreachable ();
4585 if (address.code == PRE_DEC)
4586 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4587 M68K_REGNAME (REGNO (address.base)));
4588 else if (address.code == POST_INC)
4589 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4590 M68K_REGNAME (REGNO (address.base)));
4591 else if (!address.base && !address.index)
4593 /* A constant address. */
4594 gcc_assert (address.offset == addr);
4595 if (GET_CODE (addr) == CONST_INT)
4597 /* (xxx).w or (xxx).l. */
4598 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4599 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4600 else
4601 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4603 else if (TARGET_PCREL)
4605 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4606 fputc ('(', file);
4607 output_addr_const (file, addr);
4608 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4610 else
4612 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4613 name ends in `.<letter>', as the last 2 characters can be
4614 mistaken as a size suffix. Put the name in parentheses. */
4615 if (GET_CODE (addr) == SYMBOL_REF
4616 && strlen (XSTR (addr, 0)) > 2
4617 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4619 putc ('(', file);
4620 output_addr_const (file, addr);
4621 putc (')', file);
4623 else
4624 output_addr_const (file, addr);
4627 else
4629 int labelno;
4631 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4632 label being accessed, otherwise it is -1. */
4633 labelno = (address.offset
4634 && !address.base
4635 && GET_CODE (address.offset) == LABEL_REF
4636 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4637 : -1);
4638 if (MOTOROLA)
4640 /* Print the "offset(base" component. */
4641 if (labelno >= 0)
4642 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4643 else
4645 if (address.offset)
4646 output_addr_const (file, address.offset);
4648 putc ('(', file);
4649 if (address.base)
4650 fputs (M68K_REGNAME (REGNO (address.base)), file);
4652 /* Print the ",index" component, if any. */
4653 if (address.index)
4655 if (address.base)
4656 putc (',', file);
4657 fprintf (file, "%s.%c",
4658 M68K_REGNAME (REGNO (address.index)),
4659 GET_MODE (address.index) == HImode ? 'w' : 'l');
4660 if (address.scale != 1)
4661 fprintf (file, "*%d", address.scale);
4663 putc (')', file);
4665 else /* !MOTOROLA */
4667 if (!address.offset && !address.index)
4668 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4669 else
4671 /* Print the "base@(offset" component. */
4672 if (labelno >= 0)
4673 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4674 else
4676 if (address.base)
4677 fputs (M68K_REGNAME (REGNO (address.base)), file);
4678 fprintf (file, "@(");
4679 if (address.offset)
4680 output_addr_const (file, address.offset);
4682 /* Print the ",index" component, if any. */
4683 if (address.index)
4685 fprintf (file, ",%s:%c",
4686 M68K_REGNAME (REGNO (address.index)),
4687 GET_MODE (address.index) == HImode ? 'w' : 'l');
4688 if (address.scale != 1)
4689 fprintf (file, ":%d", address.scale);
4691 putc (')', file);
4697 /* Check for cases where a clr insns can be omitted from code using
4698 strict_low_part sets. For example, the second clrl here is not needed:
4699 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4701 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4702 insn we are checking for redundancy. TARGET is the register set by the
4703 clear insn. */
4705 bool
4706 strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
4707 rtx target)
4709 rtx p = first_insn;
4711 while ((p = PREV_INSN (p)))
4713 if (NOTE_INSN_BASIC_BLOCK_P (p))
4714 return false;
4716 if (NOTE_P (p))
4717 continue;
4719 /* If it isn't an insn, then give up. */
4720 if (!INSN_P (p))
4721 return false;
4723 if (reg_set_p (target, p))
4725 rtx set = single_set (p);
4726 rtx dest;
4728 /* If it isn't an easy to recognize insn, then give up. */
4729 if (! set)
4730 return false;
4732 dest = SET_DEST (set);
4734 /* If this sets the entire target register to zero, then our
4735 first_insn is redundant. */
4736 if (rtx_equal_p (dest, target)
4737 && SET_SRC (set) == const0_rtx)
4738 return true;
4739 else if (GET_CODE (dest) == STRICT_LOW_PART
4740 && GET_CODE (XEXP (dest, 0)) == REG
4741 && REGNO (XEXP (dest, 0)) == REGNO (target)
4742 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4743 <= GET_MODE_SIZE (mode)))
4744 /* This is a strict low part set which modifies less than
4745 we are using, so it is safe. */
4747 else
4748 return false;
4752 return false;
4755 /* Operand predicates for implementing asymmetric pc-relative addressing
4756 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4757 when used as a source operand, but not as a destination operand.
4759 We model this by restricting the meaning of the basic predicates
4760 (general_operand, memory_operand, etc) to forbid the use of this
4761 addressing mode, and then define the following predicates that permit
4762 this addressing mode. These predicates can then be used for the
4763 source operands of the appropriate instructions.
4765 n.b. While it is theoretically possible to change all machine patterns
4766 to use this addressing more where permitted by the architecture,
4767 it has only been implemented for "common" cases: SImode, HImode, and
4768 QImode operands, and only for the principle operations that would
4769 require this addressing mode: data movement and simple integer operations.
4771 In parallel with these new predicates, two new constraint letters
4772 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4773 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4774 In the pcrel case 's' is only valid in combination with 'a' registers.
4775 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4776 of how these constraints are used.
4778 The use of these predicates is strictly optional, though patterns that
4779 don't will cause an extra reload register to be allocated where one
4780 was not necessary:
4782 lea (abc:w,%pc),%a0 ; need to reload address
4783 moveq &1,%d1 ; since write to pc-relative space
4784 movel %d1,%a0@ ; is not allowed
4786 lea (abc:w,%pc),%a1 ; no need to reload address here
4787 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4789 For more info, consult tiemann@cygnus.com.
4792 All of the ugliness with predicates and constraints is due to the
4793 simple fact that the m68k does not allow a pc-relative addressing
4794 mode as a destination. gcc does not distinguish between source and
4795 destination addresses. Hence, if we claim that pc-relative address
4796 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4797 end up with invalid code. To get around this problem, we left
4798 pc-relative modes as invalid addresses, and then added special
4799 predicates and constraints to accept them.
4801 A cleaner way to handle this is to modify gcc to distinguish
4802 between source and destination addresses. We can then say that
4803 pc-relative is a valid source address but not a valid destination
4804 address, and hopefully avoid a lot of the predicate and constraint
4805 hackery. Unfortunately, this would be a pretty big change. It would
4806 be a useful change for a number of ports, but there aren't any current
4807 plans to undertake this.
4809 ***************************************************************************/
4812 const char *
4813 output_andsi3 (rtx *operands)
4815 int logval;
4816 if (GET_CODE (operands[2]) == CONST_INT
4817 && (INTVAL (operands[2]) | 0xffff) == -1
4818 && (DATA_REG_P (operands[0])
4819 || offsettable_memref_p (operands[0]))
4820 && !TARGET_COLDFIRE)
4822 if (GET_CODE (operands[0]) != REG)
4823 operands[0] = adjust_address (operands[0], HImode, 2);
4824 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4825 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4826 CC_STATUS_INIT;
4827 if (operands[2] == const0_rtx)
4828 return "clr%.w %0";
4829 return "and%.w %2,%0";
4831 if (GET_CODE (operands[2]) == CONST_INT
4832 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4833 && (DATA_REG_P (operands[0])
4834 || offsettable_memref_p (operands[0])))
4836 if (DATA_REG_P (operands[0]))
4837 operands[1] = GEN_INT (logval);
4838 else
4840 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4841 operands[1] = GEN_INT (logval % 8);
4843 /* This does not set condition codes in a standard way. */
4844 CC_STATUS_INIT;
4845 return "bclr %1,%0";
4847 return "and%.l %2,%0";
4850 const char *
4851 output_iorsi3 (rtx *operands)
4853 register int logval;
4854 if (GET_CODE (operands[2]) == CONST_INT
4855 && INTVAL (operands[2]) >> 16 == 0
4856 && (DATA_REG_P (operands[0])
4857 || offsettable_memref_p (operands[0]))
4858 && !TARGET_COLDFIRE)
4860 if (GET_CODE (operands[0]) != REG)
4861 operands[0] = adjust_address (operands[0], HImode, 2);
4862 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4863 CC_STATUS_INIT;
4864 if (INTVAL (operands[2]) == 0xffff)
4865 return "mov%.w %2,%0";
4866 return "or%.w %2,%0";
4868 if (GET_CODE (operands[2]) == CONST_INT
4869 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4870 && (DATA_REG_P (operands[0])
4871 || offsettable_memref_p (operands[0])))
4873 if (DATA_REG_P (operands[0]))
4874 operands[1] = GEN_INT (logval);
4875 else
4877 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4878 operands[1] = GEN_INT (logval % 8);
4880 CC_STATUS_INIT;
4881 return "bset %1,%0";
4883 return "or%.l %2,%0";
4886 const char *
4887 output_xorsi3 (rtx *operands)
4889 register int logval;
4890 if (GET_CODE (operands[2]) == CONST_INT
4891 && INTVAL (operands[2]) >> 16 == 0
4892 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
4893 && !TARGET_COLDFIRE)
4895 if (! DATA_REG_P (operands[0]))
4896 operands[0] = adjust_address (operands[0], HImode, 2);
4897 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4898 CC_STATUS_INIT;
4899 if (INTVAL (operands[2]) == 0xffff)
4900 return "not%.w %0";
4901 return "eor%.w %2,%0";
4903 if (GET_CODE (operands[2]) == CONST_INT
4904 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4905 && (DATA_REG_P (operands[0])
4906 || offsettable_memref_p (operands[0])))
4908 if (DATA_REG_P (operands[0]))
4909 operands[1] = GEN_INT (logval);
4910 else
4912 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4913 operands[1] = GEN_INT (logval % 8);
4915 CC_STATUS_INIT;
4916 return "bchg %1,%0";
4918 return "eor%.l %2,%0";
4921 /* Return the instruction that should be used for a call to address X,
4922 which is known to be in operand 0. */
4924 const char *
4925 output_call (rtx x)
4927 if (symbolic_operand (x, VOIDmode))
4928 return m68k_symbolic_call;
4929 else
4930 return "jsr %a0";
4933 /* Likewise sibling calls. */
4935 const char *
4936 output_sibcall (rtx x)
4938 if (symbolic_operand (x, VOIDmode))
4939 return m68k_symbolic_jump;
4940 else
4941 return "jmp %a0";
4944 static void
4945 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
4946 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
4947 tree function)
4949 rtx this_slot, offset, addr, mem, insn;
4951 /* Pretend to be a post-reload pass while generating rtl. */
4952 reload_completed = 1;
4954 /* The "this" pointer is stored at 4(%sp). */
4955 this_slot = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, 4));
4957 /* Add DELTA to THIS. */
4958 if (delta != 0)
4960 /* Make the offset a legitimate operand for memory addition. */
4961 offset = GEN_INT (delta);
4962 if ((delta < -8 || delta > 8)
4963 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
4965 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
4966 offset = gen_rtx_REG (Pmode, D0_REG);
4968 emit_insn (gen_add3_insn (copy_rtx (this_slot),
4969 copy_rtx (this_slot), offset));
4972 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
4973 if (vcall_offset != 0)
4975 /* Set the static chain register to *THIS. */
4976 emit_move_insn (static_chain_rtx, this_slot);
4977 emit_move_insn (static_chain_rtx, gen_rtx_MEM (Pmode, static_chain_rtx));
4979 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
4980 addr = plus_constant (static_chain_rtx, vcall_offset);
4981 if (!m68k_legitimate_address_p (Pmode, addr, true))
4983 emit_insn (gen_rtx_SET (VOIDmode, static_chain_rtx, addr));
4984 addr = static_chain_rtx;
4987 /* Load the offset into %d0 and add it to THIS. */
4988 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
4989 gen_rtx_MEM (Pmode, addr));
4990 emit_insn (gen_add3_insn (copy_rtx (this_slot),
4991 copy_rtx (this_slot),
4992 gen_rtx_REG (Pmode, D0_REG)));
4995 /* Jump to the target function. Use a sibcall if direct jumps are
4996 allowed, otherwise load the address into a register first. */
4997 mem = DECL_RTL (function);
4998 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5000 gcc_assert (flag_pic);
5002 if (!TARGET_SEP_DATA)
5004 /* Use the static chain register as a temporary (call-clobbered)
5005 GOT pointer for this function. We can use the static chain
5006 register because it isn't live on entry to the thunk. */
5007 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5008 emit_insn (gen_load_got (pic_offset_table_rtx));
5010 legitimize_pic_address (XEXP (mem, 0), Pmode, static_chain_rtx);
5011 mem = replace_equiv_address (mem, static_chain_rtx);
5013 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5014 SIBLING_CALL_P (insn) = 1;
5016 /* Run just enough of rest_of_compilation. */
5017 insn = get_insns ();
5018 split_all_insns_noflow ();
5019 final_start_function (insn, file, 1);
5020 final (insn, file, 1);
5021 final_end_function ();
5023 /* Clean up the vars set above. */
5024 reload_completed = 0;
5026 /* Restore the original PIC register. */
5027 if (flag_pic)
5028 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5029 free_after_compilation (cfun);
5032 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5034 static rtx
5035 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5036 int incoming ATTRIBUTE_UNUSED)
5038 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5041 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5043 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5044 unsigned int new_reg)
5047 /* Interrupt functions can only use registers that have already been
5048 saved by the prologue, even if they would normally be
5049 call-clobbered. */
5051 if ((m68k_get_function_kind (current_function_decl)
5052 == m68k_fk_interrupt_handler)
5053 && !df_regs_ever_live_p (new_reg))
5054 return 0;
5056 return 1;
5059 /* Value is true if hard register REGNO can hold a value of machine-mode
5060 MODE. On the 68000, we let the cpu registers can hold any mode, but
5061 restrict the 68881 registers to floating-point modes. */
5063 bool
5064 m68k_regno_mode_ok (int regno, enum machine_mode mode)
5066 if (DATA_REGNO_P (regno))
5068 /* Data Registers, can hold aggregate if fits in. */
5069 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5070 return true;
5072 else if (ADDRESS_REGNO_P (regno))
5074 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5075 return true;
5077 else if (FP_REGNO_P (regno))
5079 /* FPU registers, hold float or complex float of long double or
5080 smaller. */
5081 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5082 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5083 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5084 return true;
5086 return false;
5089 /* Implement SECONDARY_RELOAD_CLASS. */
5091 enum reg_class
5092 m68k_secondary_reload_class (enum reg_class rclass,
5093 enum machine_mode mode, rtx x)
5095 int regno;
5097 regno = true_regnum (x);
5099 /* If one operand of a movqi is an address register, the other
5100 operand must be a general register or constant. Other types
5101 of operand must be reloaded through a data register. */
5102 if (GET_MODE_SIZE (mode) == 1
5103 && reg_classes_intersect_p (rclass, ADDR_REGS)
5104 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5105 return DATA_REGS;
5107 /* PC-relative addresses must be loaded into an address register first. */
5108 if (TARGET_PCREL
5109 && !reg_class_subset_p (rclass, ADDR_REGS)
5110 && symbolic_operand (x, VOIDmode))
5111 return ADDR_REGS;
5113 return NO_REGS;
5116 /* Implement PREFERRED_RELOAD_CLASS. */
5118 enum reg_class
5119 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5121 enum reg_class secondary_class;
5123 /* If RCLASS might need a secondary reload, try restricting it to
5124 a class that doesn't. */
5125 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5126 if (secondary_class != NO_REGS
5127 && reg_class_subset_p (secondary_class, rclass))
5128 return secondary_class;
5130 /* Prefer to use moveq for in-range constants. */
5131 if (GET_CODE (x) == CONST_INT
5132 && reg_class_subset_p (DATA_REGS, rclass)
5133 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5134 return DATA_REGS;
5136 /* ??? Do we really need this now? */
5137 if (GET_CODE (x) == CONST_DOUBLE
5138 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5140 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5141 return FP_REGS;
5143 return NO_REGS;
5146 return rclass;
5149 /* Return floating point values in a 68881 register. This makes 68881 code
5150 a little bit faster. It also makes -msoft-float code incompatible with
5151 hard-float code, so people have to be careful not to mix the two.
5152 For ColdFire it was decided the ABI incompatibility is undesirable.
5153 If there is need for a hard-float ABI it is probably worth doing it
5154 properly and also passing function arguments in FP registers. */
5156 m68k_libcall_value (enum machine_mode mode)
5158 switch (mode) {
5159 case SFmode:
5160 case DFmode:
5161 case XFmode:
5162 if (TARGET_68881)
5163 return gen_rtx_REG (mode, FP0_REG);
5164 break;
5165 default:
5166 break;
5169 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5173 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5175 enum machine_mode mode;
5177 mode = TYPE_MODE (valtype);
5178 switch (mode) {
5179 case SFmode:
5180 case DFmode:
5181 case XFmode:
5182 if (TARGET_68881)
5183 return gen_rtx_REG (mode, FP0_REG);
5184 break;
5185 default:
5186 break;
5189 /* If the function returns a pointer, push that into %a0. */
5190 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5191 /* For compatibility with the large body of existing code which
5192 does not always properly declare external functions returning
5193 pointer types, the m68k/SVR4 convention is to copy the value
5194 returned for pointer functions from a0 to d0 in the function
5195 epilogue, so that callers that have neglected to properly
5196 declare the callee can still find the correct return value in
5197 d0. */
5198 return gen_rtx_PARALLEL
5199 (mode,
5200 gen_rtvec (2,
5201 gen_rtx_EXPR_LIST (VOIDmode,
5202 gen_rtx_REG (mode, A0_REG),
5203 const0_rtx),
5204 gen_rtx_EXPR_LIST (VOIDmode,
5205 gen_rtx_REG (mode, D0_REG),
5206 const0_rtx)));
5207 else if (POINTER_TYPE_P (valtype))
5208 return gen_rtx_REG (mode, A0_REG);
5209 else
5210 return gen_rtx_REG (mode, D0_REG);
5213 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5214 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5215 static bool
5216 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5218 enum machine_mode mode = TYPE_MODE (type);
5220 if (mode == BLKmode)
5221 return true;
5223 /* If TYPE's known alignment is less than the alignment of MODE that
5224 would contain the structure, then return in memory. We need to
5225 do so to maintain the compatibility between code compiled with
5226 -mstrict-align and that compiled with -mno-strict-align. */
5227 if (AGGREGATE_TYPE_P (type)
5228 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5229 return true;
5231 return false;
5233 #endif
5235 /* CPU to schedule the program for. */
5236 enum attr_cpu m68k_sched_cpu;
5238 /* MAC to schedule the program for. */
5239 enum attr_mac m68k_sched_mac;
5241 /* Operand type. */
5242 enum attr_op_type
5244 /* No operand. */
5245 OP_TYPE_NONE,
5247 /* Integer register. */
5248 OP_TYPE_RN,
5250 /* FP register. */
5251 OP_TYPE_FPN,
5253 /* Implicit mem reference (e.g. stack). */
5254 OP_TYPE_MEM1,
5256 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5257 OP_TYPE_MEM234,
5259 /* Memory with offset but without indexing. EA mode 5. */
5260 OP_TYPE_MEM5,
5262 /* Memory with indexing. EA mode 6. */
5263 OP_TYPE_MEM6,
5265 /* Memory referenced by absolute address. EA mode 7. */
5266 OP_TYPE_MEM7,
5268 /* Immediate operand that doesn't require extension word. */
5269 OP_TYPE_IMM_Q,
5271 /* Immediate 16 bit operand. */
5272 OP_TYPE_IMM_W,
5274 /* Immediate 32 bit operand. */
5275 OP_TYPE_IMM_L
5278 /* Return type of memory ADDR_RTX refers to. */
5279 static enum attr_op_type
5280 sched_address_type (enum machine_mode mode, rtx addr_rtx)
5282 struct m68k_address address;
5284 if (symbolic_operand (addr_rtx, VOIDmode))
5285 return OP_TYPE_MEM7;
5287 if (!m68k_decompose_address (mode, addr_rtx,
5288 reload_completed, &address))
5290 gcc_assert (!reload_completed);
5291 /* Reload will likely fix the address to be in the register. */
5292 return OP_TYPE_MEM234;
5295 if (address.scale != 0)
5296 return OP_TYPE_MEM6;
5298 if (address.base != NULL_RTX)
5300 if (address.offset == NULL_RTX)
5301 return OP_TYPE_MEM234;
5303 return OP_TYPE_MEM5;
5306 gcc_assert (address.offset != NULL_RTX);
5308 return OP_TYPE_MEM7;
5311 /* Return X or Y (depending on OPX_P) operand of INSN. */
5312 static rtx
5313 sched_get_operand (rtx insn, bool opx_p)
5315 int i;
5317 if (recog_memoized (insn) < 0)
5318 gcc_unreachable ();
5320 extract_constrain_insn_cached (insn);
5322 if (opx_p)
5323 i = get_attr_opx (insn);
5324 else
5325 i = get_attr_opy (insn);
5327 if (i >= recog_data.n_operands)
5328 return NULL;
5330 return recog_data.operand[i];
5333 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5334 If ADDRESS_P is true, return type of memory location operand refers to. */
5335 static enum attr_op_type
5336 sched_attr_op_type (rtx insn, bool opx_p, bool address_p)
5338 rtx op;
5340 op = sched_get_operand (insn, opx_p);
5342 if (op == NULL)
5344 gcc_assert (!reload_completed);
5345 return OP_TYPE_RN;
5348 if (address_p)
5349 return sched_address_type (QImode, op);
5351 if (memory_operand (op, VOIDmode))
5352 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5354 if (register_operand (op, VOIDmode))
5356 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5357 || (reload_completed && FP_REG_P (op)))
5358 return OP_TYPE_FPN;
5360 return OP_TYPE_RN;
5363 if (GET_CODE (op) == CONST_INT)
5365 int ival;
5367 ival = INTVAL (op);
5369 /* Check for quick constants. */
5370 switch (get_attr_type (insn))
5372 case TYPE_ALUQ_L:
5373 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5374 return OP_TYPE_IMM_Q;
5376 gcc_assert (!reload_completed);
5377 break;
5379 case TYPE_MOVEQ_L:
5380 if (USE_MOVQ (ival))
5381 return OP_TYPE_IMM_Q;
5383 gcc_assert (!reload_completed);
5384 break;
5386 case TYPE_MOV3Q_L:
5387 if (valid_mov3q_const (ival))
5388 return OP_TYPE_IMM_Q;
5390 gcc_assert (!reload_completed);
5391 break;
5393 default:
5394 break;
5397 if (IN_RANGE (ival, -0x8000, 0x7fff))
5398 return OP_TYPE_IMM_W;
5400 return OP_TYPE_IMM_L;
5403 if (GET_CODE (op) == CONST_DOUBLE)
5405 switch (GET_MODE (op))
5407 case SFmode:
5408 return OP_TYPE_IMM_W;
5410 case VOIDmode:
5411 case DFmode:
5412 return OP_TYPE_IMM_L;
5414 default:
5415 gcc_unreachable ();
5419 if (GET_CODE (op) == CONST
5420 || symbolic_operand (op, VOIDmode)
5421 || LABEL_P (op))
5423 switch (GET_MODE (op))
5425 case QImode:
5426 return OP_TYPE_IMM_Q;
5428 case HImode:
5429 return OP_TYPE_IMM_W;
5431 case SImode:
5432 return OP_TYPE_IMM_L;
5434 default:
5435 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5436 /* Just a guess. */
5437 return OP_TYPE_IMM_W;
5439 return OP_TYPE_IMM_L;
5443 gcc_assert (!reload_completed);
5445 if (FLOAT_MODE_P (GET_MODE (op)))
5446 return OP_TYPE_FPN;
5448 return OP_TYPE_RN;
5451 /* Implement opx_type attribute.
5452 Return type of INSN's operand X.
5453 If ADDRESS_P is true, return type of memory location operand refers to. */
5454 enum attr_opx_type
5455 m68k_sched_attr_opx_type (rtx insn, int address_p)
5457 switch (sched_attr_op_type (insn, true, address_p != 0))
5459 case OP_TYPE_RN:
5460 return OPX_TYPE_RN;
5462 case OP_TYPE_FPN:
5463 return OPX_TYPE_FPN;
5465 case OP_TYPE_MEM1:
5466 return OPX_TYPE_MEM1;
5468 case OP_TYPE_MEM234:
5469 return OPX_TYPE_MEM234;
5471 case OP_TYPE_MEM5:
5472 return OPX_TYPE_MEM5;
5474 case OP_TYPE_MEM6:
5475 return OPX_TYPE_MEM6;
5477 case OP_TYPE_MEM7:
5478 return OPX_TYPE_MEM7;
5480 case OP_TYPE_IMM_Q:
5481 return OPX_TYPE_IMM_Q;
5483 case OP_TYPE_IMM_W:
5484 return OPX_TYPE_IMM_W;
5486 case OP_TYPE_IMM_L:
5487 return OPX_TYPE_IMM_L;
5489 default:
5490 gcc_unreachable ();
5491 return 0;
5495 /* Implement opy_type attribute.
5496 Return type of INSN's operand Y.
5497 If ADDRESS_P is true, return type of memory location operand refers to. */
5498 enum attr_opy_type
5499 m68k_sched_attr_opy_type (rtx insn, int address_p)
5501 switch (sched_attr_op_type (insn, false, address_p != 0))
5503 case OP_TYPE_RN:
5504 return OPY_TYPE_RN;
5506 case OP_TYPE_FPN:
5507 return OPY_TYPE_FPN;
5509 case OP_TYPE_MEM1:
5510 return OPY_TYPE_MEM1;
5512 case OP_TYPE_MEM234:
5513 return OPY_TYPE_MEM234;
5515 case OP_TYPE_MEM5:
5516 return OPY_TYPE_MEM5;
5518 case OP_TYPE_MEM6:
5519 return OPY_TYPE_MEM6;
5521 case OP_TYPE_MEM7:
5522 return OPY_TYPE_MEM7;
5524 case OP_TYPE_IMM_Q:
5525 return OPY_TYPE_IMM_Q;
5527 case OP_TYPE_IMM_W:
5528 return OPY_TYPE_IMM_W;
5530 case OP_TYPE_IMM_L:
5531 return OPY_TYPE_IMM_L;
5533 default:
5534 gcc_unreachable ();
5535 return 0;
5539 /* Return size of INSN as int. */
5540 static int
5541 sched_get_attr_size_int (rtx insn)
5543 int size;
5545 switch (get_attr_type (insn))
5547 case TYPE_IGNORE:
5548 /* There should be no references to m68k_sched_attr_size for 'ignore'
5549 instructions. */
5550 gcc_unreachable ();
5551 return 0;
5553 case TYPE_MUL_L:
5554 size = 2;
5555 break;
5557 default:
5558 size = 1;
5559 break;
5562 switch (get_attr_opx_type (insn))
5564 case OPX_TYPE_NONE:
5565 case OPX_TYPE_RN:
5566 case OPX_TYPE_FPN:
5567 case OPX_TYPE_MEM1:
5568 case OPX_TYPE_MEM234:
5569 case OPY_TYPE_IMM_Q:
5570 break;
5572 case OPX_TYPE_MEM5:
5573 case OPX_TYPE_MEM6:
5574 /* Here we assume that most absolute references are short. */
5575 case OPX_TYPE_MEM7:
5576 case OPY_TYPE_IMM_W:
5577 ++size;
5578 break;
5580 case OPY_TYPE_IMM_L:
5581 size += 2;
5582 break;
5584 default:
5585 gcc_unreachable ();
5588 switch (get_attr_opy_type (insn))
5590 case OPY_TYPE_NONE:
5591 case OPY_TYPE_RN:
5592 case OPY_TYPE_FPN:
5593 case OPY_TYPE_MEM1:
5594 case OPY_TYPE_MEM234:
5595 case OPY_TYPE_IMM_Q:
5596 break;
5598 case OPY_TYPE_MEM5:
5599 case OPY_TYPE_MEM6:
5600 /* Here we assume that most absolute references are short. */
5601 case OPY_TYPE_MEM7:
5602 case OPY_TYPE_IMM_W:
5603 ++size;
5604 break;
5606 case OPY_TYPE_IMM_L:
5607 size += 2;
5608 break;
5610 default:
5611 gcc_unreachable ();
5614 if (size > 3)
5616 gcc_assert (!reload_completed);
5618 size = 3;
5621 return size;
5624 /* Return size of INSN as attribute enum value. */
5625 enum attr_size
5626 m68k_sched_attr_size (rtx insn)
5628 switch (sched_get_attr_size_int (insn))
5630 case 1:
5631 return SIZE_1;
5633 case 2:
5634 return SIZE_2;
5636 case 3:
5637 return SIZE_3;
5639 default:
5640 gcc_unreachable ();
5641 return 0;
5645 /* Return operand X or Y (depending on OPX_P) of INSN,
5646 if it is a MEM, or NULL overwise. */
5647 static enum attr_op_type
5648 sched_get_opxy_mem_type (rtx insn, bool opx_p)
5650 if (opx_p)
5652 switch (get_attr_opx_type (insn))
5654 case OPX_TYPE_NONE:
5655 case OPX_TYPE_RN:
5656 case OPX_TYPE_FPN:
5657 case OPX_TYPE_IMM_Q:
5658 case OPX_TYPE_IMM_W:
5659 case OPX_TYPE_IMM_L:
5660 return OP_TYPE_RN;
5662 case OPX_TYPE_MEM1:
5663 case OPX_TYPE_MEM234:
5664 case OPX_TYPE_MEM5:
5665 case OPX_TYPE_MEM7:
5666 return OP_TYPE_MEM1;
5668 case OPX_TYPE_MEM6:
5669 return OP_TYPE_MEM6;
5671 default:
5672 gcc_unreachable ();
5673 return 0;
5676 else
5678 switch (get_attr_opy_type (insn))
5680 case OPY_TYPE_NONE:
5681 case OPY_TYPE_RN:
5682 case OPY_TYPE_FPN:
5683 case OPY_TYPE_IMM_Q:
5684 case OPY_TYPE_IMM_W:
5685 case OPY_TYPE_IMM_L:
5686 return OP_TYPE_RN;
5688 case OPY_TYPE_MEM1:
5689 case OPY_TYPE_MEM234:
5690 case OPY_TYPE_MEM5:
5691 case OPY_TYPE_MEM7:
5692 return OP_TYPE_MEM1;
5694 case OPY_TYPE_MEM6:
5695 return OP_TYPE_MEM6;
5697 default:
5698 gcc_unreachable ();
5699 return 0;
5704 /* Implement op_mem attribute. */
5705 enum attr_op_mem
5706 m68k_sched_attr_op_mem (rtx insn)
5708 enum attr_op_type opx;
5709 enum attr_op_type opy;
5711 opx = sched_get_opxy_mem_type (insn, true);
5712 opy = sched_get_opxy_mem_type (insn, false);
5714 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5715 return OP_MEM_00;
5717 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5719 switch (get_attr_opx_access (insn))
5721 case OPX_ACCESS_R:
5722 return OP_MEM_10;
5724 case OPX_ACCESS_W:
5725 return OP_MEM_01;
5727 case OPX_ACCESS_RW:
5728 return OP_MEM_11;
5730 default:
5731 gcc_unreachable ();
5732 return 0;
5736 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5738 switch (get_attr_opx_access (insn))
5740 case OPX_ACCESS_R:
5741 return OP_MEM_I0;
5743 case OPX_ACCESS_W:
5744 return OP_MEM_0I;
5746 case OPX_ACCESS_RW:
5747 return OP_MEM_I1;
5749 default:
5750 gcc_unreachable ();
5751 return 0;
5755 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5756 return OP_MEM_10;
5758 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5760 switch (get_attr_opx_access (insn))
5762 case OPX_ACCESS_W:
5763 return OP_MEM_11;
5765 default:
5766 gcc_assert (!reload_completed);
5767 return OP_MEM_11;
5771 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5773 switch (get_attr_opx_access (insn))
5775 case OPX_ACCESS_W:
5776 return OP_MEM_1I;
5778 default:
5779 gcc_assert (!reload_completed);
5780 return OP_MEM_1I;
5784 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5785 return OP_MEM_I0;
5787 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5789 switch (get_attr_opx_access (insn))
5791 case OPX_ACCESS_W:
5792 return OP_MEM_I1;
5794 default:
5795 gcc_assert (!reload_completed);
5796 return OP_MEM_I1;
5800 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5801 gcc_assert (!reload_completed);
5802 return OP_MEM_I1;
5805 /* Jump instructions types. Indexed by INSN_UID.
5806 The same rtl insn can be expanded into different asm instructions
5807 depending on the cc0_status. To properly determine type of jump
5808 instructions we scan instruction stream and map jumps types to this
5809 array. */
5810 static enum attr_type *sched_branch_type;
5812 /* Return the type of the jump insn. */
5813 enum attr_type
5814 m68k_sched_branch_type (rtx insn)
5816 enum attr_type type;
5818 type = sched_branch_type[INSN_UID (insn)];
5820 gcc_assert (type != 0);
5822 return type;
5825 /* Data for ColdFire V4 index bypass.
5826 Producer modifies register that is used as index in consumer with
5827 specified scale. */
5828 static struct
5830 /* Producer instruction. */
5831 rtx pro;
5833 /* Consumer instruction. */
5834 rtx con;
5836 /* Scale of indexed memory access within consumer.
5837 Or zero if bypass should not be effective at the moment. */
5838 int scale;
5839 } sched_cfv4_bypass_data;
5841 /* An empty state that is used in m68k_sched_adjust_cost. */
5842 static state_t sched_adjust_cost_state;
5844 /* Implement adjust_cost scheduler hook.
5845 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5846 static int
5847 m68k_sched_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx def_insn,
5848 int cost)
5850 int delay;
5852 if (recog_memoized (def_insn) < 0
5853 || recog_memoized (insn) < 0)
5854 return cost;
5856 if (sched_cfv4_bypass_data.scale == 1)
5857 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5859 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5860 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5861 that the data in sched_cfv4_bypass_data is up to date. */
5862 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5863 && sched_cfv4_bypass_data.con == insn);
5865 if (cost < 3)
5866 cost = 3;
5868 sched_cfv4_bypass_data.pro = NULL;
5869 sched_cfv4_bypass_data.con = NULL;
5870 sched_cfv4_bypass_data.scale = 0;
5872 else
5873 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5874 && sched_cfv4_bypass_data.con == NULL
5875 && sched_cfv4_bypass_data.scale == 0);
5877 /* Don't try to issue INSN earlier than DFA permits.
5878 This is especially useful for instructions that write to memory,
5879 as their true dependence (default) latency is better to be set to 0
5880 to workaround alias analysis limitations.
5881 This is, in fact, a machine independent tweak, so, probably,
5882 it should be moved to haifa-sched.c: insn_cost (). */
5883 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
5884 if (delay > cost)
5885 cost = delay;
5887 return cost;
5890 /* Return maximal number of insns that can be scheduled on a single cycle. */
5891 static int
5892 m68k_sched_issue_rate (void)
5894 switch (m68k_sched_cpu)
5896 case CPU_CFV1:
5897 case CPU_CFV2:
5898 case CPU_CFV3:
5899 return 1;
5901 case CPU_CFV4:
5902 return 2;
5904 default:
5905 gcc_unreachable ();
5906 return 0;
5910 /* Maximal length of instruction for current CPU.
5911 E.g. it is 3 for any ColdFire core. */
5912 static int max_insn_size;
5914 /* Data to model instruction buffer of CPU. */
5915 struct _sched_ib
5917 /* True if instruction buffer model is modeled for current CPU. */
5918 bool enabled_p;
5920 /* Size of the instruction buffer in words. */
5921 int size;
5923 /* Number of filled words in the instruction buffer. */
5924 int filled;
5926 /* Additional information about instruction buffer for CPUs that have
5927 a buffer of instruction records, rather then a plain buffer
5928 of instruction words. */
5929 struct _sched_ib_records
5931 /* Size of buffer in records. */
5932 int n_insns;
5934 /* Array to hold data on adjustements made to the size of the buffer. */
5935 int *adjust;
5937 /* Index of the above array. */
5938 int adjust_index;
5939 } records;
5941 /* An insn that reserves (marks empty) one word in the instruction buffer. */
5942 rtx insn;
5945 static struct _sched_ib sched_ib;
5947 /* ID of memory unit. */
5948 static int sched_mem_unit_code;
5950 /* Implementation of the targetm.sched.variable_issue () hook.
5951 It is called after INSN was issued. It returns the number of insns
5952 that can possibly get scheduled on the current cycle.
5953 It is used here to determine the effect of INSN on the instruction
5954 buffer. */
5955 static int
5956 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
5957 int sched_verbose ATTRIBUTE_UNUSED,
5958 rtx insn, int can_issue_more)
5960 int insn_size;
5962 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
5964 switch (m68k_sched_cpu)
5966 case CPU_CFV1:
5967 case CPU_CFV2:
5968 insn_size = sched_get_attr_size_int (insn);
5969 break;
5971 case CPU_CFV3:
5972 insn_size = sched_get_attr_size_int (insn);
5974 /* ColdFire V3 and V4 cores have instruction buffers that can
5975 accumulate up to 8 instructions regardless of instructions'
5976 sizes. So we should take care not to "prefetch" 24 one-word
5977 or 12 two-words instructions.
5978 To model this behavior we temporarily decrease size of the
5979 buffer by (max_insn_size - insn_size) for next 7 instructions. */
5981 int adjust;
5983 adjust = max_insn_size - insn_size;
5984 sched_ib.size -= adjust;
5986 if (sched_ib.filled > sched_ib.size)
5987 sched_ib.filled = sched_ib.size;
5989 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
5992 ++sched_ib.records.adjust_index;
5993 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
5994 sched_ib.records.adjust_index = 0;
5996 /* Undo adjustement we did 7 instructions ago. */
5997 sched_ib.size
5998 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6000 break;
6002 case CPU_CFV4:
6003 gcc_assert (!sched_ib.enabled_p);
6004 insn_size = 0;
6005 break;
6007 default:
6008 gcc_unreachable ();
6011 gcc_assert (insn_size <= sched_ib.filled);
6012 --can_issue_more;
6014 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6015 || asm_noperands (PATTERN (insn)) >= 0)
6016 insn_size = sched_ib.filled;
6017 else
6018 insn_size = 0;
6020 sched_ib.filled -= insn_size;
6022 return can_issue_more;
6025 /* Return how many instructions should scheduler lookahead to choose the
6026 best one. */
6027 static int
6028 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6030 return m68k_sched_issue_rate () - 1;
6033 /* Implementation of targetm.sched.md_init_global () hook.
6034 It is invoked once per scheduling pass and is used here
6035 to initialize scheduler constants. */
6036 static void
6037 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6038 int sched_verbose ATTRIBUTE_UNUSED,
6039 int n_insns ATTRIBUTE_UNUSED)
6041 /* Init branch types. */
6043 rtx insn;
6045 sched_branch_type = XCNEWVEC (enum attr_type, get_max_uid () + 1);
6047 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
6049 if (JUMP_P (insn))
6050 /* !!! FIXME: Implement real scan here. */
6051 sched_branch_type[INSN_UID (insn)] = TYPE_BCC;
6055 #ifdef ENABLE_CHECKING
6056 /* Check that all instructions have DFA reservations and
6057 that all instructions can be issued from a clean state. */
6059 rtx insn;
6060 state_t state;
6062 state = alloca (state_size ());
6064 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
6066 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6068 gcc_assert (insn_has_dfa_reservation_p (insn));
6070 state_reset (state);
6071 if (state_transition (state, insn) >= 0)
6072 gcc_unreachable ();
6076 #endif
6078 /* Setup target cpu. */
6080 /* ColdFire V4 has a set of features to keep its instruction buffer full
6081 (e.g., a separate memory bus for instructions) and, hence, we do not model
6082 buffer for this CPU. */
6083 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6085 switch (m68k_sched_cpu)
6087 case CPU_CFV4:
6088 sched_ib.filled = 0;
6090 /* FALLTHRU */
6092 case CPU_CFV1:
6093 case CPU_CFV2:
6094 max_insn_size = 3;
6095 sched_ib.records.n_insns = 0;
6096 sched_ib.records.adjust = NULL;
6097 break;
6099 case CPU_CFV3:
6100 max_insn_size = 3;
6101 sched_ib.records.n_insns = 8;
6102 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6103 break;
6105 default:
6106 gcc_unreachable ();
6109 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6111 sched_adjust_cost_state = xmalloc (state_size ());
6112 state_reset (sched_adjust_cost_state);
6114 start_sequence ();
6115 emit_insn (gen_ib ());
6116 sched_ib.insn = get_insns ();
6117 end_sequence ();
6120 /* Scheduling pass is now finished. Free/reset static variables. */
6121 static void
6122 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6123 int verbose ATTRIBUTE_UNUSED)
6125 sched_ib.insn = NULL;
6127 free (sched_adjust_cost_state);
6128 sched_adjust_cost_state = NULL;
6130 sched_mem_unit_code = 0;
6132 free (sched_ib.records.adjust);
6133 sched_ib.records.adjust = NULL;
6134 sched_ib.records.n_insns = 0;
6135 max_insn_size = 0;
6137 free (sched_branch_type);
6138 sched_branch_type = NULL;
6141 /* Implementation of targetm.sched.md_init () hook.
6142 It is invoked each time scheduler starts on the new block (basic block or
6143 extended basic block). */
6144 static void
6145 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6146 int sched_verbose ATTRIBUTE_UNUSED,
6147 int n_insns ATTRIBUTE_UNUSED)
6149 switch (m68k_sched_cpu)
6151 case CPU_CFV1:
6152 case CPU_CFV2:
6153 sched_ib.size = 6;
6154 break;
6156 case CPU_CFV3:
6157 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6159 memset (sched_ib.records.adjust, 0,
6160 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6161 sched_ib.records.adjust_index = 0;
6162 break;
6164 case CPU_CFV4:
6165 gcc_assert (!sched_ib.enabled_p);
6166 sched_ib.size = 0;
6167 break;
6169 default:
6170 gcc_unreachable ();
6173 if (sched_ib.enabled_p)
6174 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6175 the first cycle. Workaround that. */
6176 sched_ib.filled = -2;
6179 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6180 It is invoked just before current cycle finishes and is used here
6181 to track if instruction buffer got its two words this cycle. */
6182 static void
6183 m68k_sched_dfa_pre_advance_cycle (void)
6185 if (!sched_ib.enabled_p)
6186 return;
6188 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6190 sched_ib.filled += 2;
6192 if (sched_ib.filled > sched_ib.size)
6193 sched_ib.filled = sched_ib.size;
6197 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6198 It is invoked just after new cycle begins and is used here
6199 to setup number of filled words in the instruction buffer so that
6200 instructions which won't have all their words prefetched would be
6201 stalled for a cycle. */
6202 static void
6203 m68k_sched_dfa_post_advance_cycle (void)
6205 int i;
6207 if (!sched_ib.enabled_p)
6208 return;
6210 /* Setup number of prefetched instruction words in the instruction
6211 buffer. */
6212 i = max_insn_size - sched_ib.filled;
6214 while (--i >= 0)
6216 if (state_transition (curr_state, sched_ib.insn) >= 0)
6217 gcc_unreachable ();
6221 /* Return X or Y (depending on OPX_P) operand of INSN,
6222 if it is an integer register, or NULL overwise. */
6223 static rtx
6224 sched_get_reg_operand (rtx insn, bool opx_p)
6226 rtx op = NULL;
6228 if (opx_p)
6230 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6232 op = sched_get_operand (insn, true);
6233 gcc_assert (op != NULL);
6235 if (!reload_completed && !REG_P (op))
6236 return NULL;
6239 else
6241 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6243 op = sched_get_operand (insn, false);
6244 gcc_assert (op != NULL);
6246 if (!reload_completed && !REG_P (op))
6247 return NULL;
6251 return op;
6254 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6255 is a MEM. */
6256 static bool
6257 sched_mem_operand_p (rtx insn, bool opx_p)
6259 switch (sched_get_opxy_mem_type (insn, opx_p))
6261 case OP_TYPE_MEM1:
6262 case OP_TYPE_MEM6:
6263 return true;
6265 default:
6266 return false;
6270 /* Return X or Y (depending on OPX_P) operand of INSN,
6271 if it is a MEM, or NULL overwise. */
6272 static rtx
6273 sched_get_mem_operand (rtx insn, bool must_read_p, bool must_write_p)
6275 bool opx_p;
6276 bool opy_p;
6278 opx_p = false;
6279 opy_p = false;
6281 if (must_read_p)
6283 opx_p = true;
6284 opy_p = true;
6287 if (must_write_p)
6289 opx_p = true;
6290 opy_p = false;
6293 if (opy_p && sched_mem_operand_p (insn, false))
6294 return sched_get_operand (insn, false);
6296 if (opx_p && sched_mem_operand_p (insn, true))
6297 return sched_get_operand (insn, true);
6299 gcc_unreachable ();
6300 return NULL;
6303 /* Return non-zero if PRO modifies register used as part of
6304 address in CON. */
6306 m68k_sched_address_bypass_p (rtx pro, rtx con)
6308 rtx pro_x;
6309 rtx con_mem_read;
6311 pro_x = sched_get_reg_operand (pro, true);
6312 if (pro_x == NULL)
6313 return 0;
6315 con_mem_read = sched_get_mem_operand (con, true, false);
6316 gcc_assert (con_mem_read != NULL);
6318 if (reg_mentioned_p (pro_x, con_mem_read))
6319 return 1;
6321 return 0;
6324 /* Helper function for m68k_sched_indexed_address_bypass_p.
6325 if PRO modifies register used as index in CON,
6326 return scale of indexed memory access in CON. Return zero overwise. */
6327 static int
6328 sched_get_indexed_address_scale (rtx pro, rtx con)
6330 rtx reg;
6331 rtx mem;
6332 struct m68k_address address;
6334 reg = sched_get_reg_operand (pro, true);
6335 if (reg == NULL)
6336 return 0;
6338 mem = sched_get_mem_operand (con, true, false);
6339 gcc_assert (mem != NULL && MEM_P (mem));
6341 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6342 &address))
6343 gcc_unreachable ();
6345 if (REGNO (reg) == REGNO (address.index))
6347 gcc_assert (address.scale != 0);
6348 return address.scale;
6351 return 0;
6354 /* Return non-zero if PRO modifies register used
6355 as index with scale 2 or 4 in CON. */
6357 m68k_sched_indexed_address_bypass_p (rtx pro, rtx con)
6359 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6360 && sched_cfv4_bypass_data.con == NULL
6361 && sched_cfv4_bypass_data.scale == 0);
6363 switch (sched_get_indexed_address_scale (pro, con))
6365 case 1:
6366 /* We can't have a variable latency bypass, so
6367 remember to adjust the insn cost in adjust_cost hook. */
6368 sched_cfv4_bypass_data.pro = pro;
6369 sched_cfv4_bypass_data.con = con;
6370 sched_cfv4_bypass_data.scale = 1;
6371 return 0;
6373 case 2:
6374 case 4:
6375 return 1;
6377 default:
6378 return 0;
6382 #include "gt-m68k.h"