* gcc.dg/const-elim-1.c: Remove xfail for xtensa-*-*.
[official-gcc.git] / gcc / tree-ssa-propagate.c
blob9f9fef100fad1526e732c27c73137f18fcb88414
1 /* Generic SSA value propagation engine.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 2, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "errors.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-flow.h"
40 #include "tree-pass.h"
41 #include "tree-ssa-propagate.h"
42 #include "langhooks.h"
43 #include "varray.h"
44 #include "vec.h"
46 /* This file implements a generic value propagation engine based on
47 the same propagation used by the SSA-CCP algorithm [1].
49 Propagation is performed by simulating the execution of every
50 statement that produces the value being propagated. Simulation
51 proceeds as follows:
53 1- Initially, all edges of the CFG are marked not executable and
54 the CFG worklist is seeded with all the statements in the entry
55 basic block (block 0).
57 2- Every statement S is simulated with a call to the call-back
58 function SSA_PROP_VISIT_STMT. This evaluation may produce 3
59 results:
61 SSA_PROP_NOT_INTERESTING: Statement S produces nothing of
62 interest and does not affect any of the work lists.
64 SSA_PROP_VARYING: The value produced by S cannot be determined
65 at compile time. Further simulation of S is not required.
66 If S is a conditional jump, all the outgoing edges for the
67 block are considered executable and added to the work
68 list.
70 SSA_PROP_INTERESTING: S produces a value that can be computed
71 at compile time. Its result can be propagated into the
72 statements that feed from S. Furthermore, if S is a
73 conditional jump, only the edge known to be taken is added
74 to the work list. Edges that are known not to execute are
75 never simulated.
77 3- PHI nodes are simulated with a call to SSA_PROP_VISIT_PHI. The
78 return value from SSA_PROP_VISIT_PHI has the same semantics as
79 described in #2.
81 4- Three work lists are kept. Statements are only added to these
82 lists if they produce one of SSA_PROP_INTERESTING or
83 SSA_PROP_VARYING.
85 CFG_BLOCKS contains the list of blocks to be simulated.
86 Blocks are added to this list if their incoming edges are
87 found executable.
89 VARYING_SSA_EDGES contains the list of statements that feed
90 from statements that produce an SSA_PROP_VARYING result.
91 These are simulated first to speed up processing.
93 INTERESTING_SSA_EDGES contains the list of statements that
94 feed from statements that produce an SSA_PROP_INTERESTING
95 result.
97 5- Simulation terminates when all three work lists are drained.
99 Before calling ssa_propagate, it is important to clear
100 DONT_SIMULATE_AGAIN for all the statements in the program that
101 should be simulated. This initialization allows an implementation
102 to specify which statements should never be simulated.
104 It is also important to compute def-use information before calling
105 ssa_propagate.
107 References:
109 [1] Constant propagation with conditional branches,
110 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
112 [2] Building an Optimizing Compiler,
113 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
115 [3] Advanced Compiler Design and Implementation,
116 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
118 /* Function pointers used to parameterize the propagation engine. */
119 static ssa_prop_visit_stmt_fn ssa_prop_visit_stmt;
120 static ssa_prop_visit_phi_fn ssa_prop_visit_phi;
122 /* Use the TREE_DEPRECATED bitflag to mark statements that have been
123 added to one of the SSA edges worklists. This flag is used to
124 avoid visiting statements unnecessarily when draining an SSA edge
125 worklist. If while simulating a basic block, we find a statement with
126 STMT_IN_SSA_EDGE_WORKLIST set, we clear it to prevent SSA edge
127 processing from visiting it again. */
128 #define STMT_IN_SSA_EDGE_WORKLIST(T) TREE_DEPRECATED (T)
130 /* A bitmap to keep track of executable blocks in the CFG. */
131 static sbitmap executable_blocks;
133 /* Array of control flow edges on the worklist. */
134 static GTY(()) varray_type cfg_blocks = NULL;
136 static unsigned int cfg_blocks_num = 0;
137 static int cfg_blocks_tail;
138 static int cfg_blocks_head;
140 static sbitmap bb_in_list;
142 /* Worklist of SSA edges which will need reexamination as their
143 definition has changed. SSA edges are def-use edges in the SSA
144 web. For each D-U edge, we store the target statement or PHI node
145 U. */
146 static GTY(()) VEC(tree,gc) *interesting_ssa_edges;
148 /* Identical to INTERESTING_SSA_EDGES. For performance reasons, the
149 list of SSA edges is split into two. One contains all SSA edges
150 who need to be reexamined because their lattice value changed to
151 varying (this worklist), and the other contains all other SSA edges
152 to be reexamined (INTERESTING_SSA_EDGES).
154 Since most values in the program are VARYING, the ideal situation
155 is to move them to that lattice value as quickly as possible.
156 Thus, it doesn't make sense to process any other type of lattice
157 value until all VARYING values are propagated fully, which is one
158 thing using the VARYING worklist achieves. In addition, if we
159 don't use a separate worklist for VARYING edges, we end up with
160 situations where lattice values move from
161 UNDEFINED->INTERESTING->VARYING instead of UNDEFINED->VARYING. */
162 static GTY(()) VEC(tree,gc) *varying_ssa_edges;
165 /* Return true if the block worklist empty. */
167 static inline bool
168 cfg_blocks_empty_p (void)
170 return (cfg_blocks_num == 0);
174 /* Add a basic block to the worklist. The block must not be already
175 in the worklist, and it must not be the ENTRY or EXIT block. */
177 static void
178 cfg_blocks_add (basic_block bb)
180 gcc_assert (bb != ENTRY_BLOCK_PTR && bb != EXIT_BLOCK_PTR);
181 gcc_assert (!TEST_BIT (bb_in_list, bb->index));
183 if (cfg_blocks_empty_p ())
185 cfg_blocks_tail = cfg_blocks_head = 0;
186 cfg_blocks_num = 1;
188 else
190 cfg_blocks_num++;
191 if (cfg_blocks_num > VARRAY_SIZE (cfg_blocks))
193 /* We have to grow the array now. Adjust to queue to occupy the
194 full space of the original array. */
195 cfg_blocks_tail = VARRAY_SIZE (cfg_blocks);
196 cfg_blocks_head = 0;
197 VARRAY_GROW (cfg_blocks, 2 * VARRAY_SIZE (cfg_blocks));
199 else
200 cfg_blocks_tail = (cfg_blocks_tail + 1) % VARRAY_SIZE (cfg_blocks);
203 VARRAY_BB (cfg_blocks, cfg_blocks_tail) = bb;
204 SET_BIT (bb_in_list, bb->index);
208 /* Remove a block from the worklist. */
210 static basic_block
211 cfg_blocks_get (void)
213 basic_block bb;
215 bb = VARRAY_BB (cfg_blocks, cfg_blocks_head);
217 gcc_assert (!cfg_blocks_empty_p ());
218 gcc_assert (bb);
220 cfg_blocks_head = (cfg_blocks_head + 1) % VARRAY_SIZE (cfg_blocks);
221 --cfg_blocks_num;
222 RESET_BIT (bb_in_list, bb->index);
224 return bb;
228 /* We have just defined a new value for VAR. If IS_VARYING is true,
229 add all immediate uses of VAR to VARYING_SSA_EDGES, otherwise add
230 them to INTERESTING_SSA_EDGES. */
232 static void
233 add_ssa_edge (tree var, bool is_varying)
235 imm_use_iterator iter;
236 use_operand_p use_p;
238 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
240 tree use_stmt = USE_STMT (use_p);
242 if (!DONT_SIMULATE_AGAIN (use_stmt)
243 && !STMT_IN_SSA_EDGE_WORKLIST (use_stmt))
245 STMT_IN_SSA_EDGE_WORKLIST (use_stmt) = 1;
246 if (is_varying)
247 VEC_safe_push (tree, gc, varying_ssa_edges, use_stmt);
248 else
249 VEC_safe_push (tree, gc, interesting_ssa_edges, use_stmt);
255 /* Add edge E to the control flow worklist. */
257 static void
258 add_control_edge (edge e)
260 basic_block bb = e->dest;
261 if (bb == EXIT_BLOCK_PTR)
262 return;
264 /* If the edge had already been executed, skip it. */
265 if (e->flags & EDGE_EXECUTABLE)
266 return;
268 e->flags |= EDGE_EXECUTABLE;
270 /* If the block is already in the list, we're done. */
271 if (TEST_BIT (bb_in_list, bb->index))
272 return;
274 cfg_blocks_add (bb);
276 if (dump_file && (dump_flags & TDF_DETAILS))
277 fprintf (dump_file, "Adding Destination of edge (%d -> %d) to worklist\n\n",
278 e->src->index, e->dest->index);
282 /* Simulate the execution of STMT and update the work lists accordingly. */
284 static void
285 simulate_stmt (tree stmt)
287 enum ssa_prop_result val = SSA_PROP_NOT_INTERESTING;
288 edge taken_edge = NULL;
289 tree output_name = NULL_TREE;
291 /* Don't bother visiting statements that are already
292 considered varying by the propagator. */
293 if (DONT_SIMULATE_AGAIN (stmt))
294 return;
296 if (TREE_CODE (stmt) == PHI_NODE)
298 val = ssa_prop_visit_phi (stmt);
299 output_name = PHI_RESULT (stmt);
301 else
302 val = ssa_prop_visit_stmt (stmt, &taken_edge, &output_name);
304 if (val == SSA_PROP_VARYING)
306 DONT_SIMULATE_AGAIN (stmt) = 1;
308 /* If the statement produced a new varying value, add the SSA
309 edges coming out of OUTPUT_NAME. */
310 if (output_name)
311 add_ssa_edge (output_name, true);
313 /* If STMT transfers control out of its basic block, add
314 all outgoing edges to the work list. */
315 if (stmt_ends_bb_p (stmt))
317 edge e;
318 edge_iterator ei;
319 basic_block bb = bb_for_stmt (stmt);
320 FOR_EACH_EDGE (e, ei, bb->succs)
321 add_control_edge (e);
324 else if (val == SSA_PROP_INTERESTING)
326 /* If the statement produced new value, add the SSA edges coming
327 out of OUTPUT_NAME. */
328 if (output_name)
329 add_ssa_edge (output_name, false);
331 /* If we know which edge is going to be taken out of this block,
332 add it to the CFG work list. */
333 if (taken_edge)
334 add_control_edge (taken_edge);
338 /* Process an SSA edge worklist. WORKLIST is the SSA edge worklist to
339 drain. This pops statements off the given WORKLIST and processes
340 them until there are no more statements on WORKLIST.
341 We take a pointer to WORKLIST because it may be reallocated when an
342 SSA edge is added to it in simulate_stmt. */
344 static void
345 process_ssa_edge_worklist (VEC(tree,gc) **worklist)
347 /* Drain the entire worklist. */
348 while (VEC_length (tree, *worklist) > 0)
350 basic_block bb;
352 /* Pull the statement to simulate off the worklist. */
353 tree stmt = VEC_pop (tree, *worklist);
355 /* If this statement was already visited by simulate_block, then
356 we don't need to visit it again here. */
357 if (!STMT_IN_SSA_EDGE_WORKLIST (stmt))
358 continue;
360 /* STMT is no longer in a worklist. */
361 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
363 if (dump_file && (dump_flags & TDF_DETAILS))
365 fprintf (dump_file, "\nSimulating statement (from ssa_edges): ");
366 print_generic_stmt (dump_file, stmt, dump_flags);
369 bb = bb_for_stmt (stmt);
371 /* PHI nodes are always visited, regardless of whether or not
372 the destination block is executable. Otherwise, visit the
373 statement only if its block is marked executable. */
374 if (TREE_CODE (stmt) == PHI_NODE
375 || TEST_BIT (executable_blocks, bb->index))
376 simulate_stmt (stmt);
381 /* Simulate the execution of BLOCK. Evaluate the statement associated
382 with each variable reference inside the block. */
384 static void
385 simulate_block (basic_block block)
387 tree phi;
389 /* There is nothing to do for the exit block. */
390 if (block == EXIT_BLOCK_PTR)
391 return;
393 if (dump_file && (dump_flags & TDF_DETAILS))
394 fprintf (dump_file, "\nSimulating block %d\n", block->index);
396 /* Always simulate PHI nodes, even if we have simulated this block
397 before. */
398 for (phi = phi_nodes (block); phi; phi = PHI_CHAIN (phi))
399 simulate_stmt (phi);
401 /* If this is the first time we've simulated this block, then we
402 must simulate each of its statements. */
403 if (!TEST_BIT (executable_blocks, block->index))
405 block_stmt_iterator j;
406 unsigned int normal_edge_count;
407 edge e, normal_edge;
408 edge_iterator ei;
410 /* Note that we have simulated this block. */
411 SET_BIT (executable_blocks, block->index);
413 for (j = bsi_start (block); !bsi_end_p (j); bsi_next (&j))
415 tree stmt = bsi_stmt (j);
417 /* If this statement is already in the worklist then
418 "cancel" it. The reevaluation implied by the worklist
419 entry will produce the same value we generate here and
420 thus reevaluating it again from the worklist is
421 pointless. */
422 if (STMT_IN_SSA_EDGE_WORKLIST (stmt))
423 STMT_IN_SSA_EDGE_WORKLIST (stmt) = 0;
425 simulate_stmt (stmt);
428 /* We can not predict when abnormal edges will be executed, so
429 once a block is considered executable, we consider any
430 outgoing abnormal edges as executable.
432 At the same time, if this block has only one successor that is
433 reached by non-abnormal edges, then add that successor to the
434 worklist. */
435 normal_edge_count = 0;
436 normal_edge = NULL;
437 FOR_EACH_EDGE (e, ei, block->succs)
439 if (e->flags & EDGE_ABNORMAL)
440 add_control_edge (e);
441 else
443 normal_edge_count++;
444 normal_edge = e;
448 if (normal_edge_count == 1)
449 add_control_edge (normal_edge);
454 /* Initialize local data structures and work lists. */
456 static void
457 ssa_prop_init (void)
459 edge e;
460 edge_iterator ei;
461 basic_block bb;
462 size_t i;
464 /* Worklists of SSA edges. */
465 interesting_ssa_edges = VEC_alloc (tree, gc, 20);
466 varying_ssa_edges = VEC_alloc (tree, gc, 20);
468 executable_blocks = sbitmap_alloc (last_basic_block);
469 sbitmap_zero (executable_blocks);
471 bb_in_list = sbitmap_alloc (last_basic_block);
472 sbitmap_zero (bb_in_list);
474 if (dump_file && (dump_flags & TDF_DETAILS))
475 dump_immediate_uses (dump_file);
477 VARRAY_BB_INIT (cfg_blocks, 20, "cfg_blocks");
479 /* Initialize the values for every SSA_NAME. */
480 for (i = 1; i < num_ssa_names; i++)
481 if (ssa_name (i))
482 SSA_NAME_VALUE (ssa_name (i)) = NULL_TREE;
484 /* Initially assume that every edge in the CFG is not executable.
485 (including the edges coming out of ENTRY_BLOCK_PTR). */
486 FOR_ALL_BB (bb)
488 block_stmt_iterator si;
490 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
491 STMT_IN_SSA_EDGE_WORKLIST (bsi_stmt (si)) = 0;
493 FOR_EACH_EDGE (e, ei, bb->succs)
494 e->flags &= ~EDGE_EXECUTABLE;
497 /* Seed the algorithm by adding the successors of the entry block to the
498 edge worklist. */
499 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
500 add_control_edge (e);
504 /* Free allocated storage. */
506 static void
507 ssa_prop_fini (void)
509 VEC_free (tree, gc, interesting_ssa_edges);
510 VEC_free (tree, gc, varying_ssa_edges);
511 cfg_blocks = NULL;
512 sbitmap_free (bb_in_list);
513 sbitmap_free (executable_blocks);
517 /* Get the main expression from statement STMT. */
519 tree
520 get_rhs (tree stmt)
522 enum tree_code code = TREE_CODE (stmt);
524 switch (code)
526 case RETURN_EXPR:
527 stmt = TREE_OPERAND (stmt, 0);
528 if (!stmt || TREE_CODE (stmt) != MODIFY_EXPR)
529 return stmt;
530 /* FALLTHRU */
532 case MODIFY_EXPR:
533 stmt = TREE_OPERAND (stmt, 1);
534 if (TREE_CODE (stmt) == WITH_SIZE_EXPR)
535 return TREE_OPERAND (stmt, 0);
536 else
537 return stmt;
539 case COND_EXPR:
540 return COND_EXPR_COND (stmt);
541 case SWITCH_EXPR:
542 return SWITCH_COND (stmt);
543 case GOTO_EXPR:
544 return GOTO_DESTINATION (stmt);
545 case LABEL_EXPR:
546 return LABEL_EXPR_LABEL (stmt);
548 default:
549 return stmt;
554 /* Set the main expression of *STMT_P to EXPR. If EXPR is not a valid
555 GIMPLE expression no changes are done and the function returns
556 false. */
558 bool
559 set_rhs (tree *stmt_p, tree expr)
561 tree stmt = *stmt_p, op;
562 enum tree_code code = TREE_CODE (expr);
563 stmt_ann_t ann;
564 tree var;
565 ssa_op_iter iter;
567 /* Verify the constant folded result is valid gimple. */
568 if (TREE_CODE_CLASS (code) == tcc_binary)
570 if (!is_gimple_val (TREE_OPERAND (expr, 0))
571 || !is_gimple_val (TREE_OPERAND (expr, 1)))
572 return false;
574 else if (TREE_CODE_CLASS (code) == tcc_unary)
576 if (!is_gimple_val (TREE_OPERAND (expr, 0)))
577 return false;
579 else if (code == COMPOUND_EXPR)
580 return false;
582 switch (TREE_CODE (stmt))
584 case RETURN_EXPR:
585 op = TREE_OPERAND (stmt, 0);
586 if (TREE_CODE (op) != MODIFY_EXPR)
588 TREE_OPERAND (stmt, 0) = expr;
589 break;
591 stmt = op;
592 /* FALLTHRU */
594 case MODIFY_EXPR:
595 op = TREE_OPERAND (stmt, 1);
596 if (TREE_CODE (op) == WITH_SIZE_EXPR)
597 stmt = op;
598 TREE_OPERAND (stmt, 1) = expr;
599 break;
601 case COND_EXPR:
602 COND_EXPR_COND (stmt) = expr;
603 break;
604 case SWITCH_EXPR:
605 SWITCH_COND (stmt) = expr;
606 break;
607 case GOTO_EXPR:
608 GOTO_DESTINATION (stmt) = expr;
609 break;
610 case LABEL_EXPR:
611 LABEL_EXPR_LABEL (stmt) = expr;
612 break;
614 default:
615 /* Replace the whole statement with EXPR. If EXPR has no side
616 effects, then replace *STMT_P with an empty statement. */
617 ann = stmt_ann (stmt);
618 *stmt_p = TREE_SIDE_EFFECTS (expr) ? expr : build_empty_stmt ();
619 (*stmt_p)->common.ann = (tree_ann_t) ann;
621 if (TREE_SIDE_EFFECTS (expr))
623 /* Fix all the SSA_NAMEs created by *STMT_P to point to its new
624 replacement. */
625 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_DEFS)
627 if (TREE_CODE (var) == SSA_NAME)
628 SSA_NAME_DEF_STMT (var) = *stmt_p;
631 break;
634 return true;
638 /* Entry point to the propagation engine.
640 VISIT_STMT is called for every statement visited.
641 VISIT_PHI is called for every PHI node visited. */
643 void
644 ssa_propagate (ssa_prop_visit_stmt_fn visit_stmt,
645 ssa_prop_visit_phi_fn visit_phi)
647 ssa_prop_visit_stmt = visit_stmt;
648 ssa_prop_visit_phi = visit_phi;
650 ssa_prop_init ();
652 /* Iterate until the worklists are empty. */
653 while (!cfg_blocks_empty_p ()
654 || VEC_length (tree, interesting_ssa_edges) > 0
655 || VEC_length (tree, varying_ssa_edges) > 0)
657 if (!cfg_blocks_empty_p ())
659 /* Pull the next block to simulate off the worklist. */
660 basic_block dest_block = cfg_blocks_get ();
661 simulate_block (dest_block);
664 /* In order to move things to varying as quickly as
665 possible,process the VARYING_SSA_EDGES worklist first. */
666 process_ssa_edge_worklist (&varying_ssa_edges);
668 /* Now process the INTERESTING_SSA_EDGES worklist. */
669 process_ssa_edge_worklist (&interesting_ssa_edges);
672 ssa_prop_fini ();
676 /* Return the first V_MAY_DEF or V_MUST_DEF operand for STMT. */
678 tree
679 first_vdef (tree stmt)
681 ssa_op_iter iter;
682 tree op;
684 /* Simply return the first operand we arrive at. */
685 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_VIRTUAL_DEFS)
686 return (op);
688 gcc_unreachable ();
692 /* Return true if STMT is of the form 'LHS = mem_ref', where 'mem_ref'
693 is a non-volatile pointer dereference, a structure reference or a
694 reference to a single _DECL. Ignore volatile memory references
695 because they are not interesting for the optimizers. */
697 bool
698 stmt_makes_single_load (tree stmt)
700 tree rhs;
702 if (TREE_CODE (stmt) != MODIFY_EXPR)
703 return false;
705 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VUSE))
706 return false;
708 rhs = TREE_OPERAND (stmt, 1);
709 STRIP_NOPS (rhs);
711 return (!TREE_THIS_VOLATILE (rhs)
712 && (DECL_P (rhs)
713 || REFERENCE_CLASS_P (rhs)));
717 /* Return true if STMT is of the form 'mem_ref = RHS', where 'mem_ref'
718 is a non-volatile pointer dereference, a structure reference or a
719 reference to a single _DECL. Ignore volatile memory references
720 because they are not interesting for the optimizers. */
722 bool
723 stmt_makes_single_store (tree stmt)
725 tree lhs;
727 if (TREE_CODE (stmt) != MODIFY_EXPR)
728 return false;
730 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF))
731 return false;
733 lhs = TREE_OPERAND (stmt, 0);
734 STRIP_NOPS (lhs);
736 return (!TREE_THIS_VOLATILE (lhs)
737 && (DECL_P (lhs)
738 || REFERENCE_CLASS_P (lhs)));
742 /* If STMT makes a single memory load and all the virtual use operands
743 have the same value in array VALUES, return it. Otherwise, return
744 NULL. */
746 prop_value_t *
747 get_value_loaded_by (tree stmt, prop_value_t *values)
749 ssa_op_iter i;
750 tree vuse;
751 prop_value_t *prev_val = NULL;
752 prop_value_t *val = NULL;
754 FOR_EACH_SSA_TREE_OPERAND (vuse, stmt, i, SSA_OP_VIRTUAL_USES)
756 val = &values[SSA_NAME_VERSION (vuse)];
757 if (prev_val && prev_val->value != val->value)
758 return NULL;
759 prev_val = val;
762 return val;
766 /* Propagation statistics. */
767 struct prop_stats_d
769 long num_const_prop;
770 long num_copy_prop;
773 static struct prop_stats_d prop_stats;
775 /* Replace USE references in statement STMT with the values stored in
776 PROP_VALUE. Return true if at least one reference was replaced. If
777 REPLACED_ADDRESSES_P is given, it will be set to true if an address
778 constant was replaced. */
780 bool
781 replace_uses_in (tree stmt, bool *replaced_addresses_p,
782 prop_value_t *prop_value)
784 bool replaced = false;
785 use_operand_p use;
786 ssa_op_iter iter;
788 FOR_EACH_SSA_USE_OPERAND (use, stmt, iter, SSA_OP_USE)
790 tree tuse = USE_FROM_PTR (use);
791 tree val = prop_value[SSA_NAME_VERSION (tuse)].value;
793 if (val == tuse || val == NULL_TREE)
794 continue;
796 if (TREE_CODE (stmt) == ASM_EXPR
797 && !may_propagate_copy_into_asm (tuse))
798 continue;
800 if (!may_propagate_copy (tuse, val))
801 continue;
803 if (TREE_CODE (val) != SSA_NAME)
804 prop_stats.num_const_prop++;
805 else
806 prop_stats.num_copy_prop++;
808 propagate_value (use, val);
810 replaced = true;
811 if (POINTER_TYPE_P (TREE_TYPE (tuse)) && replaced_addresses_p)
812 *replaced_addresses_p = true;
815 return replaced;
819 /* Replace the VUSE references in statement STMT with the values
820 stored in PROP_VALUE. Return true if a reference was replaced. If
821 REPLACED_ADDRESSES_P is given, it will be set to true if an address
822 constant was replaced.
824 Replacing VUSE operands is slightly more complex than replacing
825 regular USEs. We are only interested in two types of replacements
826 here:
828 1- If the value to be replaced is a constant or an SSA name for a
829 GIMPLE register, then we are making a copy/constant propagation
830 from a memory store. For instance,
832 # a_3 = V_MAY_DEF <a_2>
833 a.b = x_1;
835 # VUSE <a_3>
836 y_4 = a.b;
838 This replacement is only possible iff STMT is an assignment
839 whose RHS is identical to the LHS of the statement that created
840 the VUSE(s) that we are replacing. Otherwise, we may do the
841 wrong replacement:
843 # a_3 = V_MAY_DEF <a_2>
844 # b_5 = V_MAY_DEF <b_4>
845 *p = 10;
847 # VUSE <b_5>
848 x_8 = b;
850 Even though 'b_5' acquires the value '10' during propagation,
851 there is no way for the propagator to tell whether the
852 replacement is correct in every reached use, because values are
853 computed at definition sites. Therefore, when doing final
854 substitution of propagated values, we have to check each use
855 site. Since the RHS of STMT ('b') is different from the LHS of
856 the originating statement ('*p'), we cannot replace 'b' with
857 '10'.
859 Similarly, when merging values from PHI node arguments,
860 propagators need to take care not to merge the same values
861 stored in different locations:
863 if (...)
864 # a_3 = V_MAY_DEF <a_2>
865 a.b = 3;
866 else
867 # a_4 = V_MAY_DEF <a_2>
868 a.c = 3;
869 # a_5 = PHI <a_3, a_4>
871 It would be wrong to propagate '3' into 'a_5' because that
872 operation merges two stores to different memory locations.
875 2- If the value to be replaced is an SSA name for a virtual
876 register, then we simply replace each VUSE operand with its
877 value from PROP_VALUE. This is the same replacement done by
878 replace_uses_in. */
880 static bool
881 replace_vuses_in (tree stmt, bool *replaced_addresses_p,
882 prop_value_t *prop_value)
884 bool replaced = false;
885 ssa_op_iter iter;
886 use_operand_p vuse;
888 if (stmt_makes_single_load (stmt))
890 /* If STMT is an assignment whose RHS is a single memory load,
891 see if we are trying to propagate a constant or a GIMPLE
892 register (case #1 above). */
893 prop_value_t *val = get_value_loaded_by (stmt, prop_value);
894 tree rhs = TREE_OPERAND (stmt, 1);
896 if (val
897 && val->value
898 && (is_gimple_reg (val->value)
899 || is_gimple_min_invariant (val->value))
900 && simple_cst_equal (rhs, val->mem_ref) == 1)
903 /* If we are replacing a constant address, inform our
904 caller. */
905 if (TREE_CODE (val->value) != SSA_NAME
906 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1)))
907 && replaced_addresses_p)
908 *replaced_addresses_p = true;
910 /* We can only perform the substitution if the load is done
911 from the same memory location as the original store.
912 Since we already know that there are no intervening
913 stores between DEF_STMT and STMT, we only need to check
914 that the RHS of STMT is the same as the memory reference
915 propagated together with the value. */
916 TREE_OPERAND (stmt, 1) = val->value;
918 if (TREE_CODE (val->value) != SSA_NAME)
919 prop_stats.num_const_prop++;
920 else
921 prop_stats.num_copy_prop++;
923 /* Since we have replaced the whole RHS of STMT, there
924 is no point in checking the other VUSEs, as they will
925 all have the same value. */
926 return true;
930 /* Otherwise, the values for every VUSE operand must be other
931 SSA_NAMEs that can be propagated into STMT. */
932 FOR_EACH_SSA_USE_OPERAND (vuse, stmt, iter, SSA_OP_VIRTUAL_USES)
934 tree var = USE_FROM_PTR (vuse);
935 tree val = prop_value[SSA_NAME_VERSION (var)].value;
937 if (val == NULL_TREE || var == val)
938 continue;
940 /* Constants and copies propagated between real and virtual
941 operands are only possible in the cases handled above. They
942 should be ignored in any other context. */
943 if (is_gimple_min_invariant (val) || is_gimple_reg (val))
944 continue;
946 propagate_value (vuse, val);
947 prop_stats.num_copy_prop++;
948 replaced = true;
951 return replaced;
955 /* Replace propagated values into all the arguments for PHI using the
956 values from PROP_VALUE. */
958 static void
959 replace_phi_args_in (tree phi, prop_value_t *prop_value)
961 int i;
963 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
965 tree arg = PHI_ARG_DEF (phi, i);
967 if (TREE_CODE (arg) == SSA_NAME)
969 tree val = prop_value[SSA_NAME_VERSION (arg)].value;
971 if (val && val != arg && may_propagate_copy (arg, val))
973 if (TREE_CODE (val) != SSA_NAME)
974 prop_stats.num_const_prop++;
975 else
976 prop_stats.num_copy_prop++;
978 propagate_value (PHI_ARG_DEF_PTR (phi, i), val);
980 /* If we propagated a copy and this argument flows
981 through an abnormal edge, update the replacement
982 accordingly. */
983 if (TREE_CODE (val) == SSA_NAME
984 && PHI_ARG_EDGE (phi, i)->flags & EDGE_ABNORMAL)
985 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
992 /* Perform final substitution and folding of propagated values. */
994 void
995 substitute_and_fold (prop_value_t *prop_value)
997 basic_block bb;
999 if (dump_file && (dump_flags & TDF_DETAILS))
1000 fprintf (dump_file,
1001 "\nSubstituing values and folding statements\n\n");
1003 memset (&prop_stats, 0, sizeof (prop_stats));
1005 /* Substitute values in every statement of every basic block. */
1006 FOR_EACH_BB (bb)
1008 block_stmt_iterator i;
1009 tree phi;
1011 /* Propagate our known values into PHI nodes. */
1012 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1014 if (dump_file && (dump_flags & TDF_DETAILS))
1016 fprintf (dump_file, "Replaced ");
1017 print_generic_stmt (dump_file, phi, TDF_SLIM);
1020 replace_phi_args_in (phi, prop_value);
1022 if (dump_file && (dump_flags & TDF_DETAILS))
1024 fprintf (dump_file, " with ");
1025 print_generic_stmt (dump_file, phi, TDF_SLIM);
1026 fprintf (dump_file, "\n");
1030 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
1032 bool replaced_address, did_replace;
1033 tree stmt = bsi_stmt (i);
1035 /* Replace the statement with its folded version and mark it
1036 folded. */
1037 if (dump_file && (dump_flags & TDF_DETAILS))
1039 fprintf (dump_file, "Replaced ");
1040 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1043 replaced_address = false;
1044 did_replace = replace_uses_in (stmt, &replaced_address, prop_value);
1045 did_replace |= replace_vuses_in (stmt, &replaced_address, prop_value);
1046 if (did_replace)
1048 fold_stmt (bsi_stmt_ptr (i));
1049 stmt = bsi_stmt(i);
1051 /* If we folded a builtin function, we'll likely
1052 need to rename VDEFs. */
1053 mark_new_vars_to_rename (stmt);
1055 /* If we cleaned up EH information from the statement,
1056 remove EH edges. */
1057 if (maybe_clean_eh_stmt (stmt))
1058 tree_purge_dead_eh_edges (bb);
1061 if (dump_file && (dump_flags & TDF_DETAILS))
1063 fprintf (dump_file, " with ");
1064 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1065 fprintf (dump_file, "\n");
1070 if (dump_file && (dump_flags & TDF_STATS))
1072 fprintf (dump_file, "Constants propagated: %6ld\n",
1073 prop_stats.num_const_prop);
1074 fprintf (dump_file, "Copies propagated: %6ld\n",
1075 prop_stats.num_copy_prop);
1078 #include "gt-tree-ssa-propagate.h"