1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
28 #include "coretypes.h"
34 #include "langhooks.h"
36 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
42 convert_to_pointer (tree type
, tree expr
)
44 if (integer_zerop (expr
))
46 expr
= build_int_cst (type
, 0);
50 switch (TREE_CODE (TREE_TYPE (expr
)))
54 return build1 (NOP_EXPR
, type
, expr
);
60 if (TYPE_PRECISION (TREE_TYPE (expr
)) == POINTER_SIZE
)
61 return build1 (CONVERT_EXPR
, type
, expr
);
64 convert_to_pointer (type
,
65 convert (lang_hooks
.types
.type_for_size
66 (POINTER_SIZE
, 0), expr
));
69 error ("cannot convert to a pointer type");
70 return convert_to_pointer (type
, integer_zero_node
);
74 /* Avoid any floating point extensions from EXP. */
76 strip_float_extensions (tree exp
)
80 /* For floating point constant look up the narrowest type that can hold
81 it properly and handle it like (type)(narrowest_type)constant.
82 This way we can optimize for instance a=a*2.0 where "a" is float
83 but 2.0 is double constant. */
84 if (TREE_CODE (exp
) == REAL_CST
)
89 orig
= TREE_REAL_CST (exp
);
90 if (TYPE_PRECISION (TREE_TYPE (exp
)) > TYPE_PRECISION (float_type_node
)
91 && exact_real_truncate (TYPE_MODE (float_type_node
), &orig
))
92 type
= float_type_node
;
93 else if (TYPE_PRECISION (TREE_TYPE (exp
))
94 > TYPE_PRECISION (double_type_node
)
95 && exact_real_truncate (TYPE_MODE (double_type_node
), &orig
))
96 type
= double_type_node
;
98 return build_real (type
, real_value_truncate (TYPE_MODE (type
), orig
));
101 if (TREE_CODE (exp
) != NOP_EXPR
102 && TREE_CODE (exp
) != CONVERT_EXPR
)
105 sub
= TREE_OPERAND (exp
, 0);
106 subt
= TREE_TYPE (sub
);
107 expt
= TREE_TYPE (exp
);
109 if (!FLOAT_TYPE_P (subt
))
112 if (TYPE_PRECISION (subt
) > TYPE_PRECISION (expt
))
115 return strip_float_extensions (sub
);
119 /* Convert EXPR to some floating-point type TYPE.
121 EXPR must be float, integer, or enumeral;
122 in other cases error is called. */
125 convert_to_real (tree type
, tree expr
)
127 enum built_in_function fcode
= builtin_mathfn_code (expr
);
128 tree itype
= TREE_TYPE (expr
);
130 /* Disable until we figure out how to decide whether the functions are
131 present in runtime. */
132 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
134 && (TYPE_MODE (type
) == TYPE_MODE (double_type_node
)
135 || TYPE_MODE (type
) == TYPE_MODE (float_type_node
)))
139 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
176 tree arg0
= strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr
, 1)));
179 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
180 the both as the safe type for operation. */
181 if (TYPE_PRECISION (TREE_TYPE (arg0
)) > TYPE_PRECISION (type
))
182 newtype
= TREE_TYPE (arg0
);
184 /* Be careful about integer to fp conversions.
185 These may overflow still. */
186 if (FLOAT_TYPE_P (TREE_TYPE (arg0
))
187 && TYPE_PRECISION (newtype
) < TYPE_PRECISION (itype
)
188 && (TYPE_MODE (newtype
) == TYPE_MODE (double_type_node
)
189 || TYPE_MODE (newtype
) == TYPE_MODE (float_type_node
)))
192 tree fn
= mathfn_built_in (newtype
, fcode
);
196 arglist
= build_tree_list (NULL_TREE
, fold (convert_to_real (newtype
, arg0
)));
197 expr
= build_function_call_expr (fn
, arglist
);
208 && (((fcode
== BUILT_IN_FLOORL
209 || fcode
== BUILT_IN_CEILL
210 || fcode
== BUILT_IN_ROUNDL
211 || fcode
== BUILT_IN_RINTL
212 || fcode
== BUILT_IN_TRUNCL
213 || fcode
== BUILT_IN_NEARBYINTL
)
214 && (TYPE_MODE (type
) == TYPE_MODE (double_type_node
)
215 || TYPE_MODE (type
) == TYPE_MODE (float_type_node
)))
216 || ((fcode
== BUILT_IN_FLOOR
217 || fcode
== BUILT_IN_CEIL
218 || fcode
== BUILT_IN_ROUND
219 || fcode
== BUILT_IN_RINT
220 || fcode
== BUILT_IN_TRUNC
221 || fcode
== BUILT_IN_NEARBYINT
)
222 && (TYPE_MODE (type
) == TYPE_MODE (float_type_node
)))))
224 tree fn
= mathfn_built_in (type
, fcode
);
228 tree arg0
= strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr
,
230 tree arglist
= build_tree_list (NULL_TREE
,
231 fold (convert_to_real (type
, arg0
)));
233 return build_function_call_expr (fn
, arglist
);
237 /* Propagate the cast into the operation. */
238 if (itype
!= type
&& FLOAT_TYPE_P (type
))
239 switch (TREE_CODE (expr
))
241 /* Convert (float)-x into -(float)x. This is always safe. */
244 if (TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (expr
)))
245 return build1 (TREE_CODE (expr
), type
,
246 fold (convert_to_real (type
,
247 TREE_OPERAND (expr
, 0))));
249 /* Convert (outertype)((innertype0)a+(innertype1)b)
250 into ((newtype)a+(newtype)b) where newtype
251 is the widest mode from all of these. */
257 tree arg0
= strip_float_extensions (TREE_OPERAND (expr
, 0));
258 tree arg1
= strip_float_extensions (TREE_OPERAND (expr
, 1));
260 if (FLOAT_TYPE_P (TREE_TYPE (arg0
))
261 && FLOAT_TYPE_P (TREE_TYPE (arg1
)))
264 if (TYPE_PRECISION (TREE_TYPE (arg0
)) > TYPE_PRECISION (newtype
))
265 newtype
= TREE_TYPE (arg0
);
266 if (TYPE_PRECISION (TREE_TYPE (arg1
)) > TYPE_PRECISION (newtype
))
267 newtype
= TREE_TYPE (arg1
);
268 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (itype
))
270 expr
= build2 (TREE_CODE (expr
), newtype
,
271 fold (convert_to_real (newtype
, arg0
)),
272 fold (convert_to_real (newtype
, arg1
)));
283 switch (TREE_CODE (TREE_TYPE (expr
)))
286 return build1 (flag_float_store
? CONVERT_EXPR
: NOP_EXPR
,
293 return build1 (FLOAT_EXPR
, type
, expr
);
296 return convert (type
,
297 fold (build1 (REALPART_EXPR
,
298 TREE_TYPE (TREE_TYPE (expr
)), expr
)));
302 error ("pointer value used where a floating point value was expected");
303 return convert_to_real (type
, integer_zero_node
);
306 error ("aggregate value used where a float was expected");
307 return convert_to_real (type
, integer_zero_node
);
311 /* Convert EXPR to some integer (or enum) type TYPE.
313 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
314 vector; in other cases error is called.
316 The result of this is always supposed to be a newly created tree node
317 not in use in any existing structure. */
320 convert_to_integer (tree type
, tree expr
)
322 enum tree_code ex_form
= TREE_CODE (expr
);
323 tree intype
= TREE_TYPE (expr
);
324 unsigned int inprec
= TYPE_PRECISION (intype
);
325 unsigned int outprec
= TYPE_PRECISION (type
);
327 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
328 be. Consider `enum E = { a, b = (enum E) 3 };'. */
329 if (!COMPLETE_TYPE_P (type
))
331 error ("conversion to incomplete type");
332 return error_mark_node
;
335 /* Convert e.g. (long)round(d) -> lround(d). */
336 /* If we're converting to char, we may encounter differing behavior
337 between converting from double->char vs double->long->char.
338 We're in "undefined" territory but we prefer to be conservative,
339 so only proceed in "unsafe" math mode. */
341 && (flag_unsafe_math_optimizations
342 || (long_integer_type_node
343 && outprec
>= TYPE_PRECISION (long_integer_type_node
))))
345 tree s_expr
= strip_float_extensions (expr
);
346 tree s_intype
= TREE_TYPE (s_expr
);
347 const enum built_in_function fcode
= builtin_mathfn_code (s_expr
);
352 case BUILT_IN_CEIL
: case BUILT_IN_CEILF
: case BUILT_IN_CEILL
:
353 /* Only convert in ISO C99 mode. */
354 if (!TARGET_C99_FUNCTIONS
)
356 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (long_long_integer_type_node
))
357 fn
= mathfn_built_in (s_intype
, BUILT_IN_LLCEIL
);
359 fn
= mathfn_built_in (s_intype
, BUILT_IN_LCEIL
);
362 case BUILT_IN_FLOOR
: case BUILT_IN_FLOORF
: case BUILT_IN_FLOORL
:
363 /* Only convert in ISO C99 mode. */
364 if (!TARGET_C99_FUNCTIONS
)
366 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (long_long_integer_type_node
))
367 fn
= mathfn_built_in (s_intype
, BUILT_IN_LLFLOOR
);
369 fn
= mathfn_built_in (s_intype
, BUILT_IN_LFLOOR
);
372 case BUILT_IN_ROUND
: case BUILT_IN_ROUNDF
: case BUILT_IN_ROUNDL
:
373 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (long_long_integer_type_node
))
374 fn
= mathfn_built_in (s_intype
, BUILT_IN_LLROUND
);
376 fn
= mathfn_built_in (s_intype
, BUILT_IN_LROUND
);
379 case BUILT_IN_RINT
: case BUILT_IN_RINTF
: case BUILT_IN_RINTL
:
380 /* Only convert rint* if we can ignore math exceptions. */
381 if (flag_trapping_math
)
383 /* ... Fall through ... */
384 case BUILT_IN_NEARBYINT
: case BUILT_IN_NEARBYINTF
: case BUILT_IN_NEARBYINTL
:
385 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (long_long_integer_type_node
))
386 fn
= mathfn_built_in (s_intype
, BUILT_IN_LLRINT
);
388 fn
= mathfn_built_in (s_intype
, BUILT_IN_LRINT
);
391 case BUILT_IN_TRUNC
: case BUILT_IN_TRUNCF
: case BUILT_IN_TRUNCL
:
393 tree arglist
= TREE_OPERAND (s_expr
, 1);
394 return convert_to_integer (type
, TREE_VALUE (arglist
));
403 tree arglist
= TREE_OPERAND (s_expr
, 1);
404 tree newexpr
= build_function_call_expr (fn
, arglist
);
405 return convert_to_integer (type
, newexpr
);
409 switch (TREE_CODE (intype
))
413 if (integer_zerop (expr
))
414 expr
= integer_zero_node
;
416 expr
= fold (build1 (CONVERT_EXPR
,
417 lang_hooks
.types
.type_for_size (POINTER_SIZE
, 0),
420 return convert_to_integer (type
, expr
);
426 /* If this is a logical operation, which just returns 0 or 1, we can
427 change the type of the expression. */
429 if (TREE_CODE_CLASS (ex_form
) == tcc_comparison
)
431 expr
= copy_node (expr
);
432 TREE_TYPE (expr
) = type
;
436 /* If we are widening the type, put in an explicit conversion.
437 Similarly if we are not changing the width. After this, we know
438 we are truncating EXPR. */
440 else if (outprec
>= inprec
)
444 /* If the precision of the EXPR's type is K bits and the
445 destination mode has more bits, and the sign is changing,
446 it is not safe to use a NOP_EXPR. For example, suppose
447 that EXPR's type is a 3-bit unsigned integer type, the
448 TYPE is a 3-bit signed integer type, and the machine mode
449 for the types is 8-bit QImode. In that case, the
450 conversion necessitates an explicit sign-extension. In
451 the signed-to-unsigned case the high-order bits have to
453 if (TYPE_UNSIGNED (type
) != TYPE_UNSIGNED (TREE_TYPE (expr
))
454 && (TYPE_PRECISION (TREE_TYPE (expr
))
455 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
)))))
460 return build1 (code
, type
, expr
);
463 /* If TYPE is an enumeral type or a type with a precision less
464 than the number of bits in its mode, do the conversion to the
465 type corresponding to its mode, then do a nop conversion
467 else if (TREE_CODE (type
) == ENUMERAL_TYPE
468 || outprec
!= GET_MODE_BITSIZE (TYPE_MODE (type
)))
469 return build1 (NOP_EXPR
, type
,
470 convert (lang_hooks
.types
.type_for_mode
471 (TYPE_MODE (type
), TYPE_UNSIGNED (type
)),
474 /* Here detect when we can distribute the truncation down past some
475 arithmetic. For example, if adding two longs and converting to an
476 int, we can equally well convert both to ints and then add.
477 For the operations handled here, such truncation distribution
479 It is desirable in these cases:
480 1) when truncating down to full-word from a larger size
481 2) when truncating takes no work.
482 3) when at least one operand of the arithmetic has been extended
483 (as by C's default conversions). In this case we need two conversions
484 if we do the arithmetic as already requested, so we might as well
485 truncate both and then combine. Perhaps that way we need only one.
487 Note that in general we cannot do the arithmetic in a type
488 shorter than the desired result of conversion, even if the operands
489 are both extended from a shorter type, because they might overflow
490 if combined in that type. The exceptions to this--the times when
491 two narrow values can be combined in their narrow type even to
492 make a wider result--are handled by "shorten" in build_binary_op. */
497 /* We can pass truncation down through right shifting
498 when the shift count is a nonpositive constant. */
499 if (TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
500 && tree_int_cst_lt (TREE_OPERAND (expr
, 1),
501 convert (TREE_TYPE (TREE_OPERAND (expr
, 1)),
507 /* We can pass truncation down through left shifting
508 when the shift count is a nonnegative constant and
509 the target type is unsigned. */
510 if (TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
511 && tree_int_cst_sgn (TREE_OPERAND (expr
, 1)) >= 0
512 && TYPE_UNSIGNED (type
)
513 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
)
515 /* If shift count is less than the width of the truncated type,
517 if (tree_int_cst_lt (TREE_OPERAND (expr
, 1), TYPE_SIZE (type
)))
518 /* In this case, shifting is like multiplication. */
522 /* If it is >= that width, result is zero.
523 Handling this with trunc1 would give the wrong result:
524 (int) ((long long) a << 32) is well defined (as 0)
525 but (int) a << 32 is undefined and would get a
528 tree t
= convert_to_integer (type
, integer_zero_node
);
530 /* If the original expression had side-effects, we must
532 if (TREE_SIDE_EFFECTS (expr
))
533 return build2 (COMPOUND_EXPR
, type
, expr
, t
);
544 tree arg0
= get_unwidened (TREE_OPERAND (expr
, 0), type
);
545 tree arg1
= get_unwidened (TREE_OPERAND (expr
, 1), type
);
547 /* Don't distribute unless the output precision is at least as big
548 as the actual inputs. Otherwise, the comparison of the
549 truncated values will be wrong. */
550 if (outprec
>= TYPE_PRECISION (TREE_TYPE (arg0
))
551 && outprec
>= TYPE_PRECISION (TREE_TYPE (arg1
))
552 /* If signedness of arg0 and arg1 don't match,
553 we can't necessarily find a type to compare them in. */
554 && (TYPE_UNSIGNED (TREE_TYPE (arg0
))
555 == TYPE_UNSIGNED (TREE_TYPE (arg1
))))
567 tree arg0
= get_unwidened (TREE_OPERAND (expr
, 0), type
);
568 tree arg1
= get_unwidened (TREE_OPERAND (expr
, 1), type
);
570 if (outprec
>= BITS_PER_WORD
571 || TRULY_NOOP_TRUNCATION (outprec
, inprec
)
572 || inprec
> TYPE_PRECISION (TREE_TYPE (arg0
))
573 || inprec
> TYPE_PRECISION (TREE_TYPE (arg1
)))
575 /* Do the arithmetic in type TYPEX,
576 then convert result to TYPE. */
579 /* Can't do arithmetic in enumeral types
580 so use an integer type that will hold the values. */
581 if (TREE_CODE (typex
) == ENUMERAL_TYPE
)
582 typex
= lang_hooks
.types
.type_for_size
583 (TYPE_PRECISION (typex
), TYPE_UNSIGNED (typex
));
585 /* But now perhaps TYPEX is as wide as INPREC.
586 In that case, do nothing special here.
587 (Otherwise would recurse infinitely in convert. */
588 if (TYPE_PRECISION (typex
) != inprec
)
590 /* Don't do unsigned arithmetic where signed was wanted,
592 Exception: if both of the original operands were
593 unsigned then we can safely do the work as unsigned.
594 Exception: shift operations take their type solely
595 from the first argument.
596 Exception: the LSHIFT_EXPR case above requires that
597 we perform this operation unsigned lest we produce
598 signed-overflow undefinedness.
599 And we may need to do it as unsigned
600 if we truncate to the original size. */
601 if (TYPE_UNSIGNED (TREE_TYPE (expr
))
602 || (TYPE_UNSIGNED (TREE_TYPE (arg0
))
603 && (TYPE_UNSIGNED (TREE_TYPE (arg1
))
604 || ex_form
== LSHIFT_EXPR
605 || ex_form
== RSHIFT_EXPR
606 || ex_form
== LROTATE_EXPR
607 || ex_form
== RROTATE_EXPR
))
608 || ex_form
== LSHIFT_EXPR
)
609 typex
= lang_hooks
.types
.unsigned_type (typex
);
611 typex
= lang_hooks
.types
.signed_type (typex
);
612 return convert (type
,
613 fold (build2 (ex_form
, typex
,
614 convert (typex
, arg0
),
615 convert (typex
, arg1
))));
623 /* This is not correct for ABS_EXPR,
624 since we must test the sign before truncation. */
628 /* Can't do arithmetic in enumeral types
629 so use an integer type that will hold the values. */
630 if (TREE_CODE (typex
) == ENUMERAL_TYPE
)
631 typex
= lang_hooks
.types
.type_for_size
632 (TYPE_PRECISION (typex
), TYPE_UNSIGNED (typex
));
634 /* But now perhaps TYPEX is as wide as INPREC.
635 In that case, do nothing special here.
636 (Otherwise would recurse infinitely in convert. */
637 if (TYPE_PRECISION (typex
) != inprec
)
639 /* Don't do unsigned arithmetic where signed was wanted,
641 if (TYPE_UNSIGNED (TREE_TYPE (expr
)))
642 typex
= lang_hooks
.types
.unsigned_type (typex
);
644 typex
= lang_hooks
.types
.signed_type (typex
);
645 return convert (type
,
646 fold (build1 (ex_form
, typex
,
648 TREE_OPERAND (expr
, 0)))));
654 "can't convert between vector values of different size" error. */
655 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr
, 0))) == VECTOR_TYPE
656 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr
, 0))))
657 != GET_MODE_SIZE (TYPE_MODE (type
))))
659 /* If truncating after truncating, might as well do all at once.
660 If truncating after extending, we may get rid of wasted work. */
661 return convert (type
, get_unwidened (TREE_OPERAND (expr
, 0), type
));
664 /* It is sometimes worthwhile to push the narrowing down through
665 the conditional and never loses. */
666 return fold (build3 (COND_EXPR
, type
, TREE_OPERAND (expr
, 0),
667 convert (type
, TREE_OPERAND (expr
, 1)),
668 convert (type
, TREE_OPERAND (expr
, 2))));
674 return build1 (CONVERT_EXPR
, type
, expr
);
677 return build1 (FIX_TRUNC_EXPR
, type
, expr
);
680 return convert (type
,
681 fold (build1 (REALPART_EXPR
,
682 TREE_TYPE (TREE_TYPE (expr
)), expr
)));
685 if (!tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (TREE_TYPE (expr
))))
687 error ("can't convert between vector values of different size");
688 return error_mark_node
;
690 return build1 (NOP_EXPR
, type
, expr
);
693 error ("aggregate value used where an integer was expected");
694 return convert (type
, integer_zero_node
);
698 /* Convert EXPR to the complex type TYPE in the usual ways. */
701 convert_to_complex (tree type
, tree expr
)
703 tree subtype
= TREE_TYPE (type
);
705 switch (TREE_CODE (TREE_TYPE (expr
)))
712 return build2 (COMPLEX_EXPR
, type
, convert (subtype
, expr
),
713 convert (subtype
, integer_zero_node
));
717 tree elt_type
= TREE_TYPE (TREE_TYPE (expr
));
719 if (TYPE_MAIN_VARIANT (elt_type
) == TYPE_MAIN_VARIANT (subtype
))
721 else if (TREE_CODE (expr
) == COMPLEX_EXPR
)
722 return fold (build2 (COMPLEX_EXPR
, type
,
723 convert (subtype
, TREE_OPERAND (expr
, 0)),
724 convert (subtype
, TREE_OPERAND (expr
, 1))));
727 expr
= save_expr (expr
);
729 fold (build2 (COMPLEX_EXPR
, type
,
731 fold (build1 (REALPART_EXPR
,
732 TREE_TYPE (TREE_TYPE (expr
)),
735 fold (build1 (IMAGPART_EXPR
,
736 TREE_TYPE (TREE_TYPE (expr
)),
743 error ("pointer value used where a complex was expected");
744 return convert_to_complex (type
, integer_zero_node
);
747 error ("aggregate value used where a complex was expected");
748 return convert_to_complex (type
, integer_zero_node
);
752 /* Convert EXPR to the vector type TYPE in the usual ways. */
755 convert_to_vector (tree type
, tree expr
)
757 switch (TREE_CODE (TREE_TYPE (expr
)))
761 if (!tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (TREE_TYPE (expr
))))
763 error ("can't convert between vector values of different size");
764 return error_mark_node
;
766 return build1 (NOP_EXPR
, type
, expr
);
769 error ("can't convert value to a vector");
770 return error_mark_node
;