Add support for XScale target
[official-gcc.git] / boehm-gc / gc_cpp.h
blob35686fc3527af57465875082e58438afbb0b571e
1 #ifndef GC_CPP_H
2 #define GC_CPP_H
3 /****************************************************************************
4 Copyright (c) 1994 by Xerox Corporation. All rights reserved.
6 THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7 OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9 Permission is hereby granted to use or copy this program for any
10 purpose, provided the above notices are retained on all copies.
11 Permission to modify the code and to distribute modified code is
12 granted, provided the above notices are retained, and a notice that
13 the code was modified is included with the above copyright notice.
14 ****************************************************************************
16 C++ Interface to the Boehm Collector
18 John R. Ellis and Jesse Hull
20 This interface provides access to the Boehm collector. It provides
21 basic facilities similar to those described in "Safe, Efficient
22 Garbage Collection for C++", by John R. Elis and David L. Detlefs
23 (ftp://ftp.parc.xerox.com/pub/ellis/gc).
25 All heap-allocated objects are either "collectable" or
26 "uncollectable". Programs must explicitly delete uncollectable
27 objects, whereas the garbage collector will automatically delete
28 collectable objects when it discovers them to be inaccessible.
29 Collectable objects may freely point at uncollectable objects and vice
30 versa.
32 Objects allocated with the built-in "::operator new" are uncollectable.
34 Objects derived from class "gc" are collectable. For example:
36 class A: public gc {...};
37 A* a = new A; // a is collectable.
39 Collectable instances of non-class types can be allocated using the GC
40 (or UseGC) placement:
42 typedef int A[ 10 ];
43 A* a = new (GC) A;
45 Uncollectable instances of classes derived from "gc" can be allocated
46 using the NoGC placement:
48 class A: public gc {...};
49 A* a = new (NoGC) A; // a is uncollectable.
51 Both uncollectable and collectable objects can be explicitly deleted
52 with "delete", which invokes an object's destructors and frees its
53 storage immediately.
55 A collectable object may have a clean-up function, which will be
56 invoked when the collector discovers the object to be inaccessible.
57 An object derived from "gc_cleanup" or containing a member derived
58 from "gc_cleanup" has a default clean-up function that invokes the
59 object's destructors. Explicit clean-up functions may be specified as
60 an additional placement argument:
62 A* a = ::new (GC, MyCleanup) A;
64 An object is considered "accessible" by the collector if it can be
65 reached by a path of pointers from static variables, automatic
66 variables of active functions, or from some object with clean-up
67 enabled; pointers from an object to itself are ignored.
69 Thus, if objects A and B both have clean-up functions, and A points at
70 B, B is considered accessible. After A's clean-up is invoked and its
71 storage released, B will then become inaccessible and will have its
72 clean-up invoked. If A points at B and B points to A, forming a
73 cycle, then that's considered a storage leak, and neither will be
74 collectable. See the interface gc.h for low-level facilities for
75 handling such cycles of objects with clean-up.
77 The collector cannot guarrantee that it will find all inaccessible
78 objects. In practice, it finds almost all of them.
81 Cautions:
83 1. Be sure the collector has been augmented with "make c++".
85 2. If your compiler supports the new "operator new[]" syntax, then
86 add -DOPERATOR_NEW_ARRAY to the Makefile.
88 If your compiler doesn't support "operator new[]", beware that an
89 array of type T, where T is derived from "gc", may or may not be
90 allocated as a collectable object (it depends on the compiler). Use
91 the explicit GC placement to make the array collectable. For example:
93 class A: public gc {...};
94 A* a1 = new A[ 10 ]; // collectable or uncollectable?
95 A* a2 = new (GC) A[ 10 ]; // collectable
97 3. The destructors of collectable arrays of objects derived from
98 "gc_cleanup" will not be invoked properly. For example:
100 class A: public gc_cleanup {...};
101 A* a = new (GC) A[ 10 ]; // destructors not invoked correctly
103 Typically, only the destructor for the first element of the array will
104 be invoked when the array is garbage-collected. To get all the
105 destructors of any array executed, you must supply an explicit
106 clean-up function:
108 A* a = new (GC, MyCleanUp) A[ 10 ];
110 (Implementing clean-up of arrays correctly, portably, and in a way
111 that preserves the correct exception semantics requires a language
112 extension, e.g. the "gc" keyword.)
114 4. Compiler bugs:
116 * Solaris 2's CC (SC3.0) doesn't implement t->~T() correctly, so the
117 destructors of classes derived from gc_cleanup won't be invoked.
118 You'll have to explicitly register a clean-up function with
119 new-placement syntax.
121 * Evidently cfront 3.0 does not allow destructors to be explicitly
122 invoked using the ANSI-conforming syntax t->~T(). If you're using
123 cfront 3.0, you'll have to comment out the class gc_cleanup, which
124 uses explicit invocation.
126 5. GC name conflicts:
128 Many other systems seem to use the identifier "GC" as an abbreviation
129 for "Graphics Context". Since version 5.0, GC placement has been replaced
130 by UseGC. GC is an alias for UseGC, unless GC_NAME_CONFLICT is defined.
132 ****************************************************************************/
134 #include "gc.h"
136 #ifndef THINK_CPLUS
137 #define _cdecl
138 #endif
140 #if ! defined( OPERATOR_NEW_ARRAY ) \
141 && (__BORLANDC__ >= 0x450 || (__GNUC__ >= 2 && __GNUC_MINOR__ >= 6) \
142 || __WATCOMC__ >= 1050)
143 # define OPERATOR_NEW_ARRAY
144 #endif
146 enum GCPlacement {UseGC,
147 #ifndef GC_NAME_CONFLICT
148 GC=UseGC,
149 #endif
150 NoGC, PointerFreeGC};
152 class gc {public:
153 inline void* operator new( size_t size );
154 inline void* operator new( size_t size, GCPlacement gcp );
155 inline void operator delete( void* obj );
157 #ifdef OPERATOR_NEW_ARRAY
158 inline void* operator new[]( size_t size );
159 inline void* operator new[]( size_t size, GCPlacement gcp );
160 inline void operator delete[]( void* obj );
161 #endif /* OPERATOR_NEW_ARRAY */
164 Instances of classes derived from "gc" will be allocated in the
165 collected heap by default, unless an explicit NoGC placement is
166 specified. */
168 class gc_cleanup: virtual public gc {public:
169 inline gc_cleanup();
170 inline virtual ~gc_cleanup();
171 private:
172 inline static void _cdecl cleanup( void* obj, void* clientData );};
174 Instances of classes derived from "gc_cleanup" will be allocated
175 in the collected heap by default. When the collector discovers an
176 inaccessible object derived from "gc_cleanup" or containing a
177 member derived from "gc_cleanup", its destructors will be
178 invoked. */
180 extern "C" {typedef void (*GCCleanUpFunc)( void* obj, void* clientData );}
182 inline void* operator new(
183 size_t size,
184 GCPlacement gcp,
185 GCCleanUpFunc cleanup = 0,
186 void* clientData = 0 );
188 Allocates a collectable or uncollected object, according to the
189 value of "gcp".
191 For collectable objects, if "cleanup" is non-null, then when the
192 allocated object "obj" becomes inaccessible, the collector will
193 invoke the function "cleanup( obj, clientData )" but will not
194 invoke the object's destructors. It is an error to explicitly
195 delete an object allocated with a non-null "cleanup".
197 It is an error to specify a non-null "cleanup" with NoGC or for
198 classes derived from "gc_cleanup" or containing members derived
199 from "gc_cleanup". */
201 #ifdef OPERATOR_NEW_ARRAY
203 inline void* operator new[](
204 size_t size,
205 GCPlacement gcp,
206 GCCleanUpFunc cleanup = 0,
207 void* clientData = 0 );
209 The operator new for arrays, identical to the above. */
211 #endif /* OPERATOR_NEW_ARRAY */
213 /****************************************************************************
215 Inline implementation
217 ****************************************************************************/
219 inline void* gc::operator new( size_t size ) {
220 return GC_MALLOC( size );}
222 inline void* gc::operator new( size_t size, GCPlacement gcp ) {
223 if (gcp == UseGC)
224 return GC_MALLOC( size );
225 else if (gcp == PointerFreeGC)
226 return GC_MALLOC_ATOMIC( size );
227 else
228 return GC_MALLOC_UNCOLLECTABLE( size );}
230 inline void gc::operator delete( void* obj ) {
231 GC_FREE( obj );}
234 #ifdef OPERATOR_NEW_ARRAY
236 inline void* gc::operator new[]( size_t size ) {
237 return gc::operator new( size );}
239 inline void* gc::operator new[]( size_t size, GCPlacement gcp ) {
240 return gc::operator new( size, gcp );}
242 inline void gc::operator delete[]( void* obj ) {
243 gc::operator delete( obj );}
245 #endif /* OPERATOR_NEW_ARRAY */
248 inline gc_cleanup::~gc_cleanup() {
249 GC_REGISTER_FINALIZER_IGNORE_SELF( GC_base(this), 0, 0, 0, 0 );}
251 inline void gc_cleanup::cleanup( void* obj, void* displ ) {
252 ((gc_cleanup*) ((char*) obj + (ptrdiff_t) displ))->~gc_cleanup();}
254 inline gc_cleanup::gc_cleanup() {
255 GC_finalization_proc oldProc;
256 void* oldData;
257 void* base = GC_base( (void *) this );
258 if (0 != base) {
259 GC_REGISTER_FINALIZER_IGNORE_SELF(
260 base, (GC_finalization_proc)cleanup, (void*) ((char*) this - (char*) base),
261 &oldProc, &oldData );
262 if (0 != oldProc) {
263 GC_REGISTER_FINALIZER_IGNORE_SELF( base, oldProc, oldData, 0, 0 );}}}
265 inline void* operator new(
266 size_t size,
267 GCPlacement gcp,
268 GCCleanUpFunc cleanup,
269 void* clientData )
271 void* obj;
273 if (gcp == UseGC) {
274 obj = GC_MALLOC( size );
275 if (cleanup != 0)
276 GC_REGISTER_FINALIZER_IGNORE_SELF(
277 obj, cleanup, clientData, 0, 0 );}
278 else if (gcp == PointerFreeGC) {
279 obj = GC_MALLOC_ATOMIC( size );}
280 else {
281 obj = GC_MALLOC_UNCOLLECTABLE( size );};
282 return obj;}
285 #ifdef OPERATOR_NEW_ARRAY
287 inline void* operator new[](
288 size_t size,
289 GCPlacement gcp,
290 GCCleanUpFunc cleanup,
291 void* clientData )
293 return ::operator new( size, gcp, cleanup, clientData );}
295 #endif /* OPERATOR_NEW_ARRAY */
298 #endif /* GC_CPP_H */