1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Ch6
; use Exp_Ch6
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Fname
; use Fname
;
38 with Fname
.UF
; use Fname
.UF
;
40 with Namet
; use Namet
;
41 with Nmake
; use Nmake
;
42 with Nlists
; use Nlists
;
43 with Output
; use Output
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch8
; use Sem_Ch8
;
46 with Sem_Ch10
; use Sem_Ch10
;
47 with Sem_Ch12
; use Sem_Ch12
;
48 with Sem_Prag
; use Sem_Prag
;
49 with Sem_Util
; use Sem_Util
;
50 with Sinfo
; use Sinfo
;
51 with Sinput
; use Sinput
;
52 with Snames
; use Snames
;
53 with Stand
; use Stand
;
54 with Uname
; use Uname
;
55 with Tbuild
; use Tbuild
;
57 package body Inline
is
59 Check_Inlining_Restrictions
: constant Boolean := True;
60 -- In the following cases the frontend rejects inlining because they
61 -- are not handled well by the backend. This variable facilitates
62 -- disabling these restrictions to evaluate future versions of the
63 -- GCC backend in which some of the restrictions may be supported.
65 -- - subprograms that have:
66 -- - nested subprograms
68 -- - package declarations
69 -- - task or protected object declarations
70 -- - some of the following statements:
72 -- - asynchronous-select
73 -- - conditional-entry-call
79 Inlined_Calls
: Elist_Id
;
80 -- List of frontend inlined calls
82 Backend_Calls
: Elist_Id
;
83 -- List of inline calls passed to the backend
85 Backend_Inlined_Subps
: Elist_Id
;
86 -- List of subprograms inlined by the backend
88 Backend_Not_Inlined_Subps
: Elist_Id
;
89 -- List of subprograms that cannot be inlined by the backend
95 -- Inlined functions are actually placed in line by the backend if the
96 -- corresponding bodies are available (i.e. compiled). Whenever we find
97 -- a call to an inlined subprogram, we add the name of the enclosing
98 -- compilation unit to a worklist. After all compilation, and after
99 -- expansion of generic bodies, we traverse the list of pending bodies
100 -- and compile them as well.
102 package Inlined_Bodies
is new Table
.Table
(
103 Table_Component_Type
=> Entity_Id
,
104 Table_Index_Type
=> Int
,
105 Table_Low_Bound
=> 0,
106 Table_Initial
=> Alloc
.Inlined_Bodies_Initial
,
107 Table_Increment
=> Alloc
.Inlined_Bodies_Increment
,
108 Table_Name
=> "Inlined_Bodies");
110 -----------------------
111 -- Inline Processing --
112 -----------------------
114 -- For each call to an inlined subprogram, we make entries in a table
115 -- that stores caller and callee, and indicates the call direction from
116 -- one to the other. We also record the compilation unit that contains
117 -- the callee. After analyzing the bodies of all such compilation units,
118 -- we compute the transitive closure of inlined subprograms called from
119 -- the main compilation unit and make it available to the code generator
120 -- in no particular order, thus allowing cycles in the call graph.
122 Last_Inlined
: Entity_Id
:= Empty
;
124 -- For each entry in the table we keep a list of successors in topological
125 -- order, i.e. callers of the current subprogram.
127 type Subp_Index
is new Nat
;
128 No_Subp
: constant Subp_Index
:= 0;
130 -- The subprogram entities are hashed into the Inlined table
132 Num_Hash_Headers
: constant := 512;
134 Hash_Headers
: array (Subp_Index
range 0 .. Num_Hash_Headers
- 1)
137 type Succ_Index
is new Nat
;
138 No_Succ
: constant Succ_Index
:= 0;
140 type Succ_Info
is record
145 -- The following table stores list elements for the successor lists. These
146 -- lists cannot be chained directly through entries in the Inlined table,
147 -- because a given subprogram can appear in several such lists.
149 package Successors
is new Table
.Table
(
150 Table_Component_Type
=> Succ_Info
,
151 Table_Index_Type
=> Succ_Index
,
152 Table_Low_Bound
=> 1,
153 Table_Initial
=> Alloc
.Successors_Initial
,
154 Table_Increment
=> Alloc
.Successors_Increment
,
155 Table_Name
=> "Successors");
157 type Subp_Info
is record
158 Name
: Entity_Id
:= Empty
;
159 Next
: Subp_Index
:= No_Subp
;
160 First_Succ
: Succ_Index
:= No_Succ
;
161 Listed
: Boolean := False;
162 Main_Call
: Boolean := False;
163 Processed
: Boolean := False;
166 package Inlined
is new Table
.Table
(
167 Table_Component_Type
=> Subp_Info
,
168 Table_Index_Type
=> Subp_Index
,
169 Table_Low_Bound
=> 1,
170 Table_Initial
=> Alloc
.Inlined_Initial
,
171 Table_Increment
=> Alloc
.Inlined_Increment
,
172 Table_Name
=> "Inlined");
174 -----------------------
175 -- Local Subprograms --
176 -----------------------
178 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
);
179 -- Make two entries in Inlined table, for an inlined subprogram being
180 -- called, and for the inlined subprogram that contains the call. If
181 -- the call is in the main compilation unit, Caller is Empty.
183 procedure Add_Inlined_Subprogram
(Index
: Subp_Index
);
184 -- Add the subprogram to the list of inlined subprogram for the unit
186 function Add_Subp
(E
: Entity_Id
) return Subp_Index
;
187 -- Make entry in Inlined table for subprogram E, or return table index
188 -- that already holds E.
190 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
;
191 pragma Inline
(Get_Code_Unit_Entity
);
192 -- Return the entity node for the unit containing E. Always return the spec
195 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean;
196 -- If a candidate for inlining contains type declarations for types with
197 -- non-trivial initialization procedures, they are not worth inlining.
199 function Has_Single_Return
(N
: Node_Id
) return Boolean;
200 -- In general we cannot inline functions that return unconstrained type.
201 -- However, we can handle such functions if all return statements return a
202 -- local variable that is the only declaration in the body of the function.
203 -- In that case the call can be replaced by that local variable as is done
204 -- for other inlined calls.
206 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean;
207 -- Return True if E is in the main unit or its spec or in a subunit
209 function Is_Nested
(E
: Entity_Id
) return Boolean;
210 -- If the function is nested inside some other function, it will always
211 -- be compiled if that function is, so don't add it to the inline list.
212 -- We cannot compile a nested function outside the scope of the containing
213 -- function anyway. This is also the case if the function is defined in a
214 -- task body or within an entry (for example, an initialization procedure).
216 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
);
217 -- Remove all aspects and/or pragmas that have no meaning in inlined body
218 -- Body_Decl. The analysis of these items is performed on the non-inlined
219 -- body. The items currently removed are:
232 ------------------------------
233 -- Deferred Cleanup Actions --
234 ------------------------------
236 -- The cleanup actions for scopes that contain instantiations is delayed
237 -- until after expansion of those instantiations, because they may contain
238 -- finalizable objects or tasks that affect the cleanup code. A scope
239 -- that contains instantiations only needs to be finalized once, even
240 -- if it contains more than one instance. We keep a list of scopes
241 -- that must still be finalized, and call cleanup_actions after all
242 -- the instantiations have been completed.
246 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
);
247 -- Build set of scopes on which cleanup actions must be performed
249 procedure Cleanup_Scopes
;
250 -- Complete cleanup actions on scopes that need it
256 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
) is
257 P1
: constant Subp_Index
:= Add_Subp
(Called
);
262 if Present
(Caller
) then
263 P2
:= Add_Subp
(Caller
);
265 -- Add P1 to the list of successors of P2, if not already there.
266 -- Note that P2 may contain more than one call to P1, and only
267 -- one needs to be recorded.
269 J
:= Inlined
.Table
(P2
).First_Succ
;
270 while J
/= No_Succ
loop
271 if Successors
.Table
(J
).Subp
= P1
then
275 J
:= Successors
.Table
(J
).Next
;
278 -- On exit, make a successor entry for P1
280 Successors
.Increment_Last
;
281 Successors
.Table
(Successors
.Last
).Subp
:= P1
;
282 Successors
.Table
(Successors
.Last
).Next
:=
283 Inlined
.Table
(P2
).First_Succ
;
284 Inlined
.Table
(P2
).First_Succ
:= Successors
.Last
;
286 Inlined
.Table
(P1
).Main_Call
:= True;
290 ----------------------
291 -- Add_Inlined_Body --
292 ----------------------
294 procedure Add_Inlined_Body
(E
: Entity_Id
) is
296 type Inline_Level_Type
is (Dont_Inline
, Inline_Call
, Inline_Package
);
297 -- Level of inlining for the call: Dont_Inline means no inlining,
298 -- Inline_Call means that only the call is considered for inlining,
299 -- Inline_Package means that the call is considered for inlining and
300 -- its package compiled and scanned for more inlining opportunities.
302 function Must_Inline
return Inline_Level_Type
;
303 -- Inlining is only done if the call statement N is in the main unit,
304 -- or within the body of another inlined subprogram.
310 function Must_Inline
return Inline_Level_Type
is
315 -- Check if call is in main unit
317 Scop
:= Current_Scope
;
319 -- Do not try to inline if scope is standard. This could happen, for
320 -- example, for a call to Add_Global_Declaration, and it causes
321 -- trouble to try to inline at this level.
323 if Scop
= Standard_Standard
then
327 -- Otherwise lookup scope stack to outer scope
329 while Scope
(Scop
) /= Standard_Standard
330 and then not Is_Child_Unit
(Scop
)
332 Scop
:= Scope
(Scop
);
335 Comp
:= Parent
(Scop
);
336 while Nkind
(Comp
) /= N_Compilation_Unit
loop
337 Comp
:= Parent
(Comp
);
340 -- If the call is in the main unit, inline the call and compile the
341 -- package of the subprogram to find more calls to be inlined.
343 if Comp
= Cunit
(Main_Unit
)
344 or else Comp
= Library_Unit
(Cunit
(Main_Unit
))
347 return Inline_Package
;
350 -- The call is not in the main unit. See if it is in some inlined
351 -- subprogram. If so, inline the call and, if the inlining level is
352 -- set to 1, stop there; otherwise also compile the package as above.
354 Scop
:= Current_Scope
;
355 while Scope
(Scop
) /= Standard_Standard
356 and then not Is_Child_Unit
(Scop
)
358 if Is_Overloadable
(Scop
) and then Is_Inlined
(Scop
) then
361 if Inline_Level
= 1 then
364 return Inline_Package
;
368 Scop
:= Scope
(Scop
);
374 Level
: Inline_Level_Type
;
376 -- Start of processing for Add_Inlined_Body
379 -- Find unit containing E, and add to list of inlined bodies if needed.
380 -- If the body is already present, no need to load any other unit. This
381 -- is the case for an initialization procedure, which appears in the
382 -- package declaration that contains the type. It is also the case if
383 -- the body has already been analyzed. Finally, if the unit enclosing
384 -- E is an instance, the instance body will be analyzed in any case,
385 -- and there is no need to add the enclosing unit (whose body might not
388 -- Library-level functions must be handled specially, because there is
389 -- no enclosing package to retrieve. In this case, it is the body of
390 -- the function that will have to be loaded.
392 if Is_Abstract_Subprogram
(E
)
393 or else Is_Nested
(E
)
394 or else Convention
(E
) = Convention_Protected
399 Level
:= Must_Inline
;
400 if Level
/= Dont_Inline
then
402 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
407 -- Library-level inlined function. Add function itself to
408 -- list of needed units.
411 Inlined_Bodies
.Increment_Last
;
412 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := E
;
414 elsif Ekind
(Pack
) = E_Package
then
417 if Is_Generic_Instance
(Pack
) then
420 -- Do not inline the package if the subprogram is an init proc
421 -- or other internally generated subprogram, because in that
422 -- case the subprogram body appears in the same unit that
423 -- declares the type, and that body is visible to the back end.
424 -- Do not inline it either if it is in the main unit.
426 elsif Level
= Inline_Package
427 and then not Is_Inlined
(Pack
)
428 and then not Is_Internal
(E
)
429 and then not In_Main_Unit_Or_Subunit
(Pack
)
431 Set_Is_Inlined
(Pack
);
432 Inlined_Bodies
.Increment_Last
;
433 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := Pack
;
435 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
436 -- calls if the back-end takes care of inlining the call.
438 elsif Level
= Inline_Call
439 and then Has_Pragma_Inline_Always
(E
)
440 and then Back_End_Inlining
442 Set_Is_Inlined
(Pack
);
443 Inlined_Bodies
.Increment_Last
;
444 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := Pack
;
449 end Add_Inlined_Body
;
451 ----------------------------
452 -- Add_Inlined_Subprogram --
453 ----------------------------
455 procedure Add_Inlined_Subprogram
(Index
: Subp_Index
) is
456 E
: constant Entity_Id
:= Inlined
.Table
(Index
).Name
;
457 Decl
: constant Node_Id
:= Parent
(Declaration_Node
(E
));
458 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
460 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
);
461 -- Append Subp to the list of subprograms inlined by the backend
463 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
);
464 -- Append Subp to the list of subprograms that cannot be inlined by
467 -----------------------------------------
468 -- Register_Backend_Inlined_Subprogram --
469 -----------------------------------------
471 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
) is
473 Append_New_Elmt
(Subp
, To
=> Backend_Inlined_Subps
);
474 end Register_Backend_Inlined_Subprogram
;
476 ---------------------------------------------
477 -- Register_Backend_Not_Inlined_Subprogram --
478 ---------------------------------------------
480 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
) is
482 Append_New_Elmt
(Subp
, To
=> Backend_Not_Inlined_Subps
);
483 end Register_Backend_Not_Inlined_Subprogram
;
485 -- Start of processing for Add_Inlined_Subprogram
488 -- If the subprogram is to be inlined, and if its unit is known to be
489 -- inlined or is an instance whose body will be analyzed anyway or the
490 -- subprogram was generated as a body by the compiler (for example an
491 -- initialization procedure) or its declaration was provided along with
492 -- the body (for example an expression function), and if it is declared
493 -- at the library level not in the main unit, and if it can be inlined
494 -- by the back-end, then insert it in the list of inlined subprograms.
497 and then (Is_Inlined
(Pack
)
498 or else Is_Generic_Instance
(Pack
)
499 or else Nkind
(Decl
) = N_Subprogram_Body
500 or else Present
(Corresponding_Body
(Decl
)))
501 and then not In_Main_Unit_Or_Subunit
(E
)
502 and then not Is_Nested
(E
)
503 and then not Has_Initialized_Type
(E
)
505 Register_Backend_Inlined_Subprogram
(E
);
507 if No
(Last_Inlined
) then
508 Set_First_Inlined_Subprogram
(Cunit
(Main_Unit
), E
);
510 Set_Next_Inlined_Subprogram
(Last_Inlined
, E
);
516 Register_Backend_Not_Inlined_Subprogram
(E
);
519 Inlined
.Table
(Index
).Listed
:= True;
520 end Add_Inlined_Subprogram
;
522 ------------------------
523 -- Add_Scope_To_Clean --
524 ------------------------
526 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
) is
527 Scop
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(Inst
);
531 -- If the instance appears in a library-level package declaration,
532 -- all finalization is global, and nothing needs doing here.
534 if Scop
= Standard_Standard
then
538 -- If the instance is within a generic unit, no finalization code
539 -- can be generated. Note that at this point all bodies have been
540 -- analyzed, and the scope stack itself is not present, and the flag
541 -- Inside_A_Generic is not set.
548 while Present
(S
) and then S
/= Standard_Standard
loop
549 if Is_Generic_Unit
(S
) then
557 Elmt
:= First_Elmt
(To_Clean
);
558 while Present
(Elmt
) loop
559 if Node
(Elmt
) = Scop
then
563 Elmt
:= Next_Elmt
(Elmt
);
566 Append_Elmt
(Scop
, To_Clean
);
567 end Add_Scope_To_Clean
;
573 function Add_Subp
(E
: Entity_Id
) return Subp_Index
is
574 Index
: Subp_Index
:= Subp_Index
(E
) mod Num_Hash_Headers
;
578 -- Initialize entry in Inlined table
580 procedure New_Entry
is
582 Inlined
.Increment_Last
;
583 Inlined
.Table
(Inlined
.Last
).Name
:= E
;
584 Inlined
.Table
(Inlined
.Last
).Next
:= No_Subp
;
585 Inlined
.Table
(Inlined
.Last
).First_Succ
:= No_Succ
;
586 Inlined
.Table
(Inlined
.Last
).Listed
:= False;
587 Inlined
.Table
(Inlined
.Last
).Main_Call
:= False;
588 Inlined
.Table
(Inlined
.Last
).Processed
:= False;
591 -- Start of processing for Add_Subp
594 if Hash_Headers
(Index
) = No_Subp
then
596 Hash_Headers
(Index
) := Inlined
.Last
;
600 J
:= Hash_Headers
(Index
);
601 while J
/= No_Subp
loop
602 if Inlined
.Table
(J
).Name
= E
then
606 J
:= Inlined
.Table
(J
).Next
;
610 -- On exit, subprogram was not found. Enter in table. Index is
611 -- the current last entry on the hash chain.
614 Inlined
.Table
(Index
).Next
:= Inlined
.Last
;
619 ----------------------------
620 -- Analyze_Inlined_Bodies --
621 ----------------------------
623 procedure Analyze_Inlined_Bodies
is
630 type Pending_Index
is new Nat
;
632 package Pending_Inlined
is new Table
.Table
(
633 Table_Component_Type
=> Subp_Index
,
634 Table_Index_Type
=> Pending_Index
,
635 Table_Low_Bound
=> 1,
636 Table_Initial
=> Alloc
.Inlined_Initial
,
637 Table_Increment
=> Alloc
.Inlined_Increment
,
638 Table_Name
=> "Pending_Inlined");
639 -- The workpile used to compute the transitive closure
641 function Is_Ancestor_Of_Main
643 Nam
: Node_Id
) return Boolean;
644 -- Determine whether the unit whose body is loaded is an ancestor of
645 -- the main unit, and has a with_clause on it. The body is not
646 -- analyzed yet, so the check is purely lexical: the name of the with
647 -- clause is a selected component, and names of ancestors must match.
649 -------------------------
650 -- Is_Ancestor_Of_Main --
651 -------------------------
653 function Is_Ancestor_Of_Main
655 Nam
: Node_Id
) return Boolean
660 if Nkind
(Nam
) /= N_Selected_Component
then
664 if Chars
(Selector_Name
(Nam
)) /=
665 Chars
(Cunit_Entity
(Main_Unit
))
670 Pref
:= Prefix
(Nam
);
671 if Nkind
(Pref
) = N_Identifier
then
673 -- Par is an ancestor of Par.Child.
675 return Chars
(Pref
) = Chars
(U_Name
);
677 elsif Nkind
(Pref
) = N_Selected_Component
678 and then Chars
(Selector_Name
(Pref
)) = Chars
(U_Name
)
680 -- Par.Child is an ancestor of Par.Child.Grand.
682 return True; -- should check that ancestor match
685 -- A is an ancestor of A.B.C if it is an ancestor of A.B
687 return Is_Ancestor_Of_Main
(U_Name
, Pref
);
690 end Is_Ancestor_Of_Main
;
692 -- Start of processing for Analyze_Inlined_Bodies
695 if Serious_Errors_Detected
= 0 then
696 Push_Scope
(Standard_Standard
);
699 while J
<= Inlined_Bodies
.Last
700 and then Serious_Errors_Detected
= 0
702 Pack
:= Inlined_Bodies
.Table
(J
);
704 and then Scope
(Pack
) /= Standard_Standard
705 and then not Is_Child_Unit
(Pack
)
707 Pack
:= Scope
(Pack
);
710 Comp_Unit
:= Parent
(Pack
);
711 while Present
(Comp_Unit
)
712 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
714 Comp_Unit
:= Parent
(Comp_Unit
);
717 -- Load the body, unless it is the main unit, or is an instance
718 -- whose body has already been analyzed.
720 if Present
(Comp_Unit
)
721 and then Comp_Unit
/= Cunit
(Main_Unit
)
722 and then Body_Required
(Comp_Unit
)
723 and then (Nkind
(Unit
(Comp_Unit
)) /= N_Package_Declaration
724 or else No
(Corresponding_Body
(Unit
(Comp_Unit
))))
727 Bname
: constant Unit_Name_Type
:=
728 Get_Body_Name
(Get_Unit_Name
(Unit
(Comp_Unit
)));
733 if not Is_Loaded
(Bname
) then
734 Style_Check
:= False;
735 Load_Needed_Body
(Comp_Unit
, OK
, Do_Analyze
=> False);
739 -- Warn that a body was not available for inlining
742 Error_Msg_Unit_1
:= Bname
;
744 ("one or more inlined subprograms accessed in $!??",
747 Get_File_Name
(Bname
, Subunit
=> False);
748 Error_Msg_N
("\but file{ was not found!??", Comp_Unit
);
751 -- If the package to be inlined is an ancestor unit of
752 -- the main unit, and it has a semantic dependence on
753 -- it, the inlining cannot take place to prevent an
754 -- elaboration circularity. The desired body is not
755 -- analyzed yet, to prevent the completion of Taft
756 -- amendment types that would lead to elaboration
757 -- circularities in gigi.
760 U_Id
: constant Entity_Id
:=
761 Defining_Entity
(Unit
(Comp_Unit
));
762 Body_Unit
: constant Node_Id
:=
763 Library_Unit
(Comp_Unit
);
767 Item
:= First
(Context_Items
(Body_Unit
));
768 while Present
(Item
) loop
769 if Nkind
(Item
) = N_With_Clause
771 Is_Ancestor_Of_Main
(U_Id
, Name
(Item
))
773 Set_Is_Inlined
(U_Id
, False);
780 -- If no suspicious with_clauses, analyze the body.
782 if Is_Inlined
(U_Id
) then
783 Semantics
(Body_Unit
);
793 if J
> Inlined_Bodies
.Last
then
795 -- The analysis of required bodies may have produced additional
796 -- generic instantiations. To obtain further inlining, we need
797 -- to perform another round of generic body instantiations.
801 -- Symmetrically, the instantiation of required generic bodies
802 -- may have caused additional bodies to be inlined. To obtain
803 -- further inlining, we keep looping over the inlined bodies.
807 -- The list of inlined subprograms is an overestimate, because it
808 -- includes inlined functions called from functions that are compiled
809 -- as part of an inlined package, but are not themselves called. An
810 -- accurate computation of just those subprograms that are needed
811 -- requires that we perform a transitive closure over the call graph,
812 -- starting from calls in the main program.
814 for Index
in Inlined
.First
.. Inlined
.Last
loop
815 if not Is_Called
(Inlined
.Table
(Index
).Name
) then
817 -- This means that Add_Inlined_Body added the subprogram to the
818 -- table but wasn't able to handle its code unit. Do nothing.
820 Inlined
.Table
(Index
).Processed
:= True;
822 elsif Inlined
.Table
(Index
).Main_Call
then
823 Pending_Inlined
.Increment_Last
;
824 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Index
;
825 Inlined
.Table
(Index
).Processed
:= True;
828 Set_Is_Called
(Inlined
.Table
(Index
).Name
, False);
832 -- Iterate over the workpile until it is emptied, propagating the
833 -- Is_Called flag to the successors of the processed subprogram.
835 while Pending_Inlined
.Last
>= Pending_Inlined
.First
loop
836 Subp
:= Pending_Inlined
.Table
(Pending_Inlined
.Last
);
837 Pending_Inlined
.Decrement_Last
;
839 S
:= Inlined
.Table
(Subp
).First_Succ
;
841 while S
/= No_Succ
loop
842 Subp
:= Successors
.Table
(S
).Subp
;
844 if not Inlined
.Table
(Subp
).Processed
then
845 Set_Is_Called
(Inlined
.Table
(Subp
).Name
);
846 Pending_Inlined
.Increment_Last
;
847 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Subp
;
848 Inlined
.Table
(Subp
).Processed
:= True;
851 S
:= Successors
.Table
(S
).Next
;
855 -- Finally add the called subprograms to the list of inlined
856 -- subprograms for the unit.
858 for Index
in Inlined
.First
.. Inlined
.Last
loop
859 if Is_Called
(Inlined
.Table
(Index
).Name
)
860 and then not Inlined
.Table
(Index
).Listed
862 Add_Inlined_Subprogram
(Index
);
868 end Analyze_Inlined_Bodies
;
870 --------------------------
871 -- Build_Body_To_Inline --
872 --------------------------
874 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
875 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
876 Analysis_Status
: constant Boolean := Full_Analysis
;
877 Original_Body
: Node_Id
;
878 Body_To_Analyze
: Node_Id
;
879 Max_Size
: constant := 10;
881 function Has_Pending_Instantiation
return Boolean;
882 -- If some enclosing body contains instantiations that appear before
883 -- the corresponding generic body, the enclosing body has a freeze node
884 -- so that it can be elaborated after the generic itself. This might
885 -- conflict with subsequent inlinings, so that it is unsafe to try to
886 -- inline in such a case.
888 function Has_Single_Return_In_GNATprove_Mode
return Boolean;
889 -- This function is called only in GNATprove mode, and it returns
890 -- True if the subprogram has no return statement or a single return
891 -- statement as last statement. It returns False for subprogram with
892 -- a single return as last statement inside one or more blocks, as
893 -- inlining would generate gotos in that case as well (although the
894 -- goto is useless in that case).
896 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean;
897 -- If the body of the subprogram includes a call that returns an
898 -- unconstrained type, the secondary stack is involved, and it
899 -- is not worth inlining.
901 -------------------------------
902 -- Has_Pending_Instantiation --
903 -------------------------------
905 function Has_Pending_Instantiation
return Boolean is
910 while Present
(S
) loop
911 if Is_Compilation_Unit
(S
)
912 or else Is_Child_Unit
(S
)
916 elsif Ekind
(S
) = E_Package
917 and then Has_Forward_Instantiation
(S
)
926 end Has_Pending_Instantiation
;
928 -----------------------------------------
929 -- Has_Single_Return_In_GNATprove_Mode --
930 -----------------------------------------
932 function Has_Single_Return_In_GNATprove_Mode
return Boolean is
933 Last_Statement
: Node_Id
:= Empty
;
935 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
936 -- Returns OK on node N if this is not a return statement different
937 -- from the last statement in the subprogram.
943 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
945 if Nkind_In
(N
, N_Simple_Return_Statement
,
946 N_Extended_Return_Statement
)
948 if N
= Last_Statement
then
959 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
961 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
964 -- Retrieve the last statement
966 Last_Statement
:= Last
(Statements
(Handled_Statement_Sequence
(N
)));
968 -- Check that the last statement is the only possible return
969 -- statement in the subprogram.
971 return Check_All_Returns
(N
) = OK
;
972 end Has_Single_Return_In_GNATprove_Mode
;
974 --------------------------
975 -- Uses_Secondary_Stack --
976 --------------------------
978 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean is
979 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
980 -- Look for function calls that return an unconstrained type
986 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
988 if Nkind
(N
) = N_Function_Call
989 and then Is_Entity_Name
(Name
(N
))
990 and then Is_Composite_Type
(Etype
(Entity
(Name
(N
))))
991 and then not Is_Constrained
(Etype
(Entity
(Name
(N
))))
994 ("cannot inline & (call returns unconstrained type)?",
1002 function Check_Calls
is new Traverse_Func
(Check_Call
);
1005 return Check_Calls
(Bod
) = Abandon
;
1006 end Uses_Secondary_Stack
;
1008 -- Start of processing for Build_Body_To_Inline
1011 -- Return immediately if done already
1013 if Nkind
(Decl
) = N_Subprogram_Declaration
1014 and then Present
(Body_To_Inline
(Decl
))
1018 -- Subprograms that have return statements in the middle of the body are
1019 -- inlined with gotos. GNATprove does not currently support gotos, so
1020 -- we prevent such inlining.
1022 elsif GNATprove_Mode
1023 and then not Has_Single_Return_In_GNATprove_Mode
1025 Cannot_Inline
("cannot inline & (multiple returns)?", N
, Spec_Id
);
1028 -- Functions that return unconstrained composite types require
1029 -- secondary stack handling, and cannot currently be inlined, unless
1030 -- all return statements return a local variable that is the first
1031 -- local declaration in the body.
1033 elsif Ekind
(Spec_Id
) = E_Function
1034 and then not Is_Scalar_Type
(Etype
(Spec_Id
))
1035 and then not Is_Access_Type
(Etype
(Spec_Id
))
1036 and then not Is_Constrained
(Etype
(Spec_Id
))
1038 if not Has_Single_Return
(N
) then
1040 ("cannot inline & (unconstrained return type)?", N
, Spec_Id
);
1044 -- Ditto for functions that return controlled types, where controlled
1045 -- actions interfere in complex ways with inlining.
1047 elsif Ekind
(Spec_Id
) = E_Function
1048 and then Needs_Finalization
(Etype
(Spec_Id
))
1051 ("cannot inline & (controlled return type)?", N
, Spec_Id
);
1055 if Present
(Declarations
(N
))
1056 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
1061 if Present
(Handled_Statement_Sequence
(N
)) then
1062 if Present
(Exception_Handlers
(Handled_Statement_Sequence
(N
))) then
1064 ("cannot inline& (exception handler)?",
1065 First
(Exception_Handlers
(Handled_Statement_Sequence
(N
))),
1069 elsif Has_Excluded_Statement
1070 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
1076 -- We do not inline a subprogram that is too large, unless it is marked
1077 -- Inline_Always or we are in GNATprove mode. This pragma does not
1078 -- suppress the other checks on inlining (forbidden declarations,
1081 if not (Has_Pragma_Inline_Always
(Spec_Id
) or else GNATprove_Mode
)
1082 and then List_Length
1083 (Statements
(Handled_Statement_Sequence
(N
))) > Max_Size
1085 Cannot_Inline
("cannot inline& (body too large)?", N
, Spec_Id
);
1089 if Has_Pending_Instantiation
then
1091 ("cannot inline& (forward instance within enclosing body)?",
1096 -- Within an instance, the body to inline must be treated as a nested
1097 -- generic, so that the proper global references are preserved.
1099 -- Note that we do not do this at the library level, because it is not
1100 -- needed, and furthermore this causes trouble if front end inlining
1101 -- is activated (-gnatN).
1103 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1104 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1105 Original_Body
:= Copy_Generic_Node
(N
, Empty
, True);
1107 Original_Body
:= Copy_Separate_Tree
(N
);
1110 -- We need to capture references to the formals in order to substitute
1111 -- the actuals at the point of inlining, i.e. instantiation. To treat
1112 -- the formals as globals to the body to inline, we nest it within a
1113 -- dummy parameterless subprogram, declared within the real one. To
1114 -- avoid generating an internal name (which is never public, and which
1115 -- affects serial numbers of other generated names), we use an internal
1116 -- symbol that cannot conflict with user declarations.
1118 Set_Parameter_Specifications
(Specification
(Original_Body
), No_List
);
1119 Set_Defining_Unit_Name
1120 (Specification
(Original_Body
),
1121 Make_Defining_Identifier
(Sloc
(N
), Name_uParent
));
1122 Set_Corresponding_Spec
(Original_Body
, Empty
);
1124 -- Remove all aspects/pragmas that have no meaining in an inlined body
1126 Remove_Aspects_And_Pragmas
(Original_Body
);
1128 Body_To_Analyze
:= Copy_Generic_Node
(Original_Body
, Empty
, False);
1130 -- Set return type of function, which is also global and does not need
1133 if Ekind
(Spec_Id
) = E_Function
then
1134 Set_Result_Definition
1135 (Specification
(Body_To_Analyze
),
1136 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1139 if No
(Declarations
(N
)) then
1140 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1142 Append
(Body_To_Analyze
, Declarations
(N
));
1145 -- The body to inline is pre-analyzed. In GNATprove mode we must disable
1146 -- full analysis as well so that light expansion does not take place
1147 -- either, and name resolution is unaffected.
1149 Expander_Mode_Save_And_Set
(False);
1150 Full_Analysis
:= False;
1152 Analyze
(Body_To_Analyze
);
1153 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1154 Save_Global_References
(Original_Body
);
1156 Remove
(Body_To_Analyze
);
1158 Expander_Mode_Restore
;
1159 Full_Analysis
:= Analysis_Status
;
1161 -- Restore environment if previously saved
1163 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1167 -- If secondary stack is used, there is no point in inlining. We have
1168 -- already issued the warning in this case, so nothing to do.
1170 if Uses_Secondary_Stack
(Body_To_Analyze
) then
1174 Set_Body_To_Inline
(Decl
, Original_Body
);
1175 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1176 Set_Is_Inlined
(Spec_Id
);
1177 end Build_Body_To_Inline
;
1183 procedure Cannot_Inline
1187 Is_Serious
: Boolean := False)
1190 -- In GNATprove mode, inlining is the technical means by which the
1191 -- higher-level goal of contextual analysis is reached, so issue
1192 -- messages about failure to apply contextual analysis to a
1193 -- subprogram, rather than failure to inline it.
1196 and then Msg
(Msg
'First .. Msg
'First + 12) = "cannot inline"
1199 Len1
: constant Positive :=
1200 String (String'("cannot inline"))'Length;
1201 Len2 : constant Positive :=
1202 String (String'("info: no contextual analysis of"))'Length;
1204 New_Msg
: String (1 .. Msg
'Length + Len2
- Len1
);
1207 New_Msg
(1 .. Len2
) := "info: no contextual analysis of";
1208 New_Msg
(Len2
+ 1 .. Msg
'Length + Len2
- Len1
) :=
1209 Msg
(Msg
'First + Len1
.. Msg
'Last);
1210 Cannot_Inline
(New_Msg
, N
, Subp
, Is_Serious
);
1215 pragma Assert
(Msg
(Msg
'Last) = '?');
1217 -- Legacy front end inlining model
1219 if not Back_End_Inlining
then
1221 -- Do not emit warning if this is a predefined unit which is not
1222 -- the main unit. With validity checks enabled, some predefined
1223 -- subprograms may contain nested subprograms and become ineligible
1226 if Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(Subp
)))
1227 and then not In_Extended_Main_Source_Unit
(Subp
)
1231 -- In GNATprove mode, issue a warning, and indicate that the
1232 -- subprogram is not always inlined by setting flag Is_Inlined_Always
1235 elsif GNATprove_Mode
then
1236 Set_Is_Inlined_Always
(Subp
, False);
1237 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1239 elsif Has_Pragma_Inline_Always
(Subp
) then
1241 -- Remove last character (question mark) to make this into an
1242 -- error, because the Inline_Always pragma cannot be obeyed.
1244 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1246 elsif Ineffective_Inline_Warnings
then
1247 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1250 -- New semantics relying on back end inlining
1252 elsif Is_Serious
then
1254 -- Remove last character (question mark) to make this into an error.
1256 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1258 -- In GNATprove mode, issue a warning, and indicate that the subprogram
1259 -- is not always inlined by setting flag Is_Inlined_Always to False.
1261 elsif GNATprove_Mode
then
1262 Set_Is_Inlined_Always
(Subp
, False);
1263 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1267 -- Do not emit warning if this is a predefined unit which is not
1268 -- the main unit. This behavior is currently provided for backward
1269 -- compatibility but it will be removed when we enforce the
1270 -- strictness of the new rules.
1272 if Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(Subp
)))
1273 and then not In_Extended_Main_Source_Unit
(Subp
)
1277 elsif Has_Pragma_Inline_Always
(Subp
) then
1279 -- Emit a warning if this is a call to a runtime subprogram
1280 -- which is located inside a generic. Previously this call
1281 -- was silently skipped.
1283 if Is_Generic_Instance
(Subp
) then
1285 Gen_P
: constant Entity_Id
:= Generic_Parent
(Parent
(Subp
));
1287 if Is_Predefined_File_Name
1288 (Unit_File_Name
(Get_Source_Unit
(Gen_P
)))
1290 Set_Is_Inlined
(Subp
, False);
1291 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1297 -- Remove last character (question mark) to make this into an
1298 -- error, because the Inline_Always pragma cannot be obeyed.
1300 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1303 Set_Is_Inlined
(Subp
, False);
1305 if Ineffective_Inline_Warnings
then
1306 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1312 --------------------------------------
1313 -- Can_Be_Inlined_In_GNATprove_Mode --
1314 --------------------------------------
1316 function Can_Be_Inlined_In_GNATprove_Mode
1317 (Spec_Id
: Entity_Id
;
1318 Body_Id
: Entity_Id
) return Boolean
1320 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean;
1321 -- Returns True if subprogram Id has any contract (Pre, Post, Global,
1324 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean;
1325 -- Returns True if subprogram Id defines a compilation unit
1326 -- Shouldn't this be in Sem_Aux???
1328 function In_Package_Visible_Spec
(Id
: Node_Id
) return Boolean;
1329 -- Returns True if subprogram Id is defined in the visible part of a
1330 -- package specification.
1332 function Is_Expression_Function
(Id
: Entity_Id
) return Boolean;
1333 -- Returns True if subprogram Id was defined originally as an expression
1336 -----------------------
1337 -- Has_Some_Contract --
1338 -----------------------
1340 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean is
1344 -- A call to an expression function may precede the actual body which
1345 -- is inserted at the end of the enclosing declarations. Ensure that
1346 -- the related entity is decorated before inspecting the contract.
1348 if Is_Subprogram_Or_Generic_Subprogram
(Id
) then
1349 Items
:= Contract
(Id
);
1351 return Present
(Items
)
1352 and then (Present
(Pre_Post_Conditions
(Items
)) or else
1353 Present
(Contract_Test_Cases
(Items
)) or else
1354 Present
(Classifications
(Items
)));
1358 end Has_Some_Contract
;
1360 -----------------------------
1361 -- In_Package_Visible_Spec --
1362 -----------------------------
1364 function In_Package_Visible_Spec
(Id
: Node_Id
) return Boolean is
1365 Decl
: Node_Id
:= Parent
(Parent
(Id
));
1369 if Nkind
(Parent
(Id
)) = N_Defining_Program_Unit_Name
then
1370 Decl
:= Parent
(Decl
);
1375 return Nkind
(P
) = N_Package_Specification
1376 and then List_Containing
(Decl
) = Visible_Declarations
(P
);
1377 end In_Package_Visible_Spec
;
1379 ----------------------------
1380 -- Is_Expression_Function --
1381 ----------------------------
1383 function Is_Expression_Function
(Id
: Entity_Id
) return Boolean is
1384 Decl
: Node_Id
:= Parent
(Parent
(Id
));
1386 if Nkind
(Parent
(Id
)) = N_Defining_Program_Unit_Name
then
1387 Decl
:= Parent
(Decl
);
1390 return Nkind
(Original_Node
(Decl
)) = N_Expression_Function
;
1391 end Is_Expression_Function
;
1393 ------------------------
1394 -- Is_Unit_Subprogram --
1395 ------------------------
1397 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean is
1398 Decl
: Node_Id
:= Parent
(Parent
(Id
));
1400 if Nkind
(Parent
(Id
)) = N_Defining_Program_Unit_Name
then
1401 Decl
:= Parent
(Decl
);
1404 return Nkind
(Parent
(Decl
)) = N_Compilation_Unit
;
1405 end Is_Unit_Subprogram
;
1407 -- Local declarations
1409 Id
: Entity_Id
; -- Procedure or function entity for the subprogram
1411 -- Start of Can_Be_Inlined_In_GNATprove_Mode
1414 pragma Assert
(Present
(Spec_Id
) or else Present
(Body_Id
));
1416 if Present
(Spec_Id
) then
1422 -- Only local subprograms without contracts are inlined in GNATprove
1423 -- mode, as these are the subprograms which a user is not interested in
1424 -- analyzing in isolation, but rather in the context of their call. This
1425 -- is a convenient convention, that could be changed for an explicit
1426 -- pragma/aspect one day.
1428 -- In a number of special cases, inlining is not desirable or not
1429 -- possible, see below.
1431 -- Do not inline unit-level subprograms
1433 if Is_Unit_Subprogram
(Id
) then
1436 -- Do not inline subprograms declared in the visible part of a package
1438 elsif In_Package_Visible_Spec
(Id
) then
1441 -- Do not inline subprograms that have a contract on the spec or the
1442 -- body. Use the contract(s) instead in GNATprove.
1444 elsif (Present
(Spec_Id
) and then Has_Some_Contract
(Spec_Id
))
1446 (Present
(Body_Id
) and then Has_Some_Contract
(Body_Id
))
1450 -- Do not inline expression functions, which are directly inlined at the
1453 elsif (Present
(Spec_Id
) and then Is_Expression_Function
(Spec_Id
))
1455 (Present
(Body_Id
) and then Is_Expression_Function
(Body_Id
))
1459 -- Do not inline generic subprogram instances. The visibility rules of
1460 -- generic instances plays badly with inlining.
1462 elsif Is_Generic_Instance
(Spec_Id
) then
1465 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1466 -- the subprogram body, a similar check is performed after the body
1467 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1469 elsif Present
(Spec_Id
)
1471 (No
(SPARK_Pragma
(Spec_Id
))
1472 or else Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Spec_Id
)) /= On
)
1476 -- Subprograms in generic instances are currently not inlined, to avoid
1477 -- problems with inlining of standard library subprograms.
1479 elsif Instantiation_Location
(Sloc
(Id
)) /= No_Location
then
1482 -- Don't inline predicate functions (treated specially by GNATprove)
1484 elsif Is_Predicate_Function
(Id
) then
1487 -- Otherwise, this is a subprogram declared inside the private part of a
1488 -- package, or inside a package body, or locally in a subprogram, and it
1489 -- does not have any contract. Inline it.
1494 end Can_Be_Inlined_In_GNATprove_Mode
;
1496 --------------------------------------------
1497 -- Check_And_Split_Unconstrained_Function --
1498 --------------------------------------------
1500 procedure Check_And_Split_Unconstrained_Function
1502 Spec_Id
: Entity_Id
;
1503 Body_Id
: Entity_Id
)
1505 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
);
1506 -- Use generic machinery to build an unexpanded body for the subprogram.
1507 -- This body is subsequently used for inline expansions at call sites.
1509 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean;
1510 -- Return true if we generate code for the function body N, the function
1511 -- body N has no local declarations and its unique statement is a single
1512 -- extended return statement with a handled statements sequence.
1514 procedure Generate_Subprogram_Body
1516 Body_To_Inline
: out Node_Id
);
1517 -- Generate a parameterless duplicate of subprogram body N. Occurrences
1518 -- of pragmas referencing the formals are removed since they have no
1519 -- meaning when the body is inlined and the formals are rewritten (the
1520 -- analysis of the non-inlined body will handle these pragmas properly).
1521 -- A new internal name is associated with Body_To_Inline.
1523 procedure Split_Unconstrained_Function
1525 Spec_Id
: Entity_Id
);
1526 -- N is an inlined function body that returns an unconstrained type and
1527 -- has a single extended return statement. Split N in two subprograms:
1528 -- a procedure P' and a function F'. The formals of P' duplicate the
1529 -- formals of N plus an extra formal which is used return a value;
1530 -- its body is composed by the declarations and list of statements
1531 -- of the extended return statement of N.
1533 --------------------------
1534 -- Build_Body_To_Inline --
1535 --------------------------
1537 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
1538 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
1539 Original_Body
: Node_Id
;
1540 Body_To_Analyze
: Node_Id
;
1543 pragma Assert
(Current_Scope
= Spec_Id
);
1545 -- Within an instance, the body to inline must be treated as a nested
1546 -- generic, so that the proper global references are preserved. We
1547 -- do not do this at the library level, because it is not needed, and
1548 -- furthermore this causes trouble if front end inlining is activated
1552 and then Scope
(Current_Scope
) /= Standard_Standard
1554 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1557 -- We need to capture references to the formals in order
1558 -- to substitute the actuals at the point of inlining, i.e.
1559 -- instantiation. To treat the formals as globals to the body to
1560 -- inline, we nest it within a dummy parameterless subprogram,
1561 -- declared within the real one.
1563 Generate_Subprogram_Body
(N
, Original_Body
);
1564 Body_To_Analyze
:= Copy_Generic_Node
(Original_Body
, Empty
, False);
1566 -- Set return type of function, which is also global and does not
1567 -- need to be resolved.
1569 if Ekind
(Spec_Id
) = E_Function
then
1570 Set_Result_Definition
(Specification
(Body_To_Analyze
),
1571 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1574 if No
(Declarations
(N
)) then
1575 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1577 Append_To
(Declarations
(N
), Body_To_Analyze
);
1580 Preanalyze
(Body_To_Analyze
);
1582 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1583 Save_Global_References
(Original_Body
);
1585 Remove
(Body_To_Analyze
);
1587 -- Restore environment if previously saved
1590 and then Scope
(Current_Scope
) /= Standard_Standard
1595 pragma Assert
(No
(Body_To_Inline
(Decl
)));
1596 Set_Body_To_Inline
(Decl
, Original_Body
);
1597 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1598 end Build_Body_To_Inline
;
1600 --------------------------------------
1601 -- Can_Split_Unconstrained_Function --
1602 --------------------------------------
1604 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean
1606 Ret_Node
: constant Node_Id
:=
1607 First
(Statements
(Handled_Statement_Sequence
(N
)));
1611 -- No user defined declarations allowed in the function except inside
1612 -- the unique return statement; implicit labels are the only allowed
1615 if not Is_Empty_List
(Declarations
(N
)) then
1616 D
:= First
(Declarations
(N
));
1617 while Present
(D
) loop
1618 if Nkind
(D
) /= N_Implicit_Label_Declaration
then
1626 -- We only split the inlined function when we are generating the code
1627 -- of its body; otherwise we leave duplicated split subprograms in
1628 -- the tree which (if referenced) generate wrong references at link
1631 return In_Extended_Main_Code_Unit
(N
)
1632 and then Present
(Ret_Node
)
1633 and then Nkind
(Ret_Node
) = N_Extended_Return_Statement
1634 and then No
(Next
(Ret_Node
))
1635 and then Present
(Handled_Statement_Sequence
(Ret_Node
));
1636 end Can_Split_Unconstrained_Function
;
1638 -----------------------------
1639 -- Generate_Body_To_Inline --
1640 -----------------------------
1642 procedure Generate_Subprogram_Body
1644 Body_To_Inline
: out Node_Id
)
1647 -- Within an instance, the body to inline must be treated as a nested
1648 -- generic, so that the proper global references are preserved.
1650 -- Note that we do not do this at the library level, because it
1651 -- is not needed, and furthermore this causes trouble if front
1652 -- end inlining is activated (-gnatN).
1655 and then Scope
(Current_Scope
) /= Standard_Standard
1657 Body_To_Inline
:= Copy_Generic_Node
(N
, Empty
, True);
1659 Body_To_Inline
:= Copy_Separate_Tree
(N
);
1662 -- Remove all aspects/pragmas that have no meaning in an inlined body
1664 Remove_Aspects_And_Pragmas
(Body_To_Inline
);
1666 -- We need to capture references to the formals in order
1667 -- to substitute the actuals at the point of inlining, i.e.
1668 -- instantiation. To treat the formals as globals to the body to
1669 -- inline, we nest it within a dummy parameterless subprogram,
1670 -- declared within the real one.
1672 Set_Parameter_Specifications
1673 (Specification
(Body_To_Inline
), No_List
);
1675 -- A new internal name is associated with Body_To_Inline to avoid
1676 -- conflicts when the non-inlined body N is analyzed.
1678 Set_Defining_Unit_Name
(Specification
(Body_To_Inline
),
1679 Make_Defining_Identifier
(Sloc
(N
), New_Internal_Name
('P')));
1680 Set_Corresponding_Spec
(Body_To_Inline
, Empty
);
1681 end Generate_Subprogram_Body
;
1683 ----------------------------------
1684 -- Split_Unconstrained_Function --
1685 ----------------------------------
1687 procedure Split_Unconstrained_Function
1689 Spec_Id
: Entity_Id
)
1691 Loc
: constant Source_Ptr
:= Sloc
(N
);
1692 Ret_Node
: constant Node_Id
:=
1693 First
(Statements
(Handled_Statement_Sequence
(N
)));
1694 Ret_Obj
: constant Node_Id
:=
1695 First
(Return_Object_Declarations
(Ret_Node
));
1697 procedure Build_Procedure
1698 (Proc_Id
: out Entity_Id
;
1699 Decl_List
: out List_Id
);
1700 -- Build a procedure containing the statements found in the extended
1701 -- return statement of the unconstrained function body N.
1703 ---------------------
1704 -- Build_Procedure --
1705 ---------------------
1707 procedure Build_Procedure
1708 (Proc_Id
: out Entity_Id
;
1709 Decl_List
: out List_Id
)
1712 Formal_List
: constant List_Id
:= New_List
;
1713 Proc_Spec
: Node_Id
;
1714 Proc_Body
: Node_Id
;
1715 Subp_Name
: constant Name_Id
:= New_Internal_Name
('F');
1716 Body_Decl_List
: List_Id
:= No_List
;
1717 Param_Type
: Node_Id
;
1720 if Nkind
(Object_Definition
(Ret_Obj
)) = N_Identifier
then
1722 New_Copy
(Object_Definition
(Ret_Obj
));
1725 New_Copy
(Subtype_Mark
(Object_Definition
(Ret_Obj
)));
1728 Append_To
(Formal_List
,
1729 Make_Parameter_Specification
(Loc
,
1730 Defining_Identifier
=>
1731 Make_Defining_Identifier
(Loc
,
1732 Chars
=> Chars
(Defining_Identifier
(Ret_Obj
))),
1733 In_Present
=> False,
1734 Out_Present
=> True,
1735 Null_Exclusion_Present
=> False,
1736 Parameter_Type
=> Param_Type
));
1738 Formal
:= First_Formal
(Spec_Id
);
1740 -- Note that we copy the parameter type rather than creating
1741 -- a reference to it, because it may be a class-wide entity
1742 -- that will not be retrieved by name.
1744 while Present
(Formal
) loop
1745 Append_To
(Formal_List
,
1746 Make_Parameter_Specification
(Loc
,
1747 Defining_Identifier
=>
1748 Make_Defining_Identifier
(Sloc
(Formal
),
1749 Chars
=> Chars
(Formal
)),
1750 In_Present
=> In_Present
(Parent
(Formal
)),
1751 Out_Present
=> Out_Present
(Parent
(Formal
)),
1752 Null_Exclusion_Present
=>
1753 Null_Exclusion_Present
(Parent
(Formal
)),
1755 New_Copy_Tree
(Parameter_Type
(Parent
(Formal
))),
1757 Copy_Separate_Tree
(Expression
(Parent
(Formal
)))));
1759 Next_Formal
(Formal
);
1762 Proc_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Subp_Name
);
1765 Make_Procedure_Specification
(Loc
,
1766 Defining_Unit_Name
=> Proc_Id
,
1767 Parameter_Specifications
=> Formal_List
);
1769 Decl_List
:= New_List
;
1771 Append_To
(Decl_List
,
1772 Make_Subprogram_Declaration
(Loc
, Proc_Spec
));
1774 -- Can_Convert_Unconstrained_Function checked that the function
1775 -- has no local declarations except implicit label declarations.
1776 -- Copy these declarations to the built procedure.
1778 if Present
(Declarations
(N
)) then
1779 Body_Decl_List
:= New_List
;
1786 D
:= First
(Declarations
(N
));
1787 while Present
(D
) loop
1788 pragma Assert
(Nkind
(D
) = N_Implicit_Label_Declaration
);
1791 Make_Implicit_Label_Declaration
(Loc
,
1792 Make_Defining_Identifier
(Loc
,
1793 Chars
=> Chars
(Defining_Identifier
(D
))),
1794 Label_Construct
=> Empty
);
1795 Append_To
(Body_Decl_List
, New_D
);
1802 pragma Assert
(Present
(Handled_Statement_Sequence
(Ret_Node
)));
1805 Make_Subprogram_Body
(Loc
,
1806 Specification
=> Copy_Separate_Tree
(Proc_Spec
),
1807 Declarations
=> Body_Decl_List
,
1808 Handled_Statement_Sequence
=>
1809 Copy_Separate_Tree
(Handled_Statement_Sequence
(Ret_Node
)));
1811 Set_Defining_Unit_Name
(Specification
(Proc_Body
),
1812 Make_Defining_Identifier
(Loc
, Subp_Name
));
1814 Append_To
(Decl_List
, Proc_Body
);
1815 end Build_Procedure
;
1819 New_Obj
: constant Node_Id
:= Copy_Separate_Tree
(Ret_Obj
);
1821 Proc_Id
: Entity_Id
;
1822 Proc_Call
: Node_Id
;
1824 -- Start of processing for Split_Unconstrained_Function
1827 -- Build the associated procedure, analyze it and insert it before
1828 -- the function body N.
1831 Scope
: constant Entity_Id
:= Current_Scope
;
1832 Decl_List
: List_Id
;
1835 Build_Procedure
(Proc_Id
, Decl_List
);
1836 Insert_Actions
(N
, Decl_List
);
1840 -- Build the call to the generated procedure
1843 Actual_List
: constant List_Id
:= New_List
;
1847 Append_To
(Actual_List
,
1848 New_Occurrence_Of
(Defining_Identifier
(New_Obj
), Loc
));
1850 Formal
:= First_Formal
(Spec_Id
);
1851 while Present
(Formal
) loop
1852 Append_To
(Actual_List
, New_Occurrence_Of
(Formal
, Loc
));
1854 -- Avoid spurious warning on unreferenced formals
1856 Set_Referenced
(Formal
);
1857 Next_Formal
(Formal
);
1861 Make_Procedure_Call_Statement
(Loc
,
1862 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
1863 Parameter_Associations
=> Actual_List
);
1871 -- main_1__F1b (New_Obj, ...);
1876 Make_Block_Statement
(Loc
,
1877 Declarations
=> New_List
(New_Obj
),
1878 Handled_Statement_Sequence
=>
1879 Make_Handled_Sequence_Of_Statements
(Loc
,
1880 Statements
=> New_List
(
1884 Make_Simple_Return_Statement
(Loc
,
1887 (Defining_Identifier
(New_Obj
), Loc
)))));
1889 Rewrite
(Ret_Node
, Blk_Stmt
);
1890 end Split_Unconstrained_Function
;
1894 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
1896 -- Start of processing for Check_And_Split_Unconstrained_Function
1899 pragma Assert
(Back_End_Inlining
1900 and then Ekind
(Spec_Id
) = E_Function
1901 and then Returns_Unconstrained_Type
(Spec_Id
)
1902 and then Comes_From_Source
(Body_Id
)
1903 and then (Has_Pragma_Inline_Always
(Spec_Id
)
1904 or else Optimization_Level
> 0));
1906 -- This routine must not be used in GNATprove mode since GNATprove
1907 -- relies on frontend inlining
1909 pragma Assert
(not GNATprove_Mode
);
1911 -- No need to split the function if we cannot generate the code
1913 if Serious_Errors_Detected
/= 0 then
1917 -- No action needed in stubs since the attribute Body_To_Inline
1920 if Nkind
(Decl
) = N_Subprogram_Body_Stub
then
1923 -- Cannot build the body to inline if the attribute is already set.
1924 -- This attribute may have been set if this is a subprogram renaming
1925 -- declarations (see Freeze.Build_Renamed_Body).
1927 elsif Present
(Body_To_Inline
(Decl
)) then
1930 -- Check excluded declarations
1932 elsif Present
(Declarations
(N
))
1933 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
1937 -- Check excluded statements. There is no need to protect us against
1938 -- exception handlers since they are supported by the GCC backend.
1940 elsif Present
(Handled_Statement_Sequence
(N
))
1941 and then Has_Excluded_Statement
1942 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
1947 -- Build the body to inline only if really needed
1949 if Can_Split_Unconstrained_Function
(N
) then
1950 Split_Unconstrained_Function
(N
, Spec_Id
);
1951 Build_Body_To_Inline
(N
, Spec_Id
);
1952 Set_Is_Inlined
(Spec_Id
);
1954 end Check_And_Split_Unconstrained_Function
;
1956 -------------------------------------
1957 -- Check_Package_Body_For_Inlining --
1958 -------------------------------------
1960 procedure Check_Package_Body_For_Inlining
(N
: Node_Id
; P
: Entity_Id
) is
1961 Bname
: Unit_Name_Type
;
1966 -- Legacy implementation (relying on frontend inlining)
1968 if not Back_End_Inlining
1969 and then Is_Compilation_Unit
(P
)
1970 and then not Is_Generic_Instance
(P
)
1972 Bname
:= Get_Body_Name
(Get_Unit_Name
(Unit
(N
)));
1974 E
:= First_Entity
(P
);
1975 while Present
(E
) loop
1976 if Has_Pragma_Inline_Always
(E
)
1977 or else (Has_Pragma_Inline
(E
) and Front_End_Inlining
)
1979 if not Is_Loaded
(Bname
) then
1980 Load_Needed_Body
(N
, OK
);
1984 -- Check we are not trying to inline a parent whose body
1985 -- depends on a child, when we are compiling the body of
1986 -- the child. Otherwise we have a potential elaboration
1987 -- circularity with inlined subprograms and with
1988 -- Taft-Amendment types.
1991 Comp
: Node_Id
; -- Body just compiled
1992 Child_Spec
: Entity_Id
; -- Spec of main unit
1993 Ent
: Entity_Id
; -- For iteration
1994 With_Clause
: Node_Id
; -- Context of body.
1997 if Nkind
(Unit
(Cunit
(Main_Unit
))) = N_Package_Body
1998 and then Present
(Body_Entity
(P
))
2002 ((Unit
(Library_Unit
(Cunit
(Main_Unit
)))));
2005 Parent
(Unit_Declaration_Node
(Body_Entity
(P
)));
2007 -- Check whether the context of the body just
2008 -- compiled includes a child of itself, and that
2009 -- child is the spec of the main compilation.
2011 With_Clause
:= First
(Context_Items
(Comp
));
2012 while Present
(With_Clause
) loop
2013 if Nkind
(With_Clause
) = N_With_Clause
2015 Scope
(Entity
(Name
(With_Clause
))) = P
2017 Entity
(Name
(With_Clause
)) = Child_Spec
2019 Error_Msg_Node_2
:= Child_Spec
;
2021 ("body of & depends on child unit&??",
2024 ("\subprograms in body cannot be inlined??",
2027 -- Disable further inlining from this unit,
2028 -- and keep Taft-amendment types incomplete.
2030 Ent
:= First_Entity
(P
);
2031 while Present
(Ent
) loop
2033 and then Has_Completion_In_Body
(Ent
)
2035 Set_Full_View
(Ent
, Empty
);
2037 elsif Is_Subprogram
(Ent
) then
2038 Set_Is_Inlined
(Ent
, False);
2052 elsif Ineffective_Inline_Warnings
then
2053 Error_Msg_Unit_1
:= Bname
;
2055 ("unable to inline subprograms defined in $??", P
);
2056 Error_Msg_N
("\body not found??", P
);
2067 end Check_Package_Body_For_Inlining
;
2069 --------------------
2070 -- Cleanup_Scopes --
2071 --------------------
2073 procedure Cleanup_Scopes
is
2079 Elmt
:= First_Elmt
(To_Clean
);
2080 while Present
(Elmt
) loop
2081 Scop
:= Node
(Elmt
);
2083 if Ekind
(Scop
) = E_Entry
then
2084 Scop
:= Protected_Body_Subprogram
(Scop
);
2086 elsif Is_Subprogram
(Scop
)
2087 and then Is_Protected_Type
(Scope
(Scop
))
2088 and then Present
(Protected_Body_Subprogram
(Scop
))
2090 -- If a protected operation contains an instance, its cleanup
2091 -- operations have been delayed, and the subprogram has been
2092 -- rewritten in the expansion of the enclosing protected body. It
2093 -- is the corresponding subprogram that may require the cleanup
2094 -- operations, so propagate the information that triggers cleanup
2098 (Protected_Body_Subprogram
(Scop
),
2099 Uses_Sec_Stack
(Scop
));
2101 Scop
:= Protected_Body_Subprogram
(Scop
);
2104 if Ekind
(Scop
) = E_Block
then
2105 Decl
:= Parent
(Block_Node
(Scop
));
2108 Decl
:= Unit_Declaration_Node
(Scop
);
2110 if Nkind_In
(Decl
, N_Subprogram_Declaration
,
2111 N_Task_Type_Declaration
,
2112 N_Subprogram_Body_Stub
)
2114 Decl
:= Unit_Declaration_Node
(Corresponding_Body
(Decl
));
2119 Expand_Cleanup_Actions
(Decl
);
2122 Elmt
:= Next_Elmt
(Elmt
);
2126 -------------------------
2127 -- Expand_Inlined_Call --
2128 -------------------------
2130 procedure Expand_Inlined_Call
2133 Orig_Subp
: Entity_Id
)
2135 Loc
: constant Source_Ptr
:= Sloc
(N
);
2136 Is_Predef
: constant Boolean :=
2137 Is_Predefined_File_Name
2138 (Unit_File_Name
(Get_Source_Unit
(Subp
)));
2139 Orig_Bod
: constant Node_Id
:=
2140 Body_To_Inline
(Unit_Declaration_Node
(Subp
));
2144 Decls
: constant List_Id
:= New_List
;
2145 Exit_Lab
: Entity_Id
:= Empty
;
2152 Ret_Type
: Entity_Id
;
2155 -- The target of the call. If context is an assignment statement then
2156 -- this is the left-hand side of the assignment, else it is a temporary
2157 -- to which the return value is assigned prior to rewriting the call.
2160 -- A separate target used when the return type is unconstrained
2163 Temp_Typ
: Entity_Id
;
2165 Return_Object
: Entity_Id
:= Empty
;
2166 -- Entity in declaration in an extended_return_statement
2169 Is_Unc_Decl
: Boolean;
2170 -- If the type returned by the function is unconstrained and the call
2171 -- can be inlined, special processing is required.
2173 procedure Make_Exit_Label
;
2174 -- Build declaration for exit label to be used in Return statements,
2175 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2176 -- declaration). Does nothing if Exit_Lab already set.
2178 function Process_Formals
(N
: Node_Id
) return Traverse_Result
;
2179 -- Replace occurrence of a formal with the corresponding actual, or the
2180 -- thunk generated for it. Replace a return statement with an assignment
2181 -- to the target of the call, with appropriate conversions if needed.
2183 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
;
2184 -- If the call being expanded is that of an internal subprogram, set the
2185 -- sloc of the generated block to that of the call itself, so that the
2186 -- expansion is skipped by the "next" command in gdb. Same processing
2187 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2188 -- Debug_Generated_Code is true, suppress this change to simplify our
2189 -- own development. Same in GNATprove mode, to ensure that warnings and
2190 -- diagnostics point to the proper location.
2192 procedure Reset_Dispatching_Calls
(N
: Node_Id
);
2193 -- In subtree N search for occurrences of dispatching calls that use the
2194 -- Ada 2005 Object.Operation notation and the object is a formal of the
2195 -- inlined subprogram. Reset the entity associated with Operation in all
2196 -- the found occurrences.
2198 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
);
2199 -- If the function body is a single expression, replace call with
2200 -- expression, else insert block appropriately.
2202 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
);
2203 -- If procedure body has no local variables, inline body without
2204 -- creating block, otherwise rewrite call with block.
2206 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean;
2207 -- Determine whether a formal parameter is used only once in Orig_Bod
2209 ---------------------
2210 -- Make_Exit_Label --
2211 ---------------------
2213 procedure Make_Exit_Label
is
2214 Lab_Ent
: Entity_Id
;
2216 if No
(Exit_Lab
) then
2217 Lab_Ent
:= Make_Temporary
(Loc
, 'L');
2218 Lab_Id
:= New_Occurrence_Of
(Lab_Ent
, Loc
);
2219 Exit_Lab
:= Make_Label
(Loc
, Lab_Id
);
2221 Make_Implicit_Label_Declaration
(Loc
,
2222 Defining_Identifier
=> Lab_Ent
,
2223 Label_Construct
=> Exit_Lab
);
2225 end Make_Exit_Label
;
2227 ---------------------
2228 -- Process_Formals --
2229 ---------------------
2231 function Process_Formals
(N
: Node_Id
) return Traverse_Result
is
2237 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
2240 if Is_Formal
(E
) and then Scope
(E
) = Subp
then
2241 A
:= Renamed_Object
(E
);
2243 -- Rewrite the occurrence of the formal into an occurrence of
2244 -- the actual. Also establish visibility on the proper view of
2245 -- the actual's subtype for the body's context (if the actual's
2246 -- subtype is private at the call point but its full view is
2247 -- visible to the body, then the inlined tree here must be
2248 -- analyzed with the full view).
2250 if Is_Entity_Name
(A
) then
2251 Rewrite
(N
, New_Occurrence_Of
(Entity
(A
), Loc
));
2252 Check_Private_View
(N
);
2254 elsif Nkind
(A
) = N_Defining_Identifier
then
2255 Rewrite
(N
, New_Occurrence_Of
(A
, Loc
));
2256 Check_Private_View
(N
);
2261 Rewrite
(N
, New_Copy
(A
));
2267 elsif Is_Entity_Name
(N
)
2268 and then Present
(Return_Object
)
2269 and then Chars
(N
) = Chars
(Return_Object
)
2271 -- Occurrence within an extended return statement. The return
2272 -- object is local to the body been inlined, and thus the generic
2273 -- copy is not analyzed yet, so we match by name, and replace it
2274 -- with target of call.
2276 if Nkind
(Targ
) = N_Defining_Identifier
then
2277 Rewrite
(N
, New_Occurrence_Of
(Targ
, Loc
));
2279 Rewrite
(N
, New_Copy_Tree
(Targ
));
2284 elsif Nkind
(N
) = N_Simple_Return_Statement
then
2285 if No
(Expression
(N
)) then
2288 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2291 if Nkind
(Parent
(N
)) = N_Handled_Sequence_Of_Statements
2292 and then Nkind
(Parent
(Parent
(N
))) = N_Subprogram_Body
2294 -- Function body is a single expression. No need for
2300 Num_Ret
:= Num_Ret
+ 1;
2304 -- Because of the presence of private types, the views of the
2305 -- expression and the context may be different, so place an
2306 -- unchecked conversion to the context type to avoid spurious
2307 -- errors, e.g. when the expression is a numeric literal and
2308 -- the context is private. If the expression is an aggregate,
2309 -- use a qualified expression, because an aggregate is not a
2310 -- legal argument of a conversion. Ditto for numeric literals,
2311 -- which must be resolved to a specific type.
2313 if Nkind_In
(Expression
(N
), N_Aggregate
,
2319 Make_Qualified_Expression
(Sloc
(N
),
2320 Subtype_Mark
=> New_Occurrence_Of
(Ret_Type
, Sloc
(N
)),
2321 Expression
=> Relocate_Node
(Expression
(N
)));
2324 Unchecked_Convert_To
2325 (Ret_Type
, Relocate_Node
(Expression
(N
)));
2328 if Nkind
(Targ
) = N_Defining_Identifier
then
2330 Make_Assignment_Statement
(Loc
,
2331 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2332 Expression
=> Ret
));
2335 Make_Assignment_Statement
(Loc
,
2336 Name
=> New_Copy
(Targ
),
2337 Expression
=> Ret
));
2340 Set_Assignment_OK
(Name
(N
));
2342 if Present
(Exit_Lab
) then
2344 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2350 -- An extended return becomes a block whose first statement is the
2351 -- assignment of the initial expression of the return object to the
2352 -- target of the call itself.
2354 elsif Nkind
(N
) = N_Extended_Return_Statement
then
2356 Return_Decl
: constant Entity_Id
:=
2357 First
(Return_Object_Declarations
(N
));
2361 Return_Object
:= Defining_Identifier
(Return_Decl
);
2363 if Present
(Expression
(Return_Decl
)) then
2364 if Nkind
(Targ
) = N_Defining_Identifier
then
2366 Make_Assignment_Statement
(Loc
,
2367 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2368 Expression
=> Expression
(Return_Decl
));
2371 Make_Assignment_Statement
(Loc
,
2372 Name
=> New_Copy
(Targ
),
2373 Expression
=> Expression
(Return_Decl
));
2376 Set_Assignment_OK
(Name
(Assign
));
2378 if No
(Handled_Statement_Sequence
(N
)) then
2379 Set_Handled_Statement_Sequence
(N
,
2380 Make_Handled_Sequence_Of_Statements
(Loc
,
2381 Statements
=> New_List
));
2385 Statements
(Handled_Statement_Sequence
(N
)));
2389 Make_Block_Statement
(Loc
,
2390 Handled_Statement_Sequence
=>
2391 Handled_Statement_Sequence
(N
)));
2396 -- Remove pragma Unreferenced since it may refer to formals that
2397 -- are not visible in the inlined body, and in any case we will
2398 -- not be posting warnings on the inlined body so it is unneeded.
2400 elsif Nkind
(N
) = N_Pragma
2401 and then Pragma_Name
(N
) = Name_Unreferenced
2403 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
2409 end Process_Formals
;
2411 procedure Replace_Formals
is new Traverse_Proc
(Process_Formals
);
2417 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
is
2419 if not Debug_Generated_Code
then
2420 Set_Sloc
(Nod
, Sloc
(N
));
2421 Set_Comes_From_Source
(Nod
, False);
2427 procedure Reset_Slocs
is new Traverse_Proc
(Process_Sloc
);
2429 ------------------------------
2430 -- Reset_Dispatching_Calls --
2431 ------------------------------
2433 procedure Reset_Dispatching_Calls
(N
: Node_Id
) is
2435 function Do_Reset
(N
: Node_Id
) return Traverse_Result
;
2436 -- Comment required ???
2442 function Do_Reset
(N
: Node_Id
) return Traverse_Result
is
2444 if Nkind
(N
) = N_Procedure_Call_Statement
2445 and then Nkind
(Name
(N
)) = N_Selected_Component
2446 and then Nkind
(Prefix
(Name
(N
))) = N_Identifier
2447 and then Is_Formal
(Entity
(Prefix
(Name
(N
))))
2448 and then Is_Dispatching_Operation
2449 (Entity
(Selector_Name
(Name
(N
))))
2451 Set_Entity
(Selector_Name
(Name
(N
)), Empty
);
2457 function Do_Reset_Calls
is new Traverse_Func
(Do_Reset
);
2461 Dummy
: constant Traverse_Result
:= Do_Reset_Calls
(N
);
2462 pragma Unreferenced
(Dummy
);
2464 -- Start of processing for Reset_Dispatching_Calls
2468 end Reset_Dispatching_Calls
;
2470 ---------------------------
2471 -- Rewrite_Function_Call --
2472 ---------------------------
2474 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2475 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2476 Fst
: constant Node_Id
:= First
(Statements
(HSS
));
2479 -- Optimize simple case: function body is a single return statement,
2480 -- which has been expanded into an assignment.
2482 if Is_Empty_List
(Declarations
(Blk
))
2483 and then Nkind
(Fst
) = N_Assignment_Statement
2484 and then No
(Next
(Fst
))
2486 -- The function call may have been rewritten as the temporary
2487 -- that holds the result of the call, in which case remove the
2488 -- now useless declaration.
2490 if Nkind
(N
) = N_Identifier
2491 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2493 Rewrite
(Parent
(Entity
(N
)), Make_Null_Statement
(Loc
));
2496 Rewrite
(N
, Expression
(Fst
));
2498 elsif Nkind
(N
) = N_Identifier
2499 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2501 -- The block assigns the result of the call to the temporary
2503 Insert_After
(Parent
(Entity
(N
)), Blk
);
2505 -- If the context is an assignment, and the left-hand side is free of
2506 -- side-effects, the replacement is also safe.
2507 -- Can this be generalized further???
2509 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
2511 (Is_Entity_Name
(Name
(Parent
(N
)))
2513 (Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
2514 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
)))))
2517 (Nkind
(Name
(Parent
(N
))) = N_Selected_Component
2518 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))))
2520 -- Replace assignment with the block
2523 Original_Assignment
: constant Node_Id
:= Parent
(N
);
2526 -- Preserve the original assignment node to keep the complete
2527 -- assignment subtree consistent enough for Analyze_Assignment
2528 -- to proceed (specifically, the original Lhs node must still
2529 -- have an assignment statement as its parent).
2531 -- We cannot rely on Original_Node to go back from the block
2532 -- node to the assignment node, because the assignment might
2533 -- already be a rewrite substitution.
2535 Discard_Node
(Relocate_Node
(Original_Assignment
));
2536 Rewrite
(Original_Assignment
, Blk
);
2539 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
2541 -- A call to a function which returns an unconstrained type
2542 -- found in the expression initializing an object-declaration is
2543 -- expanded into a procedure call which must be added after the
2544 -- object declaration.
2546 if Is_Unc_Decl
and Back_End_Inlining
then
2547 Insert_Action_After
(Parent
(N
), Blk
);
2549 Set_Expression
(Parent
(N
), Empty
);
2550 Insert_After
(Parent
(N
), Blk
);
2553 elsif Is_Unc
and then not Back_End_Inlining
then
2554 Insert_Before
(Parent
(N
), Blk
);
2556 end Rewrite_Function_Call
;
2558 ----------------------------
2559 -- Rewrite_Procedure_Call --
2560 ----------------------------
2562 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2563 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2566 -- If there is a transient scope for N, this will be the scope of the
2567 -- actions for N, and the statements in Blk need to be within this
2568 -- scope. For example, they need to have visibility on the constant
2569 -- declarations created for the formals.
2571 -- If N needs no transient scope, and if there are no declarations in
2572 -- the inlined body, we can do a little optimization and insert the
2573 -- statements for the body directly after N, and rewrite N to a
2574 -- null statement, instead of rewriting N into a full-blown block
2577 if not Scope_Is_Transient
2578 and then Is_Empty_List
(Declarations
(Blk
))
2580 Insert_List_After
(N
, Statements
(HSS
));
2581 Rewrite
(N
, Make_Null_Statement
(Loc
));
2585 end Rewrite_Procedure_Call
;
2587 -------------------------
2588 -- Formal_Is_Used_Once --
2589 -------------------------
2591 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean is
2592 Use_Counter
: Int
:= 0;
2594 function Count_Uses
(N
: Node_Id
) return Traverse_Result
;
2595 -- Traverse the tree and count the uses of the formal parameter.
2596 -- In this case, for optimization purposes, we do not need to
2597 -- continue the traversal once more than one use is encountered.
2603 function Count_Uses
(N
: Node_Id
) return Traverse_Result
is
2605 -- The original node is an identifier
2607 if Nkind
(N
) = N_Identifier
2608 and then Present
(Entity
(N
))
2610 -- Original node's entity points to the one in the copied body
2612 and then Nkind
(Entity
(N
)) = N_Identifier
2613 and then Present
(Entity
(Entity
(N
)))
2615 -- The entity of the copied node is the formal parameter
2617 and then Entity
(Entity
(N
)) = Formal
2619 Use_Counter
:= Use_Counter
+ 1;
2621 if Use_Counter
> 1 then
2623 -- Denote more than one use and abandon the traversal
2634 procedure Count_Formal_Uses
is new Traverse_Proc
(Count_Uses
);
2636 -- Start of processing for Formal_Is_Used_Once
2639 Count_Formal_Uses
(Orig_Bod
);
2640 return Use_Counter
= 1;
2641 end Formal_Is_Used_Once
;
2643 -- Start of processing for Expand_Inlined_Call
2646 -- Initializations for old/new semantics
2648 if not Back_End_Inlining
then
2649 Is_Unc
:= Is_Array_Type
(Etype
(Subp
))
2650 and then not Is_Constrained
(Etype
(Subp
));
2651 Is_Unc_Decl
:= False;
2653 Is_Unc
:= Returns_Unconstrained_Type
(Subp
)
2654 and then Optimization_Level
> 0;
2655 Is_Unc_Decl
:= Nkind
(Parent
(N
)) = N_Object_Declaration
2659 -- Check for an illegal attempt to inline a recursive procedure. If the
2660 -- subprogram has parameters this is detected when trying to supply a
2661 -- binding for parameters that already have one. For parameterless
2662 -- subprograms this must be done explicitly.
2664 if In_Open_Scopes
(Subp
) then
2665 Error_Msg_N
("call to recursive subprogram cannot be inlined??", N
);
2666 Set_Is_Inlined
(Subp
, False);
2668 -- In GNATprove mode, issue a warning, and indicate that the
2669 -- subprogram is not always inlined by setting flag Is_Inlined_Always
2672 if GNATprove_Mode
then
2673 Set_Is_Inlined_Always
(Subp
, False);
2678 -- Skip inlining if this is not a true inlining since the attribute
2679 -- Body_To_Inline is also set for renamings (see sinfo.ads)
2681 elsif Nkind
(Orig_Bod
) in N_Entity
then
2682 if not Has_Pragma_Inline
(Subp
) then
2686 -- Skip inlining if the function returns an unconstrained type using
2687 -- an extended return statement since this part of the new inlining
2688 -- model which is not yet supported by the current implementation. ???
2692 Nkind
(First
(Statements
(Handled_Statement_Sequence
(Orig_Bod
))))
2693 = N_Extended_Return_Statement
2694 and then not Back_End_Inlining
2699 if Nkind
(Orig_Bod
) = N_Defining_Identifier
2700 or else Nkind
(Orig_Bod
) = N_Defining_Operator_Symbol
2702 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2703 -- can be replaced with calls to the renamed entity directly, because
2704 -- the subprograms are subtype conformant. If the renamed subprogram
2705 -- is an inherited operation, we must redo the expansion because
2706 -- implicit conversions may be needed. Similarly, if the renamed
2707 -- entity is inlined, expand the call for further optimizations.
2709 Set_Name
(N
, New_Occurrence_Of
(Orig_Bod
, Loc
));
2711 if Present
(Alias
(Orig_Bod
)) or else Is_Inlined
(Orig_Bod
) then
2718 -- Register the call in the list of inlined calls
2720 Append_New_Elmt
(N
, To
=> Inlined_Calls
);
2722 -- Use generic machinery to copy body of inlined subprogram, as if it
2723 -- were an instantiation, resetting source locations appropriately, so
2724 -- that nested inlined calls appear in the main unit.
2726 Save_Env
(Subp
, Empty
);
2727 Set_Copied_Sloc_For_Inlined_Body
(N
, Defining_Entity
(Orig_Bod
));
2731 if not Back_End_Inlining
then
2736 Bod
:= Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
2738 Make_Block_Statement
(Loc
,
2739 Declarations
=> Declarations
(Bod
),
2740 Handled_Statement_Sequence
=>
2741 Handled_Statement_Sequence
(Bod
));
2743 if No
(Declarations
(Bod
)) then
2744 Set_Declarations
(Blk
, New_List
);
2747 -- For the unconstrained case, capture the name of the local
2748 -- variable that holds the result. This must be the first
2749 -- declaration in the block, because its bounds cannot depend
2750 -- on local variables. Otherwise there is no way to declare the
2751 -- result outside of the block. Needless to say, in general the
2752 -- bounds will depend on the actuals in the call.
2754 -- If the context is an assignment statement, as is the case
2755 -- for the expansion of an extended return, the left-hand side
2756 -- provides bounds even if the return type is unconstrained.
2760 First_Decl
: Node_Id
;
2763 First_Decl
:= First
(Declarations
(Blk
));
2765 if Nkind
(First_Decl
) /= N_Object_Declaration
then
2769 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
2770 Targ1
:= Defining_Identifier
(First_Decl
);
2772 Targ1
:= Name
(Parent
(N
));
2789 Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
2791 Make_Block_Statement
(Loc
,
2792 Declarations
=> Declarations
(Bod
),
2793 Handled_Statement_Sequence
=>
2794 Handled_Statement_Sequence
(Bod
));
2796 -- Inline a call to a function that returns an unconstrained type.
2797 -- The semantic analyzer checked that frontend-inlined functions
2798 -- returning unconstrained types have no declarations and have
2799 -- a single extended return statement. As part of its processing
2800 -- the function was split in two subprograms: a procedure P and
2801 -- a function F that has a block with a call to procedure P (see
2802 -- Split_Unconstrained_Function).
2808 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)))) =
2812 Blk_Stmt
: constant Node_Id
:=
2813 First
(Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
2814 First_Stmt
: constant Node_Id
:=
2815 First
(Statements
(Handled_Statement_Sequence
(Blk_Stmt
)));
2816 Second_Stmt
: constant Node_Id
:= Next
(First_Stmt
);
2820 (Nkind
(First_Stmt
) = N_Procedure_Call_Statement
2821 and then Nkind
(Second_Stmt
) = N_Simple_Return_Statement
2822 and then No
(Next
(Second_Stmt
)));
2827 (Statements
(Handled_Statement_Sequence
(Orig_Bod
))),
2828 Empty
, Instantiating
=> True);
2831 -- Capture the name of the local variable that holds the
2832 -- result. This must be the first declaration in the block,
2833 -- because its bounds cannot depend on local variables.
2834 -- Otherwise there is no way to declare the result outside
2835 -- of the block. Needless to say, in general the bounds will
2836 -- depend on the actuals in the call.
2838 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
2839 Targ1
:= Defining_Identifier
(First
(Declarations
(Blk
)));
2841 -- If the context is an assignment statement, as is the case
2842 -- for the expansion of an extended return, the left-hand
2843 -- side provides bounds even if the return type is
2847 Targ1
:= Name
(Parent
(N
));
2852 if No
(Declarations
(Bod
)) then
2853 Set_Declarations
(Blk
, New_List
);
2858 -- If this is a derived function, establish the proper return type
2860 if Present
(Orig_Subp
) and then Orig_Subp
/= Subp
then
2861 Ret_Type
:= Etype
(Orig_Subp
);
2863 Ret_Type
:= Etype
(Subp
);
2866 -- Create temporaries for the actuals that are expressions, or that are
2867 -- scalars and require copying to preserve semantics.
2869 F
:= First_Formal
(Subp
);
2870 A
:= First_Actual
(N
);
2871 while Present
(F
) loop
2872 if Present
(Renamed_Object
(F
)) then
2874 -- If expander is active, it is an error to try to inline a
2875 -- recursive program. In GNATprove mode, just indicate that the
2876 -- inlining will not happen, and mark the subprogram as not always
2879 if GNATprove_Mode
then
2881 ("cannot inline call to recursive subprogram?", N
, Subp
);
2882 Set_Is_Inlined_Always
(Subp
, False);
2885 ("cannot inline call to recursive subprogram", N
);
2891 -- Reset Last_Assignment for any parameters of mode out or in out, to
2892 -- prevent spurious warnings about overwriting for assignments to the
2893 -- formal in the inlined code.
2895 if Is_Entity_Name
(A
) and then Ekind
(F
) /= E_In_Parameter
then
2896 Set_Last_Assignment
(Entity
(A
), Empty
);
2899 -- If the argument may be a controlling argument in a call within
2900 -- the inlined body, we must preserve its classwide nature to insure
2901 -- that dynamic dispatching take place subsequently. If the formal
2902 -- has a constraint it must be preserved to retain the semantics of
2905 if Is_Class_Wide_Type
(Etype
(F
))
2906 or else (Is_Access_Type
(Etype
(F
))
2907 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(F
))))
2909 Temp_Typ
:= Etype
(F
);
2911 elsif Base_Type
(Etype
(F
)) = Base_Type
(Etype
(A
))
2912 and then Etype
(F
) /= Base_Type
(Etype
(F
))
2914 Temp_Typ
:= Etype
(F
);
2916 Temp_Typ
:= Etype
(A
);
2919 -- If the actual is a simple name or a literal, no need to
2920 -- create a temporary, object can be used directly.
2922 -- If the actual is a literal and the formal has its address taken,
2923 -- we cannot pass the literal itself as an argument, so its value
2924 -- must be captured in a temporary.
2926 if (Is_Entity_Name
(A
)
2928 (not Is_Scalar_Type
(Etype
(A
))
2929 or else Ekind
(Entity
(A
)) = E_Enumeration_Literal
))
2931 -- When the actual is an identifier and the corresponding formal is
2932 -- used only once in the original body, the formal can be substituted
2933 -- directly with the actual parameter.
2935 or else (Nkind
(A
) = N_Identifier
2936 and then Formal_Is_Used_Once
(F
))
2939 (Nkind_In
(A
, N_Real_Literal
,
2941 N_Character_Literal
)
2942 and then not Address_Taken
(F
))
2944 if Etype
(F
) /= Etype
(A
) then
2946 (F
, Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
)));
2948 Set_Renamed_Object
(F
, A
);
2952 Temp
:= Make_Temporary
(Loc
, 'C');
2954 -- If the actual for an in/in-out parameter is a view conversion,
2955 -- make it into an unchecked conversion, given that an untagged
2956 -- type conversion is not a proper object for a renaming.
2958 -- In-out conversions that involve real conversions have already
2959 -- been transformed in Expand_Actuals.
2961 if Nkind
(A
) = N_Type_Conversion
2962 and then Ekind
(F
) /= E_In_Parameter
2965 Make_Unchecked_Type_Conversion
(Loc
,
2966 Subtype_Mark
=> New_Occurrence_Of
(Etype
(F
), Loc
),
2967 Expression
=> Relocate_Node
(Expression
(A
)));
2969 elsif Etype
(F
) /= Etype
(A
) then
2970 New_A
:= Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
));
2971 Temp_Typ
:= Etype
(F
);
2974 New_A
:= Relocate_Node
(A
);
2977 Set_Sloc
(New_A
, Sloc
(N
));
2979 -- If the actual has a by-reference type, it cannot be copied,
2980 -- so its value is captured in a renaming declaration. Otherwise
2981 -- declare a local constant initialized with the actual.
2983 -- We also use a renaming declaration for expressions of an array
2984 -- type that is not bit-packed, both for efficiency reasons and to
2985 -- respect the semantics of the call: in most cases the original
2986 -- call will pass the parameter by reference, and thus the inlined
2987 -- code will have the same semantics.
2989 -- Finally, we need a renaming declaration in the case of limited
2990 -- types for which initialization cannot be by copy either.
2992 if Ekind
(F
) = E_In_Parameter
2993 and then not Is_By_Reference_Type
(Etype
(A
))
2994 and then not Is_Limited_Type
(Etype
(A
))
2996 (not Is_Array_Type
(Etype
(A
))
2997 or else not Is_Object_Reference
(A
)
2998 or else Is_Bit_Packed_Array
(Etype
(A
)))
3001 Make_Object_Declaration
(Loc
,
3002 Defining_Identifier
=> Temp
,
3003 Constant_Present
=> True,
3004 Object_Definition
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3005 Expression
=> New_A
);
3008 Make_Object_Renaming_Declaration
(Loc
,
3009 Defining_Identifier
=> Temp
,
3010 Subtype_Mark
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3014 Append
(Decl
, Decls
);
3015 Set_Renamed_Object
(F
, Temp
);
3022 -- Establish target of function call. If context is not assignment or
3023 -- declaration, create a temporary as a target. The declaration for the
3024 -- temporary may be subsequently optimized away if the body is a single
3025 -- expression, or if the left-hand side of the assignment is simple
3026 -- enough, i.e. an entity or an explicit dereference of one.
3028 if Ekind
(Subp
) = E_Function
then
3029 if Nkind
(Parent
(N
)) = N_Assignment_Statement
3030 and then Is_Entity_Name
(Name
(Parent
(N
)))
3032 Targ
:= Name
(Parent
(N
));
3034 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3035 and then Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
3036 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3038 Targ
:= Name
(Parent
(N
));
3040 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3041 and then Nkind
(Name
(Parent
(N
))) = N_Selected_Component
3042 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3044 Targ
:= New_Copy_Tree
(Name
(Parent
(N
)));
3046 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
3047 and then Is_Limited_Type
(Etype
(Subp
))
3049 Targ
:= Defining_Identifier
(Parent
(N
));
3051 -- New semantics: In an object declaration avoid an extra copy
3052 -- of the result of a call to an inlined function that returns
3053 -- an unconstrained type
3055 elsif Back_End_Inlining
3056 and then Nkind
(Parent
(N
)) = N_Object_Declaration
3059 Targ
:= Defining_Identifier
(Parent
(N
));
3062 -- Replace call with temporary and create its declaration
3064 Temp
:= Make_Temporary
(Loc
, 'C');
3065 Set_Is_Internal
(Temp
);
3067 -- For the unconstrained case, the generated temporary has the
3068 -- same constrained declaration as the result variable. It may
3069 -- eventually be possible to remove that temporary and use the
3070 -- result variable directly.
3072 if Is_Unc
and then Nkind
(Parent
(N
)) /= N_Assignment_Statement
3075 Make_Object_Declaration
(Loc
,
3076 Defining_Identifier
=> Temp
,
3077 Object_Definition
=>
3078 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3080 Replace_Formals
(Decl
);
3084 Make_Object_Declaration
(Loc
,
3085 Defining_Identifier
=> Temp
,
3086 Object_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
3088 Set_Etype
(Temp
, Ret_Type
);
3091 Set_No_Initialization
(Decl
);
3092 Append
(Decl
, Decls
);
3093 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
3098 Insert_Actions
(N
, Decls
);
3102 -- Special management for inlining a call to a function that returns
3103 -- an unconstrained type and initializes an object declaration: we
3104 -- avoid generating undesired extra calls and goto statements.
3107 -- function Func (...) return ...
3110 -- Result : String (1 .. 4);
3112 -- Proc (Result, ...);
3117 -- Result : String := Func (...);
3119 -- Replace this object declaration by:
3121 -- Result : String (1 .. 4);
3122 -- Proc (Result, ...);
3124 Remove_Homonym
(Targ
);
3127 Make_Object_Declaration
3129 Defining_Identifier
=> Targ
,
3130 Object_Definition
=>
3131 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3132 Replace_Formals
(Decl
);
3133 Rewrite
(Parent
(N
), Decl
);
3134 Analyze
(Parent
(N
));
3136 -- Avoid spurious warnings since we know that this declaration is
3137 -- referenced by the procedure call.
3139 Set_Never_Set_In_Source
(Targ
, False);
3141 -- Remove the local declaration of the extended return stmt from the
3144 Remove
(Parent
(Targ1
));
3146 -- Update the reference to the result (since we have rewriten the
3147 -- object declaration)
3150 Blk_Call_Stmt
: Node_Id
;
3153 -- Capture the call to the procedure
3156 First
(Statements
(Handled_Statement_Sequence
(Blk
)));
3158 (Nkind
(Blk_Call_Stmt
) = N_Procedure_Call_Statement
);
3160 Remove
(First
(Parameter_Associations
(Blk_Call_Stmt
)));
3161 Prepend_To
(Parameter_Associations
(Blk_Call_Stmt
),
3162 New_Occurrence_Of
(Targ
, Loc
));
3165 -- Remove the return statement
3168 (Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3169 N_Simple_Return_Statement
);
3171 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3174 -- Traverse the tree and replace formals with actuals or their thunks.
3175 -- Attach block to tree before analysis and rewriting.
3177 Replace_Formals
(Blk
);
3178 Set_Parent
(Blk
, N
);
3180 if GNATprove_Mode
then
3183 elsif not Comes_From_Source
(Subp
) or else Is_Predef
then
3189 -- No action needed since return statement has been already removed
3193 elsif Present
(Exit_Lab
) then
3195 -- If the body was a single expression, the single return statement
3196 -- and the corresponding label are useless.
3200 Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3203 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3205 Append
(Lab_Decl
, (Declarations
(Blk
)));
3206 Append
(Exit_Lab
, Statements
(Handled_Statement_Sequence
(Blk
)));
3210 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3211 -- on conflicting private views that Gigi would ignore. If this is a
3212 -- predefined unit, analyze with checks off, as is done in the non-
3213 -- inlined run-time units.
3216 I_Flag
: constant Boolean := In_Inlined_Body
;
3219 In_Inlined_Body
:= True;
3223 Style
: constant Boolean := Style_Check
;
3226 Style_Check
:= False;
3228 -- Search for dispatching calls that use the Object.Operation
3229 -- notation using an Object that is a parameter of the inlined
3230 -- function. We reset the decoration of Operation to force
3231 -- the reanalysis of the inlined dispatching call because
3232 -- the actual object has been inlined.
3234 Reset_Dispatching_Calls
(Blk
);
3236 Analyze
(Blk
, Suppress
=> All_Checks
);
3237 Style_Check
:= Style
;
3244 In_Inlined_Body
:= I_Flag
;
3247 if Ekind
(Subp
) = E_Procedure
then
3248 Rewrite_Procedure_Call
(N
, Blk
);
3251 Rewrite_Function_Call
(N
, Blk
);
3256 -- For the unconstrained case, the replacement of the call has been
3257 -- made prior to the complete analysis of the generated declarations.
3258 -- Propagate the proper type now.
3261 if Nkind
(N
) = N_Identifier
then
3262 Set_Etype
(N
, Etype
(Entity
(N
)));
3264 Set_Etype
(N
, Etype
(Targ1
));
3271 -- Cleanup mapping between formals and actuals for other expansions
3273 F
:= First_Formal
(Subp
);
3274 while Present
(F
) loop
3275 Set_Renamed_Object
(F
, Empty
);
3278 end Expand_Inlined_Call
;
3280 --------------------------
3281 -- Get_Code_Unit_Entity --
3282 --------------------------
3284 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
is
3285 Unit
: Entity_Id
:= Cunit_Entity
(Get_Code_Unit
(E
));
3288 if Ekind
(Unit
) = E_Package_Body
then
3289 Unit
:= Spec_Entity
(Unit
);
3293 end Get_Code_Unit_Entity
;
3295 ------------------------------
3296 -- Has_Excluded_Declaration --
3297 ------------------------------
3299 function Has_Excluded_Declaration
3301 Decls
: List_Id
) return Boolean
3305 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean;
3306 -- Nested subprograms make a given body ineligible for inlining, but
3307 -- we make an exception for instantiations of unchecked conversion.
3308 -- The body has not been analyzed yet, so check the name, and verify
3309 -- that the visible entity with that name is the predefined unit.
3311 -----------------------------
3312 -- Is_Unchecked_Conversion --
3313 -----------------------------
3315 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean is
3316 Id
: constant Node_Id
:= Name
(D
);
3320 if Nkind
(Id
) = N_Identifier
3321 and then Chars
(Id
) = Name_Unchecked_Conversion
3323 Conv
:= Current_Entity
(Id
);
3325 elsif Nkind_In
(Id
, N_Selected_Component
, N_Expanded_Name
)
3326 and then Chars
(Selector_Name
(Id
)) = Name_Unchecked_Conversion
3328 Conv
:= Current_Entity
(Selector_Name
(Id
));
3333 return Present
(Conv
)
3334 and then Is_Predefined_File_Name
3335 (Unit_File_Name
(Get_Source_Unit
(Conv
)))
3336 and then Is_Intrinsic_Subprogram
(Conv
);
3337 end Is_Unchecked_Conversion
;
3339 -- Start of processing for Has_Excluded_Declaration
3342 -- No action needed if the check is not needed
3344 if not Check_Inlining_Restrictions
then
3349 while Present
(D
) loop
3351 -- First declarations universally excluded
3353 if Nkind
(D
) = N_Package_Declaration
then
3355 ("cannot inline & (nested package declaration)?",
3359 elsif Nkind
(D
) = N_Package_Instantiation
then
3361 ("cannot inline & (nested package instantiation)?",
3366 -- Then declarations excluded only for front end inlining
3368 if Back_End_Inlining
then
3371 elsif Nkind
(D
) = N_Task_Type_Declaration
3372 or else Nkind
(D
) = N_Single_Task_Declaration
3375 ("cannot inline & (nested task type declaration)?",
3379 elsif Nkind
(D
) = N_Protected_Type_Declaration
3380 or else Nkind
(D
) = N_Single_Protected_Declaration
3383 ("cannot inline & (nested protected type declaration)?",
3387 elsif Nkind
(D
) = N_Subprogram_Body
then
3389 ("cannot inline & (nested subprogram)?",
3393 elsif Nkind
(D
) = N_Function_Instantiation
3394 and then not Is_Unchecked_Conversion
(D
)
3397 ("cannot inline & (nested function instantiation)?",
3401 elsif Nkind
(D
) = N_Procedure_Instantiation
then
3403 ("cannot inline & (nested procedure instantiation)?",
3412 end Has_Excluded_Declaration
;
3414 ----------------------------
3415 -- Has_Excluded_Statement --
3416 ----------------------------
3418 function Has_Excluded_Statement
3420 Stats
: List_Id
) return Boolean
3426 -- No action needed if the check is not needed
3428 if not Check_Inlining_Restrictions
then
3433 while Present
(S
) loop
3434 if Nkind_In
(S
, N_Abort_Statement
,
3435 N_Asynchronous_Select
,
3436 N_Conditional_Entry_Call
,
3437 N_Delay_Relative_Statement
,
3438 N_Delay_Until_Statement
,
3443 ("cannot inline & (non-allowed statement)?", S
, Subp
);
3446 elsif Nkind
(S
) = N_Block_Statement
then
3447 if Present
(Declarations
(S
))
3448 and then Has_Excluded_Declaration
(Subp
, Declarations
(S
))
3452 elsif Present
(Handled_Statement_Sequence
(S
)) then
3453 if not Back_End_Inlining
3456 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
3459 ("cannot inline& (exception handler)?",
3460 First
(Exception_Handlers
3461 (Handled_Statement_Sequence
(S
))),
3465 elsif Has_Excluded_Statement
3466 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3472 elsif Nkind
(S
) = N_Case_Statement
then
3473 E
:= First
(Alternatives
(S
));
3474 while Present
(E
) loop
3475 if Has_Excluded_Statement
(Subp
, Statements
(E
)) then
3482 elsif Nkind
(S
) = N_If_Statement
then
3483 if Has_Excluded_Statement
(Subp
, Then_Statements
(S
)) then
3487 if Present
(Elsif_Parts
(S
)) then
3488 E
:= First
(Elsif_Parts
(S
));
3489 while Present
(E
) loop
3490 if Has_Excluded_Statement
(Subp
, Then_Statements
(E
)) then
3498 if Present
(Else_Statements
(S
))
3499 and then Has_Excluded_Statement
(Subp
, Else_Statements
(S
))
3504 elsif Nkind
(S
) = N_Loop_Statement
3505 and then Has_Excluded_Statement
(Subp
, Statements
(S
))
3509 elsif Nkind
(S
) = N_Extended_Return_Statement
then
3510 if Present
(Handled_Statement_Sequence
(S
))
3512 Has_Excluded_Statement
3513 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3517 elsif not Back_End_Inlining
3518 and then Present
(Handled_Statement_Sequence
(S
))
3520 Present
(Exception_Handlers
3521 (Handled_Statement_Sequence
(S
)))
3524 ("cannot inline& (exception handler)?",
3525 First
(Exception_Handlers
(Handled_Statement_Sequence
(S
))),
3535 end Has_Excluded_Statement
;
3537 --------------------------
3538 -- Has_Initialized_Type --
3539 --------------------------
3541 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean is
3542 E_Body
: constant Node_Id
:= Get_Subprogram_Body
(E
);
3546 if No
(E_Body
) then -- imported subprogram
3550 Decl
:= First
(Declarations
(E_Body
));
3551 while Present
(Decl
) loop
3552 if Nkind
(Decl
) = N_Full_Type_Declaration
3553 and then Present
(Init_Proc
(Defining_Identifier
(Decl
)))
3563 end Has_Initialized_Type
;
3565 -----------------------
3566 -- Has_Single_Return --
3567 -----------------------
3569 function Has_Single_Return
(N
: Node_Id
) return Boolean is
3570 Return_Statement
: Node_Id
:= Empty
;
3572 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
3578 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
3580 if Nkind
(N
) = N_Simple_Return_Statement
then
3581 if Present
(Expression
(N
))
3582 and then Is_Entity_Name
(Expression
(N
))
3584 if No
(Return_Statement
) then
3585 Return_Statement
:= N
;
3588 elsif Chars
(Expression
(N
)) =
3589 Chars
(Expression
(Return_Statement
))
3597 -- A return statement within an extended return is a noop
3600 elsif No
(Expression
(N
))
3602 Nkind
(Parent
(Parent
(N
))) = N_Extended_Return_Statement
3607 -- Expression has wrong form
3612 -- We can only inline a build-in-place function if it has a single
3615 elsif Nkind
(N
) = N_Extended_Return_Statement
then
3616 if No
(Return_Statement
) then
3617 Return_Statement
:= N
;
3629 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
3631 -- Start of processing for Has_Single_Return
3634 if Check_All_Returns
(N
) /= OK
then
3637 elsif Nkind
(Return_Statement
) = N_Extended_Return_Statement
then
3641 return Present
(Declarations
(N
))
3642 and then Present
(First
(Declarations
(N
)))
3643 and then Chars
(Expression
(Return_Statement
)) =
3644 Chars
(Defining_Identifier
(First
(Declarations
(N
))));
3646 end Has_Single_Return
;
3648 -----------------------------
3649 -- In_Main_Unit_Or_Subunit --
3650 -----------------------------
3652 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean is
3653 Comp
: Node_Id
:= Cunit
(Get_Code_Unit
(E
));
3656 -- Check whether the subprogram or package to inline is within the main
3657 -- unit or its spec or within a subunit. In either case there are no
3658 -- additional bodies to process. If the subprogram appears in a parent
3659 -- of the current unit, the check on whether inlining is possible is
3660 -- done in Analyze_Inlined_Bodies.
3662 while Nkind
(Unit
(Comp
)) = N_Subunit
loop
3663 Comp
:= Library_Unit
(Comp
);
3666 return Comp
= Cunit
(Main_Unit
)
3667 or else Comp
= Library_Unit
(Cunit
(Main_Unit
));
3668 end In_Main_Unit_Or_Subunit
;
3674 procedure Initialize
is
3676 Pending_Descriptor
.Init
;
3677 Pending_Instantiations
.Init
;
3678 Inlined_Bodies
.Init
;
3682 for J
in Hash_Headers
'Range loop
3683 Hash_Headers
(J
) := No_Subp
;
3686 Inlined_Calls
:= No_Elist
;
3687 Backend_Calls
:= No_Elist
;
3688 Backend_Inlined_Subps
:= No_Elist
;
3689 Backend_Not_Inlined_Subps
:= No_Elist
;
3692 ------------------------
3693 -- Instantiate_Bodies --
3694 ------------------------
3696 -- Generic bodies contain all the non-local references, so an
3697 -- instantiation does not need any more context than Standard
3698 -- itself, even if the instantiation appears in an inner scope.
3699 -- Generic associations have verified that the contract model is
3700 -- satisfied, so that any error that may occur in the analysis of
3701 -- the body is an internal error.
3703 procedure Instantiate_Bodies
is
3705 Info
: Pending_Body_Info
;
3708 if Serious_Errors_Detected
= 0 then
3709 Expander_Active
:= (Operating_Mode
= Opt
.Generate_Code
);
3710 Push_Scope
(Standard_Standard
);
3711 To_Clean
:= New_Elmt_List
;
3713 if Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
3717 -- A body instantiation may generate additional instantiations, so
3718 -- the following loop must scan to the end of a possibly expanding
3719 -- set (that's why we can't simply use a FOR loop here).
3722 while J
<= Pending_Instantiations
.Last
3723 and then Serious_Errors_Detected
= 0
3725 Info
:= Pending_Instantiations
.Table
(J
);
3727 -- If the instantiation node is absent, it has been removed
3728 -- as part of unreachable code.
3730 if No
(Info
.Inst_Node
) then
3733 elsif Nkind
(Info
.Act_Decl
) = N_Package_Declaration
then
3734 Instantiate_Package_Body
(Info
);
3735 Add_Scope_To_Clean
(Defining_Entity
(Info
.Act_Decl
));
3738 Instantiate_Subprogram_Body
(Info
);
3744 -- Reset the table of instantiations. Additional instantiations
3745 -- may be added through inlining, when additional bodies are
3748 Pending_Instantiations
.Init
;
3750 -- We can now complete the cleanup actions of scopes that contain
3751 -- pending instantiations (skipped for generic units, since we
3752 -- never need any cleanups in generic units).
3753 -- pending instantiations.
3756 and then not Is_Generic_Unit
(Main_Unit_Entity
)
3759 elsif Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
3765 end Instantiate_Bodies
;
3771 function Is_Nested
(E
: Entity_Id
) return Boolean is
3776 while Scop
/= Standard_Standard
loop
3777 if Ekind
(Scop
) in Subprogram_Kind
then
3780 elsif Ekind
(Scop
) = E_Task_Type
3781 or else Ekind
(Scop
) = E_Entry
3782 or else Ekind
(Scop
) = E_Entry_Family
3787 Scop
:= Scope
(Scop
);
3793 ------------------------
3794 -- List_Inlining_Info --
3795 ------------------------
3797 procedure List_Inlining_Info
is
3803 if not Debug_Flag_Dot_J
then
3807 -- Generate listing of calls inlined by the frontend
3809 if Present
(Inlined_Calls
) then
3811 Elmt
:= First_Elmt
(Inlined_Calls
);
3812 while Present
(Elmt
) loop
3815 if In_Extended_Main_Code_Unit
(Nod
) then
3819 Write_Str
("List of calls inlined by the frontend");
3826 Write_Location
(Sloc
(Nod
));
3835 -- Generate listing of calls passed to the backend
3837 if Present
(Backend_Calls
) then
3840 Elmt
:= First_Elmt
(Backend_Calls
);
3841 while Present
(Elmt
) loop
3844 if In_Extended_Main_Code_Unit
(Nod
) then
3848 Write_Str
("List of inlined calls passed to the backend");
3855 Write_Location
(Sloc
(Nod
));
3863 -- Generate listing of subprograms passed to the backend
3865 if Present
(Backend_Inlined_Subps
) and then Back_End_Inlining
then
3868 Elmt
:= First_Elmt
(Backend_Inlined_Subps
);
3869 while Present
(Elmt
) loop
3876 ("List of inlined subprograms passed to the backend");
3883 Write_Name
(Chars
(Nod
));
3885 Write_Location
(Sloc
(Nod
));
3893 -- Generate listing of subprograms that cannot be inlined by the backend
3895 if Present
(Backend_Not_Inlined_Subps
) and then Back_End_Inlining
then
3898 Elmt
:= First_Elmt
(Backend_Not_Inlined_Subps
);
3899 while Present
(Elmt
) loop
3906 ("List of subprograms that cannot be inlined by the backend");
3913 Write_Name
(Chars
(Nod
));
3915 Write_Location
(Sloc
(Nod
));
3922 end List_Inlining_Info
;
3930 Pending_Instantiations
.Locked
:= True;
3931 Inlined_Bodies
.Locked
:= True;
3932 Successors
.Locked
:= True;
3933 Inlined
.Locked
:= True;
3934 Pending_Instantiations
.Release
;
3935 Inlined_Bodies
.Release
;
3940 ---------------------------
3941 -- Register_Backend_Call --
3942 ---------------------------
3944 procedure Register_Backend_Call
(N
: Node_Id
) is
3946 Append_New_Elmt
(N
, To
=> Backend_Calls
);
3947 end Register_Backend_Call
;
3949 --------------------------------
3950 -- Remove_Aspects_And_Pragmas --
3951 --------------------------------
3953 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
) is
3954 procedure Remove_Items
(List
: List_Id
);
3955 -- Remove all useless aspects/pragmas from a particular list
3961 procedure Remove_Items
(List
: List_Id
) is
3964 Next_Item
: Node_Id
;
3967 -- Traverse the list looking for an aspect specification or a pragma
3969 Item
:= First
(List
);
3970 while Present
(Item
) loop
3971 Next_Item
:= Next
(Item
);
3973 if Nkind
(Item
) = N_Aspect_Specification
then
3974 Item_Id
:= Identifier
(Item
);
3975 elsif Nkind
(Item
) = N_Pragma
then
3976 Item_Id
:= Pragma_Identifier
(Item
);
3981 if Present
(Item_Id
)
3982 and then Nam_In
(Chars
(Item_Id
), Name_Contract_Cases
,
3987 Name_Refined_Global
,
3988 Name_Refined_Depends
,
4001 -- Start of processing for Remove_Aspects_And_Pragmas
4004 Remove_Items
(Aspect_Specifications
(Body_Decl
));
4005 Remove_Items
(Declarations
(Body_Decl
));
4006 end Remove_Aspects_And_Pragmas
;
4008 --------------------------
4009 -- Remove_Dead_Instance --
4010 --------------------------
4012 procedure Remove_Dead_Instance
(N
: Node_Id
) is
4017 while J
<= Pending_Instantiations
.Last
loop
4018 if Pending_Instantiations
.Table
(J
).Inst_Node
= N
then
4019 Pending_Instantiations
.Table
(J
).Inst_Node
:= Empty
;
4025 end Remove_Dead_Instance
;