1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
39 #include "basic-block.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
47 #define STACK_PUSH_CODE PRE_INC
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
55 #define STACK_POP_CODE POST_DEC
59 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
);
60 static rtx
*find_single_use_1 (rtx
, rtx
*);
61 static void validate_replace_src_1 (rtx
*, void *);
62 static rtx
split_insn (rtx
);
64 /* Nonzero means allow operands to be volatile.
65 This should be 0 if you are generating rtl, such as if you are calling
66 the functions in optabs.c and expmed.c (most of the time).
67 This should be 1 if all valid insns need to be recognized,
68 such as in regclass.c and final.c and reload.c.
70 init_recog and init_recog_no_volatile are responsible for setting this. */
74 struct recog_data recog_data
;
76 /* Contains a vector of operand_alternative structures for every operand.
77 Set up by preprocess_constraints. */
78 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
80 /* On return from `constrain_operands', indicate which alternative
83 int which_alternative
;
85 /* Nonzero after end of reload pass.
86 Set to 1 or 0 by toplev.c.
87 Controls the significance of (SUBREG (MEM)). */
91 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
92 int epilogue_completed
;
94 /* Initialize data used by the function `recog'.
95 This must be called once in the compilation of a function
96 before any insn recognition may be done in the function. */
99 init_recog_no_volatile (void)
110 /* Try recognizing the instruction INSN,
111 and return the code number that results.
112 Remember the code so that repeated calls do not
113 need to spend the time for actual rerecognition.
115 This function is the normal interface to instruction recognition.
116 The automatically-generated function `recog' is normally called
117 through this one. (The only exception is in combine.c.) */
120 recog_memoized_1 (rtx insn
)
122 if (INSN_CODE (insn
) < 0)
123 INSN_CODE (insn
) = recog (PATTERN (insn
), insn
, 0);
124 return INSN_CODE (insn
);
127 /* Check that X is an insn-body for an `asm' with operands
128 and that the operands mentioned in it are legitimate. */
131 check_asm_operands (rtx x
)
135 const char **constraints
;
138 /* Post-reload, be more strict with things. */
139 if (reload_completed
)
141 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
142 extract_insn (make_insn_raw (x
));
143 constrain_operands (1);
144 return which_alternative
>= 0;
147 noperands
= asm_noperands (x
);
153 operands
= alloca (noperands
* sizeof (rtx
));
154 constraints
= alloca (noperands
* sizeof (char *));
156 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
);
158 for (i
= 0; i
< noperands
; i
++)
160 const char *c
= constraints
[i
];
163 if (ISDIGIT ((unsigned char) c
[0]) && c
[1] == '\0')
164 c
= constraints
[c
[0] - '0'];
166 if (! asm_operand_ok (operands
[i
], c
))
173 /* Static data for the next two routines. */
175 typedef struct change_t
183 static change_t
*changes
;
184 static int changes_allocated
;
186 static int num_changes
= 0;
188 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
189 at which NEW will be placed. If OBJECT is zero, no validation is done,
190 the change is simply made.
192 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
193 will be called with the address and mode as parameters. If OBJECT is
194 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
197 IN_GROUP is nonzero if this is part of a group of changes that must be
198 performed as a group. In that case, the changes will be stored. The
199 function `apply_change_group' will validate and apply the changes.
201 If IN_GROUP is zero, this is a single change. Try to recognize the insn
202 or validate the memory reference with the change applied. If the result
203 is not valid for the machine, suppress the change and return zero.
204 Otherwise, perform the change and return 1. */
207 validate_change (rtx object
, rtx
*loc
, rtx
new, int in_group
)
211 if (old
== new || rtx_equal_p (old
, new))
214 if (in_group
== 0 && num_changes
!= 0)
219 /* Save the information describing this change. */
220 if (num_changes
>= changes_allocated
)
222 if (changes_allocated
== 0)
223 /* This value allows for repeated substitutions inside complex
224 indexed addresses, or changes in up to 5 insns. */
225 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
227 changes_allocated
*= 2;
229 changes
= xrealloc (changes
, sizeof (change_t
) * changes_allocated
);
232 changes
[num_changes
].object
= object
;
233 changes
[num_changes
].loc
= loc
;
234 changes
[num_changes
].old
= old
;
236 if (object
&& !MEM_P (object
))
238 /* Set INSN_CODE to force rerecognition of insn. Save old code in
240 changes
[num_changes
].old_code
= INSN_CODE (object
);
241 INSN_CODE (object
) = -1;
246 /* If we are making a group of changes, return 1. Otherwise, validate the
247 change group we made. */
252 return apply_change_group ();
255 /* This subroutine of apply_change_group verifies whether the changes to INSN
256 were valid; i.e. whether INSN can still be recognized. */
259 insn_invalid_p (rtx insn
)
261 rtx pat
= PATTERN (insn
);
262 int num_clobbers
= 0;
263 /* If we are before reload and the pattern is a SET, see if we can add
265 int icode
= recog (pat
, insn
,
266 (GET_CODE (pat
) == SET
267 && ! reload_completed
&& ! reload_in_progress
)
268 ? &num_clobbers
: 0);
269 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
272 /* If this is an asm and the operand aren't legal, then fail. Likewise if
273 this is not an asm and the insn wasn't recognized. */
274 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
275 || (!is_asm
&& icode
< 0))
278 /* If we have to add CLOBBERs, fail if we have to add ones that reference
279 hard registers since our callers can't know if they are live or not.
280 Otherwise, add them. */
281 if (num_clobbers
> 0)
285 if (added_clobbers_hard_reg_p (icode
))
288 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
289 XVECEXP (newpat
, 0, 0) = pat
;
290 add_clobbers (newpat
, icode
);
291 PATTERN (insn
) = pat
= newpat
;
294 /* After reload, verify that all constraints are satisfied. */
295 if (reload_completed
)
299 if (! constrain_operands (1))
303 INSN_CODE (insn
) = icode
;
307 /* Return number of changes made and not validated yet. */
309 num_changes_pending (void)
314 /* Apply a group of changes previously issued with `validate_change'.
315 Return 1 if all changes are valid, zero otherwise. */
318 apply_change_group (void)
321 rtx last_validated
= NULL_RTX
;
323 /* The changes have been applied and all INSN_CODEs have been reset to force
326 The changes are valid if we aren't given an object, or if we are
327 given a MEM and it still is a valid address, or if this is in insn
328 and it is recognized. In the latter case, if reload has completed,
329 we also require that the operands meet the constraints for
332 for (i
= 0; i
< num_changes
; i
++)
334 rtx object
= changes
[i
].object
;
336 /* If there is no object to test or if it is the same as the one we
337 already tested, ignore it. */
338 if (object
== 0 || object
== last_validated
)
343 if (! memory_address_p (GET_MODE (object
), XEXP (object
, 0)))
346 else if (insn_invalid_p (object
))
348 rtx pat
= PATTERN (object
);
350 /* Perhaps we couldn't recognize the insn because there were
351 extra CLOBBERs at the end. If so, try to re-recognize
352 without the last CLOBBER (later iterations will cause each of
353 them to be eliminated, in turn). But don't do this if we
354 have an ASM_OPERAND. */
355 if (GET_CODE (pat
) == PARALLEL
356 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
357 && asm_noperands (PATTERN (object
)) < 0)
361 if (XVECLEN (pat
, 0) == 2)
362 newpat
= XVECEXP (pat
, 0, 0);
368 = gen_rtx_PARALLEL (VOIDmode
,
369 rtvec_alloc (XVECLEN (pat
, 0) - 1));
370 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
371 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
374 /* Add a new change to this group to replace the pattern
375 with this new pattern. Then consider this change
376 as having succeeded. The change we added will
377 cause the entire call to fail if things remain invalid.
379 Note that this can lose if a later change than the one
380 we are processing specified &XVECEXP (PATTERN (object), 0, X)
381 but this shouldn't occur. */
383 validate_change (object
, &PATTERN (object
), newpat
, 1);
386 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
387 /* If this insn is a CLOBBER or USE, it is always valid, but is
393 last_validated
= object
;
396 if (i
== num_changes
)
400 for (i
= 0; i
< num_changes
; i
++)
401 if (changes
[i
].object
402 && INSN_P (changes
[i
].object
)
403 && (bb
= BLOCK_FOR_INSN (changes
[i
].object
)))
404 bb
->flags
|= BB_DIRTY
;
416 /* Return the number of changes so far in the current group. */
419 num_validated_changes (void)
424 /* Retract the changes numbered NUM and up. */
427 cancel_changes (int num
)
431 /* Back out all the changes. Do this in the opposite order in which
433 for (i
= num_changes
- 1; i
>= num
; i
--)
435 *changes
[i
].loc
= changes
[i
].old
;
436 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
437 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
442 /* Replace every occurrence of FROM in X with TO. Mark each change with
443 validate_change passing OBJECT. */
446 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
)
452 enum machine_mode op0_mode
= VOIDmode
;
453 int prev_changes
= num_changes
;
460 fmt
= GET_RTX_FORMAT (code
);
462 op0_mode
= GET_MODE (XEXP (x
, 0));
464 /* X matches FROM if it is the same rtx or they are both referring to the
465 same register in the same mode. Avoid calling rtx_equal_p unless the
466 operands look similar. */
469 || (REG_P (x
) && REG_P (from
)
470 && GET_MODE (x
) == GET_MODE (from
)
471 && REGNO (x
) == REGNO (from
))
472 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
473 && rtx_equal_p (x
, from
)))
475 validate_change (object
, loc
, to
, 1);
479 /* Call ourself recursively to perform the replacements.
480 We must not replace inside already replaced expression, otherwise we
481 get infinite recursion for replacements like (reg X)->(subreg (reg X))
482 done by regmove, so we must special case shared ASM_OPERANDS. */
484 if (GET_CODE (x
) == PARALLEL
)
486 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
488 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
489 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
491 /* Verify that operands are really shared. */
492 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0))) !=
493 ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, j
))))
495 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
499 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
);
503 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
506 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
);
507 else if (fmt
[i
] == 'E')
508 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
509 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
);
512 /* If we didn't substitute, there is nothing more to do. */
513 if (num_changes
== prev_changes
)
516 /* Allow substituted expression to have different mode. This is used by
517 regmove to change mode of pseudo register. */
518 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
519 op0_mode
= GET_MODE (XEXP (x
, 0));
521 /* Do changes needed to keep rtx consistent. Don't do any other
522 simplifications, as it is not our job. */
524 if (SWAPPABLE_OPERANDS_P (x
)
525 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
527 validate_change (object
, loc
,
528 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
529 : swap_condition (code
),
530 GET_MODE (x
), XEXP (x
, 1),
539 /* If we have a PLUS whose second operand is now a CONST_INT, use
540 simplify_gen_binary to try to simplify it.
541 ??? We may want later to remove this, once simplification is
542 separated from this function. */
543 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& XEXP (x
, 1) == to
)
544 validate_change (object
, loc
,
546 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
549 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
550 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
551 validate_change (object
, loc
,
553 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
554 simplify_gen_unary (NEG
,
555 GET_MODE (x
), XEXP (x
, 1),
560 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
562 new = simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
564 /* If any of the above failed, substitute in something that
565 we know won't be recognized. */
567 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
568 validate_change (object
, loc
, new, 1);
572 /* All subregs possible to simplify should be simplified. */
573 new = simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
576 /* Subregs of VOIDmode operands are incorrect. */
577 if (!new && GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
578 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
580 validate_change (object
, loc
, new, 1);
584 /* If we are replacing a register with memory, try to change the memory
585 to be the mode required for memory in extract operations (this isn't
586 likely to be an insertion operation; if it was, nothing bad will
587 happen, we might just fail in some cases). */
589 if (MEM_P (XEXP (x
, 0))
590 && GET_CODE (XEXP (x
, 1)) == CONST_INT
591 && GET_CODE (XEXP (x
, 2)) == CONST_INT
592 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
593 && !MEM_VOLATILE_P (XEXP (x
, 0)))
595 enum machine_mode wanted_mode
= VOIDmode
;
596 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
597 int pos
= INTVAL (XEXP (x
, 2));
599 if (GET_CODE (x
) == ZERO_EXTRACT
)
601 enum machine_mode new_mode
602 = mode_for_extraction (EP_extzv
, 1);
603 if (new_mode
!= MAX_MACHINE_MODE
)
604 wanted_mode
= new_mode
;
606 else if (GET_CODE (x
) == SIGN_EXTRACT
)
608 enum machine_mode new_mode
609 = mode_for_extraction (EP_extv
, 1);
610 if (new_mode
!= MAX_MACHINE_MODE
)
611 wanted_mode
= new_mode
;
614 /* If we have a narrower mode, we can do something. */
615 if (wanted_mode
!= VOIDmode
616 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
618 int offset
= pos
/ BITS_PER_UNIT
;
621 /* If the bytes and bits are counted differently, we
622 must adjust the offset. */
623 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
625 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
628 pos
%= GET_MODE_BITSIZE (wanted_mode
);
630 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
632 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
633 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
644 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
645 with TO. After all changes have been made, validate by seeing
646 if INSN is still valid. */
649 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx insn
, rtx
*loc
)
651 validate_replace_rtx_1 (loc
, from
, to
, insn
);
652 return apply_change_group ();
655 /* Try replacing every occurrence of FROM in INSN with TO. After all
656 changes have been made, validate by seeing if INSN is still valid. */
659 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
661 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
662 return apply_change_group ();
665 /* Try replacing every occurrence of FROM in INSN with TO. */
668 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
670 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
673 /* Function called by note_uses to replace used subexpressions. */
674 struct validate_replace_src_data
676 rtx from
; /* Old RTX */
677 rtx to
; /* New RTX */
678 rtx insn
; /* Insn in which substitution is occurring. */
682 validate_replace_src_1 (rtx
*x
, void *data
)
684 struct validate_replace_src_data
*d
685 = (struct validate_replace_src_data
*) data
;
687 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
);
690 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
694 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
696 struct validate_replace_src_data d
;
701 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
705 /* Return 1 if the insn using CC0 set by INSN does not contain
706 any ordered tests applied to the condition codes.
707 EQ and NE tests do not count. */
710 next_insn_tests_no_inequality (rtx insn
)
712 rtx next
= next_cc0_user (insn
);
714 /* If there is no next insn, we have to take the conservative choice. */
718 return (INSN_P (next
)
719 && ! inequality_comparisons_p (PATTERN (next
)));
723 /* This is used by find_single_use to locate an rtx that contains exactly one
724 use of DEST, which is typically either a REG or CC0. It returns a
725 pointer to the innermost rtx expression containing DEST. Appearances of
726 DEST that are being used to totally replace it are not counted. */
729 find_single_use_1 (rtx dest
, rtx
*loc
)
732 enum rtx_code code
= GET_CODE (x
);
750 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
751 of a REG that occupies all of the REG, the insn uses DEST if
752 it is mentioned in the destination or the source. Otherwise, we
753 need just check the source. */
754 if (GET_CODE (SET_DEST (x
)) != CC0
755 && GET_CODE (SET_DEST (x
)) != PC
756 && !REG_P (SET_DEST (x
))
757 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
758 && REG_P (SUBREG_REG (SET_DEST (x
)))
759 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
760 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
761 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
762 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
765 return find_single_use_1 (dest
, &SET_SRC (x
));
769 return find_single_use_1 (dest
, &XEXP (x
, 0));
775 /* If it wasn't one of the common cases above, check each expression and
776 vector of this code. Look for a unique usage of DEST. */
778 fmt
= GET_RTX_FORMAT (code
);
779 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
783 if (dest
== XEXP (x
, i
)
784 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
785 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
788 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
791 result
= this_result
;
792 else if (this_result
)
793 /* Duplicate usage. */
796 else if (fmt
[i
] == 'E')
800 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
802 if (XVECEXP (x
, i
, j
) == dest
804 && REG_P (XVECEXP (x
, i
, j
))
805 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
808 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
811 result
= this_result
;
812 else if (this_result
)
821 /* See if DEST, produced in INSN, is used only a single time in the
822 sequel. If so, return a pointer to the innermost rtx expression in which
825 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
827 This routine will return usually zero either before flow is called (because
828 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
829 note can't be trusted).
831 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
832 care about REG_DEAD notes or LOG_LINKS.
834 Otherwise, we find the single use by finding an insn that has a
835 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
836 only referenced once in that insn, we know that it must be the first
837 and last insn referencing DEST. */
840 find_single_use (rtx dest
, rtx insn
, rtx
*ploc
)
849 next
= NEXT_INSN (insn
);
851 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
854 result
= find_single_use_1 (dest
, &PATTERN (next
));
861 if (reload_completed
|| reload_in_progress
|| !REG_P (dest
))
864 for (next
= next_nonnote_insn (insn
);
865 next
!= 0 && !LABEL_P (next
);
866 next
= next_nonnote_insn (next
))
867 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
869 for (link
= LOG_LINKS (next
); link
; link
= XEXP (link
, 1))
870 if (XEXP (link
, 0) == insn
)
875 result
= find_single_use_1 (dest
, &PATTERN (next
));
885 /* Return 1 if OP is a valid general operand for machine mode MODE.
886 This is either a register reference, a memory reference,
887 or a constant. In the case of a memory reference, the address
888 is checked for general validity for the target machine.
890 Register and memory references must have mode MODE in order to be valid,
891 but some constants have no machine mode and are valid for any mode.
893 If MODE is VOIDmode, OP is checked for validity for whatever mode
896 The main use of this function is as a predicate in match_operand
897 expressions in the machine description.
899 For an explanation of this function's behavior for registers of
900 class NO_REGS, see the comment for `register_operand'. */
903 general_operand (rtx op
, enum machine_mode mode
)
905 enum rtx_code code
= GET_CODE (op
);
907 if (mode
== VOIDmode
)
908 mode
= GET_MODE (op
);
910 /* Don't accept CONST_INT or anything similar
911 if the caller wants something floating. */
912 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
913 && GET_MODE_CLASS (mode
) != MODE_INT
914 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
917 if (GET_CODE (op
) == CONST_INT
919 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
923 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
925 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
926 && LEGITIMATE_CONSTANT_P (op
));
928 /* Except for certain constants with VOIDmode, already checked for,
929 OP's mode must match MODE if MODE specifies a mode. */
931 if (GET_MODE (op
) != mode
)
936 rtx sub
= SUBREG_REG (op
);
938 #ifdef INSN_SCHEDULING
939 /* On machines that have insn scheduling, we want all memory
940 reference to be explicit, so outlaw paradoxical SUBREGs. */
942 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
945 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
946 may result in incorrect reference. We should simplify all valid
947 subregs of MEM anyway. But allow this after reload because we
948 might be called from cleanup_subreg_operands.
950 ??? This is a kludge. */
951 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
955 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
956 create such rtl, and we must reject it. */
957 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
958 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
962 code
= GET_CODE (op
);
966 /* A register whose class is NO_REGS is not a general operand. */
967 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
968 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
972 rtx y
= XEXP (op
, 0);
974 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
977 /* Use the mem's mode, since it will be reloaded thus. */
978 mode
= GET_MODE (op
);
979 GO_IF_LEGITIMATE_ADDRESS (mode
, y
, win
);
988 /* Return 1 if OP is a valid memory address for a memory reference
991 The main use of this function is as a predicate in match_operand
992 expressions in the machine description. */
995 address_operand (rtx op
, enum machine_mode mode
)
997 return memory_address_p (mode
, op
);
1000 /* Return 1 if OP is a register reference of mode MODE.
1001 If MODE is VOIDmode, accept a register in any mode.
1003 The main use of this function is as a predicate in match_operand
1004 expressions in the machine description.
1006 As a special exception, registers whose class is NO_REGS are
1007 not accepted by `register_operand'. The reason for this change
1008 is to allow the representation of special architecture artifacts
1009 (such as a condition code register) without extending the rtl
1010 definitions. Since registers of class NO_REGS cannot be used
1011 as registers in any case where register classes are examined,
1012 it is most consistent to keep this function from accepting them. */
1015 register_operand (rtx op
, enum machine_mode mode
)
1017 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1020 if (GET_CODE (op
) == SUBREG
)
1022 rtx sub
= SUBREG_REG (op
);
1024 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1025 because it is guaranteed to be reloaded into one.
1026 Just make sure the MEM is valid in itself.
1027 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1028 but currently it does result from (SUBREG (REG)...) where the
1029 reg went on the stack.) */
1030 if (! reload_completed
&& MEM_P (sub
))
1031 return general_operand (op
, mode
);
1033 #ifdef CANNOT_CHANGE_MODE_CLASS
1035 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1036 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1037 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1038 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1042 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1043 create such rtl, and we must reject it. */
1044 if (GET_MODE_CLASS (GET_MODE (op
)) == MODE_FLOAT
1045 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1051 /* We don't consider registers whose class is NO_REGS
1052 to be a register operand. */
1054 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1055 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1058 /* Return 1 for a register in Pmode; ignore the tested mode. */
1061 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1063 return register_operand (op
, Pmode
);
1066 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1067 or a hard register. */
1070 scratch_operand (rtx op
, enum machine_mode mode
)
1072 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1075 return (GET_CODE (op
) == SCRATCH
1077 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1080 /* Return 1 if OP is a valid immediate operand for mode MODE.
1082 The main use of this function is as a predicate in match_operand
1083 expressions in the machine description. */
1086 immediate_operand (rtx op
, enum machine_mode mode
)
1088 /* Don't accept CONST_INT or anything similar
1089 if the caller wants something floating. */
1090 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1091 && GET_MODE_CLASS (mode
) != MODE_INT
1092 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1095 if (GET_CODE (op
) == CONST_INT
1097 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1100 return (CONSTANT_P (op
)
1101 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1102 || GET_MODE (op
) == VOIDmode
)
1103 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1104 && LEGITIMATE_CONSTANT_P (op
));
1107 /* Returns 1 if OP is an operand that is a CONST_INT. */
1110 const_int_operand (rtx op
, enum machine_mode mode
)
1112 if (GET_CODE (op
) != CONST_INT
)
1115 if (mode
!= VOIDmode
1116 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1122 /* Returns 1 if OP is an operand that is a constant integer or constant
1123 floating-point number. */
1126 const_double_operand (rtx op
, enum machine_mode mode
)
1128 /* Don't accept CONST_INT or anything similar
1129 if the caller wants something floating. */
1130 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1131 && GET_MODE_CLASS (mode
) != MODE_INT
1132 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1135 return ((GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
)
1136 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1137 || GET_MODE (op
) == VOIDmode
));
1140 /* Return 1 if OP is a general operand that is not an immediate operand. */
1143 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1145 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1148 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1151 nonmemory_operand (rtx op
, enum machine_mode mode
)
1153 if (CONSTANT_P (op
))
1155 /* Don't accept CONST_INT or anything similar
1156 if the caller wants something floating. */
1157 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1158 && GET_MODE_CLASS (mode
) != MODE_INT
1159 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1162 if (GET_CODE (op
) == CONST_INT
1164 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1167 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1168 || mode
== VOIDmode
)
1169 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1170 && LEGITIMATE_CONSTANT_P (op
));
1173 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1176 if (GET_CODE (op
) == SUBREG
)
1178 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1179 because it is guaranteed to be reloaded into one.
1180 Just make sure the MEM is valid in itself.
1181 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1182 but currently it does result from (SUBREG (REG)...) where the
1183 reg went on the stack.) */
1184 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1185 return general_operand (op
, mode
);
1186 op
= SUBREG_REG (op
);
1189 /* We don't consider registers whose class is NO_REGS
1190 to be a register operand. */
1192 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1193 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1196 /* Return 1 if OP is a valid operand that stands for pushing a
1197 value of mode MODE onto the stack.
1199 The main use of this function is as a predicate in match_operand
1200 expressions in the machine description. */
1203 push_operand (rtx op
, enum machine_mode mode
)
1205 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1207 #ifdef PUSH_ROUNDING
1208 rounded_size
= PUSH_ROUNDING (rounded_size
);
1214 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1219 if (rounded_size
== GET_MODE_SIZE (mode
))
1221 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1226 if (GET_CODE (op
) != PRE_MODIFY
1227 || GET_CODE (XEXP (op
, 1)) != PLUS
1228 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1229 || GET_CODE (XEXP (XEXP (op
, 1), 1)) != CONST_INT
1230 #ifdef STACK_GROWS_DOWNWARD
1231 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1233 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1239 return XEXP (op
, 0) == stack_pointer_rtx
;
1242 /* Return 1 if OP is a valid operand that stands for popping a
1243 value of mode MODE off the stack.
1245 The main use of this function is as a predicate in match_operand
1246 expressions in the machine description. */
1249 pop_operand (rtx op
, enum machine_mode mode
)
1254 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1259 if (GET_CODE (op
) != STACK_POP_CODE
)
1262 return XEXP (op
, 0) == stack_pointer_rtx
;
1265 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1268 memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED
, rtx addr
)
1270 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1277 /* Return 1 if OP is a valid memory reference with mode MODE,
1278 including a valid address.
1280 The main use of this function is as a predicate in match_operand
1281 expressions in the machine description. */
1284 memory_operand (rtx op
, enum machine_mode mode
)
1288 if (! reload_completed
)
1289 /* Note that no SUBREG is a memory operand before end of reload pass,
1290 because (SUBREG (MEM...)) forces reloading into a register. */
1291 return MEM_P (op
) && general_operand (op
, mode
);
1293 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1297 if (GET_CODE (inner
) == SUBREG
)
1298 inner
= SUBREG_REG (inner
);
1300 return (MEM_P (inner
) && general_operand (op
, mode
));
1303 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1304 that is, a memory reference whose address is a general_operand. */
1307 indirect_operand (rtx op
, enum machine_mode mode
)
1309 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1310 if (! reload_completed
1311 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1313 int offset
= SUBREG_BYTE (op
);
1314 rtx inner
= SUBREG_REG (op
);
1316 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1319 /* The only way that we can have a general_operand as the resulting
1320 address is if OFFSET is zero and the address already is an operand
1321 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1324 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1325 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1326 && GET_CODE (XEXP (XEXP (inner
, 0), 1)) == CONST_INT
1327 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1328 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1332 && memory_operand (op
, mode
)
1333 && general_operand (XEXP (op
, 0), Pmode
));
1336 /* Return 1 if this is a comparison operator. This allows the use of
1337 MATCH_OPERATOR to recognize all the branch insns. */
1340 comparison_operator (rtx op
, enum machine_mode mode
)
1342 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1343 && COMPARISON_P (op
));
1346 /* If BODY is an insn body that uses ASM_OPERANDS,
1347 return the number of operands (both input and output) in the insn.
1348 Otherwise return -1. */
1351 asm_noperands (rtx body
)
1353 switch (GET_CODE (body
))
1356 /* No output operands: return number of input operands. */
1357 return ASM_OPERANDS_INPUT_LENGTH (body
);
1359 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1360 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1361 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
)) + 1;
1365 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
1366 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1368 /* Multiple output operands, or 1 output plus some clobbers:
1369 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1373 /* Count backwards through CLOBBERs to determine number of SETs. */
1374 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1376 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1378 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1382 /* N_SETS is now number of output operands. */
1385 /* Verify that all the SETs we have
1386 came from a single original asm_operands insn
1387 (so that invalid combinations are blocked). */
1388 for (i
= 0; i
< n_sets
; i
++)
1390 rtx elt
= XVECEXP (body
, 0, i
);
1391 if (GET_CODE (elt
) != SET
)
1393 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1395 /* If these ASM_OPERANDS rtx's came from different original insns
1396 then they aren't allowed together. */
1397 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1398 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body
, 0, 0))))
1401 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)))
1404 else if (GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1406 /* 0 outputs, but some clobbers:
1407 body is [(asm_operands ...) (clobber (reg ...))...]. */
1410 /* Make sure all the other parallel things really are clobbers. */
1411 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1412 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1415 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
1424 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1425 copy its operands (both input and output) into the vector OPERANDS,
1426 the locations of the operands within the insn into the vector OPERAND_LOCS,
1427 and the constraints for the operands into CONSTRAINTS.
1428 Write the modes of the operands into MODES.
1429 Return the assembler-template.
1431 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1432 we don't store that info. */
1435 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1436 const char **constraints
, enum machine_mode
*modes
)
1440 const char *template = 0;
1442 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1444 rtx asmop
= SET_SRC (body
);
1445 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1447 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
) + 1;
1449 for (i
= 1; i
< noperands
; i
++)
1452 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
- 1);
1454 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
- 1);
1456 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
- 1);
1458 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
- 1);
1461 /* The output is in the SET.
1462 Its constraint is in the ASM_OPERANDS itself. */
1464 operands
[0] = SET_DEST (body
);
1466 operand_locs
[0] = &SET_DEST (body
);
1468 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1470 modes
[0] = GET_MODE (SET_DEST (body
));
1471 template = ASM_OPERANDS_TEMPLATE (asmop
);
1473 else if (GET_CODE (body
) == ASM_OPERANDS
)
1476 /* No output operands: BODY is (asm_operands ....). */
1478 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1480 /* The input operands are found in the 1st element vector. */
1481 /* Constraints for inputs are in the 2nd element vector. */
1482 for (i
= 0; i
< noperands
; i
++)
1485 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1487 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1489 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1491 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1493 template = ASM_OPERANDS_TEMPLATE (asmop
);
1495 else if (GET_CODE (body
) == PARALLEL
1496 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
1497 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1499 rtx asmop
= SET_SRC (XVECEXP (body
, 0, 0));
1500 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1501 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1502 int nout
= 0; /* Does not include CLOBBERs. */
1504 /* At least one output, plus some CLOBBERs. */
1506 /* The outputs are in the SETs.
1507 Their constraints are in the ASM_OPERANDS itself. */
1508 for (i
= 0; i
< nparallel
; i
++)
1510 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1511 break; /* Past last SET */
1514 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1516 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1518 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1520 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1524 for (i
= 0; i
< nin
; i
++)
1527 operand_locs
[i
+ nout
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1529 operands
[i
+ nout
] = ASM_OPERANDS_INPUT (asmop
, i
);
1531 constraints
[i
+ nout
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1533 modes
[i
+ nout
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1536 template = ASM_OPERANDS_TEMPLATE (asmop
);
1538 else if (GET_CODE (body
) == PARALLEL
1539 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1541 /* No outputs, but some CLOBBERs. */
1543 rtx asmop
= XVECEXP (body
, 0, 0);
1544 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1546 for (i
= 0; i
< nin
; i
++)
1549 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1551 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1553 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1555 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1558 template = ASM_OPERANDS_TEMPLATE (asmop
);
1564 /* Check if an asm_operand matches its constraints.
1565 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1568 asm_operand_ok (rtx op
, const char *constraint
)
1572 /* Use constrain_operands after reload. */
1573 if (reload_completed
)
1578 char c
= *constraint
;
1595 case '0': case '1': case '2': case '3': case '4':
1596 case '5': case '6': case '7': case '8': case '9':
1597 /* For best results, our caller should have given us the
1598 proper matching constraint, but we can't actually fail
1599 the check if they didn't. Indicate that results are
1603 while (ISDIGIT (*constraint
));
1609 if (address_operand (op
, VOIDmode
))
1614 case 'V': /* non-offsettable */
1615 if (memory_operand (op
, VOIDmode
))
1619 case 'o': /* offsettable */
1620 if (offsettable_nonstrict_memref_p (op
))
1625 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1626 excepting those that expand_call created. Further, on some
1627 machines which do not have generalized auto inc/dec, an inc/dec
1628 is not a memory_operand.
1630 Match any memory and hope things are resolved after reload. */
1634 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1635 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1642 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1643 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1649 if (GET_CODE (op
) == CONST_DOUBLE
1650 || (GET_CODE (op
) == CONST_VECTOR
1651 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1656 if (GET_CODE (op
) == CONST_DOUBLE
1657 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1661 if (GET_CODE (op
) == CONST_DOUBLE
1662 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1667 if (GET_CODE (op
) == CONST_INT
1668 || (GET_CODE (op
) == CONST_DOUBLE
1669 && GET_MODE (op
) == VOIDmode
))
1674 if (CONSTANT_P (op
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
1679 if (GET_CODE (op
) == CONST_INT
1680 || (GET_CODE (op
) == CONST_DOUBLE
1681 && GET_MODE (op
) == VOIDmode
))
1686 if (GET_CODE (op
) == CONST_INT
1687 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1691 if (GET_CODE (op
) == CONST_INT
1692 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1696 if (GET_CODE (op
) == CONST_INT
1697 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1701 if (GET_CODE (op
) == CONST_INT
1702 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1706 if (GET_CODE (op
) == CONST_INT
1707 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1711 if (GET_CODE (op
) == CONST_INT
1712 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1716 if (GET_CODE (op
) == CONST_INT
1717 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1721 if (GET_CODE (op
) == CONST_INT
1722 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1731 if (general_operand (op
, VOIDmode
))
1736 /* For all other letters, we first check for a register class,
1737 otherwise it is an EXTRA_CONSTRAINT. */
1738 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1741 if (GET_MODE (op
) == BLKmode
)
1743 if (register_operand (op
, VOIDmode
))
1746 #ifdef EXTRA_CONSTRAINT_STR
1747 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1749 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
)
1750 /* Every memory operand can be reloaded to fit. */
1751 && memory_operand (op
, VOIDmode
))
1753 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
)
1754 /* Every address operand can be reloaded to fit. */
1755 && address_operand (op
, VOIDmode
))
1760 len
= CONSTRAINT_LEN (c
, constraint
);
1763 while (--len
&& *constraint
);
1771 /* Given an rtx *P, if it is a sum containing an integer constant term,
1772 return the location (type rtx *) of the pointer to that constant term.
1773 Otherwise, return a null pointer. */
1776 find_constant_term_loc (rtx
*p
)
1779 enum rtx_code code
= GET_CODE (*p
);
1781 /* If *P IS such a constant term, P is its location. */
1783 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1787 /* Otherwise, if not a sum, it has no constant term. */
1789 if (GET_CODE (*p
) != PLUS
)
1792 /* If one of the summands is constant, return its location. */
1794 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1795 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1798 /* Otherwise, check each summand for containing a constant term. */
1800 if (XEXP (*p
, 0) != 0)
1802 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1807 if (XEXP (*p
, 1) != 0)
1809 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1817 /* Return 1 if OP is a memory reference
1818 whose address contains no side effects
1819 and remains valid after the addition
1820 of a positive integer less than the
1821 size of the object being referenced.
1823 We assume that the original address is valid and do not check it.
1825 This uses strict_memory_address_p as a subroutine, so
1826 don't use it before reload. */
1829 offsettable_memref_p (rtx op
)
1831 return ((MEM_P (op
))
1832 && offsettable_address_p (1, GET_MODE (op
), XEXP (op
, 0)));
1835 /* Similar, but don't require a strictly valid mem ref:
1836 consider pseudo-regs valid as index or base regs. */
1839 offsettable_nonstrict_memref_p (rtx op
)
1841 return ((MEM_P (op
))
1842 && offsettable_address_p (0, GET_MODE (op
), XEXP (op
, 0)));
1845 /* Return 1 if Y is a memory address which contains no side effects
1846 and would remain valid after the addition of a positive integer
1847 less than the size of that mode.
1849 We assume that the original address is valid and do not check it.
1850 We do check that it is valid for narrower modes.
1852 If STRICTP is nonzero, we require a strictly valid address,
1853 for the sake of use in reload.c. */
1856 offsettable_address_p (int strictp
, enum machine_mode mode
, rtx y
)
1858 enum rtx_code ycode
= GET_CODE (y
);
1862 int (*addressp
) (enum machine_mode
, rtx
) =
1863 (strictp
? strict_memory_address_p
: memory_address_p
);
1864 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1866 if (CONSTANT_ADDRESS_P (y
))
1869 /* Adjusting an offsettable address involves changing to a narrower mode.
1870 Make sure that's OK. */
1872 if (mode_dependent_address_p (y
))
1875 /* ??? How much offset does an offsettable BLKmode reference need?
1876 Clearly that depends on the situation in which it's being used.
1877 However, the current situation in which we test 0xffffffff is
1878 less than ideal. Caveat user. */
1880 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1882 /* If the expression contains a constant term,
1883 see if it remains valid when max possible offset is added. */
1885 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1890 *y2
= plus_constant (*y2
, mode_sz
- 1);
1891 /* Use QImode because an odd displacement may be automatically invalid
1892 for any wider mode. But it should be valid for a single byte. */
1893 good
= (*addressp
) (QImode
, y
);
1895 /* In any case, restore old contents of memory. */
1900 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1903 /* The offset added here is chosen as the maximum offset that
1904 any instruction could need to add when operating on something
1905 of the specified mode. We assume that if Y and Y+c are
1906 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1907 go inside a LO_SUM here, so we do so as well. */
1908 if (GET_CODE (y
) == LO_SUM
1910 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
1911 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
1912 plus_constant (XEXP (y
, 1), mode_sz
- 1));
1914 z
= plus_constant (y
, mode_sz
- 1);
1916 /* Use QImode because an odd displacement may be automatically invalid
1917 for any wider mode. But it should be valid for a single byte. */
1918 return (*addressp
) (QImode
, z
);
1921 /* Return 1 if ADDR is an address-expression whose effect depends
1922 on the mode of the memory reference it is used in.
1924 Autoincrement addressing is a typical example of mode-dependence
1925 because the amount of the increment depends on the mode. */
1928 mode_dependent_address_p (rtx addr ATTRIBUTE_UNUSED
/* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */)
1930 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, win
);
1932 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1933 win
: ATTRIBUTE_UNUSED_LABEL
1937 /* Like extract_insn, but save insn extracted and don't extract again, when
1938 called again for the same insn expecting that recog_data still contain the
1939 valid information. This is used primary by gen_attr infrastructure that
1940 often does extract insn again and again. */
1942 extract_insn_cached (rtx insn
)
1944 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
1946 extract_insn (insn
);
1947 recog_data
.insn
= insn
;
1949 /* Do cached extract_insn, constrain_operands and complain about failures.
1950 Used by insn_attrtab. */
1952 extract_constrain_insn_cached (rtx insn
)
1954 extract_insn_cached (insn
);
1955 if (which_alternative
== -1
1956 && !constrain_operands (reload_completed
))
1957 fatal_insn_not_found (insn
);
1959 /* Do cached constrain_operands and complain about failures. */
1961 constrain_operands_cached (int strict
)
1963 if (which_alternative
== -1)
1964 return constrain_operands (strict
);
1969 /* Analyze INSN and fill in recog_data. */
1972 extract_insn (rtx insn
)
1977 rtx body
= PATTERN (insn
);
1979 recog_data
.insn
= NULL
;
1980 recog_data
.n_operands
= 0;
1981 recog_data
.n_alternatives
= 0;
1982 recog_data
.n_dups
= 0;
1983 which_alternative
= -1;
1985 switch (GET_CODE (body
))
1995 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2000 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2001 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2002 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2008 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2011 /* This insn is an `asm' with operands. */
2013 /* expand_asm_operands makes sure there aren't too many operands. */
2014 if (noperands
> MAX_RECOG_OPERANDS
)
2017 /* Now get the operand values and constraints out of the insn. */
2018 decode_asm_operands (body
, recog_data
.operand
,
2019 recog_data
.operand_loc
,
2020 recog_data
.constraints
,
2021 recog_data
.operand_mode
);
2024 const char *p
= recog_data
.constraints
[0];
2025 recog_data
.n_alternatives
= 1;
2027 recog_data
.n_alternatives
+= (*p
++ == ',');
2031 fatal_insn_not_found (insn
);
2035 /* Ordinary insn: recognize it, get the operands via insn_extract
2036 and get the constraints. */
2038 icode
= recog_memoized (insn
);
2040 fatal_insn_not_found (insn
);
2042 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2043 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2044 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2046 insn_extract (insn
);
2048 for (i
= 0; i
< noperands
; i
++)
2050 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2051 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2052 /* VOIDmode match_operands gets mode from their real operand. */
2053 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2054 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2057 for (i
= 0; i
< noperands
; i
++)
2058 recog_data
.operand_type
[i
]
2059 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2060 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2063 if (recog_data
.n_alternatives
> MAX_RECOG_ALTERNATIVES
)
2067 /* After calling extract_insn, you can use this function to extract some
2068 information from the constraint strings into a more usable form.
2069 The collected data is stored in recog_op_alt. */
2071 preprocess_constraints (void)
2075 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2076 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2077 * sizeof (struct operand_alternative
)));
2079 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2082 struct operand_alternative
*op_alt
;
2083 const char *p
= recog_data
.constraints
[i
];
2085 op_alt
= recog_op_alt
[i
];
2087 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2089 op_alt
[j
].cl
= NO_REGS
;
2090 op_alt
[j
].constraint
= p
;
2091 op_alt
[j
].matches
= -1;
2092 op_alt
[j
].matched
= -1;
2094 if (*p
== '\0' || *p
== ',')
2096 op_alt
[j
].anything_ok
= 1;
2106 while (c
!= ',' && c
!= '\0');
2107 if (c
== ',' || c
== '\0')
2115 case '=': case '+': case '*': case '%':
2116 case 'E': case 'F': case 'G': case 'H':
2117 case 's': case 'i': case 'n':
2118 case 'I': case 'J': case 'K': case 'L':
2119 case 'M': case 'N': case 'O': case 'P':
2120 /* These don't say anything we care about. */
2124 op_alt
[j
].reject
+= 6;
2127 op_alt
[j
].reject
+= 600;
2130 op_alt
[j
].earlyclobber
= 1;
2133 case '0': case '1': case '2': case '3': case '4':
2134 case '5': case '6': case '7': case '8': case '9':
2137 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2138 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2144 op_alt
[j
].memory_ok
= 1;
2147 op_alt
[j
].decmem_ok
= 1;
2150 op_alt
[j
].incmem_ok
= 1;
2153 op_alt
[j
].nonoffmem_ok
= 1;
2156 op_alt
[j
].offmem_ok
= 1;
2159 op_alt
[j
].anything_ok
= 1;
2163 op_alt
[j
].is_address
= 1;
2164 op_alt
[j
].cl
= reg_class_subunion
[(int) op_alt
[j
].cl
]
2165 [(int) MODE_BASE_REG_CLASS (VOIDmode
)];
2171 reg_class_subunion
[(int) op_alt
[j
].cl
][(int) GENERAL_REGS
];
2175 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2177 op_alt
[j
].memory_ok
= 1;
2180 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2182 op_alt
[j
].is_address
= 1;
2184 = (reg_class_subunion
2185 [(int) op_alt
[j
].cl
]
2186 [(int) MODE_BASE_REG_CLASS (VOIDmode
)]);
2191 = (reg_class_subunion
2192 [(int) op_alt
[j
].cl
]
2193 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2196 p
+= CONSTRAINT_LEN (c
, p
);
2202 /* Check the operands of an insn against the insn's operand constraints
2203 and return 1 if they are valid.
2204 The information about the insn's operands, constraints, operand modes
2205 etc. is obtained from the global variables set up by extract_insn.
2207 WHICH_ALTERNATIVE is set to a number which indicates which
2208 alternative of constraints was matched: 0 for the first alternative,
2209 1 for the next, etc.
2211 In addition, when two operands are required to match
2212 and it happens that the output operand is (reg) while the
2213 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2214 make the output operand look like the input.
2215 This is because the output operand is the one the template will print.
2217 This is used in final, just before printing the assembler code and by
2218 the routines that determine an insn's attribute.
2220 If STRICT is a positive nonzero value, it means that we have been
2221 called after reload has been completed. In that case, we must
2222 do all checks strictly. If it is zero, it means that we have been called
2223 before reload has completed. In that case, we first try to see if we can
2224 find an alternative that matches strictly. If not, we try again, this
2225 time assuming that reload will fix up the insn. This provides a "best
2226 guess" for the alternative and is used to compute attributes of insns prior
2227 to reload. A negative value of STRICT is used for this internal call. */
2235 constrain_operands (int strict
)
2237 const char *constraints
[MAX_RECOG_OPERANDS
];
2238 int matching_operands
[MAX_RECOG_OPERANDS
];
2239 int earlyclobber
[MAX_RECOG_OPERANDS
];
2242 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2243 int funny_match_index
;
2245 which_alternative
= 0;
2246 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2249 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2251 constraints
[c
] = recog_data
.constraints
[c
];
2252 matching_operands
[c
] = -1;
2259 funny_match_index
= 0;
2261 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2263 rtx op
= recog_data
.operand
[opno
];
2264 enum machine_mode mode
= GET_MODE (op
);
2265 const char *p
= constraints
[opno
];
2271 earlyclobber
[opno
] = 0;
2273 /* A unary operator may be accepted by the predicate, but it
2274 is irrelevant for matching constraints. */
2278 if (GET_CODE (op
) == SUBREG
)
2280 if (REG_P (SUBREG_REG (op
))
2281 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2282 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2283 GET_MODE (SUBREG_REG (op
)),
2286 op
= SUBREG_REG (op
);
2289 /* An empty constraint or empty alternative
2290 allows anything which matched the pattern. */
2291 if (*p
== 0 || *p
== ',')
2295 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2304 case '?': case '!': case '*': case '%':
2309 /* Ignore rest of this alternative as far as
2310 constraint checking is concerned. */
2313 while (*p
&& *p
!= ',');
2318 earlyclobber
[opno
] = 1;
2321 case '0': case '1': case '2': case '3': case '4':
2322 case '5': case '6': case '7': case '8': case '9':
2324 /* This operand must be the same as a previous one.
2325 This kind of constraint is used for instructions such
2326 as add when they take only two operands.
2328 Note that the lower-numbered operand is passed first.
2330 If we are not testing strictly, assume that this
2331 constraint will be satisfied. */
2336 match
= strtoul (p
, &end
, 10);
2343 rtx op1
= recog_data
.operand
[match
];
2344 rtx op2
= recog_data
.operand
[opno
];
2346 /* A unary operator may be accepted by the predicate,
2347 but it is irrelevant for matching constraints. */
2349 op1
= XEXP (op1
, 0);
2351 op2
= XEXP (op2
, 0);
2353 val
= operands_match_p (op1
, op2
);
2356 matching_operands
[opno
] = match
;
2357 matching_operands
[match
] = opno
;
2362 /* If output is *x and input is *--x, arrange later
2363 to change the output to *--x as well, since the
2364 output op is the one that will be printed. */
2365 if (val
== 2 && strict
> 0)
2367 funny_match
[funny_match_index
].this = opno
;
2368 funny_match
[funny_match_index
++].other
= match
;
2375 /* p is used for address_operands. When we are called by
2376 gen_reload, no one will have checked that the address is
2377 strictly valid, i.e., that all pseudos requiring hard regs
2378 have gotten them. */
2380 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2385 /* No need to check general_operand again;
2386 it was done in insn-recog.c. */
2388 /* Anything goes unless it is a REG and really has a hard reg
2389 but the hard reg is not in the class GENERAL_REGS. */
2391 || GENERAL_REGS
== ALL_REGS
2393 || (reload_in_progress
2394 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2395 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2400 /* This is used for a MATCH_SCRATCH in the cases when
2401 we don't actually need anything. So anything goes
2407 /* Memory operands must be valid, to the extent
2408 required by STRICT. */
2412 && !strict_memory_address_p (GET_MODE (op
),
2416 && !memory_address_p (GET_MODE (op
), XEXP (op
, 0)))
2420 /* Before reload, accept what reload can turn into mem. */
2421 else if (strict
< 0 && CONSTANT_P (op
))
2423 /* During reload, accept a pseudo */
2424 else if (reload_in_progress
&& REG_P (op
)
2425 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2431 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2432 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2438 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2439 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2445 if (GET_CODE (op
) == CONST_DOUBLE
2446 || (GET_CODE (op
) == CONST_VECTOR
2447 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2453 if (GET_CODE (op
) == CONST_DOUBLE
2454 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2459 if (GET_CODE (op
) == CONST_INT
2460 || (GET_CODE (op
) == CONST_DOUBLE
2461 && GET_MODE (op
) == VOIDmode
))
2464 if (CONSTANT_P (op
))
2469 if (GET_CODE (op
) == CONST_INT
2470 || (GET_CODE (op
) == CONST_DOUBLE
2471 && GET_MODE (op
) == VOIDmode
))
2483 if (GET_CODE (op
) == CONST_INT
2484 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2490 && ((strict
> 0 && ! offsettable_memref_p (op
))
2492 && !(CONSTANT_P (op
) || MEM_P (op
)))
2493 || (reload_in_progress
2495 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2500 if ((strict
> 0 && offsettable_memref_p (op
))
2501 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2502 /* Before reload, accept what reload can handle. */
2504 && (CONSTANT_P (op
) || MEM_P (op
)))
2505 /* During reload, accept a pseudo */
2506 || (reload_in_progress
&& REG_P (op
)
2507 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2516 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2522 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2523 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2525 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2528 #ifdef EXTRA_CONSTRAINT_STR
2529 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2532 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2533 /* Every memory operand can be reloaded to fit. */
2534 && ((strict
< 0 && MEM_P (op
))
2535 /* Before reload, accept what reload can turn
2537 || (strict
< 0 && CONSTANT_P (op
))
2538 /* During reload, accept a pseudo */
2539 || (reload_in_progress
&& REG_P (op
)
2540 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2542 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2543 /* Every address operand can be reloaded to fit. */
2550 while (p
+= len
, c
);
2552 constraints
[opno
] = p
;
2553 /* If this operand did not win somehow,
2554 this alternative loses. */
2558 /* This alternative won; the operands are ok.
2559 Change whichever operands this alternative says to change. */
2564 /* See if any earlyclobber operand conflicts with some other
2568 for (eopno
= 0; eopno
< recog_data
.n_operands
; eopno
++)
2569 /* Ignore earlyclobber operands now in memory,
2570 because we would often report failure when we have
2571 two memory operands, one of which was formerly a REG. */
2572 if (earlyclobber
[eopno
]
2573 && REG_P (recog_data
.operand
[eopno
]))
2574 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2575 if ((MEM_P (recog_data
.operand
[opno
])
2576 || recog_data
.operand_type
[opno
] != OP_OUT
)
2578 /* Ignore things like match_operator operands. */
2579 && *recog_data
.constraints
[opno
] != 0
2580 && ! (matching_operands
[opno
] == eopno
2581 && operands_match_p (recog_data
.operand
[opno
],
2582 recog_data
.operand
[eopno
]))
2583 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2584 recog_data
.operand
[eopno
]))
2589 while (--funny_match_index
>= 0)
2591 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2592 = recog_data
.operand
[funny_match
[funny_match_index
].this];
2599 which_alternative
++;
2601 while (which_alternative
< recog_data
.n_alternatives
);
2603 which_alternative
= -1;
2604 /* If we are about to reject this, but we are not to test strictly,
2605 try a very loose test. Only return failure if it fails also. */
2607 return constrain_operands (-1);
2612 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2613 is a hard reg in class CLASS when its regno is offset by OFFSET
2614 and changed to mode MODE.
2615 If REG occupies multiple hard regs, all of them must be in CLASS. */
2618 reg_fits_class_p (rtx operand
, enum reg_class cl
, int offset
,
2619 enum machine_mode mode
)
2621 int regno
= REGNO (operand
);
2622 if (regno
< FIRST_PSEUDO_REGISTER
2623 && TEST_HARD_REG_BIT (reg_class_contents
[(int) cl
],
2628 for (sr
= hard_regno_nregs
[regno
][mode
] - 1;
2630 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) cl
],
2639 /* Split single instruction. Helper function for split_all_insns and
2640 split_all_insns_noflow. Return last insn in the sequence if successful,
2641 or NULL if unsuccessful. */
2644 split_insn (rtx insn
)
2646 /* Split insns here to get max fine-grain parallelism. */
2647 rtx first
= PREV_INSN (insn
);
2648 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2653 /* try_split returns the NOTE that INSN became. */
2654 SET_INSN_DELETED (insn
);
2656 /* ??? Coddle to md files that generate subregs in post-reload
2657 splitters instead of computing the proper hard register. */
2658 if (reload_completed
&& first
!= last
)
2660 first
= NEXT_INSN (first
);
2664 cleanup_subreg_operands (first
);
2667 first
= NEXT_INSN (first
);
2673 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2676 split_all_insns (int upd_life
)
2682 blocks
= sbitmap_alloc (last_basic_block
);
2683 sbitmap_zero (blocks
);
2686 FOR_EACH_BB_REVERSE (bb
)
2689 bool finish
= false;
2691 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2693 /* Can't use `next_real_insn' because that might go across
2694 CODE_LABELS and short-out basic blocks. */
2695 next
= NEXT_INSN (insn
);
2696 finish
= (insn
== BB_END (bb
));
2699 rtx set
= single_set (insn
);
2701 /* Don't split no-op move insns. These should silently
2702 disappear later in final. Splitting such insns would
2703 break the code that handles REG_NO_CONFLICT blocks. */
2704 if (set
&& set_noop_p (set
))
2706 /* Nops get in the way while scheduling, so delete them
2707 now if register allocation has already been done. It
2708 is too risky to try to do this before register
2709 allocation, and there are unlikely to be very many
2710 nops then anyways. */
2711 if (reload_completed
)
2713 /* If the no-op set has a REG_UNUSED note, we need
2714 to update liveness information. */
2715 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
))
2717 SET_BIT (blocks
, bb
->index
);
2720 /* ??? Is life info affected by deleting edges? */
2721 delete_insn_and_edges (insn
);
2726 rtx last
= split_insn (insn
);
2729 /* The split sequence may include barrier, but the
2730 BB boundary we are interested in will be set to
2733 while (BARRIER_P (last
))
2734 last
= PREV_INSN (last
);
2735 SET_BIT (blocks
, bb
->index
);
2745 int old_last_basic_block
= last_basic_block
;
2747 find_many_sub_basic_blocks (blocks
);
2749 if (old_last_basic_block
!= last_basic_block
&& upd_life
)
2750 blocks
= sbitmap_resize (blocks
, last_basic_block
, 1);
2753 if (changed
&& upd_life
)
2754 update_life_info (blocks
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
2757 #ifdef ENABLE_CHECKING
2758 verify_flow_info ();
2761 sbitmap_free (blocks
);
2764 /* Same as split_all_insns, but do not expect CFG to be available.
2765 Used by machine dependent reorg passes. */
2768 split_all_insns_noflow (void)
2772 for (insn
= get_insns (); insn
; insn
= next
)
2774 next
= NEXT_INSN (insn
);
2777 /* Don't split no-op move insns. These should silently
2778 disappear later in final. Splitting such insns would
2779 break the code that handles REG_NO_CONFLICT blocks. */
2780 rtx set
= single_set (insn
);
2781 if (set
&& set_noop_p (set
))
2783 /* Nops get in the way while scheduling, so delete them
2784 now if register allocation has already been done. It
2785 is too risky to try to do this before register
2786 allocation, and there are unlikely to be very many
2789 ??? Should we use delete_insn when the CFG isn't valid? */
2790 if (reload_completed
)
2791 delete_insn_and_edges (insn
);
2799 #ifdef HAVE_peephole2
2800 struct peep2_insn_data
2806 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2807 static int peep2_current
;
2809 /* A non-insn marker indicating the last insn of the block.
2810 The live_before regset for this element is correct, indicating
2811 global_live_at_end for the block. */
2812 #define PEEP2_EOB pc_rtx
2814 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2815 does not exist. Used by the recognizer to find the next insn to match
2816 in a multi-insn pattern. */
2819 peep2_next_insn (int n
)
2821 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2825 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2826 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2828 if (peep2_insn_data
[n
].insn
== PEEP2_EOB
)
2830 return peep2_insn_data
[n
].insn
;
2833 /* Return true if REGNO is dead before the Nth non-note insn
2837 peep2_regno_dead_p (int ofs
, int regno
)
2839 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2842 ofs
+= peep2_current
;
2843 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2844 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2846 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2849 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2852 /* Similarly for a REG. */
2855 peep2_reg_dead_p (int ofs
, rtx reg
)
2859 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2862 ofs
+= peep2_current
;
2863 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2864 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2866 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2869 regno
= REGNO (reg
);
2870 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2872 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
2877 /* Try to find a hard register of mode MODE, matching the register class in
2878 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2879 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2880 in which case the only condition is that the register must be available
2881 before CURRENT_INSN.
2882 Registers that already have bits set in REG_SET will not be considered.
2884 If an appropriate register is available, it will be returned and the
2885 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2889 peep2_find_free_register (int from
, int to
, const char *class_str
,
2890 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
2892 static int search_ofs
;
2897 if (from
>= MAX_INSNS_PER_PEEP2
+ 1 || to
>= MAX_INSNS_PER_PEEP2
+ 1)
2900 from
+= peep2_current
;
2901 if (from
>= MAX_INSNS_PER_PEEP2
+ 1)
2902 from
-= MAX_INSNS_PER_PEEP2
+ 1;
2903 to
+= peep2_current
;
2904 if (to
>= MAX_INSNS_PER_PEEP2
+ 1)
2905 to
-= MAX_INSNS_PER_PEEP2
+ 1;
2907 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
2909 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
2913 HARD_REG_SET this_live
;
2915 if (++from
>= MAX_INSNS_PER_PEEP2
+ 1)
2917 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
2919 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
2920 IOR_HARD_REG_SET (live
, this_live
);
2923 cl
= (class_str
[0] == 'r' ? GENERAL_REGS
2924 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
2926 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2928 int raw_regno
, regno
, success
, j
;
2930 /* Distribute the free registers as much as possible. */
2931 raw_regno
= search_ofs
+ i
;
2932 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
2933 raw_regno
-= FIRST_PSEUDO_REGISTER
;
2934 #ifdef REG_ALLOC_ORDER
2935 regno
= reg_alloc_order
[raw_regno
];
2940 /* Don't allocate fixed registers. */
2941 if (fixed_regs
[regno
])
2943 /* Make sure the register is of the right class. */
2944 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
))
2946 /* And can support the mode we need. */
2947 if (! HARD_REGNO_MODE_OK (regno
, mode
))
2949 /* And that we don't create an extra save/restore. */
2950 if (! call_used_regs
[regno
] && ! regs_ever_live
[regno
])
2952 /* And we don't clobber traceback for noreturn functions. */
2953 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
2954 && (! reload_completed
|| frame_pointer_needed
))
2958 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
2960 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
2961 || TEST_HARD_REG_BIT (live
, regno
+ j
))
2969 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
2970 SET_HARD_REG_BIT (*reg_set
, regno
+ j
);
2972 /* Start the next search with the next register. */
2973 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
2975 search_ofs
= raw_regno
;
2977 return gen_rtx_REG (mode
, regno
);
2985 /* Perform the peephole2 optimization pass. */
2988 peephole2_optimize (FILE *dump_file ATTRIBUTE_UNUSED
)
2990 regset_head rs_heads
[MAX_INSNS_PER_PEEP2
+ 2];
2995 #ifdef HAVE_conditional_execution
2999 bool do_cleanup_cfg
= false;
3000 bool do_rebuild_jump_labels
= false;
3002 /* Initialize the regsets we're going to use. */
3003 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3004 peep2_insn_data
[i
].live_before
= INITIALIZE_REG_SET (rs_heads
[i
]);
3005 live
= INITIALIZE_REG_SET (rs_heads
[i
]);
3007 #ifdef HAVE_conditional_execution
3008 blocks
= sbitmap_alloc (last_basic_block
);
3009 sbitmap_zero (blocks
);
3012 count_or_remove_death_notes (NULL
, 1);
3015 FOR_EACH_BB_REVERSE (bb
)
3017 struct propagate_block_info
*pbi
;
3019 /* Indicate that all slots except the last holds invalid data. */
3020 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3021 peep2_insn_data
[i
].insn
= NULL_RTX
;
3023 /* Indicate that the last slot contains live_after data. */
3024 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3025 peep2_current
= MAX_INSNS_PER_PEEP2
;
3027 /* Start up propagation. */
3028 COPY_REG_SET (live
, bb
->global_live_at_end
);
3029 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3031 #ifdef HAVE_conditional_execution
3032 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, 0);
3034 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, PROP_DEATH_NOTES
);
3037 for (insn
= BB_END (bb
); ; insn
= prev
)
3039 prev
= PREV_INSN (insn
);
3042 rtx
try, before_try
, x
;
3045 bool was_call
= false;
3047 /* Record this insn. */
3048 if (--peep2_current
< 0)
3049 peep2_current
= MAX_INSNS_PER_PEEP2
;
3050 peep2_insn_data
[peep2_current
].insn
= insn
;
3051 propagate_one_insn (pbi
, insn
);
3052 COPY_REG_SET (peep2_insn_data
[peep2_current
].live_before
, live
);
3054 /* Match the peephole. */
3055 try = peephole2_insns (PATTERN (insn
), insn
, &match_len
);
3058 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3059 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3060 cfg-related call notes. */
3061 for (i
= 0; i
<= match_len
; ++i
)
3064 rtx old_insn
, new_insn
, note
;
3066 j
= i
+ peep2_current
;
3067 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3068 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3069 old_insn
= peep2_insn_data
[j
].insn
;
3070 if (!CALL_P (old_insn
))
3075 while (new_insn
!= NULL_RTX
)
3077 if (CALL_P (new_insn
))
3079 new_insn
= NEXT_INSN (new_insn
);
3082 if (new_insn
== NULL_RTX
)
3085 CALL_INSN_FUNCTION_USAGE (new_insn
)
3086 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3088 for (note
= REG_NOTES (old_insn
);
3090 note
= XEXP (note
, 1))
3091 switch (REG_NOTE_KIND (note
))
3095 case REG_ALWAYS_RETURN
:
3096 REG_NOTES (new_insn
)
3097 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3099 REG_NOTES (new_insn
));
3101 /* Discard all other reg notes. */
3105 /* Croak if there is another call in the sequence. */
3106 while (++i
<= match_len
)
3108 j
= i
+ peep2_current
;
3109 if (j
>= MAX_INSNS_PER_PEEP2
+ 1)
3110 j
-= MAX_INSNS_PER_PEEP2
+ 1;
3111 old_insn
= peep2_insn_data
[j
].insn
;
3112 if (CALL_P (old_insn
))
3118 i
= match_len
+ peep2_current
;
3119 if (i
>= MAX_INSNS_PER_PEEP2
+ 1)
3120 i
-= MAX_INSNS_PER_PEEP2
+ 1;
3122 note
= find_reg_note (peep2_insn_data
[i
].insn
,
3123 REG_EH_REGION
, NULL_RTX
);
3125 /* Replace the old sequence with the new. */
3126 try = emit_insn_after_setloc (try, peep2_insn_data
[i
].insn
,
3127 INSN_LOCATOR (peep2_insn_data
[i
].insn
));
3128 before_try
= PREV_INSN (insn
);
3129 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
);
3131 /* Re-insert the EH_REGION notes. */
3132 if (note
|| (was_call
&& nonlocal_goto_handler_labels
))
3136 for (eh_edge
= bb
->succ
; eh_edge
3137 ; eh_edge
= eh_edge
->succ_next
)
3138 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3141 for (x
= try ; x
!= before_try
; x
= PREV_INSN (x
))
3143 || (flag_non_call_exceptions
3144 && may_trap_p (PATTERN (x
))
3145 && !find_reg_note (x
, REG_EH_REGION
, NULL
)))
3149 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3153 if (x
!= BB_END (bb
) && eh_edge
)
3158 nfte
= split_block (bb
, x
);
3159 flags
= (eh_edge
->flags
3160 & (EDGE_EH
| EDGE_ABNORMAL
));
3162 flags
|= EDGE_ABNORMAL_CALL
;
3163 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3166 nehe
->probability
= eh_edge
->probability
;
3168 = REG_BR_PROB_BASE
- nehe
->probability
;
3170 do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3171 #ifdef HAVE_conditional_execution
3172 SET_BIT (blocks
, nfte
->dest
->index
);
3180 /* Converting possibly trapping insn to non-trapping is
3181 possible. Zap dummy outgoing edges. */
3182 do_cleanup_cfg
|= purge_dead_edges (bb
);
3185 #ifdef HAVE_conditional_execution
3186 /* With conditional execution, we cannot back up the
3187 live information so easily, since the conditional
3188 death data structures are not so self-contained.
3189 So record that we've made a modification to this
3190 block and update life information at the end. */
3191 SET_BIT (blocks
, bb
->index
);
3194 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3195 peep2_insn_data
[i
].insn
= NULL_RTX
;
3196 peep2_insn_data
[peep2_current
].insn
= PEEP2_EOB
;
3198 /* Back up lifetime information past the end of the
3199 newly created sequence. */
3200 if (++i
>= MAX_INSNS_PER_PEEP2
+ 1)
3202 COPY_REG_SET (live
, peep2_insn_data
[i
].live_before
);
3204 /* Update life information for the new sequence. */
3211 i
= MAX_INSNS_PER_PEEP2
;
3212 peep2_insn_data
[i
].insn
= x
;
3213 propagate_one_insn (pbi
, x
);
3214 COPY_REG_SET (peep2_insn_data
[i
].live_before
, live
);
3220 /* ??? Should verify that LIVE now matches what we
3221 had before the new sequence. */
3226 /* If we generated a jump instruction, it won't have
3227 JUMP_LABEL set. Recompute after we're done. */
3228 for (x
= try; x
!= before_try
; x
= PREV_INSN (x
))
3231 do_rebuild_jump_labels
= true;
3237 if (insn
== BB_HEAD (bb
))
3241 free_propagate_block_info (pbi
);
3244 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3245 FREE_REG_SET (peep2_insn_data
[i
].live_before
);
3246 FREE_REG_SET (live
);
3248 if (do_rebuild_jump_labels
)
3249 rebuild_jump_labels (get_insns ());
3251 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3252 we've changed global life since exception handlers are no longer
3257 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES
, PROP_DEATH_NOTES
);
3259 #ifdef HAVE_conditional_execution
3262 count_or_remove_death_notes (blocks
, 1);
3263 update_life_info (blocks
, UPDATE_LIFE_LOCAL
, PROP_DEATH_NOTES
);
3265 sbitmap_free (blocks
);
3268 #endif /* HAVE_peephole2 */
3270 /* Common predicates for use with define_bypass. */
3272 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3273 data not the address operand(s) of the store. IN_INSN must be
3274 single_set. OUT_INSN must be either a single_set or a PARALLEL with
3278 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3280 rtx out_set
, in_set
;
3282 in_set
= single_set (in_insn
);
3286 if (!MEM_P (SET_DEST (in_set
)))
3289 out_set
= single_set (out_insn
);
3292 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3300 out_pat
= PATTERN (out_insn
);
3301 if (GET_CODE (out_pat
) != PARALLEL
)
3304 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3306 rtx exp
= XVECEXP (out_pat
, 0, i
);
3308 if (GET_CODE (exp
) == CLOBBER
)
3311 if (GET_CODE (exp
) != SET
)
3314 if (reg_mentioned_p (SET_DEST (exp
), SET_DEST (in_set
)))
3322 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3323 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3324 or multiple set; IN_INSN should be single_set for truth, but for convenience
3325 of insn categorization may be any JUMP or CALL insn. */
3328 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3330 rtx out_set
, in_set
;
3332 in_set
= single_set (in_insn
);
3335 if (JUMP_P (in_insn
) || CALL_P (in_insn
))
3340 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3342 in_set
= SET_SRC (in_set
);
3344 out_set
= single_set (out_insn
);
3347 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3348 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3356 out_pat
= PATTERN (out_insn
);
3357 if (GET_CODE (out_pat
) != PARALLEL
)
3360 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3362 rtx exp
= XVECEXP (out_pat
, 0, i
);
3364 if (GET_CODE (exp
) == CLOBBER
)
3367 if (GET_CODE (exp
) != SET
)
3370 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3371 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))