Fix problems with labels with hot/cold partitioning.
[official-gcc.git] / gcc / dwarf2out.c
bloba7b2b86a0098f1ad0995f4670d5bbb648c174840
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
126 if (EH_TABLES_CAN_BE_READ_ONLY)
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
154 tree label = get_file_function_name ('F');
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
173 /* Array of RTXes referenced by the debugging information, which therefore
174 must be kept around forever. */
175 static GTY(()) varray_type used_rtx_varray;
177 /* A pointer to the base of a list of incomplete types which might be
178 completed at some later time. incomplete_types_list needs to be a VARRAY
179 because we want to tell the garbage collector about it. */
180 static GTY(()) varray_type incomplete_types;
182 /* A pointer to the base of a table of references to declaration
183 scopes. This table is a display which tracks the nesting
184 of declaration scopes at the current scope and containing
185 scopes. This table is used to find the proper place to
186 define type declaration DIE's. */
187 static GTY(()) varray_type decl_scope_table;
189 /* How to start an assembler comment. */
190 #ifndef ASM_COMMENT_START
191 #define ASM_COMMENT_START ";#"
192 #endif
194 typedef struct dw_cfi_struct *dw_cfi_ref;
195 typedef struct dw_fde_struct *dw_fde_ref;
196 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
198 /* Call frames are described using a sequence of Call Frame
199 Information instructions. The register number, offset
200 and address fields are provided as possible operands;
201 their use is selected by the opcode field. */
203 enum dw_cfi_oprnd_type {
204 dw_cfi_oprnd_unused,
205 dw_cfi_oprnd_reg_num,
206 dw_cfi_oprnd_offset,
207 dw_cfi_oprnd_addr,
208 dw_cfi_oprnd_loc
211 typedef union dw_cfi_oprnd_struct GTY(())
213 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
214 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
215 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
216 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
218 dw_cfi_oprnd;
220 typedef struct dw_cfi_struct GTY(())
222 dw_cfi_ref dw_cfi_next;
223 enum dwarf_call_frame_info dw_cfi_opc;
224 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
225 dw_cfi_oprnd1;
226 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
227 dw_cfi_oprnd2;
229 dw_cfi_node;
231 /* This is how we define the location of the CFA. We use to handle it
232 as REG + OFFSET all the time, but now it can be more complex.
233 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
234 Instead of passing around REG and OFFSET, we pass a copy
235 of this structure. */
236 typedef struct cfa_loc GTY(())
238 unsigned long reg;
239 HOST_WIDE_INT offset;
240 HOST_WIDE_INT base_offset;
241 int indirect; /* 1 if CFA is accessed via a dereference. */
242 } dw_cfa_location;
244 /* All call frame descriptions (FDE's) in the GCC generated DWARF
245 refer to a single Common Information Entry (CIE), defined at
246 the beginning of the .debug_frame section. This use of a single
247 CIE obviates the need to keep track of multiple CIE's
248 in the DWARF generation routines below. */
250 typedef struct dw_fde_struct GTY(())
252 tree decl;
253 const char *dw_fde_begin;
254 const char *dw_fde_current_label;
255 const char *dw_fde_end;
256 const char *dw_fde_hot_section_label;
257 const char *dw_fde_hot_section_end_label;
258 const char *dw_fde_unlikely_section_label;
259 const char *dw_fde_unlikely_section_end_label;
260 bool dw_fde_switched_sections;
261 dw_cfi_ref dw_fde_cfi;
262 unsigned funcdef_number;
263 unsigned all_throwers_are_sibcalls : 1;
264 unsigned nothrow : 1;
265 unsigned uses_eh_lsda : 1;
267 dw_fde_node;
269 /* Maximum size (in bytes) of an artificially generated label. */
270 #define MAX_ARTIFICIAL_LABEL_BYTES 30
272 /* The size of addresses as they appear in the Dwarf 2 data.
273 Some architectures use word addresses to refer to code locations,
274 but Dwarf 2 info always uses byte addresses. On such machines,
275 Dwarf 2 addresses need to be larger than the architecture's
276 pointers. */
277 #ifndef DWARF2_ADDR_SIZE
278 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
279 #endif
281 /* The size in bytes of a DWARF field indicating an offset or length
282 relative to a debug info section, specified to be 4 bytes in the
283 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
284 as PTR_SIZE. */
286 #ifndef DWARF_OFFSET_SIZE
287 #define DWARF_OFFSET_SIZE 4
288 #endif
290 /* According to the (draft) DWARF 3 specification, the initial length
291 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
292 bytes are 0xffffffff, followed by the length stored in the next 8
293 bytes.
295 However, the SGI/MIPS ABI uses an initial length which is equal to
296 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
298 #ifndef DWARF_INITIAL_LENGTH_SIZE
299 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
300 #endif
302 #define DWARF_VERSION 2
304 /* Round SIZE up to the nearest BOUNDARY. */
305 #define DWARF_ROUND(SIZE,BOUNDARY) \
306 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
308 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
309 #ifndef DWARF_CIE_DATA_ALIGNMENT
310 #ifdef STACK_GROWS_DOWNWARD
311 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
312 #else
313 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
314 #endif
315 #endif
317 /* A pointer to the base of a table that contains frame description
318 information for each routine. */
319 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
321 /* Number of elements currently allocated for fde_table. */
322 static GTY(()) unsigned fde_table_allocated;
324 /* Number of elements in fde_table currently in use. */
325 static GTY(()) unsigned fde_table_in_use;
327 /* Size (in elements) of increments by which we may expand the
328 fde_table. */
329 #define FDE_TABLE_INCREMENT 256
331 /* A list of call frame insns for the CIE. */
332 static GTY(()) dw_cfi_ref cie_cfi_head;
334 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
335 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
336 attribute that accelerates the lookup of the FDE associated
337 with the subprogram. This variable holds the table index of the FDE
338 associated with the current function (body) definition. */
339 static unsigned current_funcdef_fde;
340 #endif
342 struct indirect_string_node GTY(())
344 const char *str;
345 unsigned int refcount;
346 unsigned int form;
347 char *label;
350 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
352 static GTY(()) int dw2_string_counter;
353 static GTY(()) unsigned long dwarf2out_cfi_label_num;
355 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
357 /* Forward declarations for functions defined in this file. */
359 static char *stripattributes (const char *);
360 static const char *dwarf_cfi_name (unsigned);
361 static dw_cfi_ref new_cfi (void);
362 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
363 static void add_fde_cfi (const char *, dw_cfi_ref);
364 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
365 static void lookup_cfa (dw_cfa_location *);
366 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
367 static void initial_return_save (rtx);
368 static HOST_WIDE_INT stack_adjust_offset (rtx);
369 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
370 static void output_call_frame_info (int);
371 static void dwarf2out_stack_adjust (rtx, bool);
372 static void flush_queued_reg_saves (void);
373 static bool clobbers_queued_reg_save (rtx);
374 static void dwarf2out_frame_debug_expr (rtx, const char *);
376 /* Support for complex CFA locations. */
377 static void output_cfa_loc (dw_cfi_ref);
378 static void get_cfa_from_loc_descr (dw_cfa_location *,
379 struct dw_loc_descr_struct *);
380 static struct dw_loc_descr_struct *build_cfa_loc
381 (dw_cfa_location *);
382 static void def_cfa_1 (const char *, dw_cfa_location *);
384 /* How to start an assembler comment. */
385 #ifndef ASM_COMMENT_START
386 #define ASM_COMMENT_START ";#"
387 #endif
389 /* Data and reference forms for relocatable data. */
390 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
391 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
393 #ifndef DEBUG_FRAME_SECTION
394 #define DEBUG_FRAME_SECTION ".debug_frame"
395 #endif
397 #ifndef FUNC_BEGIN_LABEL
398 #define FUNC_BEGIN_LABEL "LFB"
399 #endif
401 #ifndef FUNC_END_LABEL
402 #define FUNC_END_LABEL "LFE"
403 #endif
405 #ifndef FRAME_BEGIN_LABEL
406 #define FRAME_BEGIN_LABEL "Lframe"
407 #endif
408 #define CIE_AFTER_SIZE_LABEL "LSCIE"
409 #define CIE_END_LABEL "LECIE"
410 #define FDE_LABEL "LSFDE"
411 #define FDE_AFTER_SIZE_LABEL "LASFDE"
412 #define FDE_END_LABEL "LEFDE"
413 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
414 #define LINE_NUMBER_END_LABEL "LELT"
415 #define LN_PROLOG_AS_LABEL "LASLTP"
416 #define LN_PROLOG_END_LABEL "LELTP"
417 #define DIE_LABEL_PREFIX "DW"
419 /* The DWARF 2 CFA column which tracks the return address. Normally this
420 is the column for PC, or the first column after all of the hard
421 registers. */
422 #ifndef DWARF_FRAME_RETURN_COLUMN
423 #ifdef PC_REGNUM
424 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
425 #else
426 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
427 #endif
428 #endif
430 /* The mapping from gcc register number to DWARF 2 CFA column number. By
431 default, we just provide columns for all registers. */
432 #ifndef DWARF_FRAME_REGNUM
433 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
434 #endif
436 /* The offset from the incoming value of %sp to the top of the stack frame
437 for the current function. */
438 #ifndef INCOMING_FRAME_SP_OFFSET
439 #define INCOMING_FRAME_SP_OFFSET 0
440 #endif
442 /* Hook used by __throw. */
445 expand_builtin_dwarf_sp_column (void)
447 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
450 /* Return a pointer to a copy of the section string name S with all
451 attributes stripped off, and an asterisk prepended (for assemble_name). */
453 static inline char *
454 stripattributes (const char *s)
456 char *stripped = xmalloc (strlen (s) + 2);
457 char *p = stripped;
459 *p++ = '*';
461 while (*s && *s != ',')
462 *p++ = *s++;
464 *p = '\0';
465 return stripped;
468 /* Generate code to initialize the register size table. */
470 void
471 expand_builtin_init_dwarf_reg_sizes (tree address)
473 int i;
474 enum machine_mode mode = TYPE_MODE (char_type_node);
475 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
476 rtx mem = gen_rtx_MEM (BLKmode, addr);
477 bool wrote_return_column = false;
479 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
480 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
482 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
483 enum machine_mode save_mode = reg_raw_mode[i];
484 HOST_WIDE_INT size;
486 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
487 save_mode = choose_hard_reg_mode (i, 1, true);
488 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
490 if (save_mode == VOIDmode)
491 continue;
492 wrote_return_column = true;
494 size = GET_MODE_SIZE (save_mode);
495 if (offset < 0)
496 continue;
498 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
501 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
502 gcc_assert (wrote_return_column);
503 i = DWARF_ALT_FRAME_RETURN_COLUMN;
504 wrote_return_column = false;
505 #else
506 i = DWARF_FRAME_RETURN_COLUMN;
507 #endif
509 if (! wrote_return_column)
511 enum machine_mode save_mode = Pmode;
512 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
513 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
514 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
518 /* Convert a DWARF call frame info. operation to its string name */
520 static const char *
521 dwarf_cfi_name (unsigned int cfi_opc)
523 switch (cfi_opc)
525 case DW_CFA_advance_loc:
526 return "DW_CFA_advance_loc";
527 case DW_CFA_offset:
528 return "DW_CFA_offset";
529 case DW_CFA_restore:
530 return "DW_CFA_restore";
531 case DW_CFA_nop:
532 return "DW_CFA_nop";
533 case DW_CFA_set_loc:
534 return "DW_CFA_set_loc";
535 case DW_CFA_advance_loc1:
536 return "DW_CFA_advance_loc1";
537 case DW_CFA_advance_loc2:
538 return "DW_CFA_advance_loc2";
539 case DW_CFA_advance_loc4:
540 return "DW_CFA_advance_loc4";
541 case DW_CFA_offset_extended:
542 return "DW_CFA_offset_extended";
543 case DW_CFA_restore_extended:
544 return "DW_CFA_restore_extended";
545 case DW_CFA_undefined:
546 return "DW_CFA_undefined";
547 case DW_CFA_same_value:
548 return "DW_CFA_same_value";
549 case DW_CFA_register:
550 return "DW_CFA_register";
551 case DW_CFA_remember_state:
552 return "DW_CFA_remember_state";
553 case DW_CFA_restore_state:
554 return "DW_CFA_restore_state";
555 case DW_CFA_def_cfa:
556 return "DW_CFA_def_cfa";
557 case DW_CFA_def_cfa_register:
558 return "DW_CFA_def_cfa_register";
559 case DW_CFA_def_cfa_offset:
560 return "DW_CFA_def_cfa_offset";
562 /* DWARF 3 */
563 case DW_CFA_def_cfa_expression:
564 return "DW_CFA_def_cfa_expression";
565 case DW_CFA_expression:
566 return "DW_CFA_expression";
567 case DW_CFA_offset_extended_sf:
568 return "DW_CFA_offset_extended_sf";
569 case DW_CFA_def_cfa_sf:
570 return "DW_CFA_def_cfa_sf";
571 case DW_CFA_def_cfa_offset_sf:
572 return "DW_CFA_def_cfa_offset_sf";
574 /* SGI/MIPS specific */
575 case DW_CFA_MIPS_advance_loc8:
576 return "DW_CFA_MIPS_advance_loc8";
578 /* GNU extensions */
579 case DW_CFA_GNU_window_save:
580 return "DW_CFA_GNU_window_save";
581 case DW_CFA_GNU_args_size:
582 return "DW_CFA_GNU_args_size";
583 case DW_CFA_GNU_negative_offset_extended:
584 return "DW_CFA_GNU_negative_offset_extended";
586 default:
587 return "DW_CFA_<unknown>";
591 /* Return a pointer to a newly allocated Call Frame Instruction. */
593 static inline dw_cfi_ref
594 new_cfi (void)
596 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
598 cfi->dw_cfi_next = NULL;
599 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
600 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
602 return cfi;
605 /* Add a Call Frame Instruction to list of instructions. */
607 static inline void
608 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
610 dw_cfi_ref *p;
612 /* Find the end of the chain. */
613 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
616 *p = cfi;
619 /* Generate a new label for the CFI info to refer to. */
621 char *
622 dwarf2out_cfi_label (void)
624 static char label[20];
626 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
627 ASM_OUTPUT_LABEL (asm_out_file, label);
628 return label;
631 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
632 or to the CIE if LABEL is NULL. */
634 static void
635 add_fde_cfi (const char *label, dw_cfi_ref cfi)
637 if (label)
639 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
641 if (*label == 0)
642 label = dwarf2out_cfi_label ();
644 if (fde->dw_fde_current_label == NULL
645 || strcmp (label, fde->dw_fde_current_label) != 0)
647 dw_cfi_ref xcfi;
649 fde->dw_fde_current_label = label = xstrdup (label);
651 /* Set the location counter to the new label. */
652 xcfi = new_cfi ();
653 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
654 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
655 add_cfi (&fde->dw_fde_cfi, xcfi);
658 add_cfi (&fde->dw_fde_cfi, cfi);
661 else
662 add_cfi (&cie_cfi_head, cfi);
665 /* Subroutine of lookup_cfa. */
667 static inline void
668 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
670 switch (cfi->dw_cfi_opc)
672 case DW_CFA_def_cfa_offset:
673 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
674 break;
675 case DW_CFA_def_cfa_register:
676 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
677 break;
678 case DW_CFA_def_cfa:
679 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
680 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
681 break;
682 case DW_CFA_def_cfa_expression:
683 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
684 break;
685 default:
686 break;
690 /* Find the previous value for the CFA. */
692 static void
693 lookup_cfa (dw_cfa_location *loc)
695 dw_cfi_ref cfi;
697 loc->reg = (unsigned long) -1;
698 loc->offset = 0;
699 loc->indirect = 0;
700 loc->base_offset = 0;
702 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
703 lookup_cfa_1 (cfi, loc);
705 if (fde_table_in_use)
707 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
708 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
709 lookup_cfa_1 (cfi, loc);
713 /* The current rule for calculating the DWARF2 canonical frame address. */
714 static dw_cfa_location cfa;
716 /* The register used for saving registers to the stack, and its offset
717 from the CFA. */
718 static dw_cfa_location cfa_store;
720 /* The running total of the size of arguments pushed onto the stack. */
721 static HOST_WIDE_INT args_size;
723 /* The last args_size we actually output. */
724 static HOST_WIDE_INT old_args_size;
726 /* Entry point to update the canonical frame address (CFA).
727 LABEL is passed to add_fde_cfi. The value of CFA is now to be
728 calculated from REG+OFFSET. */
730 void
731 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
733 dw_cfa_location loc;
734 loc.indirect = 0;
735 loc.base_offset = 0;
736 loc.reg = reg;
737 loc.offset = offset;
738 def_cfa_1 (label, &loc);
741 /* This routine does the actual work. The CFA is now calculated from
742 the dw_cfa_location structure. */
744 static void
745 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
747 dw_cfi_ref cfi;
748 dw_cfa_location old_cfa, loc;
750 cfa = *loc_p;
751 loc = *loc_p;
753 if (cfa_store.reg == loc.reg && loc.indirect == 0)
754 cfa_store.offset = loc.offset;
756 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
757 lookup_cfa (&old_cfa);
759 /* If nothing changed, no need to issue any call frame instructions. */
760 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
761 && loc.indirect == old_cfa.indirect
762 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
763 return;
765 cfi = new_cfi ();
767 if (loc.reg == old_cfa.reg && !loc.indirect)
769 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
770 indicating the CFA register did not change but the offset
771 did. */
772 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
773 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
776 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
777 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
778 && !loc.indirect)
780 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
781 indicating the CFA register has changed to <register> but the
782 offset has not changed. */
783 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
784 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
786 #endif
788 else if (loc.indirect == 0)
790 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
791 indicating the CFA register has changed to <register> with
792 the specified offset. */
793 cfi->dw_cfi_opc = DW_CFA_def_cfa;
794 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
795 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
797 else
799 /* Construct a DW_CFA_def_cfa_expression instruction to
800 calculate the CFA using a full location expression since no
801 register-offset pair is available. */
802 struct dw_loc_descr_struct *loc_list;
804 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
805 loc_list = build_cfa_loc (&loc);
806 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
809 add_fde_cfi (label, cfi);
812 /* Add the CFI for saving a register. REG is the CFA column number.
813 LABEL is passed to add_fde_cfi.
814 If SREG is -1, the register is saved at OFFSET from the CFA;
815 otherwise it is saved in SREG. */
817 static void
818 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
820 dw_cfi_ref cfi = new_cfi ();
822 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
824 if (sreg == INVALID_REGNUM)
826 if (reg & ~0x3f)
827 /* The register number won't fit in 6 bits, so we have to use
828 the long form. */
829 cfi->dw_cfi_opc = DW_CFA_offset_extended;
830 else
831 cfi->dw_cfi_opc = DW_CFA_offset;
833 #ifdef ENABLE_CHECKING
835 /* If we get an offset that is not a multiple of
836 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
837 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
838 description. */
839 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
841 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
843 #endif
844 offset /= DWARF_CIE_DATA_ALIGNMENT;
845 if (offset < 0)
846 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
848 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
850 else if (sreg == reg)
851 cfi->dw_cfi_opc = DW_CFA_same_value;
852 else
854 cfi->dw_cfi_opc = DW_CFA_register;
855 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
858 add_fde_cfi (label, cfi);
861 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
862 This CFI tells the unwinder that it needs to restore the window registers
863 from the previous frame's window save area.
865 ??? Perhaps we should note in the CIE where windows are saved (instead of
866 assuming 0(cfa)) and what registers are in the window. */
868 void
869 dwarf2out_window_save (const char *label)
871 dw_cfi_ref cfi = new_cfi ();
873 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
874 add_fde_cfi (label, cfi);
877 /* Add a CFI to update the running total of the size of arguments
878 pushed onto the stack. */
880 void
881 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
883 dw_cfi_ref cfi;
885 if (size == old_args_size)
886 return;
888 old_args_size = size;
890 cfi = new_cfi ();
891 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
892 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
893 add_fde_cfi (label, cfi);
896 /* Entry point for saving a register to the stack. REG is the GCC register
897 number. LABEL and OFFSET are passed to reg_save. */
899 void
900 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
902 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
905 /* Entry point for saving the return address in the stack.
906 LABEL and OFFSET are passed to reg_save. */
908 void
909 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
911 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
914 /* Entry point for saving the return address in a register.
915 LABEL and SREG are passed to reg_save. */
917 void
918 dwarf2out_return_reg (const char *label, unsigned int sreg)
920 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
923 /* Record the initial position of the return address. RTL is
924 INCOMING_RETURN_ADDR_RTX. */
926 static void
927 initial_return_save (rtx rtl)
929 unsigned int reg = INVALID_REGNUM;
930 HOST_WIDE_INT offset = 0;
932 switch (GET_CODE (rtl))
934 case REG:
935 /* RA is in a register. */
936 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
937 break;
939 case MEM:
940 /* RA is on the stack. */
941 rtl = XEXP (rtl, 0);
942 switch (GET_CODE (rtl))
944 case REG:
945 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
946 offset = 0;
947 break;
949 case PLUS:
950 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
951 offset = INTVAL (XEXP (rtl, 1));
952 break;
954 case MINUS:
955 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
956 offset = -INTVAL (XEXP (rtl, 1));
957 break;
959 default:
960 gcc_unreachable ();
963 break;
965 case PLUS:
966 /* The return address is at some offset from any value we can
967 actually load. For instance, on the SPARC it is in %i7+8. Just
968 ignore the offset for now; it doesn't matter for unwinding frames. */
969 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
970 initial_return_save (XEXP (rtl, 0));
971 return;
973 default:
974 gcc_unreachable ();
977 if (reg != DWARF_FRAME_RETURN_COLUMN)
978 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
981 /* Given a SET, calculate the amount of stack adjustment it
982 contains. */
984 static HOST_WIDE_INT
985 stack_adjust_offset (rtx pattern)
987 rtx src = SET_SRC (pattern);
988 rtx dest = SET_DEST (pattern);
989 HOST_WIDE_INT offset = 0;
990 enum rtx_code code;
992 if (dest == stack_pointer_rtx)
994 /* (set (reg sp) (plus (reg sp) (const_int))) */
995 code = GET_CODE (src);
996 if (! (code == PLUS || code == MINUS)
997 || XEXP (src, 0) != stack_pointer_rtx
998 || GET_CODE (XEXP (src, 1)) != CONST_INT)
999 return 0;
1001 offset = INTVAL (XEXP (src, 1));
1002 if (code == PLUS)
1003 offset = -offset;
1005 else if (MEM_P (dest))
1007 /* (set (mem (pre_dec (reg sp))) (foo)) */
1008 src = XEXP (dest, 0);
1009 code = GET_CODE (src);
1011 switch (code)
1013 case PRE_MODIFY:
1014 case POST_MODIFY:
1015 if (XEXP (src, 0) == stack_pointer_rtx)
1017 rtx val = XEXP (XEXP (src, 1), 1);
1018 /* We handle only adjustments by constant amount. */
1019 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1020 && GET_CODE (val) == CONST_INT);
1021 offset = -INTVAL (val);
1022 break;
1024 return 0;
1026 case PRE_DEC:
1027 case POST_DEC:
1028 if (XEXP (src, 0) == stack_pointer_rtx)
1030 offset = GET_MODE_SIZE (GET_MODE (dest));
1031 break;
1033 return 0;
1035 case PRE_INC:
1036 case POST_INC:
1037 if (XEXP (src, 0) == stack_pointer_rtx)
1039 offset = -GET_MODE_SIZE (GET_MODE (dest));
1040 break;
1042 return 0;
1044 default:
1045 return 0;
1048 else
1049 return 0;
1051 return offset;
1054 /* Check INSN to see if it looks like a push or a stack adjustment, and
1055 make a note of it if it does. EH uses this information to find out how
1056 much extra space it needs to pop off the stack. */
1058 static void
1059 dwarf2out_stack_adjust (rtx insn, bool after_p)
1061 HOST_WIDE_INT offset;
1062 const char *label;
1063 int i;
1065 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1066 with this function. Proper support would require all frame-related
1067 insns to be marked, and to be able to handle saving state around
1068 epilogues textually in the middle of the function. */
1069 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1070 return;
1072 /* If only calls can throw, and we have a frame pointer,
1073 save up adjustments until we see the CALL_INSN. */
1074 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1076 if (CALL_P (insn) && !after_p)
1078 /* Extract the size of the args from the CALL rtx itself. */
1079 insn = PATTERN (insn);
1080 if (GET_CODE (insn) == PARALLEL)
1081 insn = XVECEXP (insn, 0, 0);
1082 if (GET_CODE (insn) == SET)
1083 insn = SET_SRC (insn);
1084 gcc_assert (GET_CODE (insn) == CALL);
1085 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1087 return;
1090 if (CALL_P (insn) && !after_p)
1092 if (!flag_asynchronous_unwind_tables)
1093 dwarf2out_args_size ("", args_size);
1094 return;
1096 else if (BARRIER_P (insn))
1098 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1099 the compiler will have already emitted a stack adjustment, but
1100 doesn't bother for calls to noreturn functions. */
1101 #ifdef STACK_GROWS_DOWNWARD
1102 offset = -args_size;
1103 #else
1104 offset = args_size;
1105 #endif
1107 else if (GET_CODE (PATTERN (insn)) == SET)
1108 offset = stack_adjust_offset (PATTERN (insn));
1109 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1110 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1112 /* There may be stack adjustments inside compound insns. Search
1113 for them. */
1114 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1115 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1116 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1118 else
1119 return;
1121 if (offset == 0)
1122 return;
1124 if (cfa.reg == STACK_POINTER_REGNUM)
1125 cfa.offset += offset;
1127 #ifndef STACK_GROWS_DOWNWARD
1128 offset = -offset;
1129 #endif
1131 args_size += offset;
1132 if (args_size < 0)
1133 args_size = 0;
1135 label = dwarf2out_cfi_label ();
1136 def_cfa_1 (label, &cfa);
1137 if (flag_asynchronous_unwind_tables)
1138 dwarf2out_args_size (label, args_size);
1141 #endif
1143 /* We delay emitting a register save until either (a) we reach the end
1144 of the prologue or (b) the register is clobbered. This clusters
1145 register saves so that there are fewer pc advances. */
1147 struct queued_reg_save GTY(())
1149 struct queued_reg_save *next;
1150 rtx reg;
1151 HOST_WIDE_INT cfa_offset;
1152 rtx saved_reg;
1155 static GTY(()) struct queued_reg_save *queued_reg_saves;
1157 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1158 struct reg_saved_in_data GTY(()) {
1159 rtx orig_reg;
1160 rtx saved_in_reg;
1163 /* A list of registers saved in other registers.
1164 The list intentionally has a small maximum capacity of 4; if your
1165 port needs more than that, you might consider implementing a
1166 more efficient data structure. */
1167 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1168 static GTY(()) size_t num_regs_saved_in_regs;
1170 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1171 static const char *last_reg_save_label;
1173 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1174 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1176 static void
1177 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1179 struct queued_reg_save *q;
1181 /* Duplicates waste space, but it's also necessary to remove them
1182 for correctness, since the queue gets output in reverse
1183 order. */
1184 for (q = queued_reg_saves; q != NULL; q = q->next)
1185 if (REGNO (q->reg) == REGNO (reg))
1186 break;
1188 if (q == NULL)
1190 q = ggc_alloc (sizeof (*q));
1191 q->next = queued_reg_saves;
1192 queued_reg_saves = q;
1195 q->reg = reg;
1196 q->cfa_offset = offset;
1197 q->saved_reg = sreg;
1199 last_reg_save_label = label;
1202 /* Output all the entries in QUEUED_REG_SAVES. */
1204 static void
1205 flush_queued_reg_saves (void)
1207 struct queued_reg_save *q;
1209 for (q = queued_reg_saves; q; q = q->next)
1211 size_t i;
1212 unsigned int reg, sreg;
1214 for (i = 0; i < num_regs_saved_in_regs; i++)
1215 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1216 break;
1217 if (q->saved_reg && i == num_regs_saved_in_regs)
1219 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1220 num_regs_saved_in_regs++;
1222 if (i != num_regs_saved_in_regs)
1224 regs_saved_in_regs[i].orig_reg = q->reg;
1225 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1228 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1229 if (q->saved_reg)
1230 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1231 else
1232 sreg = INVALID_REGNUM;
1233 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1236 queued_reg_saves = NULL;
1237 last_reg_save_label = NULL;
1240 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1241 location for? Or, does it clobber a register which we've previously
1242 said that some other register is saved in, and for which we now
1243 have a new location for? */
1245 static bool
1246 clobbers_queued_reg_save (rtx insn)
1248 struct queued_reg_save *q;
1250 for (q = queued_reg_saves; q; q = q->next)
1252 size_t i;
1253 if (modified_in_p (q->reg, insn))
1254 return true;
1255 for (i = 0; i < num_regs_saved_in_regs; i++)
1256 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1257 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1258 return true;
1261 return false;
1264 /* What register, if any, is currently saved in REG? */
1266 static rtx
1267 reg_saved_in (rtx reg)
1269 unsigned int regn = REGNO (reg);
1270 size_t i;
1271 struct queued_reg_save *q;
1273 for (q = queued_reg_saves; q; q = q->next)
1274 if (q->saved_reg && regn == REGNO (q->saved_reg))
1275 return q->reg;
1277 for (i = 0; i < num_regs_saved_in_regs; i++)
1278 if (regs_saved_in_regs[i].saved_in_reg
1279 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1280 return regs_saved_in_regs[i].orig_reg;
1282 return NULL_RTX;
1286 /* A temporary register holding an integral value used in adjusting SP
1287 or setting up the store_reg. The "offset" field holds the integer
1288 value, not an offset. */
1289 static dw_cfa_location cfa_temp;
1291 /* Record call frame debugging information for an expression EXPR,
1292 which either sets SP or FP (adjusting how we calculate the frame
1293 address) or saves a register to the stack or another register.
1294 LABEL indicates the address of EXPR.
1296 This function encodes a state machine mapping rtxes to actions on
1297 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1298 users need not read the source code.
1300 The High-Level Picture
1302 Changes in the register we use to calculate the CFA: Currently we
1303 assume that if you copy the CFA register into another register, we
1304 should take the other one as the new CFA register; this seems to
1305 work pretty well. If it's wrong for some target, it's simple
1306 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1308 Changes in the register we use for saving registers to the stack:
1309 This is usually SP, but not always. Again, we deduce that if you
1310 copy SP into another register (and SP is not the CFA register),
1311 then the new register is the one we will be using for register
1312 saves. This also seems to work.
1314 Register saves: There's not much guesswork about this one; if
1315 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1316 register save, and the register used to calculate the destination
1317 had better be the one we think we're using for this purpose.
1318 It's also assumed that a copy from a call-saved register to another
1319 register is saving that register if RTX_FRAME_RELATED_P is set on
1320 that instruction. If the copy is from a call-saved register to
1321 the *same* register, that means that the register is now the same
1322 value as in the caller.
1324 Except: If the register being saved is the CFA register, and the
1325 offset is nonzero, we are saving the CFA, so we assume we have to
1326 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1327 the intent is to save the value of SP from the previous frame.
1329 In addition, if a register has previously been saved to a different
1330 register,
1332 Invariants / Summaries of Rules
1334 cfa current rule for calculating the CFA. It usually
1335 consists of a register and an offset.
1336 cfa_store register used by prologue code to save things to the stack
1337 cfa_store.offset is the offset from the value of
1338 cfa_store.reg to the actual CFA
1339 cfa_temp register holding an integral value. cfa_temp.offset
1340 stores the value, which will be used to adjust the
1341 stack pointer. cfa_temp is also used like cfa_store,
1342 to track stores to the stack via fp or a temp reg.
1344 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1345 with cfa.reg as the first operand changes the cfa.reg and its
1346 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1347 cfa_temp.offset.
1349 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1350 expression yielding a constant. This sets cfa_temp.reg
1351 and cfa_temp.offset.
1353 Rule 5: Create a new register cfa_store used to save items to the
1354 stack.
1356 Rules 10-14: Save a register to the stack. Define offset as the
1357 difference of the original location and cfa_store's
1358 location (or cfa_temp's location if cfa_temp is used).
1360 The Rules
1362 "{a,b}" indicates a choice of a xor b.
1363 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1365 Rule 1:
1366 (set <reg1> <reg2>:cfa.reg)
1367 effects: cfa.reg = <reg1>
1368 cfa.offset unchanged
1369 cfa_temp.reg = <reg1>
1370 cfa_temp.offset = cfa.offset
1372 Rule 2:
1373 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1374 {<const_int>,<reg>:cfa_temp.reg}))
1375 effects: cfa.reg = sp if fp used
1376 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1377 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1378 if cfa_store.reg==sp
1380 Rule 3:
1381 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1382 effects: cfa.reg = fp
1383 cfa_offset += +/- <const_int>
1385 Rule 4:
1386 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1387 constraints: <reg1> != fp
1388 <reg1> != sp
1389 effects: cfa.reg = <reg1>
1390 cfa_temp.reg = <reg1>
1391 cfa_temp.offset = cfa.offset
1393 Rule 5:
1394 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1395 constraints: <reg1> != fp
1396 <reg1> != sp
1397 effects: cfa_store.reg = <reg1>
1398 cfa_store.offset = cfa.offset - cfa_temp.offset
1400 Rule 6:
1401 (set <reg> <const_int>)
1402 effects: cfa_temp.reg = <reg>
1403 cfa_temp.offset = <const_int>
1405 Rule 7:
1406 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1407 effects: cfa_temp.reg = <reg1>
1408 cfa_temp.offset |= <const_int>
1410 Rule 8:
1411 (set <reg> (high <exp>))
1412 effects: none
1414 Rule 9:
1415 (set <reg> (lo_sum <exp> <const_int>))
1416 effects: cfa_temp.reg = <reg>
1417 cfa_temp.offset = <const_int>
1419 Rule 10:
1420 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1421 effects: cfa_store.offset -= <const_int>
1422 cfa.offset = cfa_store.offset if cfa.reg == sp
1423 cfa.reg = sp
1424 cfa.base_offset = -cfa_store.offset
1426 Rule 11:
1427 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1428 effects: cfa_store.offset += -/+ mode_size(mem)
1429 cfa.offset = cfa_store.offset if cfa.reg == sp
1430 cfa.reg = sp
1431 cfa.base_offset = -cfa_store.offset
1433 Rule 12:
1434 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1436 <reg2>)
1437 effects: cfa.reg = <reg1>
1438 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1440 Rule 13:
1441 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1442 effects: cfa.reg = <reg1>
1443 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1445 Rule 14:
1446 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1447 effects: cfa.reg = <reg1>
1448 cfa.base_offset = -cfa_temp.offset
1449 cfa_temp.offset -= mode_size(mem)
1451   Rule 15:
1452   (set <reg> {unspec, unspec_volatile})
1453   effects: target-dependent */
1455 static void
1456 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1458 rtx src, dest;
1459 HOST_WIDE_INT offset;
1461 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1462 the PARALLEL independently. The first element is always processed if
1463 it is a SET. This is for backward compatibility. Other elements
1464 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1465 flag is set in them. */
1466 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1468 int par_index;
1469 int limit = XVECLEN (expr, 0);
1471 for (par_index = 0; par_index < limit; par_index++)
1472 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1473 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1474 || par_index == 0))
1475 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1477 return;
1480 gcc_assert (GET_CODE (expr) == SET);
1482 src = SET_SRC (expr);
1483 dest = SET_DEST (expr);
1485 if (GET_CODE (src) == REG)
1487 rtx rsi = reg_saved_in (src);
1488 if (rsi)
1489 src = rsi;
1492 switch (GET_CODE (dest))
1494 case REG:
1495 switch (GET_CODE (src))
1497 /* Setting FP from SP. */
1498 case REG:
1499 if (cfa.reg == (unsigned) REGNO (src))
1501 /* Rule 1 */
1502 /* Update the CFA rule wrt SP or FP. Make sure src is
1503 relative to the current CFA register.
1505 We used to require that dest be either SP or FP, but the
1506 ARM copies SP to a temporary register, and from there to
1507 FP. So we just rely on the backends to only set
1508 RTX_FRAME_RELATED_P on appropriate insns. */
1509 cfa.reg = REGNO (dest);
1510 cfa_temp.reg = cfa.reg;
1511 cfa_temp.offset = cfa.offset;
1513 else
1515 /* Saving a register in a register. */
1516 gcc_assert (call_used_regs [REGNO (dest)]
1517 && (!fixed_regs [REGNO (dest)]
1518 /* For the SPARC and its register window. */
1519 || DWARF_FRAME_REGNUM (REGNO (src))
1520 == DWARF_FRAME_RETURN_COLUMN));
1521 queue_reg_save (label, src, dest, 0);
1523 break;
1525 case PLUS:
1526 case MINUS:
1527 case LO_SUM:
1528 if (dest == stack_pointer_rtx)
1530 /* Rule 2 */
1531 /* Adjusting SP. */
1532 switch (GET_CODE (XEXP (src, 1)))
1534 case CONST_INT:
1535 offset = INTVAL (XEXP (src, 1));
1536 break;
1537 case REG:
1538 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1539 == cfa_temp.reg);
1540 offset = cfa_temp.offset;
1541 break;
1542 default:
1543 gcc_unreachable ();
1546 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1548 /* Restoring SP from FP in the epilogue. */
1549 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1550 cfa.reg = STACK_POINTER_REGNUM;
1552 else if (GET_CODE (src) == LO_SUM)
1553 /* Assume we've set the source reg of the LO_SUM from sp. */
1555 else
1556 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1558 if (GET_CODE (src) != MINUS)
1559 offset = -offset;
1560 if (cfa.reg == STACK_POINTER_REGNUM)
1561 cfa.offset += offset;
1562 if (cfa_store.reg == STACK_POINTER_REGNUM)
1563 cfa_store.offset += offset;
1565 else if (dest == hard_frame_pointer_rtx)
1567 /* Rule 3 */
1568 /* Either setting the FP from an offset of the SP,
1569 or adjusting the FP */
1570 gcc_assert (frame_pointer_needed);
1572 gcc_assert (REG_P (XEXP (src, 0))
1573 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1574 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1575 offset = INTVAL (XEXP (src, 1));
1576 if (GET_CODE (src) != MINUS)
1577 offset = -offset;
1578 cfa.offset += offset;
1579 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1581 else
1583 gcc_assert (GET_CODE (src) != MINUS);
1585 /* Rule 4 */
1586 if (REG_P (XEXP (src, 0))
1587 && REGNO (XEXP (src, 0)) == cfa.reg
1588 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1590 /* Setting a temporary CFA register that will be copied
1591 into the FP later on. */
1592 offset = - INTVAL (XEXP (src, 1));
1593 cfa.offset += offset;
1594 cfa.reg = REGNO (dest);
1595 /* Or used to save regs to the stack. */
1596 cfa_temp.reg = cfa.reg;
1597 cfa_temp.offset = cfa.offset;
1600 /* Rule 5 */
1601 else if (REG_P (XEXP (src, 0))
1602 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1603 && XEXP (src, 1) == stack_pointer_rtx)
1605 /* Setting a scratch register that we will use instead
1606 of SP for saving registers to the stack. */
1607 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1608 cfa_store.reg = REGNO (dest);
1609 cfa_store.offset = cfa.offset - cfa_temp.offset;
1612 /* Rule 9 */
1613 else if (GET_CODE (src) == LO_SUM
1614 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1616 cfa_temp.reg = REGNO (dest);
1617 cfa_temp.offset = INTVAL (XEXP (src, 1));
1619 else
1620 gcc_unreachable ();
1622 break;
1624 /* Rule 6 */
1625 case CONST_INT:
1626 cfa_temp.reg = REGNO (dest);
1627 cfa_temp.offset = INTVAL (src);
1628 break;
1630 /* Rule 7 */
1631 case IOR:
1632 gcc_assert (REG_P (XEXP (src, 0))
1633 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1634 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1636 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1637 cfa_temp.reg = REGNO (dest);
1638 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1639 break;
1641 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1642 which will fill in all of the bits. */
1643 /* Rule 8 */
1644 case HIGH:
1645 break;
1647 /* Rule 15 */
1648 case UNSPEC:
1649 case UNSPEC_VOLATILE:
1650 gcc_assert (targetm.dwarf_handle_frame_unspec);
1651 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1652 break;
1654 default:
1655 gcc_unreachable ();
1658 def_cfa_1 (label, &cfa);
1659 break;
1661 case MEM:
1662 gcc_assert (REG_P (src));
1664 /* Saving a register to the stack. Make sure dest is relative to the
1665 CFA register. */
1666 switch (GET_CODE (XEXP (dest, 0)))
1668 /* Rule 10 */
1669 /* With a push. */
1670 case PRE_MODIFY:
1671 /* We can't handle variable size modifications. */
1672 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1673 == CONST_INT);
1674 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1676 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1677 && cfa_store.reg == STACK_POINTER_REGNUM);
1679 cfa_store.offset += offset;
1680 if (cfa.reg == STACK_POINTER_REGNUM)
1681 cfa.offset = cfa_store.offset;
1683 offset = -cfa_store.offset;
1684 break;
1686 /* Rule 11 */
1687 case PRE_INC:
1688 case PRE_DEC:
1689 offset = GET_MODE_SIZE (GET_MODE (dest));
1690 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1691 offset = -offset;
1693 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1694 && cfa_store.reg == STACK_POINTER_REGNUM);
1696 cfa_store.offset += offset;
1697 if (cfa.reg == STACK_POINTER_REGNUM)
1698 cfa.offset = cfa_store.offset;
1700 offset = -cfa_store.offset;
1701 break;
1703 /* Rule 12 */
1704 /* With an offset. */
1705 case PLUS:
1706 case MINUS:
1707 case LO_SUM:
1709 int regno;
1711 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1712 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1713 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1714 offset = -offset;
1716 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1718 if (cfa_store.reg == (unsigned) regno)
1719 offset -= cfa_store.offset;
1720 else
1722 gcc_assert (cfa_temp.reg == (unsigned) regno);
1723 offset -= cfa_temp.offset;
1726 break;
1728 /* Rule 13 */
1729 /* Without an offset. */
1730 case REG:
1732 int regno = REGNO (XEXP (dest, 0));
1734 if (cfa_store.reg == (unsigned) regno)
1735 offset = -cfa_store.offset;
1736 else
1738 gcc_assert (cfa_temp.reg == (unsigned) regno);
1739 offset = -cfa_temp.offset;
1742 break;
1744 /* Rule 14 */
1745 case POST_INC:
1746 gcc_assert (cfa_temp.reg
1747 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1748 offset = -cfa_temp.offset;
1749 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1750 break;
1752 default:
1753 gcc_unreachable ();
1756 if (REGNO (src) != STACK_POINTER_REGNUM
1757 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1758 && (unsigned) REGNO (src) == cfa.reg)
1760 /* We're storing the current CFA reg into the stack. */
1762 if (cfa.offset == 0)
1764 /* If the source register is exactly the CFA, assume
1765 we're saving SP like any other register; this happens
1766 on the ARM. */
1767 def_cfa_1 (label, &cfa);
1768 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1769 break;
1771 else
1773 /* Otherwise, we'll need to look in the stack to
1774 calculate the CFA. */
1775 rtx x = XEXP (dest, 0);
1777 if (!REG_P (x))
1778 x = XEXP (x, 0);
1779 gcc_assert (REG_P (x));
1781 cfa.reg = REGNO (x);
1782 cfa.base_offset = offset;
1783 cfa.indirect = 1;
1784 def_cfa_1 (label, &cfa);
1785 break;
1789 def_cfa_1 (label, &cfa);
1790 queue_reg_save (label, src, NULL_RTX, offset);
1791 break;
1793 default:
1794 gcc_unreachable ();
1798 /* Record call frame debugging information for INSN, which either
1799 sets SP or FP (adjusting how we calculate the frame address) or saves a
1800 register to the stack. If INSN is NULL_RTX, initialize our state.
1802 If AFTER_P is false, we're being called before the insn is emitted,
1803 otherwise after. Call instructions get invoked twice. */
1805 void
1806 dwarf2out_frame_debug (rtx insn, bool after_p)
1808 const char *label;
1809 rtx src;
1811 if (insn == NULL_RTX)
1813 size_t i;
1815 /* Flush any queued register saves. */
1816 flush_queued_reg_saves ();
1818 /* Set up state for generating call frame debug info. */
1819 lookup_cfa (&cfa);
1820 gcc_assert (cfa.reg
1821 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1823 cfa.reg = STACK_POINTER_REGNUM;
1824 cfa_store = cfa;
1825 cfa_temp.reg = -1;
1826 cfa_temp.offset = 0;
1828 for (i = 0; i < num_regs_saved_in_regs; i++)
1830 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1831 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1833 num_regs_saved_in_regs = 0;
1834 return;
1837 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1838 flush_queued_reg_saves ();
1840 if (! RTX_FRAME_RELATED_P (insn))
1842 if (!ACCUMULATE_OUTGOING_ARGS)
1843 dwarf2out_stack_adjust (insn, after_p);
1844 return;
1847 label = dwarf2out_cfi_label ();
1848 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1849 if (src)
1850 insn = XEXP (src, 0);
1851 else
1852 insn = PATTERN (insn);
1854 dwarf2out_frame_debug_expr (insn, label);
1857 #endif
1859 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1860 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1861 (enum dwarf_call_frame_info cfi);
1863 static enum dw_cfi_oprnd_type
1864 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1866 switch (cfi)
1868 case DW_CFA_nop:
1869 case DW_CFA_GNU_window_save:
1870 return dw_cfi_oprnd_unused;
1872 case DW_CFA_set_loc:
1873 case DW_CFA_advance_loc1:
1874 case DW_CFA_advance_loc2:
1875 case DW_CFA_advance_loc4:
1876 case DW_CFA_MIPS_advance_loc8:
1877 return dw_cfi_oprnd_addr;
1879 case DW_CFA_offset:
1880 case DW_CFA_offset_extended:
1881 case DW_CFA_def_cfa:
1882 case DW_CFA_offset_extended_sf:
1883 case DW_CFA_def_cfa_sf:
1884 case DW_CFA_restore_extended:
1885 case DW_CFA_undefined:
1886 case DW_CFA_same_value:
1887 case DW_CFA_def_cfa_register:
1888 case DW_CFA_register:
1889 return dw_cfi_oprnd_reg_num;
1891 case DW_CFA_def_cfa_offset:
1892 case DW_CFA_GNU_args_size:
1893 case DW_CFA_def_cfa_offset_sf:
1894 return dw_cfi_oprnd_offset;
1896 case DW_CFA_def_cfa_expression:
1897 case DW_CFA_expression:
1898 return dw_cfi_oprnd_loc;
1900 default:
1901 gcc_unreachable ();
1905 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1906 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1907 (enum dwarf_call_frame_info cfi);
1909 static enum dw_cfi_oprnd_type
1910 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1912 switch (cfi)
1914 case DW_CFA_def_cfa:
1915 case DW_CFA_def_cfa_sf:
1916 case DW_CFA_offset:
1917 case DW_CFA_offset_extended_sf:
1918 case DW_CFA_offset_extended:
1919 return dw_cfi_oprnd_offset;
1921 case DW_CFA_register:
1922 return dw_cfi_oprnd_reg_num;
1924 default:
1925 return dw_cfi_oprnd_unused;
1929 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1931 /* Map register numbers held in the call frame info that gcc has
1932 collected using DWARF_FRAME_REGNUM to those that should be output in
1933 .debug_frame and .eh_frame. */
1934 #ifndef DWARF2_FRAME_REG_OUT
1935 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1936 #endif
1938 /* Output a Call Frame Information opcode and its operand(s). */
1940 static void
1941 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1943 unsigned long r;
1944 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1945 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1946 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1947 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1948 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1949 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1951 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1952 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1953 "DW_CFA_offset, column 0x%lx", r);
1954 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1956 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1958 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1959 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1960 "DW_CFA_restore, column 0x%lx", r);
1962 else
1964 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1965 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1967 switch (cfi->dw_cfi_opc)
1969 case DW_CFA_set_loc:
1970 if (for_eh)
1971 dw2_asm_output_encoded_addr_rtx (
1972 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1973 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1974 NULL);
1975 else
1976 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1977 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1978 break;
1980 case DW_CFA_advance_loc1:
1981 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1982 fde->dw_fde_current_label, NULL);
1983 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1984 break;
1986 case DW_CFA_advance_loc2:
1987 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1988 fde->dw_fde_current_label, NULL);
1989 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1990 break;
1992 case DW_CFA_advance_loc4:
1993 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1994 fde->dw_fde_current_label, NULL);
1995 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1996 break;
1998 case DW_CFA_MIPS_advance_loc8:
1999 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2000 fde->dw_fde_current_label, NULL);
2001 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2002 break;
2004 case DW_CFA_offset_extended:
2005 case DW_CFA_def_cfa:
2006 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2007 dw2_asm_output_data_uleb128 (r, NULL);
2008 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2009 break;
2011 case DW_CFA_offset_extended_sf:
2012 case DW_CFA_def_cfa_sf:
2013 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2014 dw2_asm_output_data_uleb128 (r, NULL);
2015 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2016 break;
2018 case DW_CFA_restore_extended:
2019 case DW_CFA_undefined:
2020 case DW_CFA_same_value:
2021 case DW_CFA_def_cfa_register:
2022 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2023 dw2_asm_output_data_uleb128 (r, NULL);
2024 break;
2026 case DW_CFA_register:
2027 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2028 dw2_asm_output_data_uleb128 (r, NULL);
2029 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2030 dw2_asm_output_data_uleb128 (r, NULL);
2031 break;
2033 case DW_CFA_def_cfa_offset:
2034 case DW_CFA_GNU_args_size:
2035 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2036 break;
2038 case DW_CFA_def_cfa_offset_sf:
2039 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2040 break;
2042 case DW_CFA_GNU_window_save:
2043 break;
2045 case DW_CFA_def_cfa_expression:
2046 case DW_CFA_expression:
2047 output_cfa_loc (cfi);
2048 break;
2050 case DW_CFA_GNU_negative_offset_extended:
2051 /* Obsoleted by DW_CFA_offset_extended_sf. */
2052 gcc_unreachable ();
2054 default:
2055 break;
2060 /* Output the call frame information used to record information
2061 that relates to calculating the frame pointer, and records the
2062 location of saved registers. */
2064 static void
2065 output_call_frame_info (int for_eh)
2067 unsigned int i;
2068 dw_fde_ref fde;
2069 dw_cfi_ref cfi;
2070 char l1[20], l2[20], section_start_label[20];
2071 bool any_lsda_needed = false;
2072 char augmentation[6];
2073 int augmentation_size;
2074 int fde_encoding = DW_EH_PE_absptr;
2075 int per_encoding = DW_EH_PE_absptr;
2076 int lsda_encoding = DW_EH_PE_absptr;
2078 /* Don't emit a CIE if there won't be any FDEs. */
2079 if (fde_table_in_use == 0)
2080 return;
2082 /* If we make FDEs linkonce, we may have to emit an empty label for
2083 an FDE that wouldn't otherwise be emitted. We want to avoid
2084 having an FDE kept around when the function it refers to is
2085 discarded. Example where this matters: a primary function
2086 template in C++ requires EH information, but an explicit
2087 specialization doesn't. */
2088 if (TARGET_USES_WEAK_UNWIND_INFO
2089 && ! flag_asynchronous_unwind_tables
2090 && for_eh)
2091 for (i = 0; i < fde_table_in_use; i++)
2092 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2093 && !fde_table[i].uses_eh_lsda
2094 && ! DECL_WEAK (fde_table[i].decl))
2095 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2096 for_eh, /* empty */ 1);
2098 /* If we don't have any functions we'll want to unwind out of, don't
2099 emit any EH unwind information. Note that if exceptions aren't
2100 enabled, we won't have collected nothrow information, and if we
2101 asked for asynchronous tables, we always want this info. */
2102 if (for_eh)
2104 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2106 for (i = 0; i < fde_table_in_use; i++)
2107 if (fde_table[i].uses_eh_lsda)
2108 any_eh_needed = any_lsda_needed = true;
2109 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2110 any_eh_needed = true;
2111 else if (! fde_table[i].nothrow
2112 && ! fde_table[i].all_throwers_are_sibcalls)
2113 any_eh_needed = true;
2115 if (! any_eh_needed)
2116 return;
2119 /* We're going to be generating comments, so turn on app. */
2120 if (flag_debug_asm)
2121 app_enable ();
2123 if (for_eh)
2124 targetm.asm_out.eh_frame_section ();
2125 else
2126 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2128 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2129 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2131 /* Output the CIE. */
2132 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2133 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2134 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2135 "Length of Common Information Entry");
2136 ASM_OUTPUT_LABEL (asm_out_file, l1);
2138 /* Now that the CIE pointer is PC-relative for EH,
2139 use 0 to identify the CIE. */
2140 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2141 (for_eh ? 0 : DW_CIE_ID),
2142 "CIE Identifier Tag");
2144 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2146 augmentation[0] = 0;
2147 augmentation_size = 0;
2148 if (for_eh)
2150 char *p;
2152 /* Augmentation:
2153 z Indicates that a uleb128 is present to size the
2154 augmentation section.
2155 L Indicates the encoding (and thus presence) of
2156 an LSDA pointer in the FDE augmentation.
2157 R Indicates a non-default pointer encoding for
2158 FDE code pointers.
2159 P Indicates the presence of an encoding + language
2160 personality routine in the CIE augmentation. */
2162 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2163 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2164 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2166 p = augmentation + 1;
2167 if (eh_personality_libfunc)
2169 *p++ = 'P';
2170 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2172 if (any_lsda_needed)
2174 *p++ = 'L';
2175 augmentation_size += 1;
2177 if (fde_encoding != DW_EH_PE_absptr)
2179 *p++ = 'R';
2180 augmentation_size += 1;
2182 if (p > augmentation + 1)
2184 augmentation[0] = 'z';
2185 *p = '\0';
2188 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2189 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2191 int offset = ( 4 /* Length */
2192 + 4 /* CIE Id */
2193 + 1 /* CIE version */
2194 + strlen (augmentation) + 1 /* Augmentation */
2195 + size_of_uleb128 (1) /* Code alignment */
2196 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2197 + 1 /* RA column */
2198 + 1 /* Augmentation size */
2199 + 1 /* Personality encoding */ );
2200 int pad = -offset & (PTR_SIZE - 1);
2202 augmentation_size += pad;
2204 /* Augmentations should be small, so there's scarce need to
2205 iterate for a solution. Die if we exceed one uleb128 byte. */
2206 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2210 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2211 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2212 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2213 "CIE Data Alignment Factor");
2215 if (DW_CIE_VERSION == 1)
2216 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2217 else
2218 dw2_asm_output_data_uleb128 (DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2220 if (augmentation[0])
2222 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2223 if (eh_personality_libfunc)
2225 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2226 eh_data_format_name (per_encoding));
2227 dw2_asm_output_encoded_addr_rtx (per_encoding,
2228 eh_personality_libfunc, NULL);
2231 if (any_lsda_needed)
2232 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2233 eh_data_format_name (lsda_encoding));
2235 if (fde_encoding != DW_EH_PE_absptr)
2236 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2237 eh_data_format_name (fde_encoding));
2240 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2241 output_cfi (cfi, NULL, for_eh);
2243 /* Pad the CIE out to an address sized boundary. */
2244 ASM_OUTPUT_ALIGN (asm_out_file,
2245 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2246 ASM_OUTPUT_LABEL (asm_out_file, l2);
2248 /* Loop through all of the FDE's. */
2249 for (i = 0; i < fde_table_in_use; i++)
2251 fde = &fde_table[i];
2253 /* Don't emit EH unwind info for leaf functions that don't need it. */
2254 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2255 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2256 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2257 && !fde->uses_eh_lsda)
2258 continue;
2260 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2261 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2262 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2263 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2264 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2265 "FDE Length");
2266 ASM_OUTPUT_LABEL (asm_out_file, l1);
2268 if (for_eh)
2269 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2270 else
2271 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2272 "FDE CIE offset");
2274 if (for_eh)
2276 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2277 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2278 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2279 sym_ref,
2280 "FDE initial location");
2281 if (fde->dw_fde_switched_sections)
2283 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2284 fde->dw_fde_unlikely_section_label);
2285 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2286 fde->dw_fde_hot_section_label);
2287 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2288 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2289 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3,
2290 "FDE initial location");
2291 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2292 fde->dw_fde_hot_section_end_label,
2293 fde->dw_fde_hot_section_label,
2294 "FDE address range");
2295 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2,
2296 "FDE initial location");
2297 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2298 fde->dw_fde_unlikely_section_end_label,
2299 fde->dw_fde_unlikely_section_label,
2300 "FDE address range");
2302 else
2303 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2304 fde->dw_fde_end, fde->dw_fde_begin,
2305 "FDE address range");
2307 else
2309 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2310 "FDE initial location");
2311 if (fde->dw_fde_switched_sections)
2313 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2314 fde->dw_fde_hot_section_label,
2315 "FDE initial location");
2316 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2317 fde->dw_fde_hot_section_end_label,
2318 fde->dw_fde_hot_section_label,
2319 "FDE address range");
2320 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2321 fde->dw_fde_unlikely_section_label,
2322 "FDE initial location");
2323 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2324 fde->dw_fde_unlikely_section_end_label,
2325 fde->dw_fde_unlikely_section_label,
2326 "FDE address range");
2328 else
2329 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2330 fde->dw_fde_end, fde->dw_fde_begin,
2331 "FDE address range");
2334 if (augmentation[0])
2336 if (any_lsda_needed)
2338 int size = size_of_encoded_value (lsda_encoding);
2340 if (lsda_encoding == DW_EH_PE_aligned)
2342 int offset = ( 4 /* Length */
2343 + 4 /* CIE offset */
2344 + 2 * size_of_encoded_value (fde_encoding)
2345 + 1 /* Augmentation size */ );
2346 int pad = -offset & (PTR_SIZE - 1);
2348 size += pad;
2349 gcc_assert (size_of_uleb128 (size) == 1);
2352 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2354 if (fde->uses_eh_lsda)
2356 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2357 fde->funcdef_number);
2358 dw2_asm_output_encoded_addr_rtx (
2359 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2360 "Language Specific Data Area");
2362 else
2364 if (lsda_encoding == DW_EH_PE_aligned)
2365 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2366 dw2_asm_output_data
2367 (size_of_encoded_value (lsda_encoding), 0,
2368 "Language Specific Data Area (none)");
2371 else
2372 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2375 /* Loop through the Call Frame Instructions associated with
2376 this FDE. */
2377 fde->dw_fde_current_label = fde->dw_fde_begin;
2378 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2379 output_cfi (cfi, fde, for_eh);
2381 /* Pad the FDE out to an address sized boundary. */
2382 ASM_OUTPUT_ALIGN (asm_out_file,
2383 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2384 ASM_OUTPUT_LABEL (asm_out_file, l2);
2387 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2388 dw2_asm_output_data (4, 0, "End of Table");
2389 #ifdef MIPS_DEBUGGING_INFO
2390 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2391 get a value of 0. Putting .align 0 after the label fixes it. */
2392 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2393 #endif
2395 /* Turn off app to make assembly quicker. */
2396 if (flag_debug_asm)
2397 app_disable ();
2400 /* Output a marker (i.e. a label) for the beginning of a function, before
2401 the prologue. */
2403 void
2404 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2405 const char *file ATTRIBUTE_UNUSED)
2407 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2408 char * dup_label;
2409 dw_fde_ref fde;
2411 current_function_func_begin_label = NULL;
2413 #ifdef TARGET_UNWIND_INFO
2414 /* ??? current_function_func_begin_label is also used by except.c
2415 for call-site information. We must emit this label if it might
2416 be used. */
2417 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2418 && ! dwarf2out_do_frame ())
2419 return;
2420 #else
2421 if (! dwarf2out_do_frame ())
2422 return;
2423 #endif
2425 function_section (current_function_decl);
2426 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2427 current_function_funcdef_no);
2428 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2429 current_function_funcdef_no);
2430 dup_label = xstrdup (label);
2431 current_function_func_begin_label = dup_label;
2433 #ifdef TARGET_UNWIND_INFO
2434 /* We can elide the fde allocation if we're not emitting debug info. */
2435 if (! dwarf2out_do_frame ())
2436 return;
2437 #endif
2439 /* Expand the fde table if necessary. */
2440 if (fde_table_in_use == fde_table_allocated)
2442 fde_table_allocated += FDE_TABLE_INCREMENT;
2443 fde_table = ggc_realloc (fde_table,
2444 fde_table_allocated * sizeof (dw_fde_node));
2445 memset (fde_table + fde_table_in_use, 0,
2446 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2449 /* Record the FDE associated with this function. */
2450 current_funcdef_fde = fde_table_in_use;
2452 /* Add the new FDE at the end of the fde_table. */
2453 fde = &fde_table[fde_table_in_use++];
2454 fde->decl = current_function_decl;
2455 fde->dw_fde_begin = dup_label;
2456 fde->dw_fde_current_label = NULL;
2457 fde->dw_fde_hot_section_label = NULL;
2458 fde->dw_fde_hot_section_end_label = NULL;
2459 fde->dw_fde_unlikely_section_label = NULL;
2460 fde->dw_fde_unlikely_section_end_label = NULL;
2461 fde->dw_fde_switched_sections = false;
2462 fde->dw_fde_end = NULL;
2463 fde->dw_fde_cfi = NULL;
2464 fde->funcdef_number = current_function_funcdef_no;
2465 fde->nothrow = TREE_NOTHROW (current_function_decl);
2466 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2467 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2469 args_size = old_args_size = 0;
2471 /* We only want to output line number information for the genuine dwarf2
2472 prologue case, not the eh frame case. */
2473 #ifdef DWARF2_DEBUGGING_INFO
2474 if (file)
2475 dwarf2out_source_line (line, file);
2476 #endif
2479 /* Output a marker (i.e. a label) for the absolute end of the generated code
2480 for a function definition. This gets called *after* the epilogue code has
2481 been generated. */
2483 void
2484 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2485 const char *file ATTRIBUTE_UNUSED)
2487 dw_fde_ref fde;
2488 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2490 /* Output a label to mark the endpoint of the code generated for this
2491 function. */
2492 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2493 current_function_funcdef_no);
2494 ASM_OUTPUT_LABEL (asm_out_file, label);
2495 fde = &fde_table[fde_table_in_use - 1];
2496 fde->dw_fde_end = xstrdup (label);
2499 void
2500 dwarf2out_frame_init (void)
2502 /* Allocate the initial hunk of the fde_table. */
2503 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2504 fde_table_allocated = FDE_TABLE_INCREMENT;
2505 fde_table_in_use = 0;
2507 /* Generate the CFA instructions common to all FDE's. Do it now for the
2508 sake of lookup_cfa. */
2510 #ifdef DWARF2_UNWIND_INFO
2511 /* On entry, the Canonical Frame Address is at SP. */
2512 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2513 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2514 #endif
2517 void
2518 dwarf2out_frame_finish (void)
2520 /* Output call frame information. */
2521 if (write_symbols == DWARF2_DEBUG
2522 || write_symbols == VMS_AND_DWARF2_DEBUG
2523 #ifdef DWARF2_FRAME_INFO
2524 || DWARF2_FRAME_INFO
2525 #endif
2527 output_call_frame_info (0);
2529 #ifndef TARGET_UNWIND_INFO
2530 /* Output another copy for the unwinder. */
2531 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2532 output_call_frame_info (1);
2533 #endif
2535 #endif
2537 /* And now, the subset of the debugging information support code necessary
2538 for emitting location expressions. */
2540 /* We need some way to distinguish DW_OP_addr with a direct symbol
2541 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2542 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2545 typedef struct dw_val_struct *dw_val_ref;
2546 typedef struct die_struct *dw_die_ref;
2547 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2548 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2550 /* Each DIE may have a series of attribute/value pairs. Values
2551 can take on several forms. The forms that are used in this
2552 implementation are listed below. */
2554 enum dw_val_class
2556 dw_val_class_addr,
2557 dw_val_class_offset,
2558 dw_val_class_loc,
2559 dw_val_class_loc_list,
2560 dw_val_class_range_list,
2561 dw_val_class_const,
2562 dw_val_class_unsigned_const,
2563 dw_val_class_long_long,
2564 dw_val_class_vec,
2565 dw_val_class_flag,
2566 dw_val_class_die_ref,
2567 dw_val_class_fde_ref,
2568 dw_val_class_lbl_id,
2569 dw_val_class_lbl_offset,
2570 dw_val_class_str
2573 /* Describe a double word constant value. */
2574 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2576 typedef struct dw_long_long_struct GTY(())
2578 unsigned long hi;
2579 unsigned long low;
2581 dw_long_long_const;
2583 /* Describe a floating point constant value, or a vector constant value. */
2585 typedef struct dw_vec_struct GTY(())
2587 unsigned char * GTY((length ("%h.length"))) array;
2588 unsigned length;
2589 unsigned elt_size;
2591 dw_vec_const;
2593 /* The dw_val_node describes an attribute's value, as it is
2594 represented internally. */
2596 typedef struct dw_val_struct GTY(())
2598 enum dw_val_class val_class;
2599 union dw_val_struct_union
2601 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2602 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2603 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2604 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2605 HOST_WIDE_INT GTY ((default)) val_int;
2606 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2607 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2608 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2609 struct dw_val_die_union
2611 dw_die_ref die;
2612 int external;
2613 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2614 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2615 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2616 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2617 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2619 GTY ((desc ("%1.val_class"))) v;
2621 dw_val_node;
2623 /* Locations in memory are described using a sequence of stack machine
2624 operations. */
2626 typedef struct dw_loc_descr_struct GTY(())
2628 dw_loc_descr_ref dw_loc_next;
2629 enum dwarf_location_atom dw_loc_opc;
2630 dw_val_node dw_loc_oprnd1;
2631 dw_val_node dw_loc_oprnd2;
2632 int dw_loc_addr;
2634 dw_loc_descr_node;
2636 /* Location lists are ranges + location descriptions for that range,
2637 so you can track variables that are in different places over
2638 their entire life. */
2639 typedef struct dw_loc_list_struct GTY(())
2641 dw_loc_list_ref dw_loc_next;
2642 const char *begin; /* Label for begin address of range */
2643 const char *end; /* Label for end address of range */
2644 char *ll_symbol; /* Label for beginning of location list.
2645 Only on head of list */
2646 const char *section; /* Section this loclist is relative to */
2647 dw_loc_descr_ref expr;
2648 } dw_loc_list_node;
2650 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2652 static const char *dwarf_stack_op_name (unsigned);
2653 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2654 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2655 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2656 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2657 static unsigned long size_of_locs (dw_loc_descr_ref);
2658 static void output_loc_operands (dw_loc_descr_ref);
2659 static void output_loc_sequence (dw_loc_descr_ref);
2661 /* Convert a DWARF stack opcode into its string name. */
2663 static const char *
2664 dwarf_stack_op_name (unsigned int op)
2666 switch (op)
2668 case DW_OP_addr:
2669 case INTERNAL_DW_OP_tls_addr:
2670 return "DW_OP_addr";
2671 case DW_OP_deref:
2672 return "DW_OP_deref";
2673 case DW_OP_const1u:
2674 return "DW_OP_const1u";
2675 case DW_OP_const1s:
2676 return "DW_OP_const1s";
2677 case DW_OP_const2u:
2678 return "DW_OP_const2u";
2679 case DW_OP_const2s:
2680 return "DW_OP_const2s";
2681 case DW_OP_const4u:
2682 return "DW_OP_const4u";
2683 case DW_OP_const4s:
2684 return "DW_OP_const4s";
2685 case DW_OP_const8u:
2686 return "DW_OP_const8u";
2687 case DW_OP_const8s:
2688 return "DW_OP_const8s";
2689 case DW_OP_constu:
2690 return "DW_OP_constu";
2691 case DW_OP_consts:
2692 return "DW_OP_consts";
2693 case DW_OP_dup:
2694 return "DW_OP_dup";
2695 case DW_OP_drop:
2696 return "DW_OP_drop";
2697 case DW_OP_over:
2698 return "DW_OP_over";
2699 case DW_OP_pick:
2700 return "DW_OP_pick";
2701 case DW_OP_swap:
2702 return "DW_OP_swap";
2703 case DW_OP_rot:
2704 return "DW_OP_rot";
2705 case DW_OP_xderef:
2706 return "DW_OP_xderef";
2707 case DW_OP_abs:
2708 return "DW_OP_abs";
2709 case DW_OP_and:
2710 return "DW_OP_and";
2711 case DW_OP_div:
2712 return "DW_OP_div";
2713 case DW_OP_minus:
2714 return "DW_OP_minus";
2715 case DW_OP_mod:
2716 return "DW_OP_mod";
2717 case DW_OP_mul:
2718 return "DW_OP_mul";
2719 case DW_OP_neg:
2720 return "DW_OP_neg";
2721 case DW_OP_not:
2722 return "DW_OP_not";
2723 case DW_OP_or:
2724 return "DW_OP_or";
2725 case DW_OP_plus:
2726 return "DW_OP_plus";
2727 case DW_OP_plus_uconst:
2728 return "DW_OP_plus_uconst";
2729 case DW_OP_shl:
2730 return "DW_OP_shl";
2731 case DW_OP_shr:
2732 return "DW_OP_shr";
2733 case DW_OP_shra:
2734 return "DW_OP_shra";
2735 case DW_OP_xor:
2736 return "DW_OP_xor";
2737 case DW_OP_bra:
2738 return "DW_OP_bra";
2739 case DW_OP_eq:
2740 return "DW_OP_eq";
2741 case DW_OP_ge:
2742 return "DW_OP_ge";
2743 case DW_OP_gt:
2744 return "DW_OP_gt";
2745 case DW_OP_le:
2746 return "DW_OP_le";
2747 case DW_OP_lt:
2748 return "DW_OP_lt";
2749 case DW_OP_ne:
2750 return "DW_OP_ne";
2751 case DW_OP_skip:
2752 return "DW_OP_skip";
2753 case DW_OP_lit0:
2754 return "DW_OP_lit0";
2755 case DW_OP_lit1:
2756 return "DW_OP_lit1";
2757 case DW_OP_lit2:
2758 return "DW_OP_lit2";
2759 case DW_OP_lit3:
2760 return "DW_OP_lit3";
2761 case DW_OP_lit4:
2762 return "DW_OP_lit4";
2763 case DW_OP_lit5:
2764 return "DW_OP_lit5";
2765 case DW_OP_lit6:
2766 return "DW_OP_lit6";
2767 case DW_OP_lit7:
2768 return "DW_OP_lit7";
2769 case DW_OP_lit8:
2770 return "DW_OP_lit8";
2771 case DW_OP_lit9:
2772 return "DW_OP_lit9";
2773 case DW_OP_lit10:
2774 return "DW_OP_lit10";
2775 case DW_OP_lit11:
2776 return "DW_OP_lit11";
2777 case DW_OP_lit12:
2778 return "DW_OP_lit12";
2779 case DW_OP_lit13:
2780 return "DW_OP_lit13";
2781 case DW_OP_lit14:
2782 return "DW_OP_lit14";
2783 case DW_OP_lit15:
2784 return "DW_OP_lit15";
2785 case DW_OP_lit16:
2786 return "DW_OP_lit16";
2787 case DW_OP_lit17:
2788 return "DW_OP_lit17";
2789 case DW_OP_lit18:
2790 return "DW_OP_lit18";
2791 case DW_OP_lit19:
2792 return "DW_OP_lit19";
2793 case DW_OP_lit20:
2794 return "DW_OP_lit20";
2795 case DW_OP_lit21:
2796 return "DW_OP_lit21";
2797 case DW_OP_lit22:
2798 return "DW_OP_lit22";
2799 case DW_OP_lit23:
2800 return "DW_OP_lit23";
2801 case DW_OP_lit24:
2802 return "DW_OP_lit24";
2803 case DW_OP_lit25:
2804 return "DW_OP_lit25";
2805 case DW_OP_lit26:
2806 return "DW_OP_lit26";
2807 case DW_OP_lit27:
2808 return "DW_OP_lit27";
2809 case DW_OP_lit28:
2810 return "DW_OP_lit28";
2811 case DW_OP_lit29:
2812 return "DW_OP_lit29";
2813 case DW_OP_lit30:
2814 return "DW_OP_lit30";
2815 case DW_OP_lit31:
2816 return "DW_OP_lit31";
2817 case DW_OP_reg0:
2818 return "DW_OP_reg0";
2819 case DW_OP_reg1:
2820 return "DW_OP_reg1";
2821 case DW_OP_reg2:
2822 return "DW_OP_reg2";
2823 case DW_OP_reg3:
2824 return "DW_OP_reg3";
2825 case DW_OP_reg4:
2826 return "DW_OP_reg4";
2827 case DW_OP_reg5:
2828 return "DW_OP_reg5";
2829 case DW_OP_reg6:
2830 return "DW_OP_reg6";
2831 case DW_OP_reg7:
2832 return "DW_OP_reg7";
2833 case DW_OP_reg8:
2834 return "DW_OP_reg8";
2835 case DW_OP_reg9:
2836 return "DW_OP_reg9";
2837 case DW_OP_reg10:
2838 return "DW_OP_reg10";
2839 case DW_OP_reg11:
2840 return "DW_OP_reg11";
2841 case DW_OP_reg12:
2842 return "DW_OP_reg12";
2843 case DW_OP_reg13:
2844 return "DW_OP_reg13";
2845 case DW_OP_reg14:
2846 return "DW_OP_reg14";
2847 case DW_OP_reg15:
2848 return "DW_OP_reg15";
2849 case DW_OP_reg16:
2850 return "DW_OP_reg16";
2851 case DW_OP_reg17:
2852 return "DW_OP_reg17";
2853 case DW_OP_reg18:
2854 return "DW_OP_reg18";
2855 case DW_OP_reg19:
2856 return "DW_OP_reg19";
2857 case DW_OP_reg20:
2858 return "DW_OP_reg20";
2859 case DW_OP_reg21:
2860 return "DW_OP_reg21";
2861 case DW_OP_reg22:
2862 return "DW_OP_reg22";
2863 case DW_OP_reg23:
2864 return "DW_OP_reg23";
2865 case DW_OP_reg24:
2866 return "DW_OP_reg24";
2867 case DW_OP_reg25:
2868 return "DW_OP_reg25";
2869 case DW_OP_reg26:
2870 return "DW_OP_reg26";
2871 case DW_OP_reg27:
2872 return "DW_OP_reg27";
2873 case DW_OP_reg28:
2874 return "DW_OP_reg28";
2875 case DW_OP_reg29:
2876 return "DW_OP_reg29";
2877 case DW_OP_reg30:
2878 return "DW_OP_reg30";
2879 case DW_OP_reg31:
2880 return "DW_OP_reg31";
2881 case DW_OP_breg0:
2882 return "DW_OP_breg0";
2883 case DW_OP_breg1:
2884 return "DW_OP_breg1";
2885 case DW_OP_breg2:
2886 return "DW_OP_breg2";
2887 case DW_OP_breg3:
2888 return "DW_OP_breg3";
2889 case DW_OP_breg4:
2890 return "DW_OP_breg4";
2891 case DW_OP_breg5:
2892 return "DW_OP_breg5";
2893 case DW_OP_breg6:
2894 return "DW_OP_breg6";
2895 case DW_OP_breg7:
2896 return "DW_OP_breg7";
2897 case DW_OP_breg8:
2898 return "DW_OP_breg8";
2899 case DW_OP_breg9:
2900 return "DW_OP_breg9";
2901 case DW_OP_breg10:
2902 return "DW_OP_breg10";
2903 case DW_OP_breg11:
2904 return "DW_OP_breg11";
2905 case DW_OP_breg12:
2906 return "DW_OP_breg12";
2907 case DW_OP_breg13:
2908 return "DW_OP_breg13";
2909 case DW_OP_breg14:
2910 return "DW_OP_breg14";
2911 case DW_OP_breg15:
2912 return "DW_OP_breg15";
2913 case DW_OP_breg16:
2914 return "DW_OP_breg16";
2915 case DW_OP_breg17:
2916 return "DW_OP_breg17";
2917 case DW_OP_breg18:
2918 return "DW_OP_breg18";
2919 case DW_OP_breg19:
2920 return "DW_OP_breg19";
2921 case DW_OP_breg20:
2922 return "DW_OP_breg20";
2923 case DW_OP_breg21:
2924 return "DW_OP_breg21";
2925 case DW_OP_breg22:
2926 return "DW_OP_breg22";
2927 case DW_OP_breg23:
2928 return "DW_OP_breg23";
2929 case DW_OP_breg24:
2930 return "DW_OP_breg24";
2931 case DW_OP_breg25:
2932 return "DW_OP_breg25";
2933 case DW_OP_breg26:
2934 return "DW_OP_breg26";
2935 case DW_OP_breg27:
2936 return "DW_OP_breg27";
2937 case DW_OP_breg28:
2938 return "DW_OP_breg28";
2939 case DW_OP_breg29:
2940 return "DW_OP_breg29";
2941 case DW_OP_breg30:
2942 return "DW_OP_breg30";
2943 case DW_OP_breg31:
2944 return "DW_OP_breg31";
2945 case DW_OP_regx:
2946 return "DW_OP_regx";
2947 case DW_OP_fbreg:
2948 return "DW_OP_fbreg";
2949 case DW_OP_bregx:
2950 return "DW_OP_bregx";
2951 case DW_OP_piece:
2952 return "DW_OP_piece";
2953 case DW_OP_deref_size:
2954 return "DW_OP_deref_size";
2955 case DW_OP_xderef_size:
2956 return "DW_OP_xderef_size";
2957 case DW_OP_nop:
2958 return "DW_OP_nop";
2959 case DW_OP_push_object_address:
2960 return "DW_OP_push_object_address";
2961 case DW_OP_call2:
2962 return "DW_OP_call2";
2963 case DW_OP_call4:
2964 return "DW_OP_call4";
2965 case DW_OP_call_ref:
2966 return "DW_OP_call_ref";
2967 case DW_OP_GNU_push_tls_address:
2968 return "DW_OP_GNU_push_tls_address";
2969 default:
2970 return "OP_<unknown>";
2974 /* Return a pointer to a newly allocated location description. Location
2975 descriptions are simple expression terms that can be strung
2976 together to form more complicated location (address) descriptions. */
2978 static inline dw_loc_descr_ref
2979 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2980 unsigned HOST_WIDE_INT oprnd2)
2982 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2984 descr->dw_loc_opc = op;
2985 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2986 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2987 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2988 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2990 return descr;
2994 /* Add a location description term to a location description expression. */
2996 static inline void
2997 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2999 dw_loc_descr_ref *d;
3001 /* Find the end of the chain. */
3002 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3005 *d = descr;
3008 /* Return the size of a location descriptor. */
3010 static unsigned long
3011 size_of_loc_descr (dw_loc_descr_ref loc)
3013 unsigned long size = 1;
3015 switch (loc->dw_loc_opc)
3017 case DW_OP_addr:
3018 case INTERNAL_DW_OP_tls_addr:
3019 size += DWARF2_ADDR_SIZE;
3020 break;
3021 case DW_OP_const1u:
3022 case DW_OP_const1s:
3023 size += 1;
3024 break;
3025 case DW_OP_const2u:
3026 case DW_OP_const2s:
3027 size += 2;
3028 break;
3029 case DW_OP_const4u:
3030 case DW_OP_const4s:
3031 size += 4;
3032 break;
3033 case DW_OP_const8u:
3034 case DW_OP_const8s:
3035 size += 8;
3036 break;
3037 case DW_OP_constu:
3038 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3039 break;
3040 case DW_OP_consts:
3041 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3042 break;
3043 case DW_OP_pick:
3044 size += 1;
3045 break;
3046 case DW_OP_plus_uconst:
3047 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3048 break;
3049 case DW_OP_skip:
3050 case DW_OP_bra:
3051 size += 2;
3052 break;
3053 case DW_OP_breg0:
3054 case DW_OP_breg1:
3055 case DW_OP_breg2:
3056 case DW_OP_breg3:
3057 case DW_OP_breg4:
3058 case DW_OP_breg5:
3059 case DW_OP_breg6:
3060 case DW_OP_breg7:
3061 case DW_OP_breg8:
3062 case DW_OP_breg9:
3063 case DW_OP_breg10:
3064 case DW_OP_breg11:
3065 case DW_OP_breg12:
3066 case DW_OP_breg13:
3067 case DW_OP_breg14:
3068 case DW_OP_breg15:
3069 case DW_OP_breg16:
3070 case DW_OP_breg17:
3071 case DW_OP_breg18:
3072 case DW_OP_breg19:
3073 case DW_OP_breg20:
3074 case DW_OP_breg21:
3075 case DW_OP_breg22:
3076 case DW_OP_breg23:
3077 case DW_OP_breg24:
3078 case DW_OP_breg25:
3079 case DW_OP_breg26:
3080 case DW_OP_breg27:
3081 case DW_OP_breg28:
3082 case DW_OP_breg29:
3083 case DW_OP_breg30:
3084 case DW_OP_breg31:
3085 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3086 break;
3087 case DW_OP_regx:
3088 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3089 break;
3090 case DW_OP_fbreg:
3091 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3092 break;
3093 case DW_OP_bregx:
3094 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3095 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3096 break;
3097 case DW_OP_piece:
3098 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3099 break;
3100 case DW_OP_deref_size:
3101 case DW_OP_xderef_size:
3102 size += 1;
3103 break;
3104 case DW_OP_call2:
3105 size += 2;
3106 break;
3107 case DW_OP_call4:
3108 size += 4;
3109 break;
3110 case DW_OP_call_ref:
3111 size += DWARF2_ADDR_SIZE;
3112 break;
3113 default:
3114 break;
3117 return size;
3120 /* Return the size of a series of location descriptors. */
3122 static unsigned long
3123 size_of_locs (dw_loc_descr_ref loc)
3125 unsigned long size;
3127 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3129 loc->dw_loc_addr = size;
3130 size += size_of_loc_descr (loc);
3133 return size;
3136 /* Output location description stack opcode's operands (if any). */
3138 static void
3139 output_loc_operands (dw_loc_descr_ref loc)
3141 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3142 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3144 switch (loc->dw_loc_opc)
3146 #ifdef DWARF2_DEBUGGING_INFO
3147 case DW_OP_addr:
3148 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3149 break;
3150 case DW_OP_const2u:
3151 case DW_OP_const2s:
3152 dw2_asm_output_data (2, val1->v.val_int, NULL);
3153 break;
3154 case DW_OP_const4u:
3155 case DW_OP_const4s:
3156 dw2_asm_output_data (4, val1->v.val_int, NULL);
3157 break;
3158 case DW_OP_const8u:
3159 case DW_OP_const8s:
3160 gcc_assert (HOST_BITS_PER_LONG >= 64);
3161 dw2_asm_output_data (8, val1->v.val_int, NULL);
3162 break;
3163 case DW_OP_skip:
3164 case DW_OP_bra:
3166 int offset;
3168 gcc_assert (val1->val_class == dw_val_class_loc);
3169 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3171 dw2_asm_output_data (2, offset, NULL);
3173 break;
3174 #else
3175 case DW_OP_addr:
3176 case DW_OP_const2u:
3177 case DW_OP_const2s:
3178 case DW_OP_const4u:
3179 case DW_OP_const4s:
3180 case DW_OP_const8u:
3181 case DW_OP_const8s:
3182 case DW_OP_skip:
3183 case DW_OP_bra:
3184 /* We currently don't make any attempt to make sure these are
3185 aligned properly like we do for the main unwind info, so
3186 don't support emitting things larger than a byte if we're
3187 only doing unwinding. */
3188 gcc_unreachable ();
3189 #endif
3190 case DW_OP_const1u:
3191 case DW_OP_const1s:
3192 dw2_asm_output_data (1, val1->v.val_int, NULL);
3193 break;
3194 case DW_OP_constu:
3195 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3196 break;
3197 case DW_OP_consts:
3198 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3199 break;
3200 case DW_OP_pick:
3201 dw2_asm_output_data (1, val1->v.val_int, NULL);
3202 break;
3203 case DW_OP_plus_uconst:
3204 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3205 break;
3206 case DW_OP_breg0:
3207 case DW_OP_breg1:
3208 case DW_OP_breg2:
3209 case DW_OP_breg3:
3210 case DW_OP_breg4:
3211 case DW_OP_breg5:
3212 case DW_OP_breg6:
3213 case DW_OP_breg7:
3214 case DW_OP_breg8:
3215 case DW_OP_breg9:
3216 case DW_OP_breg10:
3217 case DW_OP_breg11:
3218 case DW_OP_breg12:
3219 case DW_OP_breg13:
3220 case DW_OP_breg14:
3221 case DW_OP_breg15:
3222 case DW_OP_breg16:
3223 case DW_OP_breg17:
3224 case DW_OP_breg18:
3225 case DW_OP_breg19:
3226 case DW_OP_breg20:
3227 case DW_OP_breg21:
3228 case DW_OP_breg22:
3229 case DW_OP_breg23:
3230 case DW_OP_breg24:
3231 case DW_OP_breg25:
3232 case DW_OP_breg26:
3233 case DW_OP_breg27:
3234 case DW_OP_breg28:
3235 case DW_OP_breg29:
3236 case DW_OP_breg30:
3237 case DW_OP_breg31:
3238 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3239 break;
3240 case DW_OP_regx:
3241 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3242 break;
3243 case DW_OP_fbreg:
3244 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3245 break;
3246 case DW_OP_bregx:
3247 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3248 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3249 break;
3250 case DW_OP_piece:
3251 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3252 break;
3253 case DW_OP_deref_size:
3254 case DW_OP_xderef_size:
3255 dw2_asm_output_data (1, val1->v.val_int, NULL);
3256 break;
3258 case INTERNAL_DW_OP_tls_addr:
3259 #ifdef ASM_OUTPUT_DWARF_DTPREL
3260 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3261 val1->v.val_addr);
3262 fputc ('\n', asm_out_file);
3263 #else
3264 gcc_unreachable ();
3265 #endif
3266 break;
3268 default:
3269 /* Other codes have no operands. */
3270 break;
3274 /* Output a sequence of location operations. */
3276 static void
3277 output_loc_sequence (dw_loc_descr_ref loc)
3279 for (; loc != NULL; loc = loc->dw_loc_next)
3281 /* Output the opcode. */
3282 dw2_asm_output_data (1, loc->dw_loc_opc,
3283 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3285 /* Output the operand(s) (if any). */
3286 output_loc_operands (loc);
3290 /* This routine will generate the correct assembly data for a location
3291 description based on a cfi entry with a complex address. */
3293 static void
3294 output_cfa_loc (dw_cfi_ref cfi)
3296 dw_loc_descr_ref loc;
3297 unsigned long size;
3299 /* Output the size of the block. */
3300 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3301 size = size_of_locs (loc);
3302 dw2_asm_output_data_uleb128 (size, NULL);
3304 /* Now output the operations themselves. */
3305 output_loc_sequence (loc);
3308 /* This function builds a dwarf location descriptor sequence from
3309 a dw_cfa_location. */
3311 static struct dw_loc_descr_struct *
3312 build_cfa_loc (dw_cfa_location *cfa)
3314 struct dw_loc_descr_struct *head, *tmp;
3316 gcc_assert (cfa->indirect);
3318 if (cfa->base_offset)
3320 if (cfa->reg <= 31)
3321 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3322 else
3323 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3325 else if (cfa->reg <= 31)
3326 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3327 else
3328 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3330 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3331 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3332 add_loc_descr (&head, tmp);
3333 if (cfa->offset != 0)
3335 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3336 add_loc_descr (&head, tmp);
3339 return head;
3342 /* This function fills in aa dw_cfa_location structure from a dwarf location
3343 descriptor sequence. */
3345 static void
3346 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3348 struct dw_loc_descr_struct *ptr;
3349 cfa->offset = 0;
3350 cfa->base_offset = 0;
3351 cfa->indirect = 0;
3352 cfa->reg = -1;
3354 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3356 enum dwarf_location_atom op = ptr->dw_loc_opc;
3358 switch (op)
3360 case DW_OP_reg0:
3361 case DW_OP_reg1:
3362 case DW_OP_reg2:
3363 case DW_OP_reg3:
3364 case DW_OP_reg4:
3365 case DW_OP_reg5:
3366 case DW_OP_reg6:
3367 case DW_OP_reg7:
3368 case DW_OP_reg8:
3369 case DW_OP_reg9:
3370 case DW_OP_reg10:
3371 case DW_OP_reg11:
3372 case DW_OP_reg12:
3373 case DW_OP_reg13:
3374 case DW_OP_reg14:
3375 case DW_OP_reg15:
3376 case DW_OP_reg16:
3377 case DW_OP_reg17:
3378 case DW_OP_reg18:
3379 case DW_OP_reg19:
3380 case DW_OP_reg20:
3381 case DW_OP_reg21:
3382 case DW_OP_reg22:
3383 case DW_OP_reg23:
3384 case DW_OP_reg24:
3385 case DW_OP_reg25:
3386 case DW_OP_reg26:
3387 case DW_OP_reg27:
3388 case DW_OP_reg28:
3389 case DW_OP_reg29:
3390 case DW_OP_reg30:
3391 case DW_OP_reg31:
3392 cfa->reg = op - DW_OP_reg0;
3393 break;
3394 case DW_OP_regx:
3395 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3396 break;
3397 case DW_OP_breg0:
3398 case DW_OP_breg1:
3399 case DW_OP_breg2:
3400 case DW_OP_breg3:
3401 case DW_OP_breg4:
3402 case DW_OP_breg5:
3403 case DW_OP_breg6:
3404 case DW_OP_breg7:
3405 case DW_OP_breg8:
3406 case DW_OP_breg9:
3407 case DW_OP_breg10:
3408 case DW_OP_breg11:
3409 case DW_OP_breg12:
3410 case DW_OP_breg13:
3411 case DW_OP_breg14:
3412 case DW_OP_breg15:
3413 case DW_OP_breg16:
3414 case DW_OP_breg17:
3415 case DW_OP_breg18:
3416 case DW_OP_breg19:
3417 case DW_OP_breg20:
3418 case DW_OP_breg21:
3419 case DW_OP_breg22:
3420 case DW_OP_breg23:
3421 case DW_OP_breg24:
3422 case DW_OP_breg25:
3423 case DW_OP_breg26:
3424 case DW_OP_breg27:
3425 case DW_OP_breg28:
3426 case DW_OP_breg29:
3427 case DW_OP_breg30:
3428 case DW_OP_breg31:
3429 cfa->reg = op - DW_OP_breg0;
3430 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3431 break;
3432 case DW_OP_bregx:
3433 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3434 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3435 break;
3436 case DW_OP_deref:
3437 cfa->indirect = 1;
3438 break;
3439 case DW_OP_plus_uconst:
3440 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3441 break;
3442 default:
3443 internal_error ("DW_LOC_OP %s not implemented\n",
3444 dwarf_stack_op_name (ptr->dw_loc_opc));
3448 #endif /* .debug_frame support */
3450 /* And now, the support for symbolic debugging information. */
3451 #ifdef DWARF2_DEBUGGING_INFO
3453 /* .debug_str support. */
3454 static int output_indirect_string (void **, void *);
3456 static void dwarf2out_init (const char *);
3457 static void dwarf2out_finish (const char *);
3458 static void dwarf2out_define (unsigned int, const char *);
3459 static void dwarf2out_undef (unsigned int, const char *);
3460 static void dwarf2out_start_source_file (unsigned, const char *);
3461 static void dwarf2out_end_source_file (unsigned);
3462 static void dwarf2out_begin_block (unsigned, unsigned);
3463 static void dwarf2out_end_block (unsigned, unsigned);
3464 static bool dwarf2out_ignore_block (tree);
3465 static void dwarf2out_global_decl (tree);
3466 static void dwarf2out_type_decl (tree, int);
3467 static void dwarf2out_imported_module_or_decl (tree, tree);
3468 static void dwarf2out_abstract_function (tree);
3469 static void dwarf2out_var_location (rtx);
3470 static void dwarf2out_begin_function (tree);
3471 static void dwarf2out_switch_text_section (void);
3473 /* The debug hooks structure. */
3475 const struct gcc_debug_hooks dwarf2_debug_hooks =
3477 dwarf2out_init,
3478 dwarf2out_finish,
3479 dwarf2out_define,
3480 dwarf2out_undef,
3481 dwarf2out_start_source_file,
3482 dwarf2out_end_source_file,
3483 dwarf2out_begin_block,
3484 dwarf2out_end_block,
3485 dwarf2out_ignore_block,
3486 dwarf2out_source_line,
3487 dwarf2out_begin_prologue,
3488 debug_nothing_int_charstar, /* end_prologue */
3489 dwarf2out_end_epilogue,
3490 dwarf2out_begin_function,
3491 debug_nothing_int, /* end_function */
3492 dwarf2out_decl, /* function_decl */
3493 dwarf2out_global_decl,
3494 dwarf2out_type_decl, /* type_decl */
3495 dwarf2out_imported_module_or_decl,
3496 debug_nothing_tree, /* deferred_inline_function */
3497 /* The DWARF 2 backend tries to reduce debugging bloat by not
3498 emitting the abstract description of inline functions until
3499 something tries to reference them. */
3500 dwarf2out_abstract_function, /* outlining_inline_function */
3501 debug_nothing_rtx, /* label */
3502 debug_nothing_int, /* handle_pch */
3503 dwarf2out_var_location,
3504 dwarf2out_switch_text_section,
3505 1 /* start_end_main_source_file */
3507 #endif
3509 /* NOTE: In the comments in this file, many references are made to
3510 "Debugging Information Entries". This term is abbreviated as `DIE'
3511 throughout the remainder of this file. */
3513 /* An internal representation of the DWARF output is built, and then
3514 walked to generate the DWARF debugging info. The walk of the internal
3515 representation is done after the entire program has been compiled.
3516 The types below are used to describe the internal representation. */
3518 /* Various DIE's use offsets relative to the beginning of the
3519 .debug_info section to refer to each other. */
3521 typedef long int dw_offset;
3523 /* Define typedefs here to avoid circular dependencies. */
3525 typedef struct dw_attr_struct *dw_attr_ref;
3526 typedef struct dw_line_info_struct *dw_line_info_ref;
3527 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3528 typedef struct pubname_struct *pubname_ref;
3529 typedef struct dw_ranges_struct *dw_ranges_ref;
3531 /* Each entry in the line_info_table maintains the file and
3532 line number associated with the label generated for that
3533 entry. The label gives the PC value associated with
3534 the line number entry. */
3536 typedef struct dw_line_info_struct GTY(())
3538 unsigned long dw_file_num;
3539 unsigned long dw_line_num;
3541 dw_line_info_entry;
3543 /* Line information for functions in separate sections; each one gets its
3544 own sequence. */
3545 typedef struct dw_separate_line_info_struct GTY(())
3547 unsigned long dw_file_num;
3548 unsigned long dw_line_num;
3549 unsigned long function;
3551 dw_separate_line_info_entry;
3553 /* Each DIE attribute has a field specifying the attribute kind,
3554 a link to the next attribute in the chain, and an attribute value.
3555 Attributes are typically linked below the DIE they modify. */
3557 typedef struct dw_attr_struct GTY(())
3559 enum dwarf_attribute dw_attr;
3560 dw_attr_ref dw_attr_next;
3561 dw_val_node dw_attr_val;
3563 dw_attr_node;
3565 /* The Debugging Information Entry (DIE) structure */
3567 typedef struct die_struct GTY(())
3569 enum dwarf_tag die_tag;
3570 char *die_symbol;
3571 dw_attr_ref die_attr;
3572 dw_die_ref die_parent;
3573 dw_die_ref die_child;
3574 dw_die_ref die_sib;
3575 dw_die_ref die_definition; /* ref from a specification to its definition */
3576 dw_offset die_offset;
3577 unsigned long die_abbrev;
3578 int die_mark;
3579 unsigned int decl_id;
3581 die_node;
3583 /* The pubname structure */
3585 typedef struct pubname_struct GTY(())
3587 dw_die_ref die;
3588 char *name;
3590 pubname_entry;
3592 struct dw_ranges_struct GTY(())
3594 int block_num;
3597 /* The limbo die list structure. */
3598 typedef struct limbo_die_struct GTY(())
3600 dw_die_ref die;
3601 tree created_for;
3602 struct limbo_die_struct *next;
3604 limbo_die_node;
3606 /* How to start an assembler comment. */
3607 #ifndef ASM_COMMENT_START
3608 #define ASM_COMMENT_START ";#"
3609 #endif
3611 /* Define a macro which returns nonzero for a TYPE_DECL which was
3612 implicitly generated for a tagged type.
3614 Note that unlike the gcc front end (which generates a NULL named
3615 TYPE_DECL node for each complete tagged type, each array type, and
3616 each function type node created) the g++ front end generates a
3617 _named_ TYPE_DECL node for each tagged type node created.
3618 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3619 generate a DW_TAG_typedef DIE for them. */
3621 #define TYPE_DECL_IS_STUB(decl) \
3622 (DECL_NAME (decl) == NULL_TREE \
3623 || (DECL_ARTIFICIAL (decl) \
3624 && is_tagged_type (TREE_TYPE (decl)) \
3625 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3626 /* This is necessary for stub decls that \
3627 appear in nested inline functions. */ \
3628 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3629 && (decl_ultimate_origin (decl) \
3630 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3632 /* Information concerning the compilation unit's programming
3633 language, and compiler version. */
3635 /* Fixed size portion of the DWARF compilation unit header. */
3636 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3637 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3639 /* Fixed size portion of public names info. */
3640 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3642 /* Fixed size portion of the address range info. */
3643 #define DWARF_ARANGES_HEADER_SIZE \
3644 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3645 DWARF2_ADDR_SIZE * 2) \
3646 - DWARF_INITIAL_LENGTH_SIZE)
3648 /* Size of padding portion in the address range info. It must be
3649 aligned to twice the pointer size. */
3650 #define DWARF_ARANGES_PAD_SIZE \
3651 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3652 DWARF2_ADDR_SIZE * 2) \
3653 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3655 /* Use assembler line directives if available. */
3656 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3657 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3658 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3659 #else
3660 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3661 #endif
3662 #endif
3664 /* Minimum line offset in a special line info. opcode.
3665 This value was chosen to give a reasonable range of values. */
3666 #define DWARF_LINE_BASE -10
3668 /* First special line opcode - leave room for the standard opcodes. */
3669 #define DWARF_LINE_OPCODE_BASE 10
3671 /* Range of line offsets in a special line info. opcode. */
3672 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3674 /* Flag that indicates the initial value of the is_stmt_start flag.
3675 In the present implementation, we do not mark any lines as
3676 the beginning of a source statement, because that information
3677 is not made available by the GCC front-end. */
3678 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3680 #ifdef DWARF2_DEBUGGING_INFO
3681 /* This location is used by calc_die_sizes() to keep track
3682 the offset of each DIE within the .debug_info section. */
3683 static unsigned long next_die_offset;
3684 #endif
3686 /* Record the root of the DIE's built for the current compilation unit. */
3687 static GTY(()) dw_die_ref comp_unit_die;
3689 /* A list of DIEs with a NULL parent waiting to be relocated. */
3690 static GTY(()) limbo_die_node *limbo_die_list;
3692 /* Filenames referenced by this compilation unit. */
3693 static GTY(()) varray_type file_table;
3694 static GTY(()) varray_type file_table_emitted;
3695 static GTY(()) size_t file_table_last_lookup_index;
3697 /* A hash table of references to DIE's that describe declarations.
3698 The key is a DECL_UID() which is a unique number identifying each decl. */
3699 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3701 /* Node of the variable location list. */
3702 struct var_loc_node GTY ((chain_next ("%h.next")))
3704 rtx GTY (()) var_loc_note;
3705 const char * GTY (()) label;
3706 const char * GTY (()) section_label;
3707 struct var_loc_node * GTY (()) next;
3710 /* Variable location list. */
3711 struct var_loc_list_def GTY (())
3713 struct var_loc_node * GTY (()) first;
3715 /* Do not mark the last element of the chained list because
3716 it is marked through the chain. */
3717 struct var_loc_node * GTY ((skip ("%h"))) last;
3719 /* DECL_UID of the variable decl. */
3720 unsigned int decl_id;
3722 typedef struct var_loc_list_def var_loc_list;
3725 /* Table of decl location linked lists. */
3726 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3728 /* A pointer to the base of a list of references to DIE's that
3729 are uniquely identified by their tag, presence/absence of
3730 children DIE's, and list of attribute/value pairs. */
3731 static GTY((length ("abbrev_die_table_allocated")))
3732 dw_die_ref *abbrev_die_table;
3734 /* Number of elements currently allocated for abbrev_die_table. */
3735 static GTY(()) unsigned abbrev_die_table_allocated;
3737 /* Number of elements in type_die_table currently in use. */
3738 static GTY(()) unsigned abbrev_die_table_in_use;
3740 /* Size (in elements) of increments by which we may expand the
3741 abbrev_die_table. */
3742 #define ABBREV_DIE_TABLE_INCREMENT 256
3744 /* A pointer to the base of a table that contains line information
3745 for each source code line in .text in the compilation unit. */
3746 static GTY((length ("line_info_table_allocated")))
3747 dw_line_info_ref line_info_table;
3749 /* Number of elements currently allocated for line_info_table. */
3750 static GTY(()) unsigned line_info_table_allocated;
3752 /* Number of elements in line_info_table currently in use. */
3753 static GTY(()) unsigned line_info_table_in_use;
3755 /* A pointer to the base of a table that contains line information
3756 for each source code line outside of .text in the compilation unit. */
3757 static GTY ((length ("separate_line_info_table_allocated")))
3758 dw_separate_line_info_ref separate_line_info_table;
3760 /* Number of elements currently allocated for separate_line_info_table. */
3761 static GTY(()) unsigned separate_line_info_table_allocated;
3763 /* Number of elements in separate_line_info_table currently in use. */
3764 static GTY(()) unsigned separate_line_info_table_in_use;
3766 /* Size (in elements) of increments by which we may expand the
3767 line_info_table. */
3768 #define LINE_INFO_TABLE_INCREMENT 1024
3770 /* A pointer to the base of a table that contains a list of publicly
3771 accessible names. */
3772 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3774 /* Number of elements currently allocated for pubname_table. */
3775 static GTY(()) unsigned pubname_table_allocated;
3777 /* Number of elements in pubname_table currently in use. */
3778 static GTY(()) unsigned pubname_table_in_use;
3780 /* Size (in elements) of increments by which we may expand the
3781 pubname_table. */
3782 #define PUBNAME_TABLE_INCREMENT 64
3784 /* Array of dies for which we should generate .debug_arange info. */
3785 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3787 /* Number of elements currently allocated for arange_table. */
3788 static GTY(()) unsigned arange_table_allocated;
3790 /* Number of elements in arange_table currently in use. */
3791 static GTY(()) unsigned arange_table_in_use;
3793 /* Size (in elements) of increments by which we may expand the
3794 arange_table. */
3795 #define ARANGE_TABLE_INCREMENT 64
3797 /* Array of dies for which we should generate .debug_ranges info. */
3798 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3800 /* Number of elements currently allocated for ranges_table. */
3801 static GTY(()) unsigned ranges_table_allocated;
3803 /* Number of elements in ranges_table currently in use. */
3804 static GTY(()) unsigned ranges_table_in_use;
3806 /* Size (in elements) of increments by which we may expand the
3807 ranges_table. */
3808 #define RANGES_TABLE_INCREMENT 64
3810 /* Whether we have location lists that need outputting */
3811 static GTY(()) unsigned have_location_lists;
3813 /* Unique label counter. */
3814 static GTY(()) unsigned int loclabel_num;
3816 #ifdef DWARF2_DEBUGGING_INFO
3817 /* Record whether the function being analyzed contains inlined functions. */
3818 static int current_function_has_inlines;
3819 #endif
3820 #if 0 && defined (MIPS_DEBUGGING_INFO)
3821 static int comp_unit_has_inlines;
3822 #endif
3824 /* Number of file tables emitted in maybe_emit_file(). */
3825 static GTY(()) int emitcount = 0;
3827 /* Number of internal labels generated by gen_internal_sym(). */
3828 static GTY(()) int label_num;
3830 #ifdef DWARF2_DEBUGGING_INFO
3832 /* Forward declarations for functions defined in this file. */
3834 static int is_pseudo_reg (rtx);
3835 static tree type_main_variant (tree);
3836 static int is_tagged_type (tree);
3837 static const char *dwarf_tag_name (unsigned);
3838 static const char *dwarf_attr_name (unsigned);
3839 static const char *dwarf_form_name (unsigned);
3840 static tree decl_ultimate_origin (tree);
3841 static tree block_ultimate_origin (tree);
3842 static tree decl_class_context (tree);
3843 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3844 static inline enum dw_val_class AT_class (dw_attr_ref);
3845 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3846 static inline unsigned AT_flag (dw_attr_ref);
3847 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3848 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3849 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3850 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3851 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3852 unsigned long);
3853 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3854 unsigned int, unsigned char *);
3855 static hashval_t debug_str_do_hash (const void *);
3856 static int debug_str_eq (const void *, const void *);
3857 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3858 static inline const char *AT_string (dw_attr_ref);
3859 static int AT_string_form (dw_attr_ref);
3860 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3861 static void add_AT_specification (dw_die_ref, dw_die_ref);
3862 static inline dw_die_ref AT_ref (dw_attr_ref);
3863 static inline int AT_ref_external (dw_attr_ref);
3864 static inline void set_AT_ref_external (dw_attr_ref, int);
3865 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3866 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3867 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3868 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3869 dw_loc_list_ref);
3870 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3871 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3872 static inline rtx AT_addr (dw_attr_ref);
3873 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3874 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3875 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3876 unsigned HOST_WIDE_INT);
3877 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3878 unsigned long);
3879 static inline const char *AT_lbl (dw_attr_ref);
3880 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3881 static const char *get_AT_low_pc (dw_die_ref);
3882 static const char *get_AT_hi_pc (dw_die_ref);
3883 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3884 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3885 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3886 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3887 static bool is_c_family (void);
3888 static bool is_cxx (void);
3889 static bool is_java (void);
3890 static bool is_fortran (void);
3891 static bool is_ada (void);
3892 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3893 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3894 static inline void free_die (dw_die_ref);
3895 static void remove_children (dw_die_ref);
3896 static void add_child_die (dw_die_ref, dw_die_ref);
3897 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3898 static dw_die_ref lookup_type_die (tree);
3899 static void equate_type_number_to_die (tree, dw_die_ref);
3900 static hashval_t decl_die_table_hash (const void *);
3901 static int decl_die_table_eq (const void *, const void *);
3902 static dw_die_ref lookup_decl_die (tree);
3903 static hashval_t decl_loc_table_hash (const void *);
3904 static int decl_loc_table_eq (const void *, const void *);
3905 static var_loc_list *lookup_decl_loc (tree);
3906 static void equate_decl_number_to_die (tree, dw_die_ref);
3907 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3908 static void print_spaces (FILE *);
3909 static void print_die (dw_die_ref, FILE *);
3910 static void print_dwarf_line_table (FILE *);
3911 static void reverse_die_lists (dw_die_ref);
3912 static void reverse_all_dies (dw_die_ref);
3913 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3914 static dw_die_ref pop_compile_unit (dw_die_ref);
3915 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3916 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3917 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3918 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3919 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3920 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3921 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3922 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3923 static void compute_section_prefix (dw_die_ref);
3924 static int is_type_die (dw_die_ref);
3925 static int is_comdat_die (dw_die_ref);
3926 static int is_symbol_die (dw_die_ref);
3927 static void assign_symbol_names (dw_die_ref);
3928 static void break_out_includes (dw_die_ref);
3929 static hashval_t htab_cu_hash (const void *);
3930 static int htab_cu_eq (const void *, const void *);
3931 static void htab_cu_del (void *);
3932 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3933 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3934 static void add_sibling_attributes (dw_die_ref);
3935 static void build_abbrev_table (dw_die_ref);
3936 static void output_location_lists (dw_die_ref);
3937 static int constant_size (long unsigned);
3938 static unsigned long size_of_die (dw_die_ref);
3939 static void calc_die_sizes (dw_die_ref);
3940 static void mark_dies (dw_die_ref);
3941 static void unmark_dies (dw_die_ref);
3942 static void unmark_all_dies (dw_die_ref);
3943 static unsigned long size_of_pubnames (void);
3944 static unsigned long size_of_aranges (void);
3945 static enum dwarf_form value_format (dw_attr_ref);
3946 static void output_value_format (dw_attr_ref);
3947 static void output_abbrev_section (void);
3948 static void output_die_symbol (dw_die_ref);
3949 static void output_die (dw_die_ref);
3950 static void output_compilation_unit_header (void);
3951 static void output_comp_unit (dw_die_ref, int);
3952 static const char *dwarf2_name (tree, int);
3953 static void add_pubname (tree, dw_die_ref);
3954 static void output_pubnames (void);
3955 static void add_arange (tree, dw_die_ref);
3956 static void output_aranges (void);
3957 static unsigned int add_ranges (tree);
3958 static void output_ranges (void);
3959 static void output_line_info (void);
3960 static void output_file_names (void);
3961 static dw_die_ref base_type_die (tree);
3962 static tree root_type (tree);
3963 static int is_base_type (tree);
3964 static bool is_subrange_type (tree);
3965 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3966 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3967 static int type_is_enum (tree);
3968 static unsigned int dbx_reg_number (rtx);
3969 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3970 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3971 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3972 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3973 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3974 static int is_based_loc (rtx);
3975 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3976 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3977 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3978 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3979 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3980 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3981 static tree field_type (tree);
3982 static unsigned int simple_type_align_in_bits (tree);
3983 static unsigned int simple_decl_align_in_bits (tree);
3984 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3985 static HOST_WIDE_INT field_byte_offset (tree);
3986 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3987 dw_loc_descr_ref);
3988 static void add_data_member_location_attribute (dw_die_ref, tree);
3989 static void add_const_value_attribute (dw_die_ref, rtx);
3990 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
3991 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
3992 static void insert_float (rtx, unsigned char *);
3993 static rtx rtl_for_decl_location (tree);
3994 static void add_location_or_const_value_attribute (dw_die_ref, tree,
3995 enum dwarf_attribute);
3996 static void tree_add_const_value_attribute (dw_die_ref, tree);
3997 static void add_name_attribute (dw_die_ref, const char *);
3998 static void add_comp_dir_attribute (dw_die_ref);
3999 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4000 static void add_subscript_info (dw_die_ref, tree);
4001 static void add_byte_size_attribute (dw_die_ref, tree);
4002 static void add_bit_offset_attribute (dw_die_ref, tree);
4003 static void add_bit_size_attribute (dw_die_ref, tree);
4004 static void add_prototyped_attribute (dw_die_ref, tree);
4005 static void add_abstract_origin_attribute (dw_die_ref, tree);
4006 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4007 static void add_src_coords_attributes (dw_die_ref, tree);
4008 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4009 static void push_decl_scope (tree);
4010 static void pop_decl_scope (void);
4011 static dw_die_ref scope_die_for (tree, dw_die_ref);
4012 static inline int local_scope_p (dw_die_ref);
4013 static inline int class_or_namespace_scope_p (dw_die_ref);
4014 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4015 static void add_calling_convention_attribute (dw_die_ref, tree);
4016 static const char *type_tag (tree);
4017 static tree member_declared_type (tree);
4018 #if 0
4019 static const char *decl_start_label (tree);
4020 #endif
4021 static void gen_array_type_die (tree, dw_die_ref);
4022 #if 0
4023 static void gen_entry_point_die (tree, dw_die_ref);
4024 #endif
4025 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4026 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4027 static void gen_inlined_union_type_die (tree, dw_die_ref);
4028 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4029 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4030 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4031 static void gen_formal_types_die (tree, dw_die_ref);
4032 static void gen_subprogram_die (tree, dw_die_ref);
4033 static void gen_variable_die (tree, dw_die_ref);
4034 static void gen_label_die (tree, dw_die_ref);
4035 static void gen_lexical_block_die (tree, dw_die_ref, int);
4036 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4037 static void gen_field_die (tree, dw_die_ref);
4038 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4039 static dw_die_ref gen_compile_unit_die (const char *);
4040 static void gen_string_type_die (tree, dw_die_ref);
4041 static void gen_inheritance_die (tree, tree, dw_die_ref);
4042 static void gen_member_die (tree, dw_die_ref);
4043 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4044 static void gen_subroutine_type_die (tree, dw_die_ref);
4045 static void gen_typedef_die (tree, dw_die_ref);
4046 static void gen_type_die (tree, dw_die_ref);
4047 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4048 static void gen_block_die (tree, dw_die_ref, int);
4049 static void decls_for_scope (tree, dw_die_ref, int);
4050 static int is_redundant_typedef (tree);
4051 static void gen_namespace_die (tree);
4052 static void gen_decl_die (tree, dw_die_ref);
4053 static dw_die_ref force_decl_die (tree);
4054 static dw_die_ref force_type_die (tree);
4055 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4056 static void declare_in_namespace (tree, dw_die_ref);
4057 static unsigned lookup_filename (const char *);
4058 static void init_file_table (void);
4059 static void retry_incomplete_types (void);
4060 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4061 static void splice_child_die (dw_die_ref, dw_die_ref);
4062 static int file_info_cmp (const void *, const void *);
4063 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4064 const char *, const char *, unsigned);
4065 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4066 const char *, const char *,
4067 const char *);
4068 static void output_loc_list (dw_loc_list_ref);
4069 static char *gen_internal_sym (const char *);
4071 static void prune_unmark_dies (dw_die_ref);
4072 static void prune_unused_types_mark (dw_die_ref, int);
4073 static void prune_unused_types_walk (dw_die_ref);
4074 static void prune_unused_types_walk_attribs (dw_die_ref);
4075 static void prune_unused_types_prune (dw_die_ref);
4076 static void prune_unused_types (void);
4077 static int maybe_emit_file (int);
4079 /* Section names used to hold DWARF debugging information. */
4080 #ifndef DEBUG_INFO_SECTION
4081 #define DEBUG_INFO_SECTION ".debug_info"
4082 #endif
4083 #ifndef DEBUG_ABBREV_SECTION
4084 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4085 #endif
4086 #ifndef DEBUG_ARANGES_SECTION
4087 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4088 #endif
4089 #ifndef DEBUG_MACINFO_SECTION
4090 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4091 #endif
4092 #ifndef DEBUG_LINE_SECTION
4093 #define DEBUG_LINE_SECTION ".debug_line"
4094 #endif
4095 #ifndef DEBUG_LOC_SECTION
4096 #define DEBUG_LOC_SECTION ".debug_loc"
4097 #endif
4098 #ifndef DEBUG_PUBNAMES_SECTION
4099 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4100 #endif
4101 #ifndef DEBUG_STR_SECTION
4102 #define DEBUG_STR_SECTION ".debug_str"
4103 #endif
4104 #ifndef DEBUG_RANGES_SECTION
4105 #define DEBUG_RANGES_SECTION ".debug_ranges"
4106 #endif
4108 /* Standard ELF section names for compiled code and data. */
4109 #ifndef TEXT_SECTION_NAME
4110 #define TEXT_SECTION_NAME ".text"
4111 #endif
4113 /* Section flags for .debug_str section. */
4114 #define DEBUG_STR_SECTION_FLAGS \
4115 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4116 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4117 : SECTION_DEBUG)
4119 /* Labels we insert at beginning sections we can reference instead of
4120 the section names themselves. */
4122 #ifndef TEXT_SECTION_LABEL
4123 #define TEXT_SECTION_LABEL "Ltext"
4124 #endif
4125 #ifndef COLD_TEXT_SECTION_LABEL
4126 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4127 #endif
4128 #ifndef DEBUG_LINE_SECTION_LABEL
4129 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4130 #endif
4131 #ifndef DEBUG_INFO_SECTION_LABEL
4132 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4133 #endif
4134 #ifndef DEBUG_ABBREV_SECTION_LABEL
4135 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4136 #endif
4137 #ifndef DEBUG_LOC_SECTION_LABEL
4138 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4139 #endif
4140 #ifndef DEBUG_RANGES_SECTION_LABEL
4141 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4142 #endif
4143 #ifndef DEBUG_MACINFO_SECTION_LABEL
4144 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4145 #endif
4147 /* Definitions of defaults for formats and names of various special
4148 (artificial) labels which may be generated within this file (when the -g
4149 options is used and DWARF2_DEBUGGING_INFO is in effect.
4150 If necessary, these may be overridden from within the tm.h file, but
4151 typically, overriding these defaults is unnecessary. */
4153 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4154 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4155 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4156 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4157 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4158 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4159 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4160 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4161 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4162 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4164 #ifndef TEXT_END_LABEL
4165 #define TEXT_END_LABEL "Letext"
4166 #endif
4167 #ifndef COLD_END_LABEL
4168 #define COLD_END_LABEL "Letext_cold"
4169 #endif
4170 #ifndef BLOCK_BEGIN_LABEL
4171 #define BLOCK_BEGIN_LABEL "LBB"
4172 #endif
4173 #ifndef BLOCK_END_LABEL
4174 #define BLOCK_END_LABEL "LBE"
4175 #endif
4176 #ifndef LINE_CODE_LABEL
4177 #define LINE_CODE_LABEL "LM"
4178 #endif
4179 #ifndef SEPARATE_LINE_CODE_LABEL
4180 #define SEPARATE_LINE_CODE_LABEL "LSM"
4181 #endif
4183 /* We allow a language front-end to designate a function that is to be
4184 called to "demangle" any name before it is put into a DIE. */
4186 static const char *(*demangle_name_func) (const char *);
4188 void
4189 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4191 demangle_name_func = func;
4194 /* Test if rtl node points to a pseudo register. */
4196 static inline int
4197 is_pseudo_reg (rtx rtl)
4199 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4200 || (GET_CODE (rtl) == SUBREG
4201 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4204 /* Return a reference to a type, with its const and volatile qualifiers
4205 removed. */
4207 static inline tree
4208 type_main_variant (tree type)
4210 type = TYPE_MAIN_VARIANT (type);
4212 /* ??? There really should be only one main variant among any group of
4213 variants of a given type (and all of the MAIN_VARIANT values for all
4214 members of the group should point to that one type) but sometimes the C
4215 front-end messes this up for array types, so we work around that bug
4216 here. */
4217 if (TREE_CODE (type) == ARRAY_TYPE)
4218 while (type != TYPE_MAIN_VARIANT (type))
4219 type = TYPE_MAIN_VARIANT (type);
4221 return type;
4224 /* Return nonzero if the given type node represents a tagged type. */
4226 static inline int
4227 is_tagged_type (tree type)
4229 enum tree_code code = TREE_CODE (type);
4231 return (code == RECORD_TYPE || code == UNION_TYPE
4232 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4235 /* Convert a DIE tag into its string name. */
4237 static const char *
4238 dwarf_tag_name (unsigned int tag)
4240 switch (tag)
4242 case DW_TAG_padding:
4243 return "DW_TAG_padding";
4244 case DW_TAG_array_type:
4245 return "DW_TAG_array_type";
4246 case DW_TAG_class_type:
4247 return "DW_TAG_class_type";
4248 case DW_TAG_entry_point:
4249 return "DW_TAG_entry_point";
4250 case DW_TAG_enumeration_type:
4251 return "DW_TAG_enumeration_type";
4252 case DW_TAG_formal_parameter:
4253 return "DW_TAG_formal_parameter";
4254 case DW_TAG_imported_declaration:
4255 return "DW_TAG_imported_declaration";
4256 case DW_TAG_label:
4257 return "DW_TAG_label";
4258 case DW_TAG_lexical_block:
4259 return "DW_TAG_lexical_block";
4260 case DW_TAG_member:
4261 return "DW_TAG_member";
4262 case DW_TAG_pointer_type:
4263 return "DW_TAG_pointer_type";
4264 case DW_TAG_reference_type:
4265 return "DW_TAG_reference_type";
4266 case DW_TAG_compile_unit:
4267 return "DW_TAG_compile_unit";
4268 case DW_TAG_string_type:
4269 return "DW_TAG_string_type";
4270 case DW_TAG_structure_type:
4271 return "DW_TAG_structure_type";
4272 case DW_TAG_subroutine_type:
4273 return "DW_TAG_subroutine_type";
4274 case DW_TAG_typedef:
4275 return "DW_TAG_typedef";
4276 case DW_TAG_union_type:
4277 return "DW_TAG_union_type";
4278 case DW_TAG_unspecified_parameters:
4279 return "DW_TAG_unspecified_parameters";
4280 case DW_TAG_variant:
4281 return "DW_TAG_variant";
4282 case DW_TAG_common_block:
4283 return "DW_TAG_common_block";
4284 case DW_TAG_common_inclusion:
4285 return "DW_TAG_common_inclusion";
4286 case DW_TAG_inheritance:
4287 return "DW_TAG_inheritance";
4288 case DW_TAG_inlined_subroutine:
4289 return "DW_TAG_inlined_subroutine";
4290 case DW_TAG_module:
4291 return "DW_TAG_module";
4292 case DW_TAG_ptr_to_member_type:
4293 return "DW_TAG_ptr_to_member_type";
4294 case DW_TAG_set_type:
4295 return "DW_TAG_set_type";
4296 case DW_TAG_subrange_type:
4297 return "DW_TAG_subrange_type";
4298 case DW_TAG_with_stmt:
4299 return "DW_TAG_with_stmt";
4300 case DW_TAG_access_declaration:
4301 return "DW_TAG_access_declaration";
4302 case DW_TAG_base_type:
4303 return "DW_TAG_base_type";
4304 case DW_TAG_catch_block:
4305 return "DW_TAG_catch_block";
4306 case DW_TAG_const_type:
4307 return "DW_TAG_const_type";
4308 case DW_TAG_constant:
4309 return "DW_TAG_constant";
4310 case DW_TAG_enumerator:
4311 return "DW_TAG_enumerator";
4312 case DW_TAG_file_type:
4313 return "DW_TAG_file_type";
4314 case DW_TAG_friend:
4315 return "DW_TAG_friend";
4316 case DW_TAG_namelist:
4317 return "DW_TAG_namelist";
4318 case DW_TAG_namelist_item:
4319 return "DW_TAG_namelist_item";
4320 case DW_TAG_namespace:
4321 return "DW_TAG_namespace";
4322 case DW_TAG_packed_type:
4323 return "DW_TAG_packed_type";
4324 case DW_TAG_subprogram:
4325 return "DW_TAG_subprogram";
4326 case DW_TAG_template_type_param:
4327 return "DW_TAG_template_type_param";
4328 case DW_TAG_template_value_param:
4329 return "DW_TAG_template_value_param";
4330 case DW_TAG_thrown_type:
4331 return "DW_TAG_thrown_type";
4332 case DW_TAG_try_block:
4333 return "DW_TAG_try_block";
4334 case DW_TAG_variant_part:
4335 return "DW_TAG_variant_part";
4336 case DW_TAG_variable:
4337 return "DW_TAG_variable";
4338 case DW_TAG_volatile_type:
4339 return "DW_TAG_volatile_type";
4340 case DW_TAG_imported_module:
4341 return "DW_TAG_imported_module";
4342 case DW_TAG_MIPS_loop:
4343 return "DW_TAG_MIPS_loop";
4344 case DW_TAG_format_label:
4345 return "DW_TAG_format_label";
4346 case DW_TAG_function_template:
4347 return "DW_TAG_function_template";
4348 case DW_TAG_class_template:
4349 return "DW_TAG_class_template";
4350 case DW_TAG_GNU_BINCL:
4351 return "DW_TAG_GNU_BINCL";
4352 case DW_TAG_GNU_EINCL:
4353 return "DW_TAG_GNU_EINCL";
4354 default:
4355 return "DW_TAG_<unknown>";
4359 /* Convert a DWARF attribute code into its string name. */
4361 static const char *
4362 dwarf_attr_name (unsigned int attr)
4364 switch (attr)
4366 case DW_AT_sibling:
4367 return "DW_AT_sibling";
4368 case DW_AT_location:
4369 return "DW_AT_location";
4370 case DW_AT_name:
4371 return "DW_AT_name";
4372 case DW_AT_ordering:
4373 return "DW_AT_ordering";
4374 case DW_AT_subscr_data:
4375 return "DW_AT_subscr_data";
4376 case DW_AT_byte_size:
4377 return "DW_AT_byte_size";
4378 case DW_AT_bit_offset:
4379 return "DW_AT_bit_offset";
4380 case DW_AT_bit_size:
4381 return "DW_AT_bit_size";
4382 case DW_AT_element_list:
4383 return "DW_AT_element_list";
4384 case DW_AT_stmt_list:
4385 return "DW_AT_stmt_list";
4386 case DW_AT_low_pc:
4387 return "DW_AT_low_pc";
4388 case DW_AT_high_pc:
4389 return "DW_AT_high_pc";
4390 case DW_AT_language:
4391 return "DW_AT_language";
4392 case DW_AT_member:
4393 return "DW_AT_member";
4394 case DW_AT_discr:
4395 return "DW_AT_discr";
4396 case DW_AT_discr_value:
4397 return "DW_AT_discr_value";
4398 case DW_AT_visibility:
4399 return "DW_AT_visibility";
4400 case DW_AT_import:
4401 return "DW_AT_import";
4402 case DW_AT_string_length:
4403 return "DW_AT_string_length";
4404 case DW_AT_common_reference:
4405 return "DW_AT_common_reference";
4406 case DW_AT_comp_dir:
4407 return "DW_AT_comp_dir";
4408 case DW_AT_const_value:
4409 return "DW_AT_const_value";
4410 case DW_AT_containing_type:
4411 return "DW_AT_containing_type";
4412 case DW_AT_default_value:
4413 return "DW_AT_default_value";
4414 case DW_AT_inline:
4415 return "DW_AT_inline";
4416 case DW_AT_is_optional:
4417 return "DW_AT_is_optional";
4418 case DW_AT_lower_bound:
4419 return "DW_AT_lower_bound";
4420 case DW_AT_producer:
4421 return "DW_AT_producer";
4422 case DW_AT_prototyped:
4423 return "DW_AT_prototyped";
4424 case DW_AT_return_addr:
4425 return "DW_AT_return_addr";
4426 case DW_AT_start_scope:
4427 return "DW_AT_start_scope";
4428 case DW_AT_stride_size:
4429 return "DW_AT_stride_size";
4430 case DW_AT_upper_bound:
4431 return "DW_AT_upper_bound";
4432 case DW_AT_abstract_origin:
4433 return "DW_AT_abstract_origin";
4434 case DW_AT_accessibility:
4435 return "DW_AT_accessibility";
4436 case DW_AT_address_class:
4437 return "DW_AT_address_class";
4438 case DW_AT_artificial:
4439 return "DW_AT_artificial";
4440 case DW_AT_base_types:
4441 return "DW_AT_base_types";
4442 case DW_AT_calling_convention:
4443 return "DW_AT_calling_convention";
4444 case DW_AT_count:
4445 return "DW_AT_count";
4446 case DW_AT_data_member_location:
4447 return "DW_AT_data_member_location";
4448 case DW_AT_decl_column:
4449 return "DW_AT_decl_column";
4450 case DW_AT_decl_file:
4451 return "DW_AT_decl_file";
4452 case DW_AT_decl_line:
4453 return "DW_AT_decl_line";
4454 case DW_AT_declaration:
4455 return "DW_AT_declaration";
4456 case DW_AT_discr_list:
4457 return "DW_AT_discr_list";
4458 case DW_AT_encoding:
4459 return "DW_AT_encoding";
4460 case DW_AT_external:
4461 return "DW_AT_external";
4462 case DW_AT_frame_base:
4463 return "DW_AT_frame_base";
4464 case DW_AT_friend:
4465 return "DW_AT_friend";
4466 case DW_AT_identifier_case:
4467 return "DW_AT_identifier_case";
4468 case DW_AT_macro_info:
4469 return "DW_AT_macro_info";
4470 case DW_AT_namelist_items:
4471 return "DW_AT_namelist_items";
4472 case DW_AT_priority:
4473 return "DW_AT_priority";
4474 case DW_AT_segment:
4475 return "DW_AT_segment";
4476 case DW_AT_specification:
4477 return "DW_AT_specification";
4478 case DW_AT_static_link:
4479 return "DW_AT_static_link";
4480 case DW_AT_type:
4481 return "DW_AT_type";
4482 case DW_AT_use_location:
4483 return "DW_AT_use_location";
4484 case DW_AT_variable_parameter:
4485 return "DW_AT_variable_parameter";
4486 case DW_AT_virtuality:
4487 return "DW_AT_virtuality";
4488 case DW_AT_vtable_elem_location:
4489 return "DW_AT_vtable_elem_location";
4491 case DW_AT_allocated:
4492 return "DW_AT_allocated";
4493 case DW_AT_associated:
4494 return "DW_AT_associated";
4495 case DW_AT_data_location:
4496 return "DW_AT_data_location";
4497 case DW_AT_stride:
4498 return "DW_AT_stride";
4499 case DW_AT_entry_pc:
4500 return "DW_AT_entry_pc";
4501 case DW_AT_use_UTF8:
4502 return "DW_AT_use_UTF8";
4503 case DW_AT_extension:
4504 return "DW_AT_extension";
4505 case DW_AT_ranges:
4506 return "DW_AT_ranges";
4507 case DW_AT_trampoline:
4508 return "DW_AT_trampoline";
4509 case DW_AT_call_column:
4510 return "DW_AT_call_column";
4511 case DW_AT_call_file:
4512 return "DW_AT_call_file";
4513 case DW_AT_call_line:
4514 return "DW_AT_call_line";
4516 case DW_AT_MIPS_fde:
4517 return "DW_AT_MIPS_fde";
4518 case DW_AT_MIPS_loop_begin:
4519 return "DW_AT_MIPS_loop_begin";
4520 case DW_AT_MIPS_tail_loop_begin:
4521 return "DW_AT_MIPS_tail_loop_begin";
4522 case DW_AT_MIPS_epilog_begin:
4523 return "DW_AT_MIPS_epilog_begin";
4524 case DW_AT_MIPS_loop_unroll_factor:
4525 return "DW_AT_MIPS_loop_unroll_factor";
4526 case DW_AT_MIPS_software_pipeline_depth:
4527 return "DW_AT_MIPS_software_pipeline_depth";
4528 case DW_AT_MIPS_linkage_name:
4529 return "DW_AT_MIPS_linkage_name";
4530 case DW_AT_MIPS_stride:
4531 return "DW_AT_MIPS_stride";
4532 case DW_AT_MIPS_abstract_name:
4533 return "DW_AT_MIPS_abstract_name";
4534 case DW_AT_MIPS_clone_origin:
4535 return "DW_AT_MIPS_clone_origin";
4536 case DW_AT_MIPS_has_inlines:
4537 return "DW_AT_MIPS_has_inlines";
4539 case DW_AT_sf_names:
4540 return "DW_AT_sf_names";
4541 case DW_AT_src_info:
4542 return "DW_AT_src_info";
4543 case DW_AT_mac_info:
4544 return "DW_AT_mac_info";
4545 case DW_AT_src_coords:
4546 return "DW_AT_src_coords";
4547 case DW_AT_body_begin:
4548 return "DW_AT_body_begin";
4549 case DW_AT_body_end:
4550 return "DW_AT_body_end";
4551 case DW_AT_GNU_vector:
4552 return "DW_AT_GNU_vector";
4554 case DW_AT_VMS_rtnbeg_pd_address:
4555 return "DW_AT_VMS_rtnbeg_pd_address";
4557 default:
4558 return "DW_AT_<unknown>";
4562 /* Convert a DWARF value form code into its string name. */
4564 static const char *
4565 dwarf_form_name (unsigned int form)
4567 switch (form)
4569 case DW_FORM_addr:
4570 return "DW_FORM_addr";
4571 case DW_FORM_block2:
4572 return "DW_FORM_block2";
4573 case DW_FORM_block4:
4574 return "DW_FORM_block4";
4575 case DW_FORM_data2:
4576 return "DW_FORM_data2";
4577 case DW_FORM_data4:
4578 return "DW_FORM_data4";
4579 case DW_FORM_data8:
4580 return "DW_FORM_data8";
4581 case DW_FORM_string:
4582 return "DW_FORM_string";
4583 case DW_FORM_block:
4584 return "DW_FORM_block";
4585 case DW_FORM_block1:
4586 return "DW_FORM_block1";
4587 case DW_FORM_data1:
4588 return "DW_FORM_data1";
4589 case DW_FORM_flag:
4590 return "DW_FORM_flag";
4591 case DW_FORM_sdata:
4592 return "DW_FORM_sdata";
4593 case DW_FORM_strp:
4594 return "DW_FORM_strp";
4595 case DW_FORM_udata:
4596 return "DW_FORM_udata";
4597 case DW_FORM_ref_addr:
4598 return "DW_FORM_ref_addr";
4599 case DW_FORM_ref1:
4600 return "DW_FORM_ref1";
4601 case DW_FORM_ref2:
4602 return "DW_FORM_ref2";
4603 case DW_FORM_ref4:
4604 return "DW_FORM_ref4";
4605 case DW_FORM_ref8:
4606 return "DW_FORM_ref8";
4607 case DW_FORM_ref_udata:
4608 return "DW_FORM_ref_udata";
4609 case DW_FORM_indirect:
4610 return "DW_FORM_indirect";
4611 default:
4612 return "DW_FORM_<unknown>";
4616 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4617 instance of an inlined instance of a decl which is local to an inline
4618 function, so we have to trace all of the way back through the origin chain
4619 to find out what sort of node actually served as the original seed for the
4620 given block. */
4622 static tree
4623 decl_ultimate_origin (tree decl)
4625 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4626 nodes in the function to point to themselves; ignore that if
4627 we're trying to output the abstract instance of this function. */
4628 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4629 return NULL_TREE;
4631 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4632 most distant ancestor, this should never happen. */
4633 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4635 return DECL_ABSTRACT_ORIGIN (decl);
4638 /* Determine the "ultimate origin" of a block. The block may be an inlined
4639 instance of an inlined instance of a block which is local to an inline
4640 function, so we have to trace all of the way back through the origin chain
4641 to find out what sort of node actually served as the original seed for the
4642 given block. */
4644 static tree
4645 block_ultimate_origin (tree block)
4647 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4649 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4650 nodes in the function to point to themselves; ignore that if
4651 we're trying to output the abstract instance of this function. */
4652 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4653 return NULL_TREE;
4655 if (immediate_origin == NULL_TREE)
4656 return NULL_TREE;
4657 else
4659 tree ret_val;
4660 tree lookahead = immediate_origin;
4664 ret_val = lookahead;
4665 lookahead = (TREE_CODE (ret_val) == BLOCK
4666 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4668 while (lookahead != NULL && lookahead != ret_val);
4670 /* The block's abstract origin chain may not be the *ultimate* origin of
4671 the block. It could lead to a DECL that has an abstract origin set.
4672 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4673 will give us if it has one). Note that DECL's abstract origins are
4674 supposed to be the most distant ancestor (or so decl_ultimate_origin
4675 claims), so we don't need to loop following the DECL origins. */
4676 if (DECL_P (ret_val))
4677 return DECL_ORIGIN (ret_val);
4679 return ret_val;
4683 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4684 of a virtual function may refer to a base class, so we check the 'this'
4685 parameter. */
4687 static tree
4688 decl_class_context (tree decl)
4690 tree context = NULL_TREE;
4692 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4693 context = DECL_CONTEXT (decl);
4694 else
4695 context = TYPE_MAIN_VARIANT
4696 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4698 if (context && !TYPE_P (context))
4699 context = NULL_TREE;
4701 return context;
4704 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4705 addition order, and correct that in reverse_all_dies. */
4707 static inline void
4708 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4710 if (die != NULL && attr != NULL)
4712 attr->dw_attr_next = die->die_attr;
4713 die->die_attr = attr;
4717 static inline enum dw_val_class
4718 AT_class (dw_attr_ref a)
4720 return a->dw_attr_val.val_class;
4723 /* Add a flag value attribute to a DIE. */
4725 static inline void
4726 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4728 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4730 attr->dw_attr_next = NULL;
4731 attr->dw_attr = attr_kind;
4732 attr->dw_attr_val.val_class = dw_val_class_flag;
4733 attr->dw_attr_val.v.val_flag = flag;
4734 add_dwarf_attr (die, attr);
4737 static inline unsigned
4738 AT_flag (dw_attr_ref a)
4740 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4741 return a->dw_attr_val.v.val_flag;
4744 /* Add a signed integer attribute value to a DIE. */
4746 static inline void
4747 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4749 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4751 attr->dw_attr_next = NULL;
4752 attr->dw_attr = attr_kind;
4753 attr->dw_attr_val.val_class = dw_val_class_const;
4754 attr->dw_attr_val.v.val_int = int_val;
4755 add_dwarf_attr (die, attr);
4758 static inline HOST_WIDE_INT
4759 AT_int (dw_attr_ref a)
4761 gcc_assert (a && AT_class (a) == dw_val_class_const);
4762 return a->dw_attr_val.v.val_int;
4765 /* Add an unsigned integer attribute value to a DIE. */
4767 static inline void
4768 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4769 unsigned HOST_WIDE_INT unsigned_val)
4771 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4773 attr->dw_attr_next = NULL;
4774 attr->dw_attr = attr_kind;
4775 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4776 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4777 add_dwarf_attr (die, attr);
4780 static inline unsigned HOST_WIDE_INT
4781 AT_unsigned (dw_attr_ref a)
4783 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4784 return a->dw_attr_val.v.val_unsigned;
4787 /* Add an unsigned double integer attribute value to a DIE. */
4789 static inline void
4790 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4791 long unsigned int val_hi, long unsigned int val_low)
4793 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4795 attr->dw_attr_next = NULL;
4796 attr->dw_attr = attr_kind;
4797 attr->dw_attr_val.val_class = dw_val_class_long_long;
4798 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4799 attr->dw_attr_val.v.val_long_long.low = val_low;
4800 add_dwarf_attr (die, attr);
4803 /* Add a floating point attribute value to a DIE and return it. */
4805 static inline void
4806 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4807 unsigned int length, unsigned int elt_size, unsigned char *array)
4809 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4811 attr->dw_attr_next = NULL;
4812 attr->dw_attr = attr_kind;
4813 attr->dw_attr_val.val_class = dw_val_class_vec;
4814 attr->dw_attr_val.v.val_vec.length = length;
4815 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4816 attr->dw_attr_val.v.val_vec.array = array;
4817 add_dwarf_attr (die, attr);
4820 /* Hash and equality functions for debug_str_hash. */
4822 static hashval_t
4823 debug_str_do_hash (const void *x)
4825 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4828 static int
4829 debug_str_eq (const void *x1, const void *x2)
4831 return strcmp ((((const struct indirect_string_node *)x1)->str),
4832 (const char *)x2) == 0;
4835 /* Add a string attribute value to a DIE. */
4837 static inline void
4838 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4840 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4841 struct indirect_string_node *node;
4842 void **slot;
4844 if (! debug_str_hash)
4845 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4846 debug_str_eq, NULL);
4848 slot = htab_find_slot_with_hash (debug_str_hash, str,
4849 htab_hash_string (str), INSERT);
4850 if (*slot == NULL)
4851 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4852 node = (struct indirect_string_node *) *slot;
4853 node->str = ggc_strdup (str);
4854 node->refcount++;
4856 attr->dw_attr_next = NULL;
4857 attr->dw_attr = attr_kind;
4858 attr->dw_attr_val.val_class = dw_val_class_str;
4859 attr->dw_attr_val.v.val_str = node;
4860 add_dwarf_attr (die, attr);
4863 static inline const char *
4864 AT_string (dw_attr_ref a)
4866 gcc_assert (a && AT_class (a) == dw_val_class_str);
4867 return a->dw_attr_val.v.val_str->str;
4870 /* Find out whether a string should be output inline in DIE
4871 or out-of-line in .debug_str section. */
4873 static int
4874 AT_string_form (dw_attr_ref a)
4876 struct indirect_string_node *node;
4877 unsigned int len;
4878 char label[32];
4880 gcc_assert (a && AT_class (a) == dw_val_class_str);
4882 node = a->dw_attr_val.v.val_str;
4883 if (node->form)
4884 return node->form;
4886 len = strlen (node->str) + 1;
4888 /* If the string is shorter or equal to the size of the reference, it is
4889 always better to put it inline. */
4890 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4891 return node->form = DW_FORM_string;
4893 /* If we cannot expect the linker to merge strings in .debug_str
4894 section, only put it into .debug_str if it is worth even in this
4895 single module. */
4896 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4897 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4898 return node->form = DW_FORM_string;
4900 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4901 ++dw2_string_counter;
4902 node->label = xstrdup (label);
4904 return node->form = DW_FORM_strp;
4907 /* Add a DIE reference attribute value to a DIE. */
4909 static inline void
4910 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4912 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4914 attr->dw_attr_next = NULL;
4915 attr->dw_attr = attr_kind;
4916 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4917 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4918 attr->dw_attr_val.v.val_die_ref.external = 0;
4919 add_dwarf_attr (die, attr);
4922 /* Add an AT_specification attribute to a DIE, and also make the back
4923 pointer from the specification to the definition. */
4925 static inline void
4926 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4928 add_AT_die_ref (die, DW_AT_specification, targ_die);
4929 gcc_assert (!targ_die->die_definition);
4930 targ_die->die_definition = die;
4933 static inline dw_die_ref
4934 AT_ref (dw_attr_ref a)
4936 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4937 return a->dw_attr_val.v.val_die_ref.die;
4940 static inline int
4941 AT_ref_external (dw_attr_ref a)
4943 if (a && AT_class (a) == dw_val_class_die_ref)
4944 return a->dw_attr_val.v.val_die_ref.external;
4946 return 0;
4949 static inline void
4950 set_AT_ref_external (dw_attr_ref a, int i)
4952 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4953 a->dw_attr_val.v.val_die_ref.external = i;
4956 /* Add an FDE reference attribute value to a DIE. */
4958 static inline void
4959 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4961 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4963 attr->dw_attr_next = NULL;
4964 attr->dw_attr = attr_kind;
4965 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4966 attr->dw_attr_val.v.val_fde_index = targ_fde;
4967 add_dwarf_attr (die, attr);
4970 /* Add a location description attribute value to a DIE. */
4972 static inline void
4973 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4975 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4977 attr->dw_attr_next = NULL;
4978 attr->dw_attr = attr_kind;
4979 attr->dw_attr_val.val_class = dw_val_class_loc;
4980 attr->dw_attr_val.v.val_loc = loc;
4981 add_dwarf_attr (die, attr);
4984 static inline dw_loc_descr_ref
4985 AT_loc (dw_attr_ref a)
4987 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4988 return a->dw_attr_val.v.val_loc;
4991 static inline void
4992 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4994 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4996 attr->dw_attr_next = NULL;
4997 attr->dw_attr = attr_kind;
4998 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4999 attr->dw_attr_val.v.val_loc_list = loc_list;
5000 add_dwarf_attr (die, attr);
5001 have_location_lists = 1;
5004 static inline dw_loc_list_ref
5005 AT_loc_list (dw_attr_ref a)
5007 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5008 return a->dw_attr_val.v.val_loc_list;
5011 /* Add an address constant attribute value to a DIE. */
5013 static inline void
5014 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5016 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5018 attr->dw_attr_next = NULL;
5019 attr->dw_attr = attr_kind;
5020 attr->dw_attr_val.val_class = dw_val_class_addr;
5021 attr->dw_attr_val.v.val_addr = addr;
5022 add_dwarf_attr (die, attr);
5025 static inline rtx
5026 AT_addr (dw_attr_ref a)
5028 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5029 return a->dw_attr_val.v.val_addr;
5032 /* Add a label identifier attribute value to a DIE. */
5034 static inline void
5035 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5037 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5039 attr->dw_attr_next = NULL;
5040 attr->dw_attr = attr_kind;
5041 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5042 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5043 add_dwarf_attr (die, attr);
5046 /* Add a section offset attribute value to a DIE. */
5048 static inline void
5049 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5051 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5053 attr->dw_attr_next = NULL;
5054 attr->dw_attr = attr_kind;
5055 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5056 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5057 add_dwarf_attr (die, attr);
5060 /* Add an offset attribute value to a DIE. */
5062 static inline void
5063 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5064 unsigned HOST_WIDE_INT offset)
5066 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5068 attr->dw_attr_next = NULL;
5069 attr->dw_attr = attr_kind;
5070 attr->dw_attr_val.val_class = dw_val_class_offset;
5071 attr->dw_attr_val.v.val_offset = offset;
5072 add_dwarf_attr (die, attr);
5075 /* Add an range_list attribute value to a DIE. */
5077 static void
5078 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5079 long unsigned int offset)
5081 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5083 attr->dw_attr_next = NULL;
5084 attr->dw_attr = attr_kind;
5085 attr->dw_attr_val.val_class = dw_val_class_range_list;
5086 attr->dw_attr_val.v.val_offset = offset;
5087 add_dwarf_attr (die, attr);
5090 static inline const char *
5091 AT_lbl (dw_attr_ref a)
5093 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5094 || AT_class (a) == dw_val_class_lbl_offset));
5095 return a->dw_attr_val.v.val_lbl_id;
5098 /* Get the attribute of type attr_kind. */
5100 static dw_attr_ref
5101 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5103 dw_attr_ref a;
5104 dw_die_ref spec = NULL;
5106 if (die != NULL)
5108 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5109 if (a->dw_attr == attr_kind)
5110 return a;
5111 else if (a->dw_attr == DW_AT_specification
5112 || a->dw_attr == DW_AT_abstract_origin)
5113 spec = AT_ref (a);
5115 if (spec)
5116 return get_AT (spec, attr_kind);
5119 return NULL;
5122 /* Return the "low pc" attribute value, typically associated with a subprogram
5123 DIE. Return null if the "low pc" attribute is either not present, or if it
5124 cannot be represented as an assembler label identifier. */
5126 static inline const char *
5127 get_AT_low_pc (dw_die_ref die)
5129 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5131 return a ? AT_lbl (a) : NULL;
5134 /* Return the "high pc" attribute value, typically associated with a subprogram
5135 DIE. Return null if the "high pc" attribute is either not present, or if it
5136 cannot be represented as an assembler label identifier. */
5138 static inline const char *
5139 get_AT_hi_pc (dw_die_ref die)
5141 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5143 return a ? AT_lbl (a) : NULL;
5146 /* Return the value of the string attribute designated by ATTR_KIND, or
5147 NULL if it is not present. */
5149 static inline const char *
5150 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5152 dw_attr_ref a = get_AT (die, attr_kind);
5154 return a ? AT_string (a) : NULL;
5157 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5158 if it is not present. */
5160 static inline int
5161 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5163 dw_attr_ref a = get_AT (die, attr_kind);
5165 return a ? AT_flag (a) : 0;
5168 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5169 if it is not present. */
5171 static inline unsigned
5172 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5174 dw_attr_ref a = get_AT (die, attr_kind);
5176 return a ? AT_unsigned (a) : 0;
5179 static inline dw_die_ref
5180 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5182 dw_attr_ref a = get_AT (die, attr_kind);
5184 return a ? AT_ref (a) : NULL;
5187 /* Return TRUE if the language is C or C++. */
5189 static inline bool
5190 is_c_family (void)
5192 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5194 return (lang == DW_LANG_C || lang == DW_LANG_C89
5195 || lang == DW_LANG_C_plus_plus);
5198 /* Return TRUE if the language is C++. */
5200 static inline bool
5201 is_cxx (void)
5203 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5204 == DW_LANG_C_plus_plus);
5207 /* Return TRUE if the language is Fortran. */
5209 static inline bool
5210 is_fortran (void)
5212 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5214 return (lang == DW_LANG_Fortran77
5215 || lang == DW_LANG_Fortran90
5216 || lang == DW_LANG_Fortran95);
5219 /* Return TRUE if the language is Java. */
5221 static inline bool
5222 is_java (void)
5224 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5226 return lang == DW_LANG_Java;
5229 /* Return TRUE if the language is Ada. */
5231 static inline bool
5232 is_ada (void)
5234 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5236 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5239 /* Free up the memory used by A. */
5241 static inline void free_AT (dw_attr_ref);
5242 static inline void
5243 free_AT (dw_attr_ref a)
5245 if (AT_class (a) == dw_val_class_str)
5246 if (a->dw_attr_val.v.val_str->refcount)
5247 a->dw_attr_val.v.val_str->refcount--;
5250 /* Remove the specified attribute if present. */
5252 static void
5253 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5255 dw_attr_ref *p;
5256 dw_attr_ref removed = NULL;
5258 if (die != NULL)
5260 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5261 if ((*p)->dw_attr == attr_kind)
5263 removed = *p;
5264 *p = (*p)->dw_attr_next;
5265 break;
5268 if (removed != 0)
5269 free_AT (removed);
5273 /* Remove child die whose die_tag is specified tag. */
5275 static void
5276 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5278 dw_die_ref current, prev, next;
5279 current = die->die_child;
5280 prev = NULL;
5281 while (current != NULL)
5283 if (current->die_tag == tag)
5285 next = current->die_sib;
5286 if (prev == NULL)
5287 die->die_child = next;
5288 else
5289 prev->die_sib = next;
5290 free_die (current);
5291 current = next;
5293 else
5295 prev = current;
5296 current = current->die_sib;
5301 /* Free up the memory used by DIE. */
5303 static inline void
5304 free_die (dw_die_ref die)
5306 remove_children (die);
5309 /* Discard the children of this DIE. */
5311 static void
5312 remove_children (dw_die_ref die)
5314 dw_die_ref child_die = die->die_child;
5316 die->die_child = NULL;
5318 while (child_die != NULL)
5320 dw_die_ref tmp_die = child_die;
5321 dw_attr_ref a;
5323 child_die = child_die->die_sib;
5325 for (a = tmp_die->die_attr; a != NULL;)
5327 dw_attr_ref tmp_a = a;
5329 a = a->dw_attr_next;
5330 free_AT (tmp_a);
5333 free_die (tmp_die);
5337 /* Add a child DIE below its parent. We build the lists up in reverse
5338 addition order, and correct that in reverse_all_dies. */
5340 static inline void
5341 add_child_die (dw_die_ref die, dw_die_ref child_die)
5343 if (die != NULL && child_die != NULL)
5345 gcc_assert (die != child_die);
5347 child_die->die_parent = die;
5348 child_die->die_sib = die->die_child;
5349 die->die_child = child_die;
5353 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5354 is the specification, to the front of PARENT's list of children. */
5356 static void
5357 splice_child_die (dw_die_ref parent, dw_die_ref child)
5359 dw_die_ref *p;
5361 /* We want the declaration DIE from inside the class, not the
5362 specification DIE at toplevel. */
5363 if (child->die_parent != parent)
5365 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5367 if (tmp)
5368 child = tmp;
5371 gcc_assert (child->die_parent == parent
5372 || (child->die_parent
5373 == get_AT_ref (parent, DW_AT_specification)));
5375 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5376 if (*p == child)
5378 *p = child->die_sib;
5379 break;
5382 child->die_parent = parent;
5383 child->die_sib = parent->die_child;
5384 parent->die_child = child;
5387 /* Return a pointer to a newly created DIE node. */
5389 static inline dw_die_ref
5390 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5392 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5394 die->die_tag = tag_value;
5396 if (parent_die != NULL)
5397 add_child_die (parent_die, die);
5398 else
5400 limbo_die_node *limbo_node;
5402 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5403 limbo_node->die = die;
5404 limbo_node->created_for = t;
5405 limbo_node->next = limbo_die_list;
5406 limbo_die_list = limbo_node;
5409 return die;
5412 /* Return the DIE associated with the given type specifier. */
5414 static inline dw_die_ref
5415 lookup_type_die (tree type)
5417 return TYPE_SYMTAB_DIE (type);
5420 /* Equate a DIE to a given type specifier. */
5422 static inline void
5423 equate_type_number_to_die (tree type, dw_die_ref type_die)
5425 TYPE_SYMTAB_DIE (type) = type_die;
5428 /* Returns a hash value for X (which really is a die_struct). */
5430 static hashval_t
5431 decl_die_table_hash (const void *x)
5433 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5436 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5438 static int
5439 decl_die_table_eq (const void *x, const void *y)
5441 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5444 /* Return the DIE associated with a given declaration. */
5446 static inline dw_die_ref
5447 lookup_decl_die (tree decl)
5449 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5452 /* Returns a hash value for X (which really is a var_loc_list). */
5454 static hashval_t
5455 decl_loc_table_hash (const void *x)
5457 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5460 /* Return nonzero if decl_id of var_loc_list X is the same as
5461 UID of decl *Y. */
5463 static int
5464 decl_loc_table_eq (const void *x, const void *y)
5466 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5469 /* Return the var_loc list associated with a given declaration. */
5471 static inline var_loc_list *
5472 lookup_decl_loc (tree decl)
5474 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5477 /* Equate a DIE to a particular declaration. */
5479 static void
5480 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5482 unsigned int decl_id = DECL_UID (decl);
5483 void **slot;
5485 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5486 *slot = decl_die;
5487 decl_die->decl_id = decl_id;
5490 /* Add a variable location node to the linked list for DECL. */
5492 static void
5493 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5495 unsigned int decl_id = DECL_UID (decl);
5496 var_loc_list *temp;
5497 void **slot;
5499 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5500 if (*slot == NULL)
5502 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5503 temp->decl_id = decl_id;
5504 *slot = temp;
5506 else
5507 temp = *slot;
5509 if (temp->last)
5511 /* If the current location is the same as the end of the list,
5512 we have nothing to do. */
5513 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5514 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5516 /* Add LOC to the end of list and update LAST. */
5517 temp->last->next = loc;
5518 temp->last = loc;
5521 /* Do not add empty location to the beginning of the list. */
5522 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5524 temp->first = loc;
5525 temp->last = loc;
5529 /* Keep track of the number of spaces used to indent the
5530 output of the debugging routines that print the structure of
5531 the DIE internal representation. */
5532 static int print_indent;
5534 /* Indent the line the number of spaces given by print_indent. */
5536 static inline void
5537 print_spaces (FILE *outfile)
5539 fprintf (outfile, "%*s", print_indent, "");
5542 /* Print the information associated with a given DIE, and its children.
5543 This routine is a debugging aid only. */
5545 static void
5546 print_die (dw_die_ref die, FILE *outfile)
5548 dw_attr_ref a;
5549 dw_die_ref c;
5551 print_spaces (outfile);
5552 fprintf (outfile, "DIE %4lu: %s\n",
5553 die->die_offset, dwarf_tag_name (die->die_tag));
5554 print_spaces (outfile);
5555 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5556 fprintf (outfile, " offset: %lu\n", die->die_offset);
5558 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5560 print_spaces (outfile);
5561 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5563 switch (AT_class (a))
5565 case dw_val_class_addr:
5566 fprintf (outfile, "address");
5567 break;
5568 case dw_val_class_offset:
5569 fprintf (outfile, "offset");
5570 break;
5571 case dw_val_class_loc:
5572 fprintf (outfile, "location descriptor");
5573 break;
5574 case dw_val_class_loc_list:
5575 fprintf (outfile, "location list -> label:%s",
5576 AT_loc_list (a)->ll_symbol);
5577 break;
5578 case dw_val_class_range_list:
5579 fprintf (outfile, "range list");
5580 break;
5581 case dw_val_class_const:
5582 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5583 break;
5584 case dw_val_class_unsigned_const:
5585 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5586 break;
5587 case dw_val_class_long_long:
5588 fprintf (outfile, "constant (%lu,%lu)",
5589 a->dw_attr_val.v.val_long_long.hi,
5590 a->dw_attr_val.v.val_long_long.low);
5591 break;
5592 case dw_val_class_vec:
5593 fprintf (outfile, "floating-point or vector constant");
5594 break;
5595 case dw_val_class_flag:
5596 fprintf (outfile, "%u", AT_flag (a));
5597 break;
5598 case dw_val_class_die_ref:
5599 if (AT_ref (a) != NULL)
5601 if (AT_ref (a)->die_symbol)
5602 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5603 else
5604 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5606 else
5607 fprintf (outfile, "die -> <null>");
5608 break;
5609 case dw_val_class_lbl_id:
5610 case dw_val_class_lbl_offset:
5611 fprintf (outfile, "label: %s", AT_lbl (a));
5612 break;
5613 case dw_val_class_str:
5614 if (AT_string (a) != NULL)
5615 fprintf (outfile, "\"%s\"", AT_string (a));
5616 else
5617 fprintf (outfile, "<null>");
5618 break;
5619 default:
5620 break;
5623 fprintf (outfile, "\n");
5626 if (die->die_child != NULL)
5628 print_indent += 4;
5629 for (c = die->die_child; c != NULL; c = c->die_sib)
5630 print_die (c, outfile);
5632 print_indent -= 4;
5634 if (print_indent == 0)
5635 fprintf (outfile, "\n");
5638 /* Print the contents of the source code line number correspondence table.
5639 This routine is a debugging aid only. */
5641 static void
5642 print_dwarf_line_table (FILE *outfile)
5644 unsigned i;
5645 dw_line_info_ref line_info;
5647 fprintf (outfile, "\n\nDWARF source line information\n");
5648 for (i = 1; i < line_info_table_in_use; i++)
5650 line_info = &line_info_table[i];
5651 fprintf (outfile, "%5d: ", i);
5652 fprintf (outfile, "%-20s",
5653 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5654 fprintf (outfile, "%6ld", line_info->dw_line_num);
5655 fprintf (outfile, "\n");
5658 fprintf (outfile, "\n\n");
5661 /* Print the information collected for a given DIE. */
5663 void
5664 debug_dwarf_die (dw_die_ref die)
5666 print_die (die, stderr);
5669 /* Print all DWARF information collected for the compilation unit.
5670 This routine is a debugging aid only. */
5672 void
5673 debug_dwarf (void)
5675 print_indent = 0;
5676 print_die (comp_unit_die, stderr);
5677 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5678 print_dwarf_line_table (stderr);
5681 /* We build up the lists of children and attributes by pushing new ones
5682 onto the beginning of the list. Reverse the lists for DIE so that
5683 they are in order of addition. */
5685 static void
5686 reverse_die_lists (dw_die_ref die)
5688 dw_die_ref c, cp, cn;
5689 dw_attr_ref a, ap, an;
5691 for (a = die->die_attr, ap = 0; a; a = an)
5693 an = a->dw_attr_next;
5694 a->dw_attr_next = ap;
5695 ap = a;
5698 die->die_attr = ap;
5700 for (c = die->die_child, cp = 0; c; c = cn)
5702 cn = c->die_sib;
5703 c->die_sib = cp;
5704 cp = c;
5707 die->die_child = cp;
5710 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5711 reverse all dies in add_sibling_attributes, which runs through all the dies,
5712 it would reverse all the dies. Now, however, since we don't call
5713 reverse_die_lists in add_sibling_attributes, we need a routine to
5714 recursively reverse all the dies. This is that routine. */
5716 static void
5717 reverse_all_dies (dw_die_ref die)
5719 dw_die_ref c;
5721 reverse_die_lists (die);
5723 for (c = die->die_child; c; c = c->die_sib)
5724 reverse_all_dies (c);
5727 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5728 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5729 DIE that marks the start of the DIEs for this include file. */
5731 static dw_die_ref
5732 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5734 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5735 dw_die_ref new_unit = gen_compile_unit_die (filename);
5737 new_unit->die_sib = old_unit;
5738 return new_unit;
5741 /* Close an include-file CU and reopen the enclosing one. */
5743 static dw_die_ref
5744 pop_compile_unit (dw_die_ref old_unit)
5746 dw_die_ref new_unit = old_unit->die_sib;
5748 old_unit->die_sib = NULL;
5749 return new_unit;
5752 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5753 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5755 /* Calculate the checksum of a location expression. */
5757 static inline void
5758 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5760 CHECKSUM (loc->dw_loc_opc);
5761 CHECKSUM (loc->dw_loc_oprnd1);
5762 CHECKSUM (loc->dw_loc_oprnd2);
5765 /* Calculate the checksum of an attribute. */
5767 static void
5768 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5770 dw_loc_descr_ref loc;
5771 rtx r;
5773 CHECKSUM (at->dw_attr);
5775 /* We don't care about differences in file numbering. */
5776 if (at->dw_attr == DW_AT_decl_file
5777 /* Or that this was compiled with a different compiler snapshot; if
5778 the output is the same, that's what matters. */
5779 || at->dw_attr == DW_AT_producer)
5780 return;
5782 switch (AT_class (at))
5784 case dw_val_class_const:
5785 CHECKSUM (at->dw_attr_val.v.val_int);
5786 break;
5787 case dw_val_class_unsigned_const:
5788 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5789 break;
5790 case dw_val_class_long_long:
5791 CHECKSUM (at->dw_attr_val.v.val_long_long);
5792 break;
5793 case dw_val_class_vec:
5794 CHECKSUM (at->dw_attr_val.v.val_vec);
5795 break;
5796 case dw_val_class_flag:
5797 CHECKSUM (at->dw_attr_val.v.val_flag);
5798 break;
5799 case dw_val_class_str:
5800 CHECKSUM_STRING (AT_string (at));
5801 break;
5803 case dw_val_class_addr:
5804 r = AT_addr (at);
5805 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5806 CHECKSUM_STRING (XSTR (r, 0));
5807 break;
5809 case dw_val_class_offset:
5810 CHECKSUM (at->dw_attr_val.v.val_offset);
5811 break;
5813 case dw_val_class_loc:
5814 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5815 loc_checksum (loc, ctx);
5816 break;
5818 case dw_val_class_die_ref:
5819 die_checksum (AT_ref (at), ctx, mark);
5820 break;
5822 case dw_val_class_fde_ref:
5823 case dw_val_class_lbl_id:
5824 case dw_val_class_lbl_offset:
5825 break;
5827 default:
5828 break;
5832 /* Calculate the checksum of a DIE. */
5834 static void
5835 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5837 dw_die_ref c;
5838 dw_attr_ref a;
5840 /* To avoid infinite recursion. */
5841 if (die->die_mark)
5843 CHECKSUM (die->die_mark);
5844 return;
5846 die->die_mark = ++(*mark);
5848 CHECKSUM (die->die_tag);
5850 for (a = die->die_attr; a; a = a->dw_attr_next)
5851 attr_checksum (a, ctx, mark);
5853 for (c = die->die_child; c; c = c->die_sib)
5854 die_checksum (c, ctx, mark);
5857 #undef CHECKSUM
5858 #undef CHECKSUM_STRING
5860 /* Do the location expressions look same? */
5861 static inline int
5862 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5864 return loc1->dw_loc_opc == loc2->dw_loc_opc
5865 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5866 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5869 /* Do the values look the same? */
5870 static int
5871 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5873 dw_loc_descr_ref loc1, loc2;
5874 rtx r1, r2;
5876 if (v1->val_class != v2->val_class)
5877 return 0;
5879 switch (v1->val_class)
5881 case dw_val_class_const:
5882 return v1->v.val_int == v2->v.val_int;
5883 case dw_val_class_unsigned_const:
5884 return v1->v.val_unsigned == v2->v.val_unsigned;
5885 case dw_val_class_long_long:
5886 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5887 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5888 case dw_val_class_vec:
5889 if (v1->v.val_vec.length != v2->v.val_vec.length
5890 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5891 return 0;
5892 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5893 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5894 return 0;
5895 return 1;
5896 case dw_val_class_flag:
5897 return v1->v.val_flag == v2->v.val_flag;
5898 case dw_val_class_str:
5899 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5901 case dw_val_class_addr:
5902 r1 = v1->v.val_addr;
5903 r2 = v2->v.val_addr;
5904 if (GET_CODE (r1) != GET_CODE (r2))
5905 return 0;
5906 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5907 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5909 case dw_val_class_offset:
5910 return v1->v.val_offset == v2->v.val_offset;
5912 case dw_val_class_loc:
5913 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5914 loc1 && loc2;
5915 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5916 if (!same_loc_p (loc1, loc2, mark))
5917 return 0;
5918 return !loc1 && !loc2;
5920 case dw_val_class_die_ref:
5921 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5923 case dw_val_class_fde_ref:
5924 case dw_val_class_lbl_id:
5925 case dw_val_class_lbl_offset:
5926 return 1;
5928 default:
5929 return 1;
5933 /* Do the attributes look the same? */
5935 static int
5936 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5938 if (at1->dw_attr != at2->dw_attr)
5939 return 0;
5941 /* We don't care about differences in file numbering. */
5942 if (at1->dw_attr == DW_AT_decl_file
5943 /* Or that this was compiled with a different compiler snapshot; if
5944 the output is the same, that's what matters. */
5945 || at1->dw_attr == DW_AT_producer)
5946 return 1;
5948 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5951 /* Do the dies look the same? */
5953 static int
5954 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5956 dw_die_ref c1, c2;
5957 dw_attr_ref a1, a2;
5959 /* To avoid infinite recursion. */
5960 if (die1->die_mark)
5961 return die1->die_mark == die2->die_mark;
5962 die1->die_mark = die2->die_mark = ++(*mark);
5964 if (die1->die_tag != die2->die_tag)
5965 return 0;
5967 for (a1 = die1->die_attr, a2 = die2->die_attr;
5968 a1 && a2;
5969 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5970 if (!same_attr_p (a1, a2, mark))
5971 return 0;
5972 if (a1 || a2)
5973 return 0;
5975 for (c1 = die1->die_child, c2 = die2->die_child;
5976 c1 && c2;
5977 c1 = c1->die_sib, c2 = c2->die_sib)
5978 if (!same_die_p (c1, c2, mark))
5979 return 0;
5980 if (c1 || c2)
5981 return 0;
5983 return 1;
5986 /* Do the dies look the same? Wrapper around same_die_p. */
5988 static int
5989 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5991 int mark = 0;
5992 int ret = same_die_p (die1, die2, &mark);
5994 unmark_all_dies (die1);
5995 unmark_all_dies (die2);
5997 return ret;
6000 /* The prefix to attach to symbols on DIEs in the current comdat debug
6001 info section. */
6002 static char *comdat_symbol_id;
6004 /* The index of the current symbol within the current comdat CU. */
6005 static unsigned int comdat_symbol_number;
6007 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6008 children, and set comdat_symbol_id accordingly. */
6010 static void
6011 compute_section_prefix (dw_die_ref unit_die)
6013 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6014 const char *base = die_name ? lbasename (die_name) : "anonymous";
6015 char *name = alloca (strlen (base) + 64);
6016 char *p;
6017 int i, mark;
6018 unsigned char checksum[16];
6019 struct md5_ctx ctx;
6021 /* Compute the checksum of the DIE, then append part of it as hex digits to
6022 the name filename of the unit. */
6024 md5_init_ctx (&ctx);
6025 mark = 0;
6026 die_checksum (unit_die, &ctx, &mark);
6027 unmark_all_dies (unit_die);
6028 md5_finish_ctx (&ctx, checksum);
6030 sprintf (name, "%s.", base);
6031 clean_symbol_name (name);
6033 p = name + strlen (name);
6034 for (i = 0; i < 4; i++)
6036 sprintf (p, "%.2x", checksum[i]);
6037 p += 2;
6040 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6041 comdat_symbol_number = 0;
6044 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6046 static int
6047 is_type_die (dw_die_ref die)
6049 switch (die->die_tag)
6051 case DW_TAG_array_type:
6052 case DW_TAG_class_type:
6053 case DW_TAG_enumeration_type:
6054 case DW_TAG_pointer_type:
6055 case DW_TAG_reference_type:
6056 case DW_TAG_string_type:
6057 case DW_TAG_structure_type:
6058 case DW_TAG_subroutine_type:
6059 case DW_TAG_union_type:
6060 case DW_TAG_ptr_to_member_type:
6061 case DW_TAG_set_type:
6062 case DW_TAG_subrange_type:
6063 case DW_TAG_base_type:
6064 case DW_TAG_const_type:
6065 case DW_TAG_file_type:
6066 case DW_TAG_packed_type:
6067 case DW_TAG_volatile_type:
6068 case DW_TAG_typedef:
6069 return 1;
6070 default:
6071 return 0;
6075 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6076 Basically, we want to choose the bits that are likely to be shared between
6077 compilations (types) and leave out the bits that are specific to individual
6078 compilations (functions). */
6080 static int
6081 is_comdat_die (dw_die_ref c)
6083 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6084 we do for stabs. The advantage is a greater likelihood of sharing between
6085 objects that don't include headers in the same order (and therefore would
6086 put the base types in a different comdat). jason 8/28/00 */
6088 if (c->die_tag == DW_TAG_base_type)
6089 return 0;
6091 if (c->die_tag == DW_TAG_pointer_type
6092 || c->die_tag == DW_TAG_reference_type
6093 || c->die_tag == DW_TAG_const_type
6094 || c->die_tag == DW_TAG_volatile_type)
6096 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6098 return t ? is_comdat_die (t) : 0;
6101 return is_type_die (c);
6104 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6105 compilation unit. */
6107 static int
6108 is_symbol_die (dw_die_ref c)
6110 return (is_type_die (c)
6111 || (get_AT (c, DW_AT_declaration)
6112 && !get_AT (c, DW_AT_specification)));
6115 static char *
6116 gen_internal_sym (const char *prefix)
6118 char buf[256];
6120 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6121 return xstrdup (buf);
6124 /* Assign symbols to all worthy DIEs under DIE. */
6126 static void
6127 assign_symbol_names (dw_die_ref die)
6129 dw_die_ref c;
6131 if (is_symbol_die (die))
6133 if (comdat_symbol_id)
6135 char *p = alloca (strlen (comdat_symbol_id) + 64);
6137 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6138 comdat_symbol_id, comdat_symbol_number++);
6139 die->die_symbol = xstrdup (p);
6141 else
6142 die->die_symbol = gen_internal_sym ("LDIE");
6145 for (c = die->die_child; c != NULL; c = c->die_sib)
6146 assign_symbol_names (c);
6149 struct cu_hash_table_entry
6151 dw_die_ref cu;
6152 unsigned min_comdat_num, max_comdat_num;
6153 struct cu_hash_table_entry *next;
6156 /* Routines to manipulate hash table of CUs. */
6157 static hashval_t
6158 htab_cu_hash (const void *of)
6160 const struct cu_hash_table_entry *entry = of;
6162 return htab_hash_string (entry->cu->die_symbol);
6165 static int
6166 htab_cu_eq (const void *of1, const void *of2)
6168 const struct cu_hash_table_entry *entry1 = of1;
6169 const struct die_struct *entry2 = of2;
6171 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6174 static void
6175 htab_cu_del (void *what)
6177 struct cu_hash_table_entry *next, *entry = what;
6179 while (entry)
6181 next = entry->next;
6182 free (entry);
6183 entry = next;
6187 /* Check whether we have already seen this CU and set up SYM_NUM
6188 accordingly. */
6189 static int
6190 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6192 struct cu_hash_table_entry dummy;
6193 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6195 dummy.max_comdat_num = 0;
6197 slot = (struct cu_hash_table_entry **)
6198 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6199 INSERT);
6200 entry = *slot;
6202 for (; entry; last = entry, entry = entry->next)
6204 if (same_die_p_wrap (cu, entry->cu))
6205 break;
6208 if (entry)
6210 *sym_num = entry->min_comdat_num;
6211 return 1;
6214 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6215 entry->cu = cu;
6216 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6217 entry->next = *slot;
6218 *slot = entry;
6220 return 0;
6223 /* Record SYM_NUM to record of CU in HTABLE. */
6224 static void
6225 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6227 struct cu_hash_table_entry **slot, *entry;
6229 slot = (struct cu_hash_table_entry **)
6230 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6231 NO_INSERT);
6232 entry = *slot;
6234 entry->max_comdat_num = sym_num;
6237 /* Traverse the DIE (which is always comp_unit_die), and set up
6238 additional compilation units for each of the include files we see
6239 bracketed by BINCL/EINCL. */
6241 static void
6242 break_out_includes (dw_die_ref die)
6244 dw_die_ref *ptr;
6245 dw_die_ref unit = NULL;
6246 limbo_die_node *node, **pnode;
6247 htab_t cu_hash_table;
6249 for (ptr = &(die->die_child); *ptr;)
6251 dw_die_ref c = *ptr;
6253 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6254 || (unit && is_comdat_die (c)))
6256 /* This DIE is for a secondary CU; remove it from the main one. */
6257 *ptr = c->die_sib;
6259 if (c->die_tag == DW_TAG_GNU_BINCL)
6261 unit = push_new_compile_unit (unit, c);
6262 free_die (c);
6264 else if (c->die_tag == DW_TAG_GNU_EINCL)
6266 unit = pop_compile_unit (unit);
6267 free_die (c);
6269 else
6270 add_child_die (unit, c);
6272 else
6274 /* Leave this DIE in the main CU. */
6275 ptr = &(c->die_sib);
6276 continue;
6280 #if 0
6281 /* We can only use this in debugging, since the frontend doesn't check
6282 to make sure that we leave every include file we enter. */
6283 gcc_assert (!unit);
6284 #endif
6286 assign_symbol_names (die);
6287 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6288 for (node = limbo_die_list, pnode = &limbo_die_list;
6289 node;
6290 node = node->next)
6292 int is_dupl;
6294 compute_section_prefix (node->die);
6295 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6296 &comdat_symbol_number);
6297 assign_symbol_names (node->die);
6298 if (is_dupl)
6299 *pnode = node->next;
6300 else
6302 pnode = &node->next;
6303 record_comdat_symbol_number (node->die, cu_hash_table,
6304 comdat_symbol_number);
6307 htab_delete (cu_hash_table);
6310 /* Traverse the DIE and add a sibling attribute if it may have the
6311 effect of speeding up access to siblings. To save some space,
6312 avoid generating sibling attributes for DIE's without children. */
6314 static void
6315 add_sibling_attributes (dw_die_ref die)
6317 dw_die_ref c;
6319 if (die->die_tag != DW_TAG_compile_unit
6320 && die->die_sib && die->die_child != NULL)
6321 /* Add the sibling link to the front of the attribute list. */
6322 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6324 for (c = die->die_child; c != NULL; c = c->die_sib)
6325 add_sibling_attributes (c);
6328 /* Output all location lists for the DIE and its children. */
6330 static void
6331 output_location_lists (dw_die_ref die)
6333 dw_die_ref c;
6334 dw_attr_ref d_attr;
6336 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6337 if (AT_class (d_attr) == dw_val_class_loc_list)
6338 output_loc_list (AT_loc_list (d_attr));
6340 for (c = die->die_child; c != NULL; c = c->die_sib)
6341 output_location_lists (c);
6345 /* The format of each DIE (and its attribute value pairs) is encoded in an
6346 abbreviation table. This routine builds the abbreviation table and assigns
6347 a unique abbreviation id for each abbreviation entry. The children of each
6348 die are visited recursively. */
6350 static void
6351 build_abbrev_table (dw_die_ref die)
6353 unsigned long abbrev_id;
6354 unsigned int n_alloc;
6355 dw_die_ref c;
6356 dw_attr_ref d_attr, a_attr;
6358 /* Scan the DIE references, and mark as external any that refer to
6359 DIEs from other CUs (i.e. those which are not marked). */
6360 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6361 if (AT_class (d_attr) == dw_val_class_die_ref
6362 && AT_ref (d_attr)->die_mark == 0)
6364 gcc_assert (AT_ref (d_attr)->die_symbol);
6366 set_AT_ref_external (d_attr, 1);
6369 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6371 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6373 if (abbrev->die_tag == die->die_tag)
6375 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6377 a_attr = abbrev->die_attr;
6378 d_attr = die->die_attr;
6380 while (a_attr != NULL && d_attr != NULL)
6382 if ((a_attr->dw_attr != d_attr->dw_attr)
6383 || (value_format (a_attr) != value_format (d_attr)))
6384 break;
6386 a_attr = a_attr->dw_attr_next;
6387 d_attr = d_attr->dw_attr_next;
6390 if (a_attr == NULL && d_attr == NULL)
6391 break;
6396 if (abbrev_id >= abbrev_die_table_in_use)
6398 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6400 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6401 abbrev_die_table = ggc_realloc (abbrev_die_table,
6402 sizeof (dw_die_ref) * n_alloc);
6404 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6405 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6406 abbrev_die_table_allocated = n_alloc;
6409 ++abbrev_die_table_in_use;
6410 abbrev_die_table[abbrev_id] = die;
6413 die->die_abbrev = abbrev_id;
6414 for (c = die->die_child; c != NULL; c = c->die_sib)
6415 build_abbrev_table (c);
6418 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6420 static int
6421 constant_size (long unsigned int value)
6423 int log;
6425 if (value == 0)
6426 log = 0;
6427 else
6428 log = floor_log2 (value);
6430 log = log / 8;
6431 log = 1 << (floor_log2 (log) + 1);
6433 return log;
6436 /* Return the size of a DIE as it is represented in the
6437 .debug_info section. */
6439 static unsigned long
6440 size_of_die (dw_die_ref die)
6442 unsigned long size = 0;
6443 dw_attr_ref a;
6445 size += size_of_uleb128 (die->die_abbrev);
6446 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6448 switch (AT_class (a))
6450 case dw_val_class_addr:
6451 size += DWARF2_ADDR_SIZE;
6452 break;
6453 case dw_val_class_offset:
6454 size += DWARF_OFFSET_SIZE;
6455 break;
6456 case dw_val_class_loc:
6458 unsigned long lsize = size_of_locs (AT_loc (a));
6460 /* Block length. */
6461 size += constant_size (lsize);
6462 size += lsize;
6464 break;
6465 case dw_val_class_loc_list:
6466 size += DWARF_OFFSET_SIZE;
6467 break;
6468 case dw_val_class_range_list:
6469 size += DWARF_OFFSET_SIZE;
6470 break;
6471 case dw_val_class_const:
6472 size += size_of_sleb128 (AT_int (a));
6473 break;
6474 case dw_val_class_unsigned_const:
6475 size += constant_size (AT_unsigned (a));
6476 break;
6477 case dw_val_class_long_long:
6478 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6479 break;
6480 case dw_val_class_vec:
6481 size += 1 + (a->dw_attr_val.v.val_vec.length
6482 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6483 break;
6484 case dw_val_class_flag:
6485 size += 1;
6486 break;
6487 case dw_val_class_die_ref:
6488 if (AT_ref_external (a))
6489 size += DWARF2_ADDR_SIZE;
6490 else
6491 size += DWARF_OFFSET_SIZE;
6492 break;
6493 case dw_val_class_fde_ref:
6494 size += DWARF_OFFSET_SIZE;
6495 break;
6496 case dw_val_class_lbl_id:
6497 size += DWARF2_ADDR_SIZE;
6498 break;
6499 case dw_val_class_lbl_offset:
6500 size += DWARF_OFFSET_SIZE;
6501 break;
6502 case dw_val_class_str:
6503 if (AT_string_form (a) == DW_FORM_strp)
6504 size += DWARF_OFFSET_SIZE;
6505 else
6506 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6507 break;
6508 default:
6509 gcc_unreachable ();
6513 return size;
6516 /* Size the debugging information associated with a given DIE. Visits the
6517 DIE's children recursively. Updates the global variable next_die_offset, on
6518 each time through. Uses the current value of next_die_offset to update the
6519 die_offset field in each DIE. */
6521 static void
6522 calc_die_sizes (dw_die_ref die)
6524 dw_die_ref c;
6526 die->die_offset = next_die_offset;
6527 next_die_offset += size_of_die (die);
6529 for (c = die->die_child; c != NULL; c = c->die_sib)
6530 calc_die_sizes (c);
6532 if (die->die_child != NULL)
6533 /* Count the null byte used to terminate sibling lists. */
6534 next_die_offset += 1;
6537 /* Set the marks for a die and its children. We do this so
6538 that we know whether or not a reference needs to use FORM_ref_addr; only
6539 DIEs in the same CU will be marked. We used to clear out the offset
6540 and use that as the flag, but ran into ordering problems. */
6542 static void
6543 mark_dies (dw_die_ref die)
6545 dw_die_ref c;
6547 gcc_assert (!die->die_mark);
6549 die->die_mark = 1;
6550 for (c = die->die_child; c; c = c->die_sib)
6551 mark_dies (c);
6554 /* Clear the marks for a die and its children. */
6556 static void
6557 unmark_dies (dw_die_ref die)
6559 dw_die_ref c;
6561 gcc_assert (die->die_mark);
6563 die->die_mark = 0;
6564 for (c = die->die_child; c; c = c->die_sib)
6565 unmark_dies (c);
6568 /* Clear the marks for a die, its children and referred dies. */
6570 static void
6571 unmark_all_dies (dw_die_ref die)
6573 dw_die_ref c;
6574 dw_attr_ref a;
6576 if (!die->die_mark)
6577 return;
6578 die->die_mark = 0;
6580 for (c = die->die_child; c; c = c->die_sib)
6581 unmark_all_dies (c);
6583 for (a = die->die_attr; a; a = a->dw_attr_next)
6584 if (AT_class (a) == dw_val_class_die_ref)
6585 unmark_all_dies (AT_ref (a));
6588 /* Return the size of the .debug_pubnames table generated for the
6589 compilation unit. */
6591 static unsigned long
6592 size_of_pubnames (void)
6594 unsigned long size;
6595 unsigned i;
6597 size = DWARF_PUBNAMES_HEADER_SIZE;
6598 for (i = 0; i < pubname_table_in_use; i++)
6600 pubname_ref p = &pubname_table[i];
6601 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6604 size += DWARF_OFFSET_SIZE;
6605 return size;
6608 /* Return the size of the information in the .debug_aranges section. */
6610 static unsigned long
6611 size_of_aranges (void)
6613 unsigned long size;
6615 size = DWARF_ARANGES_HEADER_SIZE;
6617 /* Count the address/length pair for this compilation unit. */
6618 size += 2 * DWARF2_ADDR_SIZE;
6619 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6621 /* Count the two zero words used to terminated the address range table. */
6622 size += 2 * DWARF2_ADDR_SIZE;
6623 return size;
6626 /* Select the encoding of an attribute value. */
6628 static enum dwarf_form
6629 value_format (dw_attr_ref a)
6631 switch (a->dw_attr_val.val_class)
6633 case dw_val_class_addr:
6634 return DW_FORM_addr;
6635 case dw_val_class_range_list:
6636 case dw_val_class_offset:
6637 switch (DWARF_OFFSET_SIZE)
6639 case 4:
6640 return DW_FORM_data4;
6641 case 8:
6642 return DW_FORM_data8;
6643 default:
6644 gcc_unreachable ();
6646 case dw_val_class_loc_list:
6647 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6648 .debug_loc section */
6649 return DW_FORM_data4;
6650 case dw_val_class_loc:
6651 switch (constant_size (size_of_locs (AT_loc (a))))
6653 case 1:
6654 return DW_FORM_block1;
6655 case 2:
6656 return DW_FORM_block2;
6657 default:
6658 gcc_unreachable ();
6660 case dw_val_class_const:
6661 return DW_FORM_sdata;
6662 case dw_val_class_unsigned_const:
6663 switch (constant_size (AT_unsigned (a)))
6665 case 1:
6666 return DW_FORM_data1;
6667 case 2:
6668 return DW_FORM_data2;
6669 case 4:
6670 return DW_FORM_data4;
6671 case 8:
6672 return DW_FORM_data8;
6673 default:
6674 gcc_unreachable ();
6676 case dw_val_class_long_long:
6677 return DW_FORM_block1;
6678 case dw_val_class_vec:
6679 return DW_FORM_block1;
6680 case dw_val_class_flag:
6681 return DW_FORM_flag;
6682 case dw_val_class_die_ref:
6683 if (AT_ref_external (a))
6684 return DW_FORM_ref_addr;
6685 else
6686 return DW_FORM_ref;
6687 case dw_val_class_fde_ref:
6688 return DW_FORM_data;
6689 case dw_val_class_lbl_id:
6690 return DW_FORM_addr;
6691 case dw_val_class_lbl_offset:
6692 return DW_FORM_data;
6693 case dw_val_class_str:
6694 return AT_string_form (a);
6696 default:
6697 gcc_unreachable ();
6701 /* Output the encoding of an attribute value. */
6703 static void
6704 output_value_format (dw_attr_ref a)
6706 enum dwarf_form form = value_format (a);
6708 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6711 /* Output the .debug_abbrev section which defines the DIE abbreviation
6712 table. */
6714 static void
6715 output_abbrev_section (void)
6717 unsigned long abbrev_id;
6719 dw_attr_ref a_attr;
6721 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6723 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6725 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6726 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6727 dwarf_tag_name (abbrev->die_tag));
6729 if (abbrev->die_child != NULL)
6730 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6731 else
6732 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6734 for (a_attr = abbrev->die_attr; a_attr != NULL;
6735 a_attr = a_attr->dw_attr_next)
6737 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6738 dwarf_attr_name (a_attr->dw_attr));
6739 output_value_format (a_attr);
6742 dw2_asm_output_data (1, 0, NULL);
6743 dw2_asm_output_data (1, 0, NULL);
6746 /* Terminate the table. */
6747 dw2_asm_output_data (1, 0, NULL);
6750 /* Output a symbol we can use to refer to this DIE from another CU. */
6752 static inline void
6753 output_die_symbol (dw_die_ref die)
6755 char *sym = die->die_symbol;
6757 if (sym == 0)
6758 return;
6760 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6761 /* We make these global, not weak; if the target doesn't support
6762 .linkonce, it doesn't support combining the sections, so debugging
6763 will break. */
6764 targetm.asm_out.globalize_label (asm_out_file, sym);
6766 ASM_OUTPUT_LABEL (asm_out_file, sym);
6769 /* Return a new location list, given the begin and end range, and the
6770 expression. gensym tells us whether to generate a new internal symbol for
6771 this location list node, which is done for the head of the list only. */
6773 static inline dw_loc_list_ref
6774 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6775 const char *section, unsigned int gensym)
6777 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6779 retlist->begin = begin;
6780 retlist->end = end;
6781 retlist->expr = expr;
6782 retlist->section = section;
6783 if (gensym)
6784 retlist->ll_symbol = gen_internal_sym ("LLST");
6786 return retlist;
6789 /* Add a location description expression to a location list. */
6791 static inline void
6792 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6793 const char *begin, const char *end,
6794 const char *section)
6796 dw_loc_list_ref *d;
6798 /* Find the end of the chain. */
6799 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6802 /* Add a new location list node to the list. */
6803 *d = new_loc_list (descr, begin, end, section, 0);
6806 static void
6807 dwarf2out_switch_text_section (void)
6809 dw_fde_ref fde;
6810 struct function *cfun = DECL_STRUCT_FUNCTION (current_function_decl);
6812 fde = &fde_table[fde_table_in_use - 1];
6813 fde->dw_fde_switched_sections = true;
6814 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6815 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6816 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6817 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6818 separate_line_info_table_in_use++;
6821 /* Output the location list given to us. */
6823 static void
6824 output_loc_list (dw_loc_list_ref list_head)
6826 dw_loc_list_ref curr = list_head;
6828 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6830 /* Walk the location list, and output each range + expression. */
6831 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6833 unsigned long size;
6834 if (separate_line_info_table_in_use == 0)
6836 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6837 "Location list begin address (%s)",
6838 list_head->ll_symbol);
6839 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6840 "Location list end address (%s)",
6841 list_head->ll_symbol);
6843 else
6845 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6846 "Location list begin address (%s)",
6847 list_head->ll_symbol);
6848 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6849 "Location list end address (%s)",
6850 list_head->ll_symbol);
6852 size = size_of_locs (curr->expr);
6854 /* Output the block length for this list of location operations. */
6855 gcc_assert (size <= 0xffff);
6856 dw2_asm_output_data (2, size, "%s", "Location expression size");
6858 output_loc_sequence (curr->expr);
6861 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6862 "Location list terminator begin (%s)",
6863 list_head->ll_symbol);
6864 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6865 "Location list terminator end (%s)",
6866 list_head->ll_symbol);
6869 /* Output the DIE and its attributes. Called recursively to generate
6870 the definitions of each child DIE. */
6872 static void
6873 output_die (dw_die_ref die)
6875 dw_attr_ref a;
6876 dw_die_ref c;
6877 unsigned long size;
6879 /* If someone in another CU might refer to us, set up a symbol for
6880 them to point to. */
6881 if (die->die_symbol)
6882 output_die_symbol (die);
6884 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6885 die->die_offset, dwarf_tag_name (die->die_tag));
6887 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6889 const char *name = dwarf_attr_name (a->dw_attr);
6891 switch (AT_class (a))
6893 case dw_val_class_addr:
6894 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6895 break;
6897 case dw_val_class_offset:
6898 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6899 "%s", name);
6900 break;
6902 case dw_val_class_range_list:
6904 char *p = strchr (ranges_section_label, '\0');
6906 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6907 a->dw_attr_val.v.val_offset);
6908 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6909 "%s", name);
6910 *p = '\0';
6912 break;
6914 case dw_val_class_loc:
6915 size = size_of_locs (AT_loc (a));
6917 /* Output the block length for this list of location operations. */
6918 dw2_asm_output_data (constant_size (size), size, "%s", name);
6920 output_loc_sequence (AT_loc (a));
6921 break;
6923 case dw_val_class_const:
6924 /* ??? It would be slightly more efficient to use a scheme like is
6925 used for unsigned constants below, but gdb 4.x does not sign
6926 extend. Gdb 5.x does sign extend. */
6927 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6928 break;
6930 case dw_val_class_unsigned_const:
6931 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6932 AT_unsigned (a), "%s", name);
6933 break;
6935 case dw_val_class_long_long:
6937 unsigned HOST_WIDE_INT first, second;
6939 dw2_asm_output_data (1,
6940 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6941 "%s", name);
6943 if (WORDS_BIG_ENDIAN)
6945 first = a->dw_attr_val.v.val_long_long.hi;
6946 second = a->dw_attr_val.v.val_long_long.low;
6948 else
6950 first = a->dw_attr_val.v.val_long_long.low;
6951 second = a->dw_attr_val.v.val_long_long.hi;
6954 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6955 first, "long long constant");
6956 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6957 second, NULL);
6959 break;
6961 case dw_val_class_vec:
6963 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6964 unsigned int len = a->dw_attr_val.v.val_vec.length;
6965 unsigned int i;
6966 unsigned char *p;
6968 dw2_asm_output_data (1, len * elt_size, "%s", name);
6969 if (elt_size > sizeof (HOST_WIDE_INT))
6971 elt_size /= 2;
6972 len *= 2;
6974 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6975 i < len;
6976 i++, p += elt_size)
6977 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6978 "fp or vector constant word %u", i);
6979 break;
6982 case dw_val_class_flag:
6983 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6984 break;
6986 case dw_val_class_loc_list:
6988 char *sym = AT_loc_list (a)->ll_symbol;
6990 gcc_assert (sym);
6991 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
6993 break;
6995 case dw_val_class_die_ref:
6996 if (AT_ref_external (a))
6998 char *sym = AT_ref (a)->die_symbol;
7000 gcc_assert (sym);
7001 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7003 else
7005 gcc_assert (AT_ref (a)->die_offset);
7006 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7007 "%s", name);
7009 break;
7011 case dw_val_class_fde_ref:
7013 char l1[20];
7015 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7016 a->dw_attr_val.v.val_fde_index * 2);
7017 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7019 break;
7021 case dw_val_class_lbl_id:
7022 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7023 break;
7025 case dw_val_class_lbl_offset:
7026 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7027 break;
7029 case dw_val_class_str:
7030 if (AT_string_form (a) == DW_FORM_strp)
7031 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7032 a->dw_attr_val.v.val_str->label,
7033 "%s: \"%s\"", name, AT_string (a));
7034 else
7035 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7036 break;
7038 default:
7039 gcc_unreachable ();
7043 for (c = die->die_child; c != NULL; c = c->die_sib)
7044 output_die (c);
7046 /* Add null byte to terminate sibling list. */
7047 if (die->die_child != NULL)
7048 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7049 die->die_offset);
7052 /* Output the compilation unit that appears at the beginning of the
7053 .debug_info section, and precedes the DIE descriptions. */
7055 static void
7056 output_compilation_unit_header (void)
7058 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7059 dw2_asm_output_data (4, 0xffffffff,
7060 "Initial length escape value indicating 64-bit DWARF extension");
7061 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7062 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7063 "Length of Compilation Unit Info");
7064 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7065 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7066 "Offset Into Abbrev. Section");
7067 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7070 /* Output the compilation unit DIE and its children. */
7072 static void
7073 output_comp_unit (dw_die_ref die, int output_if_empty)
7075 const char *secname;
7076 char *oldsym, *tmp;
7078 /* Unless we are outputting main CU, we may throw away empty ones. */
7079 if (!output_if_empty && die->die_child == NULL)
7080 return;
7082 /* Even if there are no children of this DIE, we must output the information
7083 about the compilation unit. Otherwise, on an empty translation unit, we
7084 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7085 will then complain when examining the file. First mark all the DIEs in
7086 this CU so we know which get local refs. */
7087 mark_dies (die);
7089 build_abbrev_table (die);
7091 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7092 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7093 calc_die_sizes (die);
7095 oldsym = die->die_symbol;
7096 if (oldsym)
7098 tmp = alloca (strlen (oldsym) + 24);
7100 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7101 secname = tmp;
7102 die->die_symbol = NULL;
7104 else
7105 secname = (const char *) DEBUG_INFO_SECTION;
7107 /* Output debugging information. */
7108 named_section_flags (secname, SECTION_DEBUG);
7109 output_compilation_unit_header ();
7110 output_die (die);
7112 /* Leave the marks on the main CU, so we can check them in
7113 output_pubnames. */
7114 if (oldsym)
7116 unmark_dies (die);
7117 die->die_symbol = oldsym;
7121 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7122 output of lang_hooks.decl_printable_name for C++ looks like
7123 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7125 static const char *
7126 dwarf2_name (tree decl, int scope)
7128 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7131 /* Add a new entry to .debug_pubnames if appropriate. */
7133 static void
7134 add_pubname (tree decl, dw_die_ref die)
7136 pubname_ref p;
7138 if (! TREE_PUBLIC (decl))
7139 return;
7141 if (pubname_table_in_use == pubname_table_allocated)
7143 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7144 pubname_table
7145 = ggc_realloc (pubname_table,
7146 (pubname_table_allocated * sizeof (pubname_entry)));
7147 memset (pubname_table + pubname_table_in_use, 0,
7148 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7151 p = &pubname_table[pubname_table_in_use++];
7152 p->die = die;
7153 p->name = xstrdup (dwarf2_name (decl, 1));
7156 /* Output the public names table used to speed up access to externally
7157 visible names. For now, only generate entries for externally
7158 visible procedures. */
7160 static void
7161 output_pubnames (void)
7163 unsigned i;
7164 unsigned long pubnames_length = size_of_pubnames ();
7166 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7167 dw2_asm_output_data (4, 0xffffffff,
7168 "Initial length escape value indicating 64-bit DWARF extension");
7169 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7170 "Length of Public Names Info");
7171 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7172 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7173 "Offset of Compilation Unit Info");
7174 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7175 "Compilation Unit Length");
7177 for (i = 0; i < pubname_table_in_use; i++)
7179 pubname_ref pub = &pubname_table[i];
7181 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7182 gcc_assert (pub->die->die_mark);
7184 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7185 "DIE offset");
7187 dw2_asm_output_nstring (pub->name, -1, "external name");
7190 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7193 /* Add a new entry to .debug_aranges if appropriate. */
7195 static void
7196 add_arange (tree decl, dw_die_ref die)
7198 if (! DECL_SECTION_NAME (decl))
7199 return;
7201 if (arange_table_in_use == arange_table_allocated)
7203 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7204 arange_table = ggc_realloc (arange_table,
7205 (arange_table_allocated
7206 * sizeof (dw_die_ref)));
7207 memset (arange_table + arange_table_in_use, 0,
7208 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7211 arange_table[arange_table_in_use++] = die;
7214 /* Output the information that goes into the .debug_aranges table.
7215 Namely, define the beginning and ending address range of the
7216 text section generated for this compilation unit. */
7218 static void
7219 output_aranges (void)
7221 unsigned i;
7222 unsigned long aranges_length = size_of_aranges ();
7224 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7225 dw2_asm_output_data (4, 0xffffffff,
7226 "Initial length escape value indicating 64-bit DWARF extension");
7227 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7228 "Length of Address Ranges Info");
7229 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7230 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7231 "Offset of Compilation Unit Info");
7232 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7233 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7235 /* We need to align to twice the pointer size here. */
7236 if (DWARF_ARANGES_PAD_SIZE)
7238 /* Pad using a 2 byte words so that padding is correct for any
7239 pointer size. */
7240 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7241 2 * DWARF2_ADDR_SIZE);
7242 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7243 dw2_asm_output_data (2, 0, NULL);
7246 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7247 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7248 text_section_label, "Length");
7249 if (flag_reorder_blocks_and_partition)
7251 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7252 "Address");
7253 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7254 cold_text_section_label, "Length");
7257 for (i = 0; i < arange_table_in_use; i++)
7259 dw_die_ref die = arange_table[i];
7261 /* We shouldn't see aranges for DIEs outside of the main CU. */
7262 gcc_assert (die->die_mark);
7264 if (die->die_tag == DW_TAG_subprogram)
7266 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7267 "Address");
7268 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7269 get_AT_low_pc (die), "Length");
7271 else
7273 /* A static variable; extract the symbol from DW_AT_location.
7274 Note that this code isn't currently hit, as we only emit
7275 aranges for functions (jason 9/23/99). */
7276 dw_attr_ref a = get_AT (die, DW_AT_location);
7277 dw_loc_descr_ref loc;
7279 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7281 loc = AT_loc (a);
7282 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7284 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7285 loc->dw_loc_oprnd1.v.val_addr, "Address");
7286 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7287 get_AT_unsigned (die, DW_AT_byte_size),
7288 "Length");
7292 /* Output the terminator words. */
7293 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7294 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7297 /* Add a new entry to .debug_ranges. Return the offset at which it
7298 was placed. */
7300 static unsigned int
7301 add_ranges (tree block)
7303 unsigned int in_use = ranges_table_in_use;
7305 if (in_use == ranges_table_allocated)
7307 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7308 ranges_table
7309 = ggc_realloc (ranges_table, (ranges_table_allocated
7310 * sizeof (struct dw_ranges_struct)));
7311 memset (ranges_table + ranges_table_in_use, 0,
7312 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7315 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7316 ranges_table_in_use = in_use + 1;
7318 return in_use * 2 * DWARF2_ADDR_SIZE;
7321 static void
7322 output_ranges (void)
7324 unsigned i;
7325 static const char *const start_fmt = "Offset 0x%x";
7326 const char *fmt = start_fmt;
7328 for (i = 0; i < ranges_table_in_use; i++)
7330 int block_num = ranges_table[i].block_num;
7332 if (block_num)
7334 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7335 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7337 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7338 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7340 /* If all code is in the text section, then the compilation
7341 unit base address defaults to DW_AT_low_pc, which is the
7342 base of the text section. */
7343 if (separate_line_info_table_in_use == 0)
7345 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7346 text_section_label,
7347 fmt, i * 2 * DWARF2_ADDR_SIZE);
7348 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7349 text_section_label, NULL);
7352 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7353 compilation unit base address to zero, which allows us to
7354 use absolute addresses, and not worry about whether the
7355 target supports cross-section arithmetic. */
7356 else
7358 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7359 fmt, i * 2 * DWARF2_ADDR_SIZE);
7360 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7363 fmt = NULL;
7365 else
7367 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7368 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7369 fmt = start_fmt;
7374 /* Data structure containing information about input files. */
7375 struct file_info
7377 char *path; /* Complete file name. */
7378 char *fname; /* File name part. */
7379 int length; /* Length of entire string. */
7380 int file_idx; /* Index in input file table. */
7381 int dir_idx; /* Index in directory table. */
7384 /* Data structure containing information about directories with source
7385 files. */
7386 struct dir_info
7388 char *path; /* Path including directory name. */
7389 int length; /* Path length. */
7390 int prefix; /* Index of directory entry which is a prefix. */
7391 int count; /* Number of files in this directory. */
7392 int dir_idx; /* Index of directory used as base. */
7393 int used; /* Used in the end? */
7396 /* Callback function for file_info comparison. We sort by looking at
7397 the directories in the path. */
7399 static int
7400 file_info_cmp (const void *p1, const void *p2)
7402 const struct file_info *s1 = p1;
7403 const struct file_info *s2 = p2;
7404 unsigned char *cp1;
7405 unsigned char *cp2;
7407 /* Take care of file names without directories. We need to make sure that
7408 we return consistent values to qsort since some will get confused if
7409 we return the same value when identical operands are passed in opposite
7410 orders. So if neither has a directory, return 0 and otherwise return
7411 1 or -1 depending on which one has the directory. */
7412 if ((s1->path == s1->fname || s2->path == s2->fname))
7413 return (s2->path == s2->fname) - (s1->path == s1->fname);
7415 cp1 = (unsigned char *) s1->path;
7416 cp2 = (unsigned char *) s2->path;
7418 while (1)
7420 ++cp1;
7421 ++cp2;
7422 /* Reached the end of the first path? If so, handle like above. */
7423 if ((cp1 == (unsigned char *) s1->fname)
7424 || (cp2 == (unsigned char *) s2->fname))
7425 return ((cp2 == (unsigned char *) s2->fname)
7426 - (cp1 == (unsigned char *) s1->fname));
7428 /* Character of current path component the same? */
7429 else if (*cp1 != *cp2)
7430 return *cp1 - *cp2;
7434 /* Output the directory table and the file name table. We try to minimize
7435 the total amount of memory needed. A heuristic is used to avoid large
7436 slowdowns with many input files. */
7438 static void
7439 output_file_names (void)
7441 struct file_info *files;
7442 struct dir_info *dirs;
7443 int *saved;
7444 int *savehere;
7445 int *backmap;
7446 size_t ndirs;
7447 int idx_offset;
7448 size_t i;
7449 int idx;
7451 /* Handle the case where file_table is empty. */
7452 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7454 dw2_asm_output_data (1, 0, "End directory table");
7455 dw2_asm_output_data (1, 0, "End file name table");
7456 return;
7459 /* Allocate the various arrays we need. */
7460 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7461 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7463 /* Sort the file names. */
7464 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7466 char *f;
7468 /* Skip all leading "./". */
7469 f = VARRAY_CHAR_PTR (file_table, i);
7470 while (f[0] == '.' && f[1] == '/')
7471 f += 2;
7473 /* Create a new array entry. */
7474 files[i].path = f;
7475 files[i].length = strlen (f);
7476 files[i].file_idx = i;
7478 /* Search for the file name part. */
7479 f = strrchr (f, '/');
7480 files[i].fname = f == NULL ? files[i].path : f + 1;
7483 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7484 sizeof (files[0]), file_info_cmp);
7486 /* Find all the different directories used. */
7487 dirs[0].path = files[1].path;
7488 dirs[0].length = files[1].fname - files[1].path;
7489 dirs[0].prefix = -1;
7490 dirs[0].count = 1;
7491 dirs[0].dir_idx = 0;
7492 dirs[0].used = 0;
7493 files[1].dir_idx = 0;
7494 ndirs = 1;
7496 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7497 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7498 && memcmp (dirs[ndirs - 1].path, files[i].path,
7499 dirs[ndirs - 1].length) == 0)
7501 /* Same directory as last entry. */
7502 files[i].dir_idx = ndirs - 1;
7503 ++dirs[ndirs - 1].count;
7505 else
7507 size_t j;
7509 /* This is a new directory. */
7510 dirs[ndirs].path = files[i].path;
7511 dirs[ndirs].length = files[i].fname - files[i].path;
7512 dirs[ndirs].count = 1;
7513 dirs[ndirs].dir_idx = ndirs;
7514 dirs[ndirs].used = 0;
7515 files[i].dir_idx = ndirs;
7517 /* Search for a prefix. */
7518 dirs[ndirs].prefix = -1;
7519 for (j = 0; j < ndirs; j++)
7520 if (dirs[j].length < dirs[ndirs].length
7521 && dirs[j].length > 1
7522 && (dirs[ndirs].prefix == -1
7523 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7524 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7525 dirs[ndirs].prefix = j;
7527 ++ndirs;
7530 /* Now to the actual work. We have to find a subset of the directories which
7531 allow expressing the file name using references to the directory table
7532 with the least amount of characters. We do not do an exhaustive search
7533 where we would have to check out every combination of every single
7534 possible prefix. Instead we use a heuristic which provides nearly optimal
7535 results in most cases and never is much off. */
7536 saved = alloca (ndirs * sizeof (int));
7537 savehere = alloca (ndirs * sizeof (int));
7539 memset (saved, '\0', ndirs * sizeof (saved[0]));
7540 for (i = 0; i < ndirs; i++)
7542 size_t j;
7543 int total;
7545 /* We can always save some space for the current directory. But this
7546 does not mean it will be enough to justify adding the directory. */
7547 savehere[i] = dirs[i].length;
7548 total = (savehere[i] - saved[i]) * dirs[i].count;
7550 for (j = i + 1; j < ndirs; j++)
7552 savehere[j] = 0;
7553 if (saved[j] < dirs[i].length)
7555 /* Determine whether the dirs[i] path is a prefix of the
7556 dirs[j] path. */
7557 int k;
7559 k = dirs[j].prefix;
7560 while (k != -1 && k != (int) i)
7561 k = dirs[k].prefix;
7563 if (k == (int) i)
7565 /* Yes it is. We can possibly safe some memory but
7566 writing the filenames in dirs[j] relative to
7567 dirs[i]. */
7568 savehere[j] = dirs[i].length;
7569 total += (savehere[j] - saved[j]) * dirs[j].count;
7574 /* Check whether we can safe enough to justify adding the dirs[i]
7575 directory. */
7576 if (total > dirs[i].length + 1)
7578 /* It's worthwhile adding. */
7579 for (j = i; j < ndirs; j++)
7580 if (savehere[j] > 0)
7582 /* Remember how much we saved for this directory so far. */
7583 saved[j] = savehere[j];
7585 /* Remember the prefix directory. */
7586 dirs[j].dir_idx = i;
7591 /* We have to emit them in the order they appear in the file_table array
7592 since the index is used in the debug info generation. To do this
7593 efficiently we generate a back-mapping of the indices first. */
7594 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7595 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7597 backmap[files[i].file_idx] = i;
7599 /* Mark this directory as used. */
7600 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7603 /* That was it. We are ready to emit the information. First emit the
7604 directory name table. We have to make sure the first actually emitted
7605 directory name has index one; zero is reserved for the current working
7606 directory. Make sure we do not confuse these indices with the one for the
7607 constructed table (even though most of the time they are identical). */
7608 idx = 1;
7609 idx_offset = dirs[0].length > 0 ? 1 : 0;
7610 for (i = 1 - idx_offset; i < ndirs; i++)
7611 if (dirs[i].used != 0)
7613 dirs[i].used = idx++;
7614 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7615 "Directory Entry: 0x%x", dirs[i].used);
7618 dw2_asm_output_data (1, 0, "End directory table");
7620 /* Correct the index for the current working directory entry if it
7621 exists. */
7622 if (idx_offset == 0)
7623 dirs[0].used = 0;
7625 /* Now write all the file names. */
7626 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7628 int file_idx = backmap[i];
7629 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7631 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7632 "File Entry: 0x%lx", (unsigned long) i);
7634 /* Include directory index. */
7635 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7637 /* Modification time. */
7638 dw2_asm_output_data_uleb128 (0, NULL);
7640 /* File length in bytes. */
7641 dw2_asm_output_data_uleb128 (0, NULL);
7644 dw2_asm_output_data (1, 0, "End file name table");
7648 /* Output the source line number correspondence information. This
7649 information goes into the .debug_line section. */
7651 static void
7652 output_line_info (void)
7654 char l1[20], l2[20], p1[20], p2[20];
7655 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7656 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7657 unsigned opc;
7658 unsigned n_op_args;
7659 unsigned long lt_index;
7660 unsigned long current_line;
7661 long line_offset;
7662 long line_delta;
7663 unsigned long current_file;
7664 unsigned long function;
7665 struct function *cfun = DECL_STRUCT_FUNCTION (current_function_decl);
7667 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7668 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7669 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7670 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7672 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7673 dw2_asm_output_data (4, 0xffffffff,
7674 "Initial length escape value indicating 64-bit DWARF extension");
7675 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7676 "Length of Source Line Info");
7677 ASM_OUTPUT_LABEL (asm_out_file, l1);
7679 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7680 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7681 ASM_OUTPUT_LABEL (asm_out_file, p1);
7683 /* Define the architecture-dependent minimum instruction length (in
7684 bytes). In this implementation of DWARF, this field is used for
7685 information purposes only. Since GCC generates assembly language,
7686 we have no a priori knowledge of how many instruction bytes are
7687 generated for each source line, and therefore can use only the
7688 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7689 commands. Accordingly, we fix this as `1', which is "correct
7690 enough" for all architectures, and don't let the target override. */
7691 dw2_asm_output_data (1, 1,
7692 "Minimum Instruction Length");
7694 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7695 "Default is_stmt_start flag");
7696 dw2_asm_output_data (1, DWARF_LINE_BASE,
7697 "Line Base Value (Special Opcodes)");
7698 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7699 "Line Range Value (Special Opcodes)");
7700 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7701 "Special Opcode Base");
7703 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7705 switch (opc)
7707 case DW_LNS_advance_pc:
7708 case DW_LNS_advance_line:
7709 case DW_LNS_set_file:
7710 case DW_LNS_set_column:
7711 case DW_LNS_fixed_advance_pc:
7712 n_op_args = 1;
7713 break;
7714 default:
7715 n_op_args = 0;
7716 break;
7719 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7720 opc, n_op_args);
7723 /* Write out the information about the files we use. */
7724 output_file_names ();
7725 ASM_OUTPUT_LABEL (asm_out_file, p2);
7727 /* We used to set the address register to the first location in the text
7728 section here, but that didn't accomplish anything since we already
7729 have a line note for the opening brace of the first function. */
7731 /* Generate the line number to PC correspondence table, encoded as
7732 a series of state machine operations. */
7733 current_file = 1;
7734 current_line = 1;
7735 if (last_text_section == in_unlikely_executed_text
7736 || (last_text_section == in_named
7737 && last_text_section_name == cfun->unlikely_text_section_name))
7738 strcpy (prev_line_label, cfun->cold_section_label);
7739 else
7740 strcpy (prev_line_label, text_section_label);
7741 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7743 dw_line_info_ref line_info = &line_info_table[lt_index];
7745 #if 0
7746 /* Disable this optimization for now; GDB wants to see two line notes
7747 at the beginning of a function so it can find the end of the
7748 prologue. */
7750 /* Don't emit anything for redundant notes. Just updating the
7751 address doesn't accomplish anything, because we already assume
7752 that anything after the last address is this line. */
7753 if (line_info->dw_line_num == current_line
7754 && line_info->dw_file_num == current_file)
7755 continue;
7756 #endif
7758 /* Emit debug info for the address of the current line.
7760 Unfortunately, we have little choice here currently, and must always
7761 use the most general form. GCC does not know the address delta
7762 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7763 attributes which will give an upper bound on the address range. We
7764 could perhaps use length attributes to determine when it is safe to
7765 use DW_LNS_fixed_advance_pc. */
7767 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7768 if (0)
7770 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7771 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7772 "DW_LNS_fixed_advance_pc");
7773 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7775 else
7777 /* This can handle any delta. This takes
7778 4+DWARF2_ADDR_SIZE bytes. */
7779 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7780 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7781 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7782 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7785 strcpy (prev_line_label, line_label);
7787 /* Emit debug info for the source file of the current line, if
7788 different from the previous line. */
7789 if (line_info->dw_file_num != current_file)
7791 current_file = line_info->dw_file_num;
7792 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7793 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7794 VARRAY_CHAR_PTR (file_table,
7795 current_file));
7798 /* Emit debug info for the current line number, choosing the encoding
7799 that uses the least amount of space. */
7800 if (line_info->dw_line_num != current_line)
7802 line_offset = line_info->dw_line_num - current_line;
7803 line_delta = line_offset - DWARF_LINE_BASE;
7804 current_line = line_info->dw_line_num;
7805 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7806 /* This can handle deltas from -10 to 234, using the current
7807 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7808 takes 1 byte. */
7809 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7810 "line %lu", current_line);
7811 else
7813 /* This can handle any delta. This takes at least 4 bytes,
7814 depending on the value being encoded. */
7815 dw2_asm_output_data (1, DW_LNS_advance_line,
7816 "advance to line %lu", current_line);
7817 dw2_asm_output_data_sleb128 (line_offset, NULL);
7818 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7821 else
7822 /* We still need to start a new row, so output a copy insn. */
7823 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7826 /* Emit debug info for the address of the end of the function. */
7827 if (0)
7829 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7830 "DW_LNS_fixed_advance_pc");
7831 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7833 else
7835 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7836 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7837 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7838 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7841 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7842 dw2_asm_output_data_uleb128 (1, NULL);
7843 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7845 function = 0;
7846 current_file = 1;
7847 current_line = 1;
7848 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7850 dw_separate_line_info_ref line_info
7851 = &separate_line_info_table[lt_index];
7853 #if 0
7854 /* Don't emit anything for redundant notes. */
7855 if (line_info->dw_line_num == current_line
7856 && line_info->dw_file_num == current_file
7857 && line_info->function == function)
7858 goto cont;
7859 #endif
7861 /* Emit debug info for the address of the current line. If this is
7862 a new function, or the first line of a function, then we need
7863 to handle it differently. */
7864 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7865 lt_index);
7866 if (function != line_info->function)
7868 function = line_info->function;
7870 /* Set the address register to the first line in the function. */
7871 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7872 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7873 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7874 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7876 else
7878 /* ??? See the DW_LNS_advance_pc comment above. */
7879 if (0)
7881 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7882 "DW_LNS_fixed_advance_pc");
7883 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7885 else
7887 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7888 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7889 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7890 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7894 strcpy (prev_line_label, line_label);
7896 /* Emit debug info for the source file of the current line, if
7897 different from the previous line. */
7898 if (line_info->dw_file_num != current_file)
7900 current_file = line_info->dw_file_num;
7901 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7902 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7903 VARRAY_CHAR_PTR (file_table,
7904 current_file));
7907 /* Emit debug info for the current line number, choosing the encoding
7908 that uses the least amount of space. */
7909 if (line_info->dw_line_num != current_line)
7911 line_offset = line_info->dw_line_num - current_line;
7912 line_delta = line_offset - DWARF_LINE_BASE;
7913 current_line = line_info->dw_line_num;
7914 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7915 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7916 "line %lu", current_line);
7917 else
7919 dw2_asm_output_data (1, DW_LNS_advance_line,
7920 "advance to line %lu", current_line);
7921 dw2_asm_output_data_sleb128 (line_offset, NULL);
7922 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7925 else
7926 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7928 #if 0
7929 cont:
7930 #endif
7932 lt_index++;
7934 /* If we're done with a function, end its sequence. */
7935 if (lt_index == separate_line_info_table_in_use
7936 || separate_line_info_table[lt_index].function != function)
7938 current_file = 1;
7939 current_line = 1;
7941 /* Emit debug info for the address of the end of the function. */
7942 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7943 if (0)
7945 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7946 "DW_LNS_fixed_advance_pc");
7947 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7949 else
7951 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7952 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7953 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7954 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7957 /* Output the marker for the end of this sequence. */
7958 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7959 dw2_asm_output_data_uleb128 (1, NULL);
7960 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7964 /* Output the marker for the end of the line number info. */
7965 ASM_OUTPUT_LABEL (asm_out_file, l2);
7968 /* Given a pointer to a tree node for some base type, return a pointer to
7969 a DIE that describes the given type.
7971 This routine must only be called for GCC type nodes that correspond to
7972 Dwarf base (fundamental) types. */
7974 static dw_die_ref
7975 base_type_die (tree type)
7977 dw_die_ref base_type_result;
7978 const char *type_name;
7979 enum dwarf_type encoding;
7980 tree name = TYPE_NAME (type);
7982 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7983 return 0;
7985 if (name)
7987 if (TREE_CODE (name) == TYPE_DECL)
7988 name = DECL_NAME (name);
7990 type_name = IDENTIFIER_POINTER (name);
7992 else
7993 type_name = "__unknown__";
7995 switch (TREE_CODE (type))
7997 case INTEGER_TYPE:
7998 /* Carefully distinguish the C character types, without messing
7999 up if the language is not C. Note that we check only for the names
8000 that contain spaces; other names might occur by coincidence in other
8001 languages. */
8002 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
8003 && (type == char_type_node
8004 || ! strcmp (type_name, "signed char")
8005 || ! strcmp (type_name, "unsigned char"))))
8007 if (TYPE_UNSIGNED (type))
8008 encoding = DW_ATE_unsigned;
8009 else
8010 encoding = DW_ATE_signed;
8011 break;
8013 /* else fall through. */
8015 case CHAR_TYPE:
8016 /* GNU Pascal/Ada CHAR type. Not used in C. */
8017 if (TYPE_UNSIGNED (type))
8018 encoding = DW_ATE_unsigned_char;
8019 else
8020 encoding = DW_ATE_signed_char;
8021 break;
8023 case REAL_TYPE:
8024 encoding = DW_ATE_float;
8025 break;
8027 /* Dwarf2 doesn't know anything about complex ints, so use
8028 a user defined type for it. */
8029 case COMPLEX_TYPE:
8030 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8031 encoding = DW_ATE_complex_float;
8032 else
8033 encoding = DW_ATE_lo_user;
8034 break;
8036 case BOOLEAN_TYPE:
8037 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8038 encoding = DW_ATE_boolean;
8039 break;
8041 default:
8042 /* No other TREE_CODEs are Dwarf fundamental types. */
8043 gcc_unreachable ();
8046 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8047 if (demangle_name_func)
8048 type_name = (*demangle_name_func) (type_name);
8050 add_AT_string (base_type_result, DW_AT_name, type_name);
8051 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8052 int_size_in_bytes (type));
8053 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8055 return base_type_result;
8058 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8059 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8060 a given type is generally the same as the given type, except that if the
8061 given type is a pointer or reference type, then the root type of the given
8062 type is the root type of the "basis" type for the pointer or reference
8063 type. (This definition of the "root" type is recursive.) Also, the root
8064 type of a `const' qualified type or a `volatile' qualified type is the
8065 root type of the given type without the qualifiers. */
8067 static tree
8068 root_type (tree type)
8070 if (TREE_CODE (type) == ERROR_MARK)
8071 return error_mark_node;
8073 switch (TREE_CODE (type))
8075 case ERROR_MARK:
8076 return error_mark_node;
8078 case POINTER_TYPE:
8079 case REFERENCE_TYPE:
8080 return type_main_variant (root_type (TREE_TYPE (type)));
8082 default:
8083 return type_main_variant (type);
8087 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8088 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8090 static inline int
8091 is_base_type (tree type)
8093 switch (TREE_CODE (type))
8095 case ERROR_MARK:
8096 case VOID_TYPE:
8097 case INTEGER_TYPE:
8098 case REAL_TYPE:
8099 case COMPLEX_TYPE:
8100 case BOOLEAN_TYPE:
8101 case CHAR_TYPE:
8102 return 1;
8104 case ARRAY_TYPE:
8105 case RECORD_TYPE:
8106 case UNION_TYPE:
8107 case QUAL_UNION_TYPE:
8108 case ENUMERAL_TYPE:
8109 case FUNCTION_TYPE:
8110 case METHOD_TYPE:
8111 case POINTER_TYPE:
8112 case REFERENCE_TYPE:
8113 case OFFSET_TYPE:
8114 case LANG_TYPE:
8115 case VECTOR_TYPE:
8116 return 0;
8118 default:
8119 gcc_unreachable ();
8122 return 0;
8125 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8126 node, return the size in bits for the type if it is a constant, or else
8127 return the alignment for the type if the type's size is not constant, or
8128 else return BITS_PER_WORD if the type actually turns out to be an
8129 ERROR_MARK node. */
8131 static inline unsigned HOST_WIDE_INT
8132 simple_type_size_in_bits (tree type)
8134 if (TREE_CODE (type) == ERROR_MARK)
8135 return BITS_PER_WORD;
8136 else if (TYPE_SIZE (type) == NULL_TREE)
8137 return 0;
8138 else if (host_integerp (TYPE_SIZE (type), 1))
8139 return tree_low_cst (TYPE_SIZE (type), 1);
8140 else
8141 return TYPE_ALIGN (type);
8144 /* Return true if the debug information for the given type should be
8145 emitted as a subrange type. */
8147 static inline bool
8148 is_subrange_type (tree type)
8150 tree subtype = TREE_TYPE (type);
8152 /* Subrange types are identified by the fact that they are integer
8153 types, and that they have a subtype which is either an integer type
8154 or an enumeral type. */
8156 if (TREE_CODE (type) != INTEGER_TYPE
8157 || subtype == NULL_TREE)
8158 return false;
8160 if (TREE_CODE (subtype) != INTEGER_TYPE
8161 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8162 return false;
8164 if (TREE_CODE (type) == TREE_CODE (subtype)
8165 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8166 && TYPE_MIN_VALUE (type) != NULL
8167 && TYPE_MIN_VALUE (subtype) != NULL
8168 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8169 && TYPE_MAX_VALUE (type) != NULL
8170 && TYPE_MAX_VALUE (subtype) != NULL
8171 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8173 /* The type and its subtype have the same representation. If in
8174 addition the two types also have the same name, then the given
8175 type is not a subrange type, but rather a plain base type. */
8176 /* FIXME: brobecker/2004-03-22:
8177 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8178 therefore be sufficient to check the TYPE_SIZE node pointers
8179 rather than checking the actual size. Unfortunately, we have
8180 found some cases, such as in the Ada "integer" type, where
8181 this is not the case. Until this problem is solved, we need to
8182 keep checking the actual size. */
8183 tree type_name = TYPE_NAME (type);
8184 tree subtype_name = TYPE_NAME (subtype);
8186 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8187 type_name = DECL_NAME (type_name);
8189 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8190 subtype_name = DECL_NAME (subtype_name);
8192 if (type_name == subtype_name)
8193 return false;
8196 return true;
8199 /* Given a pointer to a tree node for a subrange type, return a pointer
8200 to a DIE that describes the given type. */
8202 static dw_die_ref
8203 subrange_type_die (tree type, dw_die_ref context_die)
8205 dw_die_ref subtype_die;
8206 dw_die_ref subrange_die;
8207 tree name = TYPE_NAME (type);
8208 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8209 tree subtype = TREE_TYPE (type);
8211 if (context_die == NULL)
8212 context_die = comp_unit_die;
8214 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8215 subtype_die = gen_enumeration_type_die (subtype, context_die);
8216 else
8217 subtype_die = base_type_die (subtype);
8219 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8221 if (name != NULL)
8223 if (TREE_CODE (name) == TYPE_DECL)
8224 name = DECL_NAME (name);
8225 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8228 if (int_size_in_bytes (subtype) != size_in_bytes)
8230 /* The size of the subrange type and its base type do not match,
8231 so we need to generate a size attribute for the subrange type. */
8232 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8235 if (TYPE_MIN_VALUE (type) != NULL)
8236 add_bound_info (subrange_die, DW_AT_lower_bound,
8237 TYPE_MIN_VALUE (type));
8238 if (TYPE_MAX_VALUE (type) != NULL)
8239 add_bound_info (subrange_die, DW_AT_upper_bound,
8240 TYPE_MAX_VALUE (type));
8241 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8243 return subrange_die;
8246 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8247 entry that chains various modifiers in front of the given type. */
8249 static dw_die_ref
8250 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8251 dw_die_ref context_die)
8253 enum tree_code code = TREE_CODE (type);
8254 dw_die_ref mod_type_die = NULL;
8255 dw_die_ref sub_die = NULL;
8256 tree item_type = NULL;
8258 if (code != ERROR_MARK)
8260 tree qualified_type;
8262 /* See if we already have the appropriately qualified variant of
8263 this type. */
8264 qualified_type
8265 = get_qualified_type (type,
8266 ((is_const_type ? TYPE_QUAL_CONST : 0)
8267 | (is_volatile_type
8268 ? TYPE_QUAL_VOLATILE : 0)));
8270 /* If we do, then we can just use its DIE, if it exists. */
8271 if (qualified_type)
8273 mod_type_die = lookup_type_die (qualified_type);
8274 if (mod_type_die)
8275 return mod_type_die;
8278 /* Handle C typedef types. */
8279 if (qualified_type && TYPE_NAME (qualified_type)
8280 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8281 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8283 tree type_name = TYPE_NAME (qualified_type);
8284 tree dtype = TREE_TYPE (type_name);
8286 if (qualified_type == dtype)
8288 /* For a named type, use the typedef. */
8289 gen_type_die (qualified_type, context_die);
8290 mod_type_die = lookup_type_die (qualified_type);
8292 else if (is_const_type < TYPE_READONLY (dtype)
8293 || is_volatile_type < TYPE_VOLATILE (dtype))
8294 /* cv-unqualified version of named type. Just use the unnamed
8295 type to which it refers. */
8296 mod_type_die
8297 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8298 is_const_type, is_volatile_type,
8299 context_die);
8301 /* Else cv-qualified version of named type; fall through. */
8304 if (mod_type_die)
8305 /* OK. */
8307 else if (is_const_type)
8309 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8310 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8312 else if (is_volatile_type)
8314 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8315 sub_die = modified_type_die (type, 0, 0, context_die);
8317 else if (code == POINTER_TYPE)
8319 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8320 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8321 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8322 #if 0
8323 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8324 #endif
8325 item_type = TREE_TYPE (type);
8327 else if (code == REFERENCE_TYPE)
8329 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8330 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8331 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8332 #if 0
8333 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8334 #endif
8335 item_type = TREE_TYPE (type);
8337 else if (is_subrange_type (type))
8338 mod_type_die = subrange_type_die (type, context_die);
8339 else if (is_base_type (type))
8340 mod_type_die = base_type_die (type);
8341 else
8343 gen_type_die (type, context_die);
8345 /* We have to get the type_main_variant here (and pass that to the
8346 `lookup_type_die' routine) because the ..._TYPE node we have
8347 might simply be a *copy* of some original type node (where the
8348 copy was created to help us keep track of typedef names) and
8349 that copy might have a different TYPE_UID from the original
8350 ..._TYPE node. */
8351 if (TREE_CODE (type) != VECTOR_TYPE)
8352 mod_type_die = lookup_type_die (type_main_variant (type));
8353 else
8354 /* Vectors have the debugging information in the type,
8355 not the main variant. */
8356 mod_type_die = lookup_type_die (type);
8357 gcc_assert (mod_type_die);
8360 /* We want to equate the qualified type to the die below. */
8361 type = qualified_type;
8364 if (type)
8365 equate_type_number_to_die (type, mod_type_die);
8366 if (item_type)
8367 /* We must do this after the equate_type_number_to_die call, in case
8368 this is a recursive type. This ensures that the modified_type_die
8369 recursion will terminate even if the type is recursive. Recursive
8370 types are possible in Ada. */
8371 sub_die = modified_type_die (item_type,
8372 TYPE_READONLY (item_type),
8373 TYPE_VOLATILE (item_type),
8374 context_die);
8376 if (sub_die != NULL)
8377 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8379 return mod_type_die;
8382 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8383 an enumerated type. */
8385 static inline int
8386 type_is_enum (tree type)
8388 return TREE_CODE (type) == ENUMERAL_TYPE;
8391 /* Return the DBX register number described by a given RTL node. */
8393 static unsigned int
8394 dbx_reg_number (rtx rtl)
8396 unsigned regno = REGNO (rtl);
8398 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8400 return DBX_REGISTER_NUMBER (regno);
8403 /* Return a location descriptor that designates a machine register or
8404 zero if there is none. */
8406 static dw_loc_descr_ref
8407 reg_loc_descriptor (rtx rtl)
8409 unsigned reg;
8410 rtx regs;
8412 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8413 return 0;
8415 reg = dbx_reg_number (rtl);
8416 regs = targetm.dwarf_register_span (rtl);
8418 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8419 || regs)
8420 return multiple_reg_loc_descriptor (rtl, regs);
8421 else
8422 return one_reg_loc_descriptor (reg);
8425 /* Return a location descriptor that designates a machine register for
8426 a given hard register number. */
8428 static dw_loc_descr_ref
8429 one_reg_loc_descriptor (unsigned int regno)
8431 if (regno <= 31)
8432 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8433 else
8434 return new_loc_descr (DW_OP_regx, regno, 0);
8437 /* Given an RTL of a register, return a location descriptor that
8438 designates a value that spans more than one register. */
8440 static dw_loc_descr_ref
8441 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8443 int nregs, size, i;
8444 unsigned reg;
8445 dw_loc_descr_ref loc_result = NULL;
8447 reg = dbx_reg_number (rtl);
8448 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8450 /* Simple, contiguous registers. */
8451 if (regs == NULL_RTX)
8453 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8455 loc_result = NULL;
8456 while (nregs--)
8458 dw_loc_descr_ref t;
8460 t = one_reg_loc_descriptor (reg);
8461 add_loc_descr (&loc_result, t);
8462 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8463 ++reg;
8465 return loc_result;
8468 /* Now onto stupid register sets in non contiguous locations. */
8470 gcc_assert (GET_CODE (regs) == PARALLEL);
8472 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8473 loc_result = NULL;
8475 for (i = 0; i < XVECLEN (regs, 0); ++i)
8477 dw_loc_descr_ref t;
8479 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8480 add_loc_descr (&loc_result, t);
8481 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8482 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8484 return loc_result;
8487 /* Return a location descriptor that designates a constant. */
8489 static dw_loc_descr_ref
8490 int_loc_descriptor (HOST_WIDE_INT i)
8492 enum dwarf_location_atom op;
8494 /* Pick the smallest representation of a constant, rather than just
8495 defaulting to the LEB encoding. */
8496 if (i >= 0)
8498 if (i <= 31)
8499 op = DW_OP_lit0 + i;
8500 else if (i <= 0xff)
8501 op = DW_OP_const1u;
8502 else if (i <= 0xffff)
8503 op = DW_OP_const2u;
8504 else if (HOST_BITS_PER_WIDE_INT == 32
8505 || i <= 0xffffffff)
8506 op = DW_OP_const4u;
8507 else
8508 op = DW_OP_constu;
8510 else
8512 if (i >= -0x80)
8513 op = DW_OP_const1s;
8514 else if (i >= -0x8000)
8515 op = DW_OP_const2s;
8516 else if (HOST_BITS_PER_WIDE_INT == 32
8517 || i >= -0x80000000)
8518 op = DW_OP_const4s;
8519 else
8520 op = DW_OP_consts;
8523 return new_loc_descr (op, i, 0);
8526 /* Return a location descriptor that designates a base+offset location. */
8528 static dw_loc_descr_ref
8529 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8531 dw_loc_descr_ref loc_result;
8532 /* For the "frame base", we use the frame pointer or stack pointer
8533 registers, since the RTL for local variables is relative to one of
8534 them. */
8535 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8536 ? HARD_FRAME_POINTER_REGNUM
8537 : STACK_POINTER_REGNUM);
8539 if (reg == fp_reg && can_use_fbreg)
8540 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8541 else if (reg <= 31)
8542 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8543 else
8544 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8546 return loc_result;
8549 /* Return true if this RTL expression describes a base+offset calculation. */
8551 static inline int
8552 is_based_loc (rtx rtl)
8554 return (GET_CODE (rtl) == PLUS
8555 && ((REG_P (XEXP (rtl, 0))
8556 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8557 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8560 /* The following routine converts the RTL for a variable or parameter
8561 (resident in memory) into an equivalent Dwarf representation of a
8562 mechanism for getting the address of that same variable onto the top of a
8563 hypothetical "address evaluation" stack.
8565 When creating memory location descriptors, we are effectively transforming
8566 the RTL for a memory-resident object into its Dwarf postfix expression
8567 equivalent. This routine recursively descends an RTL tree, turning
8568 it into Dwarf postfix code as it goes.
8570 MODE is the mode of the memory reference, needed to handle some
8571 autoincrement addressing modes.
8573 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8574 list for RTL. We can't use it when we are emitting location list for
8575 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8576 which describes how frame base changes when !frame_pointer_needed.
8578 Return 0 if we can't represent the location. */
8580 static dw_loc_descr_ref
8581 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8583 dw_loc_descr_ref mem_loc_result = NULL;
8584 enum dwarf_location_atom op;
8586 /* Note that for a dynamically sized array, the location we will generate a
8587 description of here will be the lowest numbered location which is
8588 actually within the array. That's *not* necessarily the same as the
8589 zeroth element of the array. */
8591 rtl = targetm.delegitimize_address (rtl);
8593 switch (GET_CODE (rtl))
8595 case POST_INC:
8596 case POST_DEC:
8597 case POST_MODIFY:
8598 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8599 just fall into the SUBREG code. */
8601 /* ... fall through ... */
8603 case SUBREG:
8604 /* The case of a subreg may arise when we have a local (register)
8605 variable or a formal (register) parameter which doesn't quite fill
8606 up an entire register. For now, just assume that it is
8607 legitimate to make the Dwarf info refer to the whole register which
8608 contains the given subreg. */
8609 rtl = SUBREG_REG (rtl);
8611 /* ... fall through ... */
8613 case REG:
8614 /* Whenever a register number forms a part of the description of the
8615 method for calculating the (dynamic) address of a memory resident
8616 object, DWARF rules require the register number be referred to as
8617 a "base register". This distinction is not based in any way upon
8618 what category of register the hardware believes the given register
8619 belongs to. This is strictly DWARF terminology we're dealing with
8620 here. Note that in cases where the location of a memory-resident
8621 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8622 OP_CONST (0)) the actual DWARF location descriptor that we generate
8623 may just be OP_BASEREG (basereg). This may look deceptively like
8624 the object in question was allocated to a register (rather than in
8625 memory) so DWARF consumers need to be aware of the subtle
8626 distinction between OP_REG and OP_BASEREG. */
8627 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8628 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8629 can_use_fbreg);
8630 break;
8632 case MEM:
8633 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8634 can_use_fbreg);
8635 if (mem_loc_result != 0)
8636 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8637 break;
8639 case LO_SUM:
8640 rtl = XEXP (rtl, 1);
8642 /* ... fall through ... */
8644 case LABEL_REF:
8645 /* Some ports can transform a symbol ref into a label ref, because
8646 the symbol ref is too far away and has to be dumped into a constant
8647 pool. */
8648 case CONST:
8649 case SYMBOL_REF:
8650 /* Alternatively, the symbol in the constant pool might be referenced
8651 by a different symbol. */
8652 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8654 bool marked;
8655 rtx tmp = get_pool_constant_mark (rtl, &marked);
8657 if (GET_CODE (tmp) == SYMBOL_REF)
8659 rtl = tmp;
8660 if (CONSTANT_POOL_ADDRESS_P (tmp))
8661 get_pool_constant_mark (tmp, &marked);
8662 else
8663 marked = true;
8666 /* If all references to this pool constant were optimized away,
8667 it was not output and thus we can't represent it.
8668 FIXME: might try to use DW_OP_const_value here, though
8669 DW_OP_piece complicates it. */
8670 if (!marked)
8671 return 0;
8674 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8675 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8676 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8677 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8678 break;
8680 case PRE_MODIFY:
8681 /* Extract the PLUS expression nested inside and fall into
8682 PLUS code below. */
8683 rtl = XEXP (rtl, 1);
8684 goto plus;
8686 case PRE_INC:
8687 case PRE_DEC:
8688 /* Turn these into a PLUS expression and fall into the PLUS code
8689 below. */
8690 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8691 GEN_INT (GET_CODE (rtl) == PRE_INC
8692 ? GET_MODE_UNIT_SIZE (mode)
8693 : -GET_MODE_UNIT_SIZE (mode)));
8695 /* ... fall through ... */
8697 case PLUS:
8698 plus:
8699 if (is_based_loc (rtl))
8700 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8701 INTVAL (XEXP (rtl, 1)),
8702 can_use_fbreg);
8703 else
8705 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8706 can_use_fbreg);
8707 if (mem_loc_result == 0)
8708 break;
8710 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8711 && INTVAL (XEXP (rtl, 1)) >= 0)
8712 add_loc_descr (&mem_loc_result,
8713 new_loc_descr (DW_OP_plus_uconst,
8714 INTVAL (XEXP (rtl, 1)), 0));
8715 else
8717 add_loc_descr (&mem_loc_result,
8718 mem_loc_descriptor (XEXP (rtl, 1), mode,
8719 can_use_fbreg));
8720 add_loc_descr (&mem_loc_result,
8721 new_loc_descr (DW_OP_plus, 0, 0));
8724 break;
8726 /* If a pseudo-reg is optimized away, it is possible for it to
8727 be replaced with a MEM containing a multiply or shift. */
8728 case MULT:
8729 op = DW_OP_mul;
8730 goto do_binop;
8732 case ASHIFT:
8733 op = DW_OP_shl;
8734 goto do_binop;
8736 case ASHIFTRT:
8737 op = DW_OP_shra;
8738 goto do_binop;
8740 case LSHIFTRT:
8741 op = DW_OP_shr;
8742 goto do_binop;
8744 do_binop:
8746 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8747 can_use_fbreg);
8748 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8749 can_use_fbreg);
8751 if (op0 == 0 || op1 == 0)
8752 break;
8754 mem_loc_result = op0;
8755 add_loc_descr (&mem_loc_result, op1);
8756 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8757 break;
8760 case CONST_INT:
8761 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8762 break;
8764 default:
8765 gcc_unreachable ();
8768 return mem_loc_result;
8771 /* Return a descriptor that describes the concatenation of two locations.
8772 This is typically a complex variable. */
8774 static dw_loc_descr_ref
8775 concat_loc_descriptor (rtx x0, rtx x1)
8777 dw_loc_descr_ref cc_loc_result = NULL;
8778 dw_loc_descr_ref x0_ref = loc_descriptor (x0, false);
8779 dw_loc_descr_ref x1_ref = loc_descriptor (x1, false);
8781 if (x0_ref == 0 || x1_ref == 0)
8782 return 0;
8784 cc_loc_result = x0_ref;
8785 add_loc_descr (&cc_loc_result,
8786 new_loc_descr (DW_OP_piece,
8787 GET_MODE_SIZE (GET_MODE (x0)), 0));
8789 add_loc_descr (&cc_loc_result, x1_ref);
8790 add_loc_descr (&cc_loc_result,
8791 new_loc_descr (DW_OP_piece,
8792 GET_MODE_SIZE (GET_MODE (x1)), 0));
8794 return cc_loc_result;
8797 /* Output a proper Dwarf location descriptor for a variable or parameter
8798 which is either allocated in a register or in a memory location. For a
8799 register, we just generate an OP_REG and the register number. For a
8800 memory location we provide a Dwarf postfix expression describing how to
8801 generate the (dynamic) address of the object onto the address stack.
8803 If we don't know how to describe it, return 0. */
8805 static dw_loc_descr_ref
8806 loc_descriptor (rtx rtl, bool can_use_fbreg)
8808 dw_loc_descr_ref loc_result = NULL;
8810 switch (GET_CODE (rtl))
8812 case SUBREG:
8813 /* The case of a subreg may arise when we have a local (register)
8814 variable or a formal (register) parameter which doesn't quite fill
8815 up an entire register. For now, just assume that it is
8816 legitimate to make the Dwarf info refer to the whole register which
8817 contains the given subreg. */
8818 rtl = SUBREG_REG (rtl);
8820 /* ... fall through ... */
8822 case REG:
8823 loc_result = reg_loc_descriptor (rtl);
8824 break;
8826 case MEM:
8827 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8828 can_use_fbreg);
8829 break;
8831 case CONCAT:
8832 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8833 break;
8835 case VAR_LOCATION:
8836 /* Single part. */
8837 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8839 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8840 break;
8843 rtl = XEXP (rtl, 1);
8844 /* FALLTHRU */
8846 case PARALLEL:
8848 rtvec par_elems = XVEC (rtl, 0);
8849 int num_elem = GET_NUM_ELEM (par_elems);
8850 enum machine_mode mode;
8851 int i;
8853 /* Create the first one, so we have something to add to. */
8854 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8855 can_use_fbreg);
8856 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8857 add_loc_descr (&loc_result,
8858 new_loc_descr (DW_OP_piece, GET_MODE_SIZE (mode), 0));
8859 for (i = 1; i < num_elem; i++)
8861 dw_loc_descr_ref temp;
8863 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8864 can_use_fbreg);
8865 add_loc_descr (&loc_result, temp);
8866 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8867 add_loc_descr (&loc_result,
8868 new_loc_descr (DW_OP_piece,
8869 GET_MODE_SIZE (mode), 0));
8872 break;
8874 default:
8875 gcc_unreachable ();
8878 return loc_result;
8881 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8882 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8883 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8884 top-level invocation, and we require the address of LOC; is 0 if we require
8885 the value of LOC. */
8887 static dw_loc_descr_ref
8888 loc_descriptor_from_tree_1 (tree loc, int want_address)
8890 dw_loc_descr_ref ret, ret1;
8891 int have_address = 0;
8892 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8893 enum dwarf_location_atom op;
8895 /* ??? Most of the time we do not take proper care for sign/zero
8896 extending the values properly. Hopefully this won't be a real
8897 problem... */
8899 switch (TREE_CODE (loc))
8901 case ERROR_MARK:
8902 return 0;
8904 case PLACEHOLDER_EXPR:
8905 /* This case involves extracting fields from an object to determine the
8906 position of other fields. We don't try to encode this here. The
8907 only user of this is Ada, which encodes the needed information using
8908 the names of types. */
8909 return 0;
8911 case CALL_EXPR:
8912 return 0;
8914 case PREINCREMENT_EXPR:
8915 case PREDECREMENT_EXPR:
8916 case POSTINCREMENT_EXPR:
8917 case POSTDECREMENT_EXPR:
8918 /* There are no opcodes for these operations. */
8919 return 0;
8921 case ADDR_EXPR:
8922 /* If we already want an address, there's nothing we can do. */
8923 if (want_address)
8924 return 0;
8926 /* Otherwise, process the argument and look for the address. */
8927 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8929 case VAR_DECL:
8930 if (DECL_THREAD_LOCAL (loc))
8932 rtx rtl;
8934 #ifndef ASM_OUTPUT_DWARF_DTPREL
8935 /* If this is not defined, we have no way to emit the data. */
8936 return 0;
8937 #endif
8939 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8940 look up addresses of objects in the current module. */
8941 if (DECL_EXTERNAL (loc))
8942 return 0;
8944 rtl = rtl_for_decl_location (loc);
8945 if (rtl == NULL_RTX)
8946 return 0;
8948 if (!MEM_P (rtl))
8949 return 0;
8950 rtl = XEXP (rtl, 0);
8951 if (! CONSTANT_P (rtl))
8952 return 0;
8954 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8955 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8956 ret->dw_loc_oprnd1.v.val_addr = rtl;
8958 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8959 add_loc_descr (&ret, ret1);
8961 have_address = 1;
8962 break;
8964 /* FALLTHRU */
8966 case PARM_DECL:
8967 if (DECL_VALUE_EXPR (loc))
8968 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc), want_address);
8969 /* FALLTHRU */
8971 case RESULT_DECL:
8973 rtx rtl = rtl_for_decl_location (loc);
8975 if (rtl == NULL_RTX)
8976 return 0;
8977 else if (GET_CODE (rtl) == CONST_INT)
8979 HOST_WIDE_INT val = INTVAL (rtl);
8980 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
8981 val &= GET_MODE_MASK (DECL_MODE (loc));
8982 ret = int_loc_descriptor (val);
8984 else if (GET_CODE (rtl) == CONST_STRING)
8985 return 0;
8986 else if (CONSTANT_P (rtl))
8988 ret = new_loc_descr (DW_OP_addr, 0, 0);
8989 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8990 ret->dw_loc_oprnd1.v.val_addr = rtl;
8992 else
8994 enum machine_mode mode;
8996 /* Certain constructs can only be represented at top-level. */
8997 if (want_address == 2)
8998 return loc_descriptor (rtl, false);
9000 mode = GET_MODE (rtl);
9001 if (MEM_P (rtl))
9003 rtl = XEXP (rtl, 0);
9004 have_address = 1;
9006 ret = mem_loc_descriptor (rtl, mode, false);
9009 break;
9011 case INDIRECT_REF:
9012 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9013 have_address = 1;
9014 break;
9016 case COMPOUND_EXPR:
9017 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9019 case NOP_EXPR:
9020 case CONVERT_EXPR:
9021 case NON_LVALUE_EXPR:
9022 case VIEW_CONVERT_EXPR:
9023 case SAVE_EXPR:
9024 case MODIFY_EXPR:
9025 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9027 case COMPONENT_REF:
9028 case BIT_FIELD_REF:
9029 case ARRAY_REF:
9030 case ARRAY_RANGE_REF:
9032 tree obj, offset;
9033 HOST_WIDE_INT bitsize, bitpos, bytepos;
9034 enum machine_mode mode;
9035 int volatilep;
9037 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9038 &unsignedp, &volatilep, false);
9040 if (obj == loc)
9041 return 0;
9043 ret = loc_descriptor_from_tree_1 (obj, 1);
9044 if (ret == 0
9045 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9046 return 0;
9048 if (offset != NULL_TREE)
9050 /* Variable offset. */
9051 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9052 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9055 bytepos = bitpos / BITS_PER_UNIT;
9056 if (bytepos > 0)
9057 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9058 else if (bytepos < 0)
9060 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9061 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9064 have_address = 1;
9065 break;
9068 case INTEGER_CST:
9069 if (host_integerp (loc, 0))
9070 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9071 else
9072 return 0;
9073 break;
9075 case CONSTRUCTOR:
9077 /* Get an RTL for this, if something has been emitted. */
9078 rtx rtl = lookup_constant_def (loc);
9079 enum machine_mode mode;
9081 if (!rtl || !MEM_P (rtl))
9082 return 0;
9083 mode = GET_MODE (rtl);
9084 rtl = XEXP (rtl, 0);
9085 ret = mem_loc_descriptor (rtl, mode, false);
9086 have_address = 1;
9087 break;
9090 case TRUTH_AND_EXPR:
9091 case TRUTH_ANDIF_EXPR:
9092 case BIT_AND_EXPR:
9093 op = DW_OP_and;
9094 goto do_binop;
9096 case TRUTH_XOR_EXPR:
9097 case BIT_XOR_EXPR:
9098 op = DW_OP_xor;
9099 goto do_binop;
9101 case TRUTH_OR_EXPR:
9102 case TRUTH_ORIF_EXPR:
9103 case BIT_IOR_EXPR:
9104 op = DW_OP_or;
9105 goto do_binop;
9107 case FLOOR_DIV_EXPR:
9108 case CEIL_DIV_EXPR:
9109 case ROUND_DIV_EXPR:
9110 case TRUNC_DIV_EXPR:
9111 op = DW_OP_div;
9112 goto do_binop;
9114 case MINUS_EXPR:
9115 op = DW_OP_minus;
9116 goto do_binop;
9118 case FLOOR_MOD_EXPR:
9119 case CEIL_MOD_EXPR:
9120 case ROUND_MOD_EXPR:
9121 case TRUNC_MOD_EXPR:
9122 op = DW_OP_mod;
9123 goto do_binop;
9125 case MULT_EXPR:
9126 op = DW_OP_mul;
9127 goto do_binop;
9129 case LSHIFT_EXPR:
9130 op = DW_OP_shl;
9131 goto do_binop;
9133 case RSHIFT_EXPR:
9134 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9135 goto do_binop;
9137 case PLUS_EXPR:
9138 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9139 && host_integerp (TREE_OPERAND (loc, 1), 0))
9141 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9142 if (ret == 0)
9143 return 0;
9145 add_loc_descr (&ret,
9146 new_loc_descr (DW_OP_plus_uconst,
9147 tree_low_cst (TREE_OPERAND (loc, 1),
9149 0));
9150 break;
9153 op = DW_OP_plus;
9154 goto do_binop;
9156 case LE_EXPR:
9157 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9158 return 0;
9160 op = DW_OP_le;
9161 goto do_binop;
9163 case GE_EXPR:
9164 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9165 return 0;
9167 op = DW_OP_ge;
9168 goto do_binop;
9170 case LT_EXPR:
9171 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9172 return 0;
9174 op = DW_OP_lt;
9175 goto do_binop;
9177 case GT_EXPR:
9178 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9179 return 0;
9181 op = DW_OP_gt;
9182 goto do_binop;
9184 case EQ_EXPR:
9185 op = DW_OP_eq;
9186 goto do_binop;
9188 case NE_EXPR:
9189 op = DW_OP_ne;
9190 goto do_binop;
9192 do_binop:
9193 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9194 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9195 if (ret == 0 || ret1 == 0)
9196 return 0;
9198 add_loc_descr (&ret, ret1);
9199 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9200 break;
9202 case TRUTH_NOT_EXPR:
9203 case BIT_NOT_EXPR:
9204 op = DW_OP_not;
9205 goto do_unop;
9207 case ABS_EXPR:
9208 op = DW_OP_abs;
9209 goto do_unop;
9211 case NEGATE_EXPR:
9212 op = DW_OP_neg;
9213 goto do_unop;
9215 do_unop:
9216 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9217 if (ret == 0)
9218 return 0;
9220 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9221 break;
9223 case MIN_EXPR:
9224 case MAX_EXPR:
9226 const enum tree_code code =
9227 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9229 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9230 build2 (code, integer_type_node,
9231 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9232 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9235 /* ... fall through ... */
9237 case COND_EXPR:
9239 dw_loc_descr_ref lhs
9240 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9241 dw_loc_descr_ref rhs
9242 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9243 dw_loc_descr_ref bra_node, jump_node, tmp;
9245 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9246 if (ret == 0 || lhs == 0 || rhs == 0)
9247 return 0;
9249 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9250 add_loc_descr (&ret, bra_node);
9252 add_loc_descr (&ret, rhs);
9253 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9254 add_loc_descr (&ret, jump_node);
9256 add_loc_descr (&ret, lhs);
9257 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9258 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9260 /* ??? Need a node to point the skip at. Use a nop. */
9261 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9262 add_loc_descr (&ret, tmp);
9263 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9264 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9266 break;
9268 case FIX_TRUNC_EXPR:
9269 case FIX_CEIL_EXPR:
9270 case FIX_FLOOR_EXPR:
9271 case FIX_ROUND_EXPR:
9272 return 0;
9274 default:
9275 /* Leave front-end specific codes as simply unknown. This comes
9276 up, for instance, with the C STMT_EXPR. */
9277 if ((unsigned int) TREE_CODE (loc)
9278 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9279 return 0;
9281 #ifdef ENABLE_CHECKING
9282 /* Otherwise this is a generic code; we should just lists all of
9283 these explicitly. Aborting means we forgot one. */
9284 gcc_unreachable ();
9285 #else
9286 /* In a release build, we want to degrade gracefully: better to
9287 generate incomplete debugging information than to crash. */
9288 return NULL;
9289 #endif
9292 /* Show if we can't fill the request for an address. */
9293 if (want_address && !have_address)
9294 return 0;
9296 /* If we've got an address and don't want one, dereference. */
9297 if (!want_address && have_address)
9299 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9301 if (size > DWARF2_ADDR_SIZE || size == -1)
9302 return 0;
9303 else if (size == DWARF2_ADDR_SIZE)
9304 op = DW_OP_deref;
9305 else
9306 op = DW_OP_deref_size;
9308 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9311 return ret;
9314 static inline dw_loc_descr_ref
9315 loc_descriptor_from_tree (tree loc)
9317 return loc_descriptor_from_tree_1 (loc, 2);
9320 /* Given a value, round it up to the lowest multiple of `boundary'
9321 which is not less than the value itself. */
9323 static inline HOST_WIDE_INT
9324 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9326 return (((value + boundary - 1) / boundary) * boundary);
9329 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9330 pointer to the declared type for the relevant field variable, or return
9331 `integer_type_node' if the given node turns out to be an
9332 ERROR_MARK node. */
9334 static inline tree
9335 field_type (tree decl)
9337 tree type;
9339 if (TREE_CODE (decl) == ERROR_MARK)
9340 return integer_type_node;
9342 type = DECL_BIT_FIELD_TYPE (decl);
9343 if (type == NULL_TREE)
9344 type = TREE_TYPE (decl);
9346 return type;
9349 /* Given a pointer to a tree node, return the alignment in bits for
9350 it, or else return BITS_PER_WORD if the node actually turns out to
9351 be an ERROR_MARK node. */
9353 static inline unsigned
9354 simple_type_align_in_bits (tree type)
9356 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9359 static inline unsigned
9360 simple_decl_align_in_bits (tree decl)
9362 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9365 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9366 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9367 or return 0 if we are unable to determine what that offset is, either
9368 because the argument turns out to be a pointer to an ERROR_MARK node, or
9369 because the offset is actually variable. (We can't handle the latter case
9370 just yet). */
9372 static HOST_WIDE_INT
9373 field_byte_offset (tree decl)
9375 unsigned int type_align_in_bits;
9376 unsigned int decl_align_in_bits;
9377 unsigned HOST_WIDE_INT type_size_in_bits;
9378 HOST_WIDE_INT object_offset_in_bits;
9379 tree type;
9380 tree field_size_tree;
9381 HOST_WIDE_INT bitpos_int;
9382 HOST_WIDE_INT deepest_bitpos;
9383 unsigned HOST_WIDE_INT field_size_in_bits;
9385 if (TREE_CODE (decl) == ERROR_MARK)
9386 return 0;
9388 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9390 type = field_type (decl);
9391 field_size_tree = DECL_SIZE (decl);
9393 /* The size could be unspecified if there was an error, or for
9394 a flexible array member. */
9395 if (! field_size_tree)
9396 field_size_tree = bitsize_zero_node;
9398 /* We cannot yet cope with fields whose positions are variable, so
9399 for now, when we see such things, we simply return 0. Someday, we may
9400 be able to handle such cases, but it will be damn difficult. */
9401 if (! host_integerp (bit_position (decl), 0))
9402 return 0;
9404 bitpos_int = int_bit_position (decl);
9406 /* If we don't know the size of the field, pretend it's a full word. */
9407 if (host_integerp (field_size_tree, 1))
9408 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9409 else
9410 field_size_in_bits = BITS_PER_WORD;
9412 type_size_in_bits = simple_type_size_in_bits (type);
9413 type_align_in_bits = simple_type_align_in_bits (type);
9414 decl_align_in_bits = simple_decl_align_in_bits (decl);
9416 /* The GCC front-end doesn't make any attempt to keep track of the starting
9417 bit offset (relative to the start of the containing structure type) of the
9418 hypothetical "containing object" for a bit-field. Thus, when computing
9419 the byte offset value for the start of the "containing object" of a
9420 bit-field, we must deduce this information on our own. This can be rather
9421 tricky to do in some cases. For example, handling the following structure
9422 type definition when compiling for an i386/i486 target (which only aligns
9423 long long's to 32-bit boundaries) can be very tricky:
9425 struct S { int field1; long long field2:31; };
9427 Fortunately, there is a simple rule-of-thumb which can be used in such
9428 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9429 structure shown above. It decides to do this based upon one simple rule
9430 for bit-field allocation. GCC allocates each "containing object" for each
9431 bit-field at the first (i.e. lowest addressed) legitimate alignment
9432 boundary (based upon the required minimum alignment for the declared type
9433 of the field) which it can possibly use, subject to the condition that
9434 there is still enough available space remaining in the containing object
9435 (when allocated at the selected point) to fully accommodate all of the
9436 bits of the bit-field itself.
9438 This simple rule makes it obvious why GCC allocates 8 bytes for each
9439 object of the structure type shown above. When looking for a place to
9440 allocate the "containing object" for `field2', the compiler simply tries
9441 to allocate a 64-bit "containing object" at each successive 32-bit
9442 boundary (starting at zero) until it finds a place to allocate that 64-
9443 bit field such that at least 31 contiguous (and previously unallocated)
9444 bits remain within that selected 64 bit field. (As it turns out, for the
9445 example above, the compiler finds it is OK to allocate the "containing
9446 object" 64-bit field at bit-offset zero within the structure type.)
9448 Here we attempt to work backwards from the limited set of facts we're
9449 given, and we try to deduce from those facts, where GCC must have believed
9450 that the containing object started (within the structure type). The value
9451 we deduce is then used (by the callers of this routine) to generate
9452 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9453 and, in the case of DW_AT_location, regular fields as well). */
9455 /* Figure out the bit-distance from the start of the structure to the
9456 "deepest" bit of the bit-field. */
9457 deepest_bitpos = bitpos_int + field_size_in_bits;
9459 /* This is the tricky part. Use some fancy footwork to deduce where the
9460 lowest addressed bit of the containing object must be. */
9461 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9463 /* Round up to type_align by default. This works best for bitfields. */
9464 object_offset_in_bits += type_align_in_bits - 1;
9465 object_offset_in_bits /= type_align_in_bits;
9466 object_offset_in_bits *= type_align_in_bits;
9468 if (object_offset_in_bits > bitpos_int)
9470 /* Sigh, the decl must be packed. */
9471 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9473 /* Round up to decl_align instead. */
9474 object_offset_in_bits += decl_align_in_bits - 1;
9475 object_offset_in_bits /= decl_align_in_bits;
9476 object_offset_in_bits *= decl_align_in_bits;
9479 return object_offset_in_bits / BITS_PER_UNIT;
9482 /* The following routines define various Dwarf attributes and any data
9483 associated with them. */
9485 /* Add a location description attribute value to a DIE.
9487 This emits location attributes suitable for whole variables and
9488 whole parameters. Note that the location attributes for struct fields are
9489 generated by the routine `data_member_location_attribute' below. */
9491 static inline void
9492 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9493 dw_loc_descr_ref descr)
9495 if (descr != 0)
9496 add_AT_loc (die, attr_kind, descr);
9499 /* Attach the specialized form of location attribute used for data members of
9500 struct and union types. In the special case of a FIELD_DECL node which
9501 represents a bit-field, the "offset" part of this special location
9502 descriptor must indicate the distance in bytes from the lowest-addressed
9503 byte of the containing struct or union type to the lowest-addressed byte of
9504 the "containing object" for the bit-field. (See the `field_byte_offset'
9505 function above).
9507 For any given bit-field, the "containing object" is a hypothetical object
9508 (of some integral or enum type) within which the given bit-field lives. The
9509 type of this hypothetical "containing object" is always the same as the
9510 declared type of the individual bit-field itself (for GCC anyway... the
9511 DWARF spec doesn't actually mandate this). Note that it is the size (in
9512 bytes) of the hypothetical "containing object" which will be given in the
9513 DW_AT_byte_size attribute for this bit-field. (See the
9514 `byte_size_attribute' function below.) It is also used when calculating the
9515 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9516 function below.) */
9518 static void
9519 add_data_member_location_attribute (dw_die_ref die, tree decl)
9521 HOST_WIDE_INT offset;
9522 dw_loc_descr_ref loc_descr = 0;
9524 if (TREE_CODE (decl) == TREE_BINFO)
9526 /* We're working on the TAG_inheritance for a base class. */
9527 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9529 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9530 aren't at a fixed offset from all (sub)objects of the same
9531 type. We need to extract the appropriate offset from our
9532 vtable. The following dwarf expression means
9534 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9536 This is specific to the V3 ABI, of course. */
9538 dw_loc_descr_ref tmp;
9540 /* Make a copy of the object address. */
9541 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9542 add_loc_descr (&loc_descr, tmp);
9544 /* Extract the vtable address. */
9545 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9546 add_loc_descr (&loc_descr, tmp);
9548 /* Calculate the address of the offset. */
9549 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9550 gcc_assert (offset < 0);
9552 tmp = int_loc_descriptor (-offset);
9553 add_loc_descr (&loc_descr, tmp);
9554 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9555 add_loc_descr (&loc_descr, tmp);
9557 /* Extract the offset. */
9558 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9559 add_loc_descr (&loc_descr, tmp);
9561 /* Add it to the object address. */
9562 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9563 add_loc_descr (&loc_descr, tmp);
9565 else
9566 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9568 else
9569 offset = field_byte_offset (decl);
9571 if (! loc_descr)
9573 enum dwarf_location_atom op;
9575 /* The DWARF2 standard says that we should assume that the structure
9576 address is already on the stack, so we can specify a structure field
9577 address by using DW_OP_plus_uconst. */
9579 #ifdef MIPS_DEBUGGING_INFO
9580 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9581 operator correctly. It works only if we leave the offset on the
9582 stack. */
9583 op = DW_OP_constu;
9584 #else
9585 op = DW_OP_plus_uconst;
9586 #endif
9588 loc_descr = new_loc_descr (op, offset, 0);
9591 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9594 /* Writes integer values to dw_vec_const array. */
9596 static void
9597 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9599 while (size != 0)
9601 *dest++ = val & 0xff;
9602 val >>= 8;
9603 --size;
9607 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9609 static HOST_WIDE_INT
9610 extract_int (const unsigned char *src, unsigned int size)
9612 HOST_WIDE_INT val = 0;
9614 src += size;
9615 while (size != 0)
9617 val <<= 8;
9618 val |= *--src & 0xff;
9619 --size;
9621 return val;
9624 /* Writes floating point values to dw_vec_const array. */
9626 static void
9627 insert_float (rtx rtl, unsigned char *array)
9629 REAL_VALUE_TYPE rv;
9630 long val[4];
9631 int i;
9633 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9634 real_to_target (val, &rv, GET_MODE (rtl));
9636 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9637 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9639 insert_int (val[i], 4, array);
9640 array += 4;
9644 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9645 does not have a "location" either in memory or in a register. These
9646 things can arise in GNU C when a constant is passed as an actual parameter
9647 to an inlined function. They can also arise in C++ where declared
9648 constants do not necessarily get memory "homes". */
9650 static void
9651 add_const_value_attribute (dw_die_ref die, rtx rtl)
9653 switch (GET_CODE (rtl))
9655 case CONST_INT:
9657 HOST_WIDE_INT val = INTVAL (rtl);
9659 if (val < 0)
9660 add_AT_int (die, DW_AT_const_value, val);
9661 else
9662 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9664 break;
9666 case CONST_DOUBLE:
9667 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9668 floating-point constant. A CONST_DOUBLE is used whenever the
9669 constant requires more than one word in order to be adequately
9670 represented. We output CONST_DOUBLEs as blocks. */
9672 enum machine_mode mode = GET_MODE (rtl);
9674 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9676 unsigned int length = GET_MODE_SIZE (mode);
9677 unsigned char *array = ggc_alloc (length);
9679 insert_float (rtl, array);
9680 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9682 else
9684 /* ??? We really should be using HOST_WIDE_INT throughout. */
9685 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9687 add_AT_long_long (die, DW_AT_const_value,
9688 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9691 break;
9693 case CONST_VECTOR:
9695 enum machine_mode mode = GET_MODE (rtl);
9696 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9697 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9698 unsigned char *array = ggc_alloc (length * elt_size);
9699 unsigned int i;
9700 unsigned char *p;
9702 switch (GET_MODE_CLASS (mode))
9704 case MODE_VECTOR_INT:
9705 for (i = 0, p = array; i < length; i++, p += elt_size)
9707 rtx elt = CONST_VECTOR_ELT (rtl, i);
9708 HOST_WIDE_INT lo, hi;
9710 switch (GET_CODE (elt))
9712 case CONST_INT:
9713 lo = INTVAL (elt);
9714 hi = -(lo < 0);
9715 break;
9717 case CONST_DOUBLE:
9718 lo = CONST_DOUBLE_LOW (elt);
9719 hi = CONST_DOUBLE_HIGH (elt);
9720 break;
9722 default:
9723 gcc_unreachable ();
9726 if (elt_size <= sizeof (HOST_WIDE_INT))
9727 insert_int (lo, elt_size, p);
9728 else
9730 unsigned char *p0 = p;
9731 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9733 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9734 if (WORDS_BIG_ENDIAN)
9736 p0 = p1;
9737 p1 = p;
9739 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9740 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9743 break;
9745 case MODE_VECTOR_FLOAT:
9746 for (i = 0, p = array; i < length; i++, p += elt_size)
9748 rtx elt = CONST_VECTOR_ELT (rtl, i);
9749 insert_float (elt, p);
9751 break;
9753 default:
9754 gcc_unreachable ();
9757 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9759 break;
9761 case CONST_STRING:
9762 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9763 break;
9765 case SYMBOL_REF:
9766 case LABEL_REF:
9767 case CONST:
9768 add_AT_addr (die, DW_AT_const_value, rtl);
9769 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9770 break;
9772 case PLUS:
9773 /* In cases where an inlined instance of an inline function is passed
9774 the address of an `auto' variable (which is local to the caller) we
9775 can get a situation where the DECL_RTL of the artificial local
9776 variable (for the inlining) which acts as a stand-in for the
9777 corresponding formal parameter (of the inline function) will look
9778 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9779 exactly a compile-time constant expression, but it isn't the address
9780 of the (artificial) local variable either. Rather, it represents the
9781 *value* which the artificial local variable always has during its
9782 lifetime. We currently have no way to represent such quasi-constant
9783 values in Dwarf, so for now we just punt and generate nothing. */
9784 break;
9786 default:
9787 /* No other kinds of rtx should be possible here. */
9788 gcc_unreachable ();
9793 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9794 for use in a later add_const_value_attribute call. */
9796 static rtx
9797 rtl_for_decl_init (tree init, tree type)
9799 rtx rtl = NULL_RTX;
9801 /* If a variable is initialized with a string constant without embedded
9802 zeros, build CONST_STRING. */
9803 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9805 tree enttype = TREE_TYPE (type);
9806 tree domain = TYPE_DOMAIN (type);
9807 enum machine_mode mode = TYPE_MODE (enttype);
9809 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9810 && domain
9811 && integer_zerop (TYPE_MIN_VALUE (domain))
9812 && compare_tree_int (TYPE_MAX_VALUE (domain),
9813 TREE_STRING_LENGTH (init) - 1) == 0
9814 && ((size_t) TREE_STRING_LENGTH (init)
9815 == strlen (TREE_STRING_POINTER (init)) + 1))
9816 rtl = gen_rtx_CONST_STRING (VOIDmode,
9817 ggc_strdup (TREE_STRING_POINTER (init)));
9819 /* If the initializer is something that we know will expand into an
9820 immediate RTL constant, expand it now. Expanding anything else
9821 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9822 /* Aggregate, vector, and complex types may contain constructors that may
9823 result in code being generated when expand_expr is called, so we can't
9824 handle them here. Integer and float are useful and safe types to handle
9825 here. */
9826 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9827 && initializer_constant_valid_p (init, type) == null_pointer_node)
9829 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9831 /* If expand_expr returns a MEM, it wasn't immediate. */
9832 gcc_assert (!rtl || !MEM_P (rtl));
9835 return rtl;
9838 /* Generate RTL for the variable DECL to represent its location. */
9840 static rtx
9841 rtl_for_decl_location (tree decl)
9843 rtx rtl;
9845 /* Here we have to decide where we are going to say the parameter "lives"
9846 (as far as the debugger is concerned). We only have a couple of
9847 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9849 DECL_RTL normally indicates where the parameter lives during most of the
9850 activation of the function. If optimization is enabled however, this
9851 could be either NULL or else a pseudo-reg. Both of those cases indicate
9852 that the parameter doesn't really live anywhere (as far as the code
9853 generation parts of GCC are concerned) during most of the function's
9854 activation. That will happen (for example) if the parameter is never
9855 referenced within the function.
9857 We could just generate a location descriptor here for all non-NULL
9858 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9859 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9860 where DECL_RTL is NULL or is a pseudo-reg.
9862 Note however that we can only get away with using DECL_INCOMING_RTL as
9863 a backup substitute for DECL_RTL in certain limited cases. In cases
9864 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9865 we can be sure that the parameter was passed using the same type as it is
9866 declared to have within the function, and that its DECL_INCOMING_RTL
9867 points us to a place where a value of that type is passed.
9869 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9870 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9871 because in these cases DECL_INCOMING_RTL points us to a value of some
9872 type which is *different* from the type of the parameter itself. Thus,
9873 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9874 such cases, the debugger would end up (for example) trying to fetch a
9875 `float' from a place which actually contains the first part of a
9876 `double'. That would lead to really incorrect and confusing
9877 output at debug-time.
9879 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9880 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9881 are a couple of exceptions however. On little-endian machines we can
9882 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9883 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9884 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9885 when (on a little-endian machine) a non-prototyped function has a
9886 parameter declared to be of type `short' or `char'. In such cases,
9887 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9888 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9889 passed `int' value. If the debugger then uses that address to fetch
9890 a `short' or a `char' (on a little-endian machine) the result will be
9891 the correct data, so we allow for such exceptional cases below.
9893 Note that our goal here is to describe the place where the given formal
9894 parameter lives during most of the function's activation (i.e. between the
9895 end of the prologue and the start of the epilogue). We'll do that as best
9896 as we can. Note however that if the given formal parameter is modified
9897 sometime during the execution of the function, then a stack backtrace (at
9898 debug-time) will show the function as having been called with the *new*
9899 value rather than the value which was originally passed in. This happens
9900 rarely enough that it is not a major problem, but it *is* a problem, and
9901 I'd like to fix it.
9903 A future version of dwarf2out.c may generate two additional attributes for
9904 any given DW_TAG_formal_parameter DIE which will describe the "passed
9905 type" and the "passed location" for the given formal parameter in addition
9906 to the attributes we now generate to indicate the "declared type" and the
9907 "active location" for each parameter. This additional set of attributes
9908 could be used by debuggers for stack backtraces. Separately, note that
9909 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9910 This happens (for example) for inlined-instances of inline function formal
9911 parameters which are never referenced. This really shouldn't be
9912 happening. All PARM_DECL nodes should get valid non-NULL
9913 DECL_INCOMING_RTL values. FIXME. */
9915 /* Use DECL_RTL as the "location" unless we find something better. */
9916 rtl = DECL_RTL_IF_SET (decl);
9918 /* When generating abstract instances, ignore everything except
9919 constants, symbols living in memory, and symbols living in
9920 fixed registers. */
9921 if (! reload_completed)
9923 if (rtl
9924 && (CONSTANT_P (rtl)
9925 || (MEM_P (rtl)
9926 && CONSTANT_P (XEXP (rtl, 0)))
9927 || (REG_P (rtl)
9928 && TREE_CODE (decl) == VAR_DECL
9929 && TREE_STATIC (decl))))
9931 rtl = targetm.delegitimize_address (rtl);
9932 return rtl;
9934 rtl = NULL_RTX;
9936 else if (TREE_CODE (decl) == PARM_DECL)
9938 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9940 tree declared_type = TREE_TYPE (decl);
9941 tree passed_type = DECL_ARG_TYPE (decl);
9942 enum machine_mode dmode = TYPE_MODE (declared_type);
9943 enum machine_mode pmode = TYPE_MODE (passed_type);
9945 /* This decl represents a formal parameter which was optimized out.
9946 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9947 all cases where (rtl == NULL_RTX) just below. */
9948 if (dmode == pmode)
9949 rtl = DECL_INCOMING_RTL (decl);
9950 else if (SCALAR_INT_MODE_P (dmode)
9951 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
9952 && DECL_INCOMING_RTL (decl))
9954 rtx inc = DECL_INCOMING_RTL (decl);
9955 if (REG_P (inc))
9956 rtl = inc;
9957 else if (MEM_P (inc))
9959 if (BYTES_BIG_ENDIAN)
9960 rtl = adjust_address_nv (inc, dmode,
9961 GET_MODE_SIZE (pmode)
9962 - GET_MODE_SIZE (dmode));
9963 else
9964 rtl = inc;
9969 /* If the parm was passed in registers, but lives on the stack, then
9970 make a big endian correction if the mode of the type of the
9971 parameter is not the same as the mode of the rtl. */
9972 /* ??? This is the same series of checks that are made in dbxout.c before
9973 we reach the big endian correction code there. It isn't clear if all
9974 of these checks are necessary here, but keeping them all is the safe
9975 thing to do. */
9976 else if (MEM_P (rtl)
9977 && XEXP (rtl, 0) != const0_rtx
9978 && ! CONSTANT_P (XEXP (rtl, 0))
9979 /* Not passed in memory. */
9980 && !MEM_P (DECL_INCOMING_RTL (decl))
9981 /* Not passed by invisible reference. */
9982 && (!REG_P (XEXP (rtl, 0))
9983 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9984 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9985 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9986 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9987 #endif
9989 /* Big endian correction check. */
9990 && BYTES_BIG_ENDIAN
9991 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9992 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9993 < UNITS_PER_WORD))
9995 int offset = (UNITS_PER_WORD
9996 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9998 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9999 plus_constant (XEXP (rtl, 0), offset));
10002 else if (TREE_CODE (decl) == VAR_DECL
10003 && rtl
10004 && MEM_P (rtl)
10005 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10006 && BYTES_BIG_ENDIAN)
10008 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10009 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10011 /* If a variable is declared "register" yet is smaller than
10012 a register, then if we store the variable to memory, it
10013 looks like we're storing a register-sized value, when in
10014 fact we are not. We need to adjust the offset of the
10015 storage location to reflect the actual value's bytes,
10016 else gdb will not be able to display it. */
10017 if (rsize > dsize)
10018 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10019 plus_constant (XEXP (rtl, 0), rsize-dsize));
10022 if (rtl != NULL_RTX)
10024 rtl = eliminate_regs (rtl, 0, NULL_RTX);
10025 #ifdef LEAF_REG_REMAP
10026 if (current_function_uses_only_leaf_regs)
10027 leaf_renumber_regs_insn (rtl);
10028 #endif
10031 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10032 and will have been substituted directly into all expressions that use it.
10033 C does not have such a concept, but C++ and other languages do. */
10034 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10035 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10037 if (rtl)
10038 rtl = targetm.delegitimize_address (rtl);
10040 /* If we don't look past the constant pool, we risk emitting a
10041 reference to a constant pool entry that isn't referenced from
10042 code, and thus is not emitted. */
10043 if (rtl)
10044 rtl = avoid_constant_pool_reference (rtl);
10046 return rtl;
10049 /* Return true if DECL's containing function has a frame base attribute.
10050 Return false otherwise. */
10052 static bool
10053 containing_function_has_frame_base (tree decl)
10055 tree declcontext = decl_function_context (decl);
10056 dw_die_ref context;
10057 dw_attr_ref attr;
10059 if (!declcontext)
10060 return false;
10062 context = lookup_decl_die (declcontext);
10063 if (!context)
10064 return false;
10066 for (attr = context->die_attr; attr; attr = attr->dw_attr_next)
10067 if (attr->dw_attr == DW_AT_frame_base)
10068 return true;
10069 return false;
10072 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10073 data attribute for a variable or a parameter. We generate the
10074 DW_AT_const_value attribute only in those cases where the given variable
10075 or parameter does not have a true "location" either in memory or in a
10076 register. This can happen (for example) when a constant is passed as an
10077 actual argument in a call to an inline function. (It's possible that
10078 these things can crop up in other ways also.) Note that one type of
10079 constant value which can be passed into an inlined function is a constant
10080 pointer. This can happen for example if an actual argument in an inlined
10081 function call evaluates to a compile-time constant address. */
10083 static void
10084 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10085 enum dwarf_attribute attr)
10087 rtx rtl;
10088 dw_loc_descr_ref descr;
10089 var_loc_list *loc_list;
10090 bool can_use_fb;
10091 struct var_loc_node *node;
10092 if (TREE_CODE (decl) == ERROR_MARK)
10093 return;
10095 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10096 || TREE_CODE (decl) == RESULT_DECL);
10098 can_use_fb = containing_function_has_frame_base (decl);
10100 /* See if we possibly have multiple locations for this variable. */
10101 loc_list = lookup_decl_loc (decl);
10103 /* If it truly has multiple locations, the first and last node will
10104 differ. */
10105 if (loc_list && loc_list->first != loc_list->last)
10107 const char *secname;
10108 const char *endname;
10109 dw_loc_list_ref list;
10110 rtx varloc;
10111 struct function *cfun = DECL_STRUCT_FUNCTION (current_function_decl);
10114 /* We need to figure out what section we should use as the base
10115 for the address ranges where a given location is valid.
10116 1. If this particular DECL has a section associated with it,
10117 use that.
10118 2. If this function has a section associated with it, use
10119 that.
10120 3. Otherwise, use the text section.
10121 XXX: If you split a variable across multiple sections, this
10122 won't notice. */
10124 if (DECL_SECTION_NAME (decl))
10126 tree sectree = DECL_SECTION_NAME (decl);
10127 secname = TREE_STRING_POINTER (sectree);
10129 else if (current_function_decl
10130 && DECL_SECTION_NAME (current_function_decl))
10132 tree sectree = DECL_SECTION_NAME (current_function_decl);
10133 secname = TREE_STRING_POINTER (sectree);
10135 else if (last_text_section == in_unlikely_executed_text
10136 || (last_text_section == in_named
10137 && last_text_section_name == cfun->unlikely_text_section_name))
10138 secname = cfun->cold_section_label;
10139 else
10140 secname = text_section_label;
10142 /* Now that we know what section we are using for a base,
10143 actually construct the list of locations.
10144 The first location information is what is passed to the
10145 function that creates the location list, and the remaining
10146 locations just get added on to that list.
10147 Note that we only know the start address for a location
10148 (IE location changes), so to build the range, we use
10149 the range [current location start, next location start].
10150 This means we have to special case the last node, and generate
10151 a range of [last location start, end of function label]. */
10153 node = loc_list->first;
10154 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10155 list = new_loc_list (loc_descriptor (varloc, can_use_fb),
10156 node->label, node->next->label, secname, 1);
10157 node = node->next;
10159 for (; node->next; node = node->next)
10160 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10162 /* The variable has a location between NODE->LABEL and
10163 NODE->NEXT->LABEL. */
10164 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10165 add_loc_descr_to_loc_list (&list,
10166 loc_descriptor (varloc,
10167 can_use_fb),
10168 node->label, node->next->label, secname);
10171 /* If the variable has a location at the last label
10172 it keeps its location until the end of function. */
10173 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10175 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10177 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10178 if (!current_function_decl)
10179 endname = text_end_label;
10180 else
10182 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10183 current_function_funcdef_no);
10184 endname = ggc_strdup (label_id);
10186 add_loc_descr_to_loc_list (&list,
10187 loc_descriptor (varloc,
10188 can_use_fb),
10189 node->label, endname, secname);
10192 /* Finally, add the location list to the DIE, and we are done. */
10193 add_AT_loc_list (die, attr, list);
10194 return;
10197 /* Try to get some constant RTL for this decl, and use that as the value of
10198 the location. */
10200 rtl = rtl_for_decl_location (decl);
10201 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10203 add_const_value_attribute (die, rtl);
10204 return;
10207 /* We couldn't get any rtl, and we had no >1 element location list, so try
10208 directly generating the location description from the tree. */
10209 descr = loc_descriptor_from_tree (decl);
10210 if (descr)
10212 add_AT_location_description (die, attr, descr);
10213 return;
10216 /* Lastly, if we have tried to generate the location otherwise, and it
10217 didn't work out (we wouldn't be here if we did), and we have a one entry
10218 location list, try generating a location from that. */
10219 if (loc_list && loc_list->first)
10221 node = loc_list->first;
10222 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note),
10223 can_use_fb);
10224 if (descr)
10225 add_AT_location_description (die, attr, descr);
10229 /* If we don't have a copy of this variable in memory for some reason (such
10230 as a C++ member constant that doesn't have an out-of-line definition),
10231 we should tell the debugger about the constant value. */
10233 static void
10234 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10236 tree init = DECL_INITIAL (decl);
10237 tree type = TREE_TYPE (decl);
10238 rtx rtl;
10240 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10241 /* OK */;
10242 else
10243 return;
10245 rtl = rtl_for_decl_init (init, type);
10246 if (rtl)
10247 add_const_value_attribute (var_die, rtl);
10250 /* Generate a DW_AT_name attribute given some string value to be included as
10251 the value of the attribute. */
10253 static void
10254 add_name_attribute (dw_die_ref die, const char *name_string)
10256 if (name_string != NULL && *name_string != 0)
10258 if (demangle_name_func)
10259 name_string = (*demangle_name_func) (name_string);
10261 add_AT_string (die, DW_AT_name, name_string);
10265 /* Generate a DW_AT_comp_dir attribute for DIE. */
10267 static void
10268 add_comp_dir_attribute (dw_die_ref die)
10270 const char *wd = get_src_pwd ();
10271 if (wd != NULL)
10272 add_AT_string (die, DW_AT_comp_dir, wd);
10275 /* Given a tree node describing an array bound (either lower or upper) output
10276 a representation for that bound. */
10278 static void
10279 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10281 switch (TREE_CODE (bound))
10283 case ERROR_MARK:
10284 return;
10286 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10287 case INTEGER_CST:
10288 if (! host_integerp (bound, 0)
10289 || (bound_attr == DW_AT_lower_bound
10290 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10291 || (is_fortran () && integer_onep (bound)))))
10292 /* Use the default. */
10294 else
10295 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10296 break;
10298 case CONVERT_EXPR:
10299 case NOP_EXPR:
10300 case NON_LVALUE_EXPR:
10301 case VIEW_CONVERT_EXPR:
10302 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10303 break;
10305 case SAVE_EXPR:
10306 break;
10308 case VAR_DECL:
10309 case PARM_DECL:
10310 case RESULT_DECL:
10312 dw_die_ref decl_die = lookup_decl_die (bound);
10314 /* ??? Can this happen, or should the variable have been bound
10315 first? Probably it can, since I imagine that we try to create
10316 the types of parameters in the order in which they exist in
10317 the list, and won't have created a forward reference to a
10318 later parameter. */
10319 if (decl_die != NULL)
10320 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10321 break;
10324 default:
10326 /* Otherwise try to create a stack operation procedure to
10327 evaluate the value of the array bound. */
10329 dw_die_ref ctx, decl_die;
10330 dw_loc_descr_ref loc;
10332 loc = loc_descriptor_from_tree (bound);
10333 if (loc == NULL)
10334 break;
10336 if (current_function_decl == 0)
10337 ctx = comp_unit_die;
10338 else
10339 ctx = lookup_decl_die (current_function_decl);
10341 decl_die = new_die (DW_TAG_variable, ctx, bound);
10342 add_AT_flag (decl_die, DW_AT_artificial, 1);
10343 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10344 add_AT_loc (decl_die, DW_AT_location, loc);
10346 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10347 break;
10352 /* Note that the block of subscript information for an array type also
10353 includes information about the element type of type given array type. */
10355 static void
10356 add_subscript_info (dw_die_ref type_die, tree type)
10358 #ifndef MIPS_DEBUGGING_INFO
10359 unsigned dimension_number;
10360 #endif
10361 tree lower, upper;
10362 dw_die_ref subrange_die;
10364 /* The GNU compilers represent multidimensional array types as sequences of
10365 one dimensional array types whose element types are themselves array
10366 types. Here we squish that down, so that each multidimensional array
10367 type gets only one array_type DIE in the Dwarf debugging info. The draft
10368 Dwarf specification say that we are allowed to do this kind of
10369 compression in C (because there is no difference between an array or
10370 arrays and a multidimensional array in C) but for other source languages
10371 (e.g. Ada) we probably shouldn't do this. */
10373 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10374 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10375 We work around this by disabling this feature. See also
10376 gen_array_type_die. */
10377 #ifndef MIPS_DEBUGGING_INFO
10378 for (dimension_number = 0;
10379 TREE_CODE (type) == ARRAY_TYPE;
10380 type = TREE_TYPE (type), dimension_number++)
10381 #endif
10383 tree domain = TYPE_DOMAIN (type);
10385 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10386 and (in GNU C only) variable bounds. Handle all three forms
10387 here. */
10388 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10389 if (domain)
10391 /* We have an array type with specified bounds. */
10392 lower = TYPE_MIN_VALUE (domain);
10393 upper = TYPE_MAX_VALUE (domain);
10395 /* Define the index type. */
10396 if (TREE_TYPE (domain))
10398 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10399 TREE_TYPE field. We can't emit debug info for this
10400 because it is an unnamed integral type. */
10401 if (TREE_CODE (domain) == INTEGER_TYPE
10402 && TYPE_NAME (domain) == NULL_TREE
10403 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10404 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10406 else
10407 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10408 type_die);
10411 /* ??? If upper is NULL, the array has unspecified length,
10412 but it does have a lower bound. This happens with Fortran
10413 dimension arr(N:*)
10414 Since the debugger is definitely going to need to know N
10415 to produce useful results, go ahead and output the lower
10416 bound solo, and hope the debugger can cope. */
10418 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10419 if (upper)
10420 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10423 /* Otherwise we have an array type with an unspecified length. The
10424 DWARF-2 spec does not say how to handle this; let's just leave out the
10425 bounds. */
10429 static void
10430 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10432 unsigned size;
10434 switch (TREE_CODE (tree_node))
10436 case ERROR_MARK:
10437 size = 0;
10438 break;
10439 case ENUMERAL_TYPE:
10440 case RECORD_TYPE:
10441 case UNION_TYPE:
10442 case QUAL_UNION_TYPE:
10443 size = int_size_in_bytes (tree_node);
10444 break;
10445 case FIELD_DECL:
10446 /* For a data member of a struct or union, the DW_AT_byte_size is
10447 generally given as the number of bytes normally allocated for an
10448 object of the *declared* type of the member itself. This is true
10449 even for bit-fields. */
10450 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10451 break;
10452 default:
10453 gcc_unreachable ();
10456 /* Note that `size' might be -1 when we get to this point. If it is, that
10457 indicates that the byte size of the entity in question is variable. We
10458 have no good way of expressing this fact in Dwarf at the present time,
10459 so just let the -1 pass on through. */
10460 add_AT_unsigned (die, DW_AT_byte_size, size);
10463 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10464 which specifies the distance in bits from the highest order bit of the
10465 "containing object" for the bit-field to the highest order bit of the
10466 bit-field itself.
10468 For any given bit-field, the "containing object" is a hypothetical object
10469 (of some integral or enum type) within which the given bit-field lives. The
10470 type of this hypothetical "containing object" is always the same as the
10471 declared type of the individual bit-field itself. The determination of the
10472 exact location of the "containing object" for a bit-field is rather
10473 complicated. It's handled by the `field_byte_offset' function (above).
10475 Note that it is the size (in bytes) of the hypothetical "containing object"
10476 which will be given in the DW_AT_byte_size attribute for this bit-field.
10477 (See `byte_size_attribute' above). */
10479 static inline void
10480 add_bit_offset_attribute (dw_die_ref die, tree decl)
10482 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10483 tree type = DECL_BIT_FIELD_TYPE (decl);
10484 HOST_WIDE_INT bitpos_int;
10485 HOST_WIDE_INT highest_order_object_bit_offset;
10486 HOST_WIDE_INT highest_order_field_bit_offset;
10487 HOST_WIDE_INT unsigned bit_offset;
10489 /* Must be a field and a bit field. */
10490 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10492 /* We can't yet handle bit-fields whose offsets are variable, so if we
10493 encounter such things, just return without generating any attribute
10494 whatsoever. Likewise for variable or too large size. */
10495 if (! host_integerp (bit_position (decl), 0)
10496 || ! host_integerp (DECL_SIZE (decl), 1))
10497 return;
10499 bitpos_int = int_bit_position (decl);
10501 /* Note that the bit offset is always the distance (in bits) from the
10502 highest-order bit of the "containing object" to the highest-order bit of
10503 the bit-field itself. Since the "high-order end" of any object or field
10504 is different on big-endian and little-endian machines, the computation
10505 below must take account of these differences. */
10506 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10507 highest_order_field_bit_offset = bitpos_int;
10509 if (! BYTES_BIG_ENDIAN)
10511 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10512 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10515 bit_offset
10516 = (! BYTES_BIG_ENDIAN
10517 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10518 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10520 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10523 /* For a FIELD_DECL node which represents a bit field, output an attribute
10524 which specifies the length in bits of the given field. */
10526 static inline void
10527 add_bit_size_attribute (dw_die_ref die, tree decl)
10529 /* Must be a field and a bit field. */
10530 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10531 && DECL_BIT_FIELD_TYPE (decl));
10533 if (host_integerp (DECL_SIZE (decl), 1))
10534 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10537 /* If the compiled language is ANSI C, then add a 'prototyped'
10538 attribute, if arg types are given for the parameters of a function. */
10540 static inline void
10541 add_prototyped_attribute (dw_die_ref die, tree func_type)
10543 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10544 && TYPE_ARG_TYPES (func_type) != NULL)
10545 add_AT_flag (die, DW_AT_prototyped, 1);
10548 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10549 by looking in either the type declaration or object declaration
10550 equate table. */
10552 static inline void
10553 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10555 dw_die_ref origin_die = NULL;
10557 if (TREE_CODE (origin) != FUNCTION_DECL)
10559 /* We may have gotten separated from the block for the inlined
10560 function, if we're in an exception handler or some such; make
10561 sure that the abstract function has been written out.
10563 Doing this for nested functions is wrong, however; functions are
10564 distinct units, and our context might not even be inline. */
10565 tree fn = origin;
10567 if (TYPE_P (fn))
10568 fn = TYPE_STUB_DECL (fn);
10570 fn = decl_function_context (fn);
10571 if (fn)
10572 dwarf2out_abstract_function (fn);
10575 if (DECL_P (origin))
10576 origin_die = lookup_decl_die (origin);
10577 else if (TYPE_P (origin))
10578 origin_die = lookup_type_die (origin);
10580 /* XXX: Functions that are never lowered don't always have correct block
10581 trees (in the case of java, they simply have no block tree, in some other
10582 languages). For these functions, there is nothing we can really do to
10583 output correct debug info for inlined functions in all cases. Rather
10584 than abort, we'll just produce deficient debug info now, in that we will
10585 have variables without a proper abstract origin. In the future, when all
10586 functions are lowered, we should re-add a gcc_assert (origin_die)
10587 here. */
10589 if (origin_die)
10590 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10593 /* We do not currently support the pure_virtual attribute. */
10595 static inline void
10596 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10598 if (DECL_VINDEX (func_decl))
10600 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10602 if (host_integerp (DECL_VINDEX (func_decl), 0))
10603 add_AT_loc (die, DW_AT_vtable_elem_location,
10604 new_loc_descr (DW_OP_constu,
10605 tree_low_cst (DECL_VINDEX (func_decl), 0),
10606 0));
10608 /* GNU extension: Record what type this method came from originally. */
10609 if (debug_info_level > DINFO_LEVEL_TERSE)
10610 add_AT_die_ref (die, DW_AT_containing_type,
10611 lookup_type_die (DECL_CONTEXT (func_decl)));
10615 /* Add source coordinate attributes for the given decl. */
10617 static void
10618 add_src_coords_attributes (dw_die_ref die, tree decl)
10620 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10621 unsigned file_index = lookup_filename (s.file);
10623 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10624 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10627 /* Add a DW_AT_name attribute and source coordinate attribute for the
10628 given decl, but only if it actually has a name. */
10630 static void
10631 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10633 tree decl_name;
10635 decl_name = DECL_NAME (decl);
10636 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10638 add_name_attribute (die, dwarf2_name (decl, 0));
10639 if (! DECL_ARTIFICIAL (decl))
10640 add_src_coords_attributes (die, decl);
10642 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10643 && TREE_PUBLIC (decl)
10644 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10645 && !DECL_ABSTRACT (decl))
10646 add_AT_string (die, DW_AT_MIPS_linkage_name,
10647 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10650 #ifdef VMS_DEBUGGING_INFO
10651 /* Get the function's name, as described by its RTL. This may be different
10652 from the DECL_NAME name used in the source file. */
10653 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10655 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10656 XEXP (DECL_RTL (decl), 0));
10657 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
10659 #endif
10662 /* Push a new declaration scope. */
10664 static void
10665 push_decl_scope (tree scope)
10667 VARRAY_PUSH_TREE (decl_scope_table, scope);
10670 /* Pop a declaration scope. */
10672 static inline void
10673 pop_decl_scope (void)
10675 gcc_assert (VARRAY_ACTIVE_SIZE (decl_scope_table) > 0);
10677 VARRAY_POP (decl_scope_table);
10680 /* Return the DIE for the scope that immediately contains this type.
10681 Non-named types get global scope. Named types nested in other
10682 types get their containing scope if it's open, or global scope
10683 otherwise. All other types (i.e. function-local named types) get
10684 the current active scope. */
10686 static dw_die_ref
10687 scope_die_for (tree t, dw_die_ref context_die)
10689 dw_die_ref scope_die = NULL;
10690 tree containing_scope;
10691 int i;
10693 /* Non-types always go in the current scope. */
10694 gcc_assert (TYPE_P (t));
10696 containing_scope = TYPE_CONTEXT (t);
10698 /* Use the containing namespace if it was passed in (for a declaration). */
10699 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10701 if (context_die == lookup_decl_die (containing_scope))
10702 /* OK */;
10703 else
10704 containing_scope = NULL_TREE;
10707 /* Ignore function type "scopes" from the C frontend. They mean that
10708 a tagged type is local to a parmlist of a function declarator, but
10709 that isn't useful to DWARF. */
10710 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10711 containing_scope = NULL_TREE;
10713 if (containing_scope == NULL_TREE)
10714 scope_die = comp_unit_die;
10715 else if (TYPE_P (containing_scope))
10717 /* For types, we can just look up the appropriate DIE. But
10718 first we check to see if we're in the middle of emitting it
10719 so we know where the new DIE should go. */
10720 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10721 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10722 break;
10724 if (i < 0)
10726 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10727 || TREE_ASM_WRITTEN (containing_scope));
10729 /* If none of the current dies are suitable, we get file scope. */
10730 scope_die = comp_unit_die;
10732 else
10733 scope_die = lookup_type_die (containing_scope);
10735 else
10736 scope_die = context_die;
10738 return scope_die;
10741 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10743 static inline int
10744 local_scope_p (dw_die_ref context_die)
10746 for (; context_die; context_die = context_die->die_parent)
10747 if (context_die->die_tag == DW_TAG_inlined_subroutine
10748 || context_die->die_tag == DW_TAG_subprogram)
10749 return 1;
10751 return 0;
10754 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10755 whether or not to treat a DIE in this context as a declaration. */
10757 static inline int
10758 class_or_namespace_scope_p (dw_die_ref context_die)
10760 return (context_die
10761 && (context_die->die_tag == DW_TAG_structure_type
10762 || context_die->die_tag == DW_TAG_union_type
10763 || context_die->die_tag == DW_TAG_namespace));
10766 /* Many forms of DIEs require a "type description" attribute. This
10767 routine locates the proper "type descriptor" die for the type given
10768 by 'type', and adds a DW_AT_type attribute below the given die. */
10770 static void
10771 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10772 int decl_volatile, dw_die_ref context_die)
10774 enum tree_code code = TREE_CODE (type);
10775 dw_die_ref type_die = NULL;
10777 /* ??? If this type is an unnamed subrange type of an integral or
10778 floating-point type, use the inner type. This is because we have no
10779 support for unnamed types in base_type_die. This can happen if this is
10780 an Ada subrange type. Correct solution is emit a subrange type die. */
10781 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10782 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10783 type = TREE_TYPE (type), code = TREE_CODE (type);
10785 if (code == ERROR_MARK
10786 /* Handle a special case. For functions whose return type is void, we
10787 generate *no* type attribute. (Note that no object may have type
10788 `void', so this only applies to function return types). */
10789 || code == VOID_TYPE)
10790 return;
10792 type_die = modified_type_die (type,
10793 decl_const || TYPE_READONLY (type),
10794 decl_volatile || TYPE_VOLATILE (type),
10795 context_die);
10797 if (type_die != NULL)
10798 add_AT_die_ref (object_die, DW_AT_type, type_die);
10801 /* Given an object die, add the calling convention attribute for the
10802 function call type. */
10803 static void
10804 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10806 enum dwarf_calling_convention value = DW_CC_normal;
10808 value = targetm.dwarf_calling_convention (type);
10810 /* Only add the attribute if the backend requests it, and
10811 is not DW_CC_normal. */
10812 if (value && (value != DW_CC_normal))
10813 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10816 /* Given a tree pointer to a struct, class, union, or enum type node, return
10817 a pointer to the (string) tag name for the given type, or zero if the type
10818 was declared without a tag. */
10820 static const char *
10821 type_tag (tree type)
10823 const char *name = 0;
10825 if (TYPE_NAME (type) != 0)
10827 tree t = 0;
10829 /* Find the IDENTIFIER_NODE for the type name. */
10830 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10831 t = TYPE_NAME (type);
10833 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10834 a TYPE_DECL node, regardless of whether or not a `typedef' was
10835 involved. */
10836 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10837 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10838 t = DECL_NAME (TYPE_NAME (type));
10840 /* Now get the name as a string, or invent one. */
10841 if (t != 0)
10842 name = IDENTIFIER_POINTER (t);
10845 return (name == 0 || *name == '\0') ? 0 : name;
10848 /* Return the type associated with a data member, make a special check
10849 for bit field types. */
10851 static inline tree
10852 member_declared_type (tree member)
10854 return (DECL_BIT_FIELD_TYPE (member)
10855 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10858 /* Get the decl's label, as described by its RTL. This may be different
10859 from the DECL_NAME name used in the source file. */
10861 #if 0
10862 static const char *
10863 decl_start_label (tree decl)
10865 rtx x;
10866 const char *fnname;
10868 x = DECL_RTL (decl);
10869 gcc_assert (MEM_P (x));
10871 x = XEXP (x, 0);
10872 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10874 fnname = XSTR (x, 0);
10875 return fnname;
10877 #endif
10879 /* These routines generate the internal representation of the DIE's for
10880 the compilation unit. Debugging information is collected by walking
10881 the declaration trees passed in from dwarf2out_decl(). */
10883 static void
10884 gen_array_type_die (tree type, dw_die_ref context_die)
10886 dw_die_ref scope_die = scope_die_for (type, context_die);
10887 dw_die_ref array_die;
10888 tree element_type;
10890 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10891 the inner array type comes before the outer array type. Thus we must
10892 call gen_type_die before we call new_die. See below also. */
10893 #ifdef MIPS_DEBUGGING_INFO
10894 gen_type_die (TREE_TYPE (type), context_die);
10895 #endif
10897 array_die = new_die (DW_TAG_array_type, scope_die, type);
10898 add_name_attribute (array_die, type_tag (type));
10899 equate_type_number_to_die (type, array_die);
10901 if (TREE_CODE (type) == VECTOR_TYPE)
10903 /* The frontend feeds us a representation for the vector as a struct
10904 containing an array. Pull out the array type. */
10905 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10906 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10909 #if 0
10910 /* We default the array ordering. SDB will probably do
10911 the right things even if DW_AT_ordering is not present. It's not even
10912 an issue until we start to get into multidimensional arrays anyway. If
10913 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10914 then we'll have to put the DW_AT_ordering attribute back in. (But if
10915 and when we find out that we need to put these in, we will only do so
10916 for multidimensional arrays. */
10917 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10918 #endif
10920 #ifdef MIPS_DEBUGGING_INFO
10921 /* The SGI compilers handle arrays of unknown bound by setting
10922 AT_declaration and not emitting any subrange DIEs. */
10923 if (! TYPE_DOMAIN (type))
10924 add_AT_flag (array_die, DW_AT_declaration, 1);
10925 else
10926 #endif
10927 add_subscript_info (array_die, type);
10929 /* Add representation of the type of the elements of this array type. */
10930 element_type = TREE_TYPE (type);
10932 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10933 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10934 We work around this by disabling this feature. See also
10935 add_subscript_info. */
10936 #ifndef MIPS_DEBUGGING_INFO
10937 while (TREE_CODE (element_type) == ARRAY_TYPE)
10938 element_type = TREE_TYPE (element_type);
10940 gen_type_die (element_type, context_die);
10941 #endif
10943 add_type_attribute (array_die, element_type, 0, 0, context_die);
10946 #if 0
10947 static void
10948 gen_entry_point_die (tree decl, dw_die_ref context_die)
10950 tree origin = decl_ultimate_origin (decl);
10951 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10953 if (origin != NULL)
10954 add_abstract_origin_attribute (decl_die, origin);
10955 else
10957 add_name_and_src_coords_attributes (decl_die, decl);
10958 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10959 0, 0, context_die);
10962 if (DECL_ABSTRACT (decl))
10963 equate_decl_number_to_die (decl, decl_die);
10964 else
10965 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10967 #endif
10969 /* Walk through the list of incomplete types again, trying once more to
10970 emit full debugging info for them. */
10972 static void
10973 retry_incomplete_types (void)
10975 int i;
10977 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10978 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10981 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10983 static void
10984 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10986 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10988 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10989 be incomplete and such types are not marked. */
10990 add_abstract_origin_attribute (type_die, type);
10993 /* Generate a DIE to represent an inlined instance of a structure type. */
10995 static void
10996 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10998 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11000 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11001 be incomplete and such types are not marked. */
11002 add_abstract_origin_attribute (type_die, type);
11005 /* Generate a DIE to represent an inlined instance of a union type. */
11007 static void
11008 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11010 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11012 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11013 be incomplete and such types are not marked. */
11014 add_abstract_origin_attribute (type_die, type);
11017 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11018 include all of the information about the enumeration values also. Each
11019 enumerated type name/value is listed as a child of the enumerated type
11020 DIE. */
11022 static dw_die_ref
11023 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11025 dw_die_ref type_die = lookup_type_die (type);
11027 if (type_die == NULL)
11029 type_die = new_die (DW_TAG_enumeration_type,
11030 scope_die_for (type, context_die), type);
11031 equate_type_number_to_die (type, type_die);
11032 add_name_attribute (type_die, type_tag (type));
11034 else if (! TYPE_SIZE (type))
11035 return type_die;
11036 else
11037 remove_AT (type_die, DW_AT_declaration);
11039 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11040 given enum type is incomplete, do not generate the DW_AT_byte_size
11041 attribute or the DW_AT_element_list attribute. */
11042 if (TYPE_SIZE (type))
11044 tree link;
11046 TREE_ASM_WRITTEN (type) = 1;
11047 add_byte_size_attribute (type_die, type);
11048 if (TYPE_STUB_DECL (type) != NULL_TREE)
11049 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11051 /* If the first reference to this type was as the return type of an
11052 inline function, then it may not have a parent. Fix this now. */
11053 if (type_die->die_parent == NULL)
11054 add_child_die (scope_die_for (type, context_die), type_die);
11056 for (link = TYPE_VALUES (type);
11057 link != NULL; link = TREE_CHAIN (link))
11059 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11060 tree value = TREE_VALUE (link);
11062 add_name_attribute (enum_die,
11063 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11065 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11066 /* DWARF2 does not provide a way of indicating whether or
11067 not enumeration constants are signed or unsigned. GDB
11068 always assumes the values are signed, so we output all
11069 values as if they were signed. That means that
11070 enumeration constants with very large unsigned values
11071 will appear to have negative values in the debugger. */
11072 add_AT_int (enum_die, DW_AT_const_value,
11073 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11076 else
11077 add_AT_flag (type_die, DW_AT_declaration, 1);
11079 return type_die;
11082 /* Generate a DIE to represent either a real live formal parameter decl or to
11083 represent just the type of some formal parameter position in some function
11084 type.
11086 Note that this routine is a bit unusual because its argument may be a
11087 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11088 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11089 node. If it's the former then this function is being called to output a
11090 DIE to represent a formal parameter object (or some inlining thereof). If
11091 it's the latter, then this function is only being called to output a
11092 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11093 argument type of some subprogram type. */
11095 static dw_die_ref
11096 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11098 dw_die_ref parm_die
11099 = new_die (DW_TAG_formal_parameter, context_die, node);
11100 tree origin;
11102 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11104 case tcc_declaration:
11105 origin = decl_ultimate_origin (node);
11106 if (origin != NULL)
11107 add_abstract_origin_attribute (parm_die, origin);
11108 else
11110 add_name_and_src_coords_attributes (parm_die, node);
11111 add_type_attribute (parm_die, TREE_TYPE (node),
11112 TREE_READONLY (node),
11113 TREE_THIS_VOLATILE (node),
11114 context_die);
11115 if (DECL_ARTIFICIAL (node))
11116 add_AT_flag (parm_die, DW_AT_artificial, 1);
11119 equate_decl_number_to_die (node, parm_die);
11120 if (! DECL_ABSTRACT (node))
11121 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11123 break;
11125 case tcc_type:
11126 /* We were called with some kind of a ..._TYPE node. */
11127 add_type_attribute (parm_die, node, 0, 0, context_die);
11128 break;
11130 default:
11131 gcc_unreachable ();
11134 return parm_die;
11137 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11138 at the end of an (ANSI prototyped) formal parameters list. */
11140 static void
11141 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11143 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11146 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11147 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11148 parameters as specified in some function type specification (except for
11149 those which appear as part of a function *definition*). */
11151 static void
11152 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11154 tree link;
11155 tree formal_type = NULL;
11156 tree first_parm_type;
11157 tree arg;
11159 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11161 arg = DECL_ARGUMENTS (function_or_method_type);
11162 function_or_method_type = TREE_TYPE (function_or_method_type);
11164 else
11165 arg = NULL_TREE;
11167 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11169 /* Make our first pass over the list of formal parameter types and output a
11170 DW_TAG_formal_parameter DIE for each one. */
11171 for (link = first_parm_type; link; )
11173 dw_die_ref parm_die;
11175 formal_type = TREE_VALUE (link);
11176 if (formal_type == void_type_node)
11177 break;
11179 /* Output a (nameless) DIE to represent the formal parameter itself. */
11180 parm_die = gen_formal_parameter_die (formal_type, context_die);
11181 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11182 && link == first_parm_type)
11183 || (arg && DECL_ARTIFICIAL (arg)))
11184 add_AT_flag (parm_die, DW_AT_artificial, 1);
11186 link = TREE_CHAIN (link);
11187 if (arg)
11188 arg = TREE_CHAIN (arg);
11191 /* If this function type has an ellipsis, add a
11192 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11193 if (formal_type != void_type_node)
11194 gen_unspecified_parameters_die (function_or_method_type, context_die);
11196 /* Make our second (and final) pass over the list of formal parameter types
11197 and output DIEs to represent those types (as necessary). */
11198 for (link = TYPE_ARG_TYPES (function_or_method_type);
11199 link && TREE_VALUE (link);
11200 link = TREE_CHAIN (link))
11201 gen_type_die (TREE_VALUE (link), context_die);
11204 /* We want to generate the DIE for TYPE so that we can generate the
11205 die for MEMBER, which has been defined; we will need to refer back
11206 to the member declaration nested within TYPE. If we're trying to
11207 generate minimal debug info for TYPE, processing TYPE won't do the
11208 trick; we need to attach the member declaration by hand. */
11210 static void
11211 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11213 gen_type_die (type, context_die);
11215 /* If we're trying to avoid duplicate debug info, we may not have
11216 emitted the member decl for this function. Emit it now. */
11217 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11218 && ! lookup_decl_die (member))
11220 dw_die_ref type_die;
11221 gcc_assert (!decl_ultimate_origin (member));
11223 push_decl_scope (type);
11224 type_die = lookup_type_die (type);
11225 if (TREE_CODE (member) == FUNCTION_DECL)
11226 gen_subprogram_die (member, type_die);
11227 else if (TREE_CODE (member) == FIELD_DECL)
11229 /* Ignore the nameless fields that are used to skip bits but handle
11230 C++ anonymous unions and structs. */
11231 if (DECL_NAME (member) != NULL_TREE
11232 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11233 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11235 gen_type_die (member_declared_type (member), type_die);
11236 gen_field_die (member, type_die);
11239 else
11240 gen_variable_die (member, type_die);
11242 pop_decl_scope ();
11246 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11247 may later generate inlined and/or out-of-line instances of. */
11249 static void
11250 dwarf2out_abstract_function (tree decl)
11252 dw_die_ref old_die;
11253 tree save_fn;
11254 tree context;
11255 int was_abstract = DECL_ABSTRACT (decl);
11257 /* Make sure we have the actual abstract inline, not a clone. */
11258 decl = DECL_ORIGIN (decl);
11260 old_die = lookup_decl_die (decl);
11261 if (old_die && get_AT (old_die, DW_AT_inline))
11262 /* We've already generated the abstract instance. */
11263 return;
11265 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11266 we don't get confused by DECL_ABSTRACT. */
11267 if (debug_info_level > DINFO_LEVEL_TERSE)
11269 context = decl_class_context (decl);
11270 if (context)
11271 gen_type_die_for_member
11272 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11275 /* Pretend we've just finished compiling this function. */
11276 save_fn = current_function_decl;
11277 current_function_decl = decl;
11279 set_decl_abstract_flags (decl, 1);
11280 dwarf2out_decl (decl);
11281 if (! was_abstract)
11282 set_decl_abstract_flags (decl, 0);
11284 current_function_decl = save_fn;
11287 /* Generate a DIE to represent a declared function (either file-scope or
11288 block-local). */
11290 static void
11291 gen_subprogram_die (tree decl, dw_die_ref context_die)
11293 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11294 tree origin = decl_ultimate_origin (decl);
11295 dw_die_ref subr_die;
11296 rtx fp_reg;
11297 tree fn_arg_types;
11298 tree outer_scope;
11299 dw_die_ref old_die = lookup_decl_die (decl);
11300 int declaration = (current_function_decl != decl
11301 || class_or_namespace_scope_p (context_die));
11303 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11304 started to generate the abstract instance of an inline, decided to output
11305 its containing class, and proceeded to emit the declaration of the inline
11306 from the member list for the class. If so, DECLARATION takes priority;
11307 we'll get back to the abstract instance when done with the class. */
11309 /* The class-scope declaration DIE must be the primary DIE. */
11310 if (origin && declaration && class_or_namespace_scope_p (context_die))
11312 origin = NULL;
11313 gcc_assert (!old_die);
11316 if (origin != NULL)
11318 gcc_assert (!declaration || local_scope_p (context_die));
11320 /* Fixup die_parent for the abstract instance of a nested
11321 inline function. */
11322 if (old_die && old_die->die_parent == NULL)
11323 add_child_die (context_die, old_die);
11325 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11326 add_abstract_origin_attribute (subr_die, origin);
11328 else if (old_die)
11330 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11331 unsigned file_index = lookup_filename (s.file);
11333 if (!get_AT_flag (old_die, DW_AT_declaration)
11334 /* We can have a normal definition following an inline one in the
11335 case of redefinition of GNU C extern inlines.
11336 It seems reasonable to use AT_specification in this case. */
11337 && !get_AT (old_die, DW_AT_inline))
11339 /* Detect and ignore this case, where we are trying to output
11340 something we have already output. */
11341 return;
11344 /* If the definition comes from the same place as the declaration,
11345 maybe use the old DIE. We always want the DIE for this function
11346 that has the *_pc attributes to be under comp_unit_die so the
11347 debugger can find it. We also need to do this for abstract
11348 instances of inlines, since the spec requires the out-of-line copy
11349 to have the same parent. For local class methods, this doesn't
11350 apply; we just use the old DIE. */
11351 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11352 && (DECL_ARTIFICIAL (decl)
11353 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11354 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11355 == (unsigned) s.line))))
11357 subr_die = old_die;
11359 /* Clear out the declaration attribute and the formal parameters.
11360 Do not remove all children, because it is possible that this
11361 declaration die was forced using force_decl_die(). In such
11362 cases die that forced declaration die (e.g. TAG_imported_module)
11363 is one of the children that we do not want to remove. */
11364 remove_AT (subr_die, DW_AT_declaration);
11365 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11367 else
11369 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11370 add_AT_specification (subr_die, old_die);
11371 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11372 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11373 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11374 != (unsigned) s.line)
11375 add_AT_unsigned
11376 (subr_die, DW_AT_decl_line, s.line);
11379 else
11381 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11383 if (TREE_PUBLIC (decl))
11384 add_AT_flag (subr_die, DW_AT_external, 1);
11386 add_name_and_src_coords_attributes (subr_die, decl);
11387 if (debug_info_level > DINFO_LEVEL_TERSE)
11389 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11390 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11391 0, 0, context_die);
11394 add_pure_or_virtual_attribute (subr_die, decl);
11395 if (DECL_ARTIFICIAL (decl))
11396 add_AT_flag (subr_die, DW_AT_artificial, 1);
11398 if (TREE_PROTECTED (decl))
11399 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11400 else if (TREE_PRIVATE (decl))
11401 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11404 if (declaration)
11406 if (!old_die || !get_AT (old_die, DW_AT_inline))
11408 add_AT_flag (subr_die, DW_AT_declaration, 1);
11410 /* The first time we see a member function, it is in the context of
11411 the class to which it belongs. We make sure of this by emitting
11412 the class first. The next time is the definition, which is
11413 handled above. The two may come from the same source text.
11415 Note that force_decl_die() forces function declaration die. It is
11416 later reused to represent definition. */
11417 equate_decl_number_to_die (decl, subr_die);
11420 else if (DECL_ABSTRACT (decl))
11422 if (DECL_DECLARED_INLINE_P (decl))
11424 if (cgraph_function_possibly_inlined_p (decl))
11425 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11426 else
11427 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11429 else
11431 if (cgraph_function_possibly_inlined_p (decl))
11432 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11433 else
11434 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11437 equate_decl_number_to_die (decl, subr_die);
11439 else if (!DECL_EXTERNAL (decl))
11441 if (!old_die || !get_AT (old_die, DW_AT_inline))
11442 equate_decl_number_to_die (decl, subr_die);
11444 if (!flag_reorder_blocks_and_partition)
11446 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11447 current_function_funcdef_no);
11448 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11449 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11450 current_function_funcdef_no);
11451 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11453 add_pubname (decl, subr_die);
11454 add_arange (decl, subr_die);
11456 else
11457 { /* Do nothing for now; maybe need to duplicate die, one for
11458 hot section and ond for cold section, then use the hot/cold
11459 section begin/end labels to generate the aranges... */
11461 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11462 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11463 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11464 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11466 add_pubname (decl, subr_die);
11467 add_arange (decl, subr_die);
11468 add_arange (decl, subr_die);
11472 #ifdef MIPS_DEBUGGING_INFO
11473 /* Add a reference to the FDE for this routine. */
11474 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11475 #endif
11477 /* Define the "frame base" location for this routine. We use the
11478 frame pointer or stack pointer registers, since the RTL for local
11479 variables is relative to one of them. */
11480 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11482 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11483 DW_AT_frame_base);
11485 else
11487 fp_reg
11488 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11489 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11492 if (cfun->static_chain_decl)
11493 add_AT_location_description (subr_die, DW_AT_static_link,
11494 loc_descriptor_from_tree (cfun->static_chain_decl));
11497 /* Now output descriptions of the arguments for this function. This gets
11498 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11499 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11500 `...' at the end of the formal parameter list. In order to find out if
11501 there was a trailing ellipsis or not, we must instead look at the type
11502 associated with the FUNCTION_DECL. This will be a node of type
11503 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11504 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11505 an ellipsis at the end. */
11507 /* In the case where we are describing a mere function declaration, all we
11508 need to do here (and all we *can* do here) is to describe the *types* of
11509 its formal parameters. */
11510 if (debug_info_level <= DINFO_LEVEL_TERSE)
11512 else if (declaration)
11513 gen_formal_types_die (decl, subr_die);
11514 else
11516 /* Generate DIEs to represent all known formal parameters. */
11517 tree arg_decls = DECL_ARGUMENTS (decl);
11518 tree parm;
11520 /* When generating DIEs, generate the unspecified_parameters DIE
11521 instead if we come across the arg "__builtin_va_alist" */
11522 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11523 if (TREE_CODE (parm) == PARM_DECL)
11525 if (DECL_NAME (parm)
11526 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11527 "__builtin_va_alist"))
11528 gen_unspecified_parameters_die (parm, subr_die);
11529 else
11530 gen_decl_die (parm, subr_die);
11533 /* Decide whether we need an unspecified_parameters DIE at the end.
11534 There are 2 more cases to do this for: 1) the ansi ... declaration -
11535 this is detectable when the end of the arg list is not a
11536 void_type_node 2) an unprototyped function declaration (not a
11537 definition). This just means that we have no info about the
11538 parameters at all. */
11539 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11540 if (fn_arg_types != NULL)
11542 /* This is the prototyped case, check for.... */
11543 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11544 gen_unspecified_parameters_die (decl, subr_die);
11546 else if (DECL_INITIAL (decl) == NULL_TREE)
11547 gen_unspecified_parameters_die (decl, subr_die);
11550 /* Output Dwarf info for all of the stuff within the body of the function
11551 (if it has one - it may be just a declaration). */
11552 outer_scope = DECL_INITIAL (decl);
11554 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11555 a function. This BLOCK actually represents the outermost binding contour
11556 for the function, i.e. the contour in which the function's formal
11557 parameters and labels get declared. Curiously, it appears that the front
11558 end doesn't actually put the PARM_DECL nodes for the current function onto
11559 the BLOCK_VARS list for this outer scope, but are strung off of the
11560 DECL_ARGUMENTS list for the function instead.
11562 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11563 the LABEL_DECL nodes for the function however, and we output DWARF info
11564 for those in decls_for_scope. Just within the `outer_scope' there will be
11565 a BLOCK node representing the function's outermost pair of curly braces,
11566 and any blocks used for the base and member initializers of a C++
11567 constructor function. */
11568 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11570 /* Emit a DW_TAG_variable DIE for a named return value. */
11571 if (DECL_NAME (DECL_RESULT (decl)))
11572 gen_decl_die (DECL_RESULT (decl), subr_die);
11574 current_function_has_inlines = 0;
11575 decls_for_scope (outer_scope, subr_die, 0);
11577 #if 0 && defined (MIPS_DEBUGGING_INFO)
11578 if (current_function_has_inlines)
11580 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11581 if (! comp_unit_has_inlines)
11583 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11584 comp_unit_has_inlines = 1;
11587 #endif
11589 /* Add the calling convention attribute if requested. */
11590 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11594 /* Generate a DIE to represent a declared data object. */
11596 static void
11597 gen_variable_die (tree decl, dw_die_ref context_die)
11599 tree origin = decl_ultimate_origin (decl);
11600 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11602 dw_die_ref old_die = lookup_decl_die (decl);
11603 int declaration = (DECL_EXTERNAL (decl)
11604 || class_or_namespace_scope_p (context_die));
11606 if (origin != NULL)
11607 add_abstract_origin_attribute (var_die, origin);
11609 /* Loop unrolling can create multiple blocks that refer to the same
11610 static variable, so we must test for the DW_AT_declaration flag.
11612 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11613 copy decls and set the DECL_ABSTRACT flag on them instead of
11614 sharing them.
11616 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
11617 else if (old_die && TREE_STATIC (decl)
11618 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11620 /* This is a definition of a C++ class level static. */
11621 add_AT_specification (var_die, old_die);
11622 if (DECL_NAME (decl))
11624 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11625 unsigned file_index = lookup_filename (s.file);
11627 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11628 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11630 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11631 != (unsigned) s.line)
11633 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11636 else
11638 add_name_and_src_coords_attributes (var_die, decl);
11639 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11640 TREE_THIS_VOLATILE (decl), context_die);
11642 if (TREE_PUBLIC (decl))
11643 add_AT_flag (var_die, DW_AT_external, 1);
11645 if (DECL_ARTIFICIAL (decl))
11646 add_AT_flag (var_die, DW_AT_artificial, 1);
11648 if (TREE_PROTECTED (decl))
11649 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11650 else if (TREE_PRIVATE (decl))
11651 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11654 if (declaration)
11655 add_AT_flag (var_die, DW_AT_declaration, 1);
11657 if (DECL_ABSTRACT (decl) || declaration)
11658 equate_decl_number_to_die (decl, var_die);
11660 if (! declaration && ! DECL_ABSTRACT (decl))
11662 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11663 add_pubname (decl, var_die);
11665 else
11666 tree_add_const_value_attribute (var_die, decl);
11669 /* Generate a DIE to represent a label identifier. */
11671 static void
11672 gen_label_die (tree decl, dw_die_ref context_die)
11674 tree origin = decl_ultimate_origin (decl);
11675 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11676 rtx insn;
11677 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11679 if (origin != NULL)
11680 add_abstract_origin_attribute (lbl_die, origin);
11681 else
11682 add_name_and_src_coords_attributes (lbl_die, decl);
11684 if (DECL_ABSTRACT (decl))
11685 equate_decl_number_to_die (decl, lbl_die);
11686 else
11688 insn = DECL_RTL_IF_SET (decl);
11690 /* Deleted labels are programmer specified labels which have been
11691 eliminated because of various optimizations. We still emit them
11692 here so that it is possible to put breakpoints on them. */
11693 if (insn
11694 && (LABEL_P (insn)
11695 || ((NOTE_P (insn)
11696 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11698 /* When optimization is enabled (via -O) some parts of the compiler
11699 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11700 represent source-level labels which were explicitly declared by
11701 the user. This really shouldn't be happening though, so catch
11702 it if it ever does happen. */
11703 gcc_assert (!INSN_DELETED_P (insn));
11705 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11706 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11711 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11712 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11714 static inline void
11715 add_high_low_attributes (tree stmt, dw_die_ref die)
11717 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11719 if (BLOCK_FRAGMENT_CHAIN (stmt))
11721 tree chain;
11723 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11725 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11728 add_ranges (chain);
11729 chain = BLOCK_FRAGMENT_CHAIN (chain);
11731 while (chain);
11732 add_ranges (NULL);
11734 else
11736 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11737 BLOCK_NUMBER (stmt));
11738 add_AT_lbl_id (die, DW_AT_low_pc, label);
11739 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11740 BLOCK_NUMBER (stmt));
11741 add_AT_lbl_id (die, DW_AT_high_pc, label);
11745 /* Generate a DIE for a lexical block. */
11747 static void
11748 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11750 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11752 if (! BLOCK_ABSTRACT (stmt))
11753 add_high_low_attributes (stmt, stmt_die);
11755 decls_for_scope (stmt, stmt_die, depth);
11758 /* Generate a DIE for an inlined subprogram. */
11760 static void
11761 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11763 tree decl = block_ultimate_origin (stmt);
11765 /* Emit info for the abstract instance first, if we haven't yet. We
11766 must emit this even if the block is abstract, otherwise when we
11767 emit the block below (or elsewhere), we may end up trying to emit
11768 a die whose origin die hasn't been emitted, and crashing. */
11769 dwarf2out_abstract_function (decl);
11771 if (! BLOCK_ABSTRACT (stmt))
11773 dw_die_ref subr_die
11774 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11776 add_abstract_origin_attribute (subr_die, decl);
11777 add_high_low_attributes (stmt, subr_die);
11779 decls_for_scope (stmt, subr_die, depth);
11780 current_function_has_inlines = 1;
11782 else
11783 /* We may get here if we're the outer block of function A that was
11784 inlined into function B that was inlined into function C. When
11785 generating debugging info for C, dwarf2out_abstract_function(B)
11786 would mark all inlined blocks as abstract, including this one.
11787 So, we wouldn't (and shouldn't) expect labels to be generated
11788 for this one. Instead, just emit debugging info for
11789 declarations within the block. This is particularly important
11790 in the case of initializers of arguments passed from B to us:
11791 if they're statement expressions containing declarations, we
11792 wouldn't generate dies for their abstract variables, and then,
11793 when generating dies for the real variables, we'd die (pun
11794 intended :-) */
11795 gen_lexical_block_die (stmt, context_die, depth);
11798 /* Generate a DIE for a field in a record, or structure. */
11800 static void
11801 gen_field_die (tree decl, dw_die_ref context_die)
11803 dw_die_ref decl_die;
11805 if (TREE_TYPE (decl) == error_mark_node)
11806 return;
11808 decl_die = new_die (DW_TAG_member, context_die, decl);
11809 add_name_and_src_coords_attributes (decl_die, decl);
11810 add_type_attribute (decl_die, member_declared_type (decl),
11811 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11812 context_die);
11814 if (DECL_BIT_FIELD_TYPE (decl))
11816 add_byte_size_attribute (decl_die, decl);
11817 add_bit_size_attribute (decl_die, decl);
11818 add_bit_offset_attribute (decl_die, decl);
11821 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11822 add_data_member_location_attribute (decl_die, decl);
11824 if (DECL_ARTIFICIAL (decl))
11825 add_AT_flag (decl_die, DW_AT_artificial, 1);
11827 if (TREE_PROTECTED (decl))
11828 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11829 else if (TREE_PRIVATE (decl))
11830 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11832 /* Equate decl number to die, so that we can look up this decl later on. */
11833 equate_decl_number_to_die (decl, decl_die);
11836 #if 0
11837 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11838 Use modified_type_die instead.
11839 We keep this code here just in case these types of DIEs may be needed to
11840 represent certain things in other languages (e.g. Pascal) someday. */
11842 static void
11843 gen_pointer_type_die (tree type, dw_die_ref context_die)
11845 dw_die_ref ptr_die
11846 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11848 equate_type_number_to_die (type, ptr_die);
11849 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11850 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11853 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11854 Use modified_type_die instead.
11855 We keep this code here just in case these types of DIEs may be needed to
11856 represent certain things in other languages (e.g. Pascal) someday. */
11858 static void
11859 gen_reference_type_die (tree type, dw_die_ref context_die)
11861 dw_die_ref ref_die
11862 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11864 equate_type_number_to_die (type, ref_die);
11865 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11866 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11868 #endif
11870 /* Generate a DIE for a pointer to a member type. */
11872 static void
11873 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11875 dw_die_ref ptr_die
11876 = new_die (DW_TAG_ptr_to_member_type,
11877 scope_die_for (type, context_die), type);
11879 equate_type_number_to_die (type, ptr_die);
11880 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11881 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11882 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11885 /* Generate the DIE for the compilation unit. */
11887 static dw_die_ref
11888 gen_compile_unit_die (const char *filename)
11890 dw_die_ref die;
11891 char producer[250];
11892 const char *language_string = lang_hooks.name;
11893 int language;
11895 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11897 if (filename)
11899 add_name_attribute (die, filename);
11900 /* Don't add cwd for <built-in>. */
11901 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11902 add_comp_dir_attribute (die);
11905 sprintf (producer, "%s %s", language_string, version_string);
11907 #ifdef MIPS_DEBUGGING_INFO
11908 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11909 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11910 not appear in the producer string, the debugger reaches the conclusion
11911 that the object file is stripped and has no debugging information.
11912 To get the MIPS/SGI debugger to believe that there is debugging
11913 information in the object file, we add a -g to the producer string. */
11914 if (debug_info_level > DINFO_LEVEL_TERSE)
11915 strcat (producer, " -g");
11916 #endif
11918 add_AT_string (die, DW_AT_producer, producer);
11920 if (strcmp (language_string, "GNU C++") == 0)
11921 language = DW_LANG_C_plus_plus;
11922 else if (strcmp (language_string, "GNU Ada") == 0)
11923 language = DW_LANG_Ada95;
11924 else if (strcmp (language_string, "GNU F77") == 0)
11925 language = DW_LANG_Fortran77;
11926 else if (strcmp (language_string, "GNU F95") == 0)
11927 language = DW_LANG_Fortran95;
11928 else if (strcmp (language_string, "GNU Pascal") == 0)
11929 language = DW_LANG_Pascal83;
11930 else if (strcmp (language_string, "GNU Java") == 0)
11931 language = DW_LANG_Java;
11932 else
11933 language = DW_LANG_C89;
11935 add_AT_unsigned (die, DW_AT_language, language);
11936 return die;
11939 /* Generate a DIE for a string type. */
11941 static void
11942 gen_string_type_die (tree type, dw_die_ref context_die)
11944 dw_die_ref type_die
11945 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11947 equate_type_number_to_die (type, type_die);
11949 /* ??? Fudge the string length attribute for now.
11950 TODO: add string length info. */
11951 #if 0
11952 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11953 bound_representation (upper_bound, 0, 'u');
11954 #endif
11957 /* Generate the DIE for a base class. */
11959 static void
11960 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11962 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11964 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11965 add_data_member_location_attribute (die, binfo);
11967 if (BINFO_VIRTUAL_P (binfo))
11968 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11970 if (access == access_public_node)
11971 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11972 else if (access == access_protected_node)
11973 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11976 /* Generate a DIE for a class member. */
11978 static void
11979 gen_member_die (tree type, dw_die_ref context_die)
11981 tree member;
11982 tree binfo = TYPE_BINFO (type);
11983 dw_die_ref child;
11985 /* If this is not an incomplete type, output descriptions of each of its
11986 members. Note that as we output the DIEs necessary to represent the
11987 members of this record or union type, we will also be trying to output
11988 DIEs to represent the *types* of those members. However the `type'
11989 function (above) will specifically avoid generating type DIEs for member
11990 types *within* the list of member DIEs for this (containing) type except
11991 for those types (of members) which are explicitly marked as also being
11992 members of this (containing) type themselves. The g++ front- end can
11993 force any given type to be treated as a member of some other (containing)
11994 type by setting the TYPE_CONTEXT of the given (member) type to point to
11995 the TREE node representing the appropriate (containing) type. */
11997 /* First output info about the base classes. */
11998 if (binfo)
12000 VEC (tree) *accesses = BINFO_BASE_ACCESSES (binfo);
12001 int i;
12002 tree base;
12004 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12005 gen_inheritance_die (base,
12006 (accesses ? VEC_index (tree, accesses, i)
12007 : access_public_node), context_die);
12010 /* Now output info about the data members and type members. */
12011 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12013 /* If we thought we were generating minimal debug info for TYPE
12014 and then changed our minds, some of the member declarations
12015 may have already been defined. Don't define them again, but
12016 do put them in the right order. */
12018 child = lookup_decl_die (member);
12019 if (child)
12020 splice_child_die (context_die, child);
12021 else
12022 gen_decl_die (member, context_die);
12025 /* Now output info about the function members (if any). */
12026 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12028 /* Don't include clones in the member list. */
12029 if (DECL_ABSTRACT_ORIGIN (member))
12030 continue;
12032 child = lookup_decl_die (member);
12033 if (child)
12034 splice_child_die (context_die, child);
12035 else
12036 gen_decl_die (member, context_die);
12040 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12041 is set, we pretend that the type was never defined, so we only get the
12042 member DIEs needed by later specification DIEs. */
12044 static void
12045 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12047 dw_die_ref type_die = lookup_type_die (type);
12048 dw_die_ref scope_die = 0;
12049 int nested = 0;
12050 int complete = (TYPE_SIZE (type)
12051 && (! TYPE_STUB_DECL (type)
12052 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12053 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12055 if (type_die && ! complete)
12056 return;
12058 if (TYPE_CONTEXT (type) != NULL_TREE
12059 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12060 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12061 nested = 1;
12063 scope_die = scope_die_for (type, context_die);
12065 if (! type_die || (nested && scope_die == comp_unit_die))
12066 /* First occurrence of type or toplevel definition of nested class. */
12068 dw_die_ref old_die = type_die;
12070 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12071 ? DW_TAG_structure_type : DW_TAG_union_type,
12072 scope_die, type);
12073 equate_type_number_to_die (type, type_die);
12074 if (old_die)
12075 add_AT_specification (type_die, old_die);
12076 else
12077 add_name_attribute (type_die, type_tag (type));
12079 else
12080 remove_AT (type_die, DW_AT_declaration);
12082 /* If this type has been completed, then give it a byte_size attribute and
12083 then give a list of members. */
12084 if (complete && !ns_decl)
12086 /* Prevent infinite recursion in cases where the type of some member of
12087 this type is expressed in terms of this type itself. */
12088 TREE_ASM_WRITTEN (type) = 1;
12089 add_byte_size_attribute (type_die, type);
12090 if (TYPE_STUB_DECL (type) != NULL_TREE)
12091 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12093 /* If the first reference to this type was as the return type of an
12094 inline function, then it may not have a parent. Fix this now. */
12095 if (type_die->die_parent == NULL)
12096 add_child_die (scope_die, type_die);
12098 push_decl_scope (type);
12099 gen_member_die (type, type_die);
12100 pop_decl_scope ();
12102 /* GNU extension: Record what type our vtable lives in. */
12103 if (TYPE_VFIELD (type))
12105 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12107 gen_type_die (vtype, context_die);
12108 add_AT_die_ref (type_die, DW_AT_containing_type,
12109 lookup_type_die (vtype));
12112 else
12114 add_AT_flag (type_die, DW_AT_declaration, 1);
12116 /* We don't need to do this for function-local types. */
12117 if (TYPE_STUB_DECL (type)
12118 && ! decl_function_context (TYPE_STUB_DECL (type)))
12119 VARRAY_PUSH_TREE (incomplete_types, type);
12123 /* Generate a DIE for a subroutine _type_. */
12125 static void
12126 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12128 tree return_type = TREE_TYPE (type);
12129 dw_die_ref subr_die
12130 = new_die (DW_TAG_subroutine_type,
12131 scope_die_for (type, context_die), type);
12133 equate_type_number_to_die (type, subr_die);
12134 add_prototyped_attribute (subr_die, type);
12135 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12136 gen_formal_types_die (type, subr_die);
12139 /* Generate a DIE for a type definition. */
12141 static void
12142 gen_typedef_die (tree decl, dw_die_ref context_die)
12144 dw_die_ref type_die;
12145 tree origin;
12147 if (TREE_ASM_WRITTEN (decl))
12148 return;
12150 TREE_ASM_WRITTEN (decl) = 1;
12151 type_die = new_die (DW_TAG_typedef, context_die, decl);
12152 origin = decl_ultimate_origin (decl);
12153 if (origin != NULL)
12154 add_abstract_origin_attribute (type_die, origin);
12155 else
12157 tree type;
12159 add_name_and_src_coords_attributes (type_die, decl);
12160 if (DECL_ORIGINAL_TYPE (decl))
12162 type = DECL_ORIGINAL_TYPE (decl);
12164 gcc_assert (type != TREE_TYPE (decl));
12165 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12167 else
12168 type = TREE_TYPE (decl);
12170 add_type_attribute (type_die, type, TREE_READONLY (decl),
12171 TREE_THIS_VOLATILE (decl), context_die);
12174 if (DECL_ABSTRACT (decl))
12175 equate_decl_number_to_die (decl, type_die);
12178 /* Generate a type description DIE. */
12180 static void
12181 gen_type_die (tree type, dw_die_ref context_die)
12183 int need_pop;
12185 if (type == NULL_TREE || type == error_mark_node)
12186 return;
12188 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12189 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12191 if (TREE_ASM_WRITTEN (type))
12192 return;
12194 /* Prevent broken recursion; we can't hand off to the same type. */
12195 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12197 TREE_ASM_WRITTEN (type) = 1;
12198 gen_decl_die (TYPE_NAME (type), context_die);
12199 return;
12202 /* We are going to output a DIE to represent the unqualified version
12203 of this type (i.e. without any const or volatile qualifiers) so
12204 get the main variant (i.e. the unqualified version) of this type
12205 now. (Vectors are special because the debugging info is in the
12206 cloned type itself). */
12207 if (TREE_CODE (type) != VECTOR_TYPE)
12208 type = type_main_variant (type);
12210 if (TREE_ASM_WRITTEN (type))
12211 return;
12213 switch (TREE_CODE (type))
12215 case ERROR_MARK:
12216 break;
12218 case POINTER_TYPE:
12219 case REFERENCE_TYPE:
12220 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12221 ensures that the gen_type_die recursion will terminate even if the
12222 type is recursive. Recursive types are possible in Ada. */
12223 /* ??? We could perhaps do this for all types before the switch
12224 statement. */
12225 TREE_ASM_WRITTEN (type) = 1;
12227 /* For these types, all that is required is that we output a DIE (or a
12228 set of DIEs) to represent the "basis" type. */
12229 gen_type_die (TREE_TYPE (type), context_die);
12230 break;
12232 case OFFSET_TYPE:
12233 /* This code is used for C++ pointer-to-data-member types.
12234 Output a description of the relevant class type. */
12235 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12237 /* Output a description of the type of the object pointed to. */
12238 gen_type_die (TREE_TYPE (type), context_die);
12240 /* Now output a DIE to represent this pointer-to-data-member type
12241 itself. */
12242 gen_ptr_to_mbr_type_die (type, context_die);
12243 break;
12245 case FUNCTION_TYPE:
12246 /* Force out return type (in case it wasn't forced out already). */
12247 gen_type_die (TREE_TYPE (type), context_die);
12248 gen_subroutine_type_die (type, context_die);
12249 break;
12251 case METHOD_TYPE:
12252 /* Force out return type (in case it wasn't forced out already). */
12253 gen_type_die (TREE_TYPE (type), context_die);
12254 gen_subroutine_type_die (type, context_die);
12255 break;
12257 case ARRAY_TYPE:
12258 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12260 gen_type_die (TREE_TYPE (type), context_die);
12261 gen_string_type_die (type, context_die);
12263 else
12264 gen_array_type_die (type, context_die);
12265 break;
12267 case VECTOR_TYPE:
12268 gen_array_type_die (type, context_die);
12269 break;
12271 case ENUMERAL_TYPE:
12272 case RECORD_TYPE:
12273 case UNION_TYPE:
12274 case QUAL_UNION_TYPE:
12275 /* If this is a nested type whose containing class hasn't been written
12276 out yet, writing it out will cover this one, too. This does not apply
12277 to instantiations of member class templates; they need to be added to
12278 the containing class as they are generated. FIXME: This hurts the
12279 idea of combining type decls from multiple TUs, since we can't predict
12280 what set of template instantiations we'll get. */
12281 if (TYPE_CONTEXT (type)
12282 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12283 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12285 gen_type_die (TYPE_CONTEXT (type), context_die);
12287 if (TREE_ASM_WRITTEN (type))
12288 return;
12290 /* If that failed, attach ourselves to the stub. */
12291 push_decl_scope (TYPE_CONTEXT (type));
12292 context_die = lookup_type_die (TYPE_CONTEXT (type));
12293 need_pop = 1;
12295 else
12297 declare_in_namespace (type, context_die);
12298 need_pop = 0;
12301 if (TREE_CODE (type) == ENUMERAL_TYPE)
12302 gen_enumeration_type_die (type, context_die);
12303 else
12304 gen_struct_or_union_type_die (type, context_die);
12306 if (need_pop)
12307 pop_decl_scope ();
12309 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12310 it up if it is ever completed. gen_*_type_die will set it for us
12311 when appropriate. */
12312 return;
12314 case VOID_TYPE:
12315 case INTEGER_TYPE:
12316 case REAL_TYPE:
12317 case COMPLEX_TYPE:
12318 case BOOLEAN_TYPE:
12319 case CHAR_TYPE:
12320 /* No DIEs needed for fundamental types. */
12321 break;
12323 case LANG_TYPE:
12324 /* No Dwarf representation currently defined. */
12325 break;
12327 default:
12328 gcc_unreachable ();
12331 TREE_ASM_WRITTEN (type) = 1;
12334 /* Generate a DIE for a tagged type instantiation. */
12336 static void
12337 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12339 if (type == NULL_TREE || type == error_mark_node)
12340 return;
12342 /* We are going to output a DIE to represent the unqualified version of
12343 this type (i.e. without any const or volatile qualifiers) so make sure
12344 that we have the main variant (i.e. the unqualified version) of this
12345 type now. */
12346 gcc_assert (type == type_main_variant (type));
12348 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12349 an instance of an unresolved type. */
12351 switch (TREE_CODE (type))
12353 case ERROR_MARK:
12354 break;
12356 case ENUMERAL_TYPE:
12357 gen_inlined_enumeration_type_die (type, context_die);
12358 break;
12360 case RECORD_TYPE:
12361 gen_inlined_structure_type_die (type, context_die);
12362 break;
12364 case UNION_TYPE:
12365 case QUAL_UNION_TYPE:
12366 gen_inlined_union_type_die (type, context_die);
12367 break;
12369 default:
12370 gcc_unreachable ();
12374 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12375 things which are local to the given block. */
12377 static void
12378 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12380 int must_output_die = 0;
12381 tree origin;
12382 tree decl;
12383 enum tree_code origin_code;
12385 /* Ignore blocks that are NULL. */
12386 if (stmt == NULL_TREE)
12387 return;
12389 /* If the block is one fragment of a non-contiguous block, do not
12390 process the variables, since they will have been done by the
12391 origin block. Do process subblocks. */
12392 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12394 tree sub;
12396 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12397 gen_block_die (sub, context_die, depth + 1);
12399 return;
12402 /* Determine the "ultimate origin" of this block. This block may be an
12403 inlined instance of an inlined instance of inline function, so we have
12404 to trace all of the way back through the origin chain to find out what
12405 sort of node actually served as the original seed for the creation of
12406 the current block. */
12407 origin = block_ultimate_origin (stmt);
12408 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12410 /* Determine if we need to output any Dwarf DIEs at all to represent this
12411 block. */
12412 if (origin_code == FUNCTION_DECL)
12413 /* The outer scopes for inlinings *must* always be represented. We
12414 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12415 must_output_die = 1;
12416 else
12418 /* In the case where the current block represents an inlining of the
12419 "body block" of an inline function, we must *NOT* output any DIE for
12420 this block because we have already output a DIE to represent the whole
12421 inlined function scope and the "body block" of any function doesn't
12422 really represent a different scope according to ANSI C rules. So we
12423 check here to make sure that this block does not represent a "body
12424 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12425 if (! is_body_block (origin ? origin : stmt))
12427 /* Determine if this block directly contains any "significant"
12428 local declarations which we will need to output DIEs for. */
12429 if (debug_info_level > DINFO_LEVEL_TERSE)
12430 /* We are not in terse mode so *any* local declaration counts
12431 as being a "significant" one. */
12432 must_output_die = (BLOCK_VARS (stmt) != NULL
12433 && (TREE_USED (stmt)
12434 || TREE_ASM_WRITTEN (stmt)
12435 || BLOCK_ABSTRACT (stmt)));
12436 else
12437 /* We are in terse mode, so only local (nested) function
12438 definitions count as "significant" local declarations. */
12439 for (decl = BLOCK_VARS (stmt);
12440 decl != NULL; decl = TREE_CHAIN (decl))
12441 if (TREE_CODE (decl) == FUNCTION_DECL
12442 && DECL_INITIAL (decl))
12444 must_output_die = 1;
12445 break;
12450 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12451 DIE for any block which contains no significant local declarations at
12452 all. Rather, in such cases we just call `decls_for_scope' so that any
12453 needed Dwarf info for any sub-blocks will get properly generated. Note
12454 that in terse mode, our definition of what constitutes a "significant"
12455 local declaration gets restricted to include only inlined function
12456 instances and local (nested) function definitions. */
12457 if (must_output_die)
12459 if (origin_code == FUNCTION_DECL)
12460 gen_inlined_subroutine_die (stmt, context_die, depth);
12461 else
12462 gen_lexical_block_die (stmt, context_die, depth);
12464 else
12465 decls_for_scope (stmt, context_die, depth);
12468 /* Generate all of the decls declared within a given scope and (recursively)
12469 all of its sub-blocks. */
12471 static void
12472 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12474 tree decl;
12475 tree subblocks;
12477 /* Ignore NULL blocks. */
12478 if (stmt == NULL_TREE)
12479 return;
12481 if (TREE_USED (stmt))
12483 /* Output the DIEs to represent all of the data objects and typedefs
12484 declared directly within this block but not within any nested
12485 sub-blocks. Also, nested function and tag DIEs have been
12486 generated with a parent of NULL; fix that up now. */
12487 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12489 dw_die_ref die;
12491 if (TREE_CODE (decl) == FUNCTION_DECL)
12492 die = lookup_decl_die (decl);
12493 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12494 die = lookup_type_die (TREE_TYPE (decl));
12495 else
12496 die = NULL;
12498 if (die != NULL && die->die_parent == NULL)
12499 add_child_die (context_die, die);
12500 else
12501 gen_decl_die (decl, context_die);
12505 /* If we're at -g1, we're not interested in subblocks. */
12506 if (debug_info_level <= DINFO_LEVEL_TERSE)
12507 return;
12509 /* Output the DIEs to represent all sub-blocks (and the items declared
12510 therein) of this block. */
12511 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12512 subblocks != NULL;
12513 subblocks = BLOCK_CHAIN (subblocks))
12514 gen_block_die (subblocks, context_die, depth + 1);
12517 /* Is this a typedef we can avoid emitting? */
12519 static inline int
12520 is_redundant_typedef (tree decl)
12522 if (TYPE_DECL_IS_STUB (decl))
12523 return 1;
12525 if (DECL_ARTIFICIAL (decl)
12526 && DECL_CONTEXT (decl)
12527 && is_tagged_type (DECL_CONTEXT (decl))
12528 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12529 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12530 /* Also ignore the artificial member typedef for the class name. */
12531 return 1;
12533 return 0;
12536 /* Returns the DIE for decl or aborts. */
12538 static dw_die_ref
12539 force_decl_die (tree decl)
12541 dw_die_ref decl_die;
12542 unsigned saved_external_flag;
12543 tree save_fn = NULL_TREE;
12544 decl_die = lookup_decl_die (decl);
12545 if (!decl_die)
12547 dw_die_ref context_die;
12548 tree decl_context = DECL_CONTEXT (decl);
12549 if (decl_context)
12551 /* Find die that represents this context. */
12552 if (TYPE_P (decl_context))
12553 context_die = force_type_die (decl_context);
12554 else
12555 context_die = force_decl_die (decl_context);
12557 else
12558 context_die = comp_unit_die;
12560 switch (TREE_CODE (decl))
12562 case FUNCTION_DECL:
12563 /* Clear current_function_decl, so that gen_subprogram_die thinks
12564 that this is a declaration. At this point, we just want to force
12565 declaration die. */
12566 save_fn = current_function_decl;
12567 current_function_decl = NULL_TREE;
12568 gen_subprogram_die (decl, context_die);
12569 current_function_decl = save_fn;
12570 break;
12572 case VAR_DECL:
12573 /* Set external flag to force declaration die. Restore it after
12574 gen_decl_die() call. */
12575 saved_external_flag = DECL_EXTERNAL (decl);
12576 DECL_EXTERNAL (decl) = 1;
12577 gen_decl_die (decl, context_die);
12578 DECL_EXTERNAL (decl) = saved_external_flag;
12579 break;
12581 case NAMESPACE_DECL:
12582 dwarf2out_decl (decl);
12583 break;
12585 default:
12586 gcc_unreachable ();
12589 /* See if we can find the die for this deci now.
12590 If not then abort. */
12591 if (!decl_die)
12592 decl_die = lookup_decl_die (decl);
12593 gcc_assert (decl_die);
12596 return decl_die;
12599 /* Returns the DIE for decl or aborts. */
12601 static dw_die_ref
12602 force_type_die (tree type)
12604 dw_die_ref type_die;
12606 type_die = lookup_type_die (type);
12607 if (!type_die)
12609 dw_die_ref context_die;
12610 if (TYPE_CONTEXT (type))
12611 if (TYPE_P (TYPE_CONTEXT (type)))
12612 context_die = force_type_die (TYPE_CONTEXT (type));
12613 else
12614 context_die = force_decl_die (TYPE_CONTEXT (type));
12615 else
12616 context_die = comp_unit_die;
12618 gen_type_die (type, context_die);
12619 type_die = lookup_type_die (type);
12620 gcc_assert (type_die);
12622 return type_die;
12625 /* Force out any required namespaces to be able to output DECL,
12626 and return the new context_die for it, if it's changed. */
12628 static dw_die_ref
12629 setup_namespace_context (tree thing, dw_die_ref context_die)
12631 tree context = (DECL_P (thing)
12632 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12633 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12634 /* Force out the namespace. */
12635 context_die = force_decl_die (context);
12637 return context_die;
12640 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12641 type) within its namespace, if appropriate.
12643 For compatibility with older debuggers, namespace DIEs only contain
12644 declarations; all definitions are emitted at CU scope. */
12646 static void
12647 declare_in_namespace (tree thing, dw_die_ref context_die)
12649 dw_die_ref ns_context;
12651 if (debug_info_level <= DINFO_LEVEL_TERSE)
12652 return;
12654 /* If this decl is from an inlined function, then don't try to emit it in its
12655 namespace, as we will get confused. It would have already been emitted
12656 when the abstract instance of the inline function was emitted anyways. */
12657 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12658 return;
12660 ns_context = setup_namespace_context (thing, context_die);
12662 if (ns_context != context_die)
12664 if (DECL_P (thing))
12665 gen_decl_die (thing, ns_context);
12666 else
12667 gen_type_die (thing, ns_context);
12671 /* Generate a DIE for a namespace or namespace alias. */
12673 static void
12674 gen_namespace_die (tree decl)
12676 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12678 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12679 they are an alias of. */
12680 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12682 /* Output a real namespace. */
12683 dw_die_ref namespace_die
12684 = new_die (DW_TAG_namespace, context_die, decl);
12685 add_name_and_src_coords_attributes (namespace_die, decl);
12686 equate_decl_number_to_die (decl, namespace_die);
12688 else
12690 /* Output a namespace alias. */
12692 /* Force out the namespace we are an alias of, if necessary. */
12693 dw_die_ref origin_die
12694 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12696 /* Now create the namespace alias DIE. */
12697 dw_die_ref namespace_die
12698 = new_die (DW_TAG_imported_declaration, context_die, decl);
12699 add_name_and_src_coords_attributes (namespace_die, decl);
12700 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12701 equate_decl_number_to_die (decl, namespace_die);
12705 /* Generate Dwarf debug information for a decl described by DECL. */
12707 static void
12708 gen_decl_die (tree decl, dw_die_ref context_die)
12710 tree origin;
12712 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12713 return;
12715 switch (TREE_CODE (decl))
12717 case ERROR_MARK:
12718 break;
12720 case CONST_DECL:
12721 /* The individual enumerators of an enum type get output when we output
12722 the Dwarf representation of the relevant enum type itself. */
12723 break;
12725 case FUNCTION_DECL:
12726 /* Don't output any DIEs to represent mere function declarations,
12727 unless they are class members or explicit block externs. */
12728 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12729 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12730 break;
12732 #if 0
12733 /* FIXME */
12734 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12735 on local redeclarations of global functions. That seems broken. */
12736 if (current_function_decl != decl)
12737 /* This is only a declaration. */;
12738 #endif
12740 /* If we're emitting a clone, emit info for the abstract instance. */
12741 if (DECL_ORIGIN (decl) != decl)
12742 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12744 /* If we're emitting an out-of-line copy of an inline function,
12745 emit info for the abstract instance and set up to refer to it. */
12746 else if (cgraph_function_possibly_inlined_p (decl)
12747 && ! DECL_ABSTRACT (decl)
12748 && ! class_or_namespace_scope_p (context_die)
12749 /* dwarf2out_abstract_function won't emit a die if this is just
12750 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12751 that case, because that works only if we have a die. */
12752 && DECL_INITIAL (decl) != NULL_TREE)
12754 dwarf2out_abstract_function (decl);
12755 set_decl_origin_self (decl);
12758 /* Otherwise we're emitting the primary DIE for this decl. */
12759 else if (debug_info_level > DINFO_LEVEL_TERSE)
12761 /* Before we describe the FUNCTION_DECL itself, make sure that we
12762 have described its return type. */
12763 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12765 /* And its virtual context. */
12766 if (DECL_VINDEX (decl) != NULL_TREE)
12767 gen_type_die (DECL_CONTEXT (decl), context_die);
12769 /* And its containing type. */
12770 origin = decl_class_context (decl);
12771 if (origin != NULL_TREE)
12772 gen_type_die_for_member (origin, decl, context_die);
12774 /* And its containing namespace. */
12775 declare_in_namespace (decl, context_die);
12778 /* Now output a DIE to represent the function itself. */
12779 gen_subprogram_die (decl, context_die);
12780 break;
12782 case TYPE_DECL:
12783 /* If we are in terse mode, don't generate any DIEs to represent any
12784 actual typedefs. */
12785 if (debug_info_level <= DINFO_LEVEL_TERSE)
12786 break;
12788 /* In the special case of a TYPE_DECL node representing the declaration
12789 of some type tag, if the given TYPE_DECL is marked as having been
12790 instantiated from some other (original) TYPE_DECL node (e.g. one which
12791 was generated within the original definition of an inline function) we
12792 have to generate a special (abbreviated) DW_TAG_structure_type,
12793 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12794 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12796 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12797 break;
12800 if (is_redundant_typedef (decl))
12801 gen_type_die (TREE_TYPE (decl), context_die);
12802 else
12803 /* Output a DIE to represent the typedef itself. */
12804 gen_typedef_die (decl, context_die);
12805 break;
12807 case LABEL_DECL:
12808 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12809 gen_label_die (decl, context_die);
12810 break;
12812 case VAR_DECL:
12813 case RESULT_DECL:
12814 /* If we are in terse mode, don't generate any DIEs to represent any
12815 variable declarations or definitions. */
12816 if (debug_info_level <= DINFO_LEVEL_TERSE)
12817 break;
12819 /* Output any DIEs that are needed to specify the type of this data
12820 object. */
12821 gen_type_die (TREE_TYPE (decl), context_die);
12823 /* And its containing type. */
12824 origin = decl_class_context (decl);
12825 if (origin != NULL_TREE)
12826 gen_type_die_for_member (origin, decl, context_die);
12828 /* And its containing namespace. */
12829 declare_in_namespace (decl, context_die);
12831 /* Now output the DIE to represent the data object itself. This gets
12832 complicated because of the possibility that the VAR_DECL really
12833 represents an inlined instance of a formal parameter for an inline
12834 function. */
12835 origin = decl_ultimate_origin (decl);
12836 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12837 gen_formal_parameter_die (decl, context_die);
12838 else
12839 gen_variable_die (decl, context_die);
12840 break;
12842 case FIELD_DECL:
12843 /* Ignore the nameless fields that are used to skip bits but handle C++
12844 anonymous unions and structs. */
12845 if (DECL_NAME (decl) != NULL_TREE
12846 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12847 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12849 gen_type_die (member_declared_type (decl), context_die);
12850 gen_field_die (decl, context_die);
12852 break;
12854 case PARM_DECL:
12855 gen_type_die (TREE_TYPE (decl), context_die);
12856 gen_formal_parameter_die (decl, context_die);
12857 break;
12859 case NAMESPACE_DECL:
12860 gen_namespace_die (decl);
12861 break;
12863 default:
12864 /* Probably some frontend-internal decl. Assume we don't care. */
12865 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12866 break;
12870 /* Add Ada "use" clause information for SGI Workshop debugger. */
12872 void
12873 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12875 unsigned int file_index;
12877 if (filename != NULL)
12879 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12880 tree context_list_decl
12881 = build_decl (LABEL_DECL, get_identifier (context_list),
12882 void_type_node);
12884 TREE_PUBLIC (context_list_decl) = TRUE;
12885 add_name_attribute (unit_die, context_list);
12886 file_index = lookup_filename (filename);
12887 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12888 add_pubname (context_list_decl, unit_die);
12892 /* Output debug information for global decl DECL. Called from toplev.c after
12893 compilation proper has finished. */
12895 static void
12896 dwarf2out_global_decl (tree decl)
12898 /* Output DWARF2 information for file-scope tentative data object
12899 declarations, file-scope (extern) function declarations (which had no
12900 corresponding body) and file-scope tagged type declarations and
12901 definitions which have not yet been forced out. */
12902 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12903 dwarf2out_decl (decl);
12906 /* Output debug information for type decl DECL. Called from toplev.c
12907 and from language front ends (to record built-in types). */
12908 static void
12909 dwarf2out_type_decl (tree decl, int local)
12911 if (!local)
12912 dwarf2out_decl (decl);
12915 /* Output debug information for imported module or decl. */
12917 static void
12918 dwarf2out_imported_module_or_decl (tree decl, tree context)
12920 dw_die_ref imported_die, at_import_die;
12921 dw_die_ref scope_die;
12922 unsigned file_index;
12923 expanded_location xloc;
12925 if (debug_info_level <= DINFO_LEVEL_TERSE)
12926 return;
12928 gcc_assert (decl);
12930 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12931 We need decl DIE for reference and scope die. First, get DIE for the decl
12932 itself. */
12934 /* Get the scope die for decl context. Use comp_unit_die for global module
12935 or decl. If die is not found for non globals, force new die. */
12936 if (!context)
12937 scope_die = comp_unit_die;
12938 else if (TYPE_P (context))
12939 scope_die = force_type_die (context);
12940 else
12941 scope_die = force_decl_die (context);
12943 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12944 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12945 at_import_die = force_type_die (TREE_TYPE (decl));
12946 else
12948 at_import_die = lookup_decl_die (decl);
12949 if (!at_import_die)
12951 /* If we're trying to avoid duplicate debug info, we may not have
12952 emitted the member decl for this field. Emit it now. */
12953 if (TREE_CODE (decl) == FIELD_DECL)
12955 tree type = DECL_CONTEXT (decl);
12956 dw_die_ref type_context_die;
12958 if (TYPE_CONTEXT (type))
12959 if (TYPE_P (TYPE_CONTEXT (type)))
12960 type_context_die = force_type_die (TYPE_CONTEXT (type));
12961 else
12962 type_context_die = force_decl_die (TYPE_CONTEXT (type));
12963 else
12964 type_context_die = comp_unit_die;
12965 gen_type_die_for_member (type, decl, type_context_die);
12967 at_import_die = force_decl_die (decl);
12971 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
12972 if (TREE_CODE (decl) == NAMESPACE_DECL)
12973 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
12974 else
12975 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
12977 xloc = expand_location (input_location);
12978 file_index = lookup_filename (xloc.file);
12979 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
12980 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
12981 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
12984 /* Write the debugging output for DECL. */
12986 void
12987 dwarf2out_decl (tree decl)
12989 dw_die_ref context_die = comp_unit_die;
12991 switch (TREE_CODE (decl))
12993 case ERROR_MARK:
12994 return;
12996 case FUNCTION_DECL:
12997 /* What we would really like to do here is to filter out all mere
12998 file-scope declarations of file-scope functions which are never
12999 referenced later within this translation unit (and keep all of ones
13000 that *are* referenced later on) but we aren't clairvoyant, so we have
13001 no idea which functions will be referenced in the future (i.e. later
13002 on within the current translation unit). So here we just ignore all
13003 file-scope function declarations which are not also definitions. If
13004 and when the debugger needs to know something about these functions,
13005 it will have to hunt around and find the DWARF information associated
13006 with the definition of the function.
13008 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13009 nodes represent definitions and which ones represent mere
13010 declarations. We have to check DECL_INITIAL instead. That's because
13011 the C front-end supports some weird semantics for "extern inline"
13012 function definitions. These can get inlined within the current
13013 translation unit (an thus, we need to generate Dwarf info for their
13014 abstract instances so that the Dwarf info for the concrete inlined
13015 instances can have something to refer to) but the compiler never
13016 generates any out-of-lines instances of such things (despite the fact
13017 that they *are* definitions).
13019 The important point is that the C front-end marks these "extern
13020 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13021 them anyway. Note that the C++ front-end also plays some similar games
13022 for inline function definitions appearing within include files which
13023 also contain `#pragma interface' pragmas. */
13024 if (DECL_INITIAL (decl) == NULL_TREE)
13025 return;
13027 /* If we're a nested function, initially use a parent of NULL; if we're
13028 a plain function, this will be fixed up in decls_for_scope. If
13029 we're a method, it will be ignored, since we already have a DIE. */
13030 if (decl_function_context (decl)
13031 /* But if we're in terse mode, we don't care about scope. */
13032 && debug_info_level > DINFO_LEVEL_TERSE)
13033 context_die = NULL;
13034 break;
13036 case VAR_DECL:
13037 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13038 declaration and if the declaration was never even referenced from
13039 within this entire compilation unit. We suppress these DIEs in
13040 order to save space in the .debug section (by eliminating entries
13041 which are probably useless). Note that we must not suppress
13042 block-local extern declarations (whether used or not) because that
13043 would screw-up the debugger's name lookup mechanism and cause it to
13044 miss things which really ought to be in scope at a given point. */
13045 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13046 return;
13048 /* If we are in terse mode, don't generate any DIEs to represent any
13049 variable declarations or definitions. */
13050 if (debug_info_level <= DINFO_LEVEL_TERSE)
13051 return;
13052 break;
13054 case NAMESPACE_DECL:
13055 if (debug_info_level <= DINFO_LEVEL_TERSE)
13056 return;
13057 if (lookup_decl_die (decl) != NULL)
13058 return;
13059 break;
13061 case TYPE_DECL:
13062 /* Don't emit stubs for types unless they are needed by other DIEs. */
13063 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13064 return;
13066 /* Don't bother trying to generate any DIEs to represent any of the
13067 normal built-in types for the language we are compiling. */
13068 if (DECL_IS_BUILTIN (decl))
13070 /* OK, we need to generate one for `bool' so GDB knows what type
13071 comparisons have. */
13072 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13073 == DW_LANG_C_plus_plus)
13074 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13075 && ! DECL_IGNORED_P (decl))
13076 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13078 return;
13081 /* If we are in terse mode, don't generate any DIEs for types. */
13082 if (debug_info_level <= DINFO_LEVEL_TERSE)
13083 return;
13085 /* If we're a function-scope tag, initially use a parent of NULL;
13086 this will be fixed up in decls_for_scope. */
13087 if (decl_function_context (decl))
13088 context_die = NULL;
13090 break;
13092 default:
13093 return;
13096 gen_decl_die (decl, context_die);
13099 /* Output a marker (i.e. a label) for the beginning of the generated code for
13100 a lexical block. */
13102 static void
13103 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13104 unsigned int blocknum)
13106 current_function_section (current_function_decl);
13107 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13110 /* Output a marker (i.e. a label) for the end of the generated code for a
13111 lexical block. */
13113 static void
13114 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13116 current_function_section (current_function_decl);
13117 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13120 /* Returns nonzero if it is appropriate not to emit any debugging
13121 information for BLOCK, because it doesn't contain any instructions.
13123 Don't allow this for blocks with nested functions or local classes
13124 as we would end up with orphans, and in the presence of scheduling
13125 we may end up calling them anyway. */
13127 static bool
13128 dwarf2out_ignore_block (tree block)
13130 tree decl;
13132 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13133 if (TREE_CODE (decl) == FUNCTION_DECL
13134 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13135 return 0;
13137 return 1;
13140 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13141 dwarf2out.c) and return its "index". The index of each (known) filename is
13142 just a unique number which is associated with only that one filename. We
13143 need such numbers for the sake of generating labels (in the .debug_sfnames
13144 section) and references to those files numbers (in the .debug_srcinfo
13145 and.debug_macinfo sections). If the filename given as an argument is not
13146 found in our current list, add it to the list and assign it the next
13147 available unique index number. In order to speed up searches, we remember
13148 the index of the filename was looked up last. This handles the majority of
13149 all searches. */
13151 static unsigned
13152 lookup_filename (const char *file_name)
13154 size_t i, n;
13155 char *save_file_name;
13157 /* Check to see if the file name that was searched on the previous
13158 call matches this file name. If so, return the index. */
13159 if (file_table_last_lookup_index != 0)
13161 const char *last
13162 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13163 if (strcmp (file_name, last) == 0)
13164 return file_table_last_lookup_index;
13167 /* Didn't match the previous lookup, search the table. */
13168 n = VARRAY_ACTIVE_SIZE (file_table);
13169 for (i = 1; i < n; i++)
13170 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13172 file_table_last_lookup_index = i;
13173 return i;
13176 /* Add the new entry to the end of the filename table. */
13177 file_table_last_lookup_index = n;
13178 save_file_name = (char *) ggc_strdup (file_name);
13179 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13180 VARRAY_PUSH_UINT (file_table_emitted, 0);
13182 return i;
13185 static int
13186 maybe_emit_file (int fileno)
13188 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13190 if (!VARRAY_UINT (file_table_emitted, fileno))
13192 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13193 fprintf (asm_out_file, "\t.file %u ",
13194 VARRAY_UINT (file_table_emitted, fileno));
13195 output_quoted_string (asm_out_file,
13196 VARRAY_CHAR_PTR (file_table, fileno));
13197 fputc ('\n', asm_out_file);
13199 return VARRAY_UINT (file_table_emitted, fileno);
13201 else
13202 return fileno;
13205 static void
13206 init_file_table (void)
13208 /* Allocate the initial hunk of the file_table. */
13209 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13210 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13212 /* Skip the first entry - file numbers begin at 1. */
13213 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13214 VARRAY_PUSH_UINT (file_table_emitted, 0);
13215 file_table_last_lookup_index = 0;
13218 /* Called by the final INSN scan whenever we see a var location. We
13219 use it to drop labels in the right places, and throw the location in
13220 our lookup table. */
13222 static void
13223 dwarf2out_var_location (rtx loc_note)
13225 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13226 struct var_loc_node *newloc;
13227 rtx prev_insn;
13228 static rtx last_insn;
13229 static const char *last_label;
13230 tree decl;
13231 struct function *cfun = DECL_STRUCT_FUNCTION (current_function_decl);
13233 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13234 return;
13235 prev_insn = PREV_INSN (loc_note);
13237 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13238 /* If the insn we processed last time is the previous insn
13239 and it is also a var location note, use the label we emitted
13240 last time. */
13241 if (last_insn != NULL_RTX
13242 && last_insn == prev_insn
13243 && NOTE_P (prev_insn)
13244 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13246 newloc->label = last_label;
13248 else
13250 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13251 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13252 loclabel_num++;
13253 newloc->label = ggc_strdup (loclabel);
13255 newloc->var_loc_note = loc_note;
13256 newloc->next = NULL;
13258 if (last_text_section == in_unlikely_executed_text
13259 || (last_text_section == in_named
13260 && last_text_section_name == cfun->unlikely_text_section_name))
13261 newloc->section_label = cfun->cold_section_label;
13262 else
13263 newloc->section_label = text_section_label;
13265 last_insn = loc_note;
13266 last_label = newloc->label;
13267 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13268 if (DECL_DEBUG_EXPR (decl) && DECL_DEBUG_EXPR_IS_FROM (decl)
13269 && DECL_P (DECL_DEBUG_EXPR (decl)))
13270 decl = DECL_DEBUG_EXPR (decl);
13271 add_var_loc_to_decl (decl, newloc);
13274 /* We need to reset the locations at the beginning of each
13275 function. We can't do this in the end_function hook, because the
13276 declarations that use the locations won't have been outputted when
13277 that hook is called. */
13279 static void
13280 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13282 htab_empty (decl_loc_table);
13285 /* Output a label to mark the beginning of a source code line entry
13286 and record information relating to this source line, in
13287 'line_info_table' for later output of the .debug_line section. */
13289 static void
13290 dwarf2out_source_line (unsigned int line, const char *filename)
13292 if (debug_info_level >= DINFO_LEVEL_NORMAL
13293 && line != 0)
13295 current_function_section (current_function_decl);
13297 /* If requested, emit something human-readable. */
13298 if (flag_debug_asm)
13299 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13300 filename, line);
13302 if (DWARF2_ASM_LINE_DEBUG_INFO)
13304 unsigned file_num = lookup_filename (filename);
13306 file_num = maybe_emit_file (file_num);
13308 /* Emit the .loc directive understood by GNU as. */
13309 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13311 /* Indicate that line number info exists. */
13312 line_info_table_in_use++;
13314 /* Indicate that multiple line number tables exist. */
13315 if (DECL_SECTION_NAME (current_function_decl))
13316 separate_line_info_table_in_use++;
13318 else if (DECL_SECTION_NAME (current_function_decl))
13320 dw_separate_line_info_ref line_info;
13321 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13322 separate_line_info_table_in_use);
13324 /* Expand the line info table if necessary. */
13325 if (separate_line_info_table_in_use
13326 == separate_line_info_table_allocated)
13328 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13329 separate_line_info_table
13330 = ggc_realloc (separate_line_info_table,
13331 separate_line_info_table_allocated
13332 * sizeof (dw_separate_line_info_entry));
13333 memset (separate_line_info_table
13334 + separate_line_info_table_in_use,
13336 (LINE_INFO_TABLE_INCREMENT
13337 * sizeof (dw_separate_line_info_entry)));
13340 /* Add the new entry at the end of the line_info_table. */
13341 line_info
13342 = &separate_line_info_table[separate_line_info_table_in_use++];
13343 line_info->dw_file_num = lookup_filename (filename);
13344 line_info->dw_line_num = line;
13345 line_info->function = current_function_funcdef_no;
13347 else
13349 dw_line_info_ref line_info;
13351 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13352 line_info_table_in_use);
13354 /* Expand the line info table if necessary. */
13355 if (line_info_table_in_use == line_info_table_allocated)
13357 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13358 line_info_table
13359 = ggc_realloc (line_info_table,
13360 (line_info_table_allocated
13361 * sizeof (dw_line_info_entry)));
13362 memset (line_info_table + line_info_table_in_use, 0,
13363 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13366 /* Add the new entry at the end of the line_info_table. */
13367 line_info = &line_info_table[line_info_table_in_use++];
13368 line_info->dw_file_num = lookup_filename (filename);
13369 line_info->dw_line_num = line;
13374 /* Record the beginning of a new source file. */
13376 static void
13377 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13379 if (flag_eliminate_dwarf2_dups)
13381 /* Record the beginning of the file for break_out_includes. */
13382 dw_die_ref bincl_die;
13384 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13385 add_AT_string (bincl_die, DW_AT_name, filename);
13388 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13390 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13391 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13392 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13393 lineno);
13394 maybe_emit_file (lookup_filename (filename));
13395 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13396 "Filename we just started");
13400 /* Record the end of a source file. */
13402 static void
13403 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13405 if (flag_eliminate_dwarf2_dups)
13406 /* Record the end of the file for break_out_includes. */
13407 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13409 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13411 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13412 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13416 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13417 the tail part of the directive line, i.e. the part which is past the
13418 initial whitespace, #, whitespace, directive-name, whitespace part. */
13420 static void
13421 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13422 const char *buffer ATTRIBUTE_UNUSED)
13424 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13426 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13427 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13428 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13429 dw2_asm_output_nstring (buffer, -1, "The macro");
13433 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13434 the tail part of the directive line, i.e. the part which is past the
13435 initial whitespace, #, whitespace, directive-name, whitespace part. */
13437 static void
13438 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13439 const char *buffer ATTRIBUTE_UNUSED)
13441 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13443 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13444 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13445 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13446 dw2_asm_output_nstring (buffer, -1, "The macro");
13450 /* Set up for Dwarf output at the start of compilation. */
13452 static void
13453 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13455 init_file_table ();
13457 /* Allocate the decl_die_table. */
13458 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13459 decl_die_table_eq, NULL);
13461 /* Allocate the decl_loc_table. */
13462 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13463 decl_loc_table_eq, NULL);
13465 /* Allocate the initial hunk of the decl_scope_table. */
13466 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
13468 /* Allocate the initial hunk of the abbrev_die_table. */
13469 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13470 * sizeof (dw_die_ref));
13471 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13472 /* Zero-th entry is allocated, but unused. */
13473 abbrev_die_table_in_use = 1;
13475 /* Allocate the initial hunk of the line_info_table. */
13476 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13477 * sizeof (dw_line_info_entry));
13478 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13480 /* Zero-th entry is allocated, but unused. */
13481 line_info_table_in_use = 1;
13483 /* Generate the initial DIE for the .debug section. Note that the (string)
13484 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13485 will (typically) be a relative pathname and that this pathname should be
13486 taken as being relative to the directory from which the compiler was
13487 invoked when the given (base) source file was compiled. We will fill
13488 in this value in dwarf2out_finish. */
13489 comp_unit_die = gen_compile_unit_die (NULL);
13491 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
13493 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
13495 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13496 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13497 DEBUG_ABBREV_SECTION_LABEL, 0);
13498 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13499 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13500 COLD_TEXT_SECTION_LABEL, 0);
13501 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13503 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13504 DEBUG_INFO_SECTION_LABEL, 0);
13505 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13506 DEBUG_LINE_SECTION_LABEL, 0);
13507 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13508 DEBUG_RANGES_SECTION_LABEL, 0);
13509 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13510 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13511 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13512 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13513 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13514 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13516 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13518 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13519 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13520 DEBUG_MACINFO_SECTION_LABEL, 0);
13521 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13524 text_section ();
13525 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13526 if (flag_reorder_blocks_and_partition)
13528 unlikely_text_section ();
13529 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13533 /* A helper function for dwarf2out_finish called through
13534 ht_forall. Emit one queued .debug_str string. */
13536 static int
13537 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13539 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13541 if (node->form == DW_FORM_strp)
13543 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13544 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13545 assemble_string (node->str, strlen (node->str) + 1);
13548 return 1;
13553 /* Clear the marks for a die and its children.
13554 Be cool if the mark isn't set. */
13556 static void
13557 prune_unmark_dies (dw_die_ref die)
13559 dw_die_ref c;
13560 die->die_mark = 0;
13561 for (c = die->die_child; c; c = c->die_sib)
13562 prune_unmark_dies (c);
13566 /* Given DIE that we're marking as used, find any other dies
13567 it references as attributes and mark them as used. */
13569 static void
13570 prune_unused_types_walk_attribs (dw_die_ref die)
13572 dw_attr_ref a;
13574 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13576 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13578 /* A reference to another DIE.
13579 Make sure that it will get emitted. */
13580 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13582 else if (a->dw_attr == DW_AT_decl_file)
13584 /* A reference to a file. Make sure the file name is emitted. */
13585 a->dw_attr_val.v.val_unsigned =
13586 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13592 /* Mark DIE as being used. If DOKIDS is true, then walk down
13593 to DIE's children. */
13595 static void
13596 prune_unused_types_mark (dw_die_ref die, int dokids)
13598 dw_die_ref c;
13600 if (die->die_mark == 0)
13602 /* We haven't done this node yet. Mark it as used. */
13603 die->die_mark = 1;
13605 /* We also have to mark its parents as used.
13606 (But we don't want to mark our parents' kids due to this.) */
13607 if (die->die_parent)
13608 prune_unused_types_mark (die->die_parent, 0);
13610 /* Mark any referenced nodes. */
13611 prune_unused_types_walk_attribs (die);
13613 /* If this node is a specification,
13614 also mark the definition, if it exists. */
13615 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13616 prune_unused_types_mark (die->die_definition, 1);
13619 if (dokids && die->die_mark != 2)
13621 /* We need to walk the children, but haven't done so yet.
13622 Remember that we've walked the kids. */
13623 die->die_mark = 2;
13625 /* Walk them. */
13626 for (c = die->die_child; c; c = c->die_sib)
13628 /* If this is an array type, we need to make sure our
13629 kids get marked, even if they're types. */
13630 if (die->die_tag == DW_TAG_array_type)
13631 prune_unused_types_mark (c, 1);
13632 else
13633 prune_unused_types_walk (c);
13639 /* Walk the tree DIE and mark types that we actually use. */
13641 static void
13642 prune_unused_types_walk (dw_die_ref die)
13644 dw_die_ref c;
13646 /* Don't do anything if this node is already marked. */
13647 if (die->die_mark)
13648 return;
13650 switch (die->die_tag) {
13651 case DW_TAG_const_type:
13652 case DW_TAG_packed_type:
13653 case DW_TAG_pointer_type:
13654 case DW_TAG_reference_type:
13655 case DW_TAG_volatile_type:
13656 case DW_TAG_typedef:
13657 case DW_TAG_array_type:
13658 case DW_TAG_structure_type:
13659 case DW_TAG_union_type:
13660 case DW_TAG_class_type:
13661 case DW_TAG_friend:
13662 case DW_TAG_variant_part:
13663 case DW_TAG_enumeration_type:
13664 case DW_TAG_subroutine_type:
13665 case DW_TAG_string_type:
13666 case DW_TAG_set_type:
13667 case DW_TAG_subrange_type:
13668 case DW_TAG_ptr_to_member_type:
13669 case DW_TAG_file_type:
13670 /* It's a type node --- don't mark it. */
13671 return;
13673 default:
13674 /* Mark everything else. */
13675 break;
13678 die->die_mark = 1;
13680 /* Now, mark any dies referenced from here. */
13681 prune_unused_types_walk_attribs (die);
13683 /* Mark children. */
13684 for (c = die->die_child; c; c = c->die_sib)
13685 prune_unused_types_walk (c);
13689 /* Remove from the tree DIE any dies that aren't marked. */
13691 static void
13692 prune_unused_types_prune (dw_die_ref die)
13694 dw_die_ref c, p, n;
13696 gcc_assert (die->die_mark);
13698 p = NULL;
13699 for (c = die->die_child; c; c = n)
13701 n = c->die_sib;
13702 if (c->die_mark)
13704 prune_unused_types_prune (c);
13705 p = c;
13707 else
13709 if (p)
13710 p->die_sib = n;
13711 else
13712 die->die_child = n;
13713 free_die (c);
13719 /* Remove dies representing declarations that we never use. */
13721 static void
13722 prune_unused_types (void)
13724 unsigned int i;
13725 limbo_die_node *node;
13727 /* Clear all the marks. */
13728 prune_unmark_dies (comp_unit_die);
13729 for (node = limbo_die_list; node; node = node->next)
13730 prune_unmark_dies (node->die);
13732 /* Set the mark on nodes that are actually used. */
13733 prune_unused_types_walk (comp_unit_die);
13734 for (node = limbo_die_list; node; node = node->next)
13735 prune_unused_types_walk (node->die);
13737 /* Also set the mark on nodes referenced from the
13738 pubname_table or arange_table. */
13739 for (i = 0; i < pubname_table_in_use; i++)
13740 prune_unused_types_mark (pubname_table[i].die, 1);
13741 for (i = 0; i < arange_table_in_use; i++)
13742 prune_unused_types_mark (arange_table[i], 1);
13744 /* Get rid of nodes that aren't marked. */
13745 prune_unused_types_prune (comp_unit_die);
13746 for (node = limbo_die_list; node; node = node->next)
13747 prune_unused_types_prune (node->die);
13749 /* Leave the marks clear. */
13750 prune_unmark_dies (comp_unit_die);
13751 for (node = limbo_die_list; node; node = node->next)
13752 prune_unmark_dies (node->die);
13755 /* Output stuff that dwarf requires at the end of every file,
13756 and generate the DWARF-2 debugging info. */
13758 static void
13759 dwarf2out_finish (const char *filename)
13761 limbo_die_node *node, *next_node;
13762 dw_die_ref die = 0;
13764 /* Add the name for the main input file now. We delayed this from
13765 dwarf2out_init to avoid complications with PCH. */
13766 add_name_attribute (comp_unit_die, filename);
13767 if (filename[0] != DIR_SEPARATOR)
13768 add_comp_dir_attribute (comp_unit_die);
13769 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13771 size_t i;
13772 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13773 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13774 /* Don't add cwd for <built-in>. */
13775 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13777 add_comp_dir_attribute (comp_unit_die);
13778 break;
13782 /* Traverse the limbo die list, and add parent/child links. The only
13783 dies without parents that should be here are concrete instances of
13784 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13785 For concrete instances, we can get the parent die from the abstract
13786 instance. */
13787 for (node = limbo_die_list; node; node = next_node)
13789 next_node = node->next;
13790 die = node->die;
13792 if (die->die_parent == NULL)
13794 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13796 if (origin)
13797 add_child_die (origin->die_parent, die);
13798 else if (die == comp_unit_die)
13800 else if (errorcount > 0 || sorrycount > 0)
13801 /* It's OK to be confused by errors in the input. */
13802 add_child_die (comp_unit_die, die);
13803 else
13805 /* In certain situations, the lexical block containing a
13806 nested function can be optimized away, which results
13807 in the nested function die being orphaned. Likewise
13808 with the return type of that nested function. Force
13809 this to be a child of the containing function.
13811 It may happen that even the containing function got fully
13812 inlined and optimized out. In that case we are lost and
13813 assign the empty child. This should not be big issue as
13814 the function is likely unreachable too. */
13815 tree context = NULL_TREE;
13817 gcc_assert (node->created_for);
13819 if (DECL_P (node->created_for))
13820 context = DECL_CONTEXT (node->created_for);
13821 else if (TYPE_P (node->created_for))
13822 context = TYPE_CONTEXT (node->created_for);
13824 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13826 origin = lookup_decl_die (context);
13827 if (origin)
13828 add_child_die (origin, die);
13829 else
13830 add_child_die (comp_unit_die, die);
13835 limbo_die_list = NULL;
13837 /* Walk through the list of incomplete types again, trying once more to
13838 emit full debugging info for them. */
13839 retry_incomplete_types ();
13841 /* We need to reverse all the dies before break_out_includes, or
13842 we'll see the end of an include file before the beginning. */
13843 reverse_all_dies (comp_unit_die);
13845 if (flag_eliminate_unused_debug_types)
13846 prune_unused_types ();
13848 /* Generate separate CUs for each of the include files we've seen.
13849 They will go into limbo_die_list. */
13850 if (flag_eliminate_dwarf2_dups)
13851 break_out_includes (comp_unit_die);
13853 /* Traverse the DIE's and add add sibling attributes to those DIE's
13854 that have children. */
13855 add_sibling_attributes (comp_unit_die);
13856 for (node = limbo_die_list; node; node = node->next)
13857 add_sibling_attributes (node->die);
13859 /* Output a terminator label for the .text section. */
13860 text_section ();
13861 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13862 if (flag_reorder_blocks_and_partition)
13864 unlikely_text_section ();
13865 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
13868 /* Output the source line correspondence table. We must do this
13869 even if there is no line information. Otherwise, on an empty
13870 translation unit, we will generate a present, but empty,
13871 .debug_info section. IRIX 6.5 `nm' will then complain when
13872 examining the file. */
13873 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13875 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13876 output_line_info ();
13879 /* Output location list section if necessary. */
13880 if (have_location_lists)
13882 /* Output the location lists info. */
13883 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13884 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13885 DEBUG_LOC_SECTION_LABEL, 0);
13886 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13887 output_location_lists (die);
13888 have_location_lists = 0;
13891 /* We can only use the low/high_pc attributes if all of the code was
13892 in .text. */
13893 if (separate_line_info_table_in_use == 0)
13895 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13896 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13899 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13900 "base address". Use zero so that these addresses become absolute. */
13901 else if (have_location_lists || ranges_table_in_use)
13902 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13904 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13905 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13906 debug_line_section_label);
13908 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13909 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13911 /* Output all of the compilation units. We put the main one last so that
13912 the offsets are available to output_pubnames. */
13913 for (node = limbo_die_list; node; node = node->next)
13914 output_comp_unit (node->die, 0);
13916 output_comp_unit (comp_unit_die, 0);
13918 /* Output the abbreviation table. */
13919 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13920 output_abbrev_section ();
13922 /* Output public names table if necessary. */
13923 if (pubname_table_in_use)
13925 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13926 output_pubnames ();
13929 /* Output the address range information. We only put functions in the arange
13930 table, so don't write it out if we don't have any. */
13931 if (fde_table_in_use)
13933 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13934 output_aranges ();
13937 /* Output ranges section if necessary. */
13938 if (ranges_table_in_use)
13940 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13941 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13942 output_ranges ();
13945 /* Have to end the macro section. */
13946 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13948 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13949 dw2_asm_output_data (1, 0, "End compilation unit");
13952 /* If we emitted any DW_FORM_strp form attribute, output the string
13953 table too. */
13954 if (debug_str_hash)
13955 htab_traverse (debug_str_hash, output_indirect_string, NULL);
13957 #else
13959 /* This should never be used, but its address is needed for comparisons. */
13960 const struct gcc_debug_hooks dwarf2_debug_hooks;
13962 #endif /* DWARF2_DEBUGGING_INFO */
13964 #include "gt-dwarf2out.h"