1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
57 #include "diagnostic-core.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
64 #include "tree-iterator.h"
67 #include "langhooks.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
80 #include "tree-ssanames.h"
82 #include "stringpool.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
87 /* Nonzero if we are folding constants inside an initializer; zero
89 int folding_initializer
= 0;
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code
{
113 static bool negate_expr_p (tree
);
114 static tree
negate_expr (tree
);
115 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
116 static enum comparison_code
comparison_to_compcode (enum tree_code
);
117 static enum tree_code
compcode_to_comparison (enum comparison_code
);
118 static int twoval_comparison_p (tree
, tree
*, tree
*);
119 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
120 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
122 static int simple_operand_p (const_tree
);
123 static bool simple_operand_p_2 (tree
);
124 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
125 static tree
range_predecessor (tree
);
126 static tree
range_successor (tree
);
127 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
128 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
129 static tree
unextend (tree
, int, int, tree
);
130 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
131 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
132 static tree
fold_binary_op_with_conditional_arg (location_t
,
133 enum tree_code
, tree
,
136 static tree
fold_negate_const (tree
, tree
);
137 static tree
fold_not_const (const_tree
, tree
);
138 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
139 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
140 static tree
fold_view_convert_expr (tree
, tree
);
141 static tree
fold_negate_expr (location_t
, tree
);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
148 expr_location_or (tree t
, location_t loc
)
150 location_t tloc
= EXPR_LOCATION (t
);
151 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
158 protected_set_expr_location_unshare (tree x
, location_t loc
)
160 if (CAN_HAVE_LOCATION_P (x
)
161 && EXPR_LOCATION (x
) != loc
162 && !(TREE_CODE (x
) == SAVE_EXPR
163 || TREE_CODE (x
) == TARGET_EXPR
164 || TREE_CODE (x
) == BIND_EXPR
))
167 SET_EXPR_LOCATION (x
, loc
);
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
177 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
181 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
183 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
197 static int fold_deferring_overflow_warnings
;
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
204 static const char* fold_deferred_overflow_warning
;
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
209 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
215 fold_defer_overflow_warnings (void)
217 ++fold_deferring_overflow_warnings
;
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
230 fold_undefer_overflow_warnings (bool issue
, const gimple
*stmt
, int code
)
235 gcc_assert (fold_deferring_overflow_warnings
> 0);
236 --fold_deferring_overflow_warnings
;
237 if (fold_deferring_overflow_warnings
> 0)
239 if (fold_deferred_overflow_warning
!= NULL
241 && code
< (int) fold_deferred_overflow_code
)
242 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
246 warnmsg
= fold_deferred_overflow_warning
;
247 fold_deferred_overflow_warning
= NULL
;
249 if (!issue
|| warnmsg
== NULL
)
252 if (gimple_no_warning_p (stmt
))
255 /* Use the smallest code level when deciding to issue the
257 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
258 code
= fold_deferred_overflow_code
;
260 if (!issue_strict_overflow_warning (code
))
264 locus
= input_location
;
266 locus
= gimple_location (stmt
);
267 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
270 /* Stop deferring overflow warnings, ignoring any deferred
274 fold_undefer_and_ignore_overflow_warnings (void)
276 fold_undefer_overflow_warnings (false, NULL
, 0);
279 /* Whether we are deferring overflow warnings. */
282 fold_deferring_overflow_warnings_p (void)
284 return fold_deferring_overflow_warnings
> 0;
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
291 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
293 if (fold_deferring_overflow_warnings
> 0)
295 if (fold_deferred_overflow_warning
== NULL
296 || wc
< fold_deferred_overflow_code
)
298 fold_deferred_overflow_warning
= gmsgid
;
299 fold_deferred_overflow_code
= wc
;
302 else if (issue_strict_overflow_warning (wc
))
303 warning (OPT_Wstrict_overflow
, gmsgid
);
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
310 negate_mathfn_p (combined_fn fn
)
343 return !flag_rounding_math
;
351 /* Check whether we may negate an integer constant T without causing
355 may_negate_without_overflow_p (const_tree t
)
359 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
361 type
= TREE_TYPE (t
);
362 if (TYPE_UNSIGNED (type
))
365 return !wi::only_sign_bit_p (wi::to_wide (t
));
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
372 negate_expr_p (tree t
)
379 type
= TREE_TYPE (t
);
382 switch (TREE_CODE (t
))
385 if (INTEGRAL_TYPE_P (type
) && TYPE_UNSIGNED (type
))
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t
);
391 return (INTEGRAL_TYPE_P (type
)
392 && TYPE_OVERFLOW_WRAPS (type
));
398 return !TYPE_OVERFLOW_SANITIZED (type
);
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
406 return negate_expr_p (TREE_REALPART (t
))
407 && negate_expr_p (TREE_IMAGPART (t
));
411 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
414 /* Steps don't prevent negation. */
415 unsigned int count
= vector_cst_encoded_nelts (t
);
416 for (unsigned int i
= 0; i
< count
; ++i
)
417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t
, i
)))
424 return negate_expr_p (TREE_OPERAND (t
, 0))
425 && negate_expr_p (TREE_OPERAND (t
, 1));
428 return negate_expr_p (TREE_OPERAND (t
, 0));
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
432 || HONOR_SIGNED_ZEROS (element_mode (type
))
433 || (ANY_INTEGRAL_TYPE_P (type
)
434 && ! TYPE_OVERFLOW_WRAPS (type
)))
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t
, 1)))
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t
, 0));
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
445 && !HONOR_SIGNED_ZEROS (element_mode (type
))
446 && (! ANY_INTEGRAL_TYPE_P (type
)
447 || TYPE_OVERFLOW_WRAPS (type
));
450 if (TYPE_UNSIGNED (type
))
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
456 && ! ((TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
458 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 0))))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
461 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 1))))) != 1)))
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
468 return negate_expr_p (TREE_OPERAND (t
, 1))
469 || negate_expr_p (TREE_OPERAND (t
, 0));
475 if (TYPE_UNSIGNED (type
))
477 /* In general we can't negate A in A / B, because if A is INT_MIN and
478 B is not 1 we change the sign of the result. */
479 if (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
480 && negate_expr_p (TREE_OPERAND (t
, 0)))
482 /* In general we can't negate B in A / B, because if A is INT_MIN and
483 B is 1, we may turn this into INT_MIN / -1 which is undefined
484 and actually traps on some architectures. */
485 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t
))
486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
487 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
488 && ! integer_onep (TREE_OPERAND (t
, 1))))
489 return negate_expr_p (TREE_OPERAND (t
, 1));
493 /* Negate -((double)float) as (double)(-float). */
494 if (TREE_CODE (type
) == REAL_TYPE
)
496 tree tem
= strip_float_extensions (t
);
498 return negate_expr_p (tem
);
503 /* Negate -f(x) as f(-x). */
504 if (negate_mathfn_p (get_call_combined_fn (t
)))
505 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
510 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
512 tree op1
= TREE_OPERAND (t
, 1);
513 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
525 simplification is possible.
526 If negate_expr_p would return true for T, NULL_TREE will never be
530 fold_negate_expr_1 (location_t loc
, tree t
)
532 tree type
= TREE_TYPE (t
);
535 switch (TREE_CODE (t
))
537 /* Convert - (~A) to A + 1. */
539 if (INTEGRAL_TYPE_P (type
))
540 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
541 build_one_cst (type
));
545 tem
= fold_negate_const (t
, type
);
546 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
547 || (ANY_INTEGRAL_TYPE_P (type
)
548 && !TYPE_OVERFLOW_TRAPS (type
)
549 && TYPE_OVERFLOW_WRAPS (type
))
550 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
557 tem
= fold_negate_const (t
, type
);
562 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
563 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
565 return build_complex (type
, rpart
, ipart
);
571 tree_vector_builder elts
;
572 elts
.new_unary_operation (type
, t
, true);
573 unsigned int count
= elts
.encoded_nelts ();
574 for (unsigned int i
= 0; i
< count
; ++i
)
576 tree elt
= fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
577 if (elt
== NULL_TREE
)
579 elts
.quick_push (elt
);
582 return elts
.build ();
586 if (negate_expr_p (t
))
587 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
588 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
589 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
593 if (negate_expr_p (t
))
594 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
595 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
599 if (!TYPE_OVERFLOW_SANITIZED (type
))
600 return TREE_OPERAND (t
, 0);
604 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
605 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
607 /* -(A + B) -> (-B) - A. */
608 if (negate_expr_p (TREE_OPERAND (t
, 1)))
610 tem
= negate_expr (TREE_OPERAND (t
, 1));
611 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
612 tem
, TREE_OPERAND (t
, 0));
615 /* -(A + B) -> (-A) - B. */
616 if (negate_expr_p (TREE_OPERAND (t
, 0)))
618 tem
= negate_expr (TREE_OPERAND (t
, 0));
619 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
620 tem
, TREE_OPERAND (t
, 1));
626 /* - (A - B) -> B - A */
627 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
628 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
629 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
630 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
634 if (TYPE_UNSIGNED (type
))
640 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
642 tem
= TREE_OPERAND (t
, 1);
643 if (negate_expr_p (tem
))
644 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
645 TREE_OPERAND (t
, 0), negate_expr (tem
));
646 tem
= TREE_OPERAND (t
, 0);
647 if (negate_expr_p (tem
))
648 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
649 negate_expr (tem
), TREE_OPERAND (t
, 1));
656 if (TYPE_UNSIGNED (type
))
658 /* In general we can't negate A in A / B, because if A is INT_MIN and
659 B is not 1 we change the sign of the result. */
660 if (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
661 && negate_expr_p (TREE_OPERAND (t
, 0)))
662 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
663 negate_expr (TREE_OPERAND (t
, 0)),
664 TREE_OPERAND (t
, 1));
665 /* In general we can't negate B in A / B, because if A is INT_MIN and
666 B is 1, we may turn this into INT_MIN / -1 which is undefined
667 and actually traps on some architectures. */
668 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t
))
669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
670 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
671 && ! integer_onep (TREE_OPERAND (t
, 1))))
672 && negate_expr_p (TREE_OPERAND (t
, 1)))
673 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
675 negate_expr (TREE_OPERAND (t
, 1)));
679 /* Convert -((double)float) into (double)(-float). */
680 if (TREE_CODE (type
) == REAL_TYPE
)
682 tem
= strip_float_extensions (t
);
683 if (tem
!= t
&& negate_expr_p (tem
))
684 return fold_convert_loc (loc
, type
, negate_expr (tem
));
689 /* Negate -f(x) as f(-x). */
690 if (negate_mathfn_p (get_call_combined_fn (t
))
691 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
695 fndecl
= get_callee_fndecl (t
);
696 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
697 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
702 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
703 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
705 tree op1
= TREE_OPERAND (t
, 1);
706 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
708 tree ntype
= TYPE_UNSIGNED (type
)
709 ? signed_type_for (type
)
710 : unsigned_type_for (type
);
711 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
712 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
713 return fold_convert_loc (loc
, type
, temp
);
725 /* A wrapper for fold_negate_expr_1. */
728 fold_negate_expr (location_t loc
, tree t
)
730 tree type
= TREE_TYPE (t
);
732 tree tem
= fold_negate_expr_1 (loc
, t
);
733 if (tem
== NULL_TREE
)
735 return fold_convert_loc (loc
, type
, tem
);
738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T cannot be
739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
751 loc
= EXPR_LOCATION (t
);
752 type
= TREE_TYPE (t
);
755 tem
= fold_negate_expr (loc
, t
);
757 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
758 return fold_convert_loc (loc
, type
, tem
);
761 /* Split a tree IN into a constant, literal and variable parts that could be
762 combined with CODE to make IN. "constant" means an expression with
763 TREE_CONSTANT but that isn't an actual constant. CODE must be a
764 commutative arithmetic operation. Store the constant part into *CONP,
765 the literal in *LITP and return the variable part. If a part isn't
766 present, set it to null. If the tree does not decompose in this way,
767 return the entire tree as the variable part and the other parts as null.
769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
770 case, we negate an operand that was subtracted. Except if it is a
771 literal for which we use *MINUS_LITP instead.
773 If NEGATE_P is true, we are negating all of IN, again except a literal
774 for which we use *MINUS_LITP instead. If a variable part is of pointer
775 type, it is negated after converting to TYPE. This prevents us from
776 generating illegal MINUS pointer expression. LOC is the location of
777 the converted variable part.
779 If IN is itself a literal or constant, return it as appropriate.
781 Note that we do not guarantee that any of the three values will be the
782 same type as IN, but they will have the same signedness and mode. */
785 split_tree (tree in
, tree type
, enum tree_code code
,
786 tree
*minus_varp
, tree
*conp
, tree
*minus_conp
,
787 tree
*litp
, tree
*minus_litp
, int negate_p
)
796 /* Strip any conversions that don't change the machine mode or signedness. */
797 STRIP_SIGN_NOPS (in
);
799 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
800 || TREE_CODE (in
) == FIXED_CST
)
802 else if (TREE_CODE (in
) == code
803 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
804 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
805 /* We can associate addition and subtraction together (even
806 though the C standard doesn't say so) for integers because
807 the value is not affected. For reals, the value might be
808 affected, so we can't. */
809 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == POINTER_PLUS_EXPR
)
810 || (code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
811 || (code
== MINUS_EXPR
812 && (TREE_CODE (in
) == PLUS_EXPR
813 || TREE_CODE (in
) == POINTER_PLUS_EXPR
)))))
815 tree op0
= TREE_OPERAND (in
, 0);
816 tree op1
= TREE_OPERAND (in
, 1);
817 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
818 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
820 /* First see if either of the operands is a literal, then a constant. */
821 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
822 || TREE_CODE (op0
) == FIXED_CST
)
823 *litp
= op0
, op0
= 0;
824 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
825 || TREE_CODE (op1
) == FIXED_CST
)
826 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
828 if (op0
!= 0 && TREE_CONSTANT (op0
))
829 *conp
= op0
, op0
= 0;
830 else if (op1
!= 0 && TREE_CONSTANT (op1
))
831 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
833 /* If we haven't dealt with either operand, this is not a case we can
834 decompose. Otherwise, VAR is either of the ones remaining, if any. */
835 if (op0
!= 0 && op1
!= 0)
840 var
= op1
, neg_var_p
= neg1_p
;
842 /* Now do any needed negations. */
844 *minus_litp
= *litp
, *litp
= 0;
845 if (neg_conp_p
&& *conp
)
846 *minus_conp
= *conp
, *conp
= 0;
847 if (neg_var_p
&& var
)
848 *minus_varp
= var
, var
= 0;
850 else if (TREE_CONSTANT (in
))
852 else if (TREE_CODE (in
) == BIT_NOT_EXPR
853 && code
== PLUS_EXPR
)
855 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
856 when IN is constant. */
857 *litp
= build_minus_one_cst (type
);
858 *minus_varp
= TREE_OPERAND (in
, 0);
866 *minus_litp
= *litp
, *litp
= 0;
867 else if (*minus_litp
)
868 *litp
= *minus_litp
, *minus_litp
= 0;
870 *minus_conp
= *conp
, *conp
= 0;
871 else if (*minus_conp
)
872 *conp
= *minus_conp
, *minus_conp
= 0;
874 *minus_varp
= var
, var
= 0;
875 else if (*minus_varp
)
876 var
= *minus_varp
, *minus_varp
= 0;
880 && TREE_OVERFLOW_P (*litp
))
881 *litp
= drop_tree_overflow (*litp
);
883 && TREE_OVERFLOW_P (*minus_litp
))
884 *minus_litp
= drop_tree_overflow (*minus_litp
);
889 /* Re-associate trees split by the above function. T1 and T2 are
890 either expressions to associate or null. Return the new
891 expression, if any. LOC is the location of the new expression. If
892 we build an operation, do it in TYPE and with CODE. */
895 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
899 gcc_assert (t2
== 0 || code
!= MINUS_EXPR
);
905 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
906 try to fold this since we will have infinite recursion. But do
907 deal with any NEGATE_EXPRs. */
908 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
909 || TREE_CODE (t1
) == PLUS_EXPR
|| TREE_CODE (t2
) == PLUS_EXPR
910 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
912 if (code
== PLUS_EXPR
)
914 if (TREE_CODE (t1
) == NEGATE_EXPR
)
915 return build2_loc (loc
, MINUS_EXPR
, type
,
916 fold_convert_loc (loc
, type
, t2
),
917 fold_convert_loc (loc
, type
,
918 TREE_OPERAND (t1
, 0)));
919 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
920 return build2_loc (loc
, MINUS_EXPR
, type
,
921 fold_convert_loc (loc
, type
, t1
),
922 fold_convert_loc (loc
, type
,
923 TREE_OPERAND (t2
, 0)));
924 else if (integer_zerop (t2
))
925 return fold_convert_loc (loc
, type
, t1
);
927 else if (code
== MINUS_EXPR
)
929 if (integer_zerop (t2
))
930 return fold_convert_loc (loc
, type
, t1
);
933 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
934 fold_convert_loc (loc
, type
, t2
));
937 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
938 fold_convert_loc (loc
, type
, t2
));
941 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
942 for use in int_const_binop, size_binop and size_diffop. */
945 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
947 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
949 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
964 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
965 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
966 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
969 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
970 a new constant in RES. Return FALSE if we don't know how to
971 evaluate CODE at compile-time. */
974 wide_int_binop (wide_int
&res
,
975 enum tree_code code
, const wide_int
&arg1
, const wide_int
&arg2
,
976 signop sign
, wi::overflow_type
*overflow
)
979 *overflow
= wi::OVF_NONE
;
983 res
= wi::bit_or (arg1
, arg2
);
987 res
= wi::bit_xor (arg1
, arg2
);
991 res
= wi::bit_and (arg1
, arg2
);
996 if (wi::neg_p (arg2
))
999 if (code
== RSHIFT_EXPR
)
1007 if (code
== RSHIFT_EXPR
)
1008 /* It's unclear from the C standard whether shifts can overflow.
1009 The following code ignores overflow; perhaps a C standard
1010 interpretation ruling is needed. */
1011 res
= wi::rshift (arg1
, tmp
, sign
);
1013 res
= wi::lshift (arg1
, tmp
);
1018 if (wi::neg_p (arg2
))
1021 if (code
== RROTATE_EXPR
)
1022 code
= LROTATE_EXPR
;
1024 code
= RROTATE_EXPR
;
1029 if (code
== RROTATE_EXPR
)
1030 res
= wi::rrotate (arg1
, tmp
);
1032 res
= wi::lrotate (arg1
, tmp
);
1036 res
= wi::add (arg1
, arg2
, sign
, overflow
);
1040 res
= wi::sub (arg1
, arg2
, sign
, overflow
);
1044 res
= wi::mul (arg1
, arg2
, sign
, overflow
);
1047 case MULT_HIGHPART_EXPR
:
1048 res
= wi::mul_high (arg1
, arg2
, sign
);
1051 case TRUNC_DIV_EXPR
:
1052 case EXACT_DIV_EXPR
:
1055 res
= wi::div_trunc (arg1
, arg2
, sign
, overflow
);
1058 case FLOOR_DIV_EXPR
:
1061 res
= wi::div_floor (arg1
, arg2
, sign
, overflow
);
1067 res
= wi::div_ceil (arg1
, arg2
, sign
, overflow
);
1070 case ROUND_DIV_EXPR
:
1073 res
= wi::div_round (arg1
, arg2
, sign
, overflow
);
1076 case TRUNC_MOD_EXPR
:
1079 res
= wi::mod_trunc (arg1
, arg2
, sign
, overflow
);
1082 case FLOOR_MOD_EXPR
:
1085 res
= wi::mod_floor (arg1
, arg2
, sign
, overflow
);
1091 res
= wi::mod_ceil (arg1
, arg2
, sign
, overflow
);
1094 case ROUND_MOD_EXPR
:
1097 res
= wi::mod_round (arg1
, arg2
, sign
, overflow
);
1101 res
= wi::min (arg1
, arg2
, sign
);
1105 res
= wi::max (arg1
, arg2
, sign
);
1114 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1115 produce a new constant in RES. Return FALSE if we don't know how
1116 to evaluate CODE at compile-time. */
1119 poly_int_binop (poly_wide_int
&res
, enum tree_code code
,
1120 const_tree arg1
, const_tree arg2
,
1121 signop sign
, wi::overflow_type
*overflow
)
1123 gcc_assert (NUM_POLY_INT_COEFFS
!= 1);
1124 gcc_assert (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
));
1128 res
= wi::add (wi::to_poly_wide (arg1
),
1129 wi::to_poly_wide (arg2
), sign
, overflow
);
1133 res
= wi::sub (wi::to_poly_wide (arg1
),
1134 wi::to_poly_wide (arg2
), sign
, overflow
);
1138 if (TREE_CODE (arg2
) == INTEGER_CST
)
1139 res
= wi::mul (wi::to_poly_wide (arg1
),
1140 wi::to_wide (arg2
), sign
, overflow
);
1141 else if (TREE_CODE (arg1
) == INTEGER_CST
)
1142 res
= wi::mul (wi::to_poly_wide (arg2
),
1143 wi::to_wide (arg1
), sign
, overflow
);
1149 if (TREE_CODE (arg2
) == INTEGER_CST
)
1150 res
= wi::to_poly_wide (arg1
) << wi::to_wide (arg2
);
1156 if (TREE_CODE (arg2
) != INTEGER_CST
1157 || !can_ior_p (wi::to_poly_wide (arg1
), wi::to_wide (arg2
),
1168 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1169 produce a new constant. Return NULL_TREE if we don't know how to
1170 evaluate CODE at compile-time. */
1173 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
,
1176 bool success
= false;
1177 poly_wide_int poly_res
;
1178 tree type
= TREE_TYPE (arg1
);
1179 signop sign
= TYPE_SIGN (type
);
1180 wi::overflow_type overflow
= wi::OVF_NONE
;
1182 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1184 wide_int warg1
= wi::to_wide (arg1
), res
;
1185 wide_int warg2
= wi::to_wide (arg2
, TYPE_PRECISION (type
));
1186 success
= wide_int_binop (res
, code
, warg1
, warg2
, sign
, &overflow
);
1189 else if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1190 success
= poly_int_binop (poly_res
, code
, arg1
, arg2
, sign
, &overflow
);
1192 return force_fit_type (type
, poly_res
, overflowable
,
1193 (((sign
== SIGNED
|| overflowable
== -1)
1195 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
)));
1199 /* Return true if binary operation OP distributes over addition in operand
1200 OPNO, with the other operand being held constant. OPNO counts from 1. */
1203 distributes_over_addition_p (tree_code op
, int opno
)
1220 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1221 constant. We assume ARG1 and ARG2 have the same data type, or at least
1222 are the same kind of constant and the same machine mode. Return zero if
1223 combining the constants is not allowed in the current operating mode. */
1226 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1228 /* Sanity check for the recursive cases. */
1235 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1237 if (code
== POINTER_PLUS_EXPR
)
1238 return int_const_binop (PLUS_EXPR
,
1239 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1241 return int_const_binop (code
, arg1
, arg2
);
1244 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1249 REAL_VALUE_TYPE value
;
1250 REAL_VALUE_TYPE result
;
1254 /* The following codes are handled by real_arithmetic. */
1269 d1
= TREE_REAL_CST (arg1
);
1270 d2
= TREE_REAL_CST (arg2
);
1272 type
= TREE_TYPE (arg1
);
1273 mode
= TYPE_MODE (type
);
1275 /* Don't perform operation if we honor signaling NaNs and
1276 either operand is a signaling NaN. */
1277 if (HONOR_SNANS (mode
)
1278 && (REAL_VALUE_ISSIGNALING_NAN (d1
)
1279 || REAL_VALUE_ISSIGNALING_NAN (d2
)))
1282 /* Don't perform operation if it would raise a division
1283 by zero exception. */
1284 if (code
== RDIV_EXPR
1285 && real_equal (&d2
, &dconst0
)
1286 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1289 /* If either operand is a NaN, just return it. Otherwise, set up
1290 for floating-point trap; we return an overflow. */
1291 if (REAL_VALUE_ISNAN (d1
))
1293 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1296 t
= build_real (type
, d1
);
1299 else if (REAL_VALUE_ISNAN (d2
))
1301 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1304 t
= build_real (type
, d2
);
1308 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1309 real_convert (&result
, mode
, &value
);
1311 /* Don't constant fold this floating point operation if
1312 the result has overflowed and flag_trapping_math. */
1313 if (flag_trapping_math
1314 && MODE_HAS_INFINITIES (mode
)
1315 && REAL_VALUE_ISINF (result
)
1316 && !REAL_VALUE_ISINF (d1
)
1317 && !REAL_VALUE_ISINF (d2
))
1320 /* Don't constant fold this floating point operation if the
1321 result may dependent upon the run-time rounding mode and
1322 flag_rounding_math is set, or if GCC's software emulation
1323 is unable to accurately represent the result. */
1324 if ((flag_rounding_math
1325 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1326 && (inexact
|| !real_identical (&result
, &value
)))
1329 t
= build_real (type
, result
);
1331 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1335 if (TREE_CODE (arg1
) == FIXED_CST
)
1337 FIXED_VALUE_TYPE f1
;
1338 FIXED_VALUE_TYPE f2
;
1339 FIXED_VALUE_TYPE result
;
1344 /* The following codes are handled by fixed_arithmetic. */
1350 case TRUNC_DIV_EXPR
:
1351 if (TREE_CODE (arg2
) != FIXED_CST
)
1353 f2
= TREE_FIXED_CST (arg2
);
1359 if (TREE_CODE (arg2
) != INTEGER_CST
)
1361 wi::tree_to_wide_ref w2
= wi::to_wide (arg2
);
1362 f2
.data
.high
= w2
.elt (1);
1363 f2
.data
.low
= w2
.ulow ();
1372 f1
= TREE_FIXED_CST (arg1
);
1373 type
= TREE_TYPE (arg1
);
1374 sat_p
= TYPE_SATURATING (type
);
1375 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1376 t
= build_fixed (type
, result
);
1377 /* Propagate overflow flags. */
1378 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1379 TREE_OVERFLOW (t
) = 1;
1383 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1385 tree type
= TREE_TYPE (arg1
);
1386 tree r1
= TREE_REALPART (arg1
);
1387 tree i1
= TREE_IMAGPART (arg1
);
1388 tree r2
= TREE_REALPART (arg2
);
1389 tree i2
= TREE_IMAGPART (arg2
);
1396 real
= const_binop (code
, r1
, r2
);
1397 imag
= const_binop (code
, i1
, i2
);
1401 if (COMPLEX_FLOAT_TYPE_P (type
))
1402 return do_mpc_arg2 (arg1
, arg2
, type
,
1403 /* do_nonfinite= */ folding_initializer
,
1406 real
= const_binop (MINUS_EXPR
,
1407 const_binop (MULT_EXPR
, r1
, r2
),
1408 const_binop (MULT_EXPR
, i1
, i2
));
1409 imag
= const_binop (PLUS_EXPR
,
1410 const_binop (MULT_EXPR
, r1
, i2
),
1411 const_binop (MULT_EXPR
, i1
, r2
));
1415 if (COMPLEX_FLOAT_TYPE_P (type
))
1416 return do_mpc_arg2 (arg1
, arg2
, type
,
1417 /* do_nonfinite= */ folding_initializer
,
1420 case TRUNC_DIV_EXPR
:
1422 case FLOOR_DIV_EXPR
:
1423 case ROUND_DIV_EXPR
:
1424 if (flag_complex_method
== 0)
1426 /* Keep this algorithm in sync with
1427 tree-complex.c:expand_complex_div_straight().
1429 Expand complex division to scalars, straightforward algorithm.
1430 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1434 = const_binop (PLUS_EXPR
,
1435 const_binop (MULT_EXPR
, r2
, r2
),
1436 const_binop (MULT_EXPR
, i2
, i2
));
1438 = const_binop (PLUS_EXPR
,
1439 const_binop (MULT_EXPR
, r1
, r2
),
1440 const_binop (MULT_EXPR
, i1
, i2
));
1442 = const_binop (MINUS_EXPR
,
1443 const_binop (MULT_EXPR
, i1
, r2
),
1444 const_binop (MULT_EXPR
, r1
, i2
));
1446 real
= const_binop (code
, t1
, magsquared
);
1447 imag
= const_binop (code
, t2
, magsquared
);
1451 /* Keep this algorithm in sync with
1452 tree-complex.c:expand_complex_div_wide().
1454 Expand complex division to scalars, modified algorithm to minimize
1455 overflow with wide input ranges. */
1456 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1457 fold_abs_const (r2
, TREE_TYPE (type
)),
1458 fold_abs_const (i2
, TREE_TYPE (type
)));
1460 if (integer_nonzerop (compare
))
1462 /* In the TRUE branch, we compute
1464 div = (br * ratio) + bi;
1465 tr = (ar * ratio) + ai;
1466 ti = (ai * ratio) - ar;
1469 tree ratio
= const_binop (code
, r2
, i2
);
1470 tree div
= const_binop (PLUS_EXPR
, i2
,
1471 const_binop (MULT_EXPR
, r2
, ratio
));
1472 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1473 real
= const_binop (PLUS_EXPR
, real
, i1
);
1474 real
= const_binop (code
, real
, div
);
1476 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1477 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1478 imag
= const_binop (code
, imag
, div
);
1482 /* In the FALSE branch, we compute
1484 divisor = (d * ratio) + c;
1485 tr = (b * ratio) + a;
1486 ti = b - (a * ratio);
1489 tree ratio
= const_binop (code
, i2
, r2
);
1490 tree div
= const_binop (PLUS_EXPR
, r2
,
1491 const_binop (MULT_EXPR
, i2
, ratio
));
1493 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1494 real
= const_binop (PLUS_EXPR
, real
, r1
);
1495 real
= const_binop (code
, real
, div
);
1497 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1498 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1499 imag
= const_binop (code
, imag
, div
);
1509 return build_complex (type
, real
, imag
);
1512 if (TREE_CODE (arg1
) == VECTOR_CST
1513 && TREE_CODE (arg2
) == VECTOR_CST
1514 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)),
1515 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
))))
1517 tree type
= TREE_TYPE (arg1
);
1519 if (VECTOR_CST_STEPPED_P (arg1
)
1520 && VECTOR_CST_STEPPED_P (arg2
))
1521 /* We can operate directly on the encoding if:
1523 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1525 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1527 Addition and subtraction are the supported operators
1528 for which this is true. */
1529 step_ok_p
= (code
== PLUS_EXPR
|| code
== MINUS_EXPR
);
1530 else if (VECTOR_CST_STEPPED_P (arg1
))
1531 /* We can operate directly on stepped encodings if:
1535 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1537 which is true if (x -> x op c) distributes over addition. */
1538 step_ok_p
= distributes_over_addition_p (code
, 1);
1540 /* Similarly in reverse. */
1541 step_ok_p
= distributes_over_addition_p (code
, 2);
1542 tree_vector_builder elts
;
1543 if (!elts
.new_binary_operation (type
, arg1
, arg2
, step_ok_p
))
1545 unsigned int count
= elts
.encoded_nelts ();
1546 for (unsigned int i
= 0; i
< count
; ++i
)
1548 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1549 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1551 tree elt
= const_binop (code
, elem1
, elem2
);
1553 /* It is possible that const_binop cannot handle the given
1554 code and return NULL_TREE */
1555 if (elt
== NULL_TREE
)
1557 elts
.quick_push (elt
);
1560 return elts
.build ();
1563 /* Shifts allow a scalar offset for a vector. */
1564 if (TREE_CODE (arg1
) == VECTOR_CST
1565 && TREE_CODE (arg2
) == INTEGER_CST
)
1567 tree type
= TREE_TYPE (arg1
);
1568 bool step_ok_p
= distributes_over_addition_p (code
, 1);
1569 tree_vector_builder elts
;
1570 if (!elts
.new_unary_operation (type
, arg1
, step_ok_p
))
1572 unsigned int count
= elts
.encoded_nelts ();
1573 for (unsigned int i
= 0; i
< count
; ++i
)
1575 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1577 tree elt
= const_binop (code
, elem1
, arg2
);
1579 /* It is possible that const_binop cannot handle the given
1580 code and return NULL_TREE. */
1581 if (elt
== NULL_TREE
)
1583 elts
.quick_push (elt
);
1586 return elts
.build ();
1591 /* Overload that adds a TYPE parameter to be able to dispatch
1592 to fold_relational_const. */
1595 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1597 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1598 return fold_relational_const (code
, type
, arg1
, arg2
);
1600 /* ??? Until we make the const_binop worker take the type of the
1601 result as argument put those cases that need it here. */
1604 case VEC_SERIES_EXPR
:
1605 if (CONSTANT_CLASS_P (arg1
)
1606 && CONSTANT_CLASS_P (arg2
))
1607 return build_vec_series (type
, arg1
, arg2
);
1611 if ((TREE_CODE (arg1
) == REAL_CST
1612 && TREE_CODE (arg2
) == REAL_CST
)
1613 || (TREE_CODE (arg1
) == INTEGER_CST
1614 && TREE_CODE (arg2
) == INTEGER_CST
))
1615 return build_complex (type
, arg1
, arg2
);
1618 case POINTER_DIFF_EXPR
:
1619 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1621 poly_offset_int res
= (wi::to_poly_offset (arg1
)
1622 - wi::to_poly_offset (arg2
));
1623 return force_fit_type (type
, res
, 1,
1624 TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
));
1628 case VEC_PACK_TRUNC_EXPR
:
1629 case VEC_PACK_FIX_TRUNC_EXPR
:
1630 case VEC_PACK_FLOAT_EXPR
:
1632 unsigned int HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1634 if (TREE_CODE (arg1
) != VECTOR_CST
1635 || TREE_CODE (arg2
) != VECTOR_CST
)
1638 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1641 out_nelts
= in_nelts
* 2;
1642 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1643 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1645 tree_vector_builder
elts (type
, out_nelts
, 1);
1646 for (i
= 0; i
< out_nelts
; i
++)
1648 tree elt
= (i
< in_nelts
1649 ? VECTOR_CST_ELT (arg1
, i
)
1650 : VECTOR_CST_ELT (arg2
, i
- in_nelts
));
1651 elt
= fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1653 : code
== VEC_PACK_FLOAT_EXPR
1654 ? FLOAT_EXPR
: FIX_TRUNC_EXPR
,
1655 TREE_TYPE (type
), elt
);
1656 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1658 elts
.quick_push (elt
);
1661 return elts
.build ();
1664 case VEC_WIDEN_MULT_LO_EXPR
:
1665 case VEC_WIDEN_MULT_HI_EXPR
:
1666 case VEC_WIDEN_MULT_EVEN_EXPR
:
1667 case VEC_WIDEN_MULT_ODD_EXPR
:
1669 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, out
, ofs
, scale
;
1671 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1674 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1676 out_nelts
= in_nelts
/ 2;
1677 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1678 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1680 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1681 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? out_nelts
: 0;
1682 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1683 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : out_nelts
;
1684 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1686 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1689 tree_vector_builder
elts (type
, out_nelts
, 1);
1690 for (out
= 0; out
< out_nelts
; out
++)
1692 unsigned int in
= (out
<< scale
) + ofs
;
1693 tree t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1694 VECTOR_CST_ELT (arg1
, in
));
1695 tree t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1696 VECTOR_CST_ELT (arg2
, in
));
1698 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1700 tree elt
= const_binop (MULT_EXPR
, t1
, t2
);
1701 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1703 elts
.quick_push (elt
);
1706 return elts
.build ();
1712 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1715 /* Make sure type and arg0 have the same saturating flag. */
1716 gcc_checking_assert (TYPE_SATURATING (type
)
1717 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1719 return const_binop (code
, arg1
, arg2
);
1722 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1723 Return zero if computing the constants is not possible. */
1726 const_unop (enum tree_code code
, tree type
, tree arg0
)
1728 /* Don't perform the operation, other than NEGATE and ABS, if
1729 flag_signaling_nans is on and the operand is a signaling NaN. */
1730 if (TREE_CODE (arg0
) == REAL_CST
1731 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
1732 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
))
1733 && code
!= NEGATE_EXPR
1735 && code
!= ABSU_EXPR
)
1742 case FIX_TRUNC_EXPR
:
1743 case FIXED_CONVERT_EXPR
:
1744 return fold_convert_const (code
, type
, arg0
);
1746 case ADDR_SPACE_CONVERT_EXPR
:
1747 /* If the source address is 0, and the source address space
1748 cannot have a valid object at 0, fold to dest type null. */
1749 if (integer_zerop (arg0
)
1750 && !(targetm
.addr_space
.zero_address_valid
1751 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
))))))
1752 return fold_convert_const (code
, type
, arg0
);
1755 case VIEW_CONVERT_EXPR
:
1756 return fold_view_convert_expr (type
, arg0
);
1760 /* Can't call fold_negate_const directly here as that doesn't
1761 handle all cases and we might not be able to negate some
1763 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1764 if (tem
&& CONSTANT_CLASS_P (tem
))
1771 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1772 return fold_abs_const (arg0
, type
);
1776 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1778 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1780 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1785 if (TREE_CODE (arg0
) == INTEGER_CST
)
1786 return fold_not_const (arg0
, type
);
1787 else if (POLY_INT_CST_P (arg0
))
1788 return wide_int_to_tree (type
, -poly_int_cst_value (arg0
));
1789 /* Perform BIT_NOT_EXPR on each element individually. */
1790 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1794 /* This can cope with stepped encodings because ~x == -1 - x. */
1795 tree_vector_builder elements
;
1796 elements
.new_unary_operation (type
, arg0
, true);
1797 unsigned int i
, count
= elements
.encoded_nelts ();
1798 for (i
= 0; i
< count
; ++i
)
1800 elem
= VECTOR_CST_ELT (arg0
, i
);
1801 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1802 if (elem
== NULL_TREE
)
1804 elements
.quick_push (elem
);
1807 return elements
.build ();
1811 case TRUTH_NOT_EXPR
:
1812 if (TREE_CODE (arg0
) == INTEGER_CST
)
1813 return constant_boolean_node (integer_zerop (arg0
), type
);
1817 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1818 return fold_convert (type
, TREE_REALPART (arg0
));
1822 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1823 return fold_convert (type
, TREE_IMAGPART (arg0
));
1826 case VEC_UNPACK_LO_EXPR
:
1827 case VEC_UNPACK_HI_EXPR
:
1828 case VEC_UNPACK_FLOAT_LO_EXPR
:
1829 case VEC_UNPACK_FLOAT_HI_EXPR
:
1830 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
1831 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
1833 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1834 enum tree_code subcode
;
1836 if (TREE_CODE (arg0
) != VECTOR_CST
)
1839 if (!VECTOR_CST_NELTS (arg0
).is_constant (&in_nelts
))
1841 out_nelts
= in_nelts
/ 2;
1842 gcc_assert (known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1844 unsigned int offset
= 0;
1845 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1846 || code
== VEC_UNPACK_FLOAT_LO_EXPR
1847 || code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
))
1850 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1852 else if (code
== VEC_UNPACK_FLOAT_LO_EXPR
1853 || code
== VEC_UNPACK_FLOAT_HI_EXPR
)
1854 subcode
= FLOAT_EXPR
;
1856 subcode
= FIX_TRUNC_EXPR
;
1858 tree_vector_builder
elts (type
, out_nelts
, 1);
1859 for (i
= 0; i
< out_nelts
; i
++)
1861 tree elt
= fold_convert_const (subcode
, TREE_TYPE (type
),
1862 VECTOR_CST_ELT (arg0
, i
+ offset
));
1863 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1865 elts
.quick_push (elt
);
1868 return elts
.build ();
1871 case VEC_DUPLICATE_EXPR
:
1872 if (CONSTANT_CLASS_P (arg0
))
1873 return build_vector_from_val (type
, arg0
);
1883 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1884 indicates which particular sizetype to create. */
1887 size_int_kind (poly_int64 number
, enum size_type_kind kind
)
1889 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1892 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1893 is a tree code. The type of the result is taken from the operands.
1894 Both must be equivalent integer types, ala int_binop_types_match_p.
1895 If the operands are constant, so is the result. */
1898 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1900 tree type
= TREE_TYPE (arg0
);
1902 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1903 return error_mark_node
;
1905 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1908 /* Handle the special case of two poly_int constants faster. */
1909 if (poly_int_tree_p (arg0
) && poly_int_tree_p (arg1
))
1911 /* And some specific cases even faster than that. */
1912 if (code
== PLUS_EXPR
)
1914 if (integer_zerop (arg0
)
1915 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0
)))
1917 if (integer_zerop (arg1
)
1918 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1
)))
1921 else if (code
== MINUS_EXPR
)
1923 if (integer_zerop (arg1
)
1924 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1
)))
1927 else if (code
== MULT_EXPR
)
1929 if (integer_onep (arg0
)
1930 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0
)))
1934 /* Handle general case of two integer constants. For sizetype
1935 constant calculations we always want to know about overflow,
1936 even in the unsigned case. */
1937 tree res
= int_const_binop (code
, arg0
, arg1
, -1);
1938 if (res
!= NULL_TREE
)
1942 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1945 /* Given two values, either both of sizetype or both of bitsizetype,
1946 compute the difference between the two values. Return the value
1947 in signed type corresponding to the type of the operands. */
1950 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1952 tree type
= TREE_TYPE (arg0
);
1955 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1958 /* If the type is already signed, just do the simple thing. */
1959 if (!TYPE_UNSIGNED (type
))
1960 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1962 if (type
== sizetype
)
1964 else if (type
== bitsizetype
)
1965 ctype
= sbitsizetype
;
1967 ctype
= signed_type_for (type
);
1969 /* If either operand is not a constant, do the conversions to the signed
1970 type and subtract. The hardware will do the right thing with any
1971 overflow in the subtraction. */
1972 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1973 return size_binop_loc (loc
, MINUS_EXPR
,
1974 fold_convert_loc (loc
, ctype
, arg0
),
1975 fold_convert_loc (loc
, ctype
, arg1
));
1977 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1978 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1979 overflow) and negate (which can't either). Special-case a result
1980 of zero while we're here. */
1981 if (tree_int_cst_equal (arg0
, arg1
))
1982 return build_int_cst (ctype
, 0);
1983 else if (tree_int_cst_lt (arg1
, arg0
))
1984 return fold_convert_loc (loc
, ctype
,
1985 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1987 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1988 fold_convert_loc (loc
, ctype
,
1989 size_binop_loc (loc
,
1994 /* A subroutine of fold_convert_const handling conversions of an
1995 INTEGER_CST to another integer type. */
1998 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
2000 /* Given an integer constant, make new constant with new type,
2001 appropriately sign-extended or truncated. Use widest_int
2002 so that any extension is done according ARG1's type. */
2003 return force_fit_type (type
, wi::to_widest (arg1
),
2004 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
2005 TREE_OVERFLOW (arg1
));
2008 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2009 to an integer type. */
2012 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
2014 bool overflow
= false;
2017 /* The following code implements the floating point to integer
2018 conversion rules required by the Java Language Specification,
2019 that IEEE NaNs are mapped to zero and values that overflow
2020 the target precision saturate, i.e. values greater than
2021 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2022 are mapped to INT_MIN. These semantics are allowed by the
2023 C and C++ standards that simply state that the behavior of
2024 FP-to-integer conversion is unspecified upon overflow. */
2028 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
2032 case FIX_TRUNC_EXPR
:
2033 real_trunc (&r
, VOIDmode
, &x
);
2040 /* If R is NaN, return zero and show we have an overflow. */
2041 if (REAL_VALUE_ISNAN (r
))
2044 val
= wi::zero (TYPE_PRECISION (type
));
2047 /* See if R is less than the lower bound or greater than the
2052 tree lt
= TYPE_MIN_VALUE (type
);
2053 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
2054 if (real_less (&r
, &l
))
2057 val
= wi::to_wide (lt
);
2063 tree ut
= TYPE_MAX_VALUE (type
);
2066 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
2067 if (real_less (&u
, &r
))
2070 val
= wi::to_wide (ut
);
2076 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
2078 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
2082 /* A subroutine of fold_convert_const handling conversions of a
2083 FIXED_CST to an integer type. */
2086 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
2089 double_int temp
, temp_trunc
;
2092 /* Right shift FIXED_CST to temp by fbit. */
2093 temp
= TREE_FIXED_CST (arg1
).data
;
2094 mode
= TREE_FIXED_CST (arg1
).mode
;
2095 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
2097 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
2098 HOST_BITS_PER_DOUBLE_INT
,
2099 SIGNED_FIXED_POINT_MODE_P (mode
));
2101 /* Left shift temp to temp_trunc by fbit. */
2102 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
2103 HOST_BITS_PER_DOUBLE_INT
,
2104 SIGNED_FIXED_POINT_MODE_P (mode
));
2108 temp
= double_int_zero
;
2109 temp_trunc
= double_int_zero
;
2112 /* If FIXED_CST is negative, we need to round the value toward 0.
2113 By checking if the fractional bits are not zero to add 1 to temp. */
2114 if (SIGNED_FIXED_POINT_MODE_P (mode
)
2115 && temp_trunc
.is_negative ()
2116 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
2117 temp
+= double_int_one
;
2119 /* Given a fixed-point constant, make new constant with new type,
2120 appropriately sign-extended or truncated. */
2121 t
= force_fit_type (type
, temp
, -1,
2122 (temp
.is_negative ()
2123 && (TYPE_UNSIGNED (type
)
2124 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
2125 | TREE_OVERFLOW (arg1
));
2130 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2131 to another floating point type. */
2134 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
2136 REAL_VALUE_TYPE value
;
2139 /* Don't perform the operation if flag_signaling_nans is on
2140 and the operand is a signaling NaN. */
2141 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
2142 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
)))
2145 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
2146 t
= build_real (type
, value
);
2148 /* If converting an infinity or NAN to a representation that doesn't
2149 have one, set the overflow bit so that we can produce some kind of
2150 error message at the appropriate point if necessary. It's not the
2151 most user-friendly message, but it's better than nothing. */
2152 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
2153 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
2154 TREE_OVERFLOW (t
) = 1;
2155 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
2156 && !MODE_HAS_NANS (TYPE_MODE (type
)))
2157 TREE_OVERFLOW (t
) = 1;
2158 /* Regular overflow, conversion produced an infinity in a mode that
2159 can't represent them. */
2160 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
2161 && REAL_VALUE_ISINF (value
)
2162 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
2163 TREE_OVERFLOW (t
) = 1;
2165 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2169 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2170 to a floating point type. */
2173 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2175 REAL_VALUE_TYPE value
;
2178 real_convert_from_fixed (&value
, SCALAR_FLOAT_TYPE_MODE (type
),
2179 &TREE_FIXED_CST (arg1
));
2180 t
= build_real (type
, value
);
2182 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2186 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2187 to another fixed-point type. */
2190 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2192 FIXED_VALUE_TYPE value
;
2196 overflow_p
= fixed_convert (&value
, SCALAR_TYPE_MODE (type
),
2197 &TREE_FIXED_CST (arg1
), TYPE_SATURATING (type
));
2198 t
= build_fixed (type
, value
);
2200 /* Propagate overflow flags. */
2201 if (overflow_p
| TREE_OVERFLOW (arg1
))
2202 TREE_OVERFLOW (t
) = 1;
2206 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2207 to a fixed-point type. */
2210 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2212 FIXED_VALUE_TYPE value
;
2217 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2219 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2220 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2221 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? HOST_WIDE_INT_M1
: 0;
2223 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2225 overflow_p
= fixed_convert_from_int (&value
, SCALAR_TYPE_MODE (type
), di
,
2226 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2227 TYPE_SATURATING (type
));
2228 t
= build_fixed (type
, value
);
2230 /* Propagate overflow flags. */
2231 if (overflow_p
| TREE_OVERFLOW (arg1
))
2232 TREE_OVERFLOW (t
) = 1;
2236 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2237 to a fixed-point type. */
2240 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2242 FIXED_VALUE_TYPE value
;
2246 overflow_p
= fixed_convert_from_real (&value
, SCALAR_TYPE_MODE (type
),
2247 &TREE_REAL_CST (arg1
),
2248 TYPE_SATURATING (type
));
2249 t
= build_fixed (type
, value
);
2251 /* Propagate overflow flags. */
2252 if (overflow_p
| TREE_OVERFLOW (arg1
))
2253 TREE_OVERFLOW (t
) = 1;
2257 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2258 type TYPE. If no simplification can be done return NULL_TREE. */
2261 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2263 tree arg_type
= TREE_TYPE (arg1
);
2264 if (arg_type
== type
)
2267 /* We can't widen types, since the runtime value could overflow the
2268 original type before being extended to the new type. */
2269 if (POLY_INT_CST_P (arg1
)
2270 && (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
2271 && TYPE_PRECISION (type
) <= TYPE_PRECISION (arg_type
))
2272 return build_poly_int_cst (type
,
2273 poly_wide_int::from (poly_int_cst_value (arg1
),
2274 TYPE_PRECISION (type
),
2275 TYPE_SIGN (arg_type
)));
2277 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2278 || TREE_CODE (type
) == OFFSET_TYPE
)
2280 if (TREE_CODE (arg1
) == INTEGER_CST
)
2281 return fold_convert_const_int_from_int (type
, arg1
);
2282 else if (TREE_CODE (arg1
) == REAL_CST
)
2283 return fold_convert_const_int_from_real (code
, type
, arg1
);
2284 else if (TREE_CODE (arg1
) == FIXED_CST
)
2285 return fold_convert_const_int_from_fixed (type
, arg1
);
2287 else if (TREE_CODE (type
) == REAL_TYPE
)
2289 if (TREE_CODE (arg1
) == INTEGER_CST
)
2290 return build_real_from_int_cst (type
, arg1
);
2291 else if (TREE_CODE (arg1
) == REAL_CST
)
2292 return fold_convert_const_real_from_real (type
, arg1
);
2293 else if (TREE_CODE (arg1
) == FIXED_CST
)
2294 return fold_convert_const_real_from_fixed (type
, arg1
);
2296 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2298 if (TREE_CODE (arg1
) == FIXED_CST
)
2299 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2300 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2301 return fold_convert_const_fixed_from_int (type
, arg1
);
2302 else if (TREE_CODE (arg1
) == REAL_CST
)
2303 return fold_convert_const_fixed_from_real (type
, arg1
);
2305 else if (TREE_CODE (type
) == VECTOR_TYPE
)
2307 if (TREE_CODE (arg1
) == VECTOR_CST
2308 && known_eq (TYPE_VECTOR_SUBPARTS (type
), VECTOR_CST_NELTS (arg1
)))
2310 tree elttype
= TREE_TYPE (type
);
2311 tree arg1_elttype
= TREE_TYPE (TREE_TYPE (arg1
));
2312 /* We can't handle steps directly when extending, since the
2313 values need to wrap at the original precision first. */
2315 = (INTEGRAL_TYPE_P (elttype
)
2316 && INTEGRAL_TYPE_P (arg1_elttype
)
2317 && TYPE_PRECISION (elttype
) <= TYPE_PRECISION (arg1_elttype
));
2318 tree_vector_builder v
;
2319 if (!v
.new_unary_operation (type
, arg1
, step_ok_p
))
2321 unsigned int len
= v
.encoded_nelts ();
2322 for (unsigned int i
= 0; i
< len
; ++i
)
2324 tree elt
= VECTOR_CST_ELT (arg1
, i
);
2325 tree cvt
= fold_convert_const (code
, elttype
, elt
);
2326 if (cvt
== NULL_TREE
)
2336 /* Construct a vector of zero elements of vector type TYPE. */
2339 build_zero_vector (tree type
)
2343 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2344 return build_vector_from_val (type
, t
);
2347 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2350 fold_convertible_p (const_tree type
, const_tree arg
)
2352 tree orig
= TREE_TYPE (arg
);
2357 if (TREE_CODE (arg
) == ERROR_MARK
2358 || TREE_CODE (type
) == ERROR_MARK
2359 || TREE_CODE (orig
) == ERROR_MARK
)
2362 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2365 switch (TREE_CODE (type
))
2367 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2368 case POINTER_TYPE
: case REFERENCE_TYPE
:
2370 return (INTEGRAL_TYPE_P (orig
)
2371 || (POINTER_TYPE_P (orig
)
2372 && TYPE_PRECISION (type
) <= TYPE_PRECISION (orig
))
2373 || TREE_CODE (orig
) == OFFSET_TYPE
);
2376 case FIXED_POINT_TYPE
:
2379 return TREE_CODE (type
) == TREE_CODE (orig
);
2386 /* Convert expression ARG to type TYPE. Used by the middle-end for
2387 simple conversions in preference to calling the front-end's convert. */
2390 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2392 tree orig
= TREE_TYPE (arg
);
2398 if (TREE_CODE (arg
) == ERROR_MARK
2399 || TREE_CODE (type
) == ERROR_MARK
2400 || TREE_CODE (orig
) == ERROR_MARK
)
2401 return error_mark_node
;
2403 switch (TREE_CODE (type
))
2406 case REFERENCE_TYPE
:
2407 /* Handle conversions between pointers to different address spaces. */
2408 if (POINTER_TYPE_P (orig
)
2409 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2410 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2411 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2414 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2416 if (TREE_CODE (arg
) == INTEGER_CST
)
2418 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2419 if (tem
!= NULL_TREE
)
2422 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2423 || TREE_CODE (orig
) == OFFSET_TYPE
)
2424 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2425 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2426 return fold_convert_loc (loc
, type
,
2427 fold_build1_loc (loc
, REALPART_EXPR
,
2428 TREE_TYPE (orig
), arg
));
2429 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2430 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2431 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2434 if (TREE_CODE (arg
) == INTEGER_CST
)
2436 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2437 if (tem
!= NULL_TREE
)
2440 else if (TREE_CODE (arg
) == REAL_CST
)
2442 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2443 if (tem
!= NULL_TREE
)
2446 else if (TREE_CODE (arg
) == FIXED_CST
)
2448 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2449 if (tem
!= NULL_TREE
)
2453 switch (TREE_CODE (orig
))
2456 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2457 case POINTER_TYPE
: case REFERENCE_TYPE
:
2458 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2461 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2463 case FIXED_POINT_TYPE
:
2464 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2467 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2468 return fold_convert_loc (loc
, type
, tem
);
2474 case FIXED_POINT_TYPE
:
2475 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2476 || TREE_CODE (arg
) == REAL_CST
)
2478 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2479 if (tem
!= NULL_TREE
)
2480 goto fold_convert_exit
;
2483 switch (TREE_CODE (orig
))
2485 case FIXED_POINT_TYPE
:
2490 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2493 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2494 return fold_convert_loc (loc
, type
, tem
);
2501 switch (TREE_CODE (orig
))
2504 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2505 case POINTER_TYPE
: case REFERENCE_TYPE
:
2507 case FIXED_POINT_TYPE
:
2508 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2509 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2510 fold_convert_loc (loc
, TREE_TYPE (type
),
2511 integer_zero_node
));
2516 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2518 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2519 TREE_OPERAND (arg
, 0));
2520 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2521 TREE_OPERAND (arg
, 1));
2522 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2525 arg
= save_expr (arg
);
2526 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2527 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2528 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2529 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2530 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2538 if (integer_zerop (arg
))
2539 return build_zero_vector (type
);
2540 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2541 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2542 || TREE_CODE (orig
) == VECTOR_TYPE
);
2543 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2546 tem
= fold_ignored_result (arg
);
2547 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2550 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2551 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2555 protected_set_expr_location_unshare (tem
, loc
);
2559 /* Return false if expr can be assumed not to be an lvalue, true
2563 maybe_lvalue_p (const_tree x
)
2565 /* We only need to wrap lvalue tree codes. */
2566 switch (TREE_CODE (x
))
2579 case ARRAY_RANGE_REF
:
2585 case PREINCREMENT_EXPR
:
2586 case PREDECREMENT_EXPR
:
2588 case TRY_CATCH_EXPR
:
2589 case WITH_CLEANUP_EXPR
:
2598 /* Assume the worst for front-end tree codes. */
2599 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2607 /* Return an expr equal to X but certainly not valid as an lvalue. */
2610 non_lvalue_loc (location_t loc
, tree x
)
2612 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2617 if (! maybe_lvalue_p (x
))
2619 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2622 /* When pedantic, return an expr equal to X but certainly not valid as a
2623 pedantic lvalue. Otherwise, return X. */
2626 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2628 return protected_set_expr_location_unshare (x
, loc
);
2631 /* Given a tree comparison code, return the code that is the logical inverse.
2632 It is generally not safe to do this for floating-point comparisons, except
2633 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2634 ERROR_MARK in this case. */
2637 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2639 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2640 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2650 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2652 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2654 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2656 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2670 return UNORDERED_EXPR
;
2671 case UNORDERED_EXPR
:
2672 return ORDERED_EXPR
;
2678 /* Similar, but return the comparison that results if the operands are
2679 swapped. This is safe for floating-point. */
2682 swap_tree_comparison (enum tree_code code
)
2689 case UNORDERED_EXPR
:
2715 /* Convert a comparison tree code from an enum tree_code representation
2716 into a compcode bit-based encoding. This function is the inverse of
2717 compcode_to_comparison. */
2719 static enum comparison_code
2720 comparison_to_compcode (enum tree_code code
)
2737 return COMPCODE_ORD
;
2738 case UNORDERED_EXPR
:
2739 return COMPCODE_UNORD
;
2741 return COMPCODE_UNLT
;
2743 return COMPCODE_UNEQ
;
2745 return COMPCODE_UNLE
;
2747 return COMPCODE_UNGT
;
2749 return COMPCODE_LTGT
;
2751 return COMPCODE_UNGE
;
2757 /* Convert a compcode bit-based encoding of a comparison operator back
2758 to GCC's enum tree_code representation. This function is the
2759 inverse of comparison_to_compcode. */
2761 static enum tree_code
2762 compcode_to_comparison (enum comparison_code code
)
2779 return ORDERED_EXPR
;
2780 case COMPCODE_UNORD
:
2781 return UNORDERED_EXPR
;
2799 /* Return true if COND1 tests the opposite condition of COND2. */
2802 inverse_conditions_p (const_tree cond1
, const_tree cond2
)
2804 return (COMPARISON_CLASS_P (cond1
)
2805 && COMPARISON_CLASS_P (cond2
)
2806 && (invert_tree_comparison
2808 HONOR_NANS (TREE_OPERAND (cond1
, 0))) == TREE_CODE (cond2
))
2809 && operand_equal_p (TREE_OPERAND (cond1
, 0),
2810 TREE_OPERAND (cond2
, 0), 0)
2811 && operand_equal_p (TREE_OPERAND (cond1
, 1),
2812 TREE_OPERAND (cond2
, 1), 0));
2815 /* Return a tree for the comparison which is the combination of
2816 doing the AND or OR (depending on CODE) of the two operations LCODE
2817 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2818 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2819 if this makes the transformation invalid. */
2822 combine_comparisons (location_t loc
,
2823 enum tree_code code
, enum tree_code lcode
,
2824 enum tree_code rcode
, tree truth_type
,
2825 tree ll_arg
, tree lr_arg
)
2827 bool honor_nans
= HONOR_NANS (ll_arg
);
2828 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2829 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2834 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2835 compcode
= lcompcode
& rcompcode
;
2838 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2839 compcode
= lcompcode
| rcompcode
;
2848 /* Eliminate unordered comparisons, as well as LTGT and ORD
2849 which are not used unless the mode has NaNs. */
2850 compcode
&= ~COMPCODE_UNORD
;
2851 if (compcode
== COMPCODE_LTGT
)
2852 compcode
= COMPCODE_NE
;
2853 else if (compcode
== COMPCODE_ORD
)
2854 compcode
= COMPCODE_TRUE
;
2856 else if (flag_trapping_math
)
2858 /* Check that the original operation and the optimized ones will trap
2859 under the same condition. */
2860 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2861 && (lcompcode
!= COMPCODE_EQ
)
2862 && (lcompcode
!= COMPCODE_ORD
);
2863 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2864 && (rcompcode
!= COMPCODE_EQ
)
2865 && (rcompcode
!= COMPCODE_ORD
);
2866 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2867 && (compcode
!= COMPCODE_EQ
)
2868 && (compcode
!= COMPCODE_ORD
);
2870 /* In a short-circuited boolean expression the LHS might be
2871 such that the RHS, if evaluated, will never trap. For
2872 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2873 if neither x nor y is NaN. (This is a mixed blessing: for
2874 example, the expression above will never trap, hence
2875 optimizing it to x < y would be invalid). */
2876 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2877 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2880 /* If the comparison was short-circuited, and only the RHS
2881 trapped, we may now generate a spurious trap. */
2883 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2886 /* If we changed the conditions that cause a trap, we lose. */
2887 if ((ltrap
|| rtrap
) != trap
)
2891 if (compcode
== COMPCODE_TRUE
)
2892 return constant_boolean_node (true, truth_type
);
2893 else if (compcode
== COMPCODE_FALSE
)
2894 return constant_boolean_node (false, truth_type
);
2897 enum tree_code tcode
;
2899 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2900 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2904 /* Return nonzero if two operands (typically of the same tree node)
2905 are necessarily equal. FLAGS modifies behavior as follows:
2907 If OEP_ONLY_CONST is set, only return nonzero for constants.
2908 This function tests whether the operands are indistinguishable;
2909 it does not test whether they are equal using C's == operation.
2910 The distinction is important for IEEE floating point, because
2911 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2912 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2914 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2915 even though it may hold multiple values during a function.
2916 This is because a GCC tree node guarantees that nothing else is
2917 executed between the evaluation of its "operands" (which may often
2918 be evaluated in arbitrary order). Hence if the operands themselves
2919 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2920 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2921 unset means assuming isochronic (or instantaneous) tree equivalence.
2922 Unless comparing arbitrary expression trees, such as from different
2923 statements, this flag can usually be left unset.
2925 If OEP_PURE_SAME is set, then pure functions with identical arguments
2926 are considered the same. It is used when the caller has other ways
2927 to ensure that global memory is unchanged in between.
2929 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2930 not values of expressions.
2932 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2933 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2935 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2936 any operand with side effect. This is unnecesarily conservative in the
2937 case we know that arg0 and arg1 are in disjoint code paths (such as in
2938 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2939 addresses with TREE_CONSTANT flag set so we know that &var == &var
2940 even if var is volatile. */
2943 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2945 STRIP_ANY_LOCATION_WRAPPER (arg0
);
2946 STRIP_ANY_LOCATION_WRAPPER (arg1
);
2948 /* When checking, verify at the outermost operand_equal_p call that
2949 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2951 if (flag_checking
&& !(flags
& OEP_NO_HASH_CHECK
))
2953 if (operand_equal_p (arg0
, arg1
, flags
| OEP_NO_HASH_CHECK
))
2957 inchash::hash
hstate0 (0), hstate1 (0);
2958 inchash::add_expr (arg0
, hstate0
, flags
| OEP_HASH_CHECK
);
2959 inchash::add_expr (arg1
, hstate1
, flags
| OEP_HASH_CHECK
);
2960 hashval_t h0
= hstate0
.end ();
2961 hashval_t h1
= hstate1
.end ();
2962 gcc_assert (h0
== h1
);
2970 /* If either is ERROR_MARK, they aren't equal. */
2971 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2972 || TREE_TYPE (arg0
) == error_mark_node
2973 || TREE_TYPE (arg1
) == error_mark_node
)
2976 /* Similar, if either does not have a type (like a released SSA name),
2977 they aren't equal. */
2978 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2981 /* We cannot consider pointers to different address space equal. */
2982 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
2983 && POINTER_TYPE_P (TREE_TYPE (arg1
))
2984 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2985 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2988 /* Check equality of integer constants before bailing out due to
2989 precision differences. */
2990 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2992 /* Address of INTEGER_CST is not defined; check that we did not forget
2993 to drop the OEP_ADDRESS_OF flags. */
2994 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2995 return tree_int_cst_equal (arg0
, arg1
);
2998 if (!(flags
& OEP_ADDRESS_OF
))
3000 /* If both types don't have the same signedness, then we can't consider
3001 them equal. We must check this before the STRIP_NOPS calls
3002 because they may change the signedness of the arguments. As pointers
3003 strictly don't have a signedness, require either two pointers or
3004 two non-pointers as well. */
3005 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
3006 || POINTER_TYPE_P (TREE_TYPE (arg0
))
3007 != POINTER_TYPE_P (TREE_TYPE (arg1
)))
3010 /* If both types don't have the same precision, then it is not safe
3012 if (element_precision (TREE_TYPE (arg0
))
3013 != element_precision (TREE_TYPE (arg1
)))
3020 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3021 sanity check once the issue is solved. */
3023 /* Addresses of conversions and SSA_NAMEs (and many other things)
3024 are not defined. Check that we did not forget to drop the
3025 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3026 gcc_checking_assert (!CONVERT_EXPR_P (arg0
) && !CONVERT_EXPR_P (arg1
)
3027 && TREE_CODE (arg0
) != SSA_NAME
);
3030 /* In case both args are comparisons but with different comparison
3031 code, try to swap the comparison operands of one arg to produce
3032 a match and compare that variant. */
3033 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3034 && COMPARISON_CLASS_P (arg0
)
3035 && COMPARISON_CLASS_P (arg1
))
3037 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
3039 if (TREE_CODE (arg0
) == swap_code
)
3040 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3041 TREE_OPERAND (arg1
, 1), flags
)
3042 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3043 TREE_OPERAND (arg1
, 0), flags
);
3046 if (TREE_CODE (arg0
) != TREE_CODE (arg1
))
3048 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3049 if (CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
))
3051 else if (flags
& OEP_ADDRESS_OF
)
3053 /* If we are interested in comparing addresses ignore
3054 MEM_REF wrappings of the base that can appear just for
3056 if (TREE_CODE (arg0
) == MEM_REF
3058 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ADDR_EXPR
3059 && TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0) == arg1
3060 && integer_zerop (TREE_OPERAND (arg0
, 1)))
3062 else if (TREE_CODE (arg1
) == MEM_REF
3064 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ADDR_EXPR
3065 && TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0) == arg0
3066 && integer_zerop (TREE_OPERAND (arg1
, 1)))
3074 /* When not checking adddresses, this is needed for conversions and for
3075 COMPONENT_REF. Might as well play it safe and always test this. */
3076 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
3077 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
3078 || (TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
))
3079 && !(flags
& OEP_ADDRESS_OF
)))
3082 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3083 We don't care about side effects in that case because the SAVE_EXPR
3084 takes care of that for us. In all other cases, two expressions are
3085 equal if they have no side effects. If we have two identical
3086 expressions with side effects that should be treated the same due
3087 to the only side effects being identical SAVE_EXPR's, that will
3088 be detected in the recursive calls below.
3089 If we are taking an invariant address of two identical objects
3090 they are necessarily equal as well. */
3091 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
3092 && (TREE_CODE (arg0
) == SAVE_EXPR
3093 || (flags
& OEP_MATCH_SIDE_EFFECTS
)
3094 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
3097 /* Next handle constant cases, those for which we can return 1 even
3098 if ONLY_CONST is set. */
3099 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
3100 switch (TREE_CODE (arg0
))
3103 return tree_int_cst_equal (arg0
, arg1
);
3106 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
3107 TREE_FIXED_CST (arg1
));
3110 if (real_identical (&TREE_REAL_CST (arg0
), &TREE_REAL_CST (arg1
)))
3114 if (!HONOR_SIGNED_ZEROS (arg0
))
3116 /* If we do not distinguish between signed and unsigned zero,
3117 consider them equal. */
3118 if (real_zerop (arg0
) && real_zerop (arg1
))
3125 if (VECTOR_CST_LOG2_NPATTERNS (arg0
)
3126 != VECTOR_CST_LOG2_NPATTERNS (arg1
))
3129 if (VECTOR_CST_NELTS_PER_PATTERN (arg0
)
3130 != VECTOR_CST_NELTS_PER_PATTERN (arg1
))
3133 unsigned int count
= vector_cst_encoded_nelts (arg0
);
3134 for (unsigned int i
= 0; i
< count
; ++i
)
3135 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0
, i
),
3136 VECTOR_CST_ENCODED_ELT (arg1
, i
), flags
))
3142 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
3144 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
3148 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
3149 && ! memcmp (TREE_STRING_POINTER (arg0
),
3150 TREE_STRING_POINTER (arg1
),
3151 TREE_STRING_LENGTH (arg0
)));
3154 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3155 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
3156 flags
| OEP_ADDRESS_OF
3157 | OEP_MATCH_SIDE_EFFECTS
);
3159 /* In GIMPLE empty constructors are allowed in initializers of
3161 return !CONSTRUCTOR_NELTS (arg0
) && !CONSTRUCTOR_NELTS (arg1
);
3166 if (flags
& OEP_ONLY_CONST
)
3169 /* Define macros to test an operand from arg0 and arg1 for equality and a
3170 variant that allows null and views null as being different from any
3171 non-null value. In the latter case, if either is null, the both
3172 must be; otherwise, do the normal comparison. */
3173 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3174 TREE_OPERAND (arg1, N), flags)
3176 #define OP_SAME_WITH_NULL(N) \
3177 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3178 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3180 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
3183 /* Two conversions are equal only if signedness and modes match. */
3184 switch (TREE_CODE (arg0
))
3187 case FIX_TRUNC_EXPR
:
3188 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
3189 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
3199 case tcc_comparison
:
3201 if (OP_SAME (0) && OP_SAME (1))
3204 /* For commutative ops, allow the other order. */
3205 return (commutative_tree_code (TREE_CODE (arg0
))
3206 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3207 TREE_OPERAND (arg1
, 1), flags
)
3208 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3209 TREE_OPERAND (arg1
, 0), flags
));
3212 /* If either of the pointer (or reference) expressions we are
3213 dereferencing contain a side effect, these cannot be equal,
3214 but their addresses can be. */
3215 if ((flags
& OEP_MATCH_SIDE_EFFECTS
) == 0
3216 && (TREE_SIDE_EFFECTS (arg0
)
3217 || TREE_SIDE_EFFECTS (arg1
)))
3220 switch (TREE_CODE (arg0
))
3223 if (!(flags
& OEP_ADDRESS_OF
)
3224 && (TYPE_ALIGN (TREE_TYPE (arg0
))
3225 != TYPE_ALIGN (TREE_TYPE (arg1
))))
3227 flags
&= ~OEP_ADDRESS_OF
;
3231 /* Require the same offset. */
3232 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3233 TYPE_SIZE (TREE_TYPE (arg1
)),
3234 flags
& ~OEP_ADDRESS_OF
))
3239 case VIEW_CONVERT_EXPR
:
3242 case TARGET_MEM_REF
:
3244 if (!(flags
& OEP_ADDRESS_OF
))
3246 /* Require equal access sizes */
3247 if (TYPE_SIZE (TREE_TYPE (arg0
)) != TYPE_SIZE (TREE_TYPE (arg1
))
3248 && (!TYPE_SIZE (TREE_TYPE (arg0
))
3249 || !TYPE_SIZE (TREE_TYPE (arg1
))
3250 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3251 TYPE_SIZE (TREE_TYPE (arg1
)),
3254 /* Verify that access happens in similar types. */
3255 if (!types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
)))
3257 /* Verify that accesses are TBAA compatible. */
3258 if (!alias_ptr_types_compatible_p
3259 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
3260 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
3261 || (MR_DEPENDENCE_CLIQUE (arg0
)
3262 != MR_DEPENDENCE_CLIQUE (arg1
))
3263 || (MR_DEPENDENCE_BASE (arg0
)
3264 != MR_DEPENDENCE_BASE (arg1
)))
3266 /* Verify that alignment is compatible. */
3267 if (TYPE_ALIGN (TREE_TYPE (arg0
))
3268 != TYPE_ALIGN (TREE_TYPE (arg1
)))
3271 flags
&= ~OEP_ADDRESS_OF
;
3272 return (OP_SAME (0) && OP_SAME (1)
3273 /* TARGET_MEM_REF require equal extra operands. */
3274 && (TREE_CODE (arg0
) != TARGET_MEM_REF
3275 || (OP_SAME_WITH_NULL (2)
3276 && OP_SAME_WITH_NULL (3)
3277 && OP_SAME_WITH_NULL (4))));
3280 case ARRAY_RANGE_REF
:
3283 flags
&= ~OEP_ADDRESS_OF
;
3284 /* Compare the array index by value if it is constant first as we
3285 may have different types but same value here. */
3286 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3287 TREE_OPERAND (arg1
, 1))
3289 && OP_SAME_WITH_NULL (2)
3290 && OP_SAME_WITH_NULL (3)
3291 /* Compare low bound and element size as with OEP_ADDRESS_OF
3292 we have to account for the offset of the ref. */
3293 && (TREE_TYPE (TREE_OPERAND (arg0
, 0))
3294 == TREE_TYPE (TREE_OPERAND (arg1
, 0))
3295 || (operand_equal_p (array_ref_low_bound
3296 (CONST_CAST_TREE (arg0
)),
3298 (CONST_CAST_TREE (arg1
)), flags
)
3299 && operand_equal_p (array_ref_element_size
3300 (CONST_CAST_TREE (arg0
)),
3301 array_ref_element_size
3302 (CONST_CAST_TREE (arg1
)),
3306 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3307 may be NULL when we're called to compare MEM_EXPRs. */
3308 if (!OP_SAME_WITH_NULL (0)
3311 flags
&= ~OEP_ADDRESS_OF
;
3312 return OP_SAME_WITH_NULL (2);
3317 flags
&= ~OEP_ADDRESS_OF
;
3318 return OP_SAME (1) && OP_SAME (2);
3324 case tcc_expression
:
3325 switch (TREE_CODE (arg0
))
3328 /* Be sure we pass right ADDRESS_OF flag. */
3329 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3330 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3331 TREE_OPERAND (arg1
, 0),
3332 flags
| OEP_ADDRESS_OF
);
3334 case TRUTH_NOT_EXPR
:
3337 case TRUTH_ANDIF_EXPR
:
3338 case TRUTH_ORIF_EXPR
:
3339 return OP_SAME (0) && OP_SAME (1);
3341 case WIDEN_MULT_PLUS_EXPR
:
3342 case WIDEN_MULT_MINUS_EXPR
:
3345 /* The multiplcation operands are commutative. */
3348 case TRUTH_AND_EXPR
:
3350 case TRUTH_XOR_EXPR
:
3351 if (OP_SAME (0) && OP_SAME (1))
3354 /* Otherwise take into account this is a commutative operation. */
3355 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3356 TREE_OPERAND (arg1
, 1), flags
)
3357 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3358 TREE_OPERAND (arg1
, 0), flags
));
3361 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3363 flags
&= ~OEP_ADDRESS_OF
;
3366 case BIT_INSERT_EXPR
:
3367 /* BIT_INSERT_EXPR has an implict operand as the type precision
3368 of op1. Need to check to make sure they are the same. */
3369 if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
3370 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
3371 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 1)))
3372 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 1))))
3378 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3383 case PREDECREMENT_EXPR
:
3384 case PREINCREMENT_EXPR
:
3385 case POSTDECREMENT_EXPR
:
3386 case POSTINCREMENT_EXPR
:
3387 if (flags
& OEP_LEXICOGRAPHIC
)
3388 return OP_SAME (0) && OP_SAME (1);
3391 case CLEANUP_POINT_EXPR
:
3394 if (flags
& OEP_LEXICOGRAPHIC
)
3403 switch (TREE_CODE (arg0
))
3406 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3407 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3408 /* If not both CALL_EXPRs are either internal or normal function
3409 functions, then they are not equal. */
3411 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3413 /* If the CALL_EXPRs call different internal functions, then they
3415 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3420 /* If the CALL_EXPRs call different functions, then they are not
3422 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3427 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3429 unsigned int cef
= call_expr_flags (arg0
);
3430 if (flags
& OEP_PURE_SAME
)
3431 cef
&= ECF_CONST
| ECF_PURE
;
3434 if (!cef
&& !(flags
& OEP_LEXICOGRAPHIC
))
3438 /* Now see if all the arguments are the same. */
3440 const_call_expr_arg_iterator iter0
, iter1
;
3442 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3443 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3445 a0
= next_const_call_expr_arg (&iter0
),
3446 a1
= next_const_call_expr_arg (&iter1
))
3447 if (! operand_equal_p (a0
, a1
, flags
))
3450 /* If we get here and both argument lists are exhausted
3451 then the CALL_EXPRs are equal. */
3452 return ! (a0
|| a1
);
3458 case tcc_declaration
:
3459 /* Consider __builtin_sqrt equal to sqrt. */
3460 return (TREE_CODE (arg0
) == FUNCTION_DECL
3461 && fndecl_built_in_p (arg0
) && fndecl_built_in_p (arg1
)
3462 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3463 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3465 case tcc_exceptional
:
3466 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
3468 /* In GIMPLE constructors are used only to build vectors from
3469 elements. Individual elements in the constructor must be
3470 indexed in increasing order and form an initial sequence.
3472 We make no effort to compare constructors in generic.
3473 (see sem_variable::equals in ipa-icf which can do so for
3475 if (!VECTOR_TYPE_P (TREE_TYPE (arg0
))
3476 || !VECTOR_TYPE_P (TREE_TYPE (arg1
)))
3479 /* Be sure that vectors constructed have the same representation.
3480 We only tested element precision and modes to match.
3481 Vectors may be BLKmode and thus also check that the number of
3483 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)),
3484 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
))))
3487 vec
<constructor_elt
, va_gc
> *v0
= CONSTRUCTOR_ELTS (arg0
);
3488 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (arg1
);
3489 unsigned int len
= vec_safe_length (v0
);
3491 if (len
!= vec_safe_length (v1
))
3494 for (unsigned int i
= 0; i
< len
; i
++)
3496 constructor_elt
*c0
= &(*v0
)[i
];
3497 constructor_elt
*c1
= &(*v1
)[i
];
3499 if (!operand_equal_p (c0
->value
, c1
->value
, flags
)
3500 /* In GIMPLE the indexes can be either NULL or matching i.
3501 Double check this so we won't get false
3502 positives for GENERIC. */
3504 && (TREE_CODE (c0
->index
) != INTEGER_CST
3505 || !compare_tree_int (c0
->index
, i
)))
3507 && (TREE_CODE (c1
->index
) != INTEGER_CST
3508 || !compare_tree_int (c1
->index
, i
))))
3513 else if (TREE_CODE (arg0
) == STATEMENT_LIST
3514 && (flags
& OEP_LEXICOGRAPHIC
))
3516 /* Compare the STATEMENT_LISTs. */
3517 tree_stmt_iterator tsi1
, tsi2
;
3518 tree body1
= CONST_CAST_TREE (arg0
);
3519 tree body2
= CONST_CAST_TREE (arg1
);
3520 for (tsi1
= tsi_start (body1
), tsi2
= tsi_start (body2
); ;
3521 tsi_next (&tsi1
), tsi_next (&tsi2
))
3523 /* The lists don't have the same number of statements. */
3524 if (tsi_end_p (tsi1
) ^ tsi_end_p (tsi2
))
3526 if (tsi_end_p (tsi1
) && tsi_end_p (tsi2
))
3528 if (!operand_equal_p (tsi_stmt (tsi1
), tsi_stmt (tsi2
),
3529 flags
& (OEP_LEXICOGRAPHIC
3530 | OEP_NO_HASH_CHECK
)))
3537 switch (TREE_CODE (arg0
))
3540 if (flags
& OEP_LEXICOGRAPHIC
)
3541 return OP_SAME_WITH_NULL (0);
3543 case DEBUG_BEGIN_STMT
:
3544 if (flags
& OEP_LEXICOGRAPHIC
)
3556 #undef OP_SAME_WITH_NULL
3559 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3560 with a different signedness or a narrower precision. */
3563 operand_equal_for_comparison_p (tree arg0
, tree arg1
)
3565 if (operand_equal_p (arg0
, arg1
, 0))
3568 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3569 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3572 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3573 and see if the inner values are the same. This removes any
3574 signedness comparison, which doesn't matter here. */
3579 if (operand_equal_p (op0
, op1
, 0))
3582 /* Discard a single widening conversion from ARG1 and see if the inner
3583 value is the same as ARG0. */
3584 if (CONVERT_EXPR_P (arg1
)
3585 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3586 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3587 < TYPE_PRECISION (TREE_TYPE (arg1
))
3588 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
3594 /* See if ARG is an expression that is either a comparison or is performing
3595 arithmetic on comparisons. The comparisons must only be comparing
3596 two different values, which will be stored in *CVAL1 and *CVAL2; if
3597 they are nonzero it means that some operands have already been found.
3598 No variables may be used anywhere else in the expression except in the
3601 If this is true, return 1. Otherwise, return zero. */
3604 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
)
3606 enum tree_code code
= TREE_CODE (arg
);
3607 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3609 /* We can handle some of the tcc_expression cases here. */
3610 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3612 else if (tclass
== tcc_expression
3613 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3614 || code
== COMPOUND_EXPR
))
3615 tclass
= tcc_binary
;
3620 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
);
3623 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3624 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
));
3629 case tcc_expression
:
3630 if (code
== COND_EXPR
)
3631 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3632 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
)
3633 && twoval_comparison_p (TREE_OPERAND (arg
, 2), cval1
, cval2
));
3636 case tcc_comparison
:
3637 /* First see if we can handle the first operand, then the second. For
3638 the second operand, we know *CVAL1 can't be zero. It must be that
3639 one side of the comparison is each of the values; test for the
3640 case where this isn't true by failing if the two operands
3643 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3644 TREE_OPERAND (arg
, 1), 0))
3648 *cval1
= TREE_OPERAND (arg
, 0);
3649 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3651 else if (*cval2
== 0)
3652 *cval2
= TREE_OPERAND (arg
, 0);
3653 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3658 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3660 else if (*cval2
== 0)
3661 *cval2
= TREE_OPERAND (arg
, 1);
3662 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3674 /* ARG is a tree that is known to contain just arithmetic operations and
3675 comparisons. Evaluate the operations in the tree substituting NEW0 for
3676 any occurrence of OLD0 as an operand of a comparison and likewise for
3680 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3681 tree old1
, tree new1
)
3683 tree type
= TREE_TYPE (arg
);
3684 enum tree_code code
= TREE_CODE (arg
);
3685 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3687 /* We can handle some of the tcc_expression cases here. */
3688 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3690 else if (tclass
== tcc_expression
3691 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3692 tclass
= tcc_binary
;
3697 return fold_build1_loc (loc
, code
, type
,
3698 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3699 old0
, new0
, old1
, new1
));
3702 return fold_build2_loc (loc
, code
, type
,
3703 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3704 old0
, new0
, old1
, new1
),
3705 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3706 old0
, new0
, old1
, new1
));
3708 case tcc_expression
:
3712 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3716 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3720 return fold_build3_loc (loc
, code
, type
,
3721 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3722 old0
, new0
, old1
, new1
),
3723 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3724 old0
, new0
, old1
, new1
),
3725 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3726 old0
, new0
, old1
, new1
));
3730 /* Fall through - ??? */
3732 case tcc_comparison
:
3734 tree arg0
= TREE_OPERAND (arg
, 0);
3735 tree arg1
= TREE_OPERAND (arg
, 1);
3737 /* We need to check both for exact equality and tree equality. The
3738 former will be true if the operand has a side-effect. In that
3739 case, we know the operand occurred exactly once. */
3741 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3743 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3746 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3748 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3751 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3759 /* Return a tree for the case when the result of an expression is RESULT
3760 converted to TYPE and OMITTED was previously an operand of the expression
3761 but is now not needed (e.g., we folded OMITTED * 0).
3763 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3764 the conversion of RESULT to TYPE. */
3767 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3769 tree t
= fold_convert_loc (loc
, type
, result
);
3771 /* If the resulting operand is an empty statement, just return the omitted
3772 statement casted to void. */
3773 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3774 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3775 fold_ignored_result (omitted
));
3777 if (TREE_SIDE_EFFECTS (omitted
))
3778 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3779 fold_ignored_result (omitted
), t
);
3781 return non_lvalue_loc (loc
, t
);
3784 /* Return a tree for the case when the result of an expression is RESULT
3785 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3786 of the expression but are now not needed.
3788 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3789 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3790 evaluated before OMITTED2. Otherwise, if neither has side effects,
3791 just do the conversion of RESULT to TYPE. */
3794 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3795 tree omitted1
, tree omitted2
)
3797 tree t
= fold_convert_loc (loc
, type
, result
);
3799 if (TREE_SIDE_EFFECTS (omitted2
))
3800 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3801 if (TREE_SIDE_EFFECTS (omitted1
))
3802 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3804 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3808 /* Return a simplified tree node for the truth-negation of ARG. This
3809 never alters ARG itself. We assume that ARG is an operation that
3810 returns a truth value (0 or 1).
3812 FIXME: one would think we would fold the result, but it causes
3813 problems with the dominator optimizer. */
3816 fold_truth_not_expr (location_t loc
, tree arg
)
3818 tree type
= TREE_TYPE (arg
);
3819 enum tree_code code
= TREE_CODE (arg
);
3820 location_t loc1
, loc2
;
3822 /* If this is a comparison, we can simply invert it, except for
3823 floating-point non-equality comparisons, in which case we just
3824 enclose a TRUTH_NOT_EXPR around what we have. */
3826 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3828 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3829 if (FLOAT_TYPE_P (op_type
)
3830 && flag_trapping_math
3831 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3832 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3835 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3836 if (code
== ERROR_MARK
)
3839 tree ret
= build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3840 TREE_OPERAND (arg
, 1));
3841 if (TREE_NO_WARNING (arg
))
3842 TREE_NO_WARNING (ret
) = 1;
3849 return constant_boolean_node (integer_zerop (arg
), type
);
3851 case TRUTH_AND_EXPR
:
3852 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3853 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3854 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3855 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3856 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3859 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3860 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3861 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3862 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3863 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3865 case TRUTH_XOR_EXPR
:
3866 /* Here we can invert either operand. We invert the first operand
3867 unless the second operand is a TRUTH_NOT_EXPR in which case our
3868 result is the XOR of the first operand with the inside of the
3869 negation of the second operand. */
3871 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3872 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3873 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3875 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3876 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3877 TREE_OPERAND (arg
, 1));
3879 case TRUTH_ANDIF_EXPR
:
3880 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3881 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3882 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3883 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3884 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3886 case TRUTH_ORIF_EXPR
:
3887 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3888 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3889 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3890 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3891 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3893 case TRUTH_NOT_EXPR
:
3894 return TREE_OPERAND (arg
, 0);
3898 tree arg1
= TREE_OPERAND (arg
, 1);
3899 tree arg2
= TREE_OPERAND (arg
, 2);
3901 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3902 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3904 /* A COND_EXPR may have a throw as one operand, which
3905 then has void type. Just leave void operands
3907 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3908 VOID_TYPE_P (TREE_TYPE (arg1
))
3909 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3910 VOID_TYPE_P (TREE_TYPE (arg2
))
3911 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3915 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3916 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3917 TREE_OPERAND (arg
, 0),
3918 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3920 case NON_LVALUE_EXPR
:
3921 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3922 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3925 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3926 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3931 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3932 return build1_loc (loc
, TREE_CODE (arg
), type
,
3933 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3936 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3938 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3941 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3943 case CLEANUP_POINT_EXPR
:
3944 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3945 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3946 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3953 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3954 assume that ARG is an operation that returns a truth value (0 or 1
3955 for scalars, 0 or -1 for vectors). Return the folded expression if
3956 folding is successful. Otherwise, return NULL_TREE. */
3959 fold_invert_truthvalue (location_t loc
, tree arg
)
3961 tree type
= TREE_TYPE (arg
);
3962 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3968 /* Return a simplified tree node for the truth-negation of ARG. This
3969 never alters ARG itself. We assume that ARG is an operation that
3970 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3973 invert_truthvalue_loc (location_t loc
, tree arg
)
3975 if (TREE_CODE (arg
) == ERROR_MARK
)
3978 tree type
= TREE_TYPE (arg
);
3979 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3985 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3986 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3987 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3988 is the original memory reference used to preserve the alias set of
3992 make_bit_field_ref (location_t loc
, tree inner
, tree orig_inner
, tree type
,
3993 HOST_WIDE_INT bitsize
, poly_int64 bitpos
,
3994 int unsignedp
, int reversep
)
3996 tree result
, bftype
;
3998 /* Attempt not to lose the access path if possible. */
3999 if (TREE_CODE (orig_inner
) == COMPONENT_REF
)
4001 tree ninner
= TREE_OPERAND (orig_inner
, 0);
4003 poly_int64 nbitsize
, nbitpos
;
4005 int nunsignedp
, nreversep
, nvolatilep
= 0;
4006 tree base
= get_inner_reference (ninner
, &nbitsize
, &nbitpos
,
4007 &noffset
, &nmode
, &nunsignedp
,
4008 &nreversep
, &nvolatilep
);
4010 && noffset
== NULL_TREE
4011 && known_subrange_p (bitpos
, bitsize
, nbitpos
, nbitsize
)
4021 alias_set_type iset
= get_alias_set (orig_inner
);
4022 if (iset
== 0 && get_alias_set (inner
) != iset
)
4023 inner
= fold_build2 (MEM_REF
, TREE_TYPE (inner
),
4024 build_fold_addr_expr (inner
),
4025 build_int_cst (ptr_type_node
, 0));
4027 if (known_eq (bitpos
, 0) && !reversep
)
4029 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
4030 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
4031 || POINTER_TYPE_P (TREE_TYPE (inner
)))
4032 && tree_fits_shwi_p (size
)
4033 && tree_to_shwi (size
) == bitsize
)
4034 return fold_convert_loc (loc
, type
, inner
);
4038 if (TYPE_PRECISION (bftype
) != bitsize
4039 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
4040 bftype
= build_nonstandard_integer_type (bitsize
, 0);
4042 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
4043 bitsize_int (bitsize
), bitsize_int (bitpos
));
4044 REF_REVERSE_STORAGE_ORDER (result
) = reversep
;
4047 result
= fold_convert_loc (loc
, type
, result
);
4052 /* Optimize a bit-field compare.
4054 There are two cases: First is a compare against a constant and the
4055 second is a comparison of two items where the fields are at the same
4056 bit position relative to the start of a chunk (byte, halfword, word)
4057 large enough to contain it. In these cases we can avoid the shift
4058 implicit in bitfield extractions.
4060 For constants, we emit a compare of the shifted constant with the
4061 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4062 compared. For two fields at the same position, we do the ANDs with the
4063 similar mask and compare the result of the ANDs.
4065 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4066 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4067 are the left and right operands of the comparison, respectively.
4069 If the optimization described above can be done, we return the resulting
4070 tree. Otherwise we return zero. */
4073 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
4074 tree compare_type
, tree lhs
, tree rhs
)
4076 poly_int64 plbitpos
, plbitsize
, rbitpos
, rbitsize
;
4077 HOST_WIDE_INT lbitpos
, lbitsize
, nbitpos
, nbitsize
;
4078 tree type
= TREE_TYPE (lhs
);
4080 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
4081 machine_mode lmode
, rmode
;
4082 scalar_int_mode nmode
;
4083 int lunsignedp
, runsignedp
;
4084 int lreversep
, rreversep
;
4085 int lvolatilep
= 0, rvolatilep
= 0;
4086 tree linner
, rinner
= NULL_TREE
;
4090 /* Get all the information about the extractions being done. If the bit size
4091 is the same as the size of the underlying object, we aren't doing an
4092 extraction at all and so can do nothing. We also don't want to
4093 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4094 then will no longer be able to replace it. */
4095 linner
= get_inner_reference (lhs
, &plbitsize
, &plbitpos
, &offset
, &lmode
,
4096 &lunsignedp
, &lreversep
, &lvolatilep
);
4098 || !known_size_p (plbitsize
)
4099 || !plbitsize
.is_constant (&lbitsize
)
4100 || !plbitpos
.is_constant (&lbitpos
)
4101 || known_eq (lbitsize
, GET_MODE_BITSIZE (lmode
))
4103 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
4108 rreversep
= lreversep
;
4111 /* If this is not a constant, we can only do something if bit positions,
4112 sizes, signedness and storage order are the same. */
4114 = get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
4115 &runsignedp
, &rreversep
, &rvolatilep
);
4118 || maybe_ne (lbitpos
, rbitpos
)
4119 || maybe_ne (lbitsize
, rbitsize
)
4120 || lunsignedp
!= runsignedp
4121 || lreversep
!= rreversep
4123 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
4128 /* Honor the C++ memory model and mimic what RTL expansion does. */
4129 poly_uint64 bitstart
= 0;
4130 poly_uint64 bitend
= 0;
4131 if (TREE_CODE (lhs
) == COMPONENT_REF
)
4133 get_bit_range (&bitstart
, &bitend
, lhs
, &plbitpos
, &offset
);
4134 if (!plbitpos
.is_constant (&lbitpos
) || offset
!= NULL_TREE
)
4138 /* See if we can find a mode to refer to this field. We should be able to,
4139 but fail if we can't. */
4140 if (!get_best_mode (lbitsize
, lbitpos
, bitstart
, bitend
,
4141 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
4142 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
4143 TYPE_ALIGN (TREE_TYPE (rinner
))),
4144 BITS_PER_WORD
, false, &nmode
))
4147 /* Set signed and unsigned types of the precision of this mode for the
4149 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
4151 /* Compute the bit position and size for the new reference and our offset
4152 within it. If the new reference is the same size as the original, we
4153 won't optimize anything, so return zero. */
4154 nbitsize
= GET_MODE_BITSIZE (nmode
);
4155 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
4157 if (nbitsize
== lbitsize
)
4160 if (lreversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
4161 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
4163 /* Make the mask to be used against the extracted field. */
4164 mask
= build_int_cst_type (unsigned_type
, -1);
4165 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
4166 mask
= const_binop (RSHIFT_EXPR
, mask
,
4167 size_int (nbitsize
- lbitsize
- lbitpos
));
4174 /* If not comparing with constant, just rework the comparison
4176 tree t1
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4177 nbitsize
, nbitpos
, 1, lreversep
);
4178 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t1
, mask
);
4179 tree t2
= make_bit_field_ref (loc
, rinner
, rhs
, unsigned_type
,
4180 nbitsize
, nbitpos
, 1, rreversep
);
4181 t2
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t2
, mask
);
4182 return fold_build2_loc (loc
, code
, compare_type
, t1
, t2
);
4185 /* Otherwise, we are handling the constant case. See if the constant is too
4186 big for the field. Warn and return a tree for 0 (false) if so. We do
4187 this not only for its own sake, but to avoid having to test for this
4188 error case below. If we didn't, we might generate wrong code.
4190 For unsigned fields, the constant shifted right by the field length should
4191 be all zero. For signed fields, the high-order bits should agree with
4196 if (wi::lrshift (wi::to_wide (rhs
), lbitsize
) != 0)
4198 warning (0, "comparison is always %d due to width of bit-field",
4200 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4205 wide_int tem
= wi::arshift (wi::to_wide (rhs
), lbitsize
- 1);
4206 if (tem
!= 0 && tem
!= -1)
4208 warning (0, "comparison is always %d due to width of bit-field",
4210 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4217 /* Single-bit compares should always be against zero. */
4218 if (lbitsize
== 1 && ! integer_zerop (rhs
))
4220 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
4221 rhs
= build_int_cst (type
, 0);
4224 /* Make a new bitfield reference, shift the constant over the
4225 appropriate number of bits and mask it with the computed mask
4226 (in case this was a signed field). If we changed it, make a new one. */
4227 lhs
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4228 nbitsize
, nbitpos
, 1, lreversep
);
4230 rhs
= const_binop (BIT_AND_EXPR
,
4231 const_binop (LSHIFT_EXPR
,
4232 fold_convert_loc (loc
, unsigned_type
, rhs
),
4233 size_int (lbitpos
)),
4236 lhs
= build2_loc (loc
, code
, compare_type
,
4237 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
4241 /* Subroutine for fold_truth_andor_1: decode a field reference.
4243 If EXP is a comparison reference, we return the innermost reference.
4245 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4246 set to the starting bit number.
4248 If the innermost field can be completely contained in a mode-sized
4249 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4251 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4252 otherwise it is not changed.
4254 *PUNSIGNEDP is set to the signedness of the field.
4256 *PREVERSEP is set to the storage order of the field.
4258 *PMASK is set to the mask used. This is either contained in a
4259 BIT_AND_EXPR or derived from the width of the field.
4261 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4263 Return 0 if this is not a component reference or is one that we can't
4264 do anything with. */
4267 decode_field_reference (location_t loc
, tree
*exp_
, HOST_WIDE_INT
*pbitsize
,
4268 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
4269 int *punsignedp
, int *preversep
, int *pvolatilep
,
4270 tree
*pmask
, tree
*pand_mask
)
4273 tree outer_type
= 0;
4275 tree mask
, inner
, offset
;
4277 unsigned int precision
;
4279 /* All the optimizations using this function assume integer fields.
4280 There are problems with FP fields since the type_for_size call
4281 below can fail for, e.g., XFmode. */
4282 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4285 /* We are interested in the bare arrangement of bits, so strip everything
4286 that doesn't affect the machine mode. However, record the type of the
4287 outermost expression if it may matter below. */
4288 if (CONVERT_EXPR_P (exp
)
4289 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4290 outer_type
= TREE_TYPE (exp
);
4293 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4295 and_mask
= TREE_OPERAND (exp
, 1);
4296 exp
= TREE_OPERAND (exp
, 0);
4297 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4298 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4302 poly_int64 poly_bitsize
, poly_bitpos
;
4303 inner
= get_inner_reference (exp
, &poly_bitsize
, &poly_bitpos
, &offset
,
4304 pmode
, punsignedp
, preversep
, pvolatilep
);
4305 if ((inner
== exp
&& and_mask
== 0)
4306 || !poly_bitsize
.is_constant (pbitsize
)
4307 || !poly_bitpos
.is_constant (pbitpos
)
4310 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
4311 /* Reject out-of-bound accesses (PR79731). */
4312 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner
))
4313 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner
)),
4314 *pbitpos
+ *pbitsize
) < 0))
4319 /* If the number of bits in the reference is the same as the bitsize of
4320 the outer type, then the outer type gives the signedness. Otherwise
4321 (in case of a small bitfield) the signedness is unchanged. */
4322 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4323 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4325 /* Compute the mask to access the bitfield. */
4326 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4327 precision
= TYPE_PRECISION (unsigned_type
);
4329 mask
= build_int_cst_type (unsigned_type
, -1);
4331 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4332 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4334 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4336 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
4337 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
4340 *pand_mask
= and_mask
;
4344 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4345 bit positions and MASK is SIGNED. */
4348 all_ones_mask_p (const_tree mask
, unsigned int size
)
4350 tree type
= TREE_TYPE (mask
);
4351 unsigned int precision
= TYPE_PRECISION (type
);
4353 /* If this function returns true when the type of the mask is
4354 UNSIGNED, then there will be errors. In particular see
4355 gcc.c-torture/execute/990326-1.c. There does not appear to be
4356 any documentation paper trail as to why this is so. But the pre
4357 wide-int worked with that restriction and it has been preserved
4359 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
4362 return wi::mask (size
, false, precision
) == wi::to_wide (mask
);
4365 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4366 represents the sign bit of EXP's type. If EXP represents a sign
4367 or zero extension, also test VAL against the unextended type.
4368 The return value is the (sub)expression whose sign bit is VAL,
4369 or NULL_TREE otherwise. */
4372 sign_bit_p (tree exp
, const_tree val
)
4377 /* Tree EXP must have an integral type. */
4378 t
= TREE_TYPE (exp
);
4379 if (! INTEGRAL_TYPE_P (t
))
4382 /* Tree VAL must be an integer constant. */
4383 if (TREE_CODE (val
) != INTEGER_CST
4384 || TREE_OVERFLOW (val
))
4387 width
= TYPE_PRECISION (t
);
4388 if (wi::only_sign_bit_p (wi::to_wide (val
), width
))
4391 /* Handle extension from a narrower type. */
4392 if (TREE_CODE (exp
) == NOP_EXPR
4393 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4394 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4399 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4400 to be evaluated unconditionally. */
4403 simple_operand_p (const_tree exp
)
4405 /* Strip any conversions that don't change the machine mode. */
4408 return (CONSTANT_CLASS_P (exp
)
4409 || TREE_CODE (exp
) == SSA_NAME
4411 && ! TREE_ADDRESSABLE (exp
)
4412 && ! TREE_THIS_VOLATILE (exp
)
4413 && ! DECL_NONLOCAL (exp
)
4414 /* Don't regard global variables as simple. They may be
4415 allocated in ways unknown to the compiler (shared memory,
4416 #pragma weak, etc). */
4417 && ! TREE_PUBLIC (exp
)
4418 && ! DECL_EXTERNAL (exp
)
4419 /* Weakrefs are not safe to be read, since they can be NULL.
4420 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4421 have DECL_WEAK flag set. */
4422 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4423 /* Loading a static variable is unduly expensive, but global
4424 registers aren't expensive. */
4425 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4428 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4429 to be evaluated unconditionally.
4430 I addition to simple_operand_p, we assume that comparisons, conversions,
4431 and logic-not operations are simple, if their operands are simple, too. */
4434 simple_operand_p_2 (tree exp
)
4436 enum tree_code code
;
4438 if (TREE_SIDE_EFFECTS (exp
)
4439 || tree_could_trap_p (exp
))
4442 while (CONVERT_EXPR_P (exp
))
4443 exp
= TREE_OPERAND (exp
, 0);
4445 code
= TREE_CODE (exp
);
4447 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4448 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4449 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4451 if (code
== TRUTH_NOT_EXPR
)
4452 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4454 return simple_operand_p (exp
);
4458 /* The following functions are subroutines to fold_range_test and allow it to
4459 try to change a logical combination of comparisons into a range test.
4462 X == 2 || X == 3 || X == 4 || X == 5
4466 (unsigned) (X - 2) <= 3
4468 We describe each set of comparisons as being either inside or outside
4469 a range, using a variable named like IN_P, and then describe the
4470 range with a lower and upper bound. If one of the bounds is omitted,
4471 it represents either the highest or lowest value of the type.
4473 In the comments below, we represent a range by two numbers in brackets
4474 preceded by a "+" to designate being inside that range, or a "-" to
4475 designate being outside that range, so the condition can be inverted by
4476 flipping the prefix. An omitted bound is represented by a "-". For
4477 example, "- [-, 10]" means being outside the range starting at the lowest
4478 possible value and ending at 10, in other words, being greater than 10.
4479 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4482 We set up things so that the missing bounds are handled in a consistent
4483 manner so neither a missing bound nor "true" and "false" need to be
4484 handled using a special case. */
4486 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4487 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4488 and UPPER1_P are nonzero if the respective argument is an upper bound
4489 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4490 must be specified for a comparison. ARG1 will be converted to ARG0's
4491 type if both are specified. */
4494 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4495 tree arg1
, int upper1_p
)
4501 /* If neither arg represents infinity, do the normal operation.
4502 Else, if not a comparison, return infinity. Else handle the special
4503 comparison rules. Note that most of the cases below won't occur, but
4504 are handled for consistency. */
4506 if (arg0
!= 0 && arg1
!= 0)
4508 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4509 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4511 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4514 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4517 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4518 for neither. In real maths, we cannot assume open ended ranges are
4519 the same. But, this is computer arithmetic, where numbers are finite.
4520 We can therefore make the transformation of any unbounded range with
4521 the value Z, Z being greater than any representable number. This permits
4522 us to treat unbounded ranges as equal. */
4523 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4524 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4528 result
= sgn0
== sgn1
;
4531 result
= sgn0
!= sgn1
;
4534 result
= sgn0
< sgn1
;
4537 result
= sgn0
<= sgn1
;
4540 result
= sgn0
> sgn1
;
4543 result
= sgn0
>= sgn1
;
4549 return constant_boolean_node (result
, type
);
4552 /* Helper routine for make_range. Perform one step for it, return
4553 new expression if the loop should continue or NULL_TREE if it should
4557 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4558 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4559 bool *strict_overflow_p
)
4561 tree arg0_type
= TREE_TYPE (arg0
);
4562 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4563 int in_p
= *p_in_p
, n_in_p
;
4567 case TRUTH_NOT_EXPR
:
4568 /* We can only do something if the range is testing for zero. */
4569 if (low
== NULL_TREE
|| high
== NULL_TREE
4570 || ! integer_zerop (low
) || ! integer_zerop (high
))
4575 case EQ_EXPR
: case NE_EXPR
:
4576 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4577 /* We can only do something if the range is testing for zero
4578 and if the second operand is an integer constant. Note that
4579 saying something is "in" the range we make is done by
4580 complementing IN_P since it will set in the initial case of
4581 being not equal to zero; "out" is leaving it alone. */
4582 if (low
== NULL_TREE
|| high
== NULL_TREE
4583 || ! integer_zerop (low
) || ! integer_zerop (high
)
4584 || TREE_CODE (arg1
) != INTEGER_CST
)
4589 case NE_EXPR
: /* - [c, c] */
4592 case EQ_EXPR
: /* + [c, c] */
4593 in_p
= ! in_p
, low
= high
= arg1
;
4595 case GT_EXPR
: /* - [-, c] */
4596 low
= 0, high
= arg1
;
4598 case GE_EXPR
: /* + [c, -] */
4599 in_p
= ! in_p
, low
= arg1
, high
= 0;
4601 case LT_EXPR
: /* - [c, -] */
4602 low
= arg1
, high
= 0;
4604 case LE_EXPR
: /* + [-, c] */
4605 in_p
= ! in_p
, low
= 0, high
= arg1
;
4611 /* If this is an unsigned comparison, we also know that EXP is
4612 greater than or equal to zero. We base the range tests we make
4613 on that fact, so we record it here so we can parse existing
4614 range tests. We test arg0_type since often the return type
4615 of, e.g. EQ_EXPR, is boolean. */
4616 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4618 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4620 build_int_cst (arg0_type
, 0),
4624 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4626 /* If the high bound is missing, but we have a nonzero low
4627 bound, reverse the range so it goes from zero to the low bound
4629 if (high
== 0 && low
&& ! integer_zerop (low
))
4632 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4633 build_int_cst (TREE_TYPE (low
), 1), 0);
4634 low
= build_int_cst (arg0_type
, 0);
4644 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4645 low and high are non-NULL, then normalize will DTRT. */
4646 if (!TYPE_UNSIGNED (arg0_type
)
4647 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4649 if (low
== NULL_TREE
)
4650 low
= TYPE_MIN_VALUE (arg0_type
);
4651 if (high
== NULL_TREE
)
4652 high
= TYPE_MAX_VALUE (arg0_type
);
4655 /* (-x) IN [a,b] -> x in [-b, -a] */
4656 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4657 build_int_cst (exp_type
, 0),
4659 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4660 build_int_cst (exp_type
, 0),
4662 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4668 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4669 build_int_cst (exp_type
, 1));
4673 if (TREE_CODE (arg1
) != INTEGER_CST
)
4676 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4677 move a constant to the other side. */
4678 if (!TYPE_UNSIGNED (arg0_type
)
4679 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4682 /* If EXP is signed, any overflow in the computation is undefined,
4683 so we don't worry about it so long as our computations on
4684 the bounds don't overflow. For unsigned, overflow is defined
4685 and this is exactly the right thing. */
4686 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4687 arg0_type
, low
, 0, arg1
, 0);
4688 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4689 arg0_type
, high
, 1, arg1
, 0);
4690 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4691 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4694 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4695 *strict_overflow_p
= true;
4698 /* Check for an unsigned range which has wrapped around the maximum
4699 value thus making n_high < n_low, and normalize it. */
4700 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4702 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4703 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4704 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4705 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4707 /* If the range is of the form +/- [ x+1, x ], we won't
4708 be able to normalize it. But then, it represents the
4709 whole range or the empty set, so make it
4711 if (tree_int_cst_equal (n_low
, low
)
4712 && tree_int_cst_equal (n_high
, high
))
4718 low
= n_low
, high
= n_high
;
4726 case NON_LVALUE_EXPR
:
4727 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4730 if (! INTEGRAL_TYPE_P (arg0_type
)
4731 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4732 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4735 n_low
= low
, n_high
= high
;
4738 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4741 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4743 /* If we're converting arg0 from an unsigned type, to exp,
4744 a signed type, we will be doing the comparison as unsigned.
4745 The tests above have already verified that LOW and HIGH
4748 So we have to ensure that we will handle large unsigned
4749 values the same way that the current signed bounds treat
4752 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4756 /* For fixed-point modes, we need to pass the saturating flag
4757 as the 2nd parameter. */
4758 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4760 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4761 TYPE_SATURATING (arg0_type
));
4764 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4766 /* A range without an upper bound is, naturally, unbounded.
4767 Since convert would have cropped a very large value, use
4768 the max value for the destination type. */
4770 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4771 : TYPE_MAX_VALUE (arg0_type
);
4773 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4774 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4775 fold_convert_loc (loc
, arg0_type
,
4777 build_int_cst (arg0_type
, 1));
4779 /* If the low bound is specified, "and" the range with the
4780 range for which the original unsigned value will be
4784 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4785 1, fold_convert_loc (loc
, arg0_type
,
4790 in_p
= (n_in_p
== in_p
);
4794 /* Otherwise, "or" the range with the range of the input
4795 that will be interpreted as negative. */
4796 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4797 1, fold_convert_loc (loc
, arg0_type
,
4802 in_p
= (in_p
!= n_in_p
);
4816 /* Given EXP, a logical expression, set the range it is testing into
4817 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4818 actually being tested. *PLOW and *PHIGH will be made of the same
4819 type as the returned expression. If EXP is not a comparison, we
4820 will most likely not be returning a useful value and range. Set
4821 *STRICT_OVERFLOW_P to true if the return value is only valid
4822 because signed overflow is undefined; otherwise, do not change
4823 *STRICT_OVERFLOW_P. */
4826 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4827 bool *strict_overflow_p
)
4829 enum tree_code code
;
4830 tree arg0
, arg1
= NULL_TREE
;
4831 tree exp_type
, nexp
;
4834 location_t loc
= EXPR_LOCATION (exp
);
4836 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4837 and see if we can refine the range. Some of the cases below may not
4838 happen, but it doesn't seem worth worrying about this. We "continue"
4839 the outer loop when we've changed something; otherwise we "break"
4840 the switch, which will "break" the while. */
4843 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4847 code
= TREE_CODE (exp
);
4848 exp_type
= TREE_TYPE (exp
);
4851 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4853 if (TREE_OPERAND_LENGTH (exp
) > 0)
4854 arg0
= TREE_OPERAND (exp
, 0);
4855 if (TREE_CODE_CLASS (code
) == tcc_binary
4856 || TREE_CODE_CLASS (code
) == tcc_comparison
4857 || (TREE_CODE_CLASS (code
) == tcc_expression
4858 && TREE_OPERAND_LENGTH (exp
) > 1))
4859 arg1
= TREE_OPERAND (exp
, 1);
4861 if (arg0
== NULL_TREE
)
4864 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4865 &high
, &in_p
, strict_overflow_p
);
4866 if (nexp
== NULL_TREE
)
4871 /* If EXP is a constant, we can evaluate whether this is true or false. */
4872 if (TREE_CODE (exp
) == INTEGER_CST
)
4874 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4876 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4882 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4886 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4887 a bitwise check i.e. when
4888 LOW == 0xXX...X00...0
4889 HIGH == 0xXX...X11...1
4890 Return corresponding mask in MASK and stem in VALUE. */
4893 maskable_range_p (const_tree low
, const_tree high
, tree type
, tree
*mask
,
4896 if (TREE_CODE (low
) != INTEGER_CST
4897 || TREE_CODE (high
) != INTEGER_CST
)
4900 unsigned prec
= TYPE_PRECISION (type
);
4901 wide_int lo
= wi::to_wide (low
, prec
);
4902 wide_int hi
= wi::to_wide (high
, prec
);
4904 wide_int end_mask
= lo
^ hi
;
4905 if ((end_mask
& (end_mask
+ 1)) != 0
4906 || (lo
& end_mask
) != 0)
4909 wide_int stem_mask
= ~end_mask
;
4910 wide_int stem
= lo
& stem_mask
;
4911 if (stem
!= (hi
& stem_mask
))
4914 *mask
= wide_int_to_tree (type
, stem_mask
);
4915 *value
= wide_int_to_tree (type
, stem
);
4920 /* Helper routine for build_range_check and match.pd. Return the type to
4921 perform the check or NULL if it shouldn't be optimized. */
4924 range_check_type (tree etype
)
4926 /* First make sure that arithmetics in this type is valid, then make sure
4927 that it wraps around. */
4928 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4929 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4930 TYPE_UNSIGNED (etype
));
4932 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4934 tree utype
, minv
, maxv
;
4936 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4937 for the type in question, as we rely on this here. */
4938 utype
= unsigned_type_for (etype
);
4939 maxv
= fold_convert (utype
, TYPE_MAX_VALUE (etype
));
4940 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4941 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4942 minv
= fold_convert (utype
, TYPE_MIN_VALUE (etype
));
4944 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4953 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4954 type, TYPE, return an expression to test if EXP is in (or out of, depending
4955 on IN_P) the range. Return 0 if the test couldn't be created. */
4958 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4959 tree low
, tree high
)
4961 tree etype
= TREE_TYPE (exp
), mask
, value
;
4963 /* Disable this optimization for function pointer expressions
4964 on targets that require function pointer canonicalization. */
4965 if (targetm
.have_canonicalize_funcptr_for_compare ()
4966 && POINTER_TYPE_P (etype
)
4967 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype
)))
4972 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4974 return invert_truthvalue_loc (loc
, value
);
4979 if (low
== 0 && high
== 0)
4980 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4983 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4984 fold_convert_loc (loc
, etype
, high
));
4987 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4988 fold_convert_loc (loc
, etype
, low
));
4990 if (operand_equal_p (low
, high
, 0))
4991 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4992 fold_convert_loc (loc
, etype
, low
));
4994 if (TREE_CODE (exp
) == BIT_AND_EXPR
4995 && maskable_range_p (low
, high
, etype
, &mask
, &value
))
4996 return fold_build2_loc (loc
, EQ_EXPR
, type
,
4997 fold_build2_loc (loc
, BIT_AND_EXPR
, etype
,
5001 if (integer_zerop (low
))
5003 if (! TYPE_UNSIGNED (etype
))
5005 etype
= unsigned_type_for (etype
);
5006 high
= fold_convert_loc (loc
, etype
, high
);
5007 exp
= fold_convert_loc (loc
, etype
, exp
);
5009 return build_range_check (loc
, type
, exp
, 1, 0, high
);
5012 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5013 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
5015 int prec
= TYPE_PRECISION (etype
);
5017 if (wi::mask
<widest_int
> (prec
- 1, false) == wi::to_widest (high
))
5019 if (TYPE_UNSIGNED (etype
))
5021 tree signed_etype
= signed_type_for (etype
);
5022 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
5024 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
5026 etype
= signed_etype
;
5027 exp
= fold_convert_loc (loc
, etype
, exp
);
5029 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
5030 build_int_cst (etype
, 0));
5034 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5035 This requires wrap-around arithmetics for the type of the expression. */
5036 etype
= range_check_type (etype
);
5037 if (etype
== NULL_TREE
)
5040 if (POINTER_TYPE_P (etype
))
5041 etype
= unsigned_type_for (etype
);
5043 high
= fold_convert_loc (loc
, etype
, high
);
5044 low
= fold_convert_loc (loc
, etype
, low
);
5045 exp
= fold_convert_loc (loc
, etype
, exp
);
5047 value
= const_binop (MINUS_EXPR
, high
, low
);
5049 if (value
!= 0 && !TREE_OVERFLOW (value
))
5050 return build_range_check (loc
, type
,
5051 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
5052 1, build_int_cst (etype
, 0), value
);
5057 /* Return the predecessor of VAL in its type, handling the infinite case. */
5060 range_predecessor (tree val
)
5062 tree type
= TREE_TYPE (val
);
5064 if (INTEGRAL_TYPE_P (type
)
5065 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
5068 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
5069 build_int_cst (TREE_TYPE (val
), 1), 0);
5072 /* Return the successor of VAL in its type, handling the infinite case. */
5075 range_successor (tree val
)
5077 tree type
= TREE_TYPE (val
);
5079 if (INTEGRAL_TYPE_P (type
)
5080 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
5083 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
5084 build_int_cst (TREE_TYPE (val
), 1), 0);
5087 /* Given two ranges, see if we can merge them into one. Return 1 if we
5088 can, 0 if we can't. Set the output range into the specified parameters. */
5091 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
5092 tree high0
, int in1_p
, tree low1
, tree high1
)
5100 int lowequal
= ((low0
== 0 && low1
== 0)
5101 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5102 low0
, 0, low1
, 0)));
5103 int highequal
= ((high0
== 0 && high1
== 0)
5104 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5105 high0
, 1, high1
, 1)));
5107 /* Make range 0 be the range that starts first, or ends last if they
5108 start at the same value. Swap them if it isn't. */
5109 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5112 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5113 high1
, 1, high0
, 1))))
5115 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
5116 tem
= low0
, low0
= low1
, low1
= tem
;
5117 tem
= high0
, high0
= high1
, high1
= tem
;
5120 /* If the second range is != high1 where high1 is the type maximum of
5121 the type, try first merging with < high1 range. */
5124 && TREE_CODE (low1
) == INTEGER_CST
5125 && (TREE_CODE (TREE_TYPE (low1
)) == INTEGER_TYPE
5126 || (TREE_CODE (TREE_TYPE (low1
)) == ENUMERAL_TYPE
5127 && known_eq (TYPE_PRECISION (TREE_TYPE (low1
)),
5128 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1
))))))
5129 && operand_equal_p (low1
, high1
, 0))
5131 if (tree_int_cst_equal (low1
, TYPE_MAX_VALUE (TREE_TYPE (low1
)))
5132 && merge_ranges (pin_p
, plow
, phigh
, in0_p
, low0
, high0
,
5133 !in1_p
, NULL_TREE
, range_predecessor (low1
)))
5135 /* Similarly for the second range != low1 where low1 is the type minimum
5136 of the type, try first merging with > low1 range. */
5137 if (tree_int_cst_equal (low1
, TYPE_MIN_VALUE (TREE_TYPE (low1
)))
5138 && merge_ranges (pin_p
, plow
, phigh
, in0_p
, low0
, high0
,
5139 !in1_p
, range_successor (low1
), NULL_TREE
))
5143 /* Now flag two cases, whether the ranges are disjoint or whether the
5144 second range is totally subsumed in the first. Note that the tests
5145 below are simplified by the ones above. */
5146 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
5147 high0
, 1, low1
, 0));
5148 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
5149 high1
, 1, high0
, 1));
5151 /* We now have four cases, depending on whether we are including or
5152 excluding the two ranges. */
5155 /* If they don't overlap, the result is false. If the second range
5156 is a subset it is the result. Otherwise, the range is from the start
5157 of the second to the end of the first. */
5159 in_p
= 0, low
= high
= 0;
5161 in_p
= 1, low
= low1
, high
= high1
;
5163 in_p
= 1, low
= low1
, high
= high0
;
5166 else if (in0_p
&& ! in1_p
)
5168 /* If they don't overlap, the result is the first range. If they are
5169 equal, the result is false. If the second range is a subset of the
5170 first, and the ranges begin at the same place, we go from just after
5171 the end of the second range to the end of the first. If the second
5172 range is not a subset of the first, or if it is a subset and both
5173 ranges end at the same place, the range starts at the start of the
5174 first range and ends just before the second range.
5175 Otherwise, we can't describe this as a single range. */
5177 in_p
= 1, low
= low0
, high
= high0
;
5178 else if (lowequal
&& highequal
)
5179 in_p
= 0, low
= high
= 0;
5180 else if (subset
&& lowequal
)
5182 low
= range_successor (high1
);
5187 /* We are in the weird situation where high0 > high1 but
5188 high1 has no successor. Punt. */
5192 else if (! subset
|| highequal
)
5195 high
= range_predecessor (low1
);
5199 /* low0 < low1 but low1 has no predecessor. Punt. */
5207 else if (! in0_p
&& in1_p
)
5209 /* If they don't overlap, the result is the second range. If the second
5210 is a subset of the first, the result is false. Otherwise,
5211 the range starts just after the first range and ends at the
5212 end of the second. */
5214 in_p
= 1, low
= low1
, high
= high1
;
5215 else if (subset
|| highequal
)
5216 in_p
= 0, low
= high
= 0;
5219 low
= range_successor (high0
);
5224 /* high1 > high0 but high0 has no successor. Punt. */
5232 /* The case where we are excluding both ranges. Here the complex case
5233 is if they don't overlap. In that case, the only time we have a
5234 range is if they are adjacent. If the second is a subset of the
5235 first, the result is the first. Otherwise, the range to exclude
5236 starts at the beginning of the first range and ends at the end of the
5240 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5241 range_successor (high0
),
5243 in_p
= 0, low
= low0
, high
= high1
;
5246 /* Canonicalize - [min, x] into - [-, x]. */
5247 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
5248 switch (TREE_CODE (TREE_TYPE (low0
)))
5251 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0
)),
5253 (TYPE_MODE (TREE_TYPE (low0
)))))
5257 if (tree_int_cst_equal (low0
,
5258 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
5262 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
5263 && integer_zerop (low0
))
5270 /* Canonicalize - [x, max] into - [x, -]. */
5271 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
5272 switch (TREE_CODE (TREE_TYPE (high1
)))
5275 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1
)),
5277 (TYPE_MODE (TREE_TYPE (high1
)))))
5281 if (tree_int_cst_equal (high1
,
5282 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
5286 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
5287 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
5289 build_int_cst (TREE_TYPE (high1
), 1),
5297 /* The ranges might be also adjacent between the maximum and
5298 minimum values of the given type. For
5299 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5300 return + [x + 1, y - 1]. */
5301 if (low0
== 0 && high1
== 0)
5303 low
= range_successor (high0
);
5304 high
= range_predecessor (low1
);
5305 if (low
== 0 || high
== 0)
5315 in_p
= 0, low
= low0
, high
= high0
;
5317 in_p
= 0, low
= low0
, high
= high1
;
5320 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5325 /* Subroutine of fold, looking inside expressions of the form
5326 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5327 of the COND_EXPR. This function is being used also to optimize
5328 A op B ? C : A, by reversing the comparison first.
5330 Return a folded expression whose code is not a COND_EXPR
5331 anymore, or NULL_TREE if no folding opportunity is found. */
5334 fold_cond_expr_with_comparison (location_t loc
, tree type
,
5335 tree arg0
, tree arg1
, tree arg2
)
5337 enum tree_code comp_code
= TREE_CODE (arg0
);
5338 tree arg00
= TREE_OPERAND (arg0
, 0);
5339 tree arg01
= TREE_OPERAND (arg0
, 1);
5340 tree arg1_type
= TREE_TYPE (arg1
);
5346 /* If we have A op 0 ? A : -A, consider applying the following
5349 A == 0? A : -A same as -A
5350 A != 0? A : -A same as A
5351 A >= 0? A : -A same as abs (A)
5352 A > 0? A : -A same as abs (A)
5353 A <= 0? A : -A same as -abs (A)
5354 A < 0? A : -A same as -abs (A)
5356 None of these transformations work for modes with signed
5357 zeros. If A is +/-0, the first two transformations will
5358 change the sign of the result (from +0 to -0, or vice
5359 versa). The last four will fix the sign of the result,
5360 even though the original expressions could be positive or
5361 negative, depending on the sign of A.
5363 Note that all these transformations are correct if A is
5364 NaN, since the two alternatives (A and -A) are also NaNs. */
5365 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5366 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
5367 ? real_zerop (arg01
)
5368 : integer_zerop (arg01
))
5369 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5370 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5371 /* In the case that A is of the form X-Y, '-A' (arg2) may
5372 have already been folded to Y-X, check for that. */
5373 || (TREE_CODE (arg1
) == MINUS_EXPR
5374 && TREE_CODE (arg2
) == MINUS_EXPR
5375 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5376 TREE_OPERAND (arg2
, 1), 0)
5377 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5378 TREE_OPERAND (arg2
, 0), 0))))
5383 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
5384 return fold_convert_loc (loc
, type
, negate_expr (tem
));
5387 return fold_convert_loc (loc
, type
, arg1
);
5390 if (flag_trapping_math
)
5395 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5397 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5398 return fold_convert_loc (loc
, type
, tem
);
5401 if (flag_trapping_math
)
5406 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5408 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5409 return negate_expr (fold_convert_loc (loc
, type
, tem
));
5411 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5415 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5416 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5417 both transformations are correct when A is NaN: A != 0
5418 is then true, and A == 0 is false. */
5420 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5421 && integer_zerop (arg01
) && integer_zerop (arg2
))
5423 if (comp_code
== NE_EXPR
)
5424 return fold_convert_loc (loc
, type
, arg1
);
5425 else if (comp_code
== EQ_EXPR
)
5426 return build_zero_cst (type
);
5429 /* Try some transformations of A op B ? A : B.
5431 A == B? A : B same as B
5432 A != B? A : B same as A
5433 A >= B? A : B same as max (A, B)
5434 A > B? A : B same as max (B, A)
5435 A <= B? A : B same as min (A, B)
5436 A < B? A : B same as min (B, A)
5438 As above, these transformations don't work in the presence
5439 of signed zeros. For example, if A and B are zeros of
5440 opposite sign, the first two transformations will change
5441 the sign of the result. In the last four, the original
5442 expressions give different results for (A=+0, B=-0) and
5443 (A=-0, B=+0), but the transformed expressions do not.
5445 The first two transformations are correct if either A or B
5446 is a NaN. In the first transformation, the condition will
5447 be false, and B will indeed be chosen. In the case of the
5448 second transformation, the condition A != B will be true,
5449 and A will be chosen.
5451 The conversions to max() and min() are not correct if B is
5452 a number and A is not. The conditions in the original
5453 expressions will be false, so all four give B. The min()
5454 and max() versions would give a NaN instead. */
5455 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5456 && operand_equal_for_comparison_p (arg01
, arg2
)
5457 /* Avoid these transformations if the COND_EXPR may be used
5458 as an lvalue in the C++ front-end. PR c++/19199. */
5460 || VECTOR_TYPE_P (type
)
5461 || (! lang_GNU_CXX ()
5462 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5463 || ! maybe_lvalue_p (arg1
)
5464 || ! maybe_lvalue_p (arg2
)))
5466 tree comp_op0
= arg00
;
5467 tree comp_op1
= arg01
;
5468 tree comp_type
= TREE_TYPE (comp_op0
);
5473 return fold_convert_loc (loc
, type
, arg2
);
5475 return fold_convert_loc (loc
, type
, arg1
);
5480 /* In C++ a ?: expression can be an lvalue, so put the
5481 operand which will be used if they are equal first
5482 so that we can convert this back to the
5483 corresponding COND_EXPR. */
5484 if (!HONOR_NANS (arg1
))
5486 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5487 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5488 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5489 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5490 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5491 comp_op1
, comp_op0
);
5492 return fold_convert_loc (loc
, type
, tem
);
5499 if (!HONOR_NANS (arg1
))
5501 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5502 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5503 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5504 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5505 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5506 comp_op1
, comp_op0
);
5507 return fold_convert_loc (loc
, type
, tem
);
5511 if (!HONOR_NANS (arg1
))
5512 return fold_convert_loc (loc
, type
, arg2
);
5515 if (!HONOR_NANS (arg1
))
5516 return fold_convert_loc (loc
, type
, arg1
);
5519 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5529 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5530 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5531 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5535 /* EXP is some logical combination of boolean tests. See if we can
5536 merge it into some range test. Return the new tree if so. */
5539 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5542 int or_op
= (code
== TRUTH_ORIF_EXPR
5543 || code
== TRUTH_OR_EXPR
);
5544 int in0_p
, in1_p
, in_p
;
5545 tree low0
, low1
, low
, high0
, high1
, high
;
5546 bool strict_overflow_p
= false;
5548 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5549 "when simplifying range test");
5551 if (!INTEGRAL_TYPE_P (type
))
5554 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5555 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5557 /* If this is an OR operation, invert both sides; we will invert
5558 again at the end. */
5560 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5562 /* If both expressions are the same, if we can merge the ranges, and we
5563 can build the range test, return it or it inverted. If one of the
5564 ranges is always true or always false, consider it to be the same
5565 expression as the other. */
5566 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5567 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5569 && (tem
= (build_range_check (loc
, type
,
5571 : rhs
!= 0 ? rhs
: integer_zero_node
,
5572 in_p
, low
, high
))) != 0)
5574 if (strict_overflow_p
)
5575 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5576 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5579 /* On machines where the branch cost is expensive, if this is a
5580 short-circuited branch and the underlying object on both sides
5581 is the same, make a non-short-circuit operation. */
5582 bool logical_op_non_short_circuit
= LOGICAL_OP_NON_SHORT_CIRCUIT
;
5583 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT
) != -1)
5584 logical_op_non_short_circuit
5585 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT
);
5586 if (logical_op_non_short_circuit
5587 && !flag_sanitize_coverage
5588 && lhs
!= 0 && rhs
!= 0
5589 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
)
5590 && operand_equal_p (lhs
, rhs
, 0))
5592 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5593 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5594 which cases we can't do this. */
5595 if (simple_operand_p (lhs
))
5596 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5597 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5600 else if (!lang_hooks
.decls
.global_bindings_p ()
5601 && !CONTAINS_PLACEHOLDER_P (lhs
))
5603 tree common
= save_expr (lhs
);
5605 if ((lhs
= build_range_check (loc
, type
, common
,
5606 or_op
? ! in0_p
: in0_p
,
5608 && (rhs
= build_range_check (loc
, type
, common
,
5609 or_op
? ! in1_p
: in1_p
,
5612 if (strict_overflow_p
)
5613 fold_overflow_warning (warnmsg
,
5614 WARN_STRICT_OVERFLOW_COMPARISON
);
5615 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5616 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5625 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5626 bit value. Arrange things so the extra bits will be set to zero if and
5627 only if C is signed-extended to its full width. If MASK is nonzero,
5628 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5631 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5633 tree type
= TREE_TYPE (c
);
5634 int modesize
= GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type
));
5637 if (p
== modesize
|| unsignedp
)
5640 /* We work by getting just the sign bit into the low-order bit, then
5641 into the high-order bit, then sign-extend. We then XOR that value
5643 temp
= build_int_cst (TREE_TYPE (c
),
5644 wi::extract_uhwi (wi::to_wide (c
), p
- 1, 1));
5646 /* We must use a signed type in order to get an arithmetic right shift.
5647 However, we must also avoid introducing accidental overflows, so that
5648 a subsequent call to integer_zerop will work. Hence we must
5649 do the type conversion here. At this point, the constant is either
5650 zero or one, and the conversion to a signed type can never overflow.
5651 We could get an overflow if this conversion is done anywhere else. */
5652 if (TYPE_UNSIGNED (type
))
5653 temp
= fold_convert (signed_type_for (type
), temp
);
5655 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5656 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5658 temp
= const_binop (BIT_AND_EXPR
, temp
,
5659 fold_convert (TREE_TYPE (c
), mask
));
5660 /* If necessary, convert the type back to match the type of C. */
5661 if (TYPE_UNSIGNED (type
))
5662 temp
= fold_convert (type
, temp
);
5664 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5667 /* For an expression that has the form
5671 we can drop one of the inner expressions and simplify to
5675 LOC is the location of the resulting expression. OP is the inner
5676 logical operation; the left-hand side in the examples above, while CMPOP
5677 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5678 removing a condition that guards another, as in
5679 (A != NULL && A->...) || A == NULL
5680 which we must not transform. If RHS_ONLY is true, only eliminate the
5681 right-most operand of the inner logical operation. */
5684 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5687 tree type
= TREE_TYPE (cmpop
);
5688 enum tree_code code
= TREE_CODE (cmpop
);
5689 enum tree_code truthop_code
= TREE_CODE (op
);
5690 tree lhs
= TREE_OPERAND (op
, 0);
5691 tree rhs
= TREE_OPERAND (op
, 1);
5692 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5693 enum tree_code rhs_code
= TREE_CODE (rhs
);
5694 enum tree_code lhs_code
= TREE_CODE (lhs
);
5695 enum tree_code inv_code
;
5697 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5700 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5703 if (rhs_code
== truthop_code
)
5705 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5706 if (newrhs
!= NULL_TREE
)
5709 rhs_code
= TREE_CODE (rhs
);
5712 if (lhs_code
== truthop_code
&& !rhs_only
)
5714 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5715 if (newlhs
!= NULL_TREE
)
5718 lhs_code
= TREE_CODE (lhs
);
5722 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5723 if (inv_code
== rhs_code
5724 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5725 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5727 if (!rhs_only
&& inv_code
== lhs_code
5728 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5729 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5731 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5732 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5737 /* Find ways of folding logical expressions of LHS and RHS:
5738 Try to merge two comparisons to the same innermost item.
5739 Look for range tests like "ch >= '0' && ch <= '9'".
5740 Look for combinations of simple terms on machines with expensive branches
5741 and evaluate the RHS unconditionally.
5743 For example, if we have p->a == 2 && p->b == 4 and we can make an
5744 object large enough to span both A and B, we can do this with a comparison
5745 against the object ANDed with the a mask.
5747 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5748 operations to do this with one comparison.
5750 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5751 function and the one above.
5753 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5754 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5756 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5759 We return the simplified tree or 0 if no optimization is possible. */
5762 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5765 /* If this is the "or" of two comparisons, we can do something if
5766 the comparisons are NE_EXPR. If this is the "and", we can do something
5767 if the comparisons are EQ_EXPR. I.e.,
5768 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5770 WANTED_CODE is this operation code. For single bit fields, we can
5771 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5772 comparison for one-bit fields. */
5774 enum tree_code wanted_code
;
5775 enum tree_code lcode
, rcode
;
5776 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5777 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5778 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5779 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5780 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5781 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5782 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5783 int ll_reversep
, lr_reversep
, rl_reversep
, rr_reversep
;
5784 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5785 scalar_int_mode lnmode
, rnmode
;
5786 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5787 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5788 tree l_const
, r_const
;
5789 tree lntype
, rntype
, result
;
5790 HOST_WIDE_INT first_bit
, end_bit
;
5793 /* Start by getting the comparison codes. Fail if anything is volatile.
5794 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5795 it were surrounded with a NE_EXPR. */
5797 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5800 lcode
= TREE_CODE (lhs
);
5801 rcode
= TREE_CODE (rhs
);
5803 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5805 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5806 build_int_cst (TREE_TYPE (lhs
), 0));
5810 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5812 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5813 build_int_cst (TREE_TYPE (rhs
), 0));
5817 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5818 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5821 ll_arg
= TREE_OPERAND (lhs
, 0);
5822 lr_arg
= TREE_OPERAND (lhs
, 1);
5823 rl_arg
= TREE_OPERAND (rhs
, 0);
5824 rr_arg
= TREE_OPERAND (rhs
, 1);
5826 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5827 if (simple_operand_p (ll_arg
)
5828 && simple_operand_p (lr_arg
))
5830 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5831 && operand_equal_p (lr_arg
, rr_arg
, 0))
5833 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5834 truth_type
, ll_arg
, lr_arg
);
5838 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5839 && operand_equal_p (lr_arg
, rl_arg
, 0))
5841 result
= combine_comparisons (loc
, code
, lcode
,
5842 swap_tree_comparison (rcode
),
5843 truth_type
, ll_arg
, lr_arg
);
5849 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5850 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5852 /* If the RHS can be evaluated unconditionally and its operands are
5853 simple, it wins to evaluate the RHS unconditionally on machines
5854 with expensive branches. In this case, this isn't a comparison
5855 that can be merged. */
5857 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5859 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5860 && simple_operand_p (rl_arg
)
5861 && simple_operand_p (rr_arg
))
5863 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5864 if (code
== TRUTH_OR_EXPR
5865 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5866 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5867 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5868 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5869 return build2_loc (loc
, NE_EXPR
, truth_type
,
5870 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5872 build_int_cst (TREE_TYPE (ll_arg
), 0));
5874 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5875 if (code
== TRUTH_AND_EXPR
5876 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5877 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5878 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5879 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5880 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5881 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5883 build_int_cst (TREE_TYPE (ll_arg
), 0));
5886 /* See if the comparisons can be merged. Then get all the parameters for
5889 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5890 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5893 ll_reversep
= lr_reversep
= rl_reversep
= rr_reversep
= 0;
5895 ll_inner
= decode_field_reference (loc
, &ll_arg
,
5896 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5897 &ll_unsignedp
, &ll_reversep
, &volatilep
,
5898 &ll_mask
, &ll_and_mask
);
5899 lr_inner
= decode_field_reference (loc
, &lr_arg
,
5900 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5901 &lr_unsignedp
, &lr_reversep
, &volatilep
,
5902 &lr_mask
, &lr_and_mask
);
5903 rl_inner
= decode_field_reference (loc
, &rl_arg
,
5904 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5905 &rl_unsignedp
, &rl_reversep
, &volatilep
,
5906 &rl_mask
, &rl_and_mask
);
5907 rr_inner
= decode_field_reference (loc
, &rr_arg
,
5908 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5909 &rr_unsignedp
, &rr_reversep
, &volatilep
,
5910 &rr_mask
, &rr_and_mask
);
5912 /* It must be true that the inner operation on the lhs of each
5913 comparison must be the same if we are to be able to do anything.
5914 Then see if we have constants. If not, the same must be true for
5917 || ll_reversep
!= rl_reversep
5918 || ll_inner
== 0 || rl_inner
== 0
5919 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5922 if (TREE_CODE (lr_arg
) == INTEGER_CST
5923 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5925 l_const
= lr_arg
, r_const
= rr_arg
;
5926 lr_reversep
= ll_reversep
;
5928 else if (lr_reversep
!= rr_reversep
5929 || lr_inner
== 0 || rr_inner
== 0
5930 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5933 l_const
= r_const
= 0;
5935 /* If either comparison code is not correct for our logical operation,
5936 fail. However, we can convert a one-bit comparison against zero into
5937 the opposite comparison against that bit being set in the field. */
5939 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5940 if (lcode
!= wanted_code
)
5942 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5944 /* Make the left operand unsigned, since we are only interested
5945 in the value of one bit. Otherwise we are doing the wrong
5954 /* This is analogous to the code for l_const above. */
5955 if (rcode
!= wanted_code
)
5957 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5966 /* See if we can find a mode that contains both fields being compared on
5967 the left. If we can't, fail. Otherwise, update all constants and masks
5968 to be relative to a field of that size. */
5969 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5970 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5971 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5972 TYPE_ALIGN (TREE_TYPE (ll_inner
)), BITS_PER_WORD
,
5973 volatilep
, &lnmode
))
5976 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5977 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5978 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5979 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5981 if (ll_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5983 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5984 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5987 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5988 size_int (xll_bitpos
));
5989 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5990 size_int (xrl_bitpos
));
5994 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5995 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5996 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5997 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5998 fold_build1_loc (loc
, BIT_NOT_EXPR
,
6001 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
6003 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
6008 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
6009 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
6010 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
6011 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
6012 fold_build1_loc (loc
, BIT_NOT_EXPR
,
6015 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
6017 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
6021 /* If the right sides are not constant, do the same for it. Also,
6022 disallow this optimization if a size, signedness or storage order
6023 mismatch occurs between the left and right sides. */
6026 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
6027 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
6028 || ll_reversep
!= lr_reversep
6029 /* Make sure the two fields on the right
6030 correspond to the left without being swapped. */
6031 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
6034 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
6035 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
6036 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
6037 TYPE_ALIGN (TREE_TYPE (lr_inner
)), BITS_PER_WORD
,
6038 volatilep
, &rnmode
))
6041 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
6042 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
6043 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
6044 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
6046 if (lr_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
6048 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
6049 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
6052 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
6054 size_int (xlr_bitpos
));
6055 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
6057 size_int (xrr_bitpos
));
6059 /* Make a mask that corresponds to both fields being compared.
6060 Do this for both items being compared. If the operands are the
6061 same size and the bits being compared are in the same position
6062 then we can do this by masking both and comparing the masked
6064 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6065 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
6066 if (lnbitsize
== rnbitsize
6067 && xll_bitpos
== xlr_bitpos
6071 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6072 lntype
, lnbitsize
, lnbitpos
,
6073 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6074 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6075 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
6077 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
,
6078 rntype
, rnbitsize
, rnbitpos
,
6079 lr_unsignedp
|| rr_unsignedp
, lr_reversep
);
6080 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
6081 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
6083 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6086 /* There is still another way we can do something: If both pairs of
6087 fields being compared are adjacent, we may be able to make a wider
6088 field containing them both.
6090 Note that we still must mask the lhs/rhs expressions. Furthermore,
6091 the mask must be shifted to account for the shift done by
6092 make_bit_field_ref. */
6093 if (((ll_bitsize
+ ll_bitpos
== rl_bitpos
6094 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
6095 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
6096 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
6104 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
, lntype
,
6105 ll_bitsize
+ rl_bitsize
,
6106 MIN (ll_bitpos
, rl_bitpos
),
6107 ll_unsignedp
, ll_reversep
);
6108 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
, rntype
,
6109 lr_bitsize
+ rr_bitsize
,
6110 MIN (lr_bitpos
, rr_bitpos
),
6111 lr_unsignedp
, lr_reversep
);
6113 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
6114 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
6115 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
6116 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
6118 /* Convert to the smaller type before masking out unwanted bits. */
6120 if (lntype
!= rntype
)
6122 if (lnbitsize
> rnbitsize
)
6124 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
6125 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
6128 else if (lnbitsize
< rnbitsize
)
6130 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
6131 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
6136 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
6137 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
6139 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
6140 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
6142 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6148 /* Handle the case of comparisons with constants. If there is something in
6149 common between the masks, those bits of the constants must be the same.
6150 If not, the condition is always false. Test for this to avoid generating
6151 incorrect code below. */
6152 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
6153 if (! integer_zerop (result
)
6154 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
6155 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
6157 if (wanted_code
== NE_EXPR
)
6159 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6160 return constant_boolean_node (true, truth_type
);
6164 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6165 return constant_boolean_node (false, truth_type
);
6172 /* Construct the expression we will return. First get the component
6173 reference we will make. Unless the mask is all ones the width of
6174 that field, perform the mask operation. Then compare with the
6176 result
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6177 lntype
, lnbitsize
, lnbitpos
,
6178 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6180 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6181 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6182 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
6184 return build2_loc (loc
, wanted_code
, truth_type
, result
,
6185 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
6188 /* T is an integer expression that is being multiplied, divided, or taken a
6189 modulus (CODE says which and what kind of divide or modulus) by a
6190 constant C. See if we can eliminate that operation by folding it with
6191 other operations already in T. WIDE_TYPE, if non-null, is a type that
6192 should be used for the computation if wider than our type.
6194 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6195 (X * 2) + (Y * 4). We must, however, be assured that either the original
6196 expression would not overflow or that overflow is undefined for the type
6197 in the language in question.
6199 If we return a non-null expression, it is an equivalent form of the
6200 original computation, but need not be in the original type.
6202 We set *STRICT_OVERFLOW_P to true if the return values depends on
6203 signed overflow being undefined. Otherwise we do not change
6204 *STRICT_OVERFLOW_P. */
6207 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6208 bool *strict_overflow_p
)
6210 /* To avoid exponential search depth, refuse to allow recursion past
6211 three levels. Beyond that (1) it's highly unlikely that we'll find
6212 something interesting and (2) we've probably processed it before
6213 when we built the inner expression. */
6222 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6229 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6230 bool *strict_overflow_p
)
6232 tree type
= TREE_TYPE (t
);
6233 enum tree_code tcode
= TREE_CODE (t
);
6234 tree ctype
= (wide_type
!= 0
6235 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type
))
6236 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
)))
6237 ? wide_type
: type
);
6239 int same_p
= tcode
== code
;
6240 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6241 bool sub_strict_overflow_p
;
6243 /* Don't deal with constants of zero here; they confuse the code below. */
6244 if (integer_zerop (c
))
6247 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6248 op0
= TREE_OPERAND (t
, 0);
6250 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6251 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6253 /* Note that we need not handle conditional operations here since fold
6254 already handles those cases. So just do arithmetic here. */
6258 /* For a constant, we can always simplify if we are a multiply
6259 or (for divide and modulus) if it is a multiple of our constant. */
6260 if (code
== MULT_EXPR
6261 || wi::multiple_of_p (wi::to_wide (t
), wi::to_wide (c
),
6264 tree tem
= const_binop (code
, fold_convert (ctype
, t
),
6265 fold_convert (ctype
, c
));
6266 /* If the multiplication overflowed, we lost information on it.
6267 See PR68142 and PR69845. */
6268 if (TREE_OVERFLOW (tem
))
6274 CASE_CONVERT
: case NON_LVALUE_EXPR
:
6275 /* If op0 is an expression ... */
6276 if ((COMPARISON_CLASS_P (op0
)
6277 || UNARY_CLASS_P (op0
)
6278 || BINARY_CLASS_P (op0
)
6279 || VL_EXP_CLASS_P (op0
)
6280 || EXPRESSION_CLASS_P (op0
))
6281 /* ... and has wrapping overflow, and its type is smaller
6282 than ctype, then we cannot pass through as widening. */
6283 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6284 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
6285 && (TYPE_PRECISION (ctype
)
6286 > TYPE_PRECISION (TREE_TYPE (op0
))))
6287 /* ... or this is a truncation (t is narrower than op0),
6288 then we cannot pass through this narrowing. */
6289 || (TYPE_PRECISION (type
)
6290 < TYPE_PRECISION (TREE_TYPE (op0
)))
6291 /* ... or signedness changes for division or modulus,
6292 then we cannot pass through this conversion. */
6293 || (code
!= MULT_EXPR
6294 && (TYPE_UNSIGNED (ctype
)
6295 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6296 /* ... or has undefined overflow while the converted to
6297 type has not, we cannot do the operation in the inner type
6298 as that would introduce undefined overflow. */
6299 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6300 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6301 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6304 /* Pass the constant down and see if we can make a simplification. If
6305 we can, replace this expression with the inner simplification for
6306 possible later conversion to our or some other type. */
6307 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6308 && TREE_CODE (t2
) == INTEGER_CST
6309 && !TREE_OVERFLOW (t2
)
6310 && (t1
= extract_muldiv (op0
, t2
, code
,
6311 code
== MULT_EXPR
? ctype
: NULL_TREE
,
6312 strict_overflow_p
)) != 0)
6317 /* If widening the type changes it from signed to unsigned, then we
6318 must avoid building ABS_EXPR itself as unsigned. */
6319 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6321 tree cstype
= (*signed_type_for
) (ctype
);
6322 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6325 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6326 return fold_convert (ctype
, t1
);
6330 /* If the constant is negative, we cannot simplify this. */
6331 if (tree_int_cst_sgn (c
) == -1)
6335 /* For division and modulus, type can't be unsigned, as e.g.
6336 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6337 For signed types, even with wrapping overflow, this is fine. */
6338 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6340 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6342 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6345 case MIN_EXPR
: case MAX_EXPR
:
6346 /* If widening the type changes the signedness, then we can't perform
6347 this optimization as that changes the result. */
6348 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6351 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6352 sub_strict_overflow_p
= false;
6353 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6354 &sub_strict_overflow_p
)) != 0
6355 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6356 &sub_strict_overflow_p
)) != 0)
6358 if (tree_int_cst_sgn (c
) < 0)
6359 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6360 if (sub_strict_overflow_p
)
6361 *strict_overflow_p
= true;
6362 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6363 fold_convert (ctype
, t2
));
6367 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6368 /* If the second operand is constant, this is a multiplication
6369 or floor division, by a power of two, so we can treat it that
6370 way unless the multiplier or divisor overflows. Signed
6371 left-shift overflow is implementation-defined rather than
6372 undefined in C90, so do not convert signed left shift into
6374 if (TREE_CODE (op1
) == INTEGER_CST
6375 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6376 /* const_binop may not detect overflow correctly,
6377 so check for it explicitly here. */
6378 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
6380 && (t1
= fold_convert (ctype
,
6381 const_binop (LSHIFT_EXPR
, size_one_node
,
6383 && !TREE_OVERFLOW (t1
))
6384 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6385 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6387 fold_convert (ctype
, op0
),
6389 c
, code
, wide_type
, strict_overflow_p
);
6392 case PLUS_EXPR
: case MINUS_EXPR
:
6393 /* See if we can eliminate the operation on both sides. If we can, we
6394 can return a new PLUS or MINUS. If we can't, the only remaining
6395 cases where we can do anything are if the second operand is a
6397 sub_strict_overflow_p
= false;
6398 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6399 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6400 if (t1
!= 0 && t2
!= 0
6401 && TYPE_OVERFLOW_WRAPS (ctype
)
6402 && (code
== MULT_EXPR
6403 /* If not multiplication, we can only do this if both operands
6404 are divisible by c. */
6405 || (multiple_of_p (ctype
, op0
, c
)
6406 && multiple_of_p (ctype
, op1
, c
))))
6408 if (sub_strict_overflow_p
)
6409 *strict_overflow_p
= true;
6410 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6411 fold_convert (ctype
, t2
));
6414 /* If this was a subtraction, negate OP1 and set it to be an addition.
6415 This simplifies the logic below. */
6416 if (tcode
== MINUS_EXPR
)
6418 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6419 /* If OP1 was not easily negatable, the constant may be OP0. */
6420 if (TREE_CODE (op0
) == INTEGER_CST
)
6422 std::swap (op0
, op1
);
6427 if (TREE_CODE (op1
) != INTEGER_CST
)
6430 /* If either OP1 or C are negative, this optimization is not safe for
6431 some of the division and remainder types while for others we need
6432 to change the code. */
6433 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6435 if (code
== CEIL_DIV_EXPR
)
6436 code
= FLOOR_DIV_EXPR
;
6437 else if (code
== FLOOR_DIV_EXPR
)
6438 code
= CEIL_DIV_EXPR
;
6439 else if (code
!= MULT_EXPR
6440 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6444 /* If it's a multiply or a division/modulus operation of a multiple
6445 of our constant, do the operation and verify it doesn't overflow. */
6446 if (code
== MULT_EXPR
6447 || wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6450 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6451 fold_convert (ctype
, c
));
6452 /* We allow the constant to overflow with wrapping semantics. */
6454 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6460 /* If we have an unsigned type, we cannot widen the operation since it
6461 will change the result if the original computation overflowed. */
6462 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6465 /* The last case is if we are a multiply. In that case, we can
6466 apply the distributive law to commute the multiply and addition
6467 if the multiplication of the constants doesn't overflow
6468 and overflow is defined. With undefined overflow
6469 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6470 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6471 return fold_build2 (tcode
, ctype
,
6472 fold_build2 (code
, ctype
,
6473 fold_convert (ctype
, op0
),
6474 fold_convert (ctype
, c
)),
6480 /* We have a special case here if we are doing something like
6481 (C * 8) % 4 since we know that's zero. */
6482 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6483 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6484 /* If the multiplication can overflow we cannot optimize this. */
6485 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6486 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6487 && wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6490 *strict_overflow_p
= true;
6491 return omit_one_operand (type
, integer_zero_node
, op0
);
6494 /* ... fall through ... */
6496 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6497 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6498 /* If we can extract our operation from the LHS, do so and return a
6499 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6500 do something only if the second operand is a constant. */
6502 && TYPE_OVERFLOW_WRAPS (ctype
)
6503 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6504 strict_overflow_p
)) != 0)
6505 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6506 fold_convert (ctype
, op1
));
6507 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6508 && TYPE_OVERFLOW_WRAPS (ctype
)
6509 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6510 strict_overflow_p
)) != 0)
6511 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6512 fold_convert (ctype
, t1
));
6513 else if (TREE_CODE (op1
) != INTEGER_CST
)
6516 /* If these are the same operation types, we can associate them
6517 assuming no overflow. */
6520 bool overflow_p
= false;
6521 wi::overflow_type overflow_mul
;
6522 signop sign
= TYPE_SIGN (ctype
);
6523 unsigned prec
= TYPE_PRECISION (ctype
);
6524 wide_int mul
= wi::mul (wi::to_wide (op1
, prec
),
6525 wi::to_wide (c
, prec
),
6526 sign
, &overflow_mul
);
6527 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6529 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6532 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6533 wide_int_to_tree (ctype
, mul
));
6536 /* If these operations "cancel" each other, we have the main
6537 optimizations of this pass, which occur when either constant is a
6538 multiple of the other, in which case we replace this with either an
6539 operation or CODE or TCODE.
6541 If we have an unsigned type, we cannot do this since it will change
6542 the result if the original computation overflowed. */
6543 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6544 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6545 || (tcode
== MULT_EXPR
6546 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6547 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6548 && code
!= MULT_EXPR
)))
6550 if (wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6553 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6554 *strict_overflow_p
= true;
6555 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6556 fold_convert (ctype
,
6557 const_binop (TRUNC_DIV_EXPR
,
6560 else if (wi::multiple_of_p (wi::to_wide (c
), wi::to_wide (op1
),
6563 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6564 *strict_overflow_p
= true;
6565 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6566 fold_convert (ctype
,
6567 const_binop (TRUNC_DIV_EXPR
,
6580 /* Return a node which has the indicated constant VALUE (either 0 or
6581 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6582 and is of the indicated TYPE. */
6585 constant_boolean_node (bool value
, tree type
)
6587 if (type
== integer_type_node
)
6588 return value
? integer_one_node
: integer_zero_node
;
6589 else if (type
== boolean_type_node
)
6590 return value
? boolean_true_node
: boolean_false_node
;
6591 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6592 return build_vector_from_val (type
,
6593 build_int_cst (TREE_TYPE (type
),
6596 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6600 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6601 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6602 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6603 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6604 COND is the first argument to CODE; otherwise (as in the example
6605 given here), it is the second argument. TYPE is the type of the
6606 original expression. Return NULL_TREE if no simplification is
6610 fold_binary_op_with_conditional_arg (location_t loc
,
6611 enum tree_code code
,
6612 tree type
, tree op0
, tree op1
,
6613 tree cond
, tree arg
, int cond_first_p
)
6615 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6616 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6617 tree test
, true_value
, false_value
;
6618 tree lhs
= NULL_TREE
;
6619 tree rhs
= NULL_TREE
;
6620 enum tree_code cond_code
= COND_EXPR
;
6622 /* Do not move possibly trapping operations into the conditional as this
6623 pessimizes code and causes gimplification issues when applied late. */
6624 if (operation_could_trap_p (code
, FLOAT_TYPE_P (type
),
6625 ANY_INTEGRAL_TYPE_P (type
)
6626 && TYPE_OVERFLOW_TRAPS (type
), op1
))
6629 if (TREE_CODE (cond
) == COND_EXPR
6630 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6632 test
= TREE_OPERAND (cond
, 0);
6633 true_value
= TREE_OPERAND (cond
, 1);
6634 false_value
= TREE_OPERAND (cond
, 2);
6635 /* If this operand throws an expression, then it does not make
6636 sense to try to perform a logical or arithmetic operation
6638 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6640 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6643 else if (!(TREE_CODE (type
) != VECTOR_TYPE
6644 && TREE_CODE (TREE_TYPE (cond
)) == VECTOR_TYPE
))
6646 tree testtype
= TREE_TYPE (cond
);
6648 true_value
= constant_boolean_node (true, testtype
);
6649 false_value
= constant_boolean_node (false, testtype
);
6652 /* Detect the case of mixing vector and scalar types - bail out. */
6655 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6656 cond_code
= VEC_COND_EXPR
;
6658 /* This transformation is only worthwhile if we don't have to wrap ARG
6659 in a SAVE_EXPR and the operation can be simplified without recursing
6660 on at least one of the branches once its pushed inside the COND_EXPR. */
6661 if (!TREE_CONSTANT (arg
)
6662 && (TREE_SIDE_EFFECTS (arg
)
6663 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6664 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6667 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6670 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6672 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6674 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6678 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6680 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6682 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6685 /* Check that we have simplified at least one of the branches. */
6686 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6689 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6693 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6695 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6696 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6697 ADDEND is the same as X.
6699 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6700 and finite. The problematic cases are when X is zero, and its mode
6701 has signed zeros. In the case of rounding towards -infinity,
6702 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6703 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6706 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6708 if (!real_zerop (addend
))
6711 /* Don't allow the fold with -fsignaling-nans. */
6712 if (HONOR_SNANS (element_mode (type
)))
6715 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6716 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6719 /* In a vector or complex, we would need to check the sign of all zeros. */
6720 if (TREE_CODE (addend
) != REAL_CST
)
6723 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6724 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6727 /* The mode has signed zeros, and we have to honor their sign.
6728 In this situation, there is only one case we can return true for.
6729 X - 0 is the same as X unless rounding towards -infinity is
6731 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6734 /* Subroutine of match.pd that optimizes comparisons of a division by
6735 a nonzero integer constant against an integer constant, i.e.
6738 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6739 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6742 fold_div_compare (enum tree_code code
, tree c1
, tree c2
, tree
*lo
,
6743 tree
*hi
, bool *neg_overflow
)
6745 tree prod
, tmp
, type
= TREE_TYPE (c1
);
6746 signop sign
= TYPE_SIGN (type
);
6747 wi::overflow_type overflow
;
6749 /* We have to do this the hard way to detect unsigned overflow.
6750 prod = int_const_binop (MULT_EXPR, c1, c2); */
6751 wide_int val
= wi::mul (wi::to_wide (c1
), wi::to_wide (c2
), sign
, &overflow
);
6752 prod
= force_fit_type (type
, val
, -1, overflow
);
6753 *neg_overflow
= false;
6755 if (sign
== UNSIGNED
)
6757 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6760 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6761 val
= wi::add (wi::to_wide (prod
), wi::to_wide (tmp
), sign
, &overflow
);
6762 *hi
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (prod
));
6764 else if (tree_int_cst_sgn (c1
) >= 0)
6766 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6767 switch (tree_int_cst_sgn (c2
))
6770 *neg_overflow
= true;
6771 *lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6776 *lo
= fold_negate_const (tmp
, type
);
6781 *hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6791 /* A negative divisor reverses the relational operators. */
6792 code
= swap_tree_comparison (code
);
6794 tmp
= int_const_binop (PLUS_EXPR
, c1
, build_int_cst (type
, 1));
6795 switch (tree_int_cst_sgn (c2
))
6798 *hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6803 *hi
= fold_negate_const (tmp
, type
);
6808 *neg_overflow
= true;
6809 *lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6818 if (code
!= EQ_EXPR
&& code
!= NE_EXPR
)
6821 if (TREE_OVERFLOW (*lo
)
6822 || operand_equal_p (*lo
, TYPE_MIN_VALUE (type
), 0))
6824 if (TREE_OVERFLOW (*hi
)
6825 || operand_equal_p (*hi
, TYPE_MAX_VALUE (type
), 0))
6832 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6833 equality/inequality test, then return a simplified form of the test
6834 using a sign testing. Otherwise return NULL. TYPE is the desired
6838 fold_single_bit_test_into_sign_test (location_t loc
,
6839 enum tree_code code
, tree arg0
, tree arg1
,
6842 /* If this is testing a single bit, we can optimize the test. */
6843 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6844 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6845 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6847 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6848 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6849 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6851 if (arg00
!= NULL_TREE
6852 /* This is only a win if casting to a signed type is cheap,
6853 i.e. when arg00's type is not a partial mode. */
6854 && type_has_mode_precision_p (TREE_TYPE (arg00
)))
6856 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6857 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6859 fold_convert_loc (loc
, stype
, arg00
),
6860 build_int_cst (stype
, 0));
6867 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6868 equality/inequality test, then return a simplified form of
6869 the test using shifts and logical operations. Otherwise return
6870 NULL. TYPE is the desired result type. */
6873 fold_single_bit_test (location_t loc
, enum tree_code code
,
6874 tree arg0
, tree arg1
, tree result_type
)
6876 /* If this is testing a single bit, we can optimize the test. */
6877 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6878 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6879 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6881 tree inner
= TREE_OPERAND (arg0
, 0);
6882 tree type
= TREE_TYPE (arg0
);
6883 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6884 scalar_int_mode operand_mode
= SCALAR_INT_TYPE_MODE (type
);
6886 tree signed_type
, unsigned_type
, intermediate_type
;
6889 /* First, see if we can fold the single bit test into a sign-bit
6891 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6896 /* Otherwise we have (A & C) != 0 where C is a single bit,
6897 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6898 Similarly for (A & C) == 0. */
6900 /* If INNER is a right shift of a constant and it plus BITNUM does
6901 not overflow, adjust BITNUM and INNER. */
6902 if (TREE_CODE (inner
) == RSHIFT_EXPR
6903 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6904 && bitnum
< TYPE_PRECISION (type
)
6905 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner
, 1)),
6906 TYPE_PRECISION (type
) - bitnum
))
6908 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6909 inner
= TREE_OPERAND (inner
, 0);
6912 /* If we are going to be able to omit the AND below, we must do our
6913 operations as unsigned. If we must use the AND, we have a choice.
6914 Normally unsigned is faster, but for some machines signed is. */
6915 ops_unsigned
= (load_extend_op (operand_mode
) == SIGN_EXTEND
6916 && !flag_syntax_only
) ? 0 : 1;
6918 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6919 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6920 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6921 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6924 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6925 inner
, size_int (bitnum
));
6927 one
= build_int_cst (intermediate_type
, 1);
6929 if (code
== EQ_EXPR
)
6930 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6932 /* Put the AND last so it can combine with more things. */
6933 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6935 /* Make sure to return the proper type. */
6936 inner
= fold_convert_loc (loc
, result_type
, inner
);
6943 /* Test whether it is preferable two swap two operands, ARG0 and
6944 ARG1, for example because ARG0 is an integer constant and ARG1
6948 tree_swap_operands_p (const_tree arg0
, const_tree arg1
)
6950 if (CONSTANT_CLASS_P (arg1
))
6952 if (CONSTANT_CLASS_P (arg0
))
6958 if (TREE_CONSTANT (arg1
))
6960 if (TREE_CONSTANT (arg0
))
6963 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6964 for commutative and comparison operators. Ensuring a canonical
6965 form allows the optimizers to find additional redundancies without
6966 having to explicitly check for both orderings. */
6967 if (TREE_CODE (arg0
) == SSA_NAME
6968 && TREE_CODE (arg1
) == SSA_NAME
6969 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6972 /* Put SSA_NAMEs last. */
6973 if (TREE_CODE (arg1
) == SSA_NAME
)
6975 if (TREE_CODE (arg0
) == SSA_NAME
)
6978 /* Put variables last. */
6988 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6989 means A >= Y && A != MAX, but in this case we know that
6990 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6993 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
6995 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
6997 if (TREE_CODE (bound
) == LT_EXPR
)
6998 a
= TREE_OPERAND (bound
, 0);
6999 else if (TREE_CODE (bound
) == GT_EXPR
)
7000 a
= TREE_OPERAND (bound
, 1);
7004 typea
= TREE_TYPE (a
);
7005 if (!INTEGRAL_TYPE_P (typea
)
7006 && !POINTER_TYPE_P (typea
))
7009 if (TREE_CODE (ineq
) == LT_EXPR
)
7011 a1
= TREE_OPERAND (ineq
, 1);
7012 y
= TREE_OPERAND (ineq
, 0);
7014 else if (TREE_CODE (ineq
) == GT_EXPR
)
7016 a1
= TREE_OPERAND (ineq
, 0);
7017 y
= TREE_OPERAND (ineq
, 1);
7022 if (TREE_TYPE (a1
) != typea
)
7025 if (POINTER_TYPE_P (typea
))
7027 /* Convert the pointer types into integer before taking the difference. */
7028 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
7029 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
7030 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
7033 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
7035 if (!diff
|| !integer_onep (diff
))
7038 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
7041 /* Fold a sum or difference of at least one multiplication.
7042 Returns the folded tree or NULL if no simplification could be made. */
7045 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
7046 tree arg0
, tree arg1
)
7048 tree arg00
, arg01
, arg10
, arg11
;
7049 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
7051 /* (A * C) +- (B * C) -> (A+-B) * C.
7052 (A * C) +- A -> A * (C+-1).
7053 We are most concerned about the case where C is a constant,
7054 but other combinations show up during loop reduction. Since
7055 it is not difficult, try all four possibilities. */
7057 if (TREE_CODE (arg0
) == MULT_EXPR
)
7059 arg00
= TREE_OPERAND (arg0
, 0);
7060 arg01
= TREE_OPERAND (arg0
, 1);
7062 else if (TREE_CODE (arg0
) == INTEGER_CST
)
7064 arg00
= build_one_cst (type
);
7069 /* We cannot generate constant 1 for fract. */
7070 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7073 arg01
= build_one_cst (type
);
7075 if (TREE_CODE (arg1
) == MULT_EXPR
)
7077 arg10
= TREE_OPERAND (arg1
, 0);
7078 arg11
= TREE_OPERAND (arg1
, 1);
7080 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7082 arg10
= build_one_cst (type
);
7083 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7084 the purpose of this canonicalization. */
7085 if (wi::neg_p (wi::to_wide (arg1
), TYPE_SIGN (TREE_TYPE (arg1
)))
7086 && negate_expr_p (arg1
)
7087 && code
== PLUS_EXPR
)
7089 arg11
= negate_expr (arg1
);
7097 /* We cannot generate constant 1 for fract. */
7098 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7101 arg11
= build_one_cst (type
);
7105 /* Prefer factoring a common non-constant. */
7106 if (operand_equal_p (arg00
, arg10
, 0))
7107 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7108 else if (operand_equal_p (arg01
, arg11
, 0))
7109 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7110 else if (operand_equal_p (arg00
, arg11
, 0))
7111 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7112 else if (operand_equal_p (arg01
, arg10
, 0))
7113 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7115 /* No identical multiplicands; see if we can find a common
7116 power-of-two factor in non-power-of-two multiplies. This
7117 can help in multi-dimensional array access. */
7118 else if (tree_fits_shwi_p (arg01
)
7119 && tree_fits_shwi_p (arg11
))
7121 HOST_WIDE_INT int01
, int11
, tmp
;
7124 int01
= tree_to_shwi (arg01
);
7125 int11
= tree_to_shwi (arg11
);
7127 /* Move min of absolute values to int11. */
7128 if (absu_hwi (int01
) < absu_hwi (int11
))
7130 tmp
= int01
, int01
= int11
, int11
= tmp
;
7131 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7138 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
7139 /* The remainder should not be a constant, otherwise we
7140 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7141 increased the number of multiplications necessary. */
7142 && TREE_CODE (arg10
) != INTEGER_CST
)
7144 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7145 build_int_cst (TREE_TYPE (arg00
),
7150 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7157 if (! ANY_INTEGRAL_TYPE_P (type
)
7158 || TYPE_OVERFLOW_WRAPS (type
)
7159 /* We are neither factoring zero nor minus one. */
7160 || TREE_CODE (same
) == INTEGER_CST
)
7161 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7162 fold_build2_loc (loc
, code
, type
,
7163 fold_convert_loc (loc
, type
, alt0
),
7164 fold_convert_loc (loc
, type
, alt1
)),
7165 fold_convert_loc (loc
, type
, same
));
7167 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7168 same may be minus one and thus the multiplication may overflow. Perform
7169 the sum operation in an unsigned type. */
7170 tree utype
= unsigned_type_for (type
);
7171 tree tem
= fold_build2_loc (loc
, code
, utype
,
7172 fold_convert_loc (loc
, utype
, alt0
),
7173 fold_convert_loc (loc
, utype
, alt1
));
7174 /* If the sum evaluated to a constant that is not -INF the multiplication
7176 if (TREE_CODE (tem
) == INTEGER_CST
7177 && (wi::to_wide (tem
)
7178 != wi::min_value (TYPE_PRECISION (utype
), SIGNED
)))
7179 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7180 fold_convert (type
, tem
), same
);
7182 /* Do not resort to unsigned multiplication because
7183 we lose the no-overflow property of the expression. */
7187 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7188 specified by EXPR into the buffer PTR of length LEN bytes.
7189 Return the number of bytes placed in the buffer, or zero
7193 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7195 tree type
= TREE_TYPE (expr
);
7196 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7197 int byte
, offset
, word
, words
;
7198 unsigned char value
;
7200 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7207 return MIN (len
, total_bytes
- off
);
7209 words
= total_bytes
/ UNITS_PER_WORD
;
7211 for (byte
= 0; byte
< total_bytes
; byte
++)
7213 int bitpos
= byte
* BITS_PER_UNIT
;
7214 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7216 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
7218 if (total_bytes
> UNITS_PER_WORD
)
7220 word
= byte
/ UNITS_PER_WORD
;
7221 if (WORDS_BIG_ENDIAN
)
7222 word
= (words
- 1) - word
;
7223 offset
= word
* UNITS_PER_WORD
;
7224 if (BYTES_BIG_ENDIAN
)
7225 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7227 offset
+= byte
% UNITS_PER_WORD
;
7230 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7231 if (offset
>= off
&& offset
- off
< len
)
7232 ptr
[offset
- off
] = value
;
7234 return MIN (len
, total_bytes
- off
);
7238 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7239 specified by EXPR into the buffer PTR of length LEN bytes.
7240 Return the number of bytes placed in the buffer, or zero
7244 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7246 tree type
= TREE_TYPE (expr
);
7247 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7248 int total_bytes
= GET_MODE_SIZE (mode
);
7249 FIXED_VALUE_TYPE value
;
7250 tree i_value
, i_type
;
7252 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7255 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7257 if (NULL_TREE
== i_type
|| TYPE_PRECISION (i_type
) != total_bytes
)
7260 value
= TREE_FIXED_CST (expr
);
7261 i_value
= double_int_to_tree (i_type
, value
.data
);
7263 return native_encode_int (i_value
, ptr
, len
, off
);
7267 /* Subroutine of native_encode_expr. Encode the REAL_CST
7268 specified by EXPR into the buffer PTR of length LEN bytes.
7269 Return the number of bytes placed in the buffer, or zero
7273 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7275 tree type
= TREE_TYPE (expr
);
7276 int total_bytes
= GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type
));
7277 int byte
, offset
, word
, words
, bitpos
;
7278 unsigned char value
;
7280 /* There are always 32 bits in each long, no matter the size of
7281 the hosts long. We handle floating point representations with
7285 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7292 return MIN (len
, total_bytes
- off
);
7294 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7296 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7298 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7299 bitpos
+= BITS_PER_UNIT
)
7301 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7302 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7304 if (UNITS_PER_WORD
< 4)
7306 word
= byte
/ UNITS_PER_WORD
;
7307 if (WORDS_BIG_ENDIAN
)
7308 word
= (words
- 1) - word
;
7309 offset
= word
* UNITS_PER_WORD
;
7310 if (BYTES_BIG_ENDIAN
)
7311 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7313 offset
+= byte
% UNITS_PER_WORD
;
7318 if (BYTES_BIG_ENDIAN
)
7320 /* Reverse bytes within each long, or within the entire float
7321 if it's smaller than a long (for HFmode). */
7322 offset
= MIN (3, total_bytes
- 1) - offset
;
7323 gcc_assert (offset
>= 0);
7326 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7328 && offset
- off
< len
)
7329 ptr
[offset
- off
] = value
;
7331 return MIN (len
, total_bytes
- off
);
7334 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7335 specified by EXPR into the buffer PTR of length LEN bytes.
7336 Return the number of bytes placed in the buffer, or zero
7340 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7345 part
= TREE_REALPART (expr
);
7346 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7347 if (off
== -1 && rsize
== 0)
7349 part
= TREE_IMAGPART (expr
);
7351 off
= MAX (0, off
- GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part
))));
7352 isize
= native_encode_expr (part
, ptr
? ptr
+ rsize
: NULL
,
7354 if (off
== -1 && isize
!= rsize
)
7356 return rsize
+ isize
;
7360 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7361 specified by EXPR into the buffer PTR of length LEN bytes.
7362 Return the number of bytes placed in the buffer, or zero
7366 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7368 unsigned HOST_WIDE_INT i
, count
;
7373 if (!VECTOR_CST_NELTS (expr
).is_constant (&count
))
7375 itype
= TREE_TYPE (TREE_TYPE (expr
));
7376 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (itype
));
7377 for (i
= 0; i
< count
; i
++)
7384 elem
= VECTOR_CST_ELT (expr
, i
);
7385 int res
= native_encode_expr (elem
, ptr
? ptr
+ offset
: NULL
,
7387 if ((off
== -1 && res
!= size
) || res
== 0)
7391 return (off
== -1 && i
< count
- 1) ? 0 : offset
;
7399 /* Subroutine of native_encode_expr. Encode the STRING_CST
7400 specified by EXPR into the buffer PTR of length LEN bytes.
7401 Return the number of bytes placed in the buffer, or zero
7405 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7407 tree type
= TREE_TYPE (expr
);
7409 /* Wide-char strings are encoded in target byte-order so native
7410 encoding them is trivial. */
7411 if (BITS_PER_UNIT
!= CHAR_BIT
7412 || TREE_CODE (type
) != ARRAY_TYPE
7413 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7414 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7417 HOST_WIDE_INT total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)));
7418 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7424 else if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7427 if (off
< TREE_STRING_LENGTH (expr
))
7429 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7430 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7432 memset (ptr
+ written
, 0,
7433 MIN (total_bytes
- written
, len
- written
));
7436 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7437 return MIN (total_bytes
- off
, len
);
7441 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7442 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7443 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7444 anything, just do a dry run. If OFF is not -1 then start
7445 the encoding at byte offset OFF and encode at most LEN bytes.
7446 Return the number of bytes placed in the buffer, or zero upon failure. */
7449 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7451 /* We don't support starting at negative offset and -1 is special. */
7455 switch (TREE_CODE (expr
))
7458 return native_encode_int (expr
, ptr
, len
, off
);
7461 return native_encode_real (expr
, ptr
, len
, off
);
7464 return native_encode_fixed (expr
, ptr
, len
, off
);
7467 return native_encode_complex (expr
, ptr
, len
, off
);
7470 return native_encode_vector (expr
, ptr
, len
, off
);
7473 return native_encode_string (expr
, ptr
, len
, off
);
7481 /* Subroutine of native_interpret_expr. Interpret the contents of
7482 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7483 If the buffer cannot be interpreted, return NULL_TREE. */
7486 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7488 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7490 if (total_bytes
> len
7491 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7494 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7496 return wide_int_to_tree (type
, result
);
7500 /* Subroutine of native_interpret_expr. Interpret the contents of
7501 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7502 If the buffer cannot be interpreted, return NULL_TREE. */
7505 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7507 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7508 int total_bytes
= GET_MODE_SIZE (mode
);
7510 FIXED_VALUE_TYPE fixed_value
;
7512 if (total_bytes
> len
7513 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7516 result
= double_int::from_buffer (ptr
, total_bytes
);
7517 fixed_value
= fixed_from_double_int (result
, mode
);
7519 return build_fixed (type
, fixed_value
);
7523 /* Subroutine of native_interpret_expr. Interpret the contents of
7524 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7525 If the buffer cannot be interpreted, return NULL_TREE. */
7528 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7530 scalar_float_mode mode
= SCALAR_FLOAT_TYPE_MODE (type
);
7531 int total_bytes
= GET_MODE_SIZE (mode
);
7532 unsigned char value
;
7533 /* There are always 32 bits in each long, no matter the size of
7534 the hosts long. We handle floating point representations with
7539 if (total_bytes
> len
|| total_bytes
> 24)
7541 int words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7543 memset (tmp
, 0, sizeof (tmp
));
7544 for (int bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7545 bitpos
+= BITS_PER_UNIT
)
7547 /* Both OFFSET and BYTE index within a long;
7548 bitpos indexes the whole float. */
7549 int offset
, byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7550 if (UNITS_PER_WORD
< 4)
7552 int word
= byte
/ UNITS_PER_WORD
;
7553 if (WORDS_BIG_ENDIAN
)
7554 word
= (words
- 1) - word
;
7555 offset
= word
* UNITS_PER_WORD
;
7556 if (BYTES_BIG_ENDIAN
)
7557 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7559 offset
+= byte
% UNITS_PER_WORD
;
7564 if (BYTES_BIG_ENDIAN
)
7566 /* Reverse bytes within each long, or within the entire float
7567 if it's smaller than a long (for HFmode). */
7568 offset
= MIN (3, total_bytes
- 1) - offset
;
7569 gcc_assert (offset
>= 0);
7572 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7574 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7577 real_from_target (&r
, tmp
, mode
);
7578 return build_real (type
, r
);
7582 /* Subroutine of native_interpret_expr. Interpret the contents of
7583 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7584 If the buffer cannot be interpreted, return NULL_TREE. */
7587 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7589 tree etype
, rpart
, ipart
;
7592 etype
= TREE_TYPE (type
);
7593 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7596 rpart
= native_interpret_expr (etype
, ptr
, size
);
7599 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7602 return build_complex (type
, rpart
, ipart
);
7606 /* Subroutine of native_interpret_expr. Interpret the contents of
7607 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7608 If the buffer cannot be interpreted, return NULL_TREE. */
7611 native_interpret_vector (tree type
, const unsigned char *ptr
, unsigned int len
)
7614 unsigned int i
, size
;
7615 unsigned HOST_WIDE_INT count
;
7617 etype
= TREE_TYPE (type
);
7618 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7619 if (!TYPE_VECTOR_SUBPARTS (type
).is_constant (&count
)
7620 || size
* count
> len
)
7623 tree_vector_builder
elements (type
, count
, 1);
7624 for (i
= 0; i
< count
; ++i
)
7626 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7629 elements
.quick_push (elem
);
7631 return elements
.build ();
7635 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7636 the buffer PTR of length LEN as a constant of type TYPE. For
7637 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7638 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7639 return NULL_TREE. */
7642 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7644 switch (TREE_CODE (type
))
7650 case REFERENCE_TYPE
:
7651 return native_interpret_int (type
, ptr
, len
);
7654 return native_interpret_real (type
, ptr
, len
);
7656 case FIXED_POINT_TYPE
:
7657 return native_interpret_fixed (type
, ptr
, len
);
7660 return native_interpret_complex (type
, ptr
, len
);
7663 return native_interpret_vector (type
, ptr
, len
);
7670 /* Returns true if we can interpret the contents of a native encoding
7674 can_native_interpret_type_p (tree type
)
7676 switch (TREE_CODE (type
))
7682 case REFERENCE_TYPE
:
7683 case FIXED_POINT_TYPE
:
7694 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7695 TYPE at compile-time. If we're unable to perform the conversion
7696 return NULL_TREE. */
7699 fold_view_convert_expr (tree type
, tree expr
)
7701 /* We support up to 512-bit values (for V8DFmode). */
7702 unsigned char buffer
[64];
7705 /* Check that the host and target are sane. */
7706 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7709 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7713 return native_interpret_expr (type
, buffer
, len
);
7716 /* Build an expression for the address of T. Folds away INDIRECT_REF
7717 to avoid confusing the gimplify process. */
7720 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7722 /* The size of the object is not relevant when talking about its address. */
7723 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7724 t
= TREE_OPERAND (t
, 0);
7726 if (TREE_CODE (t
) == INDIRECT_REF
)
7728 t
= TREE_OPERAND (t
, 0);
7730 if (TREE_TYPE (t
) != ptrtype
)
7731 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7733 else if (TREE_CODE (t
) == MEM_REF
7734 && integer_zerop (TREE_OPERAND (t
, 1)))
7735 return TREE_OPERAND (t
, 0);
7736 else if (TREE_CODE (t
) == MEM_REF
7737 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7738 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7739 TREE_OPERAND (t
, 0),
7740 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7741 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7743 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7745 if (TREE_TYPE (t
) != ptrtype
)
7746 t
= fold_convert_loc (loc
, ptrtype
, t
);
7749 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7754 /* Build an expression for the address of T. */
7757 build_fold_addr_expr_loc (location_t loc
, tree t
)
7759 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7761 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7764 /* Fold a unary expression of code CODE and type TYPE with operand
7765 OP0. Return the folded expression if folding is successful.
7766 Otherwise, return NULL_TREE. */
7769 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7773 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7775 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7776 && TREE_CODE_LENGTH (code
) == 1);
7781 if (CONVERT_EXPR_CODE_P (code
)
7782 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7784 /* Don't use STRIP_NOPS, because signedness of argument type
7786 STRIP_SIGN_NOPS (arg0
);
7790 /* Strip any conversions that don't change the mode. This
7791 is safe for every expression, except for a comparison
7792 expression because its signedness is derived from its
7795 Note that this is done as an internal manipulation within
7796 the constant folder, in order to find the simplest
7797 representation of the arguments so that their form can be
7798 studied. In any cases, the appropriate type conversions
7799 should be put back in the tree that will get out of the
7804 if (CONSTANT_CLASS_P (arg0
))
7806 tree tem
= const_unop (code
, type
, arg0
);
7809 if (TREE_TYPE (tem
) != type
)
7810 tem
= fold_convert_loc (loc
, type
, tem
);
7816 tem
= generic_simplify (loc
, code
, type
, op0
);
7820 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7822 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7823 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7824 fold_build1_loc (loc
, code
, type
,
7825 fold_convert_loc (loc
, TREE_TYPE (op0
),
7826 TREE_OPERAND (arg0
, 1))));
7827 else if (TREE_CODE (arg0
) == COND_EXPR
)
7829 tree arg01
= TREE_OPERAND (arg0
, 1);
7830 tree arg02
= TREE_OPERAND (arg0
, 2);
7831 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7832 arg01
= fold_build1_loc (loc
, code
, type
,
7833 fold_convert_loc (loc
,
7834 TREE_TYPE (op0
), arg01
));
7835 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7836 arg02
= fold_build1_loc (loc
, code
, type
,
7837 fold_convert_loc (loc
,
7838 TREE_TYPE (op0
), arg02
));
7839 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7842 /* If this was a conversion, and all we did was to move into
7843 inside the COND_EXPR, bring it back out. But leave it if
7844 it is a conversion from integer to integer and the
7845 result precision is no wider than a word since such a
7846 conversion is cheap and may be optimized away by combine,
7847 while it couldn't if it were outside the COND_EXPR. Then return
7848 so we don't get into an infinite recursion loop taking the
7849 conversion out and then back in. */
7851 if ((CONVERT_EXPR_CODE_P (code
)
7852 || code
== NON_LVALUE_EXPR
)
7853 && TREE_CODE (tem
) == COND_EXPR
7854 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7855 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7856 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7857 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7858 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7859 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7860 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7862 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7863 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7864 || flag_syntax_only
))
7865 tem
= build1_loc (loc
, code
, type
,
7867 TREE_TYPE (TREE_OPERAND
7868 (TREE_OPERAND (tem
, 1), 0)),
7869 TREE_OPERAND (tem
, 0),
7870 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7871 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7879 case NON_LVALUE_EXPR
:
7880 if (!maybe_lvalue_p (op0
))
7881 return fold_convert_loc (loc
, type
, op0
);
7886 case FIX_TRUNC_EXPR
:
7887 if (COMPARISON_CLASS_P (op0
))
7889 /* If we have (type) (a CMP b) and type is an integral type, return
7890 new expression involving the new type. Canonicalize
7891 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7893 Do not fold the result as that would not simplify further, also
7894 folding again results in recursions. */
7895 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7896 return build2_loc (loc
, TREE_CODE (op0
), type
,
7897 TREE_OPERAND (op0
, 0),
7898 TREE_OPERAND (op0
, 1));
7899 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7900 && TREE_CODE (type
) != VECTOR_TYPE
)
7901 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7902 constant_boolean_node (true, type
),
7903 constant_boolean_node (false, type
));
7906 /* Handle (T *)&A.B.C for A being of type T and B and C
7907 living at offset zero. This occurs frequently in
7908 C++ upcasting and then accessing the base. */
7909 if (TREE_CODE (op0
) == ADDR_EXPR
7910 && POINTER_TYPE_P (type
)
7911 && handled_component_p (TREE_OPERAND (op0
, 0)))
7913 poly_int64 bitsize
, bitpos
;
7916 int unsignedp
, reversep
, volatilep
;
7918 = get_inner_reference (TREE_OPERAND (op0
, 0), &bitsize
, &bitpos
,
7919 &offset
, &mode
, &unsignedp
, &reversep
,
7921 /* If the reference was to a (constant) zero offset, we can use
7922 the address of the base if it has the same base type
7923 as the result type and the pointer type is unqualified. */
7925 && known_eq (bitpos
, 0)
7926 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7927 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7928 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7929 return fold_convert_loc (loc
, type
,
7930 build_fold_addr_expr_loc (loc
, base
));
7933 if (TREE_CODE (op0
) == MODIFY_EXPR
7934 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7935 /* Detect assigning a bitfield. */
7936 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7938 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7940 /* Don't leave an assignment inside a conversion
7941 unless assigning a bitfield. */
7942 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7943 /* First do the assignment, then return converted constant. */
7944 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7945 TREE_NO_WARNING (tem
) = 1;
7946 TREE_USED (tem
) = 1;
7950 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7951 constants (if x has signed type, the sign bit cannot be set
7952 in c). This folds extension into the BIT_AND_EXPR.
7953 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7954 very likely don't have maximal range for their precision and this
7955 transformation effectively doesn't preserve non-maximal ranges. */
7956 if (TREE_CODE (type
) == INTEGER_TYPE
7957 && TREE_CODE (op0
) == BIT_AND_EXPR
7958 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
7960 tree and_expr
= op0
;
7961 tree and0
= TREE_OPERAND (and_expr
, 0);
7962 tree and1
= TREE_OPERAND (and_expr
, 1);
7965 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
7966 || (TYPE_PRECISION (type
)
7967 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
7969 else if (TYPE_PRECISION (TREE_TYPE (and1
))
7970 <= HOST_BITS_PER_WIDE_INT
7971 && tree_fits_uhwi_p (and1
))
7973 unsigned HOST_WIDE_INT cst
;
7975 cst
= tree_to_uhwi (and1
);
7976 cst
&= HOST_WIDE_INT_M1U
7977 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
7978 change
= (cst
== 0);
7980 && !flag_syntax_only
7981 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0
)))
7984 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
7985 and0
= fold_convert_loc (loc
, uns
, and0
);
7986 and1
= fold_convert_loc (loc
, uns
, and1
);
7991 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
7992 TREE_OVERFLOW (and1
));
7993 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
7994 fold_convert_loc (loc
, type
, and0
), tem
);
7998 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7999 cast (T1)X will fold away. We assume that this happens when X itself
8001 if (POINTER_TYPE_P (type
)
8002 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8003 && CONVERT_EXPR_P (TREE_OPERAND (arg0
, 0)))
8005 tree arg00
= TREE_OPERAND (arg0
, 0);
8006 tree arg01
= TREE_OPERAND (arg0
, 1);
8008 return fold_build_pointer_plus_loc
8009 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
8012 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8013 of the same precision, and X is an integer type not narrower than
8014 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8015 if (INTEGRAL_TYPE_P (type
)
8016 && TREE_CODE (op0
) == BIT_NOT_EXPR
8017 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8018 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
8019 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
8021 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
8022 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
8023 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
8024 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
8025 fold_convert_loc (loc
, type
, tem
));
8028 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8029 type of X and Y (integer types only). */
8030 if (INTEGRAL_TYPE_P (type
)
8031 && TREE_CODE (op0
) == MULT_EXPR
8032 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8033 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8035 /* Be careful not to introduce new overflows. */
8037 if (TYPE_OVERFLOW_WRAPS (type
))
8040 mult_type
= unsigned_type_for (type
);
8042 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8044 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
8045 fold_convert_loc (loc
, mult_type
,
8046 TREE_OPERAND (op0
, 0)),
8047 fold_convert_loc (loc
, mult_type
,
8048 TREE_OPERAND (op0
, 1)));
8049 return fold_convert_loc (loc
, type
, tem
);
8055 case VIEW_CONVERT_EXPR
:
8056 if (TREE_CODE (op0
) == MEM_REF
)
8058 if (TYPE_ALIGN (TREE_TYPE (op0
)) != TYPE_ALIGN (type
))
8059 type
= build_aligned_type (type
, TYPE_ALIGN (TREE_TYPE (op0
)));
8060 tem
= fold_build2_loc (loc
, MEM_REF
, type
,
8061 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
8062 REF_REVERSE_STORAGE_ORDER (tem
) = REF_REVERSE_STORAGE_ORDER (op0
);
8069 tem
= fold_negate_expr (loc
, arg0
);
8071 return fold_convert_loc (loc
, type
, tem
);
8075 /* Convert fabs((double)float) into (double)fabsf(float). */
8076 if (TREE_CODE (arg0
) == NOP_EXPR
8077 && TREE_CODE (type
) == REAL_TYPE
)
8079 tree targ0
= strip_float_extensions (arg0
);
8081 return fold_convert_loc (loc
, type
,
8082 fold_build1_loc (loc
, ABS_EXPR
,
8089 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8090 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8091 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8092 fold_convert_loc (loc
, type
,
8093 TREE_OPERAND (arg0
, 0)))))
8094 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
8095 fold_convert_loc (loc
, type
,
8096 TREE_OPERAND (arg0
, 1)));
8097 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8098 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8099 fold_convert_loc (loc
, type
,
8100 TREE_OPERAND (arg0
, 1)))))
8101 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
8102 fold_convert_loc (loc
, type
,
8103 TREE_OPERAND (arg0
, 0)), tem
);
8107 case TRUTH_NOT_EXPR
:
8108 /* Note that the operand of this must be an int
8109 and its values must be 0 or 1.
8110 ("true" is a fixed value perhaps depending on the language,
8111 but we don't handle values other than 1 correctly yet.) */
8112 tem
= fold_truth_not_expr (loc
, arg0
);
8115 return fold_convert_loc (loc
, type
, tem
);
8118 /* Fold *&X to X if X is an lvalue. */
8119 if (TREE_CODE (op0
) == ADDR_EXPR
)
8121 tree op00
= TREE_OPERAND (op0
, 0);
8123 || TREE_CODE (op00
) == PARM_DECL
8124 || TREE_CODE (op00
) == RESULT_DECL
)
8125 && !TREE_READONLY (op00
))
8132 } /* switch (code) */
8136 /* If the operation was a conversion do _not_ mark a resulting constant
8137 with TREE_OVERFLOW if the original constant was not. These conversions
8138 have implementation defined behavior and retaining the TREE_OVERFLOW
8139 flag here would confuse later passes such as VRP. */
8141 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
8142 tree type
, tree op0
)
8144 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
8146 && TREE_CODE (res
) == INTEGER_CST
8147 && TREE_CODE (op0
) == INTEGER_CST
8148 && CONVERT_EXPR_CODE_P (code
))
8149 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
8154 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8155 operands OP0 and OP1. LOC is the location of the resulting expression.
8156 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8157 Return the folded expression if folding is successful. Otherwise,
8158 return NULL_TREE. */
8160 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
8161 tree arg0
, tree arg1
, tree op0
, tree op1
)
8165 /* We only do these simplifications if we are optimizing. */
8169 /* Check for things like (A || B) && (A || C). We can convert this
8170 to A || (B && C). Note that either operator can be any of the four
8171 truth and/or operations and the transformation will still be
8172 valid. Also note that we only care about order for the
8173 ANDIF and ORIF operators. If B contains side effects, this
8174 might change the truth-value of A. */
8175 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8176 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8177 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8178 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8179 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8180 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8182 tree a00
= TREE_OPERAND (arg0
, 0);
8183 tree a01
= TREE_OPERAND (arg0
, 1);
8184 tree a10
= TREE_OPERAND (arg1
, 0);
8185 tree a11
= TREE_OPERAND (arg1
, 1);
8186 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8187 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8188 && (code
== TRUTH_AND_EXPR
8189 || code
== TRUTH_OR_EXPR
));
8191 if (operand_equal_p (a00
, a10
, 0))
8192 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8193 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8194 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8195 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8196 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8197 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8198 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8199 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8201 /* This case if tricky because we must either have commutative
8202 operators or else A10 must not have side-effects. */
8204 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8205 && operand_equal_p (a01
, a11
, 0))
8206 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8207 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8211 /* See if we can build a range comparison. */
8212 if ((tem
= fold_range_test (loc
, code
, type
, op0
, op1
)) != 0)
8215 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8216 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8218 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8220 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8223 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8224 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8226 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8228 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8231 /* Check for the possibility of merging component references. If our
8232 lhs is another similar operation, try to merge its rhs with our
8233 rhs. Then try to merge our lhs and rhs. */
8234 if (TREE_CODE (arg0
) == code
8235 && (tem
= fold_truth_andor_1 (loc
, code
, type
,
8236 TREE_OPERAND (arg0
, 1), arg1
)) != 0)
8237 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8239 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8242 bool logical_op_non_short_circuit
= LOGICAL_OP_NON_SHORT_CIRCUIT
;
8243 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT
) != -1)
8244 logical_op_non_short_circuit
8245 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT
);
8246 if (logical_op_non_short_circuit
8247 && !flag_sanitize_coverage
8248 && (code
== TRUTH_AND_EXPR
8249 || code
== TRUTH_ANDIF_EXPR
8250 || code
== TRUTH_OR_EXPR
8251 || code
== TRUTH_ORIF_EXPR
))
8253 enum tree_code ncode
, icode
;
8255 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8256 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8257 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8259 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8260 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8261 We don't want to pack more than two leafs to a non-IF AND/OR
8263 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8264 equal to IF-CODE, then we don't want to add right-hand operand.
8265 If the inner right-hand side of left-hand operand has
8266 side-effects, or isn't simple, then we can't add to it,
8267 as otherwise we might destroy if-sequence. */
8268 if (TREE_CODE (arg0
) == icode
8269 && simple_operand_p_2 (arg1
)
8270 /* Needed for sequence points to handle trappings, and
8272 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8274 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8276 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8279 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8280 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8281 else if (TREE_CODE (arg1
) == icode
8282 && simple_operand_p_2 (arg0
)
8283 /* Needed for sequence points to handle trappings, and
8285 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8287 tem
= fold_build2_loc (loc
, ncode
, type
,
8288 arg0
, TREE_OPERAND (arg1
, 0));
8289 return fold_build2_loc (loc
, icode
, type
, tem
,
8290 TREE_OPERAND (arg1
, 1));
8292 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8294 For sequence point consistancy, we need to check for trapping,
8295 and side-effects. */
8296 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8297 && simple_operand_p_2 (arg1
))
8298 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8304 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8305 by changing CODE to reduce the magnitude of constants involved in
8306 ARG0 of the comparison.
8307 Returns a canonicalized comparison tree if a simplification was
8308 possible, otherwise returns NULL_TREE.
8309 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8310 valid if signed overflow is undefined. */
8313 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8314 tree arg0
, tree arg1
,
8315 bool *strict_overflow_p
)
8317 enum tree_code code0
= TREE_CODE (arg0
);
8318 tree t
, cst0
= NULL_TREE
;
8321 /* Match A +- CST code arg1. We can change this only if overflow
8323 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8324 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8325 /* In principle pointers also have undefined overflow behavior,
8326 but that causes problems elsewhere. */
8327 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8328 && (code0
== MINUS_EXPR
8329 || code0
== PLUS_EXPR
)
8330 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
))
8333 /* Identify the constant in arg0 and its sign. */
8334 cst0
= TREE_OPERAND (arg0
, 1);
8335 sgn0
= tree_int_cst_sgn (cst0
);
8337 /* Overflowed constants and zero will cause problems. */
8338 if (integer_zerop (cst0
)
8339 || TREE_OVERFLOW (cst0
))
8342 /* See if we can reduce the magnitude of the constant in
8343 arg0 by changing the comparison code. */
8344 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8346 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8348 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8349 else if (code
== GT_EXPR
8350 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8352 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8353 else if (code
== LE_EXPR
8354 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8356 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8357 else if (code
== GE_EXPR
8358 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8362 *strict_overflow_p
= true;
8364 /* Now build the constant reduced in magnitude. But not if that
8365 would produce one outside of its types range. */
8366 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8368 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8369 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8371 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8372 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8375 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8376 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8377 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8378 t
= fold_convert (TREE_TYPE (arg1
), t
);
8380 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8383 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8384 overflow further. Try to decrease the magnitude of constants involved
8385 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8386 and put sole constants at the second argument position.
8387 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8390 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8391 tree arg0
, tree arg1
)
8394 bool strict_overflow_p
;
8395 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8396 "when reducing constant in comparison");
8398 /* Try canonicalization by simplifying arg0. */
8399 strict_overflow_p
= false;
8400 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8401 &strict_overflow_p
);
8404 if (strict_overflow_p
)
8405 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8409 /* Try canonicalization by simplifying arg1 using the swapped
8411 code
= swap_tree_comparison (code
);
8412 strict_overflow_p
= false;
8413 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8414 &strict_overflow_p
);
8415 if (t
&& strict_overflow_p
)
8416 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8420 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8421 space. This is used to avoid issuing overflow warnings for
8422 expressions like &p->x which cannot wrap. */
8425 pointer_may_wrap_p (tree base
, tree offset
, poly_int64 bitpos
)
8427 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8430 if (maybe_lt (bitpos
, 0))
8433 poly_wide_int wi_offset
;
8434 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8435 if (offset
== NULL_TREE
)
8436 wi_offset
= wi::zero (precision
);
8437 else if (!poly_int_tree_p (offset
) || TREE_OVERFLOW (offset
))
8440 wi_offset
= wi::to_poly_wide (offset
);
8442 wi::overflow_type overflow
;
8443 poly_wide_int units
= wi::shwi (bits_to_bytes_round_down (bitpos
),
8445 poly_wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8449 poly_uint64 total_hwi
, size
;
8450 if (!total
.to_uhwi (&total_hwi
)
8451 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base
))),
8453 || known_eq (size
, 0U))
8456 if (known_le (total_hwi
, size
))
8459 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8461 if (TREE_CODE (base
) == ADDR_EXPR
8462 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base
, 0))),
8464 && maybe_ne (size
, 0U)
8465 && known_le (total_hwi
, size
))
8471 /* Return a positive integer when the symbol DECL is known to have
8472 a nonzero address, zero when it's known not to (e.g., it's a weak
8473 symbol), and a negative integer when the symbol is not yet in the
8474 symbol table and so whether or not its address is zero is unknown.
8475 For function local objects always return positive integer. */
8477 maybe_nonzero_address (tree decl
)
8479 if (DECL_P (decl
) && decl_in_symtab_p (decl
))
8480 if (struct symtab_node
*symbol
= symtab_node::get_create (decl
))
8481 return symbol
->nonzero_address ();
8483 /* Function local objects are never NULL. */
8485 && (DECL_CONTEXT (decl
)
8486 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
8487 && auto_var_in_fn_p (decl
, DECL_CONTEXT (decl
))))
8493 /* Subroutine of fold_binary. This routine performs all of the
8494 transformations that are common to the equality/inequality
8495 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8496 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8497 fold_binary should call fold_binary. Fold a comparison with
8498 tree code CODE and type TYPE with operands OP0 and OP1. Return
8499 the folded comparison or NULL_TREE. */
8502 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8505 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8506 tree arg0
, arg1
, tem
;
8511 STRIP_SIGN_NOPS (arg0
);
8512 STRIP_SIGN_NOPS (arg1
);
8514 /* For comparisons of pointers we can decompose it to a compile time
8515 comparison of the base objects and the offsets into the object.
8516 This requires at least one operand being an ADDR_EXPR or a
8517 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8518 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8519 && (TREE_CODE (arg0
) == ADDR_EXPR
8520 || TREE_CODE (arg1
) == ADDR_EXPR
8521 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8522 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8524 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8525 poly_int64 bitsize
, bitpos0
= 0, bitpos1
= 0;
8527 int volatilep
, reversep
, unsignedp
;
8528 bool indirect_base0
= false, indirect_base1
= false;
8530 /* Get base and offset for the access. Strip ADDR_EXPR for
8531 get_inner_reference, but put it back by stripping INDIRECT_REF
8532 off the base object if possible. indirect_baseN will be true
8533 if baseN is not an address but refers to the object itself. */
8535 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8538 = get_inner_reference (TREE_OPERAND (arg0
, 0),
8539 &bitsize
, &bitpos0
, &offset0
, &mode
,
8540 &unsignedp
, &reversep
, &volatilep
);
8541 if (TREE_CODE (base0
) == INDIRECT_REF
)
8542 base0
= TREE_OPERAND (base0
, 0);
8544 indirect_base0
= true;
8546 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8548 base0
= TREE_OPERAND (arg0
, 0);
8549 STRIP_SIGN_NOPS (base0
);
8550 if (TREE_CODE (base0
) == ADDR_EXPR
)
8553 = get_inner_reference (TREE_OPERAND (base0
, 0),
8554 &bitsize
, &bitpos0
, &offset0
, &mode
,
8555 &unsignedp
, &reversep
, &volatilep
);
8556 if (TREE_CODE (base0
) == INDIRECT_REF
)
8557 base0
= TREE_OPERAND (base0
, 0);
8559 indirect_base0
= true;
8561 if (offset0
== NULL_TREE
|| integer_zerop (offset0
))
8562 offset0
= TREE_OPERAND (arg0
, 1);
8564 offset0
= size_binop (PLUS_EXPR
, offset0
,
8565 TREE_OPERAND (arg0
, 1));
8566 if (poly_int_tree_p (offset0
))
8568 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset0
),
8569 TYPE_PRECISION (sizetype
));
8570 tem
<<= LOG2_BITS_PER_UNIT
;
8572 if (tem
.to_shwi (&bitpos0
))
8573 offset0
= NULL_TREE
;
8578 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8581 = get_inner_reference (TREE_OPERAND (arg1
, 0),
8582 &bitsize
, &bitpos1
, &offset1
, &mode
,
8583 &unsignedp
, &reversep
, &volatilep
);
8584 if (TREE_CODE (base1
) == INDIRECT_REF
)
8585 base1
= TREE_OPERAND (base1
, 0);
8587 indirect_base1
= true;
8589 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8591 base1
= TREE_OPERAND (arg1
, 0);
8592 STRIP_SIGN_NOPS (base1
);
8593 if (TREE_CODE (base1
) == ADDR_EXPR
)
8596 = get_inner_reference (TREE_OPERAND (base1
, 0),
8597 &bitsize
, &bitpos1
, &offset1
, &mode
,
8598 &unsignedp
, &reversep
, &volatilep
);
8599 if (TREE_CODE (base1
) == INDIRECT_REF
)
8600 base1
= TREE_OPERAND (base1
, 0);
8602 indirect_base1
= true;
8604 if (offset1
== NULL_TREE
|| integer_zerop (offset1
))
8605 offset1
= TREE_OPERAND (arg1
, 1);
8607 offset1
= size_binop (PLUS_EXPR
, offset1
,
8608 TREE_OPERAND (arg1
, 1));
8609 if (poly_int_tree_p (offset1
))
8611 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset1
),
8612 TYPE_PRECISION (sizetype
));
8613 tem
<<= LOG2_BITS_PER_UNIT
;
8615 if (tem
.to_shwi (&bitpos1
))
8616 offset1
= NULL_TREE
;
8620 /* If we have equivalent bases we might be able to simplify. */
8621 if (indirect_base0
== indirect_base1
8622 && operand_equal_p (base0
, base1
,
8623 indirect_base0
? OEP_ADDRESS_OF
: 0))
8625 /* We can fold this expression to a constant if the non-constant
8626 offset parts are equal. */
8627 if ((offset0
== offset1
8628 || (offset0
&& offset1
8629 && operand_equal_p (offset0
, offset1
, 0)))
8632 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8633 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8636 && maybe_ne (bitpos0
, bitpos1
)
8637 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8638 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8639 fold_overflow_warning (("assuming pointer wraparound does not "
8640 "occur when comparing P +- C1 with "
8642 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8647 if (known_eq (bitpos0
, bitpos1
))
8648 return constant_boolean_node (true, type
);
8649 if (known_ne (bitpos0
, bitpos1
))
8650 return constant_boolean_node (false, type
);
8653 if (known_ne (bitpos0
, bitpos1
))
8654 return constant_boolean_node (true, type
);
8655 if (known_eq (bitpos0
, bitpos1
))
8656 return constant_boolean_node (false, type
);
8659 if (known_lt (bitpos0
, bitpos1
))
8660 return constant_boolean_node (true, type
);
8661 if (known_ge (bitpos0
, bitpos1
))
8662 return constant_boolean_node (false, type
);
8665 if (known_le (bitpos0
, bitpos1
))
8666 return constant_boolean_node (true, type
);
8667 if (known_gt (bitpos0
, bitpos1
))
8668 return constant_boolean_node (false, type
);
8671 if (known_ge (bitpos0
, bitpos1
))
8672 return constant_boolean_node (true, type
);
8673 if (known_lt (bitpos0
, bitpos1
))
8674 return constant_boolean_node (false, type
);
8677 if (known_gt (bitpos0
, bitpos1
))
8678 return constant_boolean_node (true, type
);
8679 if (known_le (bitpos0
, bitpos1
))
8680 return constant_boolean_node (false, type
);
8685 /* We can simplify the comparison to a comparison of the variable
8686 offset parts if the constant offset parts are equal.
8687 Be careful to use signed sizetype here because otherwise we
8688 mess with array offsets in the wrong way. This is possible
8689 because pointer arithmetic is restricted to retain within an
8690 object and overflow on pointer differences is undefined as of
8691 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8692 else if (known_eq (bitpos0
, bitpos1
)
8695 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8696 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8698 /* By converting to signed sizetype we cover middle-end pointer
8699 arithmetic which operates on unsigned pointer types of size
8700 type size and ARRAY_REF offsets which are properly sign or
8701 zero extended from their type in case it is narrower than
8703 if (offset0
== NULL_TREE
)
8704 offset0
= build_int_cst (ssizetype
, 0);
8706 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
8707 if (offset1
== NULL_TREE
)
8708 offset1
= build_int_cst (ssizetype
, 0);
8710 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
8713 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8714 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8715 fold_overflow_warning (("assuming pointer wraparound does not "
8716 "occur when comparing P +- C1 with "
8718 WARN_STRICT_OVERFLOW_COMPARISON
);
8720 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
8723 /* For equal offsets we can simplify to a comparison of the
8725 else if (known_eq (bitpos0
, bitpos1
)
8727 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
8729 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
8730 && ((offset0
== offset1
)
8731 || (offset0
&& offset1
8732 && operand_equal_p (offset0
, offset1
, 0))))
8735 base0
= build_fold_addr_expr_loc (loc
, base0
);
8737 base1
= build_fold_addr_expr_loc (loc
, base1
);
8738 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
8740 /* Comparison between an ordinary (non-weak) symbol and a null
8741 pointer can be eliminated since such symbols must have a non
8742 null address. In C, relational expressions between pointers
8743 to objects and null pointers are undefined. The results
8744 below follow the C++ rules with the additional property that
8745 every object pointer compares greater than a null pointer.
8747 else if (((DECL_P (base0
)
8748 && maybe_nonzero_address (base0
) > 0
8749 /* Avoid folding references to struct members at offset 0 to
8750 prevent tests like '&ptr->firstmember == 0' from getting
8751 eliminated. When ptr is null, although the -> expression
8752 is strictly speaking invalid, GCC retains it as a matter
8753 of QoI. See PR c/44555. */
8754 && (offset0
== NULL_TREE
&& known_ne (bitpos0
, 0)))
8755 || CONSTANT_CLASS_P (base0
))
8757 /* The caller guarantees that when one of the arguments is
8758 constant (i.e., null in this case) it is second. */
8759 && integer_zerop (arg1
))
8766 return constant_boolean_node (false, type
);
8770 return constant_boolean_node (true, type
);
8777 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8778 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8779 the resulting offset is smaller in absolute value than the
8780 original one and has the same sign. */
8781 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8782 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8783 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8784 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8785 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8786 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8787 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8788 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8790 tree const1
= TREE_OPERAND (arg0
, 1);
8791 tree const2
= TREE_OPERAND (arg1
, 1);
8792 tree variable1
= TREE_OPERAND (arg0
, 0);
8793 tree variable2
= TREE_OPERAND (arg1
, 0);
8795 const char * const warnmsg
= G_("assuming signed overflow does not "
8796 "occur when combining constants around "
8799 /* Put the constant on the side where it doesn't overflow and is
8800 of lower absolute value and of same sign than before. */
8801 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8802 ? MINUS_EXPR
: PLUS_EXPR
,
8804 if (!TREE_OVERFLOW (cst
)
8805 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
8806 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
8808 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8809 return fold_build2_loc (loc
, code
, type
,
8811 fold_build2_loc (loc
, TREE_CODE (arg1
),
8816 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8817 ? MINUS_EXPR
: PLUS_EXPR
,
8819 if (!TREE_OVERFLOW (cst
)
8820 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
8821 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
8823 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8824 return fold_build2_loc (loc
, code
, type
,
8825 fold_build2_loc (loc
, TREE_CODE (arg0
),
8832 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
8836 /* If we are comparing an expression that just has comparisons
8837 of two integer values, arithmetic expressions of those comparisons,
8838 and constants, we can simplify it. There are only three cases
8839 to check: the two values can either be equal, the first can be
8840 greater, or the second can be greater. Fold the expression for
8841 those three values. Since each value must be 0 or 1, we have
8842 eight possibilities, each of which corresponds to the constant 0
8843 or 1 or one of the six possible comparisons.
8845 This handles common cases like (a > b) == 0 but also handles
8846 expressions like ((x > y) - (y > x)) > 0, which supposedly
8847 occur in macroized code. */
8849 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
8851 tree cval1
= 0, cval2
= 0;
8853 if (twoval_comparison_p (arg0
, &cval1
, &cval2
)
8854 /* Don't handle degenerate cases here; they should already
8855 have been handled anyway. */
8856 && cval1
!= 0 && cval2
!= 0
8857 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
8858 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
8859 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
8860 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
8861 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
8862 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
8863 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
8865 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
8866 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
8868 /* We can't just pass T to eval_subst in case cval1 or cval2
8869 was the same as ARG1. */
8872 = fold_build2_loc (loc
, code
, type
,
8873 eval_subst (loc
, arg0
, cval1
, maxval
,
8877 = fold_build2_loc (loc
, code
, type
,
8878 eval_subst (loc
, arg0
, cval1
, maxval
,
8882 = fold_build2_loc (loc
, code
, type
,
8883 eval_subst (loc
, arg0
, cval1
, minval
,
8887 /* All three of these results should be 0 or 1. Confirm they are.
8888 Then use those values to select the proper code to use. */
8890 if (TREE_CODE (high_result
) == INTEGER_CST
8891 && TREE_CODE (equal_result
) == INTEGER_CST
8892 && TREE_CODE (low_result
) == INTEGER_CST
)
8894 /* Make a 3-bit mask with the high-order bit being the
8895 value for `>', the next for '=', and the low for '<'. */
8896 switch ((integer_onep (high_result
) * 4)
8897 + (integer_onep (equal_result
) * 2)
8898 + integer_onep (low_result
))
8902 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
8923 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
8926 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
8935 /* Subroutine of fold_binary. Optimize complex multiplications of the
8936 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8937 argument EXPR represents the expression "z" of type TYPE. */
8940 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
8942 tree itype
= TREE_TYPE (type
);
8943 tree rpart
, ipart
, tem
;
8945 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
8947 rpart
= TREE_OPERAND (expr
, 0);
8948 ipart
= TREE_OPERAND (expr
, 1);
8950 else if (TREE_CODE (expr
) == COMPLEX_CST
)
8952 rpart
= TREE_REALPART (expr
);
8953 ipart
= TREE_IMAGPART (expr
);
8957 expr
= save_expr (expr
);
8958 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
8959 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
8962 rpart
= save_expr (rpart
);
8963 ipart
= save_expr (ipart
);
8964 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
8965 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
8966 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
8967 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
8968 build_zero_cst (itype
));
8972 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8973 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8974 true if successful. */
8977 vec_cst_ctor_to_array (tree arg
, unsigned int nelts
, tree
*elts
)
8979 unsigned HOST_WIDE_INT i
, nunits
;
8981 if (TREE_CODE (arg
) == VECTOR_CST
8982 && VECTOR_CST_NELTS (arg
).is_constant (&nunits
))
8984 for (i
= 0; i
< nunits
; ++i
)
8985 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
8987 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
8989 constructor_elt
*elt
;
8991 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
8992 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
8995 elts
[i
] = elt
->value
;
8999 for (; i
< nelts
; i
++)
9001 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
9005 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9006 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9007 NULL_TREE otherwise. */
9010 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const vec_perm_indices
&sel
)
9013 unsigned HOST_WIDE_INT nelts
;
9014 bool need_ctor
= false;
9016 if (!sel
.length ().is_constant (&nelts
))
9018 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type
), nelts
)
9019 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)), nelts
)
9020 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)), nelts
));
9021 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
9022 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
9025 tree
*in_elts
= XALLOCAVEC (tree
, nelts
* 2);
9026 if (!vec_cst_ctor_to_array (arg0
, nelts
, in_elts
)
9027 || !vec_cst_ctor_to_array (arg1
, nelts
, in_elts
+ nelts
))
9030 tree_vector_builder
out_elts (type
, nelts
, 1);
9031 for (i
= 0; i
< nelts
; i
++)
9033 HOST_WIDE_INT index
;
9034 if (!sel
[i
].is_constant (&index
))
9036 if (!CONSTANT_CLASS_P (in_elts
[index
]))
9038 out_elts
.quick_push (unshare_expr (in_elts
[index
]));
9043 vec
<constructor_elt
, va_gc
> *v
;
9044 vec_alloc (v
, nelts
);
9045 for (i
= 0; i
< nelts
; i
++)
9046 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, out_elts
[i
]);
9047 return build_constructor (type
, v
);
9050 return out_elts
.build ();
9053 /* Try to fold a pointer difference of type TYPE two address expressions of
9054 array references AREF0 and AREF1 using location LOC. Return a
9055 simplified expression for the difference or NULL_TREE. */
9058 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
9059 tree aref0
, tree aref1
,
9060 bool use_pointer_diff
)
9062 tree base0
= TREE_OPERAND (aref0
, 0);
9063 tree base1
= TREE_OPERAND (aref1
, 0);
9064 tree base_offset
= build_int_cst (type
, 0);
9066 /* If the bases are array references as well, recurse. If the bases
9067 are pointer indirections compute the difference of the pointers.
9068 If the bases are equal, we are set. */
9069 if ((TREE_CODE (base0
) == ARRAY_REF
9070 && TREE_CODE (base1
) == ARRAY_REF
9072 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
,
9074 || (INDIRECT_REF_P (base0
)
9075 && INDIRECT_REF_P (base1
)
9078 ? fold_binary_loc (loc
, POINTER_DIFF_EXPR
, type
,
9079 TREE_OPERAND (base0
, 0),
9080 TREE_OPERAND (base1
, 0))
9081 : fold_binary_loc (loc
, MINUS_EXPR
, type
,
9083 TREE_OPERAND (base0
, 0)),
9085 TREE_OPERAND (base1
, 0)))))
9086 || operand_equal_p (base0
, base1
, OEP_ADDRESS_OF
))
9088 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
9089 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
9090 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
9091 tree diff
= fold_build2_loc (loc
, MINUS_EXPR
, type
, op0
, op1
);
9092 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9094 fold_build2_loc (loc
, MULT_EXPR
, type
,
9100 /* If the real or vector real constant CST of type TYPE has an exact
9101 inverse, return it, else return NULL. */
9104 exact_inverse (tree type
, tree cst
)
9110 switch (TREE_CODE (cst
))
9113 r
= TREE_REAL_CST (cst
);
9115 if (exact_real_inverse (TYPE_MODE (type
), &r
))
9116 return build_real (type
, r
);
9122 unit_type
= TREE_TYPE (type
);
9123 mode
= TYPE_MODE (unit_type
);
9125 tree_vector_builder elts
;
9126 if (!elts
.new_unary_operation (type
, cst
, false))
9128 unsigned int count
= elts
.encoded_nelts ();
9129 for (unsigned int i
= 0; i
< count
; ++i
)
9131 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
9132 if (!exact_real_inverse (mode
, &r
))
9134 elts
.quick_push (build_real (unit_type
, r
));
9137 return elts
.build ();
9145 /* Mask out the tz least significant bits of X of type TYPE where
9146 tz is the number of trailing zeroes in Y. */
9148 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
9150 int tz
= wi::ctz (y
);
9152 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
9156 /* Return true when T is an address and is known to be nonzero.
9157 For floating point we further ensure that T is not denormal.
9158 Similar logic is present in nonzero_address in rtlanal.h.
9160 If the return value is based on the assumption that signed overflow
9161 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9162 change *STRICT_OVERFLOW_P. */
9165 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
9167 tree type
= TREE_TYPE (t
);
9168 enum tree_code code
;
9170 /* Doing something useful for floating point would need more work. */
9171 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
9174 code
= TREE_CODE (t
);
9175 switch (TREE_CODE_CLASS (code
))
9178 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9181 case tcc_comparison
:
9182 return tree_binary_nonzero_warnv_p (code
, type
,
9183 TREE_OPERAND (t
, 0),
9184 TREE_OPERAND (t
, 1),
9187 case tcc_declaration
:
9189 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9197 case TRUTH_NOT_EXPR
:
9198 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9201 case TRUTH_AND_EXPR
:
9203 case TRUTH_XOR_EXPR
:
9204 return tree_binary_nonzero_warnv_p (code
, type
,
9205 TREE_OPERAND (t
, 0),
9206 TREE_OPERAND (t
, 1),
9214 case WITH_SIZE_EXPR
:
9216 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9221 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
9225 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
9230 tree fndecl
= get_callee_fndecl (t
);
9231 if (!fndecl
) return false;
9232 if (flag_delete_null_pointer_checks
&& !flag_check_new
9233 && DECL_IS_OPERATOR_NEW (fndecl
)
9234 && !TREE_NOTHROW (fndecl
))
9236 if (flag_delete_null_pointer_checks
9237 && lookup_attribute ("returns_nonnull",
9238 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
9240 return alloca_call_p (t
);
9249 /* Return true when T is an address and is known to be nonzero.
9250 Handle warnings about undefined signed overflow. */
9253 tree_expr_nonzero_p (tree t
)
9255 bool ret
, strict_overflow_p
;
9257 strict_overflow_p
= false;
9258 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
9259 if (strict_overflow_p
)
9260 fold_overflow_warning (("assuming signed overflow does not occur when "
9261 "determining that expression is always "
9263 WARN_STRICT_OVERFLOW_MISC
);
9267 /* Return true if T is known not to be equal to an integer W. */
9270 expr_not_equal_to (tree t
, const wide_int
&w
)
9272 wide_int min
, max
, nz
;
9273 value_range_kind rtype
;
9274 switch (TREE_CODE (t
))
9277 return wi::to_wide (t
) != w
;
9280 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
9282 rtype
= get_range_info (t
, &min
, &max
);
9283 if (rtype
== VR_RANGE
)
9285 if (wi::lt_p (max
, w
, TYPE_SIGN (TREE_TYPE (t
))))
9287 if (wi::lt_p (w
, min
, TYPE_SIGN (TREE_TYPE (t
))))
9290 else if (rtype
== VR_ANTI_RANGE
9291 && wi::le_p (min
, w
, TYPE_SIGN (TREE_TYPE (t
)))
9292 && wi::le_p (w
, max
, TYPE_SIGN (TREE_TYPE (t
))))
9294 /* If T has some known zero bits and W has any of those bits set,
9295 then T is known not to be equal to W. */
9296 if (wi::ne_p (wi::zext (wi::bit_and_not (w
, get_nonzero_bits (t
)),
9297 TYPE_PRECISION (TREE_TYPE (t
))), 0))
9306 /* Fold a binary expression of code CODE and type TYPE with operands
9307 OP0 and OP1. LOC is the location of the resulting expression.
9308 Return the folded expression if folding is successful. Otherwise,
9309 return NULL_TREE. */
9312 fold_binary_loc (location_t loc
, enum tree_code code
, tree type
,
9315 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9316 tree arg0
, arg1
, tem
;
9317 tree t1
= NULL_TREE
;
9318 bool strict_overflow_p
;
9321 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9322 && TREE_CODE_LENGTH (code
) == 2
9324 && op1
!= NULL_TREE
);
9329 /* Strip any conversions that don't change the mode. This is
9330 safe for every expression, except for a comparison expression
9331 because its signedness is derived from its operands. So, in
9332 the latter case, only strip conversions that don't change the
9333 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9336 Note that this is done as an internal manipulation within the
9337 constant folder, in order to find the simplest representation
9338 of the arguments so that their form can be studied. In any
9339 cases, the appropriate type conversions should be put back in
9340 the tree that will get out of the constant folder. */
9342 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9344 STRIP_SIGN_NOPS (arg0
);
9345 STRIP_SIGN_NOPS (arg1
);
9353 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9354 constant but we can't do arithmetic on them. */
9355 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9357 tem
= const_binop (code
, type
, arg0
, arg1
);
9358 if (tem
!= NULL_TREE
)
9360 if (TREE_TYPE (tem
) != type
)
9361 tem
= fold_convert_loc (loc
, type
, tem
);
9366 /* If this is a commutative operation, and ARG0 is a constant, move it
9367 to ARG1 to reduce the number of tests below. */
9368 if (commutative_tree_code (code
)
9369 && tree_swap_operands_p (arg0
, arg1
))
9370 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9372 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9373 to ARG1 to reduce the number of tests below. */
9374 if (kind
== tcc_comparison
9375 && tree_swap_operands_p (arg0
, arg1
))
9376 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9378 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9382 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9384 First check for cases where an arithmetic operation is applied to a
9385 compound, conditional, or comparison operation. Push the arithmetic
9386 operation inside the compound or conditional to see if any folding
9387 can then be done. Convert comparison to conditional for this purpose.
9388 The also optimizes non-constant cases that used to be done in
9391 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9392 one of the operands is a comparison and the other is a comparison, a
9393 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9394 code below would make the expression more complex. Change it to a
9395 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9396 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9398 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9399 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9400 && !VECTOR_TYPE_P (TREE_TYPE (arg0
))
9401 && ((truth_value_p (TREE_CODE (arg0
))
9402 && (truth_value_p (TREE_CODE (arg1
))
9403 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9404 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9405 || (truth_value_p (TREE_CODE (arg1
))
9406 && (truth_value_p (TREE_CODE (arg0
))
9407 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9408 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9410 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9411 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9414 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9415 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9417 if (code
== EQ_EXPR
)
9418 tem
= invert_truthvalue_loc (loc
, tem
);
9420 return fold_convert_loc (loc
, type
, tem
);
9423 if (TREE_CODE_CLASS (code
) == tcc_binary
9424 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9426 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9428 tem
= fold_build2_loc (loc
, code
, type
,
9429 fold_convert_loc (loc
, TREE_TYPE (op0
),
9430 TREE_OPERAND (arg0
, 1)), op1
);
9431 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9434 if (TREE_CODE (arg1
) == COMPOUND_EXPR
)
9436 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9437 fold_convert_loc (loc
, TREE_TYPE (op1
),
9438 TREE_OPERAND (arg1
, 1)));
9439 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9443 if (TREE_CODE (arg0
) == COND_EXPR
9444 || TREE_CODE (arg0
) == VEC_COND_EXPR
9445 || COMPARISON_CLASS_P (arg0
))
9447 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9449 /*cond_first_p=*/1);
9450 if (tem
!= NULL_TREE
)
9454 if (TREE_CODE (arg1
) == COND_EXPR
9455 || TREE_CODE (arg1
) == VEC_COND_EXPR
9456 || COMPARISON_CLASS_P (arg1
))
9458 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9460 /*cond_first_p=*/0);
9461 if (tem
!= NULL_TREE
)
9469 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9470 if (TREE_CODE (arg0
) == ADDR_EXPR
9471 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
9473 tree iref
= TREE_OPERAND (arg0
, 0);
9474 return fold_build2 (MEM_REF
, type
,
9475 TREE_OPERAND (iref
, 0),
9476 int_const_binop (PLUS_EXPR
, arg1
,
9477 TREE_OPERAND (iref
, 1)));
9480 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9481 if (TREE_CODE (arg0
) == ADDR_EXPR
9482 && handled_component_p (TREE_OPERAND (arg0
, 0)))
9486 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
9490 return fold_build2 (MEM_REF
, type
,
9491 build_fold_addr_expr (base
),
9492 int_const_binop (PLUS_EXPR
, arg1
,
9493 size_int (coffset
)));
9498 case POINTER_PLUS_EXPR
:
9499 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9500 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9501 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9502 return fold_convert_loc (loc
, type
,
9503 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
9504 fold_convert_loc (loc
, sizetype
,
9506 fold_convert_loc (loc
, sizetype
,
9512 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
9514 /* X + (X / CST) * -CST is X % CST. */
9515 if (TREE_CODE (arg1
) == MULT_EXPR
9516 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
9517 && operand_equal_p (arg0
,
9518 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
9520 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
9521 tree cst1
= TREE_OPERAND (arg1
, 1);
9522 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
9524 if (sum
&& integer_zerop (sum
))
9525 return fold_convert_loc (loc
, type
,
9526 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
9527 TREE_TYPE (arg0
), arg0
,
9532 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9533 one. Make sure the type is not saturating and has the signedness of
9534 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9535 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9536 if ((TREE_CODE (arg0
) == MULT_EXPR
9537 || TREE_CODE (arg1
) == MULT_EXPR
)
9538 && !TYPE_SATURATING (type
)
9539 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9540 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9541 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9543 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9548 if (! FLOAT_TYPE_P (type
))
9550 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9551 (plus (plus (mult) (mult)) (foo)) so that we can
9552 take advantage of the factoring cases below. */
9553 if (ANY_INTEGRAL_TYPE_P (type
)
9554 && TYPE_OVERFLOW_WRAPS (type
)
9555 && (((TREE_CODE (arg0
) == PLUS_EXPR
9556 || TREE_CODE (arg0
) == MINUS_EXPR
)
9557 && TREE_CODE (arg1
) == MULT_EXPR
)
9558 || ((TREE_CODE (arg1
) == PLUS_EXPR
9559 || TREE_CODE (arg1
) == MINUS_EXPR
)
9560 && TREE_CODE (arg0
) == MULT_EXPR
)))
9562 tree parg0
, parg1
, parg
, marg
;
9563 enum tree_code pcode
;
9565 if (TREE_CODE (arg1
) == MULT_EXPR
)
9566 parg
= arg0
, marg
= arg1
;
9568 parg
= arg1
, marg
= arg0
;
9569 pcode
= TREE_CODE (parg
);
9570 parg0
= TREE_OPERAND (parg
, 0);
9571 parg1
= TREE_OPERAND (parg
, 1);
9575 if (TREE_CODE (parg0
) == MULT_EXPR
9576 && TREE_CODE (parg1
) != MULT_EXPR
)
9577 return fold_build2_loc (loc
, pcode
, type
,
9578 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9579 fold_convert_loc (loc
, type
,
9581 fold_convert_loc (loc
, type
,
9583 fold_convert_loc (loc
, type
, parg1
));
9584 if (TREE_CODE (parg0
) != MULT_EXPR
9585 && TREE_CODE (parg1
) == MULT_EXPR
)
9587 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9588 fold_convert_loc (loc
, type
, parg0
),
9589 fold_build2_loc (loc
, pcode
, type
,
9590 fold_convert_loc (loc
, type
, marg
),
9591 fold_convert_loc (loc
, type
,
9597 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9598 to __complex__ ( x, y ). This is not the same for SNaNs or
9599 if signed zeros are involved. */
9600 if (!HONOR_SNANS (element_mode (arg0
))
9601 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9602 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9604 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9605 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9606 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9607 bool arg0rz
= false, arg0iz
= false;
9608 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9609 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9611 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9612 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9613 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9615 tree rp
= arg1r
? arg1r
9616 : build1 (REALPART_EXPR
, rtype
, arg1
);
9617 tree ip
= arg0i
? arg0i
9618 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9619 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9621 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9623 tree rp
= arg0r
? arg0r
9624 : build1 (REALPART_EXPR
, rtype
, arg0
);
9625 tree ip
= arg1i
? arg1i
9626 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9627 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9632 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9633 We associate floats only if the user has specified
9634 -fassociative-math. */
9635 if (flag_associative_math
9636 && TREE_CODE (arg1
) == PLUS_EXPR
9637 && TREE_CODE (arg0
) != MULT_EXPR
)
9639 tree tree10
= TREE_OPERAND (arg1
, 0);
9640 tree tree11
= TREE_OPERAND (arg1
, 1);
9641 if (TREE_CODE (tree11
) == MULT_EXPR
9642 && TREE_CODE (tree10
) == MULT_EXPR
)
9645 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
9646 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
9649 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9650 We associate floats only if the user has specified
9651 -fassociative-math. */
9652 if (flag_associative_math
9653 && TREE_CODE (arg0
) == PLUS_EXPR
9654 && TREE_CODE (arg1
) != MULT_EXPR
)
9656 tree tree00
= TREE_OPERAND (arg0
, 0);
9657 tree tree01
= TREE_OPERAND (arg0
, 1);
9658 if (TREE_CODE (tree01
) == MULT_EXPR
9659 && TREE_CODE (tree00
) == MULT_EXPR
)
9662 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
9663 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
9669 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9670 is a rotate of A by C1 bits. */
9671 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9672 is a rotate of A by B bits.
9673 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9674 though in this case CODE must be | and not + or ^, otherwise
9675 it doesn't return A when B is 0. */
9677 enum tree_code code0
, code1
;
9679 code0
= TREE_CODE (arg0
);
9680 code1
= TREE_CODE (arg1
);
9681 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9682 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9683 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9684 TREE_OPERAND (arg1
, 0), 0)
9685 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9686 TYPE_UNSIGNED (rtype
))
9687 /* Only create rotates in complete modes. Other cases are not
9688 expanded properly. */
9689 && (element_precision (rtype
)
9690 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype
))))
9692 tree tree01
, tree11
;
9693 tree orig_tree01
, orig_tree11
;
9694 enum tree_code code01
, code11
;
9696 tree01
= orig_tree01
= TREE_OPERAND (arg0
, 1);
9697 tree11
= orig_tree11
= TREE_OPERAND (arg1
, 1);
9698 STRIP_NOPS (tree01
);
9699 STRIP_NOPS (tree11
);
9700 code01
= TREE_CODE (tree01
);
9701 code11
= TREE_CODE (tree11
);
9702 if (code11
!= MINUS_EXPR
9703 && (code01
== MINUS_EXPR
|| code01
== BIT_AND_EXPR
))
9705 std::swap (code0
, code1
);
9706 std::swap (code01
, code11
);
9707 std::swap (tree01
, tree11
);
9708 std::swap (orig_tree01
, orig_tree11
);
9710 if (code01
== INTEGER_CST
9711 && code11
== INTEGER_CST
9712 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
9713 == element_precision (rtype
)))
9715 tem
= build2_loc (loc
, LROTATE_EXPR
,
9716 rtype
, TREE_OPERAND (arg0
, 0),
9717 code0
== LSHIFT_EXPR
9718 ? orig_tree01
: orig_tree11
);
9719 return fold_convert_loc (loc
, type
, tem
);
9721 else if (code11
== MINUS_EXPR
)
9723 tree tree110
, tree111
;
9724 tree110
= TREE_OPERAND (tree11
, 0);
9725 tree111
= TREE_OPERAND (tree11
, 1);
9726 STRIP_NOPS (tree110
);
9727 STRIP_NOPS (tree111
);
9728 if (TREE_CODE (tree110
) == INTEGER_CST
9729 && compare_tree_int (tree110
,
9730 element_precision (rtype
)) == 0
9731 && operand_equal_p (tree01
, tree111
, 0))
9733 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9734 ? LROTATE_EXPR
: RROTATE_EXPR
),
9735 rtype
, TREE_OPERAND (arg0
, 0),
9737 return fold_convert_loc (loc
, type
, tem
);
9740 else if (code
== BIT_IOR_EXPR
9741 && code11
== BIT_AND_EXPR
9742 && pow2p_hwi (element_precision (rtype
)))
9744 tree tree110
, tree111
;
9745 tree110
= TREE_OPERAND (tree11
, 0);
9746 tree111
= TREE_OPERAND (tree11
, 1);
9747 STRIP_NOPS (tree110
);
9748 STRIP_NOPS (tree111
);
9749 if (TREE_CODE (tree110
) == NEGATE_EXPR
9750 && TREE_CODE (tree111
) == INTEGER_CST
9751 && compare_tree_int (tree111
,
9752 element_precision (rtype
) - 1) == 0
9753 && operand_equal_p (tree01
, TREE_OPERAND (tree110
, 0), 0))
9755 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9756 ? LROTATE_EXPR
: RROTATE_EXPR
),
9757 rtype
, TREE_OPERAND (arg0
, 0),
9759 return fold_convert_loc (loc
, type
, tem
);
9766 /* In most languages, can't associate operations on floats through
9767 parentheses. Rather than remember where the parentheses were, we
9768 don't associate floats at all, unless the user has specified
9770 And, we need to make sure type is not saturating. */
9772 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
9773 && !TYPE_SATURATING (type
))
9775 tree var0
, minus_var0
, con0
, minus_con0
, lit0
, minus_lit0
;
9776 tree var1
, minus_var1
, con1
, minus_con1
, lit1
, minus_lit1
;
9780 /* Split both trees into variables, constants, and literals. Then
9781 associate each group together, the constants with literals,
9782 then the result with variables. This increases the chances of
9783 literals being recombined later and of generating relocatable
9784 expressions for the sum of a constant and literal. */
9785 var0
= split_tree (arg0
, type
, code
,
9786 &minus_var0
, &con0
, &minus_con0
,
9787 &lit0
, &minus_lit0
, 0);
9788 var1
= split_tree (arg1
, type
, code
,
9789 &minus_var1
, &con1
, &minus_con1
,
9790 &lit1
, &minus_lit1
, code
== MINUS_EXPR
);
9792 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9793 if (code
== MINUS_EXPR
)
9796 /* With undefined overflow prefer doing association in a type
9797 which wraps on overflow, if that is one of the operand types. */
9798 if ((POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
9799 && !TYPE_OVERFLOW_WRAPS (type
))
9801 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9802 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9803 atype
= TREE_TYPE (arg0
);
9804 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9805 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
9806 atype
= TREE_TYPE (arg1
);
9807 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
9810 /* With undefined overflow we can only associate constants with one
9811 variable, and constants whose association doesn't overflow. */
9812 if ((POINTER_TYPE_P (atype
) || INTEGRAL_TYPE_P (atype
))
9813 && !TYPE_OVERFLOW_WRAPS (atype
))
9815 if ((var0
&& var1
) || (minus_var0
&& minus_var1
))
9817 /* ??? If split_tree would handle NEGATE_EXPR we could
9818 simply reject these cases and the allowed cases would
9819 be the var0/minus_var1 ones. */
9820 tree tmp0
= var0
? var0
: minus_var0
;
9821 tree tmp1
= var1
? var1
: minus_var1
;
9822 bool one_neg
= false;
9824 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9826 tmp0
= TREE_OPERAND (tmp0
, 0);
9829 if (CONVERT_EXPR_P (tmp0
)
9830 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9831 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9832 <= TYPE_PRECISION (atype
)))
9833 tmp0
= TREE_OPERAND (tmp0
, 0);
9834 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9836 tmp1
= TREE_OPERAND (tmp1
, 0);
9839 if (CONVERT_EXPR_P (tmp1
)
9840 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9841 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9842 <= TYPE_PRECISION (atype
)))
9843 tmp1
= TREE_OPERAND (tmp1
, 0);
9844 /* The only case we can still associate with two variables
9845 is if they cancel out. */
9847 || !operand_equal_p (tmp0
, tmp1
, 0))
9850 else if ((var0
&& minus_var1
9851 && ! operand_equal_p (var0
, minus_var1
, 0))
9852 || (minus_var0
&& var1
9853 && ! operand_equal_p (minus_var0
, var1
, 0)))
9857 /* Only do something if we found more than two objects. Otherwise,
9858 nothing has changed and we risk infinite recursion. */
9860 && ((var0
!= 0) + (var1
!= 0)
9861 + (minus_var0
!= 0) + (minus_var1
!= 0)
9862 + (con0
!= 0) + (con1
!= 0)
9863 + (minus_con0
!= 0) + (minus_con1
!= 0)
9864 + (lit0
!= 0) + (lit1
!= 0)
9865 + (minus_lit0
!= 0) + (minus_lit1
!= 0)) > 2)
9867 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
9868 minus_var0
= associate_trees (loc
, minus_var0
, minus_var1
,
9870 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
9871 minus_con0
= associate_trees (loc
, minus_con0
, minus_con1
,
9873 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
9874 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
9877 if (minus_var0
&& var0
)
9879 var0
= associate_trees (loc
, var0
, minus_var0
,
9883 if (minus_con0
&& con0
)
9885 con0
= associate_trees (loc
, con0
, minus_con0
,
9890 /* Preserve the MINUS_EXPR if the negative part of the literal is
9891 greater than the positive part. Otherwise, the multiplicative
9892 folding code (i.e extract_muldiv) may be fooled in case
9893 unsigned constants are subtracted, like in the following
9894 example: ((X*2 + 4) - 8U)/2. */
9895 if (minus_lit0
&& lit0
)
9897 if (TREE_CODE (lit0
) == INTEGER_CST
9898 && TREE_CODE (minus_lit0
) == INTEGER_CST
9899 && tree_int_cst_lt (lit0
, minus_lit0
)
9900 /* But avoid ending up with only negated parts. */
9903 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
9909 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
9915 /* Don't introduce overflows through reassociation. */
9916 if ((lit0
&& TREE_OVERFLOW_P (lit0
))
9917 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
)))
9920 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9921 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
9923 minus_con0
= associate_trees (loc
, minus_con0
, minus_lit0
,
9927 /* Eliminate minus_con0. */
9931 con0
= associate_trees (loc
, con0
, minus_con0
,
9934 var0
= associate_trees (loc
, var0
, minus_con0
,
9941 /* Eliminate minus_var0. */
9945 con0
= associate_trees (loc
, con0
, minus_var0
,
9953 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
9960 case POINTER_DIFF_EXPR
:
9962 /* Fold &a[i] - &a[j] to i-j. */
9963 if (TREE_CODE (arg0
) == ADDR_EXPR
9964 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
9965 && TREE_CODE (arg1
) == ADDR_EXPR
9966 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
9968 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
9969 TREE_OPERAND (arg0
, 0),
9970 TREE_OPERAND (arg1
, 0),
9972 == POINTER_DIFF_EXPR
);
9977 /* Further transformations are not for pointers. */
9978 if (code
== POINTER_DIFF_EXPR
)
9981 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9982 if (TREE_CODE (arg0
) == NEGATE_EXPR
9983 && negate_expr_p (op1
)
9984 /* If arg0 is e.g. unsigned int and type is int, then this could
9985 introduce UB, because if A is INT_MIN at runtime, the original
9986 expression can be well defined while the latter is not.
9988 && !(ANY_INTEGRAL_TYPE_P (type
)
9989 && TYPE_OVERFLOW_UNDEFINED (type
)
9990 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9991 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
9992 return fold_build2_loc (loc
, MINUS_EXPR
, type
, negate_expr (op1
),
9993 fold_convert_loc (loc
, type
,
9994 TREE_OPERAND (arg0
, 0)));
9996 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9997 __complex__ ( x, -y ). This is not the same for SNaNs or if
9998 signed zeros are involved. */
9999 if (!HONOR_SNANS (element_mode (arg0
))
10000 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10001 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
10003 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10004 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
10005 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
10006 bool arg0rz
= false, arg0iz
= false;
10007 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
10008 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
10010 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
10011 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
10012 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
10014 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10016 : build1 (REALPART_EXPR
, rtype
, arg1
));
10017 tree ip
= arg0i
? arg0i
10018 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
10019 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10021 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
10023 tree rp
= arg0r
? arg0r
10024 : build1 (REALPART_EXPR
, rtype
, arg0
);
10025 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10027 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
10028 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10033 /* A - B -> A + (-B) if B is easily negatable. */
10034 if (negate_expr_p (op1
)
10035 && ! TYPE_OVERFLOW_SANITIZED (type
)
10036 && ((FLOAT_TYPE_P (type
)
10037 /* Avoid this transformation if B is a positive REAL_CST. */
10038 && (TREE_CODE (op1
) != REAL_CST
10039 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1
))))
10040 || INTEGRAL_TYPE_P (type
)))
10041 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
10042 fold_convert_loc (loc
, type
, arg0
),
10043 negate_expr (op1
));
10045 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10046 one. Make sure the type is not saturating and has the signedness of
10047 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10048 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10049 if ((TREE_CODE (arg0
) == MULT_EXPR
10050 || TREE_CODE (arg1
) == MULT_EXPR
)
10051 && !TYPE_SATURATING (type
)
10052 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
10053 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
10054 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
10056 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
10064 if (! FLOAT_TYPE_P (type
))
10066 /* Transform x * -C into -x * C if x is easily negatable. */
10067 if (TREE_CODE (op1
) == INTEGER_CST
10068 && tree_int_cst_sgn (op1
) == -1
10069 && negate_expr_p (op0
)
10070 && negate_expr_p (op1
)
10071 && (tem
= negate_expr (op1
)) != op1
10072 && ! TREE_OVERFLOW (tem
))
10073 return fold_build2_loc (loc
, MULT_EXPR
, type
,
10074 fold_convert_loc (loc
, type
,
10075 negate_expr (op0
)), tem
);
10077 strict_overflow_p
= false;
10078 if (TREE_CODE (arg1
) == INTEGER_CST
10079 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10080 &strict_overflow_p
)) != 0)
10082 if (strict_overflow_p
)
10083 fold_overflow_warning (("assuming signed overflow does not "
10084 "occur when simplifying "
10086 WARN_STRICT_OVERFLOW_MISC
);
10087 return fold_convert_loc (loc
, type
, tem
);
10090 /* Optimize z * conj(z) for integer complex numbers. */
10091 if (TREE_CODE (arg0
) == CONJ_EXPR
10092 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10093 return fold_mult_zconjz (loc
, type
, arg1
);
10094 if (TREE_CODE (arg1
) == CONJ_EXPR
10095 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10096 return fold_mult_zconjz (loc
, type
, arg0
);
10100 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10101 This is not the same for NaNs or if signed zeros are
10103 if (!HONOR_NANS (arg0
)
10104 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10105 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10106 && TREE_CODE (arg1
) == COMPLEX_CST
10107 && real_zerop (TREE_REALPART (arg1
)))
10109 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10110 if (real_onep (TREE_IMAGPART (arg1
)))
10112 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10113 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
10115 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
10116 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
10118 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10119 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
10120 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
10124 /* Optimize z * conj(z) for floating point complex numbers.
10125 Guarded by flag_unsafe_math_optimizations as non-finite
10126 imaginary components don't produce scalar results. */
10127 if (flag_unsafe_math_optimizations
10128 && TREE_CODE (arg0
) == CONJ_EXPR
10129 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10130 return fold_mult_zconjz (loc
, type
, arg1
);
10131 if (flag_unsafe_math_optimizations
10132 && TREE_CODE (arg1
) == CONJ_EXPR
10133 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10134 return fold_mult_zconjz (loc
, type
, arg0
);
10139 /* Canonicalize (X & C1) | C2. */
10140 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10141 && TREE_CODE (arg1
) == INTEGER_CST
10142 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10144 int width
= TYPE_PRECISION (type
), w
;
10145 wide_int c1
= wi::to_wide (TREE_OPERAND (arg0
, 1));
10146 wide_int c2
= wi::to_wide (arg1
);
10148 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10149 if ((c1
& c2
) == c1
)
10150 return omit_one_operand_loc (loc
, type
, arg1
,
10151 TREE_OPERAND (arg0
, 0));
10153 wide_int msk
= wi::mask (width
, false,
10154 TYPE_PRECISION (TREE_TYPE (arg1
)));
10156 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10157 if (wi::bit_and_not (msk
, c1
| c2
) == 0)
10159 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10160 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10163 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10164 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10165 mode which allows further optimizations. */
10168 wide_int c3
= wi::bit_and_not (c1
, c2
);
10169 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
10171 wide_int mask
= wi::mask (w
, false,
10172 TYPE_PRECISION (type
));
10173 if (((c1
| c2
) & mask
) == mask
10174 && wi::bit_and_not (c1
, mask
) == 0)
10183 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10184 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tem
,
10185 wide_int_to_tree (type
, c3
));
10186 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10190 /* See if this can be simplified into a rotate first. If that
10191 is unsuccessful continue in the association code. */
10195 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10196 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10197 && INTEGRAL_TYPE_P (type
)
10198 && integer_onep (TREE_OPERAND (arg0
, 1))
10199 && integer_onep (arg1
))
10200 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
10201 build_zero_cst (TREE_TYPE (arg0
)));
10203 /* See if this can be simplified into a rotate first. If that
10204 is unsuccessful continue in the association code. */
10208 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10209 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10210 && INTEGRAL_TYPE_P (type
)
10211 && integer_onep (TREE_OPERAND (arg0
, 1))
10212 && integer_onep (arg1
))
10215 tem
= TREE_OPERAND (arg0
, 0);
10216 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10217 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10219 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10220 build_zero_cst (TREE_TYPE (tem
)));
10222 /* Fold ~X & 1 as (X & 1) == 0. */
10223 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10224 && INTEGRAL_TYPE_P (type
)
10225 && integer_onep (arg1
))
10228 tem
= TREE_OPERAND (arg0
, 0);
10229 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10230 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10232 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10233 build_zero_cst (TREE_TYPE (tem
)));
10235 /* Fold !X & 1 as X == 0. */
10236 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10237 && integer_onep (arg1
))
10239 tem
= TREE_OPERAND (arg0
, 0);
10240 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
10241 build_zero_cst (TREE_TYPE (tem
)));
10244 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10245 multiple of 1 << CST. */
10246 if (TREE_CODE (arg1
) == INTEGER_CST
)
10248 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
10249 wide_int ncst1
= -cst1
;
10250 if ((cst1
& ncst1
) == ncst1
10251 && multiple_of_p (type
, arg0
,
10252 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
10253 return fold_convert_loc (loc
, type
, arg0
);
10256 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10258 if (TREE_CODE (arg1
) == INTEGER_CST
10259 && TREE_CODE (arg0
) == MULT_EXPR
10260 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10262 wi::tree_to_wide_ref warg1
= wi::to_wide (arg1
);
10264 = mask_with_tz (type
, warg1
, wi::to_wide (TREE_OPERAND (arg0
, 1)));
10267 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
10269 else if (masked
!= warg1
)
10271 /* Avoid the transform if arg1 is a mask of some
10272 mode which allows further optimizations. */
10273 int pop
= wi::popcount (warg1
);
10274 if (!(pop
>= BITS_PER_UNIT
10276 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
10277 return fold_build2_loc (loc
, code
, type
, op0
,
10278 wide_int_to_tree (type
, masked
));
10282 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10283 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10284 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10286 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10288 wide_int mask
= wide_int::from (wi::to_wide (arg1
), prec
, UNSIGNED
);
10291 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10297 /* Don't touch a floating-point divide by zero unless the mode
10298 of the constant can represent infinity. */
10299 if (TREE_CODE (arg1
) == REAL_CST
10300 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10301 && real_zerop (arg1
))
10304 /* (-A) / (-B) -> A / B */
10305 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10306 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10307 TREE_OPERAND (arg0
, 0),
10308 negate_expr (arg1
));
10309 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10310 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10311 negate_expr (arg0
),
10312 TREE_OPERAND (arg1
, 0));
10315 case TRUNC_DIV_EXPR
:
10318 case FLOOR_DIV_EXPR
:
10319 /* Simplify A / (B << N) where A and B are positive and B is
10320 a power of 2, to A >> (N + log2(B)). */
10321 strict_overflow_p
= false;
10322 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10323 && (TYPE_UNSIGNED (type
)
10324 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
10326 tree sval
= TREE_OPERAND (arg1
, 0);
10327 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
10329 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
10330 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
10331 wi::exact_log2 (wi::to_wide (sval
)));
10333 if (strict_overflow_p
)
10334 fold_overflow_warning (("assuming signed overflow does not "
10335 "occur when simplifying A / (B << N)"),
10336 WARN_STRICT_OVERFLOW_MISC
);
10338 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
10340 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
10341 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
10347 case ROUND_DIV_EXPR
:
10348 case CEIL_DIV_EXPR
:
10349 case EXACT_DIV_EXPR
:
10350 if (integer_zerop (arg1
))
10353 /* Convert -A / -B to A / B when the type is signed and overflow is
10355 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10356 && TREE_CODE (op0
) == NEGATE_EXPR
10357 && negate_expr_p (op1
))
10359 if (INTEGRAL_TYPE_P (type
))
10360 fold_overflow_warning (("assuming signed overflow does not occur "
10361 "when distributing negation across "
10363 WARN_STRICT_OVERFLOW_MISC
);
10364 return fold_build2_loc (loc
, code
, type
,
10365 fold_convert_loc (loc
, type
,
10366 TREE_OPERAND (arg0
, 0)),
10367 negate_expr (op1
));
10369 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10370 && TREE_CODE (arg1
) == NEGATE_EXPR
10371 && negate_expr_p (op0
))
10373 if (INTEGRAL_TYPE_P (type
))
10374 fold_overflow_warning (("assuming signed overflow does not occur "
10375 "when distributing negation across "
10377 WARN_STRICT_OVERFLOW_MISC
);
10378 return fold_build2_loc (loc
, code
, type
,
10380 fold_convert_loc (loc
, type
,
10381 TREE_OPERAND (arg1
, 0)));
10384 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10385 operation, EXACT_DIV_EXPR.
10387 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10388 At one time others generated faster code, it's not clear if they do
10389 after the last round to changes to the DIV code in expmed.c. */
10390 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
10391 && multiple_of_p (type
, arg0
, arg1
))
10392 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
,
10393 fold_convert (type
, arg0
),
10394 fold_convert (type
, arg1
));
10396 strict_overflow_p
= false;
10397 if (TREE_CODE (arg1
) == INTEGER_CST
10398 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10399 &strict_overflow_p
)) != 0)
10401 if (strict_overflow_p
)
10402 fold_overflow_warning (("assuming signed overflow does not occur "
10403 "when simplifying division"),
10404 WARN_STRICT_OVERFLOW_MISC
);
10405 return fold_convert_loc (loc
, type
, tem
);
10410 case CEIL_MOD_EXPR
:
10411 case FLOOR_MOD_EXPR
:
10412 case ROUND_MOD_EXPR
:
10413 case TRUNC_MOD_EXPR
:
10414 strict_overflow_p
= false;
10415 if (TREE_CODE (arg1
) == INTEGER_CST
10416 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10417 &strict_overflow_p
)) != 0)
10419 if (strict_overflow_p
)
10420 fold_overflow_warning (("assuming signed overflow does not occur "
10421 "when simplifying modulus"),
10422 WARN_STRICT_OVERFLOW_MISC
);
10423 return fold_convert_loc (loc
, type
, tem
);
10432 /* Since negative shift count is not well-defined,
10433 don't try to compute it in the compiler. */
10434 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
10437 prec
= element_precision (type
);
10439 /* If we have a rotate of a bit operation with the rotate count and
10440 the second operand of the bit operation both constant,
10441 permute the two operations. */
10442 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10443 && (TREE_CODE (arg0
) == BIT_AND_EXPR
10444 || TREE_CODE (arg0
) == BIT_IOR_EXPR
10445 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
10446 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10448 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10449 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10450 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
10451 fold_build2_loc (loc
, code
, type
,
10453 fold_build2_loc (loc
, code
, type
,
10457 /* Two consecutive rotates adding up to the some integer
10458 multiple of the precision of the type can be ignored. */
10459 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10460 && TREE_CODE (arg0
) == RROTATE_EXPR
10461 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10462 && wi::umod_trunc (wi::to_wide (arg1
)
10463 + wi::to_wide (TREE_OPERAND (arg0
, 1)),
10465 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10473 case TRUTH_ANDIF_EXPR
:
10474 /* Note that the operands of this must be ints
10475 and their values must be 0 or 1.
10476 ("true" is a fixed value perhaps depending on the language.) */
10477 /* If first arg is constant zero, return it. */
10478 if (integer_zerop (arg0
))
10479 return fold_convert_loc (loc
, type
, arg0
);
10481 case TRUTH_AND_EXPR
:
10482 /* If either arg is constant true, drop it. */
10483 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10484 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10485 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
10486 /* Preserve sequence points. */
10487 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10488 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10489 /* If second arg is constant zero, result is zero, but first arg
10490 must be evaluated. */
10491 if (integer_zerop (arg1
))
10492 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10493 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10494 case will be handled here. */
10495 if (integer_zerop (arg0
))
10496 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10498 /* !X && X is always false. */
10499 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10500 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10501 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
10502 /* X && !X is always false. */
10503 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10504 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10505 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10507 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10508 means A >= Y && A != MAX, but in this case we know that
10511 if (!TREE_SIDE_EFFECTS (arg0
)
10512 && !TREE_SIDE_EFFECTS (arg1
))
10514 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
10515 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
10516 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
10518 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
10519 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
10520 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
10523 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10529 case TRUTH_ORIF_EXPR
:
10530 /* Note that the operands of this must be ints
10531 and their values must be 0 or true.
10532 ("true" is a fixed value perhaps depending on the language.) */
10533 /* If first arg is constant true, return it. */
10534 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10535 return fold_convert_loc (loc
, type
, arg0
);
10537 case TRUTH_OR_EXPR
:
10538 /* If either arg is constant zero, drop it. */
10539 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
10540 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10541 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
10542 /* Preserve sequence points. */
10543 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10544 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10545 /* If second arg is constant true, result is true, but we must
10546 evaluate first arg. */
10547 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
10548 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10549 /* Likewise for first arg, but note this only occurs here for
10551 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10552 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10554 /* !X || X is always true. */
10555 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10556 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10557 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10558 /* X || !X is always true. */
10559 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10560 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10561 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10563 /* (X && !Y) || (!X && Y) is X ^ Y */
10564 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
10565 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
10567 tree a0
, a1
, l0
, l1
, n0
, n1
;
10569 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10570 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10572 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10573 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10575 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
10576 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
10578 if ((operand_equal_p (n0
, a0
, 0)
10579 && operand_equal_p (n1
, a1
, 0))
10580 || (operand_equal_p (n0
, a1
, 0)
10581 && operand_equal_p (n1
, a0
, 0)))
10582 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
10585 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10591 case TRUTH_XOR_EXPR
:
10592 /* If the second arg is constant zero, drop it. */
10593 if (integer_zerop (arg1
))
10594 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10595 /* If the second arg is constant true, this is a logical inversion. */
10596 if (integer_onep (arg1
))
10598 tem
= invert_truthvalue_loc (loc
, arg0
);
10599 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
10601 /* Identical arguments cancel to zero. */
10602 if (operand_equal_p (arg0
, arg1
, 0))
10603 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10605 /* !X ^ X is always true. */
10606 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10607 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10608 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10610 /* X ^ !X is always true. */
10611 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10612 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10613 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10622 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10623 if (tem
!= NULL_TREE
)
10626 /* bool_var != 1 becomes !bool_var. */
10627 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
10628 && code
== NE_EXPR
)
10629 return fold_convert_loc (loc
, type
,
10630 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10631 TREE_TYPE (arg0
), arg0
));
10633 /* bool_var == 0 becomes !bool_var. */
10634 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
10635 && code
== EQ_EXPR
)
10636 return fold_convert_loc (loc
, type
,
10637 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10638 TREE_TYPE (arg0
), arg0
));
10640 /* !exp != 0 becomes !exp */
10641 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
10642 && code
== NE_EXPR
)
10643 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10645 /* If this is an EQ or NE comparison with zero and ARG0 is
10646 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10647 two operations, but the latter can be done in one less insn
10648 on machines that have only two-operand insns or on which a
10649 constant cannot be the first operand. */
10650 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10651 && integer_zerop (arg1
))
10653 tree arg00
= TREE_OPERAND (arg0
, 0);
10654 tree arg01
= TREE_OPERAND (arg0
, 1);
10655 if (TREE_CODE (arg00
) == LSHIFT_EXPR
10656 && integer_onep (TREE_OPERAND (arg00
, 0)))
10658 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
10659 arg01
, TREE_OPERAND (arg00
, 1));
10660 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10661 build_int_cst (TREE_TYPE (arg0
), 1));
10662 return fold_build2_loc (loc
, code
, type
,
10663 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10666 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
10667 && integer_onep (TREE_OPERAND (arg01
, 0)))
10669 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
10670 arg00
, TREE_OPERAND (arg01
, 1));
10671 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10672 build_int_cst (TREE_TYPE (arg0
), 1));
10673 return fold_build2_loc (loc
, code
, type
,
10674 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10679 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10680 C1 is a valid shift constant, and C2 is a power of two, i.e.
10682 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10683 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
10684 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
10686 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10687 && integer_zerop (arg1
))
10689 tree itype
= TREE_TYPE (arg0
);
10690 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
10691 prec
= TYPE_PRECISION (itype
);
10693 /* Check for a valid shift count. */
10694 if (wi::ltu_p (wi::to_wide (arg001
), prec
))
10696 tree arg01
= TREE_OPERAND (arg0
, 1);
10697 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10698 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
10699 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10700 can be rewritten as (X & (C2 << C1)) != 0. */
10701 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
10703 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
10704 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
10705 return fold_build2_loc (loc
, code
, type
, tem
,
10706 fold_convert_loc (loc
, itype
, arg1
));
10708 /* Otherwise, for signed (arithmetic) shifts,
10709 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10710 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10711 else if (!TYPE_UNSIGNED (itype
))
10712 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
10713 arg000
, build_int_cst (itype
, 0));
10714 /* Otherwise, of unsigned (logical) shifts,
10715 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10716 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10718 return omit_one_operand_loc (loc
, type
,
10719 code
== EQ_EXPR
? integer_one_node
10720 : integer_zero_node
,
10725 /* If this is a comparison of a field, we may be able to simplify it. */
10726 if ((TREE_CODE (arg0
) == COMPONENT_REF
10727 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
10728 /* Handle the constant case even without -O
10729 to make sure the warnings are given. */
10730 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
10732 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
10737 /* Optimize comparisons of strlen vs zero to a compare of the
10738 first character of the string vs zero. To wit,
10739 strlen(ptr) == 0 => *ptr == 0
10740 strlen(ptr) != 0 => *ptr != 0
10741 Other cases should reduce to one of these two (or a constant)
10742 due to the return value of strlen being unsigned. */
10743 if (TREE_CODE (arg0
) == CALL_EXPR
10744 && integer_zerop (arg1
))
10746 tree fndecl
= get_callee_fndecl (arg0
);
10749 && fndecl_built_in_p (fndecl
, BUILT_IN_STRLEN
)
10750 && call_expr_nargs (arg0
) == 1
10751 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
10753 tree iref
= build_fold_indirect_ref_loc (loc
,
10754 CALL_EXPR_ARG (arg0
, 0));
10755 return fold_build2_loc (loc
, code
, type
, iref
,
10756 build_int_cst (TREE_TYPE (iref
), 0));
10760 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10761 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10762 if (TREE_CODE (arg0
) == RSHIFT_EXPR
10763 && integer_zerop (arg1
)
10764 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10766 tree arg00
= TREE_OPERAND (arg0
, 0);
10767 tree arg01
= TREE_OPERAND (arg0
, 1);
10768 tree itype
= TREE_TYPE (arg00
);
10769 if (wi::to_wide (arg01
) == element_precision (itype
) - 1)
10771 if (TYPE_UNSIGNED (itype
))
10773 itype
= signed_type_for (itype
);
10774 arg00
= fold_convert_loc (loc
, itype
, arg00
);
10776 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
10777 type
, arg00
, build_zero_cst (itype
));
10781 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10782 (X & C) == 0 when C is a single bit. */
10783 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10784 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
10785 && integer_zerop (arg1
)
10786 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10788 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10789 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
10790 TREE_OPERAND (arg0
, 1));
10791 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
10793 fold_convert_loc (loc
, TREE_TYPE (arg0
),
10797 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10798 constant C is a power of two, i.e. a single bit. */
10799 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10800 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10801 && integer_zerop (arg1
)
10802 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10803 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10804 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10806 tree arg00
= TREE_OPERAND (arg0
, 0);
10807 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10808 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
10811 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10812 when is C is a power of two, i.e. a single bit. */
10813 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10814 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
10815 && integer_zerop (arg1
)
10816 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10817 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10818 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10820 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10821 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
10822 arg000
, TREE_OPERAND (arg0
, 1));
10823 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10824 tem
, build_int_cst (TREE_TYPE (tem
), 0));
10827 if (integer_zerop (arg1
)
10828 && tree_expr_nonzero_p (arg0
))
10830 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
10831 return omit_one_operand_loc (loc
, type
, res
, arg0
);
10834 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10835 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10836 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10838 tree arg00
= TREE_OPERAND (arg0
, 0);
10839 tree arg01
= TREE_OPERAND (arg0
, 1);
10840 tree arg10
= TREE_OPERAND (arg1
, 0);
10841 tree arg11
= TREE_OPERAND (arg1
, 1);
10842 tree itype
= TREE_TYPE (arg0
);
10844 if (operand_equal_p (arg01
, arg11
, 0))
10846 tem
= fold_convert_loc (loc
, itype
, arg10
);
10847 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10848 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10849 return fold_build2_loc (loc
, code
, type
, tem
,
10850 build_zero_cst (itype
));
10852 if (operand_equal_p (arg01
, arg10
, 0))
10854 tem
= fold_convert_loc (loc
, itype
, arg11
);
10855 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10856 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10857 return fold_build2_loc (loc
, code
, type
, tem
,
10858 build_zero_cst (itype
));
10860 if (operand_equal_p (arg00
, arg11
, 0))
10862 tem
= fold_convert_loc (loc
, itype
, arg10
);
10863 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10864 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10865 return fold_build2_loc (loc
, code
, type
, tem
,
10866 build_zero_cst (itype
));
10868 if (operand_equal_p (arg00
, arg10
, 0))
10870 tem
= fold_convert_loc (loc
, itype
, arg11
);
10871 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10872 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10873 return fold_build2_loc (loc
, code
, type
, tem
,
10874 build_zero_cst (itype
));
10878 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10879 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
10881 tree arg00
= TREE_OPERAND (arg0
, 0);
10882 tree arg01
= TREE_OPERAND (arg0
, 1);
10883 tree arg10
= TREE_OPERAND (arg1
, 0);
10884 tree arg11
= TREE_OPERAND (arg1
, 1);
10885 tree itype
= TREE_TYPE (arg0
);
10887 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10888 operand_equal_p guarantees no side-effects so we don't need
10889 to use omit_one_operand on Z. */
10890 if (operand_equal_p (arg01
, arg11
, 0))
10891 return fold_build2_loc (loc
, code
, type
, arg00
,
10892 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10894 if (operand_equal_p (arg01
, arg10
, 0))
10895 return fold_build2_loc (loc
, code
, type
, arg00
,
10896 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10898 if (operand_equal_p (arg00
, arg11
, 0))
10899 return fold_build2_loc (loc
, code
, type
, arg01
,
10900 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10902 if (operand_equal_p (arg00
, arg10
, 0))
10903 return fold_build2_loc (loc
, code
, type
, arg01
,
10904 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10907 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10908 if (TREE_CODE (arg01
) == INTEGER_CST
10909 && TREE_CODE (arg11
) == INTEGER_CST
)
10911 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
10912 fold_convert_loc (loc
, itype
, arg11
));
10913 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10914 return fold_build2_loc (loc
, code
, type
, tem
,
10915 fold_convert_loc (loc
, itype
, arg10
));
10919 /* Attempt to simplify equality/inequality comparisons of complex
10920 values. Only lower the comparison if the result is known or
10921 can be simplified to a single scalar comparison. */
10922 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
10923 || TREE_CODE (arg0
) == COMPLEX_CST
)
10924 && (TREE_CODE (arg1
) == COMPLEX_EXPR
10925 || TREE_CODE (arg1
) == COMPLEX_CST
))
10927 tree real0
, imag0
, real1
, imag1
;
10930 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
10932 real0
= TREE_OPERAND (arg0
, 0);
10933 imag0
= TREE_OPERAND (arg0
, 1);
10937 real0
= TREE_REALPART (arg0
);
10938 imag0
= TREE_IMAGPART (arg0
);
10941 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
10943 real1
= TREE_OPERAND (arg1
, 0);
10944 imag1
= TREE_OPERAND (arg1
, 1);
10948 real1
= TREE_REALPART (arg1
);
10949 imag1
= TREE_IMAGPART (arg1
);
10952 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
10953 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
10955 if (integer_zerop (rcond
))
10957 if (code
== EQ_EXPR
)
10958 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10960 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
10964 if (code
== NE_EXPR
)
10965 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10967 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
10971 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
10972 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
10974 if (integer_zerop (icond
))
10976 if (code
== EQ_EXPR
)
10977 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10979 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
10983 if (code
== NE_EXPR
)
10984 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10986 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
10997 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10998 if (tem
!= NULL_TREE
)
11001 /* Transform comparisons of the form X +- C CMP X. */
11002 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
11003 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11004 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
11005 && !HONOR_SNANS (arg0
))
11007 tree arg01
= TREE_OPERAND (arg0
, 1);
11008 enum tree_code code0
= TREE_CODE (arg0
);
11009 int is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
11011 /* (X - c) > X becomes false. */
11012 if (code
== GT_EXPR
11013 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11014 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11015 return constant_boolean_node (0, type
);
11017 /* Likewise (X + c) < X becomes false. */
11018 if (code
== LT_EXPR
11019 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11020 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11021 return constant_boolean_node (0, type
);
11023 /* Convert (X - c) <= X to true. */
11024 if (!HONOR_NANS (arg1
)
11026 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11027 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11028 return constant_boolean_node (1, type
);
11030 /* Convert (X + c) >= X to true. */
11031 if (!HONOR_NANS (arg1
)
11033 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11034 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11035 return constant_boolean_node (1, type
);
11038 /* If we are comparing an ABS_EXPR with a constant, we can
11039 convert all the cases into explicit comparisons, but they may
11040 well not be faster than doing the ABS and one comparison.
11041 But ABS (X) <= C is a range comparison, which becomes a subtraction
11042 and a comparison, and is probably faster. */
11043 if (code
== LE_EXPR
11044 && TREE_CODE (arg1
) == INTEGER_CST
11045 && TREE_CODE (arg0
) == ABS_EXPR
11046 && ! TREE_SIDE_EFFECTS (arg0
)
11047 && (tem
= negate_expr (arg1
)) != 0
11048 && TREE_CODE (tem
) == INTEGER_CST
11049 && !TREE_OVERFLOW (tem
))
11050 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
11051 build2 (GE_EXPR
, type
,
11052 TREE_OPERAND (arg0
, 0), tem
),
11053 build2 (LE_EXPR
, type
,
11054 TREE_OPERAND (arg0
, 0), arg1
));
11056 /* Convert ABS_EXPR<x> >= 0 to true. */
11057 strict_overflow_p
= false;
11058 if (code
== GE_EXPR
11059 && (integer_zerop (arg1
)
11060 || (! HONOR_NANS (arg0
)
11061 && real_zerop (arg1
)))
11062 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11064 if (strict_overflow_p
)
11065 fold_overflow_warning (("assuming signed overflow does not occur "
11066 "when simplifying comparison of "
11067 "absolute value and zero"),
11068 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11069 return omit_one_operand_loc (loc
, type
,
11070 constant_boolean_node (true, type
),
11074 /* Convert ABS_EXPR<x> < 0 to false. */
11075 strict_overflow_p
= false;
11076 if (code
== LT_EXPR
11077 && (integer_zerop (arg1
) || real_zerop (arg1
))
11078 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11080 if (strict_overflow_p
)
11081 fold_overflow_warning (("assuming signed overflow does not occur "
11082 "when simplifying comparison of "
11083 "absolute value and zero"),
11084 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11085 return omit_one_operand_loc (loc
, type
,
11086 constant_boolean_node (false, type
),
11090 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11091 and similarly for >= into !=. */
11092 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11093 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11094 && TREE_CODE (arg1
) == LSHIFT_EXPR
11095 && integer_onep (TREE_OPERAND (arg1
, 0)))
11096 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11097 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11098 TREE_OPERAND (arg1
, 1)),
11099 build_zero_cst (TREE_TYPE (arg0
)));
11101 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11102 otherwise Y might be >= # of bits in X's type and thus e.g.
11103 (unsigned char) (1 << Y) for Y 15 might be 0.
11104 If the cast is widening, then 1 << Y should have unsigned type,
11105 otherwise if Y is number of bits in the signed shift type minus 1,
11106 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11107 31 might be 0xffffffff80000000. */
11108 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11109 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11110 && CONVERT_EXPR_P (arg1
)
11111 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
11112 && (element_precision (TREE_TYPE (arg1
))
11113 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
11114 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
11115 || (element_precision (TREE_TYPE (arg1
))
11116 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
11117 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
11119 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11120 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
11121 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11122 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
11123 build_zero_cst (TREE_TYPE (arg0
)));
11128 case UNORDERED_EXPR
:
11136 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11138 tree targ0
= strip_float_extensions (arg0
);
11139 tree targ1
= strip_float_extensions (arg1
);
11140 tree newtype
= TREE_TYPE (targ0
);
11142 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
11143 newtype
= TREE_TYPE (targ1
);
11145 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
11146 return fold_build2_loc (loc
, code
, type
,
11147 fold_convert_loc (loc
, newtype
, targ0
),
11148 fold_convert_loc (loc
, newtype
, targ1
));
11153 case COMPOUND_EXPR
:
11154 /* When pedantic, a compound expression can be neither an lvalue
11155 nor an integer constant expression. */
11156 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
11158 /* Don't let (0, 0) be null pointer constant. */
11159 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
11160 : fold_convert_loc (loc
, type
, arg1
);
11161 return pedantic_non_lvalue_loc (loc
, tem
);
11164 /* An ASSERT_EXPR should never be passed to fold_binary. */
11165 gcc_unreachable ();
11169 } /* switch (code) */
11172 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11173 ((A & N) + B) & M -> (A + B) & M
11174 Similarly if (N & M) == 0,
11175 ((A | N) + B) & M -> (A + B) & M
11176 and for - instead of + (or unary - instead of +)
11177 and/or ^ instead of |.
11178 If B is constant and (B & M) == 0, fold into A & M.
11180 This function is a helper for match.pd patterns. Return non-NULL
11181 type in which the simplified operation should be performed only
11182 if any optimization is possible.
11184 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
11185 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
11186 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
11189 fold_bit_and_mask (tree type
, tree arg1
, enum tree_code code
,
11190 tree arg00
, enum tree_code code00
, tree arg000
, tree arg001
,
11191 tree arg01
, enum tree_code code01
, tree arg010
, tree arg011
,
11194 gcc_assert (TREE_CODE (arg1
) == INTEGER_CST
);
11195 gcc_assert (code
== PLUS_EXPR
|| code
== MINUS_EXPR
|| code
== NEGATE_EXPR
);
11196 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
11198 || (cst1
& (cst1
+ 1)) != 0
11199 || !INTEGRAL_TYPE_P (type
)
11200 || (!TYPE_OVERFLOW_WRAPS (type
)
11201 && TREE_CODE (type
) != INTEGER_TYPE
)
11202 || (wi::max_value (type
) & cst1
) != cst1
)
11205 enum tree_code codes
[2] = { code00
, code01
};
11206 tree arg0xx
[4] = { arg000
, arg001
, arg010
, arg011
};
11210 /* Now we know that arg0 is (C + D) or (C - D) or -C and
11211 arg1 (M) is == (1LL << cst) - 1.
11212 Store C into PMOP[0] and D into PMOP[1]. */
11215 which
= code
!= NEGATE_EXPR
;
11217 for (; which
>= 0; which
--)
11218 switch (codes
[which
])
11223 gcc_assert (TREE_CODE (arg0xx
[2 * which
+ 1]) == INTEGER_CST
);
11224 cst0
= wi::to_wide (arg0xx
[2 * which
+ 1]) & cst1
;
11225 if (codes
[which
] == BIT_AND_EXPR
)
11230 else if (cst0
!= 0)
11232 /* If C or D is of the form (A & N) where
11233 (N & M) == M, or of the form (A | N) or
11234 (A ^ N) where (N & M) == 0, replace it with A. */
11235 pmop
[which
] = arg0xx
[2 * which
];
11238 if (TREE_CODE (pmop
[which
]) != INTEGER_CST
)
11240 /* If C or D is a N where (N & M) == 0, it can be
11241 omitted (replaced with 0). */
11242 if ((code
== PLUS_EXPR
11243 || (code
== MINUS_EXPR
&& which
== 0))
11244 && (cst1
& wi::to_wide (pmop
[which
])) == 0)
11245 pmop
[which
] = build_int_cst (type
, 0);
11246 /* Similarly, with C - N where (-N & M) == 0. */
11247 if (code
== MINUS_EXPR
11249 && (cst1
& -wi::to_wide (pmop
[which
])) == 0)
11250 pmop
[which
] = build_int_cst (type
, 0);
11253 gcc_unreachable ();
11256 /* Only build anything new if we optimized one or both arguments above. */
11257 if (pmop
[0] == arg00
&& pmop
[1] == arg01
)
11260 if (TYPE_OVERFLOW_WRAPS (type
))
11263 return unsigned_type_for (type
);
11266 /* Used by contains_label_[p1]. */
11268 struct contains_label_data
11270 hash_set
<tree
> *pset
;
11271 bool inside_switch_p
;
11274 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11275 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11276 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11279 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data
)
11281 contains_label_data
*d
= (contains_label_data
*) data
;
11282 switch (TREE_CODE (*tp
))
11287 case CASE_LABEL_EXPR
:
11288 if (!d
->inside_switch_p
)
11293 if (!d
->inside_switch_p
)
11295 if (walk_tree (&SWITCH_COND (*tp
), contains_label_1
, data
, d
->pset
))
11297 d
->inside_switch_p
= true;
11298 if (walk_tree (&SWITCH_BODY (*tp
), contains_label_1
, data
, d
->pset
))
11300 d
->inside_switch_p
= false;
11301 *walk_subtrees
= 0;
11306 *walk_subtrees
= 0;
11314 /* Return whether the sub-tree ST contains a label which is accessible from
11315 outside the sub-tree. */
11318 contains_label_p (tree st
)
11320 hash_set
<tree
> pset
;
11321 contains_label_data data
= { &pset
, false };
11322 return walk_tree (&st
, contains_label_1
, &data
, &pset
) != NULL_TREE
;
11325 /* Fold a ternary expression of code CODE and type TYPE with operands
11326 OP0, OP1, and OP2. Return the folded expression if folding is
11327 successful. Otherwise, return NULL_TREE. */
11330 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
11331 tree op0
, tree op1
, tree op2
)
11334 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
11335 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11337 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
11338 && TREE_CODE_LENGTH (code
) == 3);
11340 /* If this is a commutative operation, and OP0 is a constant, move it
11341 to OP1 to reduce the number of tests below. */
11342 if (commutative_ternary_tree_code (code
)
11343 && tree_swap_operands_p (op0
, op1
))
11344 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
11346 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
11350 /* Strip any conversions that don't change the mode. This is safe
11351 for every expression, except for a comparison expression because
11352 its signedness is derived from its operands. So, in the latter
11353 case, only strip conversions that don't change the signedness.
11355 Note that this is done as an internal manipulation within the
11356 constant folder, in order to find the simplest representation of
11357 the arguments so that their form can be studied. In any cases,
11358 the appropriate type conversions should be put back in the tree
11359 that will get out of the constant folder. */
11380 case COMPONENT_REF
:
11381 if (TREE_CODE (arg0
) == CONSTRUCTOR
11382 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
11384 unsigned HOST_WIDE_INT idx
;
11386 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
11393 case VEC_COND_EXPR
:
11394 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11395 so all simple results must be passed through pedantic_non_lvalue. */
11396 if (TREE_CODE (arg0
) == INTEGER_CST
)
11398 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
11399 tem
= integer_zerop (arg0
) ? op2
: op1
;
11400 /* Only optimize constant conditions when the selected branch
11401 has the same type as the COND_EXPR. This avoids optimizing
11402 away "c ? x : throw", where the throw has a void type.
11403 Avoid throwing away that operand which contains label. */
11404 if ((!TREE_SIDE_EFFECTS (unused_op
)
11405 || !contains_label_p (unused_op
))
11406 && (! VOID_TYPE_P (TREE_TYPE (tem
))
11407 || VOID_TYPE_P (type
)))
11408 return pedantic_non_lvalue_loc (loc
, tem
);
11411 else if (TREE_CODE (arg0
) == VECTOR_CST
)
11413 unsigned HOST_WIDE_INT nelts
;
11414 if ((TREE_CODE (arg1
) == VECTOR_CST
11415 || TREE_CODE (arg1
) == CONSTRUCTOR
)
11416 && (TREE_CODE (arg2
) == VECTOR_CST
11417 || TREE_CODE (arg2
) == CONSTRUCTOR
)
11418 && TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
11420 vec_perm_builder
sel (nelts
, nelts
, 1);
11421 for (unsigned int i
= 0; i
< nelts
; i
++)
11423 tree val
= VECTOR_CST_ELT (arg0
, i
);
11424 if (integer_all_onesp (val
))
11425 sel
.quick_push (i
);
11426 else if (integer_zerop (val
))
11427 sel
.quick_push (nelts
+ i
);
11428 else /* Currently unreachable. */
11431 vec_perm_indices
indices (sel
, 2, nelts
);
11432 tree t
= fold_vec_perm (type
, arg1
, arg2
, indices
);
11433 if (t
!= NULL_TREE
)
11438 /* If we have A op B ? A : C, we may be able to convert this to a
11439 simpler expression, depending on the operation and the values
11440 of B and C. Signed zeros prevent all of these transformations,
11441 for reasons given above each one.
11443 Also try swapping the arguments and inverting the conditional. */
11444 if (COMPARISON_CLASS_P (arg0
)
11445 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op1
)
11446 && !HONOR_SIGNED_ZEROS (element_mode (op1
)))
11448 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
11453 if (COMPARISON_CLASS_P (arg0
)
11454 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op2
)
11455 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
11457 location_t loc0
= expr_location_or (arg0
, loc
);
11458 tem
= fold_invert_truthvalue (loc0
, arg0
);
11459 if (tem
&& COMPARISON_CLASS_P (tem
))
11461 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
11467 /* If the second operand is simpler than the third, swap them
11468 since that produces better jump optimization results. */
11469 if (truth_value_p (TREE_CODE (arg0
))
11470 && tree_swap_operands_p (op1
, op2
))
11472 location_t loc0
= expr_location_or (arg0
, loc
);
11473 /* See if this can be inverted. If it can't, possibly because
11474 it was a floating-point inequality comparison, don't do
11476 tem
= fold_invert_truthvalue (loc0
, arg0
);
11478 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
11481 /* Convert A ? 1 : 0 to simply A. */
11482 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
11483 : (integer_onep (op1
)
11484 && !VECTOR_TYPE_P (type
)))
11485 && integer_zerop (op2
)
11486 /* If we try to convert OP0 to our type, the
11487 call to fold will try to move the conversion inside
11488 a COND, which will recurse. In that case, the COND_EXPR
11489 is probably the best choice, so leave it alone. */
11490 && type
== TREE_TYPE (arg0
))
11491 return pedantic_non_lvalue_loc (loc
, arg0
);
11493 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11494 over COND_EXPR in cases such as floating point comparisons. */
11495 if (integer_zerop (op1
)
11496 && code
== COND_EXPR
11497 && integer_onep (op2
)
11498 && !VECTOR_TYPE_P (type
)
11499 && truth_value_p (TREE_CODE (arg0
)))
11500 return pedantic_non_lvalue_loc (loc
,
11501 fold_convert_loc (loc
, type
,
11502 invert_truthvalue_loc (loc
,
11505 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11506 if (TREE_CODE (arg0
) == LT_EXPR
11507 && integer_zerop (TREE_OPERAND (arg0
, 1))
11508 && integer_zerop (op2
)
11509 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
11511 /* sign_bit_p looks through both zero and sign extensions,
11512 but for this optimization only sign extensions are
11514 tree tem2
= TREE_OPERAND (arg0
, 0);
11515 while (tem
!= tem2
)
11517 if (TREE_CODE (tem2
) != NOP_EXPR
11518 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
11523 tem2
= TREE_OPERAND (tem2
, 0);
11525 /* sign_bit_p only checks ARG1 bits within A's precision.
11526 If <sign bit of A> has wider type than A, bits outside
11527 of A's precision in <sign bit of A> need to be checked.
11528 If they are all 0, this optimization needs to be done
11529 in unsigned A's type, if they are all 1 in signed A's type,
11530 otherwise this can't be done. */
11532 && TYPE_PRECISION (TREE_TYPE (tem
))
11533 < TYPE_PRECISION (TREE_TYPE (arg1
))
11534 && TYPE_PRECISION (TREE_TYPE (tem
))
11535 < TYPE_PRECISION (type
))
11537 int inner_width
, outer_width
;
11540 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
11541 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
11542 if (outer_width
> TYPE_PRECISION (type
))
11543 outer_width
= TYPE_PRECISION (type
);
11545 wide_int mask
= wi::shifted_mask
11546 (inner_width
, outer_width
- inner_width
, false,
11547 TYPE_PRECISION (TREE_TYPE (arg1
)));
11549 wide_int common
= mask
& wi::to_wide (arg1
);
11550 if (common
== mask
)
11552 tem_type
= signed_type_for (TREE_TYPE (tem
));
11553 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11555 else if (common
== 0)
11557 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
11558 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11566 fold_convert_loc (loc
, type
,
11567 fold_build2_loc (loc
, BIT_AND_EXPR
,
11568 TREE_TYPE (tem
), tem
,
11569 fold_convert_loc (loc
,
11574 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11575 already handled above. */
11576 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11577 && integer_onep (TREE_OPERAND (arg0
, 1))
11578 && integer_zerop (op2
)
11579 && integer_pow2p (arg1
))
11581 tree tem
= TREE_OPERAND (arg0
, 0);
11583 if (TREE_CODE (tem
) == RSHIFT_EXPR
11584 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
11585 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
)
11586 == tree_to_uhwi (TREE_OPERAND (tem
, 1)))
11587 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11588 fold_convert_loc (loc
, type
,
11589 TREE_OPERAND (tem
, 0)),
11593 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11594 is probably obsolete because the first operand should be a
11595 truth value (that's why we have the two cases above), but let's
11596 leave it in until we can confirm this for all front-ends. */
11597 if (integer_zerop (op2
)
11598 && TREE_CODE (arg0
) == NE_EXPR
11599 && integer_zerop (TREE_OPERAND (arg0
, 1))
11600 && integer_pow2p (arg1
)
11601 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
11602 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
11603 arg1
, OEP_ONLY_CONST
)
11604 /* operand_equal_p compares just value, not precision, so e.g.
11605 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR
11606 second operand 32-bit -128, which is not a power of two (or vice
11608 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1)))
11609 return pedantic_non_lvalue_loc (loc
,
11610 fold_convert_loc (loc
, type
,
11611 TREE_OPERAND (arg0
,
11614 /* Disable the transformations below for vectors, since
11615 fold_binary_op_with_conditional_arg may undo them immediately,
11616 yielding an infinite loop. */
11617 if (code
== VEC_COND_EXPR
)
11620 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11621 if (integer_zerop (op2
)
11622 && truth_value_p (TREE_CODE (arg0
))
11623 && truth_value_p (TREE_CODE (arg1
))
11624 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11625 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
11626 : TRUTH_ANDIF_EXPR
,
11627 type
, fold_convert_loc (loc
, type
, arg0
), op1
);
11629 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11630 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
11631 && truth_value_p (TREE_CODE (arg0
))
11632 && truth_value_p (TREE_CODE (arg1
))
11633 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11635 location_t loc0
= expr_location_or (arg0
, loc
);
11636 /* Only perform transformation if ARG0 is easily inverted. */
11637 tem
= fold_invert_truthvalue (loc0
, arg0
);
11639 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11642 type
, fold_convert_loc (loc
, type
, tem
),
11646 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11647 if (integer_zerop (arg1
)
11648 && truth_value_p (TREE_CODE (arg0
))
11649 && truth_value_p (TREE_CODE (op2
))
11650 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11652 location_t loc0
= expr_location_or (arg0
, loc
);
11653 /* Only perform transformation if ARG0 is easily inverted. */
11654 tem
= fold_invert_truthvalue (loc0
, arg0
);
11656 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11657 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
11658 type
, fold_convert_loc (loc
, type
, tem
),
11662 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11663 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
11664 && truth_value_p (TREE_CODE (arg0
))
11665 && truth_value_p (TREE_CODE (op2
))
11666 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11667 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11668 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
11669 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
11674 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11675 of fold_ternary on them. */
11676 gcc_unreachable ();
11678 case BIT_FIELD_REF
:
11679 if (TREE_CODE (arg0
) == VECTOR_CST
11680 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
11681 || (VECTOR_TYPE_P (type
)
11682 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
))))
11683 && tree_fits_uhwi_p (op1
)
11684 && tree_fits_uhwi_p (op2
))
11686 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
11687 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
11688 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
11689 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
11692 && (idx
% width
) == 0
11693 && (n
% width
) == 0
11694 && known_le ((idx
+ n
) / width
,
11695 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
))))
11700 if (TREE_CODE (arg0
) == VECTOR_CST
)
11704 tem
= VECTOR_CST_ELT (arg0
, idx
);
11705 if (VECTOR_TYPE_P (type
))
11706 tem
= fold_build1 (VIEW_CONVERT_EXPR
, type
, tem
);
11710 tree_vector_builder
vals (type
, n
, 1);
11711 for (unsigned i
= 0; i
< n
; ++i
)
11712 vals
.quick_push (VECTOR_CST_ELT (arg0
, idx
+ i
));
11713 return vals
.build ();
11718 /* On constants we can use native encode/interpret to constant
11719 fold (nearly) all BIT_FIELD_REFs. */
11720 if (CONSTANT_CLASS_P (arg0
)
11721 && can_native_interpret_type_p (type
)
11722 && BITS_PER_UNIT
== 8
11723 && tree_fits_uhwi_p (op1
)
11724 && tree_fits_uhwi_p (op2
))
11726 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11727 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
11728 /* Limit us to a reasonable amount of work. To relax the
11729 other limitations we need bit-shifting of the buffer
11730 and rounding up the size. */
11731 if (bitpos
% BITS_PER_UNIT
== 0
11732 && bitsize
% BITS_PER_UNIT
== 0
11733 && bitsize
<= MAX_BITSIZE_MODE_ANY_MODE
)
11735 unsigned char b
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11736 unsigned HOST_WIDE_INT len
11737 = native_encode_expr (arg0
, b
, bitsize
/ BITS_PER_UNIT
,
11738 bitpos
/ BITS_PER_UNIT
);
11740 && len
* BITS_PER_UNIT
>= bitsize
)
11742 tree v
= native_interpret_expr (type
, b
,
11743 bitsize
/ BITS_PER_UNIT
);
11752 case VEC_PERM_EXPR
:
11753 if (TREE_CODE (arg2
) == VECTOR_CST
)
11755 /* Build a vector of integers from the tree mask. */
11756 vec_perm_builder builder
;
11757 if (!tree_to_vec_perm_builder (&builder
, arg2
))
11760 /* Create a vec_perm_indices for the integer vector. */
11761 poly_uint64 nelts
= TYPE_VECTOR_SUBPARTS (type
);
11762 bool single_arg
= (op0
== op1
);
11763 vec_perm_indices
sel (builder
, single_arg
? 1 : 2, nelts
);
11765 /* Check for cases that fold to OP0 or OP1 in their original
11767 if (sel
.series_p (0, 1, 0, 1))
11769 if (sel
.series_p (0, 1, nelts
, 1))
11774 if (sel
.all_from_input_p (0))
11776 else if (sel
.all_from_input_p (1))
11779 sel
.rotate_inputs (1);
11783 if ((TREE_CODE (op0
) == VECTOR_CST
11784 || TREE_CODE (op0
) == CONSTRUCTOR
)
11785 && (TREE_CODE (op1
) == VECTOR_CST
11786 || TREE_CODE (op1
) == CONSTRUCTOR
))
11788 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
11789 if (t
!= NULL_TREE
)
11793 bool changed
= (op0
== op1
&& !single_arg
);
11795 /* Generate a canonical form of the selector. */
11796 if (arg2
== op2
&& sel
.encoding () != builder
)
11798 /* Some targets are deficient and fail to expand a single
11799 argument permutation while still allowing an equivalent
11800 2-argument version. */
11801 if (sel
.ninputs () == 2
11802 || can_vec_perm_const_p (TYPE_MODE (type
), sel
, false))
11803 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11806 vec_perm_indices
sel2 (builder
, 2, nelts
);
11807 if (can_vec_perm_const_p (TYPE_MODE (type
), sel2
, false))
11808 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel2
);
11810 /* Not directly supported with either encoding,
11811 so use the preferred form. */
11812 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11818 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
11822 case BIT_INSERT_EXPR
:
11823 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11824 if (TREE_CODE (arg0
) == INTEGER_CST
11825 && TREE_CODE (arg1
) == INTEGER_CST
)
11827 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11828 unsigned bitsize
= TYPE_PRECISION (TREE_TYPE (arg1
));
11829 wide_int tem
= (wi::to_wide (arg0
)
11830 & wi::shifted_mask (bitpos
, bitsize
, true,
11831 TYPE_PRECISION (type
)));
11833 = wi::lshift (wi::zext (wi::to_wide (arg1
, TYPE_PRECISION (type
)),
11835 return wide_int_to_tree (type
, wi::bit_or (tem
, tem2
));
11837 else if (TREE_CODE (arg0
) == VECTOR_CST
11838 && CONSTANT_CLASS_P (arg1
)
11839 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0
)),
11842 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11843 unsigned HOST_WIDE_INT elsize
11844 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1
)));
11845 if (bitpos
% elsize
== 0)
11847 unsigned k
= bitpos
/ elsize
;
11848 unsigned HOST_WIDE_INT nelts
;
11849 if (operand_equal_p (VECTOR_CST_ELT (arg0
, k
), arg1
, 0))
11851 else if (VECTOR_CST_NELTS (arg0
).is_constant (&nelts
))
11853 tree_vector_builder
elts (type
, nelts
, 1);
11854 elts
.quick_grow (nelts
);
11855 for (unsigned HOST_WIDE_INT i
= 0; i
< nelts
; ++i
)
11856 elts
[i
] = (i
== k
? arg1
: VECTOR_CST_ELT (arg0
, i
));
11857 return elts
.build ();
11865 } /* switch (code) */
11868 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11869 of an array (or vector). */
11872 get_array_ctor_element_at_index (tree ctor
, offset_int access_index
)
11874 tree index_type
= NULL_TREE
;
11875 offset_int low_bound
= 0;
11877 if (TREE_CODE (TREE_TYPE (ctor
)) == ARRAY_TYPE
)
11879 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ctor
));
11880 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
11882 /* Static constructors for variably sized objects makes no sense. */
11883 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type
)) == INTEGER_CST
);
11884 index_type
= TREE_TYPE (TYPE_MIN_VALUE (domain_type
));
11885 low_bound
= wi::to_offset (TYPE_MIN_VALUE (domain_type
));
11890 access_index
= wi::ext (access_index
, TYPE_PRECISION (index_type
),
11891 TYPE_SIGN (index_type
));
11893 offset_int index
= low_bound
- 1;
11895 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11896 TYPE_SIGN (index_type
));
11898 offset_int max_index
;
11899 unsigned HOST_WIDE_INT cnt
;
11902 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
11904 /* Array constructor might explicitly set index, or specify a range,
11905 or leave index NULL meaning that it is next index after previous
11909 if (TREE_CODE (cfield
) == INTEGER_CST
)
11910 max_index
= index
= wi::to_offset (cfield
);
11913 gcc_assert (TREE_CODE (cfield
) == RANGE_EXPR
);
11914 index
= wi::to_offset (TREE_OPERAND (cfield
, 0));
11915 max_index
= wi::to_offset (TREE_OPERAND (cfield
, 1));
11922 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11923 TYPE_SIGN (index_type
));
11927 /* Do we have match? */
11928 if (wi::cmpu (access_index
, index
) >= 0
11929 && wi::cmpu (access_index
, max_index
) <= 0)
11935 /* Perform constant folding and related simplification of EXPR.
11936 The related simplifications include x*1 => x, x*0 => 0, etc.,
11937 and application of the associative law.
11938 NOP_EXPR conversions may be removed freely (as long as we
11939 are careful not to change the type of the overall expression).
11940 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11941 but we can constant-fold them if they have constant operands. */
11943 #ifdef ENABLE_FOLD_CHECKING
11944 # define fold(x) fold_1 (x)
11945 static tree
fold_1 (tree
);
11951 const tree t
= expr
;
11952 enum tree_code code
= TREE_CODE (t
);
11953 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11955 location_t loc
= EXPR_LOCATION (expr
);
11957 /* Return right away if a constant. */
11958 if (kind
== tcc_constant
)
11961 /* CALL_EXPR-like objects with variable numbers of operands are
11962 treated specially. */
11963 if (kind
== tcc_vl_exp
)
11965 if (code
== CALL_EXPR
)
11967 tem
= fold_call_expr (loc
, expr
, false);
11968 return tem
? tem
: expr
;
11973 if (IS_EXPR_CODE_CLASS (kind
))
11975 tree type
= TREE_TYPE (t
);
11976 tree op0
, op1
, op2
;
11978 switch (TREE_CODE_LENGTH (code
))
11981 op0
= TREE_OPERAND (t
, 0);
11982 tem
= fold_unary_loc (loc
, code
, type
, op0
);
11983 return tem
? tem
: expr
;
11985 op0
= TREE_OPERAND (t
, 0);
11986 op1
= TREE_OPERAND (t
, 1);
11987 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
11988 return tem
? tem
: expr
;
11990 op0
= TREE_OPERAND (t
, 0);
11991 op1
= TREE_OPERAND (t
, 1);
11992 op2
= TREE_OPERAND (t
, 2);
11993 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
11994 return tem
? tem
: expr
;
12004 tree op0
= TREE_OPERAND (t
, 0);
12005 tree op1
= TREE_OPERAND (t
, 1);
12007 if (TREE_CODE (op1
) == INTEGER_CST
12008 && TREE_CODE (op0
) == CONSTRUCTOR
12009 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
12011 tree val
= get_array_ctor_element_at_index (op0
,
12012 wi::to_offset (op1
));
12020 /* Return a VECTOR_CST if possible. */
12023 tree type
= TREE_TYPE (t
);
12024 if (TREE_CODE (type
) != VECTOR_TYPE
)
12029 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
12030 if (! CONSTANT_CLASS_P (val
))
12033 return build_vector_from_ctor (type
, CONSTRUCTOR_ELTS (t
));
12037 return fold (DECL_INITIAL (t
));
12041 } /* switch (code) */
12044 #ifdef ENABLE_FOLD_CHECKING
12047 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
12048 hash_table
<nofree_ptr_hash
<const tree_node
> > *);
12049 static void fold_check_failed (const_tree
, const_tree
);
12050 void print_fold_checksum (const_tree
);
12052 /* When --enable-checking=fold, compute a digest of expr before
12053 and after actual fold call to see if fold did not accidentally
12054 change original expr. */
12060 struct md5_ctx ctx
;
12061 unsigned char checksum_before
[16], checksum_after
[16];
12062 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12064 md5_init_ctx (&ctx
);
12065 fold_checksum_tree (expr
, &ctx
, &ht
);
12066 md5_finish_ctx (&ctx
, checksum_before
);
12069 ret
= fold_1 (expr
);
12071 md5_init_ctx (&ctx
);
12072 fold_checksum_tree (expr
, &ctx
, &ht
);
12073 md5_finish_ctx (&ctx
, checksum_after
);
12075 if (memcmp (checksum_before
, checksum_after
, 16))
12076 fold_check_failed (expr
, ret
);
12082 print_fold_checksum (const_tree expr
)
12084 struct md5_ctx ctx
;
12085 unsigned char checksum
[16], cnt
;
12086 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12088 md5_init_ctx (&ctx
);
12089 fold_checksum_tree (expr
, &ctx
, &ht
);
12090 md5_finish_ctx (&ctx
, checksum
);
12091 for (cnt
= 0; cnt
< 16; ++cnt
)
12092 fprintf (stderr
, "%02x", checksum
[cnt
]);
12093 putc ('\n', stderr
);
12097 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
12099 internal_error ("fold check: original tree changed by fold");
12103 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
12104 hash_table
<nofree_ptr_hash
<const tree_node
> > *ht
)
12106 const tree_node
**slot
;
12107 enum tree_code code
;
12108 union tree_node buf
;
12114 slot
= ht
->find_slot (expr
, INSERT
);
12118 code
= TREE_CODE (expr
);
12119 if (TREE_CODE_CLASS (code
) == tcc_declaration
12120 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
12122 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12123 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12124 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
12125 buf
.decl_with_vis
.symtab_node
= NULL
;
12126 expr
= (tree
) &buf
;
12128 else if (TREE_CODE_CLASS (code
) == tcc_type
12129 && (TYPE_POINTER_TO (expr
)
12130 || TYPE_REFERENCE_TO (expr
)
12131 || TYPE_CACHED_VALUES_P (expr
)
12132 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
12133 || TYPE_NEXT_VARIANT (expr
)
12134 || TYPE_ALIAS_SET_KNOWN_P (expr
)))
12136 /* Allow these fields to be modified. */
12138 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12139 expr
= tmp
= (tree
) &buf
;
12140 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
12141 TYPE_POINTER_TO (tmp
) = NULL
;
12142 TYPE_REFERENCE_TO (tmp
) = NULL
;
12143 TYPE_NEXT_VARIANT (tmp
) = NULL
;
12144 TYPE_ALIAS_SET (tmp
) = -1;
12145 if (TYPE_CACHED_VALUES_P (tmp
))
12147 TYPE_CACHED_VALUES_P (tmp
) = 0;
12148 TYPE_CACHED_VALUES (tmp
) = NULL
;
12151 md5_process_bytes (expr
, tree_size (expr
), ctx
);
12152 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
12153 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
12154 if (TREE_CODE_CLASS (code
) != tcc_type
12155 && TREE_CODE_CLASS (code
) != tcc_declaration
12156 && code
!= TREE_LIST
12157 && code
!= SSA_NAME
12158 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
12159 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
12160 switch (TREE_CODE_CLASS (code
))
12166 md5_process_bytes (TREE_STRING_POINTER (expr
),
12167 TREE_STRING_LENGTH (expr
), ctx
);
12170 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
12171 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
12174 len
= vector_cst_encoded_nelts (expr
);
12175 for (i
= 0; i
< len
; ++i
)
12176 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr
, i
), ctx
, ht
);
12182 case tcc_exceptional
:
12186 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
12187 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
12188 expr
= TREE_CHAIN (expr
);
12189 goto recursive_label
;
12192 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
12193 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
12199 case tcc_expression
:
12200 case tcc_reference
:
12201 case tcc_comparison
:
12204 case tcc_statement
:
12206 len
= TREE_OPERAND_LENGTH (expr
);
12207 for (i
= 0; i
< len
; ++i
)
12208 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
12210 case tcc_declaration
:
12211 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
12212 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
12213 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
12215 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
12216 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
12217 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
12218 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
12219 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
12222 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
12224 if (TREE_CODE (expr
) == FUNCTION_DECL
)
12226 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
12227 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
12229 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
12233 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
12234 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
12235 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
12236 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
12237 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
12238 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
12239 if (INTEGRAL_TYPE_P (expr
)
12240 || SCALAR_FLOAT_TYPE_P (expr
))
12242 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
12243 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
12245 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
12246 if (TREE_CODE (expr
) == RECORD_TYPE
12247 || TREE_CODE (expr
) == UNION_TYPE
12248 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
12249 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
12250 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
12257 /* Helper function for outputting the checksum of a tree T. When
12258 debugging with gdb, you can "define mynext" to be "next" followed
12259 by "call debug_fold_checksum (op0)", then just trace down till the
12262 DEBUG_FUNCTION
void
12263 debug_fold_checksum (const_tree t
)
12266 unsigned char checksum
[16];
12267 struct md5_ctx ctx
;
12268 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12270 md5_init_ctx (&ctx
);
12271 fold_checksum_tree (t
, &ctx
, &ht
);
12272 md5_finish_ctx (&ctx
, checksum
);
12275 for (i
= 0; i
< 16; i
++)
12276 fprintf (stderr
, "%d ", checksum
[i
]);
12278 fprintf (stderr
, "\n");
12283 /* Fold a unary tree expression with code CODE of type TYPE with an
12284 operand OP0. LOC is the location of the resulting expression.
12285 Return a folded expression if successful. Otherwise, return a tree
12286 expression with code CODE of type TYPE with an operand OP0. */
12289 fold_build1_loc (location_t loc
,
12290 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
12293 #ifdef ENABLE_FOLD_CHECKING
12294 unsigned char checksum_before
[16], checksum_after
[16];
12295 struct md5_ctx ctx
;
12296 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12298 md5_init_ctx (&ctx
);
12299 fold_checksum_tree (op0
, &ctx
, &ht
);
12300 md5_finish_ctx (&ctx
, checksum_before
);
12304 tem
= fold_unary_loc (loc
, code
, type
, op0
);
12306 tem
= build1_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
12308 #ifdef ENABLE_FOLD_CHECKING
12309 md5_init_ctx (&ctx
);
12310 fold_checksum_tree (op0
, &ctx
, &ht
);
12311 md5_finish_ctx (&ctx
, checksum_after
);
12313 if (memcmp (checksum_before
, checksum_after
, 16))
12314 fold_check_failed (op0
, tem
);
12319 /* Fold a binary tree expression with code CODE of type TYPE with
12320 operands OP0 and OP1. LOC is the location of the resulting
12321 expression. Return a folded expression if successful. Otherwise,
12322 return a tree expression with code CODE of type TYPE with operands
12326 fold_build2_loc (location_t loc
,
12327 enum tree_code code
, tree type
, tree op0
, tree op1
12331 #ifdef ENABLE_FOLD_CHECKING
12332 unsigned char checksum_before_op0
[16],
12333 checksum_before_op1
[16],
12334 checksum_after_op0
[16],
12335 checksum_after_op1
[16];
12336 struct md5_ctx ctx
;
12337 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12339 md5_init_ctx (&ctx
);
12340 fold_checksum_tree (op0
, &ctx
, &ht
);
12341 md5_finish_ctx (&ctx
, checksum_before_op0
);
12344 md5_init_ctx (&ctx
);
12345 fold_checksum_tree (op1
, &ctx
, &ht
);
12346 md5_finish_ctx (&ctx
, checksum_before_op1
);
12350 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
12352 tem
= build2_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
12354 #ifdef ENABLE_FOLD_CHECKING
12355 md5_init_ctx (&ctx
);
12356 fold_checksum_tree (op0
, &ctx
, &ht
);
12357 md5_finish_ctx (&ctx
, checksum_after_op0
);
12360 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12361 fold_check_failed (op0
, tem
);
12363 md5_init_ctx (&ctx
);
12364 fold_checksum_tree (op1
, &ctx
, &ht
);
12365 md5_finish_ctx (&ctx
, checksum_after_op1
);
12367 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12368 fold_check_failed (op1
, tem
);
12373 /* Fold a ternary tree expression with code CODE of type TYPE with
12374 operands OP0, OP1, and OP2. Return a folded expression if
12375 successful. Otherwise, return a tree expression with code CODE of
12376 type TYPE with operands OP0, OP1, and OP2. */
12379 fold_build3_loc (location_t loc
, enum tree_code code
, tree type
,
12380 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
12383 #ifdef ENABLE_FOLD_CHECKING
12384 unsigned char checksum_before_op0
[16],
12385 checksum_before_op1
[16],
12386 checksum_before_op2
[16],
12387 checksum_after_op0
[16],
12388 checksum_after_op1
[16],
12389 checksum_after_op2
[16];
12390 struct md5_ctx ctx
;
12391 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12393 md5_init_ctx (&ctx
);
12394 fold_checksum_tree (op0
, &ctx
, &ht
);
12395 md5_finish_ctx (&ctx
, checksum_before_op0
);
12398 md5_init_ctx (&ctx
);
12399 fold_checksum_tree (op1
, &ctx
, &ht
);
12400 md5_finish_ctx (&ctx
, checksum_before_op1
);
12403 md5_init_ctx (&ctx
);
12404 fold_checksum_tree (op2
, &ctx
, &ht
);
12405 md5_finish_ctx (&ctx
, checksum_before_op2
);
12409 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
12410 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12412 tem
= build3_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
12414 #ifdef ENABLE_FOLD_CHECKING
12415 md5_init_ctx (&ctx
);
12416 fold_checksum_tree (op0
, &ctx
, &ht
);
12417 md5_finish_ctx (&ctx
, checksum_after_op0
);
12420 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12421 fold_check_failed (op0
, tem
);
12423 md5_init_ctx (&ctx
);
12424 fold_checksum_tree (op1
, &ctx
, &ht
);
12425 md5_finish_ctx (&ctx
, checksum_after_op1
);
12428 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12429 fold_check_failed (op1
, tem
);
12431 md5_init_ctx (&ctx
);
12432 fold_checksum_tree (op2
, &ctx
, &ht
);
12433 md5_finish_ctx (&ctx
, checksum_after_op2
);
12435 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
12436 fold_check_failed (op2
, tem
);
12441 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12442 arguments in ARGARRAY, and a null static chain.
12443 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12444 of type TYPE from the given operands as constructed by build_call_array. */
12447 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
12448 int nargs
, tree
*argarray
)
12451 #ifdef ENABLE_FOLD_CHECKING
12452 unsigned char checksum_before_fn
[16],
12453 checksum_before_arglist
[16],
12454 checksum_after_fn
[16],
12455 checksum_after_arglist
[16];
12456 struct md5_ctx ctx
;
12457 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12460 md5_init_ctx (&ctx
);
12461 fold_checksum_tree (fn
, &ctx
, &ht
);
12462 md5_finish_ctx (&ctx
, checksum_before_fn
);
12465 md5_init_ctx (&ctx
);
12466 for (i
= 0; i
< nargs
; i
++)
12467 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12468 md5_finish_ctx (&ctx
, checksum_before_arglist
);
12472 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
12474 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12476 #ifdef ENABLE_FOLD_CHECKING
12477 md5_init_ctx (&ctx
);
12478 fold_checksum_tree (fn
, &ctx
, &ht
);
12479 md5_finish_ctx (&ctx
, checksum_after_fn
);
12482 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
12483 fold_check_failed (fn
, tem
);
12485 md5_init_ctx (&ctx
);
12486 for (i
= 0; i
< nargs
; i
++)
12487 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12488 md5_finish_ctx (&ctx
, checksum_after_arglist
);
12490 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
12491 fold_check_failed (NULL_TREE
, tem
);
12496 /* Perform constant folding and related simplification of initializer
12497 expression EXPR. These behave identically to "fold_buildN" but ignore
12498 potential run-time traps and exceptions that fold must preserve. */
12500 #define START_FOLD_INIT \
12501 int saved_signaling_nans = flag_signaling_nans;\
12502 int saved_trapping_math = flag_trapping_math;\
12503 int saved_rounding_math = flag_rounding_math;\
12504 int saved_trapv = flag_trapv;\
12505 int saved_folding_initializer = folding_initializer;\
12506 flag_signaling_nans = 0;\
12507 flag_trapping_math = 0;\
12508 flag_rounding_math = 0;\
12510 folding_initializer = 1;
12512 #define END_FOLD_INIT \
12513 flag_signaling_nans = saved_signaling_nans;\
12514 flag_trapping_math = saved_trapping_math;\
12515 flag_rounding_math = saved_rounding_math;\
12516 flag_trapv = saved_trapv;\
12517 folding_initializer = saved_folding_initializer;
12520 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
12521 tree type
, tree op
)
12526 result
= fold_build1_loc (loc
, code
, type
, op
);
12533 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
12534 tree type
, tree op0
, tree op1
)
12539 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
12546 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
12547 int nargs
, tree
*argarray
)
12552 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12558 #undef START_FOLD_INIT
12559 #undef END_FOLD_INIT
12561 /* Determine if first argument is a multiple of second argument. Return 0 if
12562 it is not, or we cannot easily determined it to be.
12564 An example of the sort of thing we care about (at this point; this routine
12565 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12566 fold cases do now) is discovering that
12568 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12574 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12576 This code also handles discovering that
12578 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12580 is a multiple of 8 so we don't have to worry about dealing with a
12581 possible remainder.
12583 Note that we *look* inside a SAVE_EXPR only to determine how it was
12584 calculated; it is not safe for fold to do much of anything else with the
12585 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12586 at run time. For example, the latter example above *cannot* be implemented
12587 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12588 evaluation time of the original SAVE_EXPR is not necessarily the same at
12589 the time the new expression is evaluated. The only optimization of this
12590 sort that would be valid is changing
12592 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12596 SAVE_EXPR (I) * SAVE_EXPR (J)
12598 (where the same SAVE_EXPR (J) is used in the original and the
12599 transformed version). */
12602 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
12607 if (operand_equal_p (top
, bottom
, 0))
12610 if (TREE_CODE (type
) != INTEGER_TYPE
)
12613 switch (TREE_CODE (top
))
12616 /* Bitwise and provides a power of two multiple. If the mask is
12617 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12618 if (!integer_pow2p (bottom
))
12620 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12621 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12624 if (TREE_CODE (bottom
) == INTEGER_CST
)
12626 op1
= TREE_OPERAND (top
, 0);
12627 op2
= TREE_OPERAND (top
, 1);
12628 if (TREE_CODE (op1
) == INTEGER_CST
)
12629 std::swap (op1
, op2
);
12630 if (TREE_CODE (op2
) == INTEGER_CST
)
12632 if (multiple_of_p (type
, op2
, bottom
))
12634 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
12635 if (multiple_of_p (type
, bottom
, op2
))
12637 widest_int w
= wi::sdiv_trunc (wi::to_widest (bottom
),
12638 wi::to_widest (op2
));
12639 if (wi::fits_to_tree_p (w
, TREE_TYPE (bottom
)))
12641 op2
= wide_int_to_tree (TREE_TYPE (bottom
), w
);
12642 return multiple_of_p (type
, op1
, op2
);
12645 return multiple_of_p (type
, op1
, bottom
);
12648 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12649 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12652 /* It is impossible to prove if op0 - op1 is multiple of bottom
12653 precisely, so be conservative here checking if both op0 and op1
12654 are multiple of bottom. Note we check the second operand first
12655 since it's usually simpler. */
12656 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12657 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12660 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12661 as op0 - 3 if the expression has unsigned type. For example,
12662 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12663 op1
= TREE_OPERAND (top
, 1);
12664 if (TYPE_UNSIGNED (type
)
12665 && TREE_CODE (op1
) == INTEGER_CST
&& tree_int_cst_sign_bit (op1
))
12666 op1
= fold_build1 (NEGATE_EXPR
, type
, op1
);
12667 return (multiple_of_p (type
, op1
, bottom
)
12668 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12671 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
12673 op1
= TREE_OPERAND (top
, 1);
12674 /* const_binop may not detect overflow correctly,
12675 so check for it explicitly here. */
12676 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
12678 && (t1
= fold_convert (type
,
12679 const_binop (LSHIFT_EXPR
, size_one_node
,
12681 && !TREE_OVERFLOW (t1
))
12682 return multiple_of_p (type
, t1
, bottom
);
12687 /* Can't handle conversions from non-integral or wider integral type. */
12688 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
12689 || (TYPE_PRECISION (type
)
12690 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
12696 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
12699 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12700 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
12703 if (TREE_CODE (bottom
) != INTEGER_CST
12704 || integer_zerop (bottom
)
12705 || (TYPE_UNSIGNED (type
)
12706 && (tree_int_cst_sgn (top
) < 0
12707 || tree_int_cst_sgn (bottom
) < 0)))
12709 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
12713 if (TREE_CODE (bottom
) == INTEGER_CST
12714 && (stmt
= SSA_NAME_DEF_STMT (top
)) != NULL
12715 && gimple_code (stmt
) == GIMPLE_ASSIGN
)
12717 enum tree_code code
= gimple_assign_rhs_code (stmt
);
12719 /* Check for special cases to see if top is defined as multiple
12722 top = (X & ~(bottom - 1) ; bottom is power of 2
12728 if (code
== BIT_AND_EXPR
12729 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12730 && TREE_CODE (op2
) == INTEGER_CST
12731 && integer_pow2p (bottom
)
12732 && wi::multiple_of_p (wi::to_widest (op2
),
12733 wi::to_widest (bottom
), UNSIGNED
))
12736 op1
= gimple_assign_rhs1 (stmt
);
12737 if (code
== MINUS_EXPR
12738 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12739 && TREE_CODE (op2
) == SSA_NAME
12740 && (stmt
= SSA_NAME_DEF_STMT (op2
)) != NULL
12741 && gimple_code (stmt
) == GIMPLE_ASSIGN
12742 && (code
= gimple_assign_rhs_code (stmt
)) == TRUNC_MOD_EXPR
12743 && operand_equal_p (op1
, gimple_assign_rhs1 (stmt
), 0)
12744 && operand_equal_p (bottom
, gimple_assign_rhs2 (stmt
), 0))
12751 if (POLY_INT_CST_P (top
) && poly_int_tree_p (bottom
))
12752 return multiple_p (wi::to_poly_widest (top
),
12753 wi::to_poly_widest (bottom
));
12759 #define tree_expr_nonnegative_warnv_p(X, Y) \
12760 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12762 #define RECURSE(X) \
12763 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12765 /* Return true if CODE or TYPE is known to be non-negative. */
12768 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
12770 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
12771 && truth_value_p (code
))
12772 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12773 have a signed:1 type (where the value is -1 and 0). */
12778 /* Return true if (CODE OP0) is known to be non-negative. If the return
12779 value is based on the assumption that signed overflow is undefined,
12780 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12781 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12784 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12785 bool *strict_overflow_p
, int depth
)
12787 if (TYPE_UNSIGNED (type
))
12793 /* We can't return 1 if flag_wrapv is set because
12794 ABS_EXPR<INT_MIN> = INT_MIN. */
12795 if (!ANY_INTEGRAL_TYPE_P (type
))
12797 if (TYPE_OVERFLOW_UNDEFINED (type
))
12799 *strict_overflow_p
= true;
12804 case NON_LVALUE_EXPR
:
12806 case FIX_TRUNC_EXPR
:
12807 return RECURSE (op0
);
12811 tree inner_type
= TREE_TYPE (op0
);
12812 tree outer_type
= type
;
12814 if (TREE_CODE (outer_type
) == REAL_TYPE
)
12816 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12817 return RECURSE (op0
);
12818 if (INTEGRAL_TYPE_P (inner_type
))
12820 if (TYPE_UNSIGNED (inner_type
))
12822 return RECURSE (op0
);
12825 else if (INTEGRAL_TYPE_P (outer_type
))
12827 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12828 return RECURSE (op0
);
12829 if (INTEGRAL_TYPE_P (inner_type
))
12830 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
12831 && TYPE_UNSIGNED (inner_type
);
12837 return tree_simple_nonnegative_warnv_p (code
, type
);
12840 /* We don't know sign of `t', so be conservative and return false. */
12844 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12845 value is based on the assumption that signed overflow is undefined,
12846 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12847 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12850 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12851 tree op1
, bool *strict_overflow_p
,
12854 if (TYPE_UNSIGNED (type
))
12859 case POINTER_PLUS_EXPR
:
12861 if (FLOAT_TYPE_P (type
))
12862 return RECURSE (op0
) && RECURSE (op1
);
12864 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12865 both unsigned and at least 2 bits shorter than the result. */
12866 if (TREE_CODE (type
) == INTEGER_TYPE
12867 && TREE_CODE (op0
) == NOP_EXPR
12868 && TREE_CODE (op1
) == NOP_EXPR
)
12870 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
12871 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
12872 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
12873 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
12875 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
12876 TYPE_PRECISION (inner2
)) + 1;
12877 return prec
< TYPE_PRECISION (type
);
12883 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12885 /* x * x is always non-negative for floating point x
12886 or without overflow. */
12887 if (operand_equal_p (op0
, op1
, 0)
12888 || (RECURSE (op0
) && RECURSE (op1
)))
12890 if (ANY_INTEGRAL_TYPE_P (type
)
12891 && TYPE_OVERFLOW_UNDEFINED (type
))
12892 *strict_overflow_p
= true;
12897 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12898 both unsigned and their total bits is shorter than the result. */
12899 if (TREE_CODE (type
) == INTEGER_TYPE
12900 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
12901 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
12903 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
12904 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
12906 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
12907 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
12910 bool unsigned0
= TYPE_UNSIGNED (inner0
);
12911 bool unsigned1
= TYPE_UNSIGNED (inner1
);
12913 if (TREE_CODE (op0
) == INTEGER_CST
)
12914 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
12916 if (TREE_CODE (op1
) == INTEGER_CST
)
12917 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
12919 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
12920 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
12922 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
12923 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
12924 : TYPE_PRECISION (inner0
);
12926 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
12927 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
12928 : TYPE_PRECISION (inner1
);
12930 return precision0
+ precision1
< TYPE_PRECISION (type
);
12937 return RECURSE (op0
) || RECURSE (op1
);
12943 case TRUNC_DIV_EXPR
:
12944 case CEIL_DIV_EXPR
:
12945 case FLOOR_DIV_EXPR
:
12946 case ROUND_DIV_EXPR
:
12947 return RECURSE (op0
) && RECURSE (op1
);
12949 case TRUNC_MOD_EXPR
:
12950 return RECURSE (op0
);
12952 case FLOOR_MOD_EXPR
:
12953 return RECURSE (op1
);
12955 case CEIL_MOD_EXPR
:
12956 case ROUND_MOD_EXPR
:
12958 return tree_simple_nonnegative_warnv_p (code
, type
);
12961 /* We don't know sign of `t', so be conservative and return false. */
12965 /* Return true if T is known to be non-negative. If the return
12966 value is based on the assumption that signed overflow is undefined,
12967 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12968 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12971 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12973 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12976 switch (TREE_CODE (t
))
12979 return tree_int_cst_sgn (t
) >= 0;
12982 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
12985 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
12988 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
12991 /* Limit the depth of recursion to avoid quadratic behavior.
12992 This is expected to catch almost all occurrences in practice.
12993 If this code misses important cases that unbounded recursion
12994 would not, passes that need this information could be revised
12995 to provide it through dataflow propagation. */
12996 return (!name_registered_for_update_p (t
)
12997 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
12998 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t
),
12999 strict_overflow_p
, depth
));
13002 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13006 /* Return true if T is known to be non-negative. If the return
13007 value is based on the assumption that signed overflow is undefined,
13008 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13009 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13012 tree_call_nonnegative_warnv_p (tree type
, combined_fn fn
, tree arg0
, tree arg1
,
13013 bool *strict_overflow_p
, int depth
)
13034 case CFN_BUILT_IN_BSWAP32
:
13035 case CFN_BUILT_IN_BSWAP64
:
13041 /* sqrt(-0.0) is -0.0. */
13042 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
13044 return RECURSE (arg0
);
13072 CASE_CFN_NEARBYINT
:
13073 CASE_CFN_NEARBYINT_FN
:
13082 CASE_CFN_SIGNIFICAND
:
13087 /* True if the 1st argument is nonnegative. */
13088 return RECURSE (arg0
);
13092 /* True if the 1st OR 2nd arguments are nonnegative. */
13093 return RECURSE (arg0
) || RECURSE (arg1
);
13097 /* True if the 1st AND 2nd arguments are nonnegative. */
13098 return RECURSE (arg0
) && RECURSE (arg1
);
13101 CASE_CFN_COPYSIGN_FN
:
13102 /* True if the 2nd argument is nonnegative. */
13103 return RECURSE (arg1
);
13106 /* True if the 1st argument is nonnegative or the second
13107 argument is an even integer. */
13108 if (TREE_CODE (arg1
) == INTEGER_CST
13109 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
13111 return RECURSE (arg0
);
13114 /* True if the 1st argument is nonnegative or the second
13115 argument is an even integer valued real. */
13116 if (TREE_CODE (arg1
) == REAL_CST
)
13121 c
= TREE_REAL_CST (arg1
);
13122 n
= real_to_integer (&c
);
13125 REAL_VALUE_TYPE cint
;
13126 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
13127 if (real_identical (&c
, &cint
))
13131 return RECURSE (arg0
);
13136 return tree_simple_nonnegative_warnv_p (CALL_EXPR
, type
);
13139 /* Return true if T is known to be non-negative. If the return
13140 value is based on the assumption that signed overflow is undefined,
13141 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13142 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13145 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13147 enum tree_code code
= TREE_CODE (t
);
13148 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
13155 tree temp
= TARGET_EXPR_SLOT (t
);
13156 t
= TARGET_EXPR_INITIAL (t
);
13158 /* If the initializer is non-void, then it's a normal expression
13159 that will be assigned to the slot. */
13160 if (!VOID_TYPE_P (t
))
13161 return RECURSE (t
);
13163 /* Otherwise, the initializer sets the slot in some way. One common
13164 way is an assignment statement at the end of the initializer. */
13167 if (TREE_CODE (t
) == BIND_EXPR
)
13168 t
= expr_last (BIND_EXPR_BODY (t
));
13169 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
13170 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
13171 t
= expr_last (TREE_OPERAND (t
, 0));
13172 else if (TREE_CODE (t
) == STATEMENT_LIST
)
13177 if (TREE_CODE (t
) == MODIFY_EXPR
13178 && TREE_OPERAND (t
, 0) == temp
)
13179 return RECURSE (TREE_OPERAND (t
, 1));
13186 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
13187 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
13189 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
13190 get_call_combined_fn (t
),
13193 strict_overflow_p
, depth
);
13195 case COMPOUND_EXPR
:
13197 return RECURSE (TREE_OPERAND (t
, 1));
13200 return RECURSE (expr_last (TREE_OPERAND (t
, 1)));
13203 return RECURSE (TREE_OPERAND (t
, 0));
13206 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13211 #undef tree_expr_nonnegative_warnv_p
13213 /* Return true if T is known to be non-negative. If the return
13214 value is based on the assumption that signed overflow is undefined,
13215 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13216 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13219 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13221 enum tree_code code
;
13222 if (t
== error_mark_node
)
13225 code
= TREE_CODE (t
);
13226 switch (TREE_CODE_CLASS (code
))
13229 case tcc_comparison
:
13230 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13232 TREE_OPERAND (t
, 0),
13233 TREE_OPERAND (t
, 1),
13234 strict_overflow_p
, depth
);
13237 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13239 TREE_OPERAND (t
, 0),
13240 strict_overflow_p
, depth
);
13243 case tcc_declaration
:
13244 case tcc_reference
:
13245 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13253 case TRUTH_AND_EXPR
:
13254 case TRUTH_OR_EXPR
:
13255 case TRUTH_XOR_EXPR
:
13256 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13258 TREE_OPERAND (t
, 0),
13259 TREE_OPERAND (t
, 1),
13260 strict_overflow_p
, depth
);
13261 case TRUTH_NOT_EXPR
:
13262 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13264 TREE_OPERAND (t
, 0),
13265 strict_overflow_p
, depth
);
13272 case WITH_SIZE_EXPR
:
13274 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13277 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13281 /* Return true if `t' is known to be non-negative. Handle warnings
13282 about undefined signed overflow. */
13285 tree_expr_nonnegative_p (tree t
)
13287 bool ret
, strict_overflow_p
;
13289 strict_overflow_p
= false;
13290 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
13291 if (strict_overflow_p
)
13292 fold_overflow_warning (("assuming signed overflow does not occur when "
13293 "determining that expression is always "
13295 WARN_STRICT_OVERFLOW_MISC
);
13300 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13301 For floating point we further ensure that T is not denormal.
13302 Similar logic is present in nonzero_address in rtlanal.h.
13304 If the return value is based on the assumption that signed overflow
13305 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13306 change *STRICT_OVERFLOW_P. */
13309 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
13310 bool *strict_overflow_p
)
13315 return tree_expr_nonzero_warnv_p (op0
,
13316 strict_overflow_p
);
13320 tree inner_type
= TREE_TYPE (op0
);
13321 tree outer_type
= type
;
13323 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
13324 && tree_expr_nonzero_warnv_p (op0
,
13325 strict_overflow_p
));
13329 case NON_LVALUE_EXPR
:
13330 return tree_expr_nonzero_warnv_p (op0
,
13331 strict_overflow_p
);
13340 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13341 For floating point we further ensure that T is not denormal.
13342 Similar logic is present in nonzero_address in rtlanal.h.
13344 If the return value is based on the assumption that signed overflow
13345 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13346 change *STRICT_OVERFLOW_P. */
13349 tree_binary_nonzero_warnv_p (enum tree_code code
,
13352 tree op1
, bool *strict_overflow_p
)
13354 bool sub_strict_overflow_p
;
13357 case POINTER_PLUS_EXPR
:
13359 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
13361 /* With the presence of negative values it is hard
13362 to say something. */
13363 sub_strict_overflow_p
= false;
13364 if (!tree_expr_nonnegative_warnv_p (op0
,
13365 &sub_strict_overflow_p
)
13366 || !tree_expr_nonnegative_warnv_p (op1
,
13367 &sub_strict_overflow_p
))
13369 /* One of operands must be positive and the other non-negative. */
13370 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13371 overflows, on a twos-complement machine the sum of two
13372 nonnegative numbers can never be zero. */
13373 return (tree_expr_nonzero_warnv_p (op0
,
13375 || tree_expr_nonzero_warnv_p (op1
,
13376 strict_overflow_p
));
13381 if (TYPE_OVERFLOW_UNDEFINED (type
))
13383 if (tree_expr_nonzero_warnv_p (op0
,
13385 && tree_expr_nonzero_warnv_p (op1
,
13386 strict_overflow_p
))
13388 *strict_overflow_p
= true;
13395 sub_strict_overflow_p
= false;
13396 if (tree_expr_nonzero_warnv_p (op0
,
13397 &sub_strict_overflow_p
)
13398 && tree_expr_nonzero_warnv_p (op1
,
13399 &sub_strict_overflow_p
))
13401 if (sub_strict_overflow_p
)
13402 *strict_overflow_p
= true;
13407 sub_strict_overflow_p
= false;
13408 if (tree_expr_nonzero_warnv_p (op0
,
13409 &sub_strict_overflow_p
))
13411 if (sub_strict_overflow_p
)
13412 *strict_overflow_p
= true;
13414 /* When both operands are nonzero, then MAX must be too. */
13415 if (tree_expr_nonzero_warnv_p (op1
,
13416 strict_overflow_p
))
13419 /* MAX where operand 0 is positive is positive. */
13420 return tree_expr_nonnegative_warnv_p (op0
,
13421 strict_overflow_p
);
13423 /* MAX where operand 1 is positive is positive. */
13424 else if (tree_expr_nonzero_warnv_p (op1
,
13425 &sub_strict_overflow_p
)
13426 && tree_expr_nonnegative_warnv_p (op1
,
13427 &sub_strict_overflow_p
))
13429 if (sub_strict_overflow_p
)
13430 *strict_overflow_p
= true;
13436 return (tree_expr_nonzero_warnv_p (op1
,
13438 || tree_expr_nonzero_warnv_p (op0
,
13439 strict_overflow_p
));
13448 /* Return true when T is an address and is known to be nonzero.
13449 For floating point we further ensure that T is not denormal.
13450 Similar logic is present in nonzero_address in rtlanal.h.
13452 If the return value is based on the assumption that signed overflow
13453 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13454 change *STRICT_OVERFLOW_P. */
13457 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
13459 bool sub_strict_overflow_p
;
13460 switch (TREE_CODE (t
))
13463 return !integer_zerop (t
);
13467 tree base
= TREE_OPERAND (t
, 0);
13469 if (!DECL_P (base
))
13470 base
= get_base_address (base
);
13472 if (base
&& TREE_CODE (base
) == TARGET_EXPR
)
13473 base
= TARGET_EXPR_SLOT (base
);
13478 /* For objects in symbol table check if we know they are non-zero.
13479 Don't do anything for variables and functions before symtab is built;
13480 it is quite possible that they will be declared weak later. */
13481 int nonzero_addr
= maybe_nonzero_address (base
);
13482 if (nonzero_addr
>= 0)
13483 return nonzero_addr
;
13485 /* Constants are never weak. */
13486 if (CONSTANT_CLASS_P (base
))
13493 sub_strict_overflow_p
= false;
13494 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
13495 &sub_strict_overflow_p
)
13496 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
13497 &sub_strict_overflow_p
))
13499 if (sub_strict_overflow_p
)
13500 *strict_overflow_p
= true;
13506 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
13508 return expr_not_equal_to (t
, wi::zero (TYPE_PRECISION (TREE_TYPE (t
))));
13516 #define integer_valued_real_p(X) \
13517 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13519 #define RECURSE(X) \
13520 ((integer_valued_real_p) (X, depth + 1))
13522 /* Return true if the floating point result of (CODE OP0) has an
13523 integer value. We also allow +Inf, -Inf and NaN to be considered
13524 integer values. Return false for signaling NaN.
13526 DEPTH is the current nesting depth of the query. */
13529 integer_valued_real_unary_p (tree_code code
, tree op0
, int depth
)
13537 return RECURSE (op0
);
13541 tree type
= TREE_TYPE (op0
);
13542 if (TREE_CODE (type
) == INTEGER_TYPE
)
13544 if (TREE_CODE (type
) == REAL_TYPE
)
13545 return RECURSE (op0
);
13555 /* Return true if the floating point result of (CODE OP0 OP1) has an
13556 integer value. We also allow +Inf, -Inf and NaN to be considered
13557 integer values. Return false for signaling NaN.
13559 DEPTH is the current nesting depth of the query. */
13562 integer_valued_real_binary_p (tree_code code
, tree op0
, tree op1
, int depth
)
13571 return RECURSE (op0
) && RECURSE (op1
);
13579 /* Return true if the floating point result of calling FNDECL with arguments
13580 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13581 considered integer values. Return false for signaling NaN. If FNDECL
13582 takes fewer than 2 arguments, the remaining ARGn are null.
13584 DEPTH is the current nesting depth of the query. */
13587 integer_valued_real_call_p (combined_fn fn
, tree arg0
, tree arg1
, int depth
)
13595 CASE_CFN_NEARBYINT
:
13596 CASE_CFN_NEARBYINT_FN
:
13609 return RECURSE (arg0
) && RECURSE (arg1
);
13617 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13618 has an integer value. We also allow +Inf, -Inf and NaN to be
13619 considered integer values. Return false for signaling NaN.
13621 DEPTH is the current nesting depth of the query. */
13624 integer_valued_real_single_p (tree t
, int depth
)
13626 switch (TREE_CODE (t
))
13629 return real_isinteger (TREE_REAL_CST_PTR (t
), TYPE_MODE (TREE_TYPE (t
)));
13632 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13635 /* Limit the depth of recursion to avoid quadratic behavior.
13636 This is expected to catch almost all occurrences in practice.
13637 If this code misses important cases that unbounded recursion
13638 would not, passes that need this information could be revised
13639 to provide it through dataflow propagation. */
13640 return (!name_registered_for_update_p (t
)
13641 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13642 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t
),
13651 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13652 has an integer value. We also allow +Inf, -Inf and NaN to be
13653 considered integer values. Return false for signaling NaN.
13655 DEPTH is the current nesting depth of the query. */
13658 integer_valued_real_invalid_p (tree t
, int depth
)
13660 switch (TREE_CODE (t
))
13662 case COMPOUND_EXPR
:
13665 return RECURSE (TREE_OPERAND (t
, 1));
13668 return RECURSE (TREE_OPERAND (t
, 0));
13677 #undef integer_valued_real_p
13679 /* Return true if the floating point expression T has an integer value.
13680 We also allow +Inf, -Inf and NaN to be considered integer values.
13681 Return false for signaling NaN.
13683 DEPTH is the current nesting depth of the query. */
13686 integer_valued_real_p (tree t
, int depth
)
13688 if (t
== error_mark_node
)
13691 STRIP_ANY_LOCATION_WRAPPER (t
);
13693 tree_code code
= TREE_CODE (t
);
13694 switch (TREE_CODE_CLASS (code
))
13697 case tcc_comparison
:
13698 return integer_valued_real_binary_p (code
, TREE_OPERAND (t
, 0),
13699 TREE_OPERAND (t
, 1), depth
);
13702 return integer_valued_real_unary_p (code
, TREE_OPERAND (t
, 0), depth
);
13705 case tcc_declaration
:
13706 case tcc_reference
:
13707 return integer_valued_real_single_p (t
, depth
);
13717 return integer_valued_real_single_p (t
, depth
);
13721 tree arg0
= (call_expr_nargs (t
) > 0
13722 ? CALL_EXPR_ARG (t
, 0)
13724 tree arg1
= (call_expr_nargs (t
) > 1
13725 ? CALL_EXPR_ARG (t
, 1)
13727 return integer_valued_real_call_p (get_call_combined_fn (t
),
13728 arg0
, arg1
, depth
);
13732 return integer_valued_real_invalid_p (t
, depth
);
13736 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13737 attempt to fold the expression to a constant without modifying TYPE,
13740 If the expression could be simplified to a constant, then return
13741 the constant. If the expression would not be simplified to a
13742 constant, then return NULL_TREE. */
13745 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
13747 tree tem
= fold_binary (code
, type
, op0
, op1
);
13748 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13751 /* Given the components of a unary expression CODE, TYPE and OP0,
13752 attempt to fold the expression to a constant without modifying
13755 If the expression could be simplified to a constant, then return
13756 the constant. If the expression would not be simplified to a
13757 constant, then return NULL_TREE. */
13760 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
13762 tree tem
= fold_unary (code
, type
, op0
);
13763 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13766 /* If EXP represents referencing an element in a constant string
13767 (either via pointer arithmetic or array indexing), return the
13768 tree representing the value accessed, otherwise return NULL. */
13771 fold_read_from_constant_string (tree exp
)
13773 if ((TREE_CODE (exp
) == INDIRECT_REF
13774 || TREE_CODE (exp
) == ARRAY_REF
)
13775 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
13777 tree exp1
= TREE_OPERAND (exp
, 0);
13780 location_t loc
= EXPR_LOCATION (exp
);
13782 if (TREE_CODE (exp
) == INDIRECT_REF
)
13783 string
= string_constant (exp1
, &index
, NULL
, NULL
);
13786 tree low_bound
= array_ref_low_bound (exp
);
13787 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
13789 /* Optimize the special-case of a zero lower bound.
13791 We convert the low_bound to sizetype to avoid some problems
13792 with constant folding. (E.g. suppose the lower bound is 1,
13793 and its mode is QI. Without the conversion,l (ARRAY
13794 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13795 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13796 if (! integer_zerop (low_bound
))
13797 index
= size_diffop_loc (loc
, index
,
13798 fold_convert_loc (loc
, sizetype
, low_bound
));
13803 scalar_int_mode char_mode
;
13805 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
13806 && TREE_CODE (string
) == STRING_CST
13807 && TREE_CODE (index
) == INTEGER_CST
13808 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
13809 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))),
13811 && GET_MODE_SIZE (char_mode
) == 1)
13812 return build_int_cst_type (TREE_TYPE (exp
),
13813 (TREE_STRING_POINTER (string
)
13814 [TREE_INT_CST_LOW (index
)]));
13819 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13820 an integer constant, real, or fixed-point constant.
13822 TYPE is the type of the result. */
13825 fold_negate_const (tree arg0
, tree type
)
13827 tree t
= NULL_TREE
;
13829 switch (TREE_CODE (arg0
))
13832 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13837 FIXED_VALUE_TYPE f
;
13838 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
13839 &(TREE_FIXED_CST (arg0
)), NULL
,
13840 TYPE_SATURATING (type
));
13841 t
= build_fixed (type
, f
);
13842 /* Propagate overflow flags. */
13843 if (overflow_p
| TREE_OVERFLOW (arg0
))
13844 TREE_OVERFLOW (t
) = 1;
13849 if (poly_int_tree_p (arg0
))
13851 wi::overflow_type overflow
;
13852 poly_wide_int res
= wi::neg (wi::to_poly_wide (arg0
), &overflow
);
13853 t
= force_fit_type (type
, res
, 1,
13854 (overflow
&& ! TYPE_UNSIGNED (type
))
13855 || TREE_OVERFLOW (arg0
));
13859 gcc_unreachable ();
13865 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13866 an integer constant or real constant.
13868 TYPE is the type of the result. */
13871 fold_abs_const (tree arg0
, tree type
)
13873 tree t
= NULL_TREE
;
13875 switch (TREE_CODE (arg0
))
13879 /* If the value is unsigned or non-negative, then the absolute value
13880 is the same as the ordinary value. */
13881 wide_int val
= wi::to_wide (arg0
);
13882 wi::overflow_type overflow
= wi::OVF_NONE
;
13883 if (!wi::neg_p (val
, TYPE_SIGN (TREE_TYPE (arg0
))))
13886 /* If the value is negative, then the absolute value is
13889 val
= wi::neg (val
, &overflow
);
13891 /* Force to the destination type, set TREE_OVERFLOW for signed
13893 t
= force_fit_type (type
, val
, 1, overflow
| TREE_OVERFLOW (arg0
));
13898 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
13899 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13905 gcc_unreachable ();
13911 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13912 constant. TYPE is the type of the result. */
13915 fold_not_const (const_tree arg0
, tree type
)
13917 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
13919 return force_fit_type (type
, ~wi::to_wide (arg0
), 0, TREE_OVERFLOW (arg0
));
13922 /* Given CODE, a relational operator, the target type, TYPE and two
13923 constant operands OP0 and OP1, return the result of the
13924 relational operation. If the result is not a compile time
13925 constant, then return NULL_TREE. */
13928 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
13930 int result
, invert
;
13932 /* From here on, the only cases we handle are when the result is
13933 known to be a constant. */
13935 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
13937 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
13938 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
13940 /* Handle the cases where either operand is a NaN. */
13941 if (real_isnan (c0
) || real_isnan (c1
))
13951 case UNORDERED_EXPR
:
13965 if (flag_trapping_math
)
13971 gcc_unreachable ();
13974 return constant_boolean_node (result
, type
);
13977 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
13980 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
13982 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
13983 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
13984 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
13987 /* Handle equality/inequality of complex constants. */
13988 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
13990 tree rcond
= fold_relational_const (code
, type
,
13991 TREE_REALPART (op0
),
13992 TREE_REALPART (op1
));
13993 tree icond
= fold_relational_const (code
, type
,
13994 TREE_IMAGPART (op0
),
13995 TREE_IMAGPART (op1
));
13996 if (code
== EQ_EXPR
)
13997 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
13998 else if (code
== NE_EXPR
)
13999 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
14004 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
14006 if (!VECTOR_TYPE_P (type
))
14008 /* Have vector comparison with scalar boolean result. */
14009 gcc_assert ((code
== EQ_EXPR
|| code
== NE_EXPR
)
14010 && known_eq (VECTOR_CST_NELTS (op0
),
14011 VECTOR_CST_NELTS (op1
)));
14012 unsigned HOST_WIDE_INT nunits
;
14013 if (!VECTOR_CST_NELTS (op0
).is_constant (&nunits
))
14015 for (unsigned i
= 0; i
< nunits
; i
++)
14017 tree elem0
= VECTOR_CST_ELT (op0
, i
);
14018 tree elem1
= VECTOR_CST_ELT (op1
, i
);
14019 tree tmp
= fold_relational_const (code
, type
, elem0
, elem1
);
14020 if (tmp
== NULL_TREE
)
14022 if (integer_zerop (tmp
))
14023 return constant_boolean_node (false, type
);
14025 return constant_boolean_node (true, type
);
14027 tree_vector_builder elts
;
14028 if (!elts
.new_binary_operation (type
, op0
, op1
, false))
14030 unsigned int count
= elts
.encoded_nelts ();
14031 for (unsigned i
= 0; i
< count
; i
++)
14033 tree elem_type
= TREE_TYPE (type
);
14034 tree elem0
= VECTOR_CST_ELT (op0
, i
);
14035 tree elem1
= VECTOR_CST_ELT (op1
, i
);
14037 tree tem
= fold_relational_const (code
, elem_type
,
14040 if (tem
== NULL_TREE
)
14043 elts
.quick_push (build_int_cst (elem_type
,
14044 integer_zerop (tem
) ? 0 : -1));
14047 return elts
.build ();
14050 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14052 To compute GT, swap the arguments and do LT.
14053 To compute GE, do LT and invert the result.
14054 To compute LE, swap the arguments, do LT and invert the result.
14055 To compute NE, do EQ and invert the result.
14057 Therefore, the code below must handle only EQ and LT. */
14059 if (code
== LE_EXPR
|| code
== GT_EXPR
)
14061 std::swap (op0
, op1
);
14062 code
= swap_tree_comparison (code
);
14065 /* Note that it is safe to invert for real values here because we
14066 have already handled the one case that it matters. */
14069 if (code
== NE_EXPR
|| code
== GE_EXPR
)
14072 code
= invert_tree_comparison (code
, false);
14075 /* Compute a result for LT or EQ if args permit;
14076 Otherwise return T. */
14077 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
14079 if (code
== EQ_EXPR
)
14080 result
= tree_int_cst_equal (op0
, op1
);
14082 result
= tree_int_cst_lt (op0
, op1
);
14089 return constant_boolean_node (result
, type
);
14092 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14093 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14097 fold_build_cleanup_point_expr (tree type
, tree expr
)
14099 /* If the expression does not have side effects then we don't have to wrap
14100 it with a cleanup point expression. */
14101 if (!TREE_SIDE_EFFECTS (expr
))
14104 /* If the expression is a return, check to see if the expression inside the
14105 return has no side effects or the right hand side of the modify expression
14106 inside the return. If either don't have side effects set we don't need to
14107 wrap the expression in a cleanup point expression. Note we don't check the
14108 left hand side of the modify because it should always be a return decl. */
14109 if (TREE_CODE (expr
) == RETURN_EXPR
)
14111 tree op
= TREE_OPERAND (expr
, 0);
14112 if (!op
|| !TREE_SIDE_EFFECTS (op
))
14114 op
= TREE_OPERAND (op
, 1);
14115 if (!TREE_SIDE_EFFECTS (op
))
14119 return build1_loc (EXPR_LOCATION (expr
), CLEANUP_POINT_EXPR
, type
, expr
);
14122 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14123 of an indirection through OP0, or NULL_TREE if no simplification is
14127 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
14131 poly_uint64 const_op01
;
14134 subtype
= TREE_TYPE (sub
);
14135 if (!POINTER_TYPE_P (subtype
)
14136 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0
)))
14139 if (TREE_CODE (sub
) == ADDR_EXPR
)
14141 tree op
= TREE_OPERAND (sub
, 0);
14142 tree optype
= TREE_TYPE (op
);
14144 /* *&CONST_DECL -> to the value of the const decl. */
14145 if (TREE_CODE (op
) == CONST_DECL
)
14146 return DECL_INITIAL (op
);
14147 /* *&p => p; make sure to handle *&"str"[cst] here. */
14148 if (type
== optype
)
14150 tree fop
= fold_read_from_constant_string (op
);
14156 /* *(foo *)&fooarray => fooarray[0] */
14157 else if (TREE_CODE (optype
) == ARRAY_TYPE
14158 && type
== TREE_TYPE (optype
)
14159 && (!in_gimple_form
14160 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14162 tree type_domain
= TYPE_DOMAIN (optype
);
14163 tree min_val
= size_zero_node
;
14164 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14165 min_val
= TYPE_MIN_VALUE (type_domain
);
14167 && TREE_CODE (min_val
) != INTEGER_CST
)
14169 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
14170 NULL_TREE
, NULL_TREE
);
14172 /* *(foo *)&complexfoo => __real__ complexfoo */
14173 else if (TREE_CODE (optype
) == COMPLEX_TYPE
14174 && type
== TREE_TYPE (optype
))
14175 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
14176 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14177 else if (VECTOR_TYPE_P (optype
)
14178 && type
== TREE_TYPE (optype
))
14180 tree part_width
= TYPE_SIZE (type
);
14181 tree index
= bitsize_int (0);
14182 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
,
14187 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
14188 && poly_int_tree_p (TREE_OPERAND (sub
, 1), &const_op01
))
14190 tree op00
= TREE_OPERAND (sub
, 0);
14191 tree op01
= TREE_OPERAND (sub
, 1);
14194 if (TREE_CODE (op00
) == ADDR_EXPR
)
14197 op00
= TREE_OPERAND (op00
, 0);
14198 op00type
= TREE_TYPE (op00
);
14200 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14201 if (VECTOR_TYPE_P (op00type
)
14202 && type
== TREE_TYPE (op00type
)
14203 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14204 but we want to treat offsets with MSB set as negative.
14205 For the code below negative offsets are invalid and
14206 TYPE_SIZE of the element is something unsigned, so
14207 check whether op01 fits into poly_int64, which implies
14208 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14209 then just use poly_uint64 because we want to treat the
14210 value as unsigned. */
14211 && tree_fits_poly_int64_p (op01
))
14213 tree part_width
= TYPE_SIZE (type
);
14214 poly_uint64 max_offset
14215 = (tree_to_uhwi (part_width
) / BITS_PER_UNIT
14216 * TYPE_VECTOR_SUBPARTS (op00type
));
14217 if (known_lt (const_op01
, max_offset
))
14219 tree index
= bitsize_int (const_op01
* BITS_PER_UNIT
);
14220 return fold_build3_loc (loc
,
14221 BIT_FIELD_REF
, type
, op00
,
14222 part_width
, index
);
14225 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14226 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
14227 && type
== TREE_TYPE (op00type
))
14229 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type
)),
14231 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
14233 /* ((foo *)&fooarray)[1] => fooarray[1] */
14234 else if (TREE_CODE (op00type
) == ARRAY_TYPE
14235 && type
== TREE_TYPE (op00type
))
14237 tree type_domain
= TYPE_DOMAIN (op00type
);
14238 tree min_val
= size_zero_node
;
14239 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14240 min_val
= TYPE_MIN_VALUE (type_domain
);
14241 poly_uint64 type_size
, index
;
14242 if (poly_int_tree_p (min_val
)
14243 && poly_int_tree_p (TYPE_SIZE_UNIT (type
), &type_size
)
14244 && multiple_p (const_op01
, type_size
, &index
))
14246 poly_offset_int off
= index
+ wi::to_poly_offset (min_val
);
14247 op01
= wide_int_to_tree (sizetype
, off
);
14248 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
14249 NULL_TREE
, NULL_TREE
);
14255 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14256 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
14257 && type
== TREE_TYPE (TREE_TYPE (subtype
))
14258 && (!in_gimple_form
14259 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14262 tree min_val
= size_zero_node
;
14263 sub
= build_fold_indirect_ref_loc (loc
, sub
);
14264 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
14265 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14266 min_val
= TYPE_MIN_VALUE (type_domain
);
14268 && TREE_CODE (min_val
) != INTEGER_CST
)
14270 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
14277 /* Builds an expression for an indirection through T, simplifying some
14281 build_fold_indirect_ref_loc (location_t loc
, tree t
)
14283 tree type
= TREE_TYPE (TREE_TYPE (t
));
14284 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
14289 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
14292 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14295 fold_indirect_ref_loc (location_t loc
, tree t
)
14297 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14305 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14306 whose result is ignored. The type of the returned tree need not be
14307 the same as the original expression. */
14310 fold_ignored_result (tree t
)
14312 if (!TREE_SIDE_EFFECTS (t
))
14313 return integer_zero_node
;
14316 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14319 t
= TREE_OPERAND (t
, 0);
14323 case tcc_comparison
:
14324 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14325 t
= TREE_OPERAND (t
, 0);
14326 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14327 t
= TREE_OPERAND (t
, 1);
14332 case tcc_expression
:
14333 switch (TREE_CODE (t
))
14335 case COMPOUND_EXPR
:
14336 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14338 t
= TREE_OPERAND (t
, 0);
14342 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14343 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14345 t
= TREE_OPERAND (t
, 0);
14358 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14361 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
14363 tree div
= NULL_TREE
;
14368 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14369 have to do anything. Only do this when we are not given a const,
14370 because in that case, this check is more expensive than just
14372 if (TREE_CODE (value
) != INTEGER_CST
)
14374 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14376 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14380 /* If divisor is a power of two, simplify this to bit manipulation. */
14381 if (pow2_or_zerop (divisor
))
14383 if (TREE_CODE (value
) == INTEGER_CST
)
14385 wide_int val
= wi::to_wide (value
);
14388 if ((val
& (divisor
- 1)) == 0)
14391 overflow_p
= TREE_OVERFLOW (value
);
14392 val
+= divisor
- 1;
14393 val
&= (int) -divisor
;
14397 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
14403 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14404 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
14405 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
14406 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14412 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14413 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
14414 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14420 /* Likewise, but round down. */
14423 round_down_loc (location_t loc
, tree value
, int divisor
)
14425 tree div
= NULL_TREE
;
14427 gcc_assert (divisor
> 0);
14431 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14432 have to do anything. Only do this when we are not given a const,
14433 because in that case, this check is more expensive than just
14435 if (TREE_CODE (value
) != INTEGER_CST
)
14437 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14439 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14443 /* If divisor is a power of two, simplify this to bit manipulation. */
14444 if (pow2_or_zerop (divisor
))
14448 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14449 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14454 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14455 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
14456 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14462 /* Returns the pointer to the base of the object addressed by EXP and
14463 extracts the information about the offset of the access, storing it
14464 to PBITPOS and POFFSET. */
14467 split_address_to_core_and_offset (tree exp
,
14468 poly_int64_pod
*pbitpos
, tree
*poffset
)
14472 int unsignedp
, reversep
, volatilep
;
14473 poly_int64 bitsize
;
14474 location_t loc
= EXPR_LOCATION (exp
);
14476 if (TREE_CODE (exp
) == ADDR_EXPR
)
14478 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14479 poffset
, &mode
, &unsignedp
, &reversep
,
14481 core
= build_fold_addr_expr_loc (loc
, core
);
14483 else if (TREE_CODE (exp
) == POINTER_PLUS_EXPR
)
14485 core
= TREE_OPERAND (exp
, 0);
14488 *poffset
= TREE_OPERAND (exp
, 1);
14489 if (poly_int_tree_p (*poffset
))
14491 poly_offset_int tem
14492 = wi::sext (wi::to_poly_offset (*poffset
),
14493 TYPE_PRECISION (TREE_TYPE (*poffset
)));
14494 tem
<<= LOG2_BITS_PER_UNIT
;
14495 if (tem
.to_shwi (pbitpos
))
14496 *poffset
= NULL_TREE
;
14503 *poffset
= NULL_TREE
;
14509 /* Returns true if addresses of E1 and E2 differ by a constant, false
14510 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14513 ptr_difference_const (tree e1
, tree e2
, poly_int64_pod
*diff
)
14516 poly_int64 bitpos1
, bitpos2
;
14517 tree toffset1
, toffset2
, tdiff
, type
;
14519 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14520 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14522 poly_int64 bytepos1
, bytepos2
;
14523 if (!multiple_p (bitpos1
, BITS_PER_UNIT
, &bytepos1
)
14524 || !multiple_p (bitpos2
, BITS_PER_UNIT
, &bytepos2
)
14525 || !operand_equal_p (core1
, core2
, 0))
14528 if (toffset1
&& toffset2
)
14530 type
= TREE_TYPE (toffset1
);
14531 if (type
!= TREE_TYPE (toffset2
))
14532 toffset2
= fold_convert (type
, toffset2
);
14534 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
14535 if (!cst_and_fits_in_hwi (tdiff
))
14538 *diff
= int_cst_value (tdiff
);
14540 else if (toffset1
|| toffset2
)
14542 /* If only one of the offsets is non-constant, the difference cannot
14549 *diff
+= bytepos1
- bytepos2
;
14553 /* Return OFF converted to a pointer offset type suitable as offset for
14554 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14556 convert_to_ptrofftype_loc (location_t loc
, tree off
)
14558 return fold_convert_loc (loc
, sizetype
, off
);
14561 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14563 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
14565 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14566 ptr
, convert_to_ptrofftype_loc (loc
, off
));
14569 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14571 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
14573 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14574 ptr
, size_int (off
));
14577 /* Return a pointer P to a NUL-terminated string representing the sequence
14578 of constant characters referred to by SRC (or a subsequence of such
14579 characters within it if SRC is a reference to a string plus some
14580 constant offset). If STRLEN is non-null, store the number of bytes
14581 in the string constant including the terminating NUL char. *STRLEN is
14582 typically strlen(P) + 1 in the absence of embedded NUL characters. */
14585 c_getstr (tree src
, unsigned HOST_WIDE_INT
*strlen
/* = NULL */)
14593 src
= string_constant (src
, &offset_node
, &mem_size
, NULL
);
14597 unsigned HOST_WIDE_INT offset
= 0;
14598 if (offset_node
!= NULL_TREE
)
14600 if (!tree_fits_uhwi_p (offset_node
))
14603 offset
= tree_to_uhwi (offset_node
);
14606 if (!tree_fits_uhwi_p (mem_size
))
14609 /* STRING_LENGTH is the size of the string literal, including any
14610 embedded NULs. STRING_SIZE is the size of the array the string
14611 literal is stored in. */
14612 unsigned HOST_WIDE_INT string_length
= TREE_STRING_LENGTH (src
);
14613 unsigned HOST_WIDE_INT string_size
= tree_to_uhwi (mem_size
);
14615 /* Ideally this would turn into a gcc_checking_assert over time. */
14616 if (string_length
> string_size
)
14617 string_length
= string_size
;
14619 const char *string
= TREE_STRING_POINTER (src
);
14621 /* Ideally this would turn into a gcc_checking_assert over time. */
14622 if (string_length
> string_size
)
14623 string_length
= string_size
;
14625 if (string_length
== 0
14626 || offset
>= string_size
)
14631 /* Compute and store the length of the substring at OFFSET.
14632 All offsets past the initial length refer to null strings. */
14633 if (offset
< string_length
)
14634 *strlen
= string_length
- offset
;
14640 tree eltype
= TREE_TYPE (TREE_TYPE (src
));
14641 /* Support only properly NUL-terminated single byte strings. */
14642 if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype
)) != 1)
14644 if (string
[string_length
- 1] != '\0')
14648 return offset
< string_length
? string
+ offset
: "";
14651 /* Given a tree T, compute which bits in T may be nonzero. */
14654 tree_nonzero_bits (const_tree t
)
14656 switch (TREE_CODE (t
))
14659 return wi::to_wide (t
);
14661 return get_nonzero_bits (t
);
14662 case NON_LVALUE_EXPR
:
14664 return tree_nonzero_bits (TREE_OPERAND (t
, 0));
14666 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14667 tree_nonzero_bits (TREE_OPERAND (t
, 1)));
14670 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14671 tree_nonzero_bits (TREE_OPERAND (t
, 1)));
14673 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t
, 1)),
14674 tree_nonzero_bits (TREE_OPERAND (t
, 2)));
14676 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14677 TYPE_PRECISION (TREE_TYPE (t
)),
14678 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t
, 0))));
14680 if (INTEGRAL_TYPE_P (TREE_TYPE (t
)))
14682 wide_int nzbits1
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14683 wide_int nzbits2
= tree_nonzero_bits (TREE_OPERAND (t
, 1));
14684 if (wi::bit_and (nzbits1
, nzbits2
) == 0)
14685 return wi::bit_or (nzbits1
, nzbits2
);
14689 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
14691 tree type
= TREE_TYPE (t
);
14692 wide_int nzbits
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14693 wide_int arg1
= wi::to_wide (TREE_OPERAND (t
, 1),
14694 TYPE_PRECISION (type
));
14695 return wi::neg_p (arg1
)
14696 ? wi::rshift (nzbits
, -arg1
, TYPE_SIGN (type
))
14697 : wi::lshift (nzbits
, arg1
);
14701 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
14703 tree type
= TREE_TYPE (t
);
14704 wide_int nzbits
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14705 wide_int arg1
= wi::to_wide (TREE_OPERAND (t
, 1),
14706 TYPE_PRECISION (type
));
14707 return wi::neg_p (arg1
)
14708 ? wi::lshift (nzbits
, -arg1
)
14709 : wi::rshift (nzbits
, arg1
, TYPE_SIGN (type
));
14716 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t
)));
14721 namespace selftest
{
14723 /* Helper functions for writing tests of folding trees. */
14725 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14728 assert_binop_folds_to_const (tree lhs
, enum tree_code code
, tree rhs
,
14731 ASSERT_EQ (constant
, fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
));
14734 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14735 wrapping WRAPPED_EXPR. */
14738 assert_binop_folds_to_nonlvalue (tree lhs
, enum tree_code code
, tree rhs
,
14741 tree result
= fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
);
14742 ASSERT_NE (wrapped_expr
, result
);
14743 ASSERT_EQ (NON_LVALUE_EXPR
, TREE_CODE (result
));
14744 ASSERT_EQ (wrapped_expr
, TREE_OPERAND (result
, 0));
14747 /* Verify that various arithmetic binary operations are folded
14751 test_arithmetic_folding ()
14753 tree type
= integer_type_node
;
14754 tree x
= create_tmp_var_raw (type
, "x");
14755 tree zero
= build_zero_cst (type
);
14756 tree one
= build_int_cst (type
, 1);
14759 /* 1 <-- (0 + 1) */
14760 assert_binop_folds_to_const (zero
, PLUS_EXPR
, one
,
14762 assert_binop_folds_to_const (one
, PLUS_EXPR
, zero
,
14765 /* (nonlvalue)x <-- (x + 0) */
14766 assert_binop_folds_to_nonlvalue (x
, PLUS_EXPR
, zero
,
14770 /* 0 <-- (x - x) */
14771 assert_binop_folds_to_const (x
, MINUS_EXPR
, x
,
14773 assert_binop_folds_to_nonlvalue (x
, MINUS_EXPR
, zero
,
14776 /* Multiplication. */
14777 /* 0 <-- (x * 0) */
14778 assert_binop_folds_to_const (x
, MULT_EXPR
, zero
,
14781 /* (nonlvalue)x <-- (x * 1) */
14782 assert_binop_folds_to_nonlvalue (x
, MULT_EXPR
, one
,
14786 /* Verify that various binary operations on vectors are folded
14790 test_vector_folding ()
14792 tree inner_type
= integer_type_node
;
14793 tree type
= build_vector_type (inner_type
, 4);
14794 tree zero
= build_zero_cst (type
);
14795 tree one
= build_one_cst (type
);
14797 /* Verify equality tests that return a scalar boolean result. */
14798 tree res_type
= boolean_type_node
;
14799 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, one
)));
14800 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, zero
)));
14801 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, zero
, one
)));
14802 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, one
, one
)));
14805 /* Verify folding of VEC_DUPLICATE_EXPRs. */
14808 test_vec_duplicate_folding ()
14810 scalar_int_mode int_mode
= SCALAR_INT_TYPE_MODE (ssizetype
);
14811 machine_mode vec_mode
= targetm
.vectorize
.preferred_simd_mode (int_mode
);
14812 /* This will be 1 if VEC_MODE isn't a vector mode. */
14813 poly_uint64 nunits
= GET_MODE_NUNITS (vec_mode
);
14815 tree type
= build_vector_type (ssizetype
, nunits
);
14816 tree dup5_expr
= fold_unary (VEC_DUPLICATE_EXPR
, type
, ssize_int (5));
14817 tree dup5_cst
= build_vector_from_val (type
, ssize_int (5));
14818 ASSERT_TRUE (operand_equal_p (dup5_expr
, dup5_cst
, 0));
14821 /* Run all of the selftests within this file. */
14824 fold_const_c_tests ()
14826 test_arithmetic_folding ();
14827 test_vector_folding ();
14828 test_vec_duplicate_folding ();
14831 } // namespace selftest
14833 #endif /* CHECKING_P */