2016-10-26 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / jump.c
blobfafef05f5b276330029666a0ba950de09c63807b
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "target.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "memmodel.h"
46 #include "tm_p.h"
47 #include "insn-config.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "cfgrtl.h"
52 #include "rtl-iter.h"
54 /* Optimize jump y; x: ... y: jumpif... x?
55 Don't know if it is worth bothering with. */
56 /* Optimize two cases of conditional jump to conditional jump?
57 This can never delete any instruction or make anything dead,
58 or even change what is live at any point.
59 So perhaps let combiner do it. */
61 static void init_label_info (rtx_insn *);
62 static void mark_all_labels (rtx_insn *);
63 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
64 static void mark_jump_label_asm (rtx, rtx_insn *);
65 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
66 static int invert_exp_1 (rtx, rtx_insn *);
68 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
69 static void
70 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
72 timevar_push (TV_REBUILD_JUMP);
73 init_label_info (f);
74 mark_all_labels (f);
76 /* Keep track of labels used from static data; we don't track them
77 closely enough to delete them here, so make sure their reference
78 count doesn't drop to zero. */
80 if (count_forced)
82 rtx_insn *insn;
83 unsigned int i;
84 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
85 if (LABEL_P (insn))
86 LABEL_NUSES (insn)++;
88 timevar_pop (TV_REBUILD_JUMP);
91 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
92 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
93 instructions and jumping insns that have labels as operands
94 (e.g. cbranchsi4). */
95 void
96 rebuild_jump_labels (rtx_insn *f)
98 rebuild_jump_labels_1 (f, true);
101 /* This function is like rebuild_jump_labels, but doesn't run over
102 forced_labels. It can be used on insn chains that aren't the
103 main function chain. */
104 void
105 rebuild_jump_labels_chain (rtx_insn *chain)
107 rebuild_jump_labels_1 (chain, false);
110 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
111 non-fallthru insn. This is not generally true, as multiple barriers
112 may have crept in, or the BARRIER may be separated from the last
113 real insn by one or more NOTEs.
115 This simple pass moves barriers and removes duplicates so that the
116 old code is happy.
118 static unsigned int
119 cleanup_barriers (void)
121 rtx_insn *insn;
122 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
124 if (BARRIER_P (insn))
126 rtx_insn *prev = prev_nonnote_insn (insn);
127 if (!prev)
128 continue;
130 if (CALL_P (prev))
132 /* Make sure we do not split a call and its corresponding
133 CALL_ARG_LOCATION note. */
134 rtx_insn *next = NEXT_INSN (prev);
136 if (NOTE_P (next)
137 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
138 prev = next;
141 if (BARRIER_P (prev))
142 delete_insn (insn);
143 else if (prev != PREV_INSN (insn))
145 basic_block bb = BLOCK_FOR_INSN (prev);
146 rtx_insn *end = PREV_INSN (insn);
147 reorder_insns_nobb (insn, insn, prev);
148 if (bb)
150 /* If the backend called in machine reorg compute_bb_for_insn
151 and didn't free_bb_for_insn again, preserve basic block
152 boundaries. Move the end of basic block to PREV since
153 it is followed by a barrier now, and clear BLOCK_FOR_INSN
154 on the following notes.
155 ??? Maybe the proper solution for the targets that have
156 cfg around after machine reorg is not to run cleanup_barriers
157 pass at all. */
158 BB_END (bb) = prev;
161 prev = NEXT_INSN (prev);
162 if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
163 BLOCK_FOR_INSN (prev) = NULL;
165 while (prev != end);
170 return 0;
173 namespace {
175 const pass_data pass_data_cleanup_barriers =
177 RTL_PASS, /* type */
178 "barriers", /* name */
179 OPTGROUP_NONE, /* optinfo_flags */
180 TV_NONE, /* tv_id */
181 0, /* properties_required */
182 0, /* properties_provided */
183 0, /* properties_destroyed */
184 0, /* todo_flags_start */
185 0, /* todo_flags_finish */
188 class pass_cleanup_barriers : public rtl_opt_pass
190 public:
191 pass_cleanup_barriers (gcc::context *ctxt)
192 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
195 /* opt_pass methods: */
196 virtual unsigned int execute (function *) { return cleanup_barriers (); }
198 }; // class pass_cleanup_barriers
200 } // anon namespace
202 rtl_opt_pass *
203 make_pass_cleanup_barriers (gcc::context *ctxt)
205 return new pass_cleanup_barriers (ctxt);
209 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
210 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
211 notes whose labels don't occur in the insn any more. */
213 static void
214 init_label_info (rtx_insn *f)
216 rtx_insn *insn;
218 for (insn = f; insn; insn = NEXT_INSN (insn))
220 if (LABEL_P (insn))
221 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
223 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
224 sticky and not reset here; that way we won't lose association
225 with a label when e.g. the source for a target register
226 disappears out of reach for targets that may use jump-target
227 registers. Jump transformations are supposed to transform
228 any REG_LABEL_TARGET notes. The target label reference in a
229 branch may disappear from the branch (and from the
230 instruction before it) for other reasons, like register
231 allocation. */
233 if (INSN_P (insn))
235 rtx note, next;
237 for (note = REG_NOTES (insn); note; note = next)
239 next = XEXP (note, 1);
240 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
241 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
242 remove_note (insn, note);
248 /* A subroutine of mark_all_labels. Trivially propagate a simple label
249 load into a jump_insn that uses it. */
251 static void
252 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
254 rtx label_note, pc, pc_src;
256 pc = pc_set (jump_insn);
257 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
258 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
260 /* If the previous non-jump insn sets something to a label,
261 something that this jump insn uses, make that label the primary
262 target of this insn if we don't yet have any. That previous
263 insn must be a single_set and not refer to more than one label.
264 The jump insn must not refer to other labels as jump targets
265 and must be a plain (set (pc) ...), maybe in a parallel, and
266 may refer to the item being set only directly or as one of the
267 arms in an IF_THEN_ELSE. */
269 if (label_note != NULL && pc_src != NULL)
271 rtx label_set = single_set (prev_nonjump_insn);
272 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
274 if (label_set != NULL
275 /* The source must be the direct LABEL_REF, not a
276 PLUS, UNSPEC, IF_THEN_ELSE etc. */
277 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
278 && (rtx_equal_p (label_dest, pc_src)
279 || (GET_CODE (pc_src) == IF_THEN_ELSE
280 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
281 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
283 /* The CODE_LABEL referred to in the note must be the
284 CODE_LABEL in the LABEL_REF of the "set". We can
285 conveniently use it for the marker function, which
286 requires a LABEL_REF wrapping. */
287 gcc_assert (XEXP (label_note, 0) == label_ref_label (SET_SRC (label_set)));
289 mark_jump_label_1 (label_set, jump_insn, false, true);
291 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
296 /* Mark the label each jump jumps to.
297 Combine consecutive labels, and count uses of labels. */
299 static void
300 mark_all_labels (rtx_insn *f)
302 rtx_insn *insn;
304 if (current_ir_type () == IR_RTL_CFGLAYOUT)
306 basic_block bb;
307 FOR_EACH_BB_FN (bb, cfun)
309 /* In cfglayout mode, we don't bother with trivial next-insn
310 propagation of LABEL_REFs into JUMP_LABEL. This will be
311 handled by other optimizers using better algorithms. */
312 FOR_BB_INSNS (bb, insn)
314 gcc_assert (! insn->deleted ());
315 if (NONDEBUG_INSN_P (insn))
316 mark_jump_label (PATTERN (insn), insn, 0);
319 /* In cfglayout mode, there may be non-insns between the
320 basic blocks. If those non-insns represent tablejump data,
321 they contain label references that we must record. */
322 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
323 if (JUMP_TABLE_DATA_P (insn))
324 mark_jump_label (PATTERN (insn), insn, 0);
325 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
326 if (JUMP_TABLE_DATA_P (insn))
327 mark_jump_label (PATTERN (insn), insn, 0);
330 else
332 rtx_insn *prev_nonjump_insn = NULL;
333 for (insn = f; insn; insn = NEXT_INSN (insn))
335 if (insn->deleted ())
337 else if (LABEL_P (insn))
338 prev_nonjump_insn = NULL;
339 else if (JUMP_TABLE_DATA_P (insn))
340 mark_jump_label (PATTERN (insn), insn, 0);
341 else if (NONDEBUG_INSN_P (insn))
343 mark_jump_label (PATTERN (insn), insn, 0);
344 if (JUMP_P (insn))
346 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
347 maybe_propagate_label_ref (insn, prev_nonjump_insn);
349 else
350 prev_nonjump_insn = insn;
356 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
357 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
358 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
359 know whether it's source is floating point or integer comparison. Machine
360 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
361 to help this function avoid overhead in these cases. */
362 enum rtx_code
363 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
364 const_rtx arg1, const rtx_insn *insn)
366 machine_mode mode;
368 /* If this is not actually a comparison, we can't reverse it. */
369 if (GET_RTX_CLASS (code) != RTX_COMPARE
370 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
371 return UNKNOWN;
373 mode = GET_MODE (arg0);
374 if (mode == VOIDmode)
375 mode = GET_MODE (arg1);
377 /* First see if machine description supplies us way to reverse the
378 comparison. Give it priority over everything else to allow
379 machine description to do tricks. */
380 if (GET_MODE_CLASS (mode) == MODE_CC
381 && REVERSIBLE_CC_MODE (mode))
382 return REVERSE_CONDITION (code, mode);
384 /* Try a few special cases based on the comparison code. */
385 switch (code)
387 case GEU:
388 case GTU:
389 case LEU:
390 case LTU:
391 case NE:
392 case EQ:
393 /* It is always safe to reverse EQ and NE, even for the floating
394 point. Similarly the unsigned comparisons are never used for
395 floating point so we can reverse them in the default way. */
396 return reverse_condition (code);
397 case ORDERED:
398 case UNORDERED:
399 case LTGT:
400 case UNEQ:
401 /* In case we already see unordered comparison, we can be sure to
402 be dealing with floating point so we don't need any more tests. */
403 return reverse_condition_maybe_unordered (code);
404 case UNLT:
405 case UNLE:
406 case UNGT:
407 case UNGE:
408 /* We don't have safe way to reverse these yet. */
409 return UNKNOWN;
410 default:
411 break;
414 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
416 /* Try to search for the comparison to determine the real mode.
417 This code is expensive, but with sane machine description it
418 will be never used, since REVERSIBLE_CC_MODE will return true
419 in all cases. */
420 if (! insn)
421 return UNKNOWN;
423 /* These CONST_CAST's are okay because prev_nonnote_insn just
424 returns its argument and we assign it to a const_rtx
425 variable. */
426 for (rtx_insn *prev = prev_nonnote_insn (const_cast<rtx_insn *> (insn));
427 prev != 0 && !LABEL_P (prev);
428 prev = prev_nonnote_insn (prev))
430 const_rtx set = set_of (arg0, prev);
431 if (set && GET_CODE (set) == SET
432 && rtx_equal_p (SET_DEST (set), arg0))
434 rtx src = SET_SRC (set);
436 if (GET_CODE (src) == COMPARE)
438 rtx comparison = src;
439 arg0 = XEXP (src, 0);
440 mode = GET_MODE (arg0);
441 if (mode == VOIDmode)
442 mode = GET_MODE (XEXP (comparison, 1));
443 break;
445 /* We can get past reg-reg moves. This may be useful for model
446 of i387 comparisons that first move flag registers around. */
447 if (REG_P (src))
449 arg0 = src;
450 continue;
453 /* If register is clobbered in some ununderstandable way,
454 give up. */
455 if (set)
456 return UNKNOWN;
460 /* Test for an integer condition, or a floating-point comparison
461 in which NaNs can be ignored. */
462 if (CONST_INT_P (arg0)
463 || (GET_MODE (arg0) != VOIDmode
464 && GET_MODE_CLASS (mode) != MODE_CC
465 && !HONOR_NANS (mode)))
466 return reverse_condition (code);
468 return UNKNOWN;
471 /* A wrapper around the previous function to take COMPARISON as rtx
472 expression. This simplifies many callers. */
473 enum rtx_code
474 reversed_comparison_code (const_rtx comparison, const rtx_insn *insn)
476 if (!COMPARISON_P (comparison))
477 return UNKNOWN;
478 return reversed_comparison_code_parts (GET_CODE (comparison),
479 XEXP (comparison, 0),
480 XEXP (comparison, 1), insn);
483 /* Return comparison with reversed code of EXP.
484 Return NULL_RTX in case we fail to do the reversal. */
486 reversed_comparison (const_rtx exp, machine_mode mode)
488 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL);
489 if (reversed_code == UNKNOWN)
490 return NULL_RTX;
491 else
492 return simplify_gen_relational (reversed_code, mode, VOIDmode,
493 XEXP (exp, 0), XEXP (exp, 1));
497 /* Given an rtx-code for a comparison, return the code for the negated
498 comparison. If no such code exists, return UNKNOWN.
500 WATCH OUT! reverse_condition is not safe to use on a jump that might
501 be acting on the results of an IEEE floating point comparison, because
502 of the special treatment of non-signaling nans in comparisons.
503 Use reversed_comparison_code instead. */
505 enum rtx_code
506 reverse_condition (enum rtx_code code)
508 switch (code)
510 case EQ:
511 return NE;
512 case NE:
513 return EQ;
514 case GT:
515 return LE;
516 case GE:
517 return LT;
518 case LT:
519 return GE;
520 case LE:
521 return GT;
522 case GTU:
523 return LEU;
524 case GEU:
525 return LTU;
526 case LTU:
527 return GEU;
528 case LEU:
529 return GTU;
530 case UNORDERED:
531 return ORDERED;
532 case ORDERED:
533 return UNORDERED;
535 case UNLT:
536 case UNLE:
537 case UNGT:
538 case UNGE:
539 case UNEQ:
540 case LTGT:
541 return UNKNOWN;
543 default:
544 gcc_unreachable ();
548 /* Similar, but we're allowed to generate unordered comparisons, which
549 makes it safe for IEEE floating-point. Of course, we have to recognize
550 that the target will support them too... */
552 enum rtx_code
553 reverse_condition_maybe_unordered (enum rtx_code code)
555 switch (code)
557 case EQ:
558 return NE;
559 case NE:
560 return EQ;
561 case GT:
562 return UNLE;
563 case GE:
564 return UNLT;
565 case LT:
566 return UNGE;
567 case LE:
568 return UNGT;
569 case LTGT:
570 return UNEQ;
571 case UNORDERED:
572 return ORDERED;
573 case ORDERED:
574 return UNORDERED;
575 case UNLT:
576 return GE;
577 case UNLE:
578 return GT;
579 case UNGT:
580 return LE;
581 case UNGE:
582 return LT;
583 case UNEQ:
584 return LTGT;
586 default:
587 gcc_unreachable ();
591 /* Similar, but return the code when two operands of a comparison are swapped.
592 This IS safe for IEEE floating-point. */
594 enum rtx_code
595 swap_condition (enum rtx_code code)
597 switch (code)
599 case EQ:
600 case NE:
601 case UNORDERED:
602 case ORDERED:
603 case UNEQ:
604 case LTGT:
605 return code;
607 case GT:
608 return LT;
609 case GE:
610 return LE;
611 case LT:
612 return GT;
613 case LE:
614 return GE;
615 case GTU:
616 return LTU;
617 case GEU:
618 return LEU;
619 case LTU:
620 return GTU;
621 case LEU:
622 return GEU;
623 case UNLT:
624 return UNGT;
625 case UNLE:
626 return UNGE;
627 case UNGT:
628 return UNLT;
629 case UNGE:
630 return UNLE;
632 default:
633 gcc_unreachable ();
637 /* Given a comparison CODE, return the corresponding unsigned comparison.
638 If CODE is an equality comparison or already an unsigned comparison,
639 CODE is returned. */
641 enum rtx_code
642 unsigned_condition (enum rtx_code code)
644 switch (code)
646 case EQ:
647 case NE:
648 case GTU:
649 case GEU:
650 case LTU:
651 case LEU:
652 return code;
654 case GT:
655 return GTU;
656 case GE:
657 return GEU;
658 case LT:
659 return LTU;
660 case LE:
661 return LEU;
663 default:
664 gcc_unreachable ();
668 /* Similarly, return the signed version of a comparison. */
670 enum rtx_code
671 signed_condition (enum rtx_code code)
673 switch (code)
675 case EQ:
676 case NE:
677 case GT:
678 case GE:
679 case LT:
680 case LE:
681 return code;
683 case GTU:
684 return GT;
685 case GEU:
686 return GE;
687 case LTU:
688 return LT;
689 case LEU:
690 return LE;
692 default:
693 gcc_unreachable ();
697 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
698 truth of CODE1 implies the truth of CODE2. */
701 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
703 /* UNKNOWN comparison codes can happen as a result of trying to revert
704 comparison codes.
705 They can't match anything, so we have to reject them here. */
706 if (code1 == UNKNOWN || code2 == UNKNOWN)
707 return 0;
709 if (code1 == code2)
710 return 1;
712 switch (code1)
714 case UNEQ:
715 if (code2 == UNLE || code2 == UNGE)
716 return 1;
717 break;
719 case EQ:
720 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
721 || code2 == ORDERED)
722 return 1;
723 break;
725 case UNLT:
726 if (code2 == UNLE || code2 == NE)
727 return 1;
728 break;
730 case LT:
731 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
732 return 1;
733 break;
735 case UNGT:
736 if (code2 == UNGE || code2 == NE)
737 return 1;
738 break;
740 case GT:
741 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
742 return 1;
743 break;
745 case GE:
746 case LE:
747 if (code2 == ORDERED)
748 return 1;
749 break;
751 case LTGT:
752 if (code2 == NE || code2 == ORDERED)
753 return 1;
754 break;
756 case LTU:
757 if (code2 == LEU || code2 == NE)
758 return 1;
759 break;
761 case GTU:
762 if (code2 == GEU || code2 == NE)
763 return 1;
764 break;
766 case UNORDERED:
767 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
768 || code2 == UNGE || code2 == UNGT)
769 return 1;
770 break;
772 default:
773 break;
776 return 0;
779 /* Return 1 if INSN is an unconditional jump and nothing else. */
782 simplejump_p (const rtx_insn *insn)
784 return (JUMP_P (insn)
785 && GET_CODE (PATTERN (insn)) == SET
786 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
787 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
790 /* Return nonzero if INSN is a (possibly) conditional jump
791 and nothing more.
793 Use of this function is deprecated, since we need to support combined
794 branch and compare insns. Use any_condjump_p instead whenever possible. */
797 condjump_p (const rtx_insn *insn)
799 const_rtx x = PATTERN (insn);
801 if (GET_CODE (x) != SET
802 || GET_CODE (SET_DEST (x)) != PC)
803 return 0;
805 x = SET_SRC (x);
806 if (GET_CODE (x) == LABEL_REF)
807 return 1;
808 else
809 return (GET_CODE (x) == IF_THEN_ELSE
810 && ((GET_CODE (XEXP (x, 2)) == PC
811 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
812 || ANY_RETURN_P (XEXP (x, 1))))
813 || (GET_CODE (XEXP (x, 1)) == PC
814 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
815 || ANY_RETURN_P (XEXP (x, 2))))));
818 /* Return nonzero if INSN is a (possibly) conditional jump inside a
819 PARALLEL.
821 Use this function is deprecated, since we need to support combined
822 branch and compare insns. Use any_condjump_p instead whenever possible. */
825 condjump_in_parallel_p (const rtx_insn *insn)
827 const_rtx x = PATTERN (insn);
829 if (GET_CODE (x) != PARALLEL)
830 return 0;
831 else
832 x = XVECEXP (x, 0, 0);
834 if (GET_CODE (x) != SET)
835 return 0;
836 if (GET_CODE (SET_DEST (x)) != PC)
837 return 0;
838 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
839 return 1;
840 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
841 return 0;
842 if (XEXP (SET_SRC (x), 2) == pc_rtx
843 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
844 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
845 return 1;
846 if (XEXP (SET_SRC (x), 1) == pc_rtx
847 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
848 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
849 return 1;
850 return 0;
853 /* Return set of PC, otherwise NULL. */
856 pc_set (const rtx_insn *insn)
858 rtx pat;
859 if (!JUMP_P (insn))
860 return NULL_RTX;
861 pat = PATTERN (insn);
863 /* The set is allowed to appear either as the insn pattern or
864 the first set in a PARALLEL. */
865 if (GET_CODE (pat) == PARALLEL)
866 pat = XVECEXP (pat, 0, 0);
867 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
868 return pat;
870 return NULL_RTX;
873 /* Return true when insn is an unconditional direct jump,
874 possibly bundled inside a PARALLEL. */
877 any_uncondjump_p (const rtx_insn *insn)
879 const_rtx x = pc_set (insn);
880 if (!x)
881 return 0;
882 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
883 return 0;
884 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
885 return 0;
886 return 1;
889 /* Return true when insn is a conditional jump. This function works for
890 instructions containing PC sets in PARALLELs. The instruction may have
891 various other effects so before removing the jump you must verify
892 onlyjump_p.
894 Note that unlike condjump_p it returns false for unconditional jumps. */
897 any_condjump_p (const rtx_insn *insn)
899 const_rtx x = pc_set (insn);
900 enum rtx_code a, b;
902 if (!x)
903 return 0;
904 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
905 return 0;
907 a = GET_CODE (XEXP (SET_SRC (x), 1));
908 b = GET_CODE (XEXP (SET_SRC (x), 2));
910 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
911 || (a == PC
912 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
915 /* Return the label of a conditional jump. */
918 condjump_label (const rtx_insn *insn)
920 rtx x = pc_set (insn);
922 if (!x)
923 return NULL_RTX;
924 x = SET_SRC (x);
925 if (GET_CODE (x) == LABEL_REF)
926 return x;
927 if (GET_CODE (x) != IF_THEN_ELSE)
928 return NULL_RTX;
929 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
930 return XEXP (x, 1);
931 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
932 return XEXP (x, 2);
933 return NULL_RTX;
936 /* Return TRUE if INSN is a return jump. */
939 returnjump_p (const rtx_insn *insn)
941 if (JUMP_P (insn))
943 subrtx_iterator::array_type array;
944 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
946 const_rtx x = *iter;
947 switch (GET_CODE (x))
949 case RETURN:
950 case SIMPLE_RETURN:
951 case EH_RETURN:
952 return true;
954 case SET:
955 if (SET_IS_RETURN_P (x))
956 return true;
957 break;
959 default:
960 break;
964 return false;
967 /* Return true if INSN is a (possibly conditional) return insn. */
970 eh_returnjump_p (rtx_insn *insn)
972 if (JUMP_P (insn))
974 subrtx_iterator::array_type array;
975 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
976 if (GET_CODE (*iter) == EH_RETURN)
977 return true;
979 return false;
982 /* Return true if INSN is a jump that only transfers control and
983 nothing more. */
986 onlyjump_p (const rtx_insn *insn)
988 rtx set;
990 if (!JUMP_P (insn))
991 return 0;
993 set = single_set (insn);
994 if (set == NULL)
995 return 0;
996 if (GET_CODE (SET_DEST (set)) != PC)
997 return 0;
998 if (side_effects_p (SET_SRC (set)))
999 return 0;
1001 return 1;
1004 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1005 NULL or a return. */
1006 bool
1007 jump_to_label_p (const rtx_insn *insn)
1009 return (JUMP_P (insn)
1010 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1013 /* Return nonzero if X is an RTX that only sets the condition codes
1014 and has no side effects. */
1017 only_sets_cc0_p (const_rtx x)
1019 if (! x)
1020 return 0;
1022 if (INSN_P (x))
1023 x = PATTERN (x);
1025 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1028 /* Return 1 if X is an RTX that does nothing but set the condition codes
1029 and CLOBBER or USE registers.
1030 Return -1 if X does explicitly set the condition codes,
1031 but also does other things. */
1034 sets_cc0_p (const_rtx x)
1036 if (! x)
1037 return 0;
1039 if (INSN_P (x))
1040 x = PATTERN (x);
1042 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1043 return 1;
1044 if (GET_CODE (x) == PARALLEL)
1046 int i;
1047 int sets_cc0 = 0;
1048 int other_things = 0;
1049 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1051 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1052 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1053 sets_cc0 = 1;
1054 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1055 other_things = 1;
1057 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1059 return 0;
1062 /* Find all CODE_LABELs referred to in X, and increment their use
1063 counts. If INSN is a JUMP_INSN and there is at least one
1064 CODE_LABEL referenced in INSN as a jump target, then store the last
1065 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1066 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1067 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1068 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1069 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1070 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1072 Note that two labels separated by a loop-beginning note
1073 must be kept distinct if we have not yet done loop-optimization,
1074 because the gap between them is where loop-optimize
1075 will want to move invariant code to. CROSS_JUMP tells us
1076 that loop-optimization is done with. */
1078 void
1079 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1081 rtx asmop = extract_asm_operands (x);
1082 if (asmop)
1083 mark_jump_label_asm (asmop, insn);
1084 else
1085 mark_jump_label_1 (x, insn, in_mem != 0,
1086 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1089 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1090 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1091 jump-target; when the JUMP_LABEL field of INSN should be set or a
1092 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1093 note. */
1095 static void
1096 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1098 RTX_CODE code = GET_CODE (x);
1099 int i;
1100 const char *fmt;
1102 switch (code)
1104 case PC:
1105 case CC0:
1106 case REG:
1107 case CLOBBER:
1108 case CALL:
1109 return;
1111 case RETURN:
1112 case SIMPLE_RETURN:
1113 if (is_target)
1115 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1116 JUMP_LABEL (insn) = x;
1118 return;
1120 case MEM:
1121 in_mem = true;
1122 break;
1124 case SEQUENCE:
1126 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1127 for (i = 0; i < seq->len (); i++)
1128 mark_jump_label (PATTERN (seq->insn (i)),
1129 seq->insn (i), 0);
1131 return;
1133 case SYMBOL_REF:
1134 if (!in_mem)
1135 return;
1137 /* If this is a constant-pool reference, see if it is a label. */
1138 if (CONSTANT_POOL_ADDRESS_P (x))
1139 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1140 break;
1142 /* Handle operands in the condition of an if-then-else as for a
1143 non-jump insn. */
1144 case IF_THEN_ELSE:
1145 if (!is_target)
1146 break;
1147 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1148 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1149 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1150 return;
1152 case LABEL_REF:
1154 rtx_insn *label = label_ref_label (x);
1156 /* Ignore remaining references to unreachable labels that
1157 have been deleted. */
1158 if (NOTE_P (label)
1159 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1160 break;
1162 gcc_assert (LABEL_P (label));
1164 /* Ignore references to labels of containing functions. */
1165 if (LABEL_REF_NONLOCAL_P (x))
1166 break;
1168 set_label_ref_label (x, label);
1169 if (! insn || ! insn->deleted ())
1170 ++LABEL_NUSES (label);
1172 if (insn)
1174 if (is_target
1175 /* Do not change a previous setting of JUMP_LABEL. If the
1176 JUMP_LABEL slot is occupied by a different label,
1177 create a note for this label. */
1178 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1179 JUMP_LABEL (insn) = label;
1180 else
1182 enum reg_note kind
1183 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1185 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1186 for LABEL unless there already is one. All uses of
1187 a label, except for the primary target of a jump,
1188 must have such a note. */
1189 if (! find_reg_note (insn, kind, label))
1190 add_reg_note (insn, kind, label);
1193 return;
1196 /* Do walk the labels in a vector, but not the first operand of an
1197 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1198 case ADDR_VEC:
1199 case ADDR_DIFF_VEC:
1200 if (! insn->deleted ())
1202 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1204 for (i = 0; i < XVECLEN (x, eltnum); i++)
1205 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1206 is_target);
1208 return;
1210 default:
1211 break;
1214 fmt = GET_RTX_FORMAT (code);
1216 /* The primary target of a tablejump is the label of the ADDR_VEC,
1217 which is canonically mentioned *last* in the insn. To get it
1218 marked as JUMP_LABEL, we iterate over items in reverse order. */
1219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1221 if (fmt[i] == 'e')
1222 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1223 else if (fmt[i] == 'E')
1225 int j;
1227 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1228 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1229 is_target);
1234 /* Worker function for mark_jump_label. Handle asm insns specially.
1235 In particular, output operands need not be considered so we can
1236 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1237 need to be considered targets. */
1239 static void
1240 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1242 int i;
1244 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1245 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1247 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1248 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1251 /* Delete insn INSN from the chain of insns and update label ref counts
1252 and delete insns now unreachable.
1254 Returns the first insn after INSN that was not deleted.
1256 Usage of this instruction is deprecated. Use delete_insn instead and
1257 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1259 rtx_insn *
1260 delete_related_insns (rtx uncast_insn)
1262 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1263 int was_code_label = (LABEL_P (insn));
1264 rtx note;
1265 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1267 while (next && next->deleted ())
1268 next = NEXT_INSN (next);
1270 /* This insn is already deleted => return first following nondeleted. */
1271 if (insn->deleted ())
1272 return next;
1274 delete_insn (insn);
1276 /* If instruction is followed by a barrier,
1277 delete the barrier too. */
1279 if (next != 0 && BARRIER_P (next))
1280 delete_insn (next);
1282 /* If this is a call, then we have to remove the var tracking note
1283 for the call arguments. */
1285 if (CALL_P (insn)
1286 || (NONJUMP_INSN_P (insn)
1287 && GET_CODE (PATTERN (insn)) == SEQUENCE
1288 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1290 rtx_insn *p;
1292 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1293 p && NOTE_P (p);
1294 p = NEXT_INSN (p))
1295 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1297 remove_insn (p);
1298 break;
1302 /* If deleting a jump, decrement the count of the label,
1303 and delete the label if it is now unused. */
1305 if (jump_to_label_p (insn))
1307 rtx lab = JUMP_LABEL (insn);
1308 rtx_jump_table_data *lab_next;
1310 if (LABEL_NUSES (lab) == 0)
1311 /* This can delete NEXT or PREV,
1312 either directly if NEXT is JUMP_LABEL (INSN),
1313 or indirectly through more levels of jumps. */
1314 delete_related_insns (lab);
1315 else if (tablejump_p (insn, NULL, &lab_next))
1317 /* If we're deleting the tablejump, delete the dispatch table.
1318 We may not be able to kill the label immediately preceding
1319 just yet, as it might be referenced in code leading up to
1320 the tablejump. */
1321 delete_related_insns (lab_next);
1325 /* Likewise if we're deleting a dispatch table. */
1327 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1329 rtvec labels = table->get_labels ();
1330 int i;
1331 int len = GET_NUM_ELEM (labels);
1333 for (i = 0; i < len; i++)
1334 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1335 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1336 while (next && next->deleted ())
1337 next = NEXT_INSN (next);
1338 return next;
1341 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1342 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1343 if (INSN_P (insn))
1344 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1345 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1346 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1347 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1348 && LABEL_P (XEXP (note, 0)))
1349 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1350 delete_related_insns (XEXP (note, 0));
1352 while (prev && (prev->deleted () || NOTE_P (prev)))
1353 prev = PREV_INSN (prev);
1355 /* If INSN was a label and a dispatch table follows it,
1356 delete the dispatch table. The tablejump must have gone already.
1357 It isn't useful to fall through into a table. */
1359 if (was_code_label
1360 && NEXT_INSN (insn) != 0
1361 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1362 next = delete_related_insns (NEXT_INSN (insn));
1364 /* If INSN was a label, delete insns following it if now unreachable. */
1366 if (was_code_label && prev && BARRIER_P (prev))
1368 enum rtx_code code;
1369 while (next)
1371 code = GET_CODE (next);
1372 if (code == NOTE)
1373 next = NEXT_INSN (next);
1374 /* Keep going past other deleted labels to delete what follows. */
1375 else if (code == CODE_LABEL && next->deleted ())
1376 next = NEXT_INSN (next);
1377 /* Keep the (use (insn))s created by dbr_schedule, which needs
1378 them in order to track liveness relative to a previous
1379 barrier. */
1380 else if (INSN_P (next)
1381 && GET_CODE (PATTERN (next)) == USE
1382 && INSN_P (XEXP (PATTERN (next), 0)))
1383 next = NEXT_INSN (next);
1384 else if (code == BARRIER || INSN_P (next))
1385 /* Note: if this deletes a jump, it can cause more
1386 deletion of unreachable code, after a different label.
1387 As long as the value from this recursive call is correct,
1388 this invocation functions correctly. */
1389 next = delete_related_insns (next);
1390 else
1391 break;
1395 /* I feel a little doubtful about this loop,
1396 but I see no clean and sure alternative way
1397 to find the first insn after INSN that is not now deleted.
1398 I hope this works. */
1399 while (next && next->deleted ())
1400 next = NEXT_INSN (next);
1401 return next;
1404 /* Delete a range of insns from FROM to TO, inclusive.
1405 This is for the sake of peephole optimization, so assume
1406 that whatever these insns do will still be done by a new
1407 peephole insn that will replace them. */
1409 void
1410 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1412 rtx_insn *insn = from;
1414 while (1)
1416 rtx_insn *next = NEXT_INSN (insn);
1417 rtx_insn *prev = PREV_INSN (insn);
1419 if (!NOTE_P (insn))
1421 insn->set_deleted();
1423 /* Patch this insn out of the chain. */
1424 /* We don't do this all at once, because we
1425 must preserve all NOTEs. */
1426 if (prev)
1427 SET_NEXT_INSN (prev) = next;
1429 if (next)
1430 SET_PREV_INSN (next) = prev;
1433 if (insn == to)
1434 break;
1435 insn = next;
1438 /* Note that if TO is an unconditional jump
1439 we *do not* delete the BARRIER that follows,
1440 since the peephole that replaces this sequence
1441 is also an unconditional jump in that case. */
1444 /* A helper function for redirect_exp_1; examines its input X and returns
1445 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1446 static rtx
1447 redirect_target (rtx x)
1449 if (x == NULL_RTX)
1450 return ret_rtx;
1451 if (!ANY_RETURN_P (x))
1452 return gen_rtx_LABEL_REF (Pmode, x);
1453 return x;
1456 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1457 NLABEL as a return. Accrue modifications into the change group. */
1459 static void
1460 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1462 rtx x = *loc;
1463 RTX_CODE code = GET_CODE (x);
1464 int i;
1465 const char *fmt;
1467 if ((code == LABEL_REF && label_ref_label (x) == olabel)
1468 || x == olabel)
1470 x = redirect_target (nlabel);
1471 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1472 x = gen_rtx_SET (pc_rtx, x);
1473 validate_change (insn, loc, x, 1);
1474 return;
1477 if (code == SET && SET_DEST (x) == pc_rtx
1478 && ANY_RETURN_P (nlabel)
1479 && GET_CODE (SET_SRC (x)) == LABEL_REF
1480 && label_ref_label (SET_SRC (x)) == olabel)
1482 validate_change (insn, loc, nlabel, 1);
1483 return;
1486 if (code == IF_THEN_ELSE)
1488 /* Skip the condition of an IF_THEN_ELSE. We only want to
1489 change jump destinations, not eventual label comparisons. */
1490 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1491 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1492 return;
1495 fmt = GET_RTX_FORMAT (code);
1496 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1498 if (fmt[i] == 'e')
1499 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1500 else if (fmt[i] == 'E')
1502 int j;
1503 for (j = 0; j < XVECLEN (x, i); j++)
1504 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1509 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1510 the modifications into the change group. Return false if we did
1511 not see how to do that. */
1514 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1516 int ochanges = num_validated_changes ();
1517 rtx *loc, asmop;
1519 gcc_assert (nlabel != NULL_RTX);
1520 asmop = extract_asm_operands (PATTERN (jump));
1521 if (asmop)
1523 if (nlabel == NULL)
1524 return 0;
1525 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1526 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1528 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1529 loc = &XVECEXP (PATTERN (jump), 0, 0);
1530 else
1531 loc = &PATTERN (jump);
1533 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1534 return num_validated_changes () > ochanges;
1537 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1538 jump target label is unused as a result, it and the code following
1539 it may be deleted.
1541 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1542 in that case we are to turn the jump into a (possibly conditional)
1543 return insn.
1545 The return value will be 1 if the change was made, 0 if it wasn't
1546 (this can only occur when trying to produce return insns). */
1549 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1551 rtx olabel = jump->jump_label ();
1553 if (!nlabel)
1555 /* If there is no label, we are asked to redirect to the EXIT block.
1556 When before the epilogue is emitted, return/simple_return cannot be
1557 created so we return 0 immediately. After the epilogue is emitted,
1558 we always expect a label, either a non-null label, or a
1559 return/simple_return RTX. */
1561 if (!epilogue_completed)
1562 return 0;
1563 gcc_unreachable ();
1566 if (nlabel == olabel)
1567 return 1;
1569 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1570 return 0;
1572 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1573 return 1;
1576 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1577 NLABEL in JUMP.
1578 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1579 count has dropped to zero. */
1580 void
1581 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1582 int invert)
1584 rtx note;
1586 gcc_assert (JUMP_LABEL (jump) == olabel);
1588 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1589 moving FUNCTION_END note. Just sanity check that no user still worry
1590 about this. */
1591 gcc_assert (delete_unused >= 0);
1592 JUMP_LABEL (jump) = nlabel;
1593 if (!ANY_RETURN_P (nlabel))
1594 ++LABEL_NUSES (nlabel);
1596 /* Update labels in any REG_EQUAL note. */
1597 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1599 if (ANY_RETURN_P (nlabel)
1600 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1601 remove_note (jump, note);
1602 else
1604 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1605 confirm_change_group ();
1609 /* Handle the case where we had a conditional crossing jump to a return
1610 label and are now changing it into a direct conditional return.
1611 The jump is no longer crossing in that case. */
1612 if (ANY_RETURN_P (nlabel))
1613 CROSSING_JUMP_P (jump) = 0;
1615 if (!ANY_RETURN_P (olabel)
1616 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1617 /* Undefined labels will remain outside the insn stream. */
1618 && INSN_UID (olabel))
1619 delete_related_insns (olabel);
1620 if (invert)
1621 invert_br_probabilities (jump);
1624 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1625 modifications into the change group. Return nonzero for success. */
1626 static int
1627 invert_exp_1 (rtx x, rtx_insn *insn)
1629 RTX_CODE code = GET_CODE (x);
1631 if (code == IF_THEN_ELSE)
1633 rtx comp = XEXP (x, 0);
1634 rtx tem;
1635 enum rtx_code reversed_code;
1637 /* We can do this in two ways: The preferable way, which can only
1638 be done if this is not an integer comparison, is to reverse
1639 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1640 of the IF_THEN_ELSE. If we can't do either, fail. */
1642 reversed_code = reversed_comparison_code (comp, insn);
1644 if (reversed_code != UNKNOWN)
1646 validate_change (insn, &XEXP (x, 0),
1647 gen_rtx_fmt_ee (reversed_code,
1648 GET_MODE (comp), XEXP (comp, 0),
1649 XEXP (comp, 1)),
1651 return 1;
1654 tem = XEXP (x, 1);
1655 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1656 validate_change (insn, &XEXP (x, 2), tem, 1);
1657 return 1;
1659 else
1660 return 0;
1663 /* Invert the condition of the jump JUMP, and make it jump to label
1664 NLABEL instead of where it jumps now. Accrue changes into the
1665 change group. Return false if we didn't see how to perform the
1666 inversion and redirection. */
1669 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1671 rtx x = pc_set (jump);
1672 int ochanges;
1673 int ok;
1675 ochanges = num_validated_changes ();
1676 if (x == NULL)
1677 return 0;
1678 ok = invert_exp_1 (SET_SRC (x), jump);
1679 gcc_assert (ok);
1681 if (num_validated_changes () == ochanges)
1682 return 0;
1684 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1685 in Pmode, so checking this is not merely an optimization. */
1686 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1689 /* Invert the condition of the jump JUMP, and make it jump to label
1690 NLABEL instead of where it jumps now. Return true if successful. */
1693 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1695 rtx olabel = JUMP_LABEL (jump);
1697 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1699 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1700 return 1;
1702 cancel_changes (0);
1703 return 0;
1707 /* Like rtx_equal_p except that it considers two REGs as equal
1708 if they renumber to the same value and considers two commutative
1709 operations to be the same if the order of the operands has been
1710 reversed. */
1713 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1715 int i;
1716 const enum rtx_code code = GET_CODE (x);
1717 const char *fmt;
1719 if (x == y)
1720 return 1;
1722 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1723 && (REG_P (y) || (GET_CODE (y) == SUBREG
1724 && REG_P (SUBREG_REG (y)))))
1726 int reg_x = -1, reg_y = -1;
1727 int byte_x = 0, byte_y = 0;
1728 struct subreg_info info;
1730 if (GET_MODE (x) != GET_MODE (y))
1731 return 0;
1733 /* If we haven't done any renumbering, don't
1734 make any assumptions. */
1735 if (reg_renumber == 0)
1736 return rtx_equal_p (x, y);
1738 if (code == SUBREG)
1740 reg_x = REGNO (SUBREG_REG (x));
1741 byte_x = SUBREG_BYTE (x);
1743 if (reg_renumber[reg_x] >= 0)
1745 subreg_get_info (reg_renumber[reg_x],
1746 GET_MODE (SUBREG_REG (x)), byte_x,
1747 GET_MODE (x), &info);
1748 if (!info.representable_p)
1749 return 0;
1750 reg_x = info.offset;
1751 byte_x = 0;
1754 else
1756 reg_x = REGNO (x);
1757 if (reg_renumber[reg_x] >= 0)
1758 reg_x = reg_renumber[reg_x];
1761 if (GET_CODE (y) == SUBREG)
1763 reg_y = REGNO (SUBREG_REG (y));
1764 byte_y = SUBREG_BYTE (y);
1766 if (reg_renumber[reg_y] >= 0)
1768 subreg_get_info (reg_renumber[reg_y],
1769 GET_MODE (SUBREG_REG (y)), byte_y,
1770 GET_MODE (y), &info);
1771 if (!info.representable_p)
1772 return 0;
1773 reg_y = info.offset;
1774 byte_y = 0;
1777 else
1779 reg_y = REGNO (y);
1780 if (reg_renumber[reg_y] >= 0)
1781 reg_y = reg_renumber[reg_y];
1784 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1787 /* Now we have disposed of all the cases
1788 in which different rtx codes can match. */
1789 if (code != GET_CODE (y))
1790 return 0;
1792 switch (code)
1794 case PC:
1795 case CC0:
1796 case ADDR_VEC:
1797 case ADDR_DIFF_VEC:
1798 CASE_CONST_UNIQUE:
1799 return 0;
1801 case LABEL_REF:
1802 /* We can't assume nonlocal labels have their following insns yet. */
1803 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1804 return label_ref_label (x) == label_ref_label (y);
1806 /* Two label-refs are equivalent if they point at labels
1807 in the same position in the instruction stream. */
1808 else
1810 rtx_insn *xi = next_nonnote_nondebug_insn (label_ref_label (x));
1811 rtx_insn *yi = next_nonnote_nondebug_insn (label_ref_label (y));
1812 while (xi && LABEL_P (xi))
1813 xi = next_nonnote_nondebug_insn (xi);
1814 while (yi && LABEL_P (yi))
1815 yi = next_nonnote_nondebug_insn (yi);
1816 return xi == yi;
1819 case SYMBOL_REF:
1820 return XSTR (x, 0) == XSTR (y, 0);
1822 case CODE_LABEL:
1823 /* If we didn't match EQ equality above, they aren't the same. */
1824 return 0;
1826 default:
1827 break;
1830 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1832 if (GET_MODE (x) != GET_MODE (y))
1833 return 0;
1835 /* MEMs referring to different address space are not equivalent. */
1836 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1837 return 0;
1839 /* For commutative operations, the RTX match if the operand match in any
1840 order. Also handle the simple binary and unary cases without a loop. */
1841 if (targetm.commutative_p (x, UNKNOWN))
1842 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1843 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1844 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1845 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1846 else if (NON_COMMUTATIVE_P (x))
1847 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1848 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1849 else if (UNARY_P (x))
1850 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1852 /* Compare the elements. If any pair of corresponding elements
1853 fail to match, return 0 for the whole things. */
1855 fmt = GET_RTX_FORMAT (code);
1856 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1858 int j;
1859 switch (fmt[i])
1861 case 'w':
1862 if (XWINT (x, i) != XWINT (y, i))
1863 return 0;
1864 break;
1866 case 'i':
1867 if (XINT (x, i) != XINT (y, i))
1869 if (((code == ASM_OPERANDS && i == 6)
1870 || (code == ASM_INPUT && i == 1)))
1871 break;
1872 return 0;
1874 break;
1876 case 't':
1877 if (XTREE (x, i) != XTREE (y, i))
1878 return 0;
1879 break;
1881 case 's':
1882 if (strcmp (XSTR (x, i), XSTR (y, i)))
1883 return 0;
1884 break;
1886 case 'e':
1887 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1888 return 0;
1889 break;
1891 case 'u':
1892 if (XEXP (x, i) != XEXP (y, i))
1893 return 0;
1894 /* Fall through. */
1895 case '0':
1896 break;
1898 case 'E':
1899 if (XVECLEN (x, i) != XVECLEN (y, i))
1900 return 0;
1901 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1902 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1903 return 0;
1904 break;
1906 default:
1907 gcc_unreachable ();
1910 return 1;
1913 /* If X is a hard register or equivalent to one or a subregister of one,
1914 return the hard register number. If X is a pseudo register that was not
1915 assigned a hard register, return the pseudo register number. Otherwise,
1916 return -1. Any rtx is valid for X. */
1919 true_regnum (const_rtx x)
1921 if (REG_P (x))
1923 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1924 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1925 return reg_renumber[REGNO (x)];
1926 return REGNO (x);
1928 if (GET_CODE (x) == SUBREG)
1930 int base = true_regnum (SUBREG_REG (x));
1931 if (base >= 0
1932 && base < FIRST_PSEUDO_REGISTER)
1934 struct subreg_info info;
1936 subreg_get_info (lra_in_progress
1937 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1938 GET_MODE (SUBREG_REG (x)),
1939 SUBREG_BYTE (x), GET_MODE (x), &info);
1941 if (info.representable_p)
1942 return base + info.offset;
1945 return -1;
1948 /* Return regno of the register REG and handle subregs too. */
1949 unsigned int
1950 reg_or_subregno (const_rtx reg)
1952 if (GET_CODE (reg) == SUBREG)
1953 reg = SUBREG_REG (reg);
1954 gcc_assert (REG_P (reg));
1955 return REGNO (reg);