2016-10-26 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / ada / sem_disp.adb
blob8aee9a05b92c5fbac51f2e9fc5b174ecded3789a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ D I S P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Elists; use Elists;
29 with Einfo; use Einfo;
30 with Exp_Disp; use Exp_Disp;
31 with Exp_Util; use Exp_Util;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Tss; use Exp_Tss;
34 with Errout; use Errout;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Snames; use Snames;
52 with Sinfo; use Sinfo;
53 with Tbuild; use Tbuild;
54 with Uintp; use Uintp;
56 package body Sem_Disp is
58 -----------------------
59 -- Local Subprograms --
60 -----------------------
62 procedure Add_Dispatching_Operation
63 (Tagged_Type : Entity_Id;
64 New_Op : Entity_Id);
65 -- Add New_Op in the list of primitive operations of Tagged_Type
67 function Check_Controlling_Type
68 (T : Entity_Id;
69 Subp : Entity_Id) return Entity_Id;
70 -- T is the tagged type of a formal parameter or the result of Subp.
71 -- If the subprogram has a controlling parameter or result that matches
72 -- the type, then returns the tagged type of that parameter or result
73 -- (returning the designated tagged type in the case of an access
74 -- parameter); otherwise returns empty.
76 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id;
77 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
78 -- type of S that has the same name of S, a type-conformant profile, an
79 -- original corresponding operation O that is a primitive of a visible
80 -- ancestor of the dispatching type of S and O is visible at the point of
81 -- of declaration of S. If the entity is found the Alias of S is set to the
82 -- original corresponding operation S and its Overridden_Operation is set
83 -- to the found entity; otherwise return Empty.
85 -- This routine does not search for non-hidden primitives since they are
86 -- covered by the normal Ada 2005 rules.
88 function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean;
89 -- Check whether a primitive operation is inherited from an operation
90 -- declared in the visible part of its package.
92 -------------------------------
93 -- Add_Dispatching_Operation --
94 -------------------------------
96 procedure Add_Dispatching_Operation
97 (Tagged_Type : Entity_Id;
98 New_Op : Entity_Id)
100 List : constant Elist_Id := Primitive_Operations (Tagged_Type);
102 begin
103 -- The dispatching operation may already be on the list, if it is the
104 -- wrapper for an inherited function of a null extension (see Exp_Ch3
105 -- for the construction of function wrappers). The list of primitive
106 -- operations must not contain duplicates.
108 Append_Unique_Elmt (New_Op, List);
109 end Add_Dispatching_Operation;
111 ---------------------------
112 -- Covers_Some_Interface --
113 ---------------------------
115 function Covers_Some_Interface (Prim : Entity_Id) return Boolean is
116 Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
117 Elmt : Elmt_Id;
118 E : Entity_Id;
120 begin
121 pragma Assert (Is_Dispatching_Operation (Prim));
123 -- Although this is a dispatching primitive we must check if its
124 -- dispatching type is available because it may be the primitive
125 -- of a private type not defined as tagged in its partial view.
127 if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
129 -- If the tagged type is frozen then the internal entities associated
130 -- with interfaces are available in the list of primitives of the
131 -- tagged type and can be used to speed up this search.
133 if Is_Frozen (Tagged_Type) then
134 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
135 while Present (Elmt) loop
136 E := Node (Elmt);
138 if Present (Interface_Alias (E))
139 and then Alias (E) = Prim
140 then
141 return True;
142 end if;
144 Next_Elmt (Elmt);
145 end loop;
147 -- Otherwise we must collect all the interface primitives and check
148 -- if the Prim will override some interface primitive.
150 else
151 declare
152 Ifaces_List : Elist_Id;
153 Iface_Elmt : Elmt_Id;
154 Iface : Entity_Id;
155 Iface_Prim : Entity_Id;
157 begin
158 Collect_Interfaces (Tagged_Type, Ifaces_List);
159 Iface_Elmt := First_Elmt (Ifaces_List);
160 while Present (Iface_Elmt) loop
161 Iface := Node (Iface_Elmt);
163 Elmt := First_Elmt (Primitive_Operations (Iface));
164 while Present (Elmt) loop
165 Iface_Prim := Node (Elmt);
167 if Chars (Iface) = Chars (Prim)
168 and then Is_Interface_Conformant
169 (Tagged_Type, Iface_Prim, Prim)
170 then
171 return True;
172 end if;
174 Next_Elmt (Elmt);
175 end loop;
177 Next_Elmt (Iface_Elmt);
178 end loop;
179 end;
180 end if;
181 end if;
183 return False;
184 end Covers_Some_Interface;
186 -------------------------------
187 -- Check_Controlling_Formals --
188 -------------------------------
190 procedure Check_Controlling_Formals
191 (Typ : Entity_Id;
192 Subp : Entity_Id)
194 Formal : Entity_Id;
195 Ctrl_Type : Entity_Id;
197 begin
198 Formal := First_Formal (Subp);
199 while Present (Formal) loop
200 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
202 if Present (Ctrl_Type) then
204 -- When controlling type is concurrent and declared within a
205 -- generic or inside an instance use corresponding record type.
207 if Is_Concurrent_Type (Ctrl_Type)
208 and then Present (Corresponding_Record_Type (Ctrl_Type))
209 then
210 Ctrl_Type := Corresponding_Record_Type (Ctrl_Type);
211 end if;
213 if Ctrl_Type = Typ then
214 Set_Is_Controlling_Formal (Formal);
216 -- Ada 2005 (AI-231): Anonymous access types that are used in
217 -- controlling parameters exclude null because it is necessary
218 -- to read the tag to dispatch, and null has no tag.
220 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
221 Set_Can_Never_Be_Null (Etype (Formal));
222 Set_Is_Known_Non_Null (Etype (Formal));
223 end if;
225 -- Check that the parameter's nominal subtype statically
226 -- matches the first subtype.
228 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
229 if not Subtypes_Statically_Match
230 (Typ, Designated_Type (Etype (Formal)))
231 then
232 Error_Msg_N
233 ("parameter subtype does not match controlling type",
234 Formal);
235 end if;
237 elsif not Subtypes_Statically_Match (Typ, Etype (Formal)) then
238 Error_Msg_N
239 ("parameter subtype does not match controlling type",
240 Formal);
241 end if;
243 if Present (Default_Value (Formal)) then
245 -- In Ada 2005, access parameters can have defaults
247 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
248 and then Ada_Version < Ada_2005
249 then
250 Error_Msg_N
251 ("default not allowed for controlling access parameter",
252 Default_Value (Formal));
254 elsif not Is_Tag_Indeterminate (Default_Value (Formal)) then
255 Error_Msg_N
256 ("default expression must be a tag indeterminate" &
257 " function call", Default_Value (Formal));
258 end if;
259 end if;
261 elsif Comes_From_Source (Subp) then
262 Error_Msg_N
263 ("operation can be dispatching in only one type", Subp);
264 end if;
265 end if;
267 Next_Formal (Formal);
268 end loop;
270 if Ekind_In (Subp, E_Function, E_Generic_Function) then
271 Ctrl_Type := Check_Controlling_Type (Etype (Subp), Subp);
273 if Present (Ctrl_Type) then
274 if Ctrl_Type = Typ then
275 Set_Has_Controlling_Result (Subp);
277 -- Check that result subtype statically matches first subtype
278 -- (Ada 2005): Subp may have a controlling access result.
280 if Subtypes_Statically_Match (Typ, Etype (Subp))
281 or else (Ekind (Etype (Subp)) = E_Anonymous_Access_Type
282 and then
283 Subtypes_Statically_Match
284 (Typ, Designated_Type (Etype (Subp))))
285 then
286 null;
288 else
289 Error_Msg_N
290 ("result subtype does not match controlling type", Subp);
291 end if;
293 elsif Comes_From_Source (Subp) then
294 Error_Msg_N
295 ("operation can be dispatching in only one type", Subp);
296 end if;
297 end if;
298 end if;
299 end Check_Controlling_Formals;
301 ----------------------------
302 -- Check_Controlling_Type --
303 ----------------------------
305 function Check_Controlling_Type
306 (T : Entity_Id;
307 Subp : Entity_Id) return Entity_Id
309 Tagged_Type : Entity_Id := Empty;
311 begin
312 if Is_Tagged_Type (T) then
313 if Is_First_Subtype (T) then
314 Tagged_Type := T;
315 else
316 Tagged_Type := Base_Type (T);
317 end if;
319 -- If the type is incomplete, it may have been declared without a
320 -- Tagged indication, but the full view may be tagged, in which case
321 -- that is the controlling type of the subprogram. This is one of the
322 -- approx. 579 places in the language where a lookahead would help.
324 elsif Ekind (T) = E_Incomplete_Type
325 and then Present (Full_View (T))
326 and then Is_Tagged_Type (Full_View (T))
327 then
328 Set_Is_Tagged_Type (T);
329 Tagged_Type := Full_View (T);
331 elsif Ekind (T) = E_Anonymous_Access_Type
332 and then Is_Tagged_Type (Designated_Type (T))
333 then
334 if Ekind (Designated_Type (T)) /= E_Incomplete_Type then
335 if Is_First_Subtype (Designated_Type (T)) then
336 Tagged_Type := Designated_Type (T);
337 else
338 Tagged_Type := Base_Type (Designated_Type (T));
339 end if;
341 -- Ada 2005: an incomplete type can be tagged. An operation with an
342 -- access parameter of the type is dispatching.
344 elsif Scope (Designated_Type (T)) = Current_Scope then
345 Tagged_Type := Designated_Type (T);
347 -- Ada 2005 (AI-50217)
349 elsif From_Limited_With (Designated_Type (T))
350 and then Has_Non_Limited_View (Designated_Type (T))
351 and then Scope (Designated_Type (T)) = Scope (Subp)
352 then
353 if Is_First_Subtype (Non_Limited_View (Designated_Type (T))) then
354 Tagged_Type := Non_Limited_View (Designated_Type (T));
355 else
356 Tagged_Type := Base_Type (Non_Limited_View
357 (Designated_Type (T)));
358 end if;
359 end if;
360 end if;
362 if No (Tagged_Type) or else Is_Class_Wide_Type (Tagged_Type) then
363 return Empty;
365 -- The dispatching type and the primitive operation must be defined in
366 -- the same scope, except in the case of internal operations and formal
367 -- abstract subprograms.
369 elsif ((Scope (Subp) = Scope (Tagged_Type) or else Is_Internal (Subp))
370 and then (not Is_Generic_Type (Tagged_Type)
371 or else not Comes_From_Source (Subp)))
372 or else
373 (Is_Formal_Subprogram (Subp) and then Is_Abstract_Subprogram (Subp))
374 or else
375 (Nkind (Parent (Parent (Subp))) = N_Subprogram_Renaming_Declaration
376 and then
377 Present (Corresponding_Formal_Spec (Parent (Parent (Subp))))
378 and then
379 Is_Abstract_Subprogram (Subp))
380 then
381 return Tagged_Type;
383 else
384 return Empty;
385 end if;
386 end Check_Controlling_Type;
388 ----------------------------
389 -- Check_Dispatching_Call --
390 ----------------------------
392 procedure Check_Dispatching_Call (N : Node_Id) is
393 Loc : constant Source_Ptr := Sloc (N);
394 Actual : Node_Id;
395 Formal : Entity_Id;
396 Control : Node_Id := Empty;
397 Func : Entity_Id;
398 Subp_Entity : Entity_Id;
399 Indeterm_Ancestor_Call : Boolean := False;
400 Indeterm_Ctrl_Type : Entity_Id;
402 Static_Tag : Node_Id := Empty;
403 -- If a controlling formal has a statically tagged actual, the tag of
404 -- this actual is to be used for any tag-indeterminate actual.
406 procedure Check_Direct_Call;
407 -- In the case when the controlling actual is a class-wide type whose
408 -- root type's completion is a task or protected type, the call is in
409 -- fact direct. This routine detects the above case and modifies the
410 -- call accordingly.
412 procedure Check_Dispatching_Context (Call : Node_Id);
413 -- If the call is tag-indeterminate and the entity being called is
414 -- abstract, verify that the context is a call that will eventually
415 -- provide a tag for dispatching, or has provided one already.
417 -----------------------
418 -- Check_Direct_Call --
419 -----------------------
421 procedure Check_Direct_Call is
422 Typ : Entity_Id := Etype (Control);
424 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
425 -- Determine whether an entity denotes a user-defined equality
427 ------------------------------
428 -- Is_User_Defined_Equality --
429 ------------------------------
431 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
432 begin
433 return
434 Ekind (Id) = E_Function
435 and then Chars (Id) = Name_Op_Eq
436 and then Comes_From_Source (Id)
438 -- Internally generated equalities have a full type declaration
439 -- as their parent.
441 and then Nkind (Parent (Id)) = N_Function_Specification;
442 end Is_User_Defined_Equality;
444 -- Start of processing for Check_Direct_Call
446 begin
447 -- Predefined primitives do not receive wrappers since they are built
448 -- from scratch for the corresponding record of synchronized types.
449 -- Equality is in general predefined, but is excluded from the check
450 -- when it is user-defined.
452 if Is_Predefined_Dispatching_Operation (Subp_Entity)
453 and then not Is_User_Defined_Equality (Subp_Entity)
454 then
455 return;
456 end if;
458 if Is_Class_Wide_Type (Typ) then
459 Typ := Root_Type (Typ);
460 end if;
462 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
463 Typ := Full_View (Typ);
464 end if;
466 if Is_Concurrent_Type (Typ)
467 and then
468 Present (Corresponding_Record_Type (Typ))
469 then
470 Typ := Corresponding_Record_Type (Typ);
472 -- The concurrent record's list of primitives should contain a
473 -- wrapper for the entity of the call, retrieve it.
475 declare
476 Prim : Entity_Id;
477 Prim_Elmt : Elmt_Id;
478 Wrapper_Found : Boolean := False;
480 begin
481 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
482 while Present (Prim_Elmt) loop
483 Prim := Node (Prim_Elmt);
485 if Is_Primitive_Wrapper (Prim)
486 and then Wrapped_Entity (Prim) = Subp_Entity
487 then
488 Wrapper_Found := True;
489 exit;
490 end if;
492 Next_Elmt (Prim_Elmt);
493 end loop;
495 -- A primitive declared between two views should have a
496 -- corresponding wrapper.
498 pragma Assert (Wrapper_Found);
500 -- Modify the call by setting the proper entity
502 Set_Entity (Name (N), Prim);
503 end;
504 end if;
505 end Check_Direct_Call;
507 -------------------------------
508 -- Check_Dispatching_Context --
509 -------------------------------
511 procedure Check_Dispatching_Context (Call : Node_Id) is
512 Subp : constant Entity_Id := Entity (Name (Call));
514 procedure Abstract_Context_Error;
515 -- Error for abstract call dispatching on result is not dispatching
517 ----------------------------
518 -- Abstract_Context_Error --
519 ----------------------------
521 procedure Abstract_Context_Error is
522 begin
523 if Ekind (Subp) = E_Function then
524 Error_Msg_N
525 ("call to abstract function must be dispatching", N);
527 -- This error can occur for a procedure in the case of a call to
528 -- an abstract formal procedure with a statically tagged operand.
530 else
531 Error_Msg_N
532 ("call to abstract procedure must be dispatching", N);
533 end if;
534 end Abstract_Context_Error;
536 -- Local variables
538 Scop : constant Entity_Id := Current_Scope_No_Loops;
539 Typ : constant Entity_Id := Etype (Subp);
540 Par : Node_Id;
542 -- Start of processing for Check_Dispatching_Context
544 begin
545 if Is_Abstract_Subprogram (Subp)
546 and then No (Controlling_Argument (Call))
547 then
548 if Present (Alias (Subp))
549 and then not Is_Abstract_Subprogram (Alias (Subp))
550 and then No (DTC_Entity (Subp))
551 then
552 -- Private overriding of inherited abstract operation, call is
553 -- legal.
555 Set_Entity (Name (N), Alias (Subp));
556 return;
558 -- An obscure special case: a null procedure may have a class-
559 -- wide pre/postcondition that includes a call to an abstract
560 -- subp. Calls within the expression may not have been rewritten
561 -- as dispatching calls yet, because the null body appears in
562 -- the current declarative part. The expression will be properly
563 -- rewritten/reanalyzed when the postcondition procedure is built.
565 -- Similarly, if this is a pre/postcondition for an abstract
566 -- subprogram, it may call another abstract function which is
567 -- a primitive of an abstract type. The call is non-dispatching
568 -- but will be legal in overridings of the operation.
570 elsif In_Spec_Expression
571 and then
572 (Is_Subprogram (Scop)
573 or else Chars (Scop) = Name_Postcondition)
574 and then
575 (Is_Abstract_Subprogram (Scop)
576 or else
577 (Nkind (Parent (Scop)) = N_Procedure_Specification
578 and then Null_Present (Parent (Scop))))
579 then
580 null;
582 elsif Ekind (Current_Scope) = E_Function
583 and then Nkind (Unit_Declaration_Node (Scop)) =
584 N_Generic_Subprogram_Declaration
585 then
586 null;
588 else
589 -- We need to determine whether the context of the call
590 -- provides a tag to make the call dispatching. This requires
591 -- the call to be the actual in an enclosing call, and that
592 -- actual must be controlling. If the call is an operand of
593 -- equality, the other operand must not ve abstract.
595 if not Is_Tagged_Type (Typ)
596 and then not
597 (Ekind (Typ) = E_Anonymous_Access_Type
598 and then Is_Tagged_Type (Designated_Type (Typ)))
599 then
600 Abstract_Context_Error;
601 return;
602 end if;
604 Par := Parent (Call);
606 if Nkind (Par) = N_Parameter_Association then
607 Par := Parent (Par);
608 end if;
610 if Nkind (Par) = N_Qualified_Expression
611 or else Nkind (Par) = N_Unchecked_Type_Conversion
612 then
613 Par := Parent (Par);
614 end if;
616 if Nkind_In (Par, N_Function_Call, N_Procedure_Call_Statement)
617 and then Is_Entity_Name (Name (Par))
618 then
619 declare
620 Enc_Subp : constant Entity_Id := Entity (Name (Par));
621 A : Node_Id;
622 F : Entity_Id;
623 Control : Entity_Id;
624 Ret_Type : Entity_Id;
626 begin
627 -- Find controlling formal that can provide tag for the
628 -- tag-indeterminate actual. The corresponding actual
629 -- must be the corresponding class-wide type.
631 F := First_Formal (Enc_Subp);
632 A := First_Actual (Par);
634 -- Find controlling type of call. Dereference if function
635 -- returns an access type.
637 Ret_Type := Etype (Call);
638 if Is_Access_Type (Etype (Call)) then
639 Ret_Type := Designated_Type (Ret_Type);
640 end if;
642 while Present (F) loop
643 Control := Etype (A);
645 if Is_Access_Type (Control) then
646 Control := Designated_Type (Control);
647 end if;
649 if Is_Controlling_Formal (F)
650 and then not (Call = A or else Parent (Call) = A)
651 and then Control = Class_Wide_Type (Ret_Type)
652 then
653 return;
654 end if;
656 Next_Formal (F);
657 Next_Actual (A);
658 end loop;
660 if Nkind (Par) = N_Function_Call
661 and then Is_Tag_Indeterminate (Par)
662 then
663 -- The parent may be an actual of an enclosing call
665 Check_Dispatching_Context (Par);
666 return;
668 else
669 Error_Msg_N
670 ("call to abstract function must be dispatching",
671 Call);
672 return;
673 end if;
674 end;
676 -- For equality operators, one of the operands must be
677 -- statically or dynamically tagged.
679 elsif Nkind_In (Par, N_Op_Eq, N_Op_Ne) then
680 if N = Right_Opnd (Par)
681 and then Is_Tag_Indeterminate (Left_Opnd (Par))
682 then
683 Abstract_Context_Error;
685 elsif N = Left_Opnd (Par)
686 and then Is_Tag_Indeterminate (Right_Opnd (Par))
687 then
688 Abstract_Context_Error;
689 end if;
691 return;
693 -- The left-hand side of an assignment provides the tag
695 elsif Nkind (Par) = N_Assignment_Statement then
696 return;
698 else
699 Abstract_Context_Error;
700 end if;
701 end if;
702 end if;
703 end Check_Dispatching_Context;
705 -- Start of processing for Check_Dispatching_Call
707 begin
708 -- Find a controlling argument, if any
710 if Present (Parameter_Associations (N)) then
711 Subp_Entity := Entity (Name (N));
713 Actual := First_Actual (N);
714 Formal := First_Formal (Subp_Entity);
715 while Present (Actual) loop
716 Control := Find_Controlling_Arg (Actual);
717 exit when Present (Control);
719 -- Check for the case where the actual is a tag-indeterminate call
720 -- whose result type is different than the tagged type associated
721 -- with the containing call, but is an ancestor of the type.
723 if Is_Controlling_Formal (Formal)
724 and then Is_Tag_Indeterminate (Actual)
725 and then Base_Type (Etype (Actual)) /= Base_Type (Etype (Formal))
726 and then Is_Ancestor (Etype (Actual), Etype (Formal))
727 then
728 Indeterm_Ancestor_Call := True;
729 Indeterm_Ctrl_Type := Etype (Formal);
731 -- If the formal is controlling but the actual is not, the type
732 -- of the actual is statically known, and may be used as the
733 -- controlling tag for some other tag-indeterminate actual.
735 elsif Is_Controlling_Formal (Formal)
736 and then Is_Entity_Name (Actual)
737 and then Is_Tagged_Type (Etype (Actual))
738 then
739 Static_Tag := Actual;
740 end if;
742 Next_Actual (Actual);
743 Next_Formal (Formal);
744 end loop;
746 -- If the call doesn't have a controlling actual but does have an
747 -- indeterminate actual that requires dispatching treatment, then an
748 -- object is needed that will serve as the controlling argument for
749 -- a dispatching call on the indeterminate actual. This can occur
750 -- in the unusual situation of a default actual given by a tag-
751 -- indeterminate call and where the type of the call is an ancestor
752 -- of the type associated with a containing call to an inherited
753 -- operation (see AI-239).
755 -- Rather than create an object of the tagged type, which would
756 -- be problematic for various reasons (default initialization,
757 -- discriminants), the tag of the containing call's associated
758 -- tagged type is directly used to control the dispatching.
760 if No (Control)
761 and then Indeterm_Ancestor_Call
762 and then No (Static_Tag)
763 then
764 Control :=
765 Make_Attribute_Reference (Loc,
766 Prefix => New_Occurrence_Of (Indeterm_Ctrl_Type, Loc),
767 Attribute_Name => Name_Tag);
769 Analyze (Control);
770 end if;
772 if Present (Control) then
774 -- Verify that no controlling arguments are statically tagged
776 if Debug_Flag_E then
777 Write_Str ("Found Dispatching call");
778 Write_Int (Int (N));
779 Write_Eol;
780 end if;
782 Actual := First_Actual (N);
783 while Present (Actual) loop
784 if Actual /= Control then
786 if not Is_Controlling_Actual (Actual) then
787 null; -- Can be anything
789 elsif Is_Dynamically_Tagged (Actual) then
790 null; -- Valid parameter
792 elsif Is_Tag_Indeterminate (Actual) then
794 -- The tag is inherited from the enclosing call (the node
795 -- we are currently analyzing). Explicitly expand the
796 -- actual, since the previous call to Expand (from
797 -- Resolve_Call) had no way of knowing about the
798 -- required dispatching.
800 Propagate_Tag (Control, Actual);
802 else
803 Error_Msg_N
804 ("controlling argument is not dynamically tagged",
805 Actual);
806 return;
807 end if;
808 end if;
810 Next_Actual (Actual);
811 end loop;
813 -- Mark call as a dispatching call
815 Set_Controlling_Argument (N, Control);
816 Check_Restriction (No_Dispatching_Calls, N);
818 -- The dispatching call may need to be converted into a direct
819 -- call in certain cases.
821 Check_Direct_Call;
823 -- If there is a statically tagged actual and a tag-indeterminate
824 -- call to a function of the ancestor (such as that provided by a
825 -- default), then treat this as a dispatching call and propagate
826 -- the tag to the tag-indeterminate call(s).
828 elsif Present (Static_Tag) and then Indeterm_Ancestor_Call then
829 Control :=
830 Make_Attribute_Reference (Loc,
831 Prefix =>
832 New_Occurrence_Of (Etype (Static_Tag), Loc),
833 Attribute_Name => Name_Tag);
835 Analyze (Control);
837 Actual := First_Actual (N);
838 Formal := First_Formal (Subp_Entity);
839 while Present (Actual) loop
840 if Is_Tag_Indeterminate (Actual)
841 and then Is_Controlling_Formal (Formal)
842 then
843 Propagate_Tag (Control, Actual);
844 end if;
846 Next_Actual (Actual);
847 Next_Formal (Formal);
848 end loop;
850 Check_Dispatching_Context (N);
852 elsif Nkind (N) /= N_Function_Call then
854 -- The call is not dispatching, so check that there aren't any
855 -- tag-indeterminate abstract calls left among its actuals.
857 Actual := First_Actual (N);
858 while Present (Actual) loop
859 if Is_Tag_Indeterminate (Actual) then
861 -- Function call case
863 if Nkind (Original_Node (Actual)) = N_Function_Call then
864 Func := Entity (Name (Original_Node (Actual)));
866 -- If the actual is an attribute then it can't be abstract
867 -- (the only current case of a tag-indeterminate attribute
868 -- is the stream Input attribute).
870 elsif Nkind (Original_Node (Actual)) = N_Attribute_Reference
871 then
872 Func := Empty;
874 -- Ditto if it is an explicit dereference
876 elsif Nkind (Original_Node (Actual)) = N_Explicit_Dereference
877 then
878 Func := Empty;
880 -- Only other possibility is a qualified expression whose
881 -- constituent expression is itself a call.
883 else
884 Func :=
885 Entity (Name (Original_Node
886 (Expression (Original_Node (Actual)))));
887 end if;
889 if Present (Func) and then Is_Abstract_Subprogram (Func) then
890 Error_Msg_N
891 ("call to abstract function must be dispatching",
892 Actual);
893 end if;
894 end if;
896 Next_Actual (Actual);
897 end loop;
899 Check_Dispatching_Context (N);
900 return;
902 elsif Nkind (Parent (N)) in N_Subexpr then
903 Check_Dispatching_Context (N);
905 elsif Nkind (Parent (N)) = N_Assignment_Statement
906 and then Is_Class_Wide_Type (Etype (Name (Parent (N))))
907 then
908 return;
910 elsif Is_Abstract_Subprogram (Subp_Entity) then
911 Check_Dispatching_Context (N);
912 return;
913 end if;
915 else
916 -- If dispatching on result, the enclosing call, if any, will
917 -- determine the controlling argument. Otherwise this is the
918 -- primitive operation of the root type.
920 Check_Dispatching_Context (N);
921 end if;
922 end Check_Dispatching_Call;
924 ---------------------------------
925 -- Check_Dispatching_Operation --
926 ---------------------------------
928 procedure Check_Dispatching_Operation (Subp, Old_Subp : Entity_Id) is
929 Tagged_Type : Entity_Id;
930 Has_Dispatching_Parent : Boolean := False;
931 Body_Is_Last_Primitive : Boolean := False;
932 Ovr_Subp : Entity_Id := Empty;
934 begin
935 if not Ekind_In (Subp, E_Procedure, E_Function) then
936 return;
937 end if;
939 Set_Is_Dispatching_Operation (Subp, False);
940 Tagged_Type := Find_Dispatching_Type (Subp);
942 -- Ada 2005 (AI-345): Use the corresponding record (if available).
943 -- Required because primitives of concurrent types are attached
944 -- to the corresponding record (not to the concurrent type).
946 if Ada_Version >= Ada_2005
947 and then Present (Tagged_Type)
948 and then Is_Concurrent_Type (Tagged_Type)
949 and then Present (Corresponding_Record_Type (Tagged_Type))
950 then
951 Tagged_Type := Corresponding_Record_Type (Tagged_Type);
952 end if;
954 -- (AI-345): The task body procedure is not a primitive of the tagged
955 -- type
957 if Present (Tagged_Type)
958 and then Is_Concurrent_Record_Type (Tagged_Type)
959 and then Present (Corresponding_Concurrent_Type (Tagged_Type))
960 and then Is_Task_Type (Corresponding_Concurrent_Type (Tagged_Type))
961 and then Subp = Get_Task_Body_Procedure
962 (Corresponding_Concurrent_Type (Tagged_Type))
963 then
964 return;
965 end if;
967 -- If Subp is derived from a dispatching operation then it should
968 -- always be treated as dispatching. In this case various checks
969 -- below will be bypassed. Makes sure that late declarations for
970 -- inherited private subprograms are treated as dispatching, even
971 -- if the associated tagged type is already frozen.
973 Has_Dispatching_Parent :=
974 Present (Alias (Subp))
975 and then Is_Dispatching_Operation (Alias (Subp));
977 if No (Tagged_Type) then
979 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
980 -- with an abstract interface type unless the interface acts as a
981 -- parent type in a derivation. If the interface type is a formal
982 -- type then the operation is not primitive and therefore legal.
984 declare
985 E : Entity_Id;
986 Typ : Entity_Id;
988 begin
989 E := First_Entity (Subp);
990 while Present (E) loop
992 -- For an access parameter, check designated type
994 if Ekind (Etype (E)) = E_Anonymous_Access_Type then
995 Typ := Designated_Type (Etype (E));
996 else
997 Typ := Etype (E);
998 end if;
1000 if Comes_From_Source (Subp)
1001 and then Is_Interface (Typ)
1002 and then not Is_Class_Wide_Type (Typ)
1003 and then not Is_Derived_Type (Typ)
1004 and then not Is_Generic_Type (Typ)
1005 and then not In_Instance
1006 then
1007 Error_Msg_N ("??declaration of& is too late!", Subp);
1008 Error_Msg_NE -- CODEFIX??
1009 ("\??spec should appear immediately after declaration "
1010 & "of & !", Subp, Typ);
1011 exit;
1012 end if;
1014 Next_Entity (E);
1015 end loop;
1017 -- In case of functions check also the result type
1019 if Ekind (Subp) = E_Function then
1020 if Is_Access_Type (Etype (Subp)) then
1021 Typ := Designated_Type (Etype (Subp));
1022 else
1023 Typ := Etype (Subp);
1024 end if;
1026 -- The following should be better commented, especially since
1027 -- we just added several new conditions here ???
1029 if Comes_From_Source (Subp)
1030 and then Is_Interface (Typ)
1031 and then not Is_Class_Wide_Type (Typ)
1032 and then not Is_Derived_Type (Typ)
1033 and then not Is_Generic_Type (Typ)
1034 and then not In_Instance
1035 then
1036 Error_Msg_N ("??declaration of& is too late!", Subp);
1037 Error_Msg_NE
1038 ("\??spec should appear immediately after declaration "
1039 & "of & !", Subp, Typ);
1040 end if;
1041 end if;
1042 end;
1044 return;
1046 -- The subprograms build internally after the freezing point (such as
1047 -- init procs, interface thunks, type support subprograms, and Offset
1048 -- to top functions for accessing interface components in variable
1049 -- size tagged types) are not primitives.
1051 elsif Is_Frozen (Tagged_Type)
1052 and then not Comes_From_Source (Subp)
1053 and then not Has_Dispatching_Parent
1054 then
1055 -- Complete decoration of internally built subprograms that override
1056 -- a dispatching primitive. These entities correspond with the
1057 -- following cases:
1059 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
1060 -- to override functions of nonabstract null extensions. These
1061 -- primitives were added to the list of primitives of the tagged
1062 -- type by Make_Controlling_Function_Wrappers. However, attribute
1063 -- Is_Dispatching_Operation must be set to true.
1065 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
1066 -- primitives.
1068 -- 3. Subprograms associated with stream attributes (built by
1069 -- New_Stream_Subprogram)
1071 if Present (Old_Subp)
1072 and then Present (Overridden_Operation (Subp))
1073 and then Is_Dispatching_Operation (Old_Subp)
1074 then
1075 pragma Assert
1076 ((Ekind (Subp) = E_Function
1077 and then Is_Dispatching_Operation (Old_Subp)
1078 and then Is_Null_Extension (Base_Type (Etype (Subp))))
1079 or else
1080 (Ekind (Subp) = E_Procedure
1081 and then Is_Dispatching_Operation (Old_Subp)
1082 and then Present (Alias (Old_Subp))
1083 and then Is_Null_Interface_Primitive
1084 (Ultimate_Alias (Old_Subp)))
1085 or else Get_TSS_Name (Subp) = TSS_Stream_Read
1086 or else Get_TSS_Name (Subp) = TSS_Stream_Write);
1088 Check_Controlling_Formals (Tagged_Type, Subp);
1089 Override_Dispatching_Operation (Tagged_Type, Old_Subp, Subp);
1090 Set_Is_Dispatching_Operation (Subp);
1091 end if;
1093 return;
1095 -- The operation may be a child unit, whose scope is the defining
1096 -- package, but which is not a primitive operation of the type.
1098 elsif Is_Child_Unit (Subp) then
1099 return;
1101 -- If the subprogram is not defined in a package spec, the only case
1102 -- where it can be a dispatching op is when it overrides an operation
1103 -- before the freezing point of the type.
1105 elsif ((not Is_Package_Or_Generic_Package (Scope (Subp)))
1106 or else In_Package_Body (Scope (Subp)))
1107 and then not Has_Dispatching_Parent
1108 then
1109 if not Comes_From_Source (Subp)
1110 or else (Present (Old_Subp) and then not Is_Frozen (Tagged_Type))
1111 then
1112 null;
1114 -- If the type is already frozen, the overriding is not allowed
1115 -- except when Old_Subp is not a dispatching operation (which can
1116 -- occur when Old_Subp was inherited by an untagged type). However,
1117 -- a body with no previous spec freezes the type *after* its
1118 -- declaration, and therefore is a legal overriding (unless the type
1119 -- has already been frozen). Only the first such body is legal.
1121 elsif Present (Old_Subp)
1122 and then Is_Dispatching_Operation (Old_Subp)
1123 then
1124 if Comes_From_Source (Subp)
1125 and then
1126 (Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Body
1127 or else Nkind (Unit_Declaration_Node (Subp)) in N_Body_Stub)
1128 then
1129 declare
1130 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1131 Decl_Item : Node_Id;
1133 begin
1134 -- ??? The checks here for whether the type has been frozen
1135 -- prior to the new body are not complete. It's not simple
1136 -- to check frozenness at this point since the body has
1137 -- already caused the type to be prematurely frozen in
1138 -- Analyze_Declarations, but we're forced to recheck this
1139 -- here because of the odd rule interpretation that allows
1140 -- the overriding if the type wasn't frozen prior to the
1141 -- body. The freezing action should probably be delayed
1142 -- until after the spec is seen, but that's a tricky
1143 -- change to the delicate freezing code.
1145 -- Look at each declaration following the type up until the
1146 -- new subprogram body. If any of the declarations is a body
1147 -- then the type has been frozen already so the overriding
1148 -- primitive is illegal.
1150 Decl_Item := Next (Parent (Tagged_Type));
1151 while Present (Decl_Item)
1152 and then (Decl_Item /= Subp_Body)
1153 loop
1154 if Comes_From_Source (Decl_Item)
1155 and then (Nkind (Decl_Item) in N_Proper_Body
1156 or else Nkind (Decl_Item) in N_Body_Stub)
1157 then
1158 Error_Msg_N ("overriding of& is too late!", Subp);
1159 Error_Msg_N
1160 ("\spec should appear immediately after the type!",
1161 Subp);
1162 exit;
1163 end if;
1165 Next (Decl_Item);
1166 end loop;
1168 -- If the subprogram doesn't follow in the list of
1169 -- declarations including the type then the type has
1170 -- definitely been frozen already and the body is illegal.
1172 if No (Decl_Item) then
1173 Error_Msg_N ("overriding of& is too late!", Subp);
1174 Error_Msg_N
1175 ("\spec should appear immediately after the type!",
1176 Subp);
1178 elsif Is_Frozen (Subp) then
1180 -- The subprogram body declares a primitive operation.
1181 -- If the subprogram is already frozen, we must update
1182 -- its dispatching information explicitly here. The
1183 -- information is taken from the overridden subprogram.
1184 -- We must also generate a cross-reference entry because
1185 -- references to other primitives were already created
1186 -- when type was frozen.
1188 Body_Is_Last_Primitive := True;
1190 if Present (DTC_Entity (Old_Subp)) then
1191 Set_DTC_Entity (Subp, DTC_Entity (Old_Subp));
1192 Set_DT_Position_Value (Subp, DT_Position (Old_Subp));
1194 if not Restriction_Active (No_Dispatching_Calls) then
1195 if Building_Static_DT (Tagged_Type) then
1197 -- If the static dispatch table has not been
1198 -- built then there is nothing else to do now;
1199 -- otherwise we notify that we cannot build the
1200 -- static dispatch table.
1202 if Has_Dispatch_Table (Tagged_Type) then
1203 Error_Msg_N
1204 ("overriding of& is too late for building "
1205 & " static dispatch tables!", Subp);
1206 Error_Msg_N
1207 ("\spec should appear immediately after "
1208 & "the type!", Subp);
1209 end if;
1211 -- No code required to register primitives in VM
1212 -- targets
1214 elsif not Tagged_Type_Expansion then
1215 null;
1217 else
1218 Insert_Actions_After (Subp_Body,
1219 Register_Primitive (Sloc (Subp_Body),
1220 Prim => Subp));
1221 end if;
1223 -- Indicate that this is an overriding operation,
1224 -- and replace the overridden entry in the list of
1225 -- primitive operations, which is used for xref
1226 -- generation subsequently.
1228 Generate_Reference (Tagged_Type, Subp, 'P', False);
1229 Override_Dispatching_Operation
1230 (Tagged_Type, Old_Subp, Subp);
1231 end if;
1232 end if;
1233 end if;
1234 end;
1236 else
1237 Error_Msg_N ("overriding of& is too late!", Subp);
1238 Error_Msg_N
1239 ("\subprogram spec should appear immediately after the type!",
1240 Subp);
1241 end if;
1243 -- If the type is not frozen yet and we are not in the overriding
1244 -- case it looks suspiciously like an attempt to define a primitive
1245 -- operation, which requires the declaration to be in a package spec
1246 -- (3.2.3(6)). Only report cases where the type and subprogram are
1247 -- in the same declaration list (by checking the enclosing parent
1248 -- declarations), to avoid spurious warnings on subprograms in
1249 -- instance bodies when the type is declared in the instance spec
1250 -- but hasn't been frozen by the instance body.
1252 elsif not Is_Frozen (Tagged_Type)
1253 and then In_Same_List (Parent (Tagged_Type), Parent (Parent (Subp)))
1254 then
1255 Error_Msg_N
1256 ("??not dispatching (must be defined in a package spec)", Subp);
1257 return;
1259 -- When the type is frozen, it is legitimate to define a new
1260 -- non-primitive operation.
1262 else
1263 return;
1264 end if;
1266 -- Now, we are sure that the scope is a package spec. If the subprogram
1267 -- is declared after the freezing point of the type that's an error
1269 elsif Is_Frozen (Tagged_Type) and then not Has_Dispatching_Parent then
1270 Error_Msg_N ("this primitive operation is declared too late", Subp);
1271 Error_Msg_NE
1272 ("??no primitive operations for& after this line",
1273 Freeze_Node (Tagged_Type),
1274 Tagged_Type);
1275 return;
1276 end if;
1278 Check_Controlling_Formals (Tagged_Type, Subp);
1280 Ovr_Subp := Old_Subp;
1282 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1283 -- overridden by Subp. This only applies to source subprograms, and
1284 -- their declaration must carry an explicit overriding indicator.
1286 if No (Ovr_Subp)
1287 and then Ada_Version >= Ada_2012
1288 and then Comes_From_Source (Subp)
1289 and then
1290 Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
1291 then
1292 Ovr_Subp := Find_Hidden_Overridden_Primitive (Subp);
1294 -- Verify that the proper overriding indicator has been supplied.
1296 if Present (Ovr_Subp)
1297 and then
1298 not Must_Override (Specification (Unit_Declaration_Node (Subp)))
1299 then
1300 Error_Msg_NE ("missing overriding indicator for&", Subp, Subp);
1301 end if;
1302 end if;
1304 -- Now it should be a correct primitive operation, put it in the list
1306 if Present (Ovr_Subp) then
1308 -- If the type has interfaces we complete this check after we set
1309 -- attribute Is_Dispatching_Operation.
1311 Check_Subtype_Conformant (Subp, Ovr_Subp);
1313 -- A primitive operation with the name of a primitive controlled
1314 -- operation does not override a non-visible overriding controlled
1315 -- operation, i.e. one declared in a private part when the full
1316 -- view of a type is controlled. Conversely, it will override a
1317 -- visible operation that may be declared in a partial view when
1318 -- the full view is controlled.
1320 if Nam_In (Chars (Subp), Name_Initialize, Name_Adjust, Name_Finalize)
1321 and then Is_Controlled (Tagged_Type)
1322 and then not Is_Visibly_Controlled (Tagged_Type)
1323 and then not Is_Inherited_Public_Operation (Ovr_Subp)
1324 then
1325 Set_Overridden_Operation (Subp, Empty);
1327 -- If the subprogram specification carries an overriding
1328 -- indicator, no need for the warning: it is either redundant,
1329 -- or else an error will be reported.
1331 if Nkind (Parent (Subp)) = N_Procedure_Specification
1332 and then
1333 (Must_Override (Parent (Subp))
1334 or else Must_Not_Override (Parent (Subp)))
1335 then
1336 null;
1338 -- Here we need the warning
1340 else
1341 Error_Msg_NE
1342 ("operation does not override inherited&??", Subp, Subp);
1343 end if;
1345 else
1346 Override_Dispatching_Operation (Tagged_Type, Ovr_Subp, Subp);
1348 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1349 -- that covers abstract interface subprograms we must register it
1350 -- in all the secondary dispatch tables associated with abstract
1351 -- interfaces. We do this now only if not building static tables,
1352 -- nor when the expander is inactive (we avoid trying to register
1353 -- primitives in semantics-only mode, since the type may not have
1354 -- an associated dispatch table). Otherwise the patch code is
1355 -- emitted after those tables are built, to prevent access before
1356 -- elaboration in gigi.
1358 if Body_Is_Last_Primitive and then Expander_Active then
1359 declare
1360 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1361 Elmt : Elmt_Id;
1362 Prim : Node_Id;
1364 begin
1365 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
1366 while Present (Elmt) loop
1367 Prim := Node (Elmt);
1369 -- No code required to register primitives in VM targets
1371 if Present (Alias (Prim))
1372 and then Present (Interface_Alias (Prim))
1373 and then Alias (Prim) = Subp
1374 and then not Building_Static_DT (Tagged_Type)
1375 and then Tagged_Type_Expansion
1376 then
1377 Insert_Actions_After (Subp_Body,
1378 Register_Primitive (Sloc (Subp_Body), Prim => Prim));
1379 end if;
1381 Next_Elmt (Elmt);
1382 end loop;
1384 -- Redisplay the contents of the updated dispatch table
1386 if Debug_Flag_ZZ then
1387 Write_Str ("Late overriding: ");
1388 Write_DT (Tagged_Type);
1389 end if;
1390 end;
1391 end if;
1392 end if;
1394 -- If the tagged type is a concurrent type then we must be compiling
1395 -- with no code generation (we are either compiling a generic unit or
1396 -- compiling under -gnatc mode) because we have previously tested that
1397 -- no serious errors has been reported. In this case we do not add the
1398 -- primitive to the list of primitives of Tagged_Type but we leave the
1399 -- primitive decorated as a dispatching operation to be able to analyze
1400 -- and report errors associated with the Object.Operation notation.
1402 elsif Is_Concurrent_Type (Tagged_Type) then
1403 pragma Assert (not Expander_Active);
1405 -- Attach operation to list of primitives of the synchronized type
1406 -- itself, for ASIS use.
1408 Append_Elmt (Subp, Direct_Primitive_Operations (Tagged_Type));
1410 -- If no old subprogram, then we add this as a dispatching operation,
1411 -- but we avoid doing this if an error was posted, to prevent annoying
1412 -- cascaded errors.
1414 elsif not Error_Posted (Subp) then
1415 Add_Dispatching_Operation (Tagged_Type, Subp);
1416 end if;
1418 Set_Is_Dispatching_Operation (Subp, True);
1420 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1421 -- subtype conformance against all the interfaces covered by this
1422 -- primitive.
1424 if Present (Ovr_Subp)
1425 and then Has_Interfaces (Tagged_Type)
1426 then
1427 declare
1428 Ifaces_List : Elist_Id;
1429 Iface_Elmt : Elmt_Id;
1430 Iface_Prim_Elmt : Elmt_Id;
1431 Iface_Prim : Entity_Id;
1432 Ret_Typ : Entity_Id;
1434 begin
1435 Collect_Interfaces (Tagged_Type, Ifaces_List);
1437 Iface_Elmt := First_Elmt (Ifaces_List);
1438 while Present (Iface_Elmt) loop
1439 if not Is_Ancestor (Node (Iface_Elmt), Tagged_Type) then
1440 Iface_Prim_Elmt :=
1441 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
1442 while Present (Iface_Prim_Elmt) loop
1443 Iface_Prim := Node (Iface_Prim_Elmt);
1445 if Is_Interface_Conformant
1446 (Tagged_Type, Iface_Prim, Subp)
1447 then
1448 -- Handle procedures, functions whose return type
1449 -- matches, or functions not returning interfaces
1451 if Ekind (Subp) = E_Procedure
1452 or else Etype (Iface_Prim) = Etype (Subp)
1453 or else not Is_Interface (Etype (Iface_Prim))
1454 then
1455 Check_Subtype_Conformant
1456 (New_Id => Subp,
1457 Old_Id => Iface_Prim,
1458 Err_Loc => Subp,
1459 Skip_Controlling_Formals => True);
1461 -- Handle functions returning interfaces
1463 elsif Implements_Interface
1464 (Etype (Subp), Etype (Iface_Prim))
1465 then
1466 -- Temporarily force both entities to return the
1467 -- same type. Required because Subtype_Conformant
1468 -- does not handle this case.
1470 Ret_Typ := Etype (Iface_Prim);
1471 Set_Etype (Iface_Prim, Etype (Subp));
1473 Check_Subtype_Conformant
1474 (New_Id => Subp,
1475 Old_Id => Iface_Prim,
1476 Err_Loc => Subp,
1477 Skip_Controlling_Formals => True);
1479 Set_Etype (Iface_Prim, Ret_Typ);
1480 end if;
1481 end if;
1483 Next_Elmt (Iface_Prim_Elmt);
1484 end loop;
1485 end if;
1487 Next_Elmt (Iface_Elmt);
1488 end loop;
1489 end;
1490 end if;
1492 if not Body_Is_Last_Primitive then
1493 Set_DT_Position_Value (Subp, No_Uint);
1495 elsif Has_Controlled_Component (Tagged_Type)
1496 and then Nam_In (Chars (Subp), Name_Initialize,
1497 Name_Adjust,
1498 Name_Finalize,
1499 Name_Finalize_Address)
1500 then
1501 declare
1502 F_Node : constant Node_Id := Freeze_Node (Tagged_Type);
1503 Decl : Node_Id;
1504 Old_P : Entity_Id;
1505 Old_Bod : Node_Id;
1506 Old_Spec : Entity_Id;
1508 C_Names : constant array (1 .. 4) of Name_Id :=
1509 (Name_Initialize,
1510 Name_Adjust,
1511 Name_Finalize,
1512 Name_Finalize_Address);
1514 D_Names : constant array (1 .. 4) of TSS_Name_Type :=
1515 (TSS_Deep_Initialize,
1516 TSS_Deep_Adjust,
1517 TSS_Deep_Finalize,
1518 TSS_Finalize_Address);
1520 begin
1521 -- Remove previous controlled function which was constructed and
1522 -- analyzed when the type was frozen. This requires removing the
1523 -- body of the redefined primitive, as well as its specification
1524 -- if needed (there is no spec created for Deep_Initialize, see
1525 -- exp_ch3.adb). We must also dismantle the exception information
1526 -- that may have been generated for it when front end zero-cost
1527 -- tables are enabled.
1529 for J in D_Names'Range loop
1530 Old_P := TSS (Tagged_Type, D_Names (J));
1532 if Present (Old_P)
1533 and then Chars (Subp) = C_Names (J)
1534 then
1535 Old_Bod := Unit_Declaration_Node (Old_P);
1536 Remove (Old_Bod);
1537 Set_Is_Eliminated (Old_P);
1538 Set_Scope (Old_P, Scope (Current_Scope));
1540 if Nkind (Old_Bod) = N_Subprogram_Body
1541 and then Present (Corresponding_Spec (Old_Bod))
1542 then
1543 Old_Spec := Corresponding_Spec (Old_Bod);
1544 Set_Has_Completion (Old_Spec, False);
1545 end if;
1546 end if;
1547 end loop;
1549 Build_Late_Proc (Tagged_Type, Chars (Subp));
1551 -- The new operation is added to the actions of the freeze node
1552 -- for the type, but this node has already been analyzed, so we
1553 -- must retrieve and analyze explicitly the new body.
1555 if Present (F_Node)
1556 and then Present (Actions (F_Node))
1557 then
1558 Decl := Last (Actions (F_Node));
1559 Analyze (Decl);
1560 end if;
1561 end;
1562 end if;
1563 end Check_Dispatching_Operation;
1565 ------------------------------------------
1566 -- Check_Operation_From_Incomplete_Type --
1567 ------------------------------------------
1569 procedure Check_Operation_From_Incomplete_Type
1570 (Subp : Entity_Id;
1571 Typ : Entity_Id)
1573 Full : constant Entity_Id := Full_View (Typ);
1574 Parent_Typ : constant Entity_Id := Etype (Full);
1575 Old_Prim : constant Elist_Id := Primitive_Operations (Parent_Typ);
1576 New_Prim : constant Elist_Id := Primitive_Operations (Full);
1577 Op1, Op2 : Elmt_Id;
1578 Prev : Elmt_Id := No_Elmt;
1580 function Derives_From (Parent_Subp : Entity_Id) return Boolean;
1581 -- Check that Subp has profile of an operation derived from Parent_Subp.
1582 -- Subp must have a parameter or result type that is Typ or an access
1583 -- parameter or access result type that designates Typ.
1585 ------------------
1586 -- Derives_From --
1587 ------------------
1589 function Derives_From (Parent_Subp : Entity_Id) return Boolean is
1590 F1, F2 : Entity_Id;
1592 begin
1593 if Chars (Parent_Subp) /= Chars (Subp) then
1594 return False;
1595 end if;
1597 -- Check that the type of controlling formals is derived from the
1598 -- parent subprogram's controlling formal type (or designated type
1599 -- if the formal type is an anonymous access type).
1601 F1 := First_Formal (Parent_Subp);
1602 F2 := First_Formal (Subp);
1603 while Present (F1) and then Present (F2) loop
1604 if Ekind (Etype (F1)) = E_Anonymous_Access_Type then
1605 if Ekind (Etype (F2)) /= E_Anonymous_Access_Type then
1606 return False;
1607 elsif Designated_Type (Etype (F1)) = Parent_Typ
1608 and then Designated_Type (Etype (F2)) /= Full
1609 then
1610 return False;
1611 end if;
1613 elsif Ekind (Etype (F2)) = E_Anonymous_Access_Type then
1614 return False;
1616 elsif Etype (F1) = Parent_Typ and then Etype (F2) /= Full then
1617 return False;
1618 end if;
1620 Next_Formal (F1);
1621 Next_Formal (F2);
1622 end loop;
1624 -- Check that a controlling result type is derived from the parent
1625 -- subprogram's result type (or designated type if the result type
1626 -- is an anonymous access type).
1628 if Ekind (Parent_Subp) = E_Function then
1629 if Ekind (Subp) /= E_Function then
1630 return False;
1632 elsif Ekind (Etype (Parent_Subp)) = E_Anonymous_Access_Type then
1633 if Ekind (Etype (Subp)) /= E_Anonymous_Access_Type then
1634 return False;
1636 elsif Designated_Type (Etype (Parent_Subp)) = Parent_Typ
1637 and then Designated_Type (Etype (Subp)) /= Full
1638 then
1639 return False;
1640 end if;
1642 elsif Ekind (Etype (Subp)) = E_Anonymous_Access_Type then
1643 return False;
1645 elsif Etype (Parent_Subp) = Parent_Typ
1646 and then Etype (Subp) /= Full
1647 then
1648 return False;
1649 end if;
1651 elsif Ekind (Subp) = E_Function then
1652 return False;
1653 end if;
1655 return No (F1) and then No (F2);
1656 end Derives_From;
1658 -- Start of processing for Check_Operation_From_Incomplete_Type
1660 begin
1661 -- The operation may override an inherited one, or may be a new one
1662 -- altogether. The inherited operation will have been hidden by the
1663 -- current one at the point of the type derivation, so it does not
1664 -- appear in the list of primitive operations of the type. We have to
1665 -- find the proper place of insertion in the list of primitive opera-
1666 -- tions by iterating over the list for the parent type.
1668 Op1 := First_Elmt (Old_Prim);
1669 Op2 := First_Elmt (New_Prim);
1670 while Present (Op1) and then Present (Op2) loop
1671 if Derives_From (Node (Op1)) then
1672 if No (Prev) then
1674 -- Avoid adding it to the list of primitives if already there
1676 if Node (Op2) /= Subp then
1677 Prepend_Elmt (Subp, New_Prim);
1678 end if;
1680 else
1681 Insert_Elmt_After (Subp, Prev);
1682 end if;
1684 return;
1685 end if;
1687 Prev := Op2;
1688 Next_Elmt (Op1);
1689 Next_Elmt (Op2);
1690 end loop;
1692 -- Operation is a new primitive
1694 Append_Elmt (Subp, New_Prim);
1695 end Check_Operation_From_Incomplete_Type;
1697 ---------------------------------------
1698 -- Check_Operation_From_Private_View --
1699 ---------------------------------------
1701 procedure Check_Operation_From_Private_View (Subp, Old_Subp : Entity_Id) is
1702 Tagged_Type : Entity_Id;
1704 begin
1705 if Is_Dispatching_Operation (Alias (Subp)) then
1706 Set_Scope (Subp, Current_Scope);
1707 Tagged_Type := Find_Dispatching_Type (Subp);
1709 -- Add Old_Subp to primitive operations if not already present
1711 if Present (Tagged_Type) and then Is_Tagged_Type (Tagged_Type) then
1712 Append_Unique_Elmt (Old_Subp, Primitive_Operations (Tagged_Type));
1714 -- If Old_Subp isn't already marked as dispatching then this is
1715 -- the case of an operation of an untagged private type fulfilled
1716 -- by a tagged type that overrides an inherited dispatching
1717 -- operation, so we set the necessary dispatching attributes here.
1719 if not Is_Dispatching_Operation (Old_Subp) then
1721 -- If the untagged type has no discriminants, and the full
1722 -- view is constrained, there will be a spurious mismatch of
1723 -- subtypes on the controlling arguments, because the tagged
1724 -- type is the internal base type introduced in the derivation.
1725 -- Use the original type to verify conformance, rather than the
1726 -- base type.
1728 if not Comes_From_Source (Tagged_Type)
1729 and then Has_Discriminants (Tagged_Type)
1730 then
1731 declare
1732 Formal : Entity_Id;
1734 begin
1735 Formal := First_Formal (Old_Subp);
1736 while Present (Formal) loop
1737 if Tagged_Type = Base_Type (Etype (Formal)) then
1738 Tagged_Type := Etype (Formal);
1739 end if;
1741 Next_Formal (Formal);
1742 end loop;
1743 end;
1745 if Tagged_Type = Base_Type (Etype (Old_Subp)) then
1746 Tagged_Type := Etype (Old_Subp);
1747 end if;
1748 end if;
1750 Check_Controlling_Formals (Tagged_Type, Old_Subp);
1751 Set_Is_Dispatching_Operation (Old_Subp, True);
1752 Set_DT_Position_Value (Old_Subp, No_Uint);
1753 end if;
1755 -- If the old subprogram is an explicit renaming of some other
1756 -- entity, it is not overridden by the inherited subprogram.
1757 -- Otherwise, update its alias and other attributes.
1759 if Present (Alias (Old_Subp))
1760 and then Nkind (Unit_Declaration_Node (Old_Subp)) /=
1761 N_Subprogram_Renaming_Declaration
1762 then
1763 Set_Alias (Old_Subp, Alias (Subp));
1765 -- The derived subprogram should inherit the abstractness of
1766 -- the parent subprogram (except in the case of a function
1767 -- returning the type). This sets the abstractness properly
1768 -- for cases where a private extension may have inherited an
1769 -- abstract operation, but the full type is derived from a
1770 -- descendant type and inherits a nonabstract version.
1772 if Etype (Subp) /= Tagged_Type then
1773 Set_Is_Abstract_Subprogram
1774 (Old_Subp, Is_Abstract_Subprogram (Alias (Subp)));
1775 end if;
1776 end if;
1777 end if;
1778 end if;
1779 end Check_Operation_From_Private_View;
1781 --------------------------
1782 -- Find_Controlling_Arg --
1783 --------------------------
1785 function Find_Controlling_Arg (N : Node_Id) return Node_Id is
1786 Orig_Node : constant Node_Id := Original_Node (N);
1787 Typ : Entity_Id;
1789 begin
1790 if Nkind (Orig_Node) = N_Qualified_Expression then
1791 return Find_Controlling_Arg (Expression (Orig_Node));
1792 end if;
1794 -- Dispatching on result case. If expansion is disabled, the node still
1795 -- has the structure of a function call. However, if the function name
1796 -- is an operator and the call was given in infix form, the original
1797 -- node has no controlling result and we must examine the current node.
1799 if Nkind (N) = N_Function_Call
1800 and then Present (Controlling_Argument (N))
1801 and then Has_Controlling_Result (Entity (Name (N)))
1802 then
1803 return Controlling_Argument (N);
1805 -- If expansion is enabled, the call may have been transformed into
1806 -- an indirect call, and we need to recover the original node.
1808 elsif Nkind (Orig_Node) = N_Function_Call
1809 and then Present (Controlling_Argument (Orig_Node))
1810 and then Has_Controlling_Result (Entity (Name (Orig_Node)))
1811 then
1812 return Controlling_Argument (Orig_Node);
1814 -- Type conversions are dynamically tagged if the target type, or its
1815 -- designated type, are classwide. An interface conversion expands into
1816 -- a dereference, so test must be performed on the original node.
1818 elsif Nkind (Orig_Node) = N_Type_Conversion
1819 and then Nkind (N) = N_Explicit_Dereference
1820 and then Is_Controlling_Actual (N)
1821 then
1822 declare
1823 Target_Type : constant Entity_Id :=
1824 Entity (Subtype_Mark (Orig_Node));
1826 begin
1827 if Is_Class_Wide_Type (Target_Type) then
1828 return N;
1830 elsif Is_Access_Type (Target_Type)
1831 and then Is_Class_Wide_Type (Designated_Type (Target_Type))
1832 then
1833 return N;
1835 else
1836 return Empty;
1837 end if;
1838 end;
1840 -- Normal case
1842 elsif Is_Controlling_Actual (N)
1843 or else
1844 (Nkind (Parent (N)) = N_Qualified_Expression
1845 and then Is_Controlling_Actual (Parent (N)))
1846 then
1847 Typ := Etype (N);
1849 if Is_Access_Type (Typ) then
1851 -- In the case of an Access attribute, use the type of the prefix,
1852 -- since in the case of an actual for an access parameter, the
1853 -- attribute's type may be of a specific designated type, even
1854 -- though the prefix type is class-wide.
1856 if Nkind (N) = N_Attribute_Reference then
1857 Typ := Etype (Prefix (N));
1859 -- An allocator is dispatching if the type of qualified expression
1860 -- is class_wide, in which case this is the controlling type.
1862 elsif Nkind (Orig_Node) = N_Allocator
1863 and then Nkind (Expression (Orig_Node)) = N_Qualified_Expression
1864 then
1865 Typ := Etype (Expression (Orig_Node));
1866 else
1867 Typ := Designated_Type (Typ);
1868 end if;
1869 end if;
1871 if Is_Class_Wide_Type (Typ)
1872 or else
1873 (Nkind (Parent (N)) = N_Qualified_Expression
1874 and then Is_Access_Type (Etype (N))
1875 and then Is_Class_Wide_Type (Designated_Type (Etype (N))))
1876 then
1877 return N;
1878 end if;
1879 end if;
1881 return Empty;
1882 end Find_Controlling_Arg;
1884 ---------------------------
1885 -- Find_Dispatching_Type --
1886 ---------------------------
1888 function Find_Dispatching_Type (Subp : Entity_Id) return Entity_Id is
1889 A_Formal : Entity_Id;
1890 Formal : Entity_Id;
1891 Ctrl_Type : Entity_Id;
1893 begin
1894 if Ekind_In (Subp, E_Function, E_Procedure)
1895 and then Present (DTC_Entity (Subp))
1896 then
1897 return Scope (DTC_Entity (Subp));
1899 -- For subprograms internally generated by derivations of tagged types
1900 -- use the alias subprogram as a reference to locate the dispatching
1901 -- type of Subp.
1903 elsif not Comes_From_Source (Subp)
1904 and then Present (Alias (Subp))
1905 and then Is_Dispatching_Operation (Alias (Subp))
1906 then
1907 if Ekind (Alias (Subp)) = E_Function
1908 and then Has_Controlling_Result (Alias (Subp))
1909 then
1910 return Check_Controlling_Type (Etype (Subp), Subp);
1912 else
1913 Formal := First_Formal (Subp);
1914 A_Formal := First_Formal (Alias (Subp));
1915 while Present (A_Formal) loop
1916 if Is_Controlling_Formal (A_Formal) then
1917 return Check_Controlling_Type (Etype (Formal), Subp);
1918 end if;
1920 Next_Formal (Formal);
1921 Next_Formal (A_Formal);
1922 end loop;
1924 pragma Assert (False);
1925 return Empty;
1926 end if;
1928 -- General case
1930 else
1931 Formal := First_Formal (Subp);
1932 while Present (Formal) loop
1933 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
1935 if Present (Ctrl_Type) then
1936 return Ctrl_Type;
1937 end if;
1939 Next_Formal (Formal);
1940 end loop;
1942 -- The subprogram may also be dispatching on result
1944 if Present (Etype (Subp)) then
1945 return Check_Controlling_Type (Etype (Subp), Subp);
1946 end if;
1947 end if;
1949 pragma Assert (not Is_Dispatching_Operation (Subp));
1950 return Empty;
1951 end Find_Dispatching_Type;
1953 --------------------------------------
1954 -- Find_Hidden_Overridden_Primitive --
1955 --------------------------------------
1957 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id
1959 Tag_Typ : constant Entity_Id := Find_Dispatching_Type (S);
1960 Elmt : Elmt_Id;
1961 Orig_Prim : Entity_Id;
1962 Prim : Entity_Id;
1963 Vis_List : Elist_Id;
1965 begin
1966 -- This Ada 2012 rule applies only for type extensions or private
1967 -- extensions, where the parent type is not in a parent unit, and
1968 -- where an operation is never declared but still inherited.
1970 if No (Tag_Typ)
1971 or else not Is_Record_Type (Tag_Typ)
1972 or else Etype (Tag_Typ) = Tag_Typ
1973 or else In_Open_Scopes (Scope (Etype (Tag_Typ)))
1974 then
1975 return Empty;
1976 end if;
1978 -- Collect the list of visible ancestor of the tagged type
1980 Vis_List := Visible_Ancestors (Tag_Typ);
1982 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
1983 while Present (Elmt) loop
1984 Prim := Node (Elmt);
1986 -- Find an inherited hidden dispatching primitive with the name of S
1987 -- and a type-conformant profile.
1989 if Present (Alias (Prim))
1990 and then Is_Hidden (Alias (Prim))
1991 and then Find_Dispatching_Type (Alias (Prim)) /= Tag_Typ
1992 and then Primitive_Names_Match (S, Prim)
1993 and then Type_Conformant (S, Prim)
1994 then
1995 declare
1996 Vis_Ancestor : Elmt_Id;
1997 Elmt : Elmt_Id;
1999 begin
2000 -- The original corresponding operation of Prim must be an
2001 -- operation of a visible ancestor of the dispatching type S,
2002 -- and the original corresponding operation of S2 must be
2003 -- visible.
2005 Orig_Prim := Original_Corresponding_Operation (Prim);
2007 if Orig_Prim /= Prim
2008 and then Is_Immediately_Visible (Orig_Prim)
2009 then
2010 Vis_Ancestor := First_Elmt (Vis_List);
2011 while Present (Vis_Ancestor) loop
2012 Elmt :=
2013 First_Elmt (Primitive_Operations (Node (Vis_Ancestor)));
2014 while Present (Elmt) loop
2015 if Node (Elmt) = Orig_Prim then
2016 Set_Overridden_Operation (S, Prim);
2017 Set_Alias (Prim, Orig_Prim);
2018 return Prim;
2019 end if;
2021 Next_Elmt (Elmt);
2022 end loop;
2024 Next_Elmt (Vis_Ancestor);
2025 end loop;
2026 end if;
2027 end;
2028 end if;
2030 Next_Elmt (Elmt);
2031 end loop;
2033 return Empty;
2034 end Find_Hidden_Overridden_Primitive;
2036 ---------------------------------------
2037 -- Find_Primitive_Covering_Interface --
2038 ---------------------------------------
2040 function Find_Primitive_Covering_Interface
2041 (Tagged_Type : Entity_Id;
2042 Iface_Prim : Entity_Id) return Entity_Id
2044 E : Entity_Id;
2045 El : Elmt_Id;
2047 begin
2048 pragma Assert (Is_Interface (Find_Dispatching_Type (Iface_Prim))
2049 or else (Present (Alias (Iface_Prim))
2050 and then
2051 Is_Interface
2052 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
2054 -- Search in the homonym chain. Done to speed up locating visible
2055 -- entities and required to catch primitives associated with the partial
2056 -- view of private types when processing the corresponding full view.
2058 E := Current_Entity (Iface_Prim);
2059 while Present (E) loop
2060 if Is_Subprogram (E)
2061 and then Is_Dispatching_Operation (E)
2062 and then Is_Interface_Conformant (Tagged_Type, Iface_Prim, E)
2063 then
2064 return E;
2065 end if;
2067 E := Homonym (E);
2068 end loop;
2070 -- Search in the list of primitives of the type. Required to locate
2071 -- the covering primitive if the covering primitive is not visible
2072 -- (for example, non-visible inherited primitive of private type).
2074 El := First_Elmt (Primitive_Operations (Tagged_Type));
2075 while Present (El) loop
2076 E := Node (El);
2078 -- Keep separate the management of internal entities that link
2079 -- primitives with interface primitives from tagged type primitives.
2081 if No (Interface_Alias (E)) then
2082 if Present (Alias (E)) then
2084 -- This interface primitive has not been covered yet
2086 if Alias (E) = Iface_Prim then
2087 return E;
2089 -- The covering primitive was inherited
2091 elsif Overridden_Operation (Ultimate_Alias (E))
2092 = Iface_Prim
2093 then
2094 return E;
2095 end if;
2096 end if;
2098 -- Check if E covers the interface primitive (includes case in
2099 -- which E is an inherited private primitive).
2101 if Is_Interface_Conformant (Tagged_Type, Iface_Prim, E) then
2102 return E;
2103 end if;
2105 -- Use the internal entity that links the interface primitive with
2106 -- the covering primitive to locate the entity.
2108 elsif Interface_Alias (E) = Iface_Prim then
2109 return Alias (E);
2110 end if;
2112 Next_Elmt (El);
2113 end loop;
2115 -- Not found
2117 return Empty;
2118 end Find_Primitive_Covering_Interface;
2120 ---------------------------
2121 -- Inherited_Subprograms --
2122 ---------------------------
2124 function Inherited_Subprograms
2125 (S : Entity_Id;
2126 No_Interfaces : Boolean := False;
2127 Interfaces_Only : Boolean := False;
2128 One_Only : Boolean := False) return Subprogram_List
2130 Result : Subprogram_List (1 .. 6000);
2131 -- 6000 here is intended to be infinity. We could use an expandable
2132 -- table, but it would be awfully heavy, and there is no way that we
2133 -- could reasonably exceed this value.
2135 N : Nat := 0;
2136 -- Number of entries in Result
2138 Parent_Op : Entity_Id;
2139 -- Traverses the Overridden_Operation chain
2141 procedure Store_IS (E : Entity_Id);
2142 -- Stores E in Result if not already stored
2144 --------------
2145 -- Store_IS --
2146 --------------
2148 procedure Store_IS (E : Entity_Id) is
2149 begin
2150 for J in 1 .. N loop
2151 if E = Result (J) then
2152 return;
2153 end if;
2154 end loop;
2156 N := N + 1;
2157 Result (N) := E;
2158 end Store_IS;
2160 -- Start of processing for Inherited_Subprograms
2162 begin
2163 pragma Assert (not (No_Interfaces and Interfaces_Only));
2165 if Present (S) and then Is_Dispatching_Operation (S) then
2167 -- Deal with direct inheritance
2169 if not Interfaces_Only then
2170 Parent_Op := S;
2171 loop
2172 Parent_Op := Overridden_Operation (Parent_Op);
2173 exit when No (Parent_Op)
2174 or else
2175 (No_Interfaces
2176 and then
2177 Is_Interface (Find_Dispatching_Type (Parent_Op)));
2179 if Is_Subprogram_Or_Generic_Subprogram (Parent_Op) then
2180 Store_IS (Parent_Op);
2182 if One_Only then
2183 goto Done;
2184 end if;
2185 end if;
2186 end loop;
2187 end if;
2189 -- Now deal with interfaces
2191 if not No_Interfaces then
2192 declare
2193 Tag_Typ : Entity_Id;
2194 Prim : Entity_Id;
2195 Elmt : Elmt_Id;
2197 begin
2198 Tag_Typ := Find_Dispatching_Type (S);
2200 -- In the presence of limited views there may be no visible
2201 -- dispatching type. Primitives will be inherited when non-
2202 -- limited view is frozen.
2204 if No (Tag_Typ) then
2205 return Result (1 .. 0);
2206 end if;
2208 if Is_Concurrent_Type (Tag_Typ) then
2209 Tag_Typ := Corresponding_Record_Type (Tag_Typ);
2210 end if;
2212 -- Search primitive operations of dispatching type
2214 if Present (Tag_Typ)
2215 and then Present (Primitive_Operations (Tag_Typ))
2216 then
2217 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
2218 while Present (Elmt) loop
2219 Prim := Node (Elmt);
2221 -- The following test eliminates some odd cases in which
2222 -- Ekind (Prim) is Void, to be investigated further ???
2224 if not Is_Subprogram_Or_Generic_Subprogram (Prim) then
2225 null;
2227 -- For [generic] subprogram, look at interface alias
2229 elsif Present (Interface_Alias (Prim))
2230 and then Alias (Prim) = S
2231 then
2232 -- We have found a primitive covered by S
2234 Store_IS (Interface_Alias (Prim));
2236 if One_Only then
2237 goto Done;
2238 end if;
2239 end if;
2241 Next_Elmt (Elmt);
2242 end loop;
2243 end if;
2244 end;
2245 end if;
2246 end if;
2248 <<Done>>
2250 return Result (1 .. N);
2251 end Inherited_Subprograms;
2253 ---------------------------
2254 -- Is_Dynamically_Tagged --
2255 ---------------------------
2257 function Is_Dynamically_Tagged (N : Node_Id) return Boolean is
2258 begin
2259 if Nkind (N) = N_Error then
2260 return False;
2262 elsif Present (Find_Controlling_Arg (N)) then
2263 return True;
2265 -- Special cases: entities, and calls that dispatch on result
2267 elsif Is_Entity_Name (N) then
2268 return Is_Class_Wide_Type (Etype (N));
2270 elsif Nkind (N) = N_Function_Call
2271 and then Is_Class_Wide_Type (Etype (N))
2272 then
2273 return True;
2275 -- Otherwise check whether call has controlling argument
2277 else
2278 return False;
2279 end if;
2280 end Is_Dynamically_Tagged;
2282 ---------------------------------
2283 -- Is_Null_Interface_Primitive --
2284 ---------------------------------
2286 function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
2287 begin
2288 return Comes_From_Source (E)
2289 and then Is_Dispatching_Operation (E)
2290 and then Ekind (E) = E_Procedure
2291 and then Null_Present (Parent (E))
2292 and then Is_Interface (Find_Dispatching_Type (E));
2293 end Is_Null_Interface_Primitive;
2295 -----------------------------------
2296 -- Is_Inherited_Public_Operation --
2297 -----------------------------------
2299 function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean is
2300 Prim : constant Entity_Id := Alias (Op);
2301 Scop : constant Entity_Id := Scope (Prim);
2302 Pack_Decl : Node_Id;
2304 begin
2305 if Comes_From_Source (Prim) and then Ekind (Scop) = E_Package then
2306 Pack_Decl := Unit_Declaration_Node (Scop);
2307 return Nkind (Pack_Decl) = N_Package_Declaration
2308 and then List_Containing (Unit_Declaration_Node (Prim)) =
2309 Visible_Declarations (Specification (Pack_Decl));
2311 else
2312 return False;
2313 end if;
2314 end Is_Inherited_Public_Operation;
2316 ------------------------------
2317 -- Is_Overriding_Subprogram --
2318 ------------------------------
2320 function Is_Overriding_Subprogram (E : Entity_Id) return Boolean is
2321 Inherited : constant Subprogram_List :=
2322 Inherited_Subprograms (E, One_Only => True);
2323 begin
2324 return Inherited'Length > 0;
2325 end Is_Overriding_Subprogram;
2327 --------------------------
2328 -- Is_Tag_Indeterminate --
2329 --------------------------
2331 function Is_Tag_Indeterminate (N : Node_Id) return Boolean is
2332 Nam : Entity_Id;
2333 Actual : Node_Id;
2334 Orig_Node : constant Node_Id := Original_Node (N);
2336 begin
2337 if Nkind (Orig_Node) = N_Function_Call
2338 and then Is_Entity_Name (Name (Orig_Node))
2339 then
2340 Nam := Entity (Name (Orig_Node));
2342 if not Has_Controlling_Result (Nam) then
2343 return False;
2345 -- The function may have a controlling result, but if the return type
2346 -- is not visibly tagged, then this is not tag-indeterminate.
2348 elsif Is_Access_Type (Etype (Nam))
2349 and then not Is_Tagged_Type (Designated_Type (Etype (Nam)))
2350 then
2351 return False;
2353 -- An explicit dereference means that the call has already been
2354 -- expanded and there is no tag to propagate.
2356 elsif Nkind (N) = N_Explicit_Dereference then
2357 return False;
2359 -- If there are no actuals, the call is tag-indeterminate
2361 elsif No (Parameter_Associations (Orig_Node)) then
2362 return True;
2364 else
2365 Actual := First_Actual (Orig_Node);
2366 while Present (Actual) loop
2367 if Is_Controlling_Actual (Actual)
2368 and then not Is_Tag_Indeterminate (Actual)
2369 then
2370 -- One operand is dispatching
2372 return False;
2373 end if;
2375 Next_Actual (Actual);
2376 end loop;
2378 return True;
2379 end if;
2381 elsif Nkind (Orig_Node) = N_Qualified_Expression then
2382 return Is_Tag_Indeterminate (Expression (Orig_Node));
2384 -- Case of a call to the Input attribute (possibly rewritten), which is
2385 -- always tag-indeterminate except when its prefix is a Class attribute.
2387 elsif Nkind (Orig_Node) = N_Attribute_Reference
2388 and then
2389 Get_Attribute_Id (Attribute_Name (Orig_Node)) = Attribute_Input
2390 and then Nkind (Prefix (Orig_Node)) /= N_Attribute_Reference
2391 then
2392 return True;
2394 -- In Ada 2005, a function that returns an anonymous access type can be
2395 -- dispatching, and the dereference of a call to such a function can
2396 -- also be tag-indeterminate if the call itself is.
2398 elsif Nkind (Orig_Node) = N_Explicit_Dereference
2399 and then Ada_Version >= Ada_2005
2400 then
2401 return Is_Tag_Indeterminate (Prefix (Orig_Node));
2403 else
2404 return False;
2405 end if;
2406 end Is_Tag_Indeterminate;
2408 ------------------------------------
2409 -- Override_Dispatching_Operation --
2410 ------------------------------------
2412 procedure Override_Dispatching_Operation
2413 (Tagged_Type : Entity_Id;
2414 Prev_Op : Entity_Id;
2415 New_Op : Entity_Id;
2416 Is_Wrapper : Boolean := False)
2418 Elmt : Elmt_Id;
2419 Prim : Node_Id;
2421 begin
2422 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2423 -- we do it unconditionally in Ada 95 now, since this is our pragma).
2425 if No_Return (Prev_Op) and then not No_Return (New_Op) then
2426 Error_Msg_N ("procedure & must have No_Return pragma", New_Op);
2427 Error_Msg_N ("\since overridden procedure has No_Return", New_Op);
2428 end if;
2430 -- If there is no previous operation to override, the type declaration
2431 -- was malformed, and an error must have been emitted already.
2433 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2434 while Present (Elmt) and then Node (Elmt) /= Prev_Op loop
2435 Next_Elmt (Elmt);
2436 end loop;
2438 if No (Elmt) then
2439 return;
2440 end if;
2442 -- The location of entities that come from source in the list of
2443 -- primitives of the tagged type must follow their order of occurrence
2444 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2445 -- primitive of an interface that is not implemented by the parents of
2446 -- this tagged type (that is, it is an alias of an interface primitive
2447 -- generated by Derive_Interface_Progenitors), then we must append the
2448 -- new entity at the end of the list of primitives.
2450 if Present (Alias (Prev_Op))
2451 and then Etype (Tagged_Type) /= Tagged_Type
2452 and then Is_Interface (Find_Dispatching_Type (Alias (Prev_Op)))
2453 and then not Is_Ancestor (Find_Dispatching_Type (Alias (Prev_Op)),
2454 Tagged_Type, Use_Full_View => True)
2455 and then not Implements_Interface
2456 (Etype (Tagged_Type),
2457 Find_Dispatching_Type (Alias (Prev_Op)))
2458 then
2459 Remove_Elmt (Primitive_Operations (Tagged_Type), Elmt);
2460 Append_Elmt (New_Op, Primitive_Operations (Tagged_Type));
2462 -- The new primitive replaces the overridden entity. Required to ensure
2463 -- that overriding primitive is assigned the same dispatch table slot.
2465 else
2466 Replace_Elmt (Elmt, New_Op);
2467 end if;
2469 if Ada_Version >= Ada_2005 and then Has_Interfaces (Tagged_Type) then
2471 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2472 -- entities of the overridden primitive to reference New_Op, and
2473 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2474 -- that the new operation is subtype conformant with the interface
2475 -- operations that it implements (for operations inherited from the
2476 -- parent itself, this check is made when building the derived type).
2478 -- Note: This code is executed with internally generated wrappers of
2479 -- functions with controlling result and late overridings.
2481 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2482 while Present (Elmt) loop
2483 Prim := Node (Elmt);
2485 if Prim = New_Op then
2486 null;
2488 -- Note: The check on Is_Subprogram protects the frontend against
2489 -- reading attributes in entities that are not yet fully decorated
2491 elsif Is_Subprogram (Prim)
2492 and then Present (Interface_Alias (Prim))
2493 and then Alias (Prim) = Prev_Op
2494 then
2495 Set_Alias (Prim, New_Op);
2497 -- No further decoration needed yet for internally generated
2498 -- wrappers of controlling functions since (at this stage)
2499 -- they are not yet decorated.
2501 if not Is_Wrapper then
2502 Check_Subtype_Conformant (New_Op, Prim);
2504 Set_Is_Abstract_Subprogram (Prim,
2505 Is_Abstract_Subprogram (New_Op));
2507 -- Ensure that this entity will be expanded to fill the
2508 -- corresponding entry in its dispatch table.
2510 if not Is_Abstract_Subprogram (Prim) then
2511 Set_Has_Delayed_Freeze (Prim);
2512 end if;
2513 end if;
2514 end if;
2516 Next_Elmt (Elmt);
2517 end loop;
2518 end if;
2520 if (not Is_Package_Or_Generic_Package (Current_Scope))
2521 or else not In_Private_Part (Current_Scope)
2522 then
2523 -- Not a private primitive
2525 null;
2527 else pragma Assert (Is_Inherited_Operation (Prev_Op));
2529 -- Make the overriding operation into an alias of the implicit one.
2530 -- In this fashion a call from outside ends up calling the new body
2531 -- even if non-dispatching, and a call from inside calls the over-
2532 -- riding operation because it hides the implicit one. To indicate
2533 -- that the body of Prev_Op is never called, set its dispatch table
2534 -- entity to Empty. If the overridden operation has a dispatching
2535 -- result, so does the overriding one.
2537 Set_Alias (Prev_Op, New_Op);
2538 Set_DTC_Entity (Prev_Op, Empty);
2539 Set_Has_Controlling_Result (New_Op, Has_Controlling_Result (Prev_Op));
2540 return;
2541 end if;
2542 end Override_Dispatching_Operation;
2544 -------------------
2545 -- Propagate_Tag --
2546 -------------------
2548 procedure Propagate_Tag (Control : Node_Id; Actual : Node_Id) is
2549 Call_Node : Node_Id;
2550 Arg : Node_Id;
2552 begin
2553 if Nkind (Actual) = N_Function_Call then
2554 Call_Node := Actual;
2556 elsif Nkind (Actual) = N_Identifier
2557 and then Nkind (Original_Node (Actual)) = N_Function_Call
2558 then
2559 -- Call rewritten as object declaration when stack-checking is
2560 -- enabled. Propagate tag to expression in declaration, which is
2561 -- original call.
2563 Call_Node := Expression (Parent (Entity (Actual)));
2565 -- Ada 2005: If this is a dereference of a call to a function with a
2566 -- dispatching access-result, the tag is propagated when the dereference
2567 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2569 elsif Nkind (Actual) = N_Explicit_Dereference
2570 and then Nkind (Original_Node (Prefix (Actual))) = N_Function_Call
2571 then
2572 return;
2574 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2575 -- and in that case we can simply return.
2577 elsif Nkind (Actual) = N_Attribute_Reference then
2578 pragma Assert (Attribute_Name (Actual) = Name_Input);
2580 return;
2582 -- Only other possibilities are parenthesized or qualified expression,
2583 -- or an expander-generated unchecked conversion of a function call to
2584 -- a stream Input attribute.
2586 else
2587 Call_Node := Expression (Actual);
2588 end if;
2590 -- No action needed if the call has been already expanded
2592 if Is_Expanded_Dispatching_Call (Call_Node) then
2593 return;
2594 end if;
2596 -- Do not set the Controlling_Argument if already set. This happens in
2597 -- the special case of _Input (see Exp_Attr, case Input).
2599 if No (Controlling_Argument (Call_Node)) then
2600 Set_Controlling_Argument (Call_Node, Control);
2601 end if;
2603 Arg := First_Actual (Call_Node);
2604 while Present (Arg) loop
2605 if Is_Tag_Indeterminate (Arg) then
2606 Propagate_Tag (Control, Arg);
2607 end if;
2609 Next_Actual (Arg);
2610 end loop;
2612 -- Expansion of dispatching calls is suppressed on VM targets, because
2613 -- the VM back-ends directly handle the generation of dispatching calls
2614 -- and would have to undo any expansion to an indirect call.
2616 if Tagged_Type_Expansion then
2617 declare
2618 Call_Typ : constant Entity_Id := Etype (Call_Node);
2620 begin
2621 Expand_Dispatching_Call (Call_Node);
2623 -- If the controlling argument is an interface type and the type
2624 -- of Call_Node differs then we must add an implicit conversion to
2625 -- force displacement of the pointer to the object to reference
2626 -- the secondary dispatch table of the interface.
2628 if Is_Interface (Etype (Control))
2629 and then Etype (Control) /= Call_Typ
2630 then
2631 -- Cannot use Convert_To because the previous call to
2632 -- Expand_Dispatching_Call leaves decorated the Call_Node
2633 -- with the type of Control.
2635 Rewrite (Call_Node,
2636 Make_Type_Conversion (Sloc (Call_Node),
2637 Subtype_Mark =>
2638 New_Occurrence_Of (Etype (Control), Sloc (Call_Node)),
2639 Expression => Relocate_Node (Call_Node)));
2640 Set_Etype (Call_Node, Etype (Control));
2641 Set_Analyzed (Call_Node);
2643 Expand_Interface_Conversion (Call_Node);
2644 end if;
2645 end;
2647 -- Expansion of a dispatching call results in an indirect call, which in
2648 -- turn causes current values to be killed (see Resolve_Call), so on VM
2649 -- targets we do the call here to ensure consistent warnings between VM
2650 -- and non-VM targets.
2652 else
2653 Kill_Current_Values;
2654 end if;
2655 end Propagate_Tag;
2657 end Sem_Disp;