2016-10-26 François Dumont <fdumont@gcc.gnu.org>
[official-gcc.git] / gcc / ada / s-imgrea.adb
blob3847c54d234db5e3aca0d2a21af83ac67e608915
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . I M G _ R E A L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with System.Img_LLU; use System.Img_LLU;
33 with System.Img_Uns; use System.Img_Uns;
34 with System.Powten_Table; use System.Powten_Table;
35 with System.Unsigned_Types; use System.Unsigned_Types;
36 with System.Float_Control;
38 package body System.Img_Real is
40 -- The following defines the maximum number of digits that we can convert
41 -- accurately. This is limited by the precision of Long_Long_Float, and
42 -- also by the number of digits we can hold in Long_Long_Unsigned, which
43 -- is the integer type we use as an intermediate for the result.
45 -- We assume that in practice, the limitation will come from the digits
46 -- value, rather than the integer value. This is true for typical IEEE
47 -- implementations, and at worst, the only loss is for some precision
48 -- in very high precision floating-point output.
50 -- Note that in the following, the "-2" accounts for the sign and one
51 -- extra digits, since we need the maximum number of 9's that can be
52 -- supported, e.g. for the normal 64 bit case, Long_Long_Integer'Width
53 -- is 21, since the maximum value (approx 1.6 * 10**19) has 20 digits,
54 -- but the maximum number of 9's that can be supported is 19.
56 Maxdigs : constant :=
57 Natural'Min
58 (Long_Long_Unsigned'Width - 2, Long_Long_Float'Digits);
60 Unsdigs : constant := Unsigned'Width - 2;
61 -- Number of digits that can be converted using type Unsigned
62 -- See above for the explanation of the -2.
64 Maxscaling : constant := 5000;
65 -- Max decimal scaling required during conversion of floating-point
66 -- numbers to decimal. This is used to defend against infinite
67 -- looping in the conversion, as can be caused by erroneous executions.
68 -- The largest exponent used on any current system is 2**16383, which
69 -- is approximately 10**4932, and the highest number of decimal digits
70 -- is about 35 for 128-bit floating-point formats, so 5000 leaves
71 -- enough room for scaling such values
73 function Is_Negative (V : Long_Long_Float) return Boolean;
74 pragma Import (Intrinsic, Is_Negative);
76 --------------------------
77 -- Image_Floating_Point --
78 --------------------------
80 procedure Image_Floating_Point
81 (V : Long_Long_Float;
82 S : in out String;
83 P : out Natural;
84 Digs : Natural)
86 pragma Assert (S'First = 1);
88 begin
89 -- Decide whether a blank should be prepended before the call to
90 -- Set_Image_Real. We generate a blank for positive values, and
91 -- also for positive zeroes. For negative zeroes, we generate a
92 -- space only if Signed_Zeroes is True (the RM only permits the
93 -- output of -0.0 on targets where this is the case). We can of
94 -- course still see a -0.0 on a target where Signed_Zeroes is
95 -- False (since this attribute refers to the proper handling of
96 -- negative zeroes, not to their existence). We do not generate
97 -- a blank for positive infinity, since we output an explicit +.
99 if (not Is_Negative (V) and then V <= Long_Long_Float'Last)
100 or else (not Long_Long_Float'Signed_Zeros and then V = -0.0)
101 then
102 S (1) := ' ';
103 P := 1;
104 else
105 P := 0;
106 end if;
108 Set_Image_Real (V, S, P, 1, Digs - 1, 3);
109 end Image_Floating_Point;
111 --------------------------------
112 -- Image_Ordinary_Fixed_Point --
113 --------------------------------
115 procedure Image_Ordinary_Fixed_Point
116 (V : Long_Long_Float;
117 S : in out String;
118 P : out Natural;
119 Aft : Natural)
121 pragma Assert (S'First = 1);
123 begin
124 -- Output space at start if non-negative
126 if V >= 0.0 then
127 S (1) := ' ';
128 P := 1;
129 else
130 P := 0;
131 end if;
133 Set_Image_Real (V, S, P, 1, Aft, 0);
134 end Image_Ordinary_Fixed_Point;
136 --------------------
137 -- Set_Image_Real --
138 --------------------
140 procedure Set_Image_Real
141 (V : Long_Long_Float;
142 S : out String;
143 P : in out Natural;
144 Fore : Natural;
145 Aft : Natural;
146 Exp : Natural)
148 NFrac : constant Natural := Natural'Max (Aft, 1);
149 Sign : Character;
150 X : Long_Long_Float;
151 Scale : Integer;
152 Expon : Integer;
154 Field_Max : constant := 255;
155 -- This should be the same value as Ada.[Wide_]Text_IO.Field'Last.
156 -- It is not worth dragging in Ada.Text_IO to pick up this value,
157 -- since it really should never be necessary to change it.
159 Digs : String (1 .. 2 * Field_Max + 16);
160 -- Array used to hold digits of converted integer value. This is a
161 -- large enough buffer to accommodate ludicrous values of Fore and Aft.
163 Ndigs : Natural;
164 -- Number of digits stored in Digs (and also subscript of last digit)
166 procedure Adjust_Scale (S : Natural);
167 -- Adjusts the value in X by multiplying or dividing by a power of
168 -- ten so that it is in the range 10**(S-1) <= X < 10**S. Includes
169 -- adding 0.5 to round the result, readjusting if the rounding causes
170 -- the result to wander out of the range. Scale is adjusted to reflect
171 -- the power of ten used to divide the result (i.e. one is added to
172 -- the scale value for each division by 10.0, or one is subtracted
173 -- for each multiplication by 10.0).
175 procedure Convert_Integer;
176 -- Takes the value in X, outputs integer digits into Digs. On return,
177 -- Ndigs is set to the number of digits stored. The digits are stored
178 -- in Digs (1 .. Ndigs),
180 procedure Set (C : Character);
181 -- Sets character C in output buffer
183 procedure Set_Blanks_And_Sign (N : Integer);
184 -- Sets leading blanks and minus sign if needed. N is the number of
185 -- positions to be filled (a minus sign is output even if N is zero
186 -- or negative, but for a positive value, if N is non-positive, then
187 -- the call has no effect).
189 procedure Set_Digs (S, E : Natural);
190 -- Set digits S through E from Digs buffer. No effect if S > E
192 procedure Set_Special_Fill (N : Natural);
193 -- After outputting +Inf, -Inf or NaN, this routine fills out the
194 -- rest of the field with * characters. The argument is the number
195 -- of characters output so far (either 3 or 4)
197 procedure Set_Zeros (N : Integer);
198 -- Set N zeros, no effect if N is negative
200 pragma Inline (Set);
201 pragma Inline (Set_Digs);
202 pragma Inline (Set_Zeros);
204 ------------------
205 -- Adjust_Scale --
206 ------------------
208 procedure Adjust_Scale (S : Natural) is
209 Lo : Natural;
210 Hi : Natural;
211 Mid : Natural;
212 XP : Long_Long_Float;
214 begin
215 -- Cases where scaling up is required
217 if X < Powten (S - 1) then
219 -- What we are looking for is a power of ten to multiply X by
220 -- so that the result lies within the required range.
222 loop
223 XP := X * Powten (Maxpow);
224 exit when XP >= Powten (S - 1) or else Scale < -Maxscaling;
225 X := XP;
226 Scale := Scale - Maxpow;
227 end loop;
229 -- The following exception is only raised in case of erroneous
230 -- execution, where a number was considered valid but still
231 -- fails to scale up. One situation where this can happen is
232 -- when a system which is supposed to be IEEE-compliant, but
233 -- has been reconfigured to flush denormals to zero.
235 if Scale < -Maxscaling then
236 raise Constraint_Error;
237 end if;
239 -- Here we know that we must multiply by at least 10**1 and that
240 -- 10**Maxpow takes us too far: binary search to find right one.
242 -- Because of roundoff errors, it is possible for the value
243 -- of XP to be just outside of the interval when Lo >= Hi. In
244 -- that case we adjust explicitly by a factor of 10. This
245 -- can only happen with a value that is very close to an
246 -- exact power of 10.
248 Lo := 1;
249 Hi := Maxpow;
251 loop
252 Mid := (Lo + Hi) / 2;
253 XP := X * Powten (Mid);
255 if XP < Powten (S - 1) then
257 if Lo >= Hi then
258 Mid := Mid + 1;
259 XP := XP * 10.0;
260 exit;
262 else
263 Lo := Mid + 1;
264 end if;
266 elsif XP >= Powten (S) then
268 if Lo >= Hi then
269 Mid := Mid - 1;
270 XP := XP / 10.0;
271 exit;
273 else
274 Hi := Mid - 1;
275 end if;
277 else
278 exit;
279 end if;
280 end loop;
282 X := XP;
283 Scale := Scale - Mid;
285 -- Cases where scaling down is required
287 elsif X >= Powten (S) then
289 -- What we are looking for is a power of ten to divide X by
290 -- so that the result lies within the required range.
292 loop
293 XP := X / Powten (Maxpow);
294 exit when XP < Powten (S) or else Scale > Maxscaling;
295 X := XP;
296 Scale := Scale + Maxpow;
297 end loop;
299 -- The following exception is only raised in case of erroneous
300 -- execution, where a number was considered valid but still
301 -- fails to scale up. One situation where this can happen is
302 -- when a system which is supposed to be IEEE-compliant, but
303 -- has been reconfigured to flush denormals to zero.
305 if Scale > Maxscaling then
306 raise Constraint_Error;
307 end if;
309 -- Here we know that we must divide by at least 10**1 and that
310 -- 10**Maxpow takes us too far, binary search to find right one.
312 Lo := 1;
313 Hi := Maxpow;
315 loop
316 Mid := (Lo + Hi) / 2;
317 XP := X / Powten (Mid);
319 if XP < Powten (S - 1) then
321 if Lo >= Hi then
322 XP := XP * 10.0;
323 Mid := Mid - 1;
324 exit;
326 else
327 Hi := Mid - 1;
328 end if;
330 elsif XP >= Powten (S) then
332 if Lo >= Hi then
333 XP := XP / 10.0;
334 Mid := Mid + 1;
335 exit;
337 else
338 Lo := Mid + 1;
339 end if;
341 else
342 exit;
343 end if;
344 end loop;
346 X := XP;
347 Scale := Scale + Mid;
349 -- Here we are already scaled right
351 else
352 null;
353 end if;
355 -- Round, readjusting scale if needed. Note that if a readjustment
356 -- occurs, then it is never necessary to round again, because there
357 -- is no possibility of such a second rounding causing a change.
359 X := X + 0.5;
361 if X >= Powten (S) then
362 X := X / 10.0;
363 Scale := Scale + 1;
364 end if;
366 end Adjust_Scale;
368 ---------------------
369 -- Convert_Integer --
370 ---------------------
372 procedure Convert_Integer is
373 begin
374 -- Use Unsigned routine if possible, since on many machines it will
375 -- be significantly more efficient than the Long_Long_Unsigned one.
377 if X < Powten (Unsdigs) then
378 Ndigs := 0;
379 Set_Image_Unsigned
380 (Unsigned (Long_Long_Float'Truncation (X)),
381 Digs, Ndigs);
383 -- But if we want more digits than fit in Unsigned, we have to use
384 -- the Long_Long_Unsigned routine after all.
386 else
387 Ndigs := 0;
388 Set_Image_Long_Long_Unsigned
389 (Long_Long_Unsigned (Long_Long_Float'Truncation (X)),
390 Digs, Ndigs);
391 end if;
392 end Convert_Integer;
394 ---------
395 -- Set --
396 ---------
398 procedure Set (C : Character) is
399 begin
400 P := P + 1;
401 S (P) := C;
402 end Set;
404 -------------------------
405 -- Set_Blanks_And_Sign --
406 -------------------------
408 procedure Set_Blanks_And_Sign (N : Integer) is
409 begin
410 if Sign = '-' then
411 for J in 1 .. N - 1 loop
412 Set (' ');
413 end loop;
415 Set ('-');
417 else
418 for J in 1 .. N loop
419 Set (' ');
420 end loop;
421 end if;
422 end Set_Blanks_And_Sign;
424 --------------
425 -- Set_Digs --
426 --------------
428 procedure Set_Digs (S, E : Natural) is
429 begin
430 for J in S .. E loop
431 Set (Digs (J));
432 end loop;
433 end Set_Digs;
435 ----------------------
436 -- Set_Special_Fill --
437 ----------------------
439 procedure Set_Special_Fill (N : Natural) is
440 F : Natural;
442 begin
443 F := Fore + 1 + Aft - N;
445 if Exp /= 0 then
446 F := F + Exp + 1;
447 end if;
449 for J in 1 .. F loop
450 Set ('*');
451 end loop;
452 end Set_Special_Fill;
454 ---------------
455 -- Set_Zeros --
456 ---------------
458 procedure Set_Zeros (N : Integer) is
459 begin
460 for J in 1 .. N loop
461 Set ('0');
462 end loop;
463 end Set_Zeros;
465 -- Start of processing for Set_Image_Real
467 begin
468 -- We call the floating-point processor reset routine so that we can
469 -- be sure the floating-point processor is properly set for conversion
470 -- calls. This is notably need on Windows, where calls to the operating
471 -- system randomly reset the processor into 64-bit mode.
473 System.Float_Control.Reset;
475 Scale := 0;
477 -- Deal with invalid values first,
479 if not V'Valid then
481 -- Note that we're taking our chances here, as V might be
482 -- an invalid bit pattern resulting from erroneous execution
483 -- (caused by using uninitialized variables for example).
485 -- No matter what, we'll at least get reasonable behavior,
486 -- converting to infinity or some other value, or causing an
487 -- exception to be raised is fine.
489 -- If the following test succeeds, then we definitely have
490 -- an infinite value, so we print Inf.
492 if V > Long_Long_Float'Last then
493 Set ('+');
494 Set ('I');
495 Set ('n');
496 Set ('f');
497 Set_Special_Fill (4);
499 -- In all other cases we print NaN
501 elsif V < Long_Long_Float'First then
502 Set ('-');
503 Set ('I');
504 Set ('n');
505 Set ('f');
506 Set_Special_Fill (4);
508 else
509 Set ('N');
510 Set ('a');
511 Set ('N');
512 Set_Special_Fill (3);
513 end if;
515 return;
516 end if;
518 -- Positive values
520 if V > 0.0 then
521 X := V;
522 Sign := '+';
524 -- Negative values
526 elsif V < 0.0 then
527 X := -V;
528 Sign := '-';
530 -- Zero values
532 elsif V = 0.0 then
533 if Long_Long_Float'Signed_Zeros and then Is_Negative (V) then
534 Sign := '-';
535 else
536 Sign := '+';
537 end if;
539 Set_Blanks_And_Sign (Fore - 1);
540 Set ('0');
541 Set ('.');
542 Set_Zeros (NFrac);
544 if Exp /= 0 then
545 Set ('E');
546 Set ('+');
547 Set_Zeros (Natural'Max (1, Exp - 1));
548 end if;
550 return;
552 else
553 -- It should not be possible for a NaN to end up here.
554 -- Either the 'Valid test has failed, or we have some form
555 -- of erroneous execution. Raise Constraint_Error instead of
556 -- attempting to go ahead printing the value.
558 raise Constraint_Error;
559 end if;
561 -- X and Sign are set here, and X is known to be a valid,
562 -- non-zero floating-point number.
564 -- Case of non-zero value with Exp = 0
566 if Exp = 0 then
568 -- First step is to multiply by 10 ** Nfrac to get an integer
569 -- value to be output, an then add 0.5 to round the result.
571 declare
572 NF : Natural := NFrac;
574 begin
575 loop
576 -- If we are larger than Powten (Maxdigs) now, then
577 -- we have too many significant digits, and we have
578 -- not even finished multiplying by NFrac (NF shows
579 -- the number of unaccounted-for digits).
581 if X >= Powten (Maxdigs) then
583 -- In this situation, we only to generate a reasonable
584 -- number of significant digits, and then zeroes after.
585 -- So first we rescale to get:
587 -- 10 ** (Maxdigs - 1) <= X < 10 ** Maxdigs
589 -- and then convert the resulting integer
591 Adjust_Scale (Maxdigs);
592 Convert_Integer;
594 -- If that caused rescaling, then add zeros to the end
595 -- of the number to account for this scaling. Also add
596 -- zeroes to account for the undone multiplications
598 for J in 1 .. Scale + NF loop
599 Ndigs := Ndigs + 1;
600 Digs (Ndigs) := '0';
601 end loop;
603 exit;
605 -- If multiplication is complete, then convert the resulting
606 -- integer after rounding (note that X is non-negative)
608 elsif NF = 0 then
609 X := X + 0.5;
610 Convert_Integer;
611 exit;
613 -- Otherwise we can go ahead with the multiplication. If it
614 -- can be done in one step, then do it in one step.
616 elsif NF < Maxpow then
617 X := X * Powten (NF);
618 NF := 0;
620 -- If it cannot be done in one step, then do partial scaling
622 else
623 X := X * Powten (Maxpow);
624 NF := NF - Maxpow;
625 end if;
626 end loop;
627 end;
629 -- If number of available digits is less or equal to NFrac,
630 -- then we need an extra zero before the decimal point.
632 if Ndigs <= NFrac then
633 Set_Blanks_And_Sign (Fore - 1);
634 Set ('0');
635 Set ('.');
636 Set_Zeros (NFrac - Ndigs);
637 Set_Digs (1, Ndigs);
639 -- Normal case with some digits before the decimal point
641 else
642 Set_Blanks_And_Sign (Fore - (Ndigs - NFrac));
643 Set_Digs (1, Ndigs - NFrac);
644 Set ('.');
645 Set_Digs (Ndigs - NFrac + 1, Ndigs);
646 end if;
648 -- Case of non-zero value with non-zero Exp value
650 else
651 -- If NFrac is less than Maxdigs, then all the fraction digits are
652 -- significant, so we can scale the resulting integer accordingly.
654 if NFrac < Maxdigs then
655 Adjust_Scale (NFrac + 1);
656 Convert_Integer;
658 -- Otherwise, we get the maximum number of digits available
660 else
661 Adjust_Scale (Maxdigs);
662 Convert_Integer;
664 for J in 1 .. NFrac - Maxdigs + 1 loop
665 Ndigs := Ndigs + 1;
666 Digs (Ndigs) := '0';
667 Scale := Scale - 1;
668 end loop;
669 end if;
671 Set_Blanks_And_Sign (Fore - 1);
672 Set (Digs (1));
673 Set ('.');
674 Set_Digs (2, Ndigs);
676 -- The exponent is the scaling factor adjusted for the digits
677 -- that we output after the decimal point, since these were
678 -- included in the scaled digits that we output.
680 Expon := Scale + NFrac;
682 Set ('E');
683 Ndigs := 0;
685 if Expon >= 0 then
686 Set ('+');
687 Set_Image_Unsigned (Unsigned (Expon), Digs, Ndigs);
688 else
689 Set ('-');
690 Set_Image_Unsigned (Unsigned (-Expon), Digs, Ndigs);
691 end if;
693 Set_Zeros (Exp - Ndigs - 1);
694 Set_Digs (1, Ndigs);
695 end if;
697 end Set_Image_Real;
699 end System.Img_Real;