1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- A D A . C O N T A I N E R S . M U L T I W A Y _ T R E E S --
9 -- Copyright (C) 2004-2015, Free Software Foundation, Inc. --
11 -- This specification is derived from the Ada Reference Manual for use with --
12 -- GNAT. The copyright notice above, and the license provisions that follow --
13 -- apply solely to the contents of the part following the private keyword. --
15 -- GNAT is free software; you can redistribute it and/or modify it under --
16 -- terms of the GNU General Public License as published by the Free Soft- --
17 -- ware Foundation; either version 3, or (at your option) any later ver- --
18 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
19 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
20 -- or FITNESS FOR A PARTICULAR PURPOSE. --
22 -- As a special exception under Section 7 of GPL version 3, you are granted --
23 -- additional permissions described in the GCC Runtime Library Exception, --
24 -- version 3.1, as published by the Free Software Foundation. --
26 -- You should have received a copy of the GNU General Public License and --
27 -- a copy of the GCC Runtime Library Exception along with this program; --
28 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
29 -- <http://www.gnu.org/licenses/>. --
31 -- This unit was originally developed by Matthew J Heaney. --
32 ------------------------------------------------------------------------------
34 with Ada
.Iterator_Interfaces
;
36 with Ada
.Containers
.Helpers
;
37 private with Ada
.Finalization
;
38 private with Ada
.Streams
;
41 type Element_Type
is private;
43 with function "=" (Left
, Right
: Element_Type
) return Boolean is <>;
45 package Ada
.Containers
.Multiway_Trees
is
46 pragma Annotate
(CodePeer
, Skip_Analysis
);
50 type Tree
is tagged private
51 with Constant_Indexing
=> Constant_Reference
,
52 Variable_Indexing
=> Reference
,
53 Default_Iterator
=> Iterate
,
54 Iterator_Element
=> Element_Type
;
55 pragma Preelaborable_Initialization
(Tree
);
57 type Cursor
is private;
58 pragma Preelaborable_Initialization
(Cursor
);
60 Empty_Tree
: constant Tree
;
62 No_Element
: constant Cursor
;
63 function Has_Element
(Position
: Cursor
) return Boolean;
65 package Tree_Iterator_Interfaces
is new
66 Ada
.Iterator_Interfaces
(Cursor
, Has_Element
);
68 function Equal_Subtree
69 (Left_Position
: Cursor
;
70 Right_Position
: Cursor
) return Boolean;
72 function "=" (Left
, Right
: Tree
) return Boolean;
74 function Is_Empty
(Container
: Tree
) return Boolean;
76 function Node_Count
(Container
: Tree
) return Count_Type
;
78 function Subtree_Node_Count
(Position
: Cursor
) return Count_Type
;
80 function Depth
(Position
: Cursor
) return Count_Type
;
82 function Is_Root
(Position
: Cursor
) return Boolean;
84 function Is_Leaf
(Position
: Cursor
) return Boolean;
86 function Root
(Container
: Tree
) return Cursor
;
88 procedure Clear
(Container
: in out Tree
);
90 function Element
(Position
: Cursor
) return Element_Type
;
92 procedure Replace_Element
93 (Container
: in out Tree
;
95 New_Item
: Element_Type
);
97 procedure Query_Element
99 Process
: not null access procedure (Element
: Element_Type
));
101 procedure Update_Element
102 (Container
: in out Tree
;
104 Process
: not null access procedure (Element
: in out Element_Type
));
106 type Constant_Reference_Type
107 (Element
: not null access constant Element_Type
) is private
108 with Implicit_Dereference
=> Element
;
111 (Element
: not null access Element_Type
) is private
112 with Implicit_Dereference
=> Element
;
114 function Constant_Reference
115 (Container
: aliased Tree
;
116 Position
: Cursor
) return Constant_Reference_Type
;
117 pragma Inline
(Constant_Reference
);
120 (Container
: aliased in out Tree
;
121 Position
: Cursor
) return Reference_Type
;
122 pragma Inline
(Reference
);
124 procedure Assign
(Target
: in out Tree
; Source
: Tree
);
126 function Copy
(Source
: Tree
) return Tree
;
128 procedure Move
(Target
: in out Tree
; Source
: in out Tree
);
130 procedure Delete_Leaf
131 (Container
: in out Tree
;
132 Position
: in out Cursor
);
134 procedure Delete_Subtree
135 (Container
: in out Tree
;
136 Position
: in out Cursor
);
139 (Container
: in out Tree
;
144 Item
: Element_Type
) return Cursor
;
146 -- This version of the AI:
147 -- 10-06-02 AI05-0136-1/07
148 -- declares Find_In_Subtree this way:
150 -- function Find_In_Subtree
151 -- (Container : Tree;
152 -- Item : Element_Type;
153 -- Position : Cursor) return Cursor;
155 -- It seems that the Container parameter is there by mistake, but we need
156 -- an official ruling from the ARG. ???
158 function Find_In_Subtree
160 Item
: Element_Type
) return Cursor
;
162 -- This version of the AI:
163 -- 10-06-02 AI05-0136-1/07
164 -- declares Ancestor_Find this way:
166 -- function Ancestor_Find
167 -- (Container : Tree;
168 -- Item : Element_Type;
169 -- Position : Cursor) return Cursor;
171 -- It seems that the Container parameter is there by mistake, but we need
172 -- an official ruling from the ARG. ???
174 function Ancestor_Find
176 Item
: Element_Type
) return Cursor
;
180 Item
: Element_Type
) return Boolean;
184 Process
: not null access procedure (Position
: Cursor
));
186 procedure Iterate_Subtree
188 Process
: not null access procedure (Position
: Cursor
));
190 function Iterate
(Container
: Tree
)
191 return Tree_Iterator_Interfaces
.Forward_Iterator
'Class;
193 function Iterate_Subtree
(Position
: Cursor
)
194 return Tree_Iterator_Interfaces
.Forward_Iterator
'Class;
196 function Iterate_Children
199 return Tree_Iterator_Interfaces
.Reversible_Iterator
'Class;
201 function Child_Count
(Parent
: Cursor
) return Count_Type
;
203 function Child_Depth
(Parent
, Child
: Cursor
) return Count_Type
;
205 procedure Insert_Child
206 (Container
: in out Tree
;
209 New_Item
: Element_Type
;
210 Count
: Count_Type
:= 1);
212 procedure Insert_Child
213 (Container
: in out Tree
;
216 New_Item
: Element_Type
;
217 Position
: out Cursor
;
218 Count
: Count_Type
:= 1);
220 procedure Insert_Child
221 (Container
: in out Tree
;
224 Position
: out Cursor
;
225 Count
: Count_Type
:= 1);
227 procedure Prepend_Child
228 (Container
: in out Tree
;
230 New_Item
: Element_Type
;
231 Count
: Count_Type
:= 1);
233 procedure Append_Child
234 (Container
: in out Tree
;
236 New_Item
: Element_Type
;
237 Count
: Count_Type
:= 1);
239 procedure Delete_Children
240 (Container
: in out Tree
;
243 procedure Copy_Subtree
244 (Target
: in out Tree
;
249 procedure Splice_Subtree
250 (Target
: in out Tree
;
253 Source
: in out Tree
;
254 Position
: in out Cursor
);
256 procedure Splice_Subtree
257 (Container
: in out Tree
;
262 procedure Splice_Children
263 (Target
: in out Tree
;
264 Target_Parent
: Cursor
;
266 Source
: in out Tree
;
267 Source_Parent
: Cursor
);
269 procedure Splice_Children
270 (Container
: in out Tree
;
271 Target_Parent
: Cursor
;
273 Source_Parent
: Cursor
);
275 function Parent
(Position
: Cursor
) return Cursor
;
277 function First_Child
(Parent
: Cursor
) return Cursor
;
279 function First_Child_Element
(Parent
: Cursor
) return Element_Type
;
281 function Last_Child
(Parent
: Cursor
) return Cursor
;
283 function Last_Child_Element
(Parent
: Cursor
) return Element_Type
;
285 function Next_Sibling
(Position
: Cursor
) return Cursor
;
287 function Previous_Sibling
(Position
: Cursor
) return Cursor
;
289 procedure Next_Sibling
(Position
: in out Cursor
);
291 procedure Previous_Sibling
(Position
: in out Cursor
);
293 -- This version of the AI:
294 -- 10-06-02 AI05-0136-1/07
295 -- declares Iterate_Children this way:
297 -- procedure Iterate_Children
298 -- (Container : Tree;
300 -- Process : not null access procedure (Position : Cursor));
302 -- It seems that the Container parameter is there by mistake, but we need
303 -- an official ruling from the ARG. ???
305 procedure Iterate_Children
307 Process
: not null access procedure (Position
: Cursor
));
309 procedure Reverse_Iterate_Children
311 Process
: not null access procedure (Position
: Cursor
));
314 -- A node of this multiway tree comprises an element and a list of children
315 -- (that are themselves trees). The root node is distinguished because it
316 -- contains only children: it does not have an element itself.
318 -- This design feature puts two design goals in tension with one another:
319 -- (1) treat the root node the same as any other node
320 -- (2) not declare any objects of type Element_Type unnecessarily
322 -- To satisfy (1), we could simply declare the Root node of the tree
323 -- using the normal Tree_Node_Type, but that would mean that (2) is not
324 -- satisfied. To resolve the tension (in favor of (2)), we declare the
325 -- component Root as having a different node type, without an Element
326 -- component (thus satisfying goal (2)) but otherwise identical to a normal
327 -- node, and then use Unchecked_Conversion to convert an access object
328 -- designating the Root node component to the access type designating a
329 -- normal, non-root node (thus satisfying goal (1)). We make an explicit
330 -- check for Root when there is any attempt to manipulate the Element
331 -- component of the node (a check required by the RM anyway).
333 -- In order to be explicit about node (and pointer) representation, we
334 -- specify that the respective node types have convention C, to ensure
335 -- that the layout of the components of the node records is the same,
336 -- thus guaranteeing that (unchecked) conversions between access types
337 -- designating each kind of node type is a meaningful conversion.
339 use Ada
.Containers
.Helpers
;
340 package Implementation
is new Generic_Implementation
;
344 type Tree_Node_Access
is access all Tree_Node_Type
;
345 pragma Convention
(C
, Tree_Node_Access
);
346 pragma No_Strict_Aliasing
(Tree_Node_Access
);
347 -- The above-mentioned Unchecked_Conversion is a violation of the normal
350 type Children_Type
is record
351 First
: Tree_Node_Access
;
352 Last
: Tree_Node_Access
;
355 -- See the comment above. This declaration must exactly match the
356 -- declaration of Root_Node_Type (except for the Element component).
358 type Tree_Node_Type
is record
359 Parent
: Tree_Node_Access
;
360 Prev
: Tree_Node_Access
;
361 Next
: Tree_Node_Access
;
362 Children
: Children_Type
;
363 Element
: aliased Element_Type
;
365 pragma Convention
(C
, Tree_Node_Type
);
367 -- See the comment above. This declaration must match the declaration of
368 -- Tree_Node_Type (except for the Element component).
370 type Root_Node_Type
is record
371 Parent
: Tree_Node_Access
;
372 Prev
: Tree_Node_Access
;
373 Next
: Tree_Node_Access
;
374 Children
: Children_Type
;
376 pragma Convention
(C
, Root_Node_Type
);
378 for Root_Node_Type
'Alignment use Standard
'Maximum_Alignment;
379 -- The alignment has to be large enough to allow Root_Node to Tree_Node
380 -- access value conversions, and Tree_Node_Type's alignment may be bumped
381 -- up by the Element component.
383 use Ada
.Finalization
;
385 -- The Count component of type Tree represents the number of nodes that
386 -- have been (dynamically) allocated. It does not include the root node
387 -- itself. As implementors, we decide to cache this value, so that the
388 -- selector function Node_Count can execute in O(1) time, in order to be
389 -- consistent with the behavior of the Length selector function for other
390 -- standard container library units. This does mean, however, that the
391 -- two-container forms for Splice_XXX (that move subtrees across tree
392 -- containers) will execute in O(n) time, because we must count the number
393 -- of nodes in the subtree(s) that get moved. (We resolve the tension
394 -- between Node_Count and Splice_XXX in favor of Node_Count, under the
395 -- assumption that Node_Count is the more common operation).
397 type Tree
is new Controlled
with record
398 Root
: aliased Root_Node_Type
;
399 TC
: aliased Tamper_Counts
;
400 Count
: Count_Type
:= 0;
403 overriding
procedure Adjust
(Container
: in out Tree
);
405 overriding
procedure Finalize
(Container
: in out Tree
) renames Clear
;
410 (Stream
: not null access Root_Stream_Type
'Class;
413 for Tree
'Write use Write
;
416 (Stream
: not null access Root_Stream_Type
'Class;
417 Container
: out Tree
);
419 for Tree
'Read use Read
;
421 type Tree_Access
is access all Tree
;
422 for Tree_Access
'Storage_Size use 0;
424 type Cursor
is record
425 Container
: Tree_Access
;
426 Node
: Tree_Node_Access
;
430 (Stream
: not null access Root_Stream_Type
'Class;
433 for Cursor
'Write use Write
;
436 (Stream
: not null access Root_Stream_Type
'Class;
437 Position
: out Cursor
);
439 for Cursor
'Read use Read
;
441 subtype Reference_Control_Type
is Implementation
.Reference_Control_Type
;
442 -- It is necessary to rename this here, so that the compiler can find it
444 type Constant_Reference_Type
445 (Element
: not null access constant Element_Type
) is
447 Control
: Reference_Control_Type
:=
448 raise Program_Error
with "uninitialized reference";
449 -- The RM says, "The default initialization of an object of
450 -- type Constant_Reference_Type or Reference_Type propagates
455 (Stream
: not null access Root_Stream_Type
'Class;
456 Item
: out Constant_Reference_Type
);
458 for Constant_Reference_Type
'Read use Read
;
461 (Stream
: not null access Root_Stream_Type
'Class;
462 Item
: Constant_Reference_Type
);
464 for Constant_Reference_Type
'Write use Write
;
467 (Element
: not null access Element_Type
) is
469 Control
: Reference_Control_Type
:=
470 raise Program_Error
with "uninitialized reference";
471 -- The RM says, "The default initialization of an object of
472 -- type Constant_Reference_Type or Reference_Type propagates
477 (Stream
: not null access Root_Stream_Type
'Class;
478 Item
: out Reference_Type
);
480 for Reference_Type
'Read use Read
;
483 (Stream
: not null access Root_Stream_Type
'Class;
484 Item
: Reference_Type
);
486 for Reference_Type
'Write use Write
;
488 -- Three operations are used to optimize in the expansion of "for ... of"
489 -- loops: the Next(Cursor) procedure in the visible part, and the following
490 -- Pseudo_Reference and Get_Element_Access functions. See Exp_Ch5 for
493 function Pseudo_Reference
494 (Container
: aliased Tree
'Class) return Reference_Control_Type
;
495 pragma Inline
(Pseudo_Reference
);
496 -- Creates an object of type Reference_Control_Type pointing to the
497 -- container, and increments the Lock. Finalization of this object will
498 -- decrement the Lock.
500 type Element_Access
is access all Element_Type
with
503 function Get_Element_Access
504 (Position
: Cursor
) return not null Element_Access
;
505 -- Returns a pointer to the element designated by Position.
507 Empty_Tree
: constant Tree
:= (Controlled
with others => <>);
509 No_Element
: constant Cursor
:= (others => <>);
511 end Ada
.Containers
.Multiway_Trees
;