1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
34 The subroutines redirect_jump and invert_jump are used
35 from other passes as well. */
39 #include "coretypes.h"
44 #include "hard-reg-set.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
50 #include "basic-block.h"
53 #include "diagnostic-core.h"
57 #include "tree-pass.h"
60 /* Optimize jump y; x: ... y: jumpif... x?
61 Don't know if it is worth bothering with. */
62 /* Optimize two cases of conditional jump to conditional jump?
63 This can never delete any instruction or make anything dead,
64 or even change what is live at any point.
65 So perhaps let combiner do it. */
67 static void init_label_info (rtx
);
68 static void mark_all_labels (rtx
);
69 static void mark_jump_label_1 (rtx
, rtx
, bool, bool);
70 static void mark_jump_label_asm (rtx
, rtx
);
71 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
72 static int invert_exp_1 (rtx
, rtx
);
73 static int returnjump_p_1 (rtx
*, void *);
75 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
77 rebuild_jump_labels_1 (rtx f
, bool count_forced
)
81 timevar_push (TV_REBUILD_JUMP
);
85 /* Keep track of labels used from static data; we don't track them
86 closely enough to delete them here, so make sure their reference
87 count doesn't drop to zero. */
90 for (insn
= forced_labels
; insn
; insn
= XEXP (insn
, 1))
91 if (LABEL_P (XEXP (insn
, 0)))
92 LABEL_NUSES (XEXP (insn
, 0))++;
93 timevar_pop (TV_REBUILD_JUMP
);
96 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
97 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
98 instructions and jumping insns that have labels as operands
101 rebuild_jump_labels (rtx f
)
103 rebuild_jump_labels_1 (f
, true);
106 /* This function is like rebuild_jump_labels, but doesn't run over
107 forced_labels. It can be used on insn chains that aren't the
108 main function chain. */
110 rebuild_jump_labels_chain (rtx chain
)
112 rebuild_jump_labels_1 (chain
, false);
115 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
116 non-fallthru insn. This is not generally true, as multiple barriers
117 may have crept in, or the BARRIER may be separated from the last
118 real insn by one or more NOTEs.
120 This simple pass moves barriers and removes duplicates so that the
124 cleanup_barriers (void)
126 rtx insn
, next
, prev
;
127 for (insn
= get_insns (); insn
; insn
= next
)
129 next
= NEXT_INSN (insn
);
130 if (BARRIER_P (insn
))
132 prev
= prev_nonnote_insn (insn
);
135 if (BARRIER_P (prev
))
137 else if (prev
!= PREV_INSN (insn
))
138 reorder_insns (insn
, insn
, prev
);
144 struct rtl_opt_pass pass_cleanup_barriers
=
148 "barriers", /* name */
150 cleanup_barriers
, /* execute */
153 0, /* static_pass_number */
155 0, /* properties_required */
156 0, /* properties_provided */
157 0, /* properties_destroyed */
158 0, /* todo_flags_start */
159 TODO_dump_func
/* todo_flags_finish */
164 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
165 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
166 notes whose labels don't occur in the insn any more. */
169 init_label_info (rtx f
)
173 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
176 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
178 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
179 sticky and not reset here; that way we won't lose association
180 with a label when e.g. the source for a target register
181 disappears out of reach for targets that may use jump-target
182 registers. Jump transformations are supposed to transform
183 any REG_LABEL_TARGET notes. The target label reference in a
184 branch may disappear from the branch (and from the
185 instruction before it) for other reasons, like register
192 for (note
= REG_NOTES (insn
); note
; note
= next
)
194 next
= XEXP (note
, 1);
195 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
196 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
197 remove_note (insn
, note
);
203 /* Mark the label each jump jumps to.
204 Combine consecutive labels, and count uses of labels. */
207 mark_all_labels (rtx f
)
210 rtx prev_nonjump_insn
= NULL
;
212 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
213 if (NONDEBUG_INSN_P (insn
))
215 mark_jump_label (PATTERN (insn
), insn
, 0);
217 /* If the previous non-jump insn sets something to a label,
218 something that this jump insn uses, make that label the primary
219 target of this insn if we don't yet have any. That previous
220 insn must be a single_set and not refer to more than one label.
221 The jump insn must not refer to other labels as jump targets
222 and must be a plain (set (pc) ...), maybe in a parallel, and
223 may refer to the item being set only directly or as one of the
224 arms in an IF_THEN_ELSE. */
225 if (! INSN_DELETED_P (insn
)
227 && JUMP_LABEL (insn
) == NULL
)
229 rtx label_note
= NULL
;
230 rtx pc
= pc_set (insn
);
231 rtx pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
233 if (prev_nonjump_insn
!= NULL
)
235 = find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
237 if (label_note
!= NULL
&& pc_src
!= NULL
)
239 rtx label_set
= single_set (prev_nonjump_insn
);
241 = label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
243 if (label_set
!= NULL
244 /* The source must be the direct LABEL_REF, not a
245 PLUS, UNSPEC, IF_THEN_ELSE etc. */
246 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
247 && (rtx_equal_p (label_dest
, pc_src
)
248 || (GET_CODE (pc_src
) == IF_THEN_ELSE
249 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
250 || rtx_equal_p (label_dest
,
251 XEXP (pc_src
, 2))))))
254 /* The CODE_LABEL referred to in the note must be the
255 CODE_LABEL in the LABEL_REF of the "set". We can
256 conveniently use it for the marker function, which
257 requires a LABEL_REF wrapping. */
258 gcc_assert (XEXP (label_note
, 0)
259 == XEXP (SET_SRC (label_set
), 0));
261 mark_jump_label_1 (label_set
, insn
, false, true);
262 gcc_assert (JUMP_LABEL (insn
)
263 == XEXP (SET_SRC (label_set
), 0));
267 else if (! INSN_DELETED_P (insn
))
268 prev_nonjump_insn
= insn
;
270 else if (LABEL_P (insn
))
271 prev_nonjump_insn
= NULL
;
273 /* If we are in cfglayout mode, there may be non-insns between the
274 basic blocks. If those non-insns represent tablejump data, they
275 contain label references that we must record. */
276 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
282 for (insn
= bb
->il
.rtl
->header
; insn
; insn
= NEXT_INSN (insn
))
285 gcc_assert (JUMP_TABLE_DATA_P (insn
));
286 mark_jump_label (PATTERN (insn
), insn
, 0);
289 for (insn
= bb
->il
.rtl
->footer
; insn
; insn
= NEXT_INSN (insn
))
292 gcc_assert (JUMP_TABLE_DATA_P (insn
));
293 mark_jump_label (PATTERN (insn
), insn
, 0);
299 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
300 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
301 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
302 know whether it's source is floating point or integer comparison. Machine
303 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
304 to help this function avoid overhead in these cases. */
306 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
307 const_rtx arg1
, const_rtx insn
)
309 enum machine_mode mode
;
311 /* If this is not actually a comparison, we can't reverse it. */
312 if (GET_RTX_CLASS (code
) != RTX_COMPARE
313 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
316 mode
= GET_MODE (arg0
);
317 if (mode
== VOIDmode
)
318 mode
= GET_MODE (arg1
);
320 /* First see if machine description supplies us way to reverse the
321 comparison. Give it priority over everything else to allow
322 machine description to do tricks. */
323 if (GET_MODE_CLASS (mode
) == MODE_CC
324 && REVERSIBLE_CC_MODE (mode
))
326 #ifdef REVERSE_CONDITION
327 return REVERSE_CONDITION (code
, mode
);
329 return reverse_condition (code
);
333 /* Try a few special cases based on the comparison code. */
342 /* It is always safe to reverse EQ and NE, even for the floating
343 point. Similarly the unsigned comparisons are never used for
344 floating point so we can reverse them in the default way. */
345 return reverse_condition (code
);
350 /* In case we already see unordered comparison, we can be sure to
351 be dealing with floating point so we don't need any more tests. */
352 return reverse_condition_maybe_unordered (code
);
357 /* We don't have safe way to reverse these yet. */
363 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
366 /* Try to search for the comparison to determine the real mode.
367 This code is expensive, but with sane machine description it
368 will be never used, since REVERSIBLE_CC_MODE will return true
373 /* These CONST_CAST's are okay because prev_nonnote_insn just
374 returns its argument and we assign it to a const_rtx
376 for (prev
= prev_nonnote_insn (CONST_CAST_RTX(insn
));
377 prev
!= 0 && !LABEL_P (prev
);
378 prev
= prev_nonnote_insn (CONST_CAST_RTX(prev
)))
380 const_rtx set
= set_of (arg0
, prev
);
381 if (set
&& GET_CODE (set
) == SET
382 && rtx_equal_p (SET_DEST (set
), arg0
))
384 rtx src
= SET_SRC (set
);
386 if (GET_CODE (src
) == COMPARE
)
388 rtx comparison
= src
;
389 arg0
= XEXP (src
, 0);
390 mode
= GET_MODE (arg0
);
391 if (mode
== VOIDmode
)
392 mode
= GET_MODE (XEXP (comparison
, 1));
395 /* We can get past reg-reg moves. This may be useful for model
396 of i387 comparisons that first move flag registers around. */
403 /* If register is clobbered in some ununderstandable way,
410 /* Test for an integer condition, or a floating-point comparison
411 in which NaNs can be ignored. */
412 if (CONST_INT_P (arg0
)
413 || (GET_MODE (arg0
) != VOIDmode
414 && GET_MODE_CLASS (mode
) != MODE_CC
415 && !HONOR_NANS (mode
)))
416 return reverse_condition (code
);
421 /* A wrapper around the previous function to take COMPARISON as rtx
422 expression. This simplifies many callers. */
424 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
426 if (!COMPARISON_P (comparison
))
428 return reversed_comparison_code_parts (GET_CODE (comparison
),
429 XEXP (comparison
, 0),
430 XEXP (comparison
, 1), insn
);
433 /* Return comparison with reversed code of EXP.
434 Return NULL_RTX in case we fail to do the reversal. */
436 reversed_comparison (const_rtx exp
, enum machine_mode mode
)
438 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
439 if (reversed_code
== UNKNOWN
)
442 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
443 XEXP (exp
, 0), XEXP (exp
, 1));
447 /* Given an rtx-code for a comparison, return the code for the negated
448 comparison. If no such code exists, return UNKNOWN.
450 WATCH OUT! reverse_condition is not safe to use on a jump that might
451 be acting on the results of an IEEE floating point comparison, because
452 of the special treatment of non-signaling nans in comparisons.
453 Use reversed_comparison_code instead. */
456 reverse_condition (enum rtx_code code
)
498 /* Similar, but we're allowed to generate unordered comparisons, which
499 makes it safe for IEEE floating-point. Of course, we have to recognize
500 that the target will support them too... */
503 reverse_condition_maybe_unordered (enum rtx_code code
)
541 /* Similar, but return the code when two operands of a comparison are swapped.
542 This IS safe for IEEE floating-point. */
545 swap_condition (enum rtx_code code
)
587 /* Given a comparison CODE, return the corresponding unsigned comparison.
588 If CODE is an equality comparison or already an unsigned comparison,
592 unsigned_condition (enum rtx_code code
)
618 /* Similarly, return the signed version of a comparison. */
621 signed_condition (enum rtx_code code
)
647 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
648 truth of CODE1 implies the truth of CODE2. */
651 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
653 /* UNKNOWN comparison codes can happen as a result of trying to revert
655 They can't match anything, so we have to reject them here. */
656 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
665 if (code2
== UNLE
|| code2
== UNGE
)
670 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
676 if (code2
== UNLE
|| code2
== NE
)
681 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
686 if (code2
== UNGE
|| code2
== NE
)
691 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
697 if (code2
== ORDERED
)
702 if (code2
== NE
|| code2
== ORDERED
)
707 if (code2
== LEU
|| code2
== NE
)
712 if (code2
== GEU
|| code2
== NE
)
717 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
718 || code2
== UNGE
|| code2
== UNGT
)
729 /* Return 1 if INSN is an unconditional jump and nothing else. */
732 simplejump_p (const_rtx insn
)
734 return (JUMP_P (insn
)
735 && GET_CODE (PATTERN (insn
)) == SET
736 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
737 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
740 /* Return nonzero if INSN is a (possibly) conditional jump
743 Use of this function is deprecated, since we need to support combined
744 branch and compare insns. Use any_condjump_p instead whenever possible. */
747 condjump_p (const_rtx insn
)
749 const_rtx x
= PATTERN (insn
);
751 if (GET_CODE (x
) != SET
752 || GET_CODE (SET_DEST (x
)) != PC
)
756 if (GET_CODE (x
) == LABEL_REF
)
759 return (GET_CODE (x
) == IF_THEN_ELSE
760 && ((GET_CODE (XEXP (x
, 2)) == PC
761 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
762 || GET_CODE (XEXP (x
, 1)) == RETURN
))
763 || (GET_CODE (XEXP (x
, 1)) == PC
764 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
765 || GET_CODE (XEXP (x
, 2)) == RETURN
))));
768 /* Return nonzero if INSN is a (possibly) conditional jump inside a
771 Use this function is deprecated, since we need to support combined
772 branch and compare insns. Use any_condjump_p instead whenever possible. */
775 condjump_in_parallel_p (const_rtx insn
)
777 const_rtx x
= PATTERN (insn
);
779 if (GET_CODE (x
) != PARALLEL
)
782 x
= XVECEXP (x
, 0, 0);
784 if (GET_CODE (x
) != SET
)
786 if (GET_CODE (SET_DEST (x
)) != PC
)
788 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
790 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
792 if (XEXP (SET_SRC (x
), 2) == pc_rtx
793 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
794 || GET_CODE (XEXP (SET_SRC (x
), 1)) == RETURN
))
796 if (XEXP (SET_SRC (x
), 1) == pc_rtx
797 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
798 || GET_CODE (XEXP (SET_SRC (x
), 2)) == RETURN
))
803 /* Return set of PC, otherwise NULL. */
806 pc_set (const_rtx insn
)
811 pat
= PATTERN (insn
);
813 /* The set is allowed to appear either as the insn pattern or
814 the first set in a PARALLEL. */
815 if (GET_CODE (pat
) == PARALLEL
)
816 pat
= XVECEXP (pat
, 0, 0);
817 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
823 /* Return true when insn is an unconditional direct jump,
824 possibly bundled inside a PARALLEL. */
827 any_uncondjump_p (const_rtx insn
)
829 const_rtx x
= pc_set (insn
);
832 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
834 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
839 /* Return true when insn is a conditional jump. This function works for
840 instructions containing PC sets in PARALLELs. The instruction may have
841 various other effects so before removing the jump you must verify
844 Note that unlike condjump_p it returns false for unconditional jumps. */
847 any_condjump_p (const_rtx insn
)
849 const_rtx x
= pc_set (insn
);
854 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
857 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
858 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
860 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
))
861 || (a
== PC
&& (b
== LABEL_REF
|| b
== RETURN
)));
864 /* Return the label of a conditional jump. */
867 condjump_label (const_rtx insn
)
869 rtx x
= pc_set (insn
);
874 if (GET_CODE (x
) == LABEL_REF
)
876 if (GET_CODE (x
) != IF_THEN_ELSE
)
878 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
880 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
885 /* Return true if INSN is a (possibly conditional) return insn. */
888 returnjump_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
895 switch (GET_CODE (x
))
902 return SET_IS_RETURN_P (x
);
909 /* Return TRUE if INSN is a return jump. */
912 returnjump_p (rtx insn
)
916 return for_each_rtx (&PATTERN (insn
), returnjump_p_1
, NULL
);
919 /* Return true if INSN is a (possibly conditional) return insn. */
922 eh_returnjump_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
924 return *loc
&& GET_CODE (*loc
) == EH_RETURN
;
928 eh_returnjump_p (rtx insn
)
932 return for_each_rtx (&PATTERN (insn
), eh_returnjump_p_1
, NULL
);
935 /* Return true if INSN is a jump that only transfers control and
939 onlyjump_p (const_rtx insn
)
946 set
= single_set (insn
);
949 if (GET_CODE (SET_DEST (set
)) != PC
)
951 if (side_effects_p (SET_SRC (set
)))
959 /* Return nonzero if X is an RTX that only sets the condition codes
960 and has no side effects. */
963 only_sets_cc0_p (const_rtx x
)
971 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
974 /* Return 1 if X is an RTX that does nothing but set the condition codes
975 and CLOBBER or USE registers.
976 Return -1 if X does explicitly set the condition codes,
977 but also does other things. */
980 sets_cc0_p (const_rtx x
)
988 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
990 if (GET_CODE (x
) == PARALLEL
)
994 int other_things
= 0;
995 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
997 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
998 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1000 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1003 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1009 /* Find all CODE_LABELs referred to in X, and increment their use
1010 counts. If INSN is a JUMP_INSN and there is at least one
1011 CODE_LABEL referenced in INSN as a jump target, then store the last
1012 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1013 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1014 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1015 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1016 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1018 Note that two labels separated by a loop-beginning note
1019 must be kept distinct if we have not yet done loop-optimization,
1020 because the gap between them is where loop-optimize
1021 will want to move invariant code to. CROSS_JUMP tells us
1022 that loop-optimization is done with. */
1025 mark_jump_label (rtx x
, rtx insn
, int in_mem
)
1027 rtx asmop
= extract_asm_operands (x
);
1029 mark_jump_label_asm (asmop
, insn
);
1031 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1032 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1035 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1036 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1037 jump-target; when the JUMP_LABEL field of INSN should be set or a
1038 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1042 mark_jump_label_1 (rtx x
, rtx insn
, bool in_mem
, bool is_target
)
1044 RTX_CODE code
= GET_CODE (x
);
1064 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1065 mark_jump_label (PATTERN (XVECEXP (x
, 0, i
)),
1066 XVECEXP (x
, 0, i
), 0);
1073 /* If this is a constant-pool reference, see if it is a label. */
1074 if (CONSTANT_POOL_ADDRESS_P (x
))
1075 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1078 /* Handle operands in the condition of an if-then-else as for a
1083 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1084 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1085 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1090 rtx label
= XEXP (x
, 0);
1092 /* Ignore remaining references to unreachable labels that
1093 have been deleted. */
1095 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1098 gcc_assert (LABEL_P (label
));
1100 /* Ignore references to labels of containing functions. */
1101 if (LABEL_REF_NONLOCAL_P (x
))
1104 XEXP (x
, 0) = label
;
1105 if (! insn
|| ! INSN_DELETED_P (insn
))
1106 ++LABEL_NUSES (label
);
1111 /* Do not change a previous setting of JUMP_LABEL. If the
1112 JUMP_LABEL slot is occupied by a different label,
1113 create a note for this label. */
1114 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1115 JUMP_LABEL (insn
) = label
;
1119 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1121 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1122 for LABEL unless there already is one. All uses of
1123 a label, except for the primary target of a jump,
1124 must have such a note. */
1125 if (! find_reg_note (insn
, kind
, label
))
1126 add_reg_note (insn
, kind
, label
);
1132 /* Do walk the labels in a vector, but not the first operand of an
1133 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1136 if (! INSN_DELETED_P (insn
))
1138 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1140 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1141 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL_RTX
, in_mem
,
1150 fmt
= GET_RTX_FORMAT (code
);
1152 /* The primary target of a tablejump is the label of the ADDR_VEC,
1153 which is canonically mentioned *last* in the insn. To get it
1154 marked as JUMP_LABEL, we iterate over items in reverse order. */
1155 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1158 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1159 else if (fmt
[i
] == 'E')
1163 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1164 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1170 /* Worker function for mark_jump_label. Handle asm insns specially.
1171 In particular, output operands need not be considered so we can
1172 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1173 need to be considered targets. */
1176 mark_jump_label_asm (rtx asmop
, rtx insn
)
1180 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1181 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1183 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1184 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1187 /* Delete insn INSN from the chain of insns and update label ref counts
1188 and delete insns now unreachable.
1190 Returns the first insn after INSN that was not deleted.
1192 Usage of this instruction is deprecated. Use delete_insn instead and
1193 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1196 delete_related_insns (rtx insn
)
1198 int was_code_label
= (LABEL_P (insn
));
1200 rtx next
= NEXT_INSN (insn
), prev
= PREV_INSN (insn
);
1202 while (next
&& INSN_DELETED_P (next
))
1203 next
= NEXT_INSN (next
);
1205 /* This insn is already deleted => return first following nondeleted. */
1206 if (INSN_DELETED_P (insn
))
1211 /* If instruction is followed by a barrier,
1212 delete the barrier too. */
1214 if (next
!= 0 && BARRIER_P (next
))
1217 /* If deleting a jump, decrement the count of the label,
1218 and delete the label if it is now unused. */
1220 if (JUMP_P (insn
) && JUMP_LABEL (insn
))
1222 rtx lab
= JUMP_LABEL (insn
), lab_next
;
1224 if (LABEL_NUSES (lab
) == 0)
1225 /* This can delete NEXT or PREV,
1226 either directly if NEXT is JUMP_LABEL (INSN),
1227 or indirectly through more levels of jumps. */
1228 delete_related_insns (lab
);
1229 else if (tablejump_p (insn
, NULL
, &lab_next
))
1231 /* If we're deleting the tablejump, delete the dispatch table.
1232 We may not be able to kill the label immediately preceding
1233 just yet, as it might be referenced in code leading up to
1235 delete_related_insns (lab_next
);
1239 /* Likewise if we're deleting a dispatch table. */
1241 if (JUMP_TABLE_DATA_P (insn
))
1243 rtx pat
= PATTERN (insn
);
1244 int i
, diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1245 int len
= XVECLEN (pat
, diff_vec_p
);
1247 for (i
= 0; i
< len
; i
++)
1248 if (LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0)) == 0)
1249 delete_related_insns (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0));
1250 while (next
&& INSN_DELETED_P (next
))
1251 next
= NEXT_INSN (next
);
1255 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1256 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1258 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1259 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1260 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1261 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1262 && LABEL_P (XEXP (note
, 0)))
1263 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1264 delete_related_insns (XEXP (note
, 0));
1266 while (prev
&& (INSN_DELETED_P (prev
) || NOTE_P (prev
)))
1267 prev
= PREV_INSN (prev
);
1269 /* If INSN was a label and a dispatch table follows it,
1270 delete the dispatch table. The tablejump must have gone already.
1271 It isn't useful to fall through into a table. */
1274 && NEXT_INSN (insn
) != 0
1275 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1276 next
= delete_related_insns (NEXT_INSN (insn
));
1278 /* If INSN was a label, delete insns following it if now unreachable. */
1280 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1285 code
= GET_CODE (next
);
1287 next
= NEXT_INSN (next
);
1288 /* Keep going past other deleted labels to delete what follows. */
1289 else if (code
== CODE_LABEL
&& INSN_DELETED_P (next
))
1290 next
= NEXT_INSN (next
);
1291 else if (code
== BARRIER
|| INSN_P (next
))
1292 /* Note: if this deletes a jump, it can cause more
1293 deletion of unreachable code, after a different label.
1294 As long as the value from this recursive call is correct,
1295 this invocation functions correctly. */
1296 next
= delete_related_insns (next
);
1302 /* I feel a little doubtful about this loop,
1303 but I see no clean and sure alternative way
1304 to find the first insn after INSN that is not now deleted.
1305 I hope this works. */
1306 while (next
&& INSN_DELETED_P (next
))
1307 next
= NEXT_INSN (next
);
1311 /* Delete a range of insns from FROM to TO, inclusive.
1312 This is for the sake of peephole optimization, so assume
1313 that whatever these insns do will still be done by a new
1314 peephole insn that will replace them. */
1317 delete_for_peephole (rtx from
, rtx to
)
1323 rtx next
= NEXT_INSN (insn
);
1324 rtx prev
= PREV_INSN (insn
);
1328 INSN_DELETED_P (insn
) = 1;
1330 /* Patch this insn out of the chain. */
1331 /* We don't do this all at once, because we
1332 must preserve all NOTEs. */
1334 NEXT_INSN (prev
) = next
;
1337 PREV_INSN (next
) = prev
;
1345 /* Note that if TO is an unconditional jump
1346 we *do not* delete the BARRIER that follows,
1347 since the peephole that replaces this sequence
1348 is also an unconditional jump in that case. */
1351 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1352 NLABEL as a return. Accrue modifications into the change group. */
1355 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1358 RTX_CODE code
= GET_CODE (x
);
1362 if (code
== LABEL_REF
)
1364 if (XEXP (x
, 0) == olabel
)
1368 n
= gen_rtx_LABEL_REF (Pmode
, nlabel
);
1372 validate_change (insn
, loc
, n
, 1);
1376 else if (code
== RETURN
&& olabel
== 0)
1379 x
= gen_rtx_LABEL_REF (Pmode
, nlabel
);
1382 if (loc
== &PATTERN (insn
))
1383 x
= gen_rtx_SET (VOIDmode
, pc_rtx
, x
);
1384 validate_change (insn
, loc
, x
, 1);
1388 if (code
== SET
&& nlabel
== 0 && SET_DEST (x
) == pc_rtx
1389 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1390 && XEXP (SET_SRC (x
), 0) == olabel
)
1392 validate_change (insn
, loc
, ret_rtx
, 1);
1396 if (code
== IF_THEN_ELSE
)
1398 /* Skip the condition of an IF_THEN_ELSE. We only want to
1399 change jump destinations, not eventual label comparisons. */
1400 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1401 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1405 fmt
= GET_RTX_FORMAT (code
);
1406 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1409 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1410 else if (fmt
[i
] == 'E')
1413 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1414 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1419 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1420 the modifications into the change group. Return false if we did
1421 not see how to do that. */
1424 redirect_jump_1 (rtx jump
, rtx nlabel
)
1426 int ochanges
= num_validated_changes ();
1429 asmop
= extract_asm_operands (PATTERN (jump
));
1434 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1435 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1437 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1438 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1440 loc
= &PATTERN (jump
);
1442 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1443 return num_validated_changes () > ochanges
;
1446 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1447 jump target label is unused as a result, it and the code following
1450 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1453 The return value will be 1 if the change was made, 0 if it wasn't
1454 (this can only occur for NLABEL == 0). */
1457 redirect_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1459 rtx olabel
= JUMP_LABEL (jump
);
1461 if (nlabel
== olabel
)
1464 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1467 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1471 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1473 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1474 count has dropped to zero. */
1476 redirect_jump_2 (rtx jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1481 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1483 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1484 moving FUNCTION_END note. Just sanity check that no user still worry
1486 gcc_assert (delete_unused
>= 0);
1487 JUMP_LABEL (jump
) = nlabel
;
1489 ++LABEL_NUSES (nlabel
);
1491 /* Update labels in any REG_EQUAL note. */
1492 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1494 if (!nlabel
|| (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1495 remove_note (jump
, note
);
1498 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1499 confirm_change_group ();
1503 if (olabel
&& --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1504 /* Undefined labels will remain outside the insn stream. */
1505 && INSN_UID (olabel
))
1506 delete_related_insns (olabel
);
1508 invert_br_probabilities (jump
);
1511 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1512 modifications into the change group. Return nonzero for success. */
1514 invert_exp_1 (rtx x
, rtx insn
)
1516 RTX_CODE code
= GET_CODE (x
);
1518 if (code
== IF_THEN_ELSE
)
1520 rtx comp
= XEXP (x
, 0);
1522 enum rtx_code reversed_code
;
1524 /* We can do this in two ways: The preferable way, which can only
1525 be done if this is not an integer comparison, is to reverse
1526 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1527 of the IF_THEN_ELSE. If we can't do either, fail. */
1529 reversed_code
= reversed_comparison_code (comp
, insn
);
1531 if (reversed_code
!= UNKNOWN
)
1533 validate_change (insn
, &XEXP (x
, 0),
1534 gen_rtx_fmt_ee (reversed_code
,
1535 GET_MODE (comp
), XEXP (comp
, 0),
1542 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1543 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1550 /* Invert the condition of the jump JUMP, and make it jump to label
1551 NLABEL instead of where it jumps now. Accrue changes into the
1552 change group. Return false if we didn't see how to perform the
1553 inversion and redirection. */
1556 invert_jump_1 (rtx jump
, rtx nlabel
)
1558 rtx x
= pc_set (jump
);
1562 ochanges
= num_validated_changes ();
1565 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1568 if (num_validated_changes () == ochanges
)
1571 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1572 in Pmode, so checking this is not merely an optimization. */
1573 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1576 /* Invert the condition of the jump JUMP, and make it jump to label
1577 NLABEL instead of where it jumps now. Return true if successful. */
1580 invert_jump (rtx jump
, rtx nlabel
, int delete_unused
)
1582 rtx olabel
= JUMP_LABEL (jump
);
1584 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1586 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1594 /* Like rtx_equal_p except that it considers two REGs as equal
1595 if they renumber to the same value and considers two commutative
1596 operations to be the same if the order of the operands has been
1600 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1603 const enum rtx_code code
= GET_CODE (x
);
1609 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1610 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1611 && REG_P (SUBREG_REG (y
)))))
1613 int reg_x
= -1, reg_y
= -1;
1614 int byte_x
= 0, byte_y
= 0;
1615 struct subreg_info info
;
1617 if (GET_MODE (x
) != GET_MODE (y
))
1620 /* If we haven't done any renumbering, don't
1621 make any assumptions. */
1622 if (reg_renumber
== 0)
1623 return rtx_equal_p (x
, y
);
1627 reg_x
= REGNO (SUBREG_REG (x
));
1628 byte_x
= SUBREG_BYTE (x
);
1630 if (reg_renumber
[reg_x
] >= 0)
1632 subreg_get_info (reg_renumber
[reg_x
],
1633 GET_MODE (SUBREG_REG (x
)), byte_x
,
1634 GET_MODE (x
), &info
);
1635 if (!info
.representable_p
)
1637 reg_x
= info
.offset
;
1644 if (reg_renumber
[reg_x
] >= 0)
1645 reg_x
= reg_renumber
[reg_x
];
1648 if (GET_CODE (y
) == SUBREG
)
1650 reg_y
= REGNO (SUBREG_REG (y
));
1651 byte_y
= SUBREG_BYTE (y
);
1653 if (reg_renumber
[reg_y
] >= 0)
1655 subreg_get_info (reg_renumber
[reg_y
],
1656 GET_MODE (SUBREG_REG (y
)), byte_y
,
1657 GET_MODE (y
), &info
);
1658 if (!info
.representable_p
)
1660 reg_y
= info
.offset
;
1667 if (reg_renumber
[reg_y
] >= 0)
1668 reg_y
= reg_renumber
[reg_y
];
1671 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1674 /* Now we have disposed of all the cases
1675 in which different rtx codes can match. */
1676 if (code
!= GET_CODE (y
))
1690 /* We can't assume nonlocal labels have their following insns yet. */
1691 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1692 return XEXP (x
, 0) == XEXP (y
, 0);
1694 /* Two label-refs are equivalent if they point at labels
1695 in the same position in the instruction stream. */
1696 return (next_real_insn (XEXP (x
, 0))
1697 == next_real_insn (XEXP (y
, 0)));
1700 return XSTR (x
, 0) == XSTR (y
, 0);
1703 /* If we didn't match EQ equality above, they aren't the same. */
1710 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1712 if (GET_MODE (x
) != GET_MODE (y
))
1715 /* MEMs refering to different address space are not equivalent. */
1716 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1719 /* For commutative operations, the RTX match if the operand match in any
1720 order. Also handle the simple binary and unary cases without a loop. */
1721 if (targetm
.commutative_p (x
, UNKNOWN
))
1722 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1723 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1724 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1725 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1726 else if (NON_COMMUTATIVE_P (x
))
1727 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1728 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1729 else if (UNARY_P (x
))
1730 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1732 /* Compare the elements. If any pair of corresponding elements
1733 fail to match, return 0 for the whole things. */
1735 fmt
= GET_RTX_FORMAT (code
);
1736 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1742 if (XWINT (x
, i
) != XWINT (y
, i
))
1747 if (XINT (x
, i
) != XINT (y
, i
))
1749 if (((code
== ASM_OPERANDS
&& i
== 6)
1750 || (code
== ASM_INPUT
&& i
== 1))
1751 && locator_eq (XINT (x
, i
), XINT (y
, i
)))
1758 if (XTREE (x
, i
) != XTREE (y
, i
))
1763 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1768 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1773 if (XEXP (x
, i
) != XEXP (y
, i
))
1780 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1782 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1783 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1794 /* If X is a hard register or equivalent to one or a subregister of one,
1795 return the hard register number. If X is a pseudo register that was not
1796 assigned a hard register, return the pseudo register number. Otherwise,
1797 return -1. Any rtx is valid for X. */
1800 true_regnum (const_rtx x
)
1804 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
&& reg_renumber
[REGNO (x
)] >= 0)
1805 return reg_renumber
[REGNO (x
)];
1808 if (GET_CODE (x
) == SUBREG
)
1810 int base
= true_regnum (SUBREG_REG (x
));
1812 && base
< FIRST_PSEUDO_REGISTER
)
1814 struct subreg_info info
;
1816 subreg_get_info (REGNO (SUBREG_REG (x
)),
1817 GET_MODE (SUBREG_REG (x
)),
1818 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1820 if (info
.representable_p
)
1821 return base
+ info
.offset
;
1827 /* Return regno of the register REG and handle subregs too. */
1829 reg_or_subregno (const_rtx reg
)
1831 if (GET_CODE (reg
) == SUBREG
)
1832 reg
= SUBREG_REG (reg
);
1833 gcc_assert (REG_P (reg
));