In gcc/: 2011-04-14 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / vec.h
blobbc55592a2be6dbde1c63dd0cb87f3cbe7210c33d
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Nathan Sidwell <nathan@codesourcery.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 #include "statistics.h" /* For MEM_STAT_DECL. */
27 /* The macros here implement a set of templated vector types and
28 associated interfaces. These templates are implemented with
29 macros, as we're not in C++ land. The interface functions are
30 typesafe and use static inline functions, sometimes backed by
31 out-of-line generic functions. The vectors are designed to
32 interoperate with the GTY machinery.
34 Because of the different behavior of structure objects, scalar
35 objects and of pointers, there are three flavors, one for each of
36 these variants. Both the structure object and pointer variants
37 pass pointers to objects around -- in the former case the pointers
38 are stored into the vector and in the latter case the pointers are
39 dereferenced and the objects copied into the vector. The scalar
40 object variant is suitable for int-like objects, and the vector
41 elements are returned by value.
43 There are both 'index' and 'iterate' accessors. The iterator
44 returns a boolean iteration condition and updates the iteration
45 variable passed by reference. Because the iterator will be
46 inlined, the address-of can be optimized away.
48 The vectors are implemented using the trailing array idiom, thus
49 they are not resizeable without changing the address of the vector
50 object itself. This means you cannot have variables or fields of
51 vector type -- always use a pointer to a vector. The one exception
52 is the final field of a structure, which could be a vector type.
53 You will have to use the embedded_size & embedded_init calls to
54 create such objects, and they will probably not be resizeable (so
55 don't use the 'safe' allocation variants). The trailing array
56 idiom is used (rather than a pointer to an array of data), because,
57 if we allow NULL to also represent an empty vector, empty vectors
58 occupy minimal space in the structure containing them.
60 Each operation that increases the number of active elements is
61 available in 'quick' and 'safe' variants. The former presumes that
62 there is sufficient allocated space for the operation to succeed
63 (it dies if there is not). The latter will reallocate the
64 vector, if needed. Reallocation causes an exponential increase in
65 vector size. If you know you will be adding N elements, it would
66 be more efficient to use the reserve operation before adding the
67 elements with the 'quick' operation. This will ensure there are at
68 least as many elements as you ask for, it will exponentially
69 increase if there are too few spare slots. If you want reserve a
70 specific number of slots, but do not want the exponential increase
71 (for instance, you know this is the last allocation), use the
72 reserve_exact operation. You can also create a vector of a
73 specific size from the get go.
75 You should prefer the push and pop operations, as they append and
76 remove from the end of the vector. If you need to remove several
77 items in one go, use the truncate operation. The insert and remove
78 operations allow you to change elements in the middle of the
79 vector. There are two remove operations, one which preserves the
80 element ordering 'ordered_remove', and one which does not
81 'unordered_remove'. The latter function copies the end element
82 into the removed slot, rather than invoke a memmove operation. The
83 'lower_bound' function will determine where to place an item in the
84 array using insert that will maintain sorted order.
86 When a vector type is defined, first a non-memory managed version
87 is created. You can then define either or both garbage collected
88 and heap allocated versions. The allocation mechanism is specified
89 when the type is defined, and is therefore part of the type. If
90 you need both gc'd and heap allocated versions, you still must have
91 *exactly* one definition of the common non-memory managed base vector.
93 If you need to directly manipulate a vector, then the 'address'
94 accessor will return the address of the start of the vector. Also
95 the 'space' predicate will tell you whether there is spare capacity
96 in the vector. You will not normally need to use these two functions.
98 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
99 get the non-memory allocation version, and then a
100 DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
101 vectors. Variables of vector type are declared using a
102 VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the
103 allocation strategy, and can be either 'gc' or 'heap' for garbage
104 collected and heap allocated respectively. It can be 'none' to get
105 a vector that must be explicitly allocated (for instance as a
106 trailing array of another structure). The characters O, P and I
107 indicate whether TYPEDEF is a pointer (P), object (O) or integral
108 (I) type. Be careful to pick the correct one, as you'll get an
109 awkward and inefficient API if you use the wrong one. There is a
110 check, which results in a compile-time warning, for the P and I
111 versions, but there is no check for the O versions, as that is not
112 possible in plain C. Due to the way GTY works, you must annotate
113 any structures you wish to insert or reference from a vector with a
114 GTY(()) tag. You need to do this even if you never declare the GC
115 allocated variants.
117 An example of their use would be,
119 DEF_VEC_P(tree); // non-managed tree vector.
120 DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must
121 // appear at file scope.
123 struct my_struct {
124 VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers.
127 struct my_struct *s;
129 if (VEC_length(tree,s->v)) { we have some contents }
130 VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
131 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
132 { do something with elt }
136 /* Macros to invoke API calls. A single macro works for both pointer
137 and object vectors, but the argument and return types might well be
138 different. In each macro, T is the typedef of the vector elements,
139 and A is the allocation strategy. The allocation strategy is only
140 present when it is required. Some of these macros pass the vector,
141 V, by reference (by taking its address), this is noted in the
142 descriptions. */
144 /* Length of vector
145 unsigned VEC_T_length(const VEC(T) *v);
147 Return the number of active elements in V. V can be NULL, in which
148 case zero is returned. */
150 #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V)))
153 /* Check if vector is empty
154 int VEC_T_empty(const VEC(T) *v);
156 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
158 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
161 /* Get the final element of the vector.
162 T VEC_T_last(VEC(T) *v); // Integer
163 T VEC_T_last(VEC(T) *v); // Pointer
164 T *VEC_T_last(VEC(T) *v); // Object
166 Return the final element. V must not be empty. */
168 #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
170 /* Index into vector
171 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
172 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
173 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
175 Return the IX'th element. If IX must be in the domain of V. */
177 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
179 /* Iterate over vector
180 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
181 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
182 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
184 Return iteration condition and update PTR to point to the IX'th
185 element. At the end of iteration, sets PTR to NULL. Use this to
186 iterate over the elements of a vector as follows,
188 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
189 continue; */
191 #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
193 /* Convenience macro for forward iteration. */
195 #define FOR_EACH_VEC_ELT(T, V, I, P) \
196 for (I = 0; VEC_iterate (T, (V), (I), (P)); ++(I))
198 /* Convenience macro for reverse iteration. */
200 #define FOR_EACH_VEC_ELT_REVERSE(T,V,I,P) \
201 for (I = VEC_length (T, (V)) - 1; \
202 VEC_iterate (T, (V), (I), (P)); \
203 (I)--)
205 /* Allocate new vector.
206 VEC(T,A) *VEC_T_A_alloc(int reserve);
208 Allocate a new vector with space for RESERVE objects. If RESERVE
209 is zero, NO vector is created. */
211 #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
213 /* Free a vector.
214 void VEC_T_A_free(VEC(T,A) *&);
216 Free a vector and set it to NULL. */
218 #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V))
220 /* Use these to determine the required size and initialization of a
221 vector embedded within another structure (as the final member).
223 size_t VEC_T_embedded_size(int reserve);
224 void VEC_T_embedded_init(VEC(T) *v, int reserve);
226 These allow the caller to perform the memory allocation. */
228 #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N))
229 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
231 /* Copy a vector.
232 VEC(T,A) *VEC_T_A_copy(VEC(T) *);
234 Copy the live elements of a vector into a new vector. The new and
235 old vectors need not be allocated by the same mechanism. */
237 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
239 /* Determine if a vector has additional capacity.
241 int VEC_T_space (VEC(T) *v,int reserve)
243 If V has space for RESERVE additional entries, return nonzero. You
244 usually only need to use this if you are doing your own vector
245 reallocation, for instance on an embedded vector. This returns
246 nonzero in exactly the same circumstances that VEC_T_reserve
247 will. */
249 #define VEC_space(T,V,R) \
250 (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
252 /* Reserve space.
253 int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
255 Ensure that V has at least RESERVE slots available. This will
256 create additional headroom. Note this can cause V to be
257 reallocated. Returns nonzero iff reallocation actually
258 occurred. */
260 #define VEC_reserve(T,A,V,R) \
261 (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
263 /* Reserve space exactly.
264 int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);
266 Ensure that V has at least RESERVE slots available. This will not
267 create additional headroom. Note this can cause V to be
268 reallocated. Returns nonzero iff reallocation actually
269 occurred. */
271 #define VEC_reserve_exact(T,A,V,R) \
272 (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
274 /* Copy elements with no reallocation
275 void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Integer
276 void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Pointer
277 void VEC_T_splice (VEC(T) *dst, VEC(T) *src); // Object
279 Copy the elements in SRC to the end of DST as if by memcpy. DST and
280 SRC need not be allocated with the same mechanism, although they most
281 often will be. DST is assumed to have sufficient headroom
282 available. */
284 #define VEC_splice(T,DST,SRC) \
285 (VEC_OP(T,base,splice)(VEC_BASE(DST), VEC_BASE(SRC) VEC_CHECK_INFO))
287 /* Copy elements with reallocation
288 void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Integer
289 void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Pointer
290 void VEC_T_safe_splice (VEC(T,A) *&dst, VEC(T) *src); // Object
292 Copy the elements in SRC to the end of DST as if by memcpy. DST and
293 SRC need not be allocated with the same mechanism, although they most
294 often will be. DST need not have sufficient headroom and will be
295 reallocated if needed. */
297 #define VEC_safe_splice(T,A,DST,SRC) \
298 (VEC_OP(T,A,safe_splice)(&(DST), VEC_BASE(SRC) VEC_CHECK_INFO MEM_STAT_INFO))
300 /* Push object with no reallocation
301 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
302 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
303 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
305 Push a new element onto the end, returns a pointer to the slot
306 filled in. For object vectors, the new value can be NULL, in which
307 case NO initialization is performed. There must
308 be sufficient space in the vector. */
310 #define VEC_quick_push(T,V,O) \
311 (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
313 /* Push object with reallocation
314 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
315 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
316 T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
318 Push a new element onto the end, returns a pointer to the slot
319 filled in. For object vectors, the new value can be NULL, in which
320 case NO initialization is performed. Reallocates V, if needed. */
322 #define VEC_safe_push(T,A,V,O) \
323 (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
325 /* Pop element off end
326 T VEC_T_pop (VEC(T) *v); // Integer
327 T VEC_T_pop (VEC(T) *v); // Pointer
328 void VEC_T_pop (VEC(T) *v); // Object
330 Pop the last element off the end. Returns the element popped, for
331 pointer vectors. */
333 #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
335 /* Truncate to specific length
336 void VEC_T_truncate (VEC(T) *v, unsigned len);
338 Set the length as specified. The new length must be less than or
339 equal to the current length. This is an O(1) operation. */
341 #define VEC_truncate(T,V,I) \
342 (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
344 /* Grow to a specific length.
345 void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
347 Grow the vector to a specific length. The LEN must be as
348 long or longer than the current length. The new elements are
349 uninitialized. */
351 #define VEC_safe_grow(T,A,V,I) \
352 (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
354 /* Grow to a specific length.
355 void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);
357 Grow the vector to a specific length. The LEN must be as
358 long or longer than the current length. The new elements are
359 initialized to zero. */
361 #define VEC_safe_grow_cleared(T,A,V,I) \
362 (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
364 /* Replace element
365 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
366 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
367 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
369 Replace the IXth element of V with a new value, VAL. For pointer
370 vectors returns the original value. For object vectors returns a
371 pointer to the new value. For object vectors the new value can be
372 NULL, in which case no overwriting of the slot is actually
373 performed. */
375 #define VEC_replace(T,V,I,O) \
376 (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
378 /* Insert object with no reallocation
379 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
380 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
381 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
383 Insert an element, VAL, at the IXth position of V. Return a pointer
384 to the slot created. For vectors of object, the new value can be
385 NULL, in which case no initialization of the inserted slot takes
386 place. There must be sufficient space. */
388 #define VEC_quick_insert(T,V,I,O) \
389 (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
391 /* Insert object with reallocation
392 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
393 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
394 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
396 Insert an element, VAL, at the IXth position of V. Return a pointer
397 to the slot created. For vectors of object, the new value can be
398 NULL, in which case no initialization of the inserted slot takes
399 place. Reallocate V, if necessary. */
401 #define VEC_safe_insert(T,A,V,I,O) \
402 (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
404 /* Remove element retaining order
405 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
406 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
407 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
409 Remove an element from the IXth position of V. Ordering of
410 remaining elements is preserved. For pointer vectors returns the
411 removed object. This is an O(N) operation due to a memmove. */
413 #define VEC_ordered_remove(T,V,I) \
414 (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
416 /* Remove element destroying order
417 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
418 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
419 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
421 Remove an element from the IXth position of V. Ordering of
422 remaining elements is destroyed. For pointer vectors returns the
423 removed object. This is an O(1) operation. */
425 #define VEC_unordered_remove(T,V,I) \
426 (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
428 /* Remove a block of elements
429 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
431 Remove LEN elements starting at the IXth. Ordering is retained.
432 This is an O(N) operation due to memmove. */
434 #define VEC_block_remove(T,V,I,L) \
435 (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
437 /* Get the address of the array of elements
438 T *VEC_T_address (VEC(T) v)
440 If you need to directly manipulate the array (for instance, you
441 want to feed it to qsort), use this accessor. */
443 #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V)))
445 /* Conveniently sort the contents of the vector with qsort.
446 void VEC_qsort (VEC(T) *v, int (*cmp_func)(const void *, const void *)) */
448 #define VEC_qsort(T,V,CMP) qsort(VEC_address (T,V), VEC_length(T,V), \
449 sizeof (T), CMP)
451 /* Find the first index in the vector not less than the object.
452 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
453 bool (*lessthan) (const T, const T)); // Integer
454 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
455 bool (*lessthan) (const T, const T)); // Pointer
456 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
457 bool (*lessthan) (const T*, const T*)); // Object
459 Find the first position in which VAL could be inserted without
460 changing the ordering of V. LESSTHAN is a function that returns
461 true if the first argument is strictly less than the second. */
463 #define VEC_lower_bound(T,V,O,LT) \
464 (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
466 /* Reallocate an array of elements with prefix. */
467 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
468 extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
469 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
470 extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
471 MEM_STAT_DECL);
472 extern void ggc_free (void *);
473 #define vec_gc_free(V) ggc_free (V)
474 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
475 extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
476 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
477 extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
478 MEM_STAT_DECL);
479 extern void dump_vec_loc_statistics (void);
480 #ifdef GATHER_STATISTICS
481 void vec_heap_free (void *);
482 #else
483 /* Avoid problems with frontends that #define free(x). */
484 #define vec_heap_free(V) (free) (V)
485 #endif
487 #if ENABLE_CHECKING
488 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
489 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
490 #define VEC_CHECK_PASS ,file_,line_,function_
492 #define VEC_ASSERT(EXPR,OP,T,A) \
493 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
495 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
496 ATTRIBUTE_NORETURN;
497 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
498 #else
499 #define VEC_CHECK_INFO
500 #define VEC_CHECK_DECL
501 #define VEC_CHECK_PASS
502 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
503 #endif
505 /* Note: gengtype has hardwired knowledge of the expansions of the
506 VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the
507 expansions of these macros you may need to change gengtype too. */
509 #define VEC(T,A) VEC_##T##_##A
510 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
512 /* Base of vector type, not user visible. */
513 #define VEC_T(T,B) \
514 typedef struct VEC(T,B) \
516 unsigned num; \
517 unsigned alloc; \
518 T vec[1]; \
519 } VEC(T,B)
521 #define VEC_T_GTY(T,B) \
522 typedef struct GTY(()) VEC(T,B) \
524 unsigned num; \
525 unsigned alloc; \
526 T GTY ((length ("%h.num"))) vec[1]; \
527 } VEC(T,B)
529 /* Derived vector type, user visible. */
530 #define VEC_TA_GTY(T,B,A,GTY) \
531 typedef struct GTY VEC(T,A) \
533 VEC(T,B) base; \
534 } VEC(T,A)
536 #define VEC_TA(T,B,A) \
537 typedef struct VEC(T,A) \
539 VEC(T,B) base; \
540 } VEC(T,A)
542 /* Convert to base type. */
543 #define VEC_BASE(P) ((P) ? &(P)->base : 0)
545 /* Vector of integer-like object. */
546 #define DEF_VEC_I(T) \
547 static inline void VEC_OP (T,must_be,integral_type) (void) \
549 (void)~(T)0; \
552 VEC_T(T,base); \
553 VEC_TA(T,base,none); \
554 DEF_VEC_FUNC_P(T) \
555 struct vec_swallow_trailing_semi
556 #define DEF_VEC_ALLOC_I(T,A) \
557 VEC_TA(T,base,A); \
558 DEF_VEC_ALLOC_FUNC_I(T,A) \
559 DEF_VEC_NONALLOC_FUNCS_I(T,A) \
560 struct vec_swallow_trailing_semi
562 /* Vector of pointer to object. */
563 #define DEF_VEC_P(T) \
564 static inline void VEC_OP (T,must_be,pointer_type) (void) \
566 (void)((T)1 == (void *)1); \
569 VEC_T_GTY(T,base); \
570 VEC_TA(T,base,none); \
571 DEF_VEC_FUNC_P(T) \
572 struct vec_swallow_trailing_semi
573 #define DEF_VEC_ALLOC_P(T,A) \
574 VEC_TA(T,base,A); \
575 DEF_VEC_ALLOC_FUNC_P(T,A) \
576 DEF_VEC_NONALLOC_FUNCS_P(T,A) \
577 struct vec_swallow_trailing_semi
579 #define DEF_VEC_FUNC_P(T) \
580 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
582 return vec_ ? vec_->num : 0; \
585 static inline T VEC_OP (T,base,last) \
586 (const VEC(T,base) *vec_ VEC_CHECK_DECL) \
588 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
590 return vec_->vec[vec_->num - 1]; \
593 static inline T VEC_OP (T,base,index) \
594 (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
596 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
598 return vec_->vec[ix_]; \
601 static inline int VEC_OP (T,base,iterate) \
602 (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \
604 if (vec_ && ix_ < vec_->num) \
606 *ptr = vec_->vec[ix_]; \
607 return 1; \
609 else \
611 *ptr = (T) 0; \
612 return 0; \
616 static inline size_t VEC_OP (T,base,embedded_size) \
617 (int alloc_) \
619 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
622 static inline void VEC_OP (T,base,embedded_init) \
623 (VEC(T,base) *vec_, int alloc_) \
625 vec_->num = 0; \
626 vec_->alloc = alloc_; \
629 static inline int VEC_OP (T,base,space) \
630 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
632 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
633 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
636 static inline void VEC_OP(T,base,splice) \
637 (VEC(T,base) *dst_, VEC(T,base) *src_ VEC_CHECK_DECL) \
639 if (src_) \
641 unsigned len_ = src_->num; \
642 VEC_ASSERT (dst_->num + len_ <= dst_->alloc, "splice", T, base); \
644 memcpy (&dst_->vec[dst_->num], &src_->vec[0], len_ * sizeof (T)); \
645 dst_->num += len_; \
649 static inline T *VEC_OP (T,base,quick_push) \
650 (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \
652 T *slot_; \
654 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
655 slot_ = &vec_->vec[vec_->num++]; \
656 *slot_ = obj_; \
658 return slot_; \
661 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
663 T obj_; \
665 VEC_ASSERT (vec_->num, "pop", T, base); \
666 obj_ = vec_->vec[--vec_->num]; \
668 return obj_; \
671 static inline void VEC_OP (T,base,truncate) \
672 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
674 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
675 if (vec_) \
676 vec_->num = size_; \
679 static inline T VEC_OP (T,base,replace) \
680 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
682 T old_obj_; \
684 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
685 old_obj_ = vec_->vec[ix_]; \
686 vec_->vec[ix_] = obj_; \
688 return old_obj_; \
691 static inline T *VEC_OP (T,base,quick_insert) \
692 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
694 T *slot_; \
696 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
697 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
698 slot_ = &vec_->vec[ix_]; \
699 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
700 *slot_ = obj_; \
702 return slot_; \
705 static inline T VEC_OP (T,base,ordered_remove) \
706 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
708 T *slot_; \
709 T obj_; \
711 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
712 slot_ = &vec_->vec[ix_]; \
713 obj_ = *slot_; \
714 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
716 return obj_; \
719 static inline T VEC_OP (T,base,unordered_remove) \
720 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
722 T *slot_; \
723 T obj_; \
725 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
726 slot_ = &vec_->vec[ix_]; \
727 obj_ = *slot_; \
728 *slot_ = vec_->vec[--vec_->num]; \
730 return obj_; \
733 static inline void VEC_OP (T,base,block_remove) \
734 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
736 T *slot_; \
738 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
739 slot_ = &vec_->vec[ix_]; \
740 vec_->num -= len_; \
741 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
744 static inline T *VEC_OP (T,base,address) \
745 (VEC(T,base) *vec_) \
747 return vec_ ? vec_->vec : 0; \
750 static inline unsigned VEC_OP (T,base,lower_bound) \
751 (VEC(T,base) *vec_, const T obj_, \
752 bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \
754 unsigned int len_ = VEC_OP (T,base, length) (vec_); \
755 unsigned int half_, middle_; \
756 unsigned int first_ = 0; \
757 while (len_ > 0) \
759 T middle_elem_; \
760 half_ = len_ >> 1; \
761 middle_ = first_; \
762 middle_ += half_; \
763 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
764 if (lessthan_ (middle_elem_, obj_)) \
766 first_ = middle_; \
767 ++first_; \
768 len_ = len_ - half_ - 1; \
770 else \
771 len_ = half_; \
773 return first_; \
776 #define DEF_VEC_ALLOC_FUNC_P(T,A) \
777 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
778 (int alloc_ MEM_STAT_DECL) \
780 return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \
781 PASS_MEM_STAT); \
785 #define DEF_VEC_NONALLOC_FUNCS_P(T,A) \
786 static inline void VEC_OP (T,A,free) \
787 (VEC(T,A) **vec_) \
789 if (*vec_) \
790 vec_##A##_free (*vec_); \
791 *vec_ = NULL; \
794 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
796 size_t len_ = vec_ ? vec_->num : 0; \
797 VEC (T,A) *new_vec_ = NULL; \
799 if (len_) \
801 new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \
802 (NULL, len_ PASS_MEM_STAT)); \
804 new_vec_->base.num = len_; \
805 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
807 return new_vec_; \
810 static inline int VEC_OP (T,A,reserve) \
811 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
813 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
814 VEC_CHECK_PASS); \
816 if (extend) \
817 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
819 return extend; \
822 static inline int VEC_OP (T,A,reserve_exact) \
823 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
825 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
826 VEC_CHECK_PASS); \
828 if (extend) \
829 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \
830 PASS_MEM_STAT); \
832 return extend; \
835 static inline void VEC_OP (T,A,safe_grow) \
836 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
838 VEC_ASSERT (size_ >= 0 \
839 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
840 "grow", T, A); \
841 VEC_OP (T,A,reserve_exact) (vec_, \
842 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
843 VEC_CHECK_PASS PASS_MEM_STAT); \
844 VEC_BASE (*vec_)->num = size_; \
847 static inline void VEC_OP (T,A,safe_grow_cleared) \
848 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
850 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
851 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
852 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
853 sizeof (T) * (size_ - oldsize)); \
856 static inline void VEC_OP(T,A,safe_splice) \
857 (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL) \
859 if (src_) \
861 VEC_OP (T,A,reserve_exact) (dst_, src_->num \
862 VEC_CHECK_PASS MEM_STAT_INFO); \
864 VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_ \
865 VEC_CHECK_PASS); \
869 static inline T *VEC_OP (T,A,safe_push) \
870 (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
872 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
874 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
877 static inline T *VEC_OP (T,A,safe_insert) \
878 (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
880 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
882 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
883 VEC_CHECK_PASS); \
886 /* Vector of object. */
887 #define DEF_VEC_O(T) \
888 VEC_T_GTY(T,base); \
889 VEC_TA(T,base,none); \
890 DEF_VEC_FUNC_O(T) \
891 struct vec_swallow_trailing_semi
892 #define DEF_VEC_ALLOC_O(T,A) \
893 VEC_TA(T,base,A); \
894 DEF_VEC_ALLOC_FUNC_O(T,A) \
895 DEF_VEC_NONALLOC_FUNCS_O(T,A) \
896 struct vec_swallow_trailing_semi
898 #define DEF_VEC_FUNC_O(T) \
899 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
901 return vec_ ? vec_->num : 0; \
904 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
906 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
908 return &vec_->vec[vec_->num - 1]; \
911 static inline T *VEC_OP (T,base,index) \
912 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
914 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
916 return &vec_->vec[ix_]; \
919 static inline int VEC_OP (T,base,iterate) \
920 (VEC(T,base) *vec_, unsigned ix_, T **ptr) \
922 if (vec_ && ix_ < vec_->num) \
924 *ptr = &vec_->vec[ix_]; \
925 return 1; \
927 else \
929 *ptr = 0; \
930 return 0; \
934 static inline size_t VEC_OP (T,base,embedded_size) \
935 (int alloc_) \
937 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
940 static inline void VEC_OP (T,base,embedded_init) \
941 (VEC(T,base) *vec_, int alloc_) \
943 vec_->num = 0; \
944 vec_->alloc = alloc_; \
947 static inline int VEC_OP (T,base,space) \
948 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
950 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
951 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
954 static inline void VEC_OP(T,base,splice) \
955 (VEC(T,base) *dst_, VEC(T,base) *src_ VEC_CHECK_DECL) \
957 if (src_) \
959 unsigned len_ = src_->num; \
960 VEC_ASSERT (dst_->num + len_ <= dst_->alloc, "splice", T, base); \
962 memcpy (&dst_->vec[dst_->num], &src_->vec[0], len_ * sizeof (T)); \
963 dst_->num += len_; \
967 static inline T *VEC_OP (T,base,quick_push) \
968 (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \
970 T *slot_; \
972 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
973 slot_ = &vec_->vec[vec_->num++]; \
974 if (obj_) \
975 *slot_ = *obj_; \
977 return slot_; \
980 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
982 VEC_ASSERT (vec_->num, "pop", T, base); \
983 --vec_->num; \
986 static inline void VEC_OP (T,base,truncate) \
987 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
989 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
990 if (vec_) \
991 vec_->num = size_; \
994 static inline T *VEC_OP (T,base,replace) \
995 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
997 T *slot_; \
999 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
1000 slot_ = &vec_->vec[ix_]; \
1001 if (obj_) \
1002 *slot_ = *obj_; \
1004 return slot_; \
1007 static inline T *VEC_OP (T,base,quick_insert) \
1008 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
1010 T *slot_; \
1012 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
1013 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
1014 slot_ = &vec_->vec[ix_]; \
1015 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
1016 if (obj_) \
1017 *slot_ = *obj_; \
1019 return slot_; \
1022 static inline void VEC_OP (T,base,ordered_remove) \
1023 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
1025 T *slot_; \
1027 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
1028 slot_ = &vec_->vec[ix_]; \
1029 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
1032 static inline void VEC_OP (T,base,unordered_remove) \
1033 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
1035 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
1036 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
1039 static inline void VEC_OP (T,base,block_remove) \
1040 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
1042 T *slot_; \
1044 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
1045 slot_ = &vec_->vec[ix_]; \
1046 vec_->num -= len_; \
1047 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
1050 static inline T *VEC_OP (T,base,address) \
1051 (VEC(T,base) *vec_) \
1053 return vec_ ? vec_->vec : 0; \
1056 static inline unsigned VEC_OP (T,base,lower_bound) \
1057 (VEC(T,base) *vec_, const T *obj_, \
1058 bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \
1060 unsigned int len_ = VEC_OP (T, base, length) (vec_); \
1061 unsigned int half_, middle_; \
1062 unsigned int first_ = 0; \
1063 while (len_ > 0) \
1065 T *middle_elem_; \
1066 half_ = len_ >> 1; \
1067 middle_ = first_; \
1068 middle_ += half_; \
1069 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
1070 if (lessthan_ (middle_elem_, obj_)) \
1072 first_ = middle_; \
1073 ++first_; \
1074 len_ = len_ - half_ - 1; \
1076 else \
1077 len_ = half_; \
1079 return first_; \
1082 #define DEF_VEC_ALLOC_FUNC_O(T,A) \
1083 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
1084 (int alloc_ MEM_STAT_DECL) \
1086 return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \
1087 offsetof (VEC(T,A),base.vec), \
1088 sizeof (T) \
1089 PASS_MEM_STAT); \
1092 #define DEF_VEC_NONALLOC_FUNCS_O(T,A) \
1093 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1095 size_t len_ = vec_ ? vec_->num : 0; \
1096 VEC (T,A) *new_vec_ = NULL; \
1098 if (len_) \
1100 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
1101 (NULL, len_, \
1102 offsetof (VEC(T,A),base.vec), sizeof (T) \
1103 PASS_MEM_STAT)); \
1105 new_vec_->base.num = len_; \
1106 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1108 return new_vec_; \
1111 static inline void VEC_OP (T,A,free) \
1112 (VEC(T,A) **vec_) \
1114 if (*vec_) \
1115 vec_##A##_free (*vec_); \
1116 *vec_ = NULL; \
1119 static inline int VEC_OP (T,A,reserve) \
1120 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1122 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1123 VEC_CHECK_PASS); \
1125 if (extend) \
1126 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1127 offsetof (VEC(T,A),base.vec),\
1128 sizeof (T) \
1129 PASS_MEM_STAT); \
1131 return extend; \
1134 static inline int VEC_OP (T,A,reserve_exact) \
1135 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1137 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1138 VEC_CHECK_PASS); \
1140 if (extend) \
1141 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1142 (*vec_, alloc_, \
1143 offsetof (VEC(T,A),base.vec), \
1144 sizeof (T) PASS_MEM_STAT); \
1146 return extend; \
1149 static inline void VEC_OP (T,A,safe_grow) \
1150 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1152 VEC_ASSERT (size_ >= 0 \
1153 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1154 "grow", T, A); \
1155 VEC_OP (T,A,reserve_exact) (vec_, \
1156 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1157 VEC_CHECK_PASS PASS_MEM_STAT); \
1158 VEC_BASE (*vec_)->num = size_; \
1161 static inline void VEC_OP (T,A,safe_grow_cleared) \
1162 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1164 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1165 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1166 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1167 sizeof (T) * (size_ - oldsize)); \
1170 static inline void VEC_OP(T,A,safe_splice) \
1171 (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL) \
1173 if (src_) \
1175 VEC_OP (T,A,reserve_exact) (dst_, src_->num \
1176 VEC_CHECK_PASS MEM_STAT_INFO); \
1178 VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_ \
1179 VEC_CHECK_PASS); \
1183 static inline T *VEC_OP (T,A,safe_push) \
1184 (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1186 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1188 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1191 static inline T *VEC_OP (T,A,safe_insert) \
1192 (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \
1193 VEC_CHECK_DECL MEM_STAT_DECL) \
1195 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1197 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1198 VEC_CHECK_PASS); \
1201 #define DEF_VEC_ALLOC_FUNC_I(T,A) \
1202 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
1203 (int alloc_ MEM_STAT_DECL) \
1205 return (VEC(T,A) *) vec_##A##_o_reserve_exact \
1206 (NULL, alloc_, offsetof (VEC(T,A),base.vec), \
1207 sizeof (T) PASS_MEM_STAT); \
1210 #define DEF_VEC_NONALLOC_FUNCS_I(T,A) \
1211 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1213 size_t len_ = vec_ ? vec_->num : 0; \
1214 VEC (T,A) *new_vec_ = NULL; \
1216 if (len_) \
1218 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
1219 (NULL, len_, \
1220 offsetof (VEC(T,A),base.vec), sizeof (T) \
1221 PASS_MEM_STAT)); \
1223 new_vec_->base.num = len_; \
1224 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1226 return new_vec_; \
1229 static inline void VEC_OP (T,A,free) \
1230 (VEC(T,A) **vec_) \
1232 if (*vec_) \
1233 vec_##A##_free (*vec_); \
1234 *vec_ = NULL; \
1237 static inline int VEC_OP (T,A,reserve) \
1238 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1240 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1241 VEC_CHECK_PASS); \
1243 if (extend) \
1244 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1245 offsetof (VEC(T,A),base.vec),\
1246 sizeof (T) \
1247 PASS_MEM_STAT); \
1249 return extend; \
1252 static inline int VEC_OP (T,A,reserve_exact) \
1253 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1255 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1256 VEC_CHECK_PASS); \
1258 if (extend) \
1259 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1260 (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \
1261 sizeof (T) PASS_MEM_STAT); \
1263 return extend; \
1266 static inline void VEC_OP (T,A,safe_grow) \
1267 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1269 VEC_ASSERT (size_ >= 0 \
1270 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1271 "grow", T, A); \
1272 VEC_OP (T,A,reserve_exact) (vec_, \
1273 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1274 VEC_CHECK_PASS PASS_MEM_STAT); \
1275 VEC_BASE (*vec_)->num = size_; \
1278 static inline void VEC_OP (T,A,safe_grow_cleared) \
1279 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1281 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1282 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1283 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1284 sizeof (T) * (size_ - oldsize)); \
1287 static inline void VEC_OP(T,A,safe_splice) \
1288 (VEC(T,A) **dst_, VEC(T,base) *src_ VEC_CHECK_DECL MEM_STAT_DECL) \
1290 if (src_) \
1292 VEC_OP (T,A,reserve_exact) (dst_, src_->num \
1293 VEC_CHECK_PASS MEM_STAT_INFO); \
1295 VEC_OP (T,base,splice) (VEC_BASE (*dst_), src_ \
1296 VEC_CHECK_PASS); \
1300 static inline T *VEC_OP (T,A,safe_push) \
1301 (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1303 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1305 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1308 static inline T *VEC_OP (T,A,safe_insert) \
1309 (VEC(T,A) **vec_, unsigned ix_, const T obj_ \
1310 VEC_CHECK_DECL MEM_STAT_DECL) \
1312 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1314 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1315 VEC_CHECK_PASS); \
1318 /* We support a vector which starts out with space on the stack and
1319 switches to heap space when forced to reallocate. This works a
1320 little differently. Instead of DEF_VEC_ALLOC_P(TYPE, heap|gc), use
1321 DEF_VEC_ALLOC_P_STACK(TYPE). This uses alloca to get the initial
1322 space; because alloca can not be usefully called in an inline
1323 function, and because a macro can not define a macro, you must then
1324 write a #define for each type:
1326 #define VEC_{TYPE}_stack_alloc(alloc) \
1327 VEC_stack_alloc({TYPE}, alloc)
1329 This is really a hack and perhaps can be made better. Note that
1330 this macro will wind up evaluating the ALLOC parameter twice.
1332 Only the initial allocation will be made using alloca, so pass a
1333 reasonable estimate that doesn't use too much stack space; don't
1334 pass zero. Don't return a VEC(TYPE,stack) vector from the function
1335 which allocated it. */
1337 extern void *vec_stack_p_reserve (void *, int MEM_STAT_DECL);
1338 extern void *vec_stack_p_reserve_exact (void *, int MEM_STAT_DECL);
1339 extern void *vec_stack_p_reserve_exact_1 (int, void *);
1340 extern void *vec_stack_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
1341 extern void *vec_stack_o_reserve_exact (void *, int, size_t, size_t
1342 MEM_STAT_DECL);
1343 extern void vec_stack_free (void *);
1345 #ifdef GATHER_STATISTICS
1346 #define VEC_stack_alloc(T,alloc,name,line,function) \
1347 (VEC_OP (T,stack,alloc1) \
1348 (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1349 #else
1350 #define VEC_stack_alloc(T,alloc) \
1351 (VEC_OP (T,stack,alloc1) \
1352 (alloc, XALLOCAVAR (VEC(T,stack), VEC_embedded_size (T, alloc))))
1353 #endif
1355 #define DEF_VEC_ALLOC_P_STACK(T) \
1356 VEC_TA(T,base,stack); \
1357 DEF_VEC_ALLOC_FUNC_P_STACK(T) \
1358 DEF_VEC_NONALLOC_FUNCS_P(T,stack) \
1359 struct vec_swallow_trailing_semi
1361 #define DEF_VEC_ALLOC_FUNC_P_STACK(T) \
1362 static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \
1363 (int alloc_, VEC(T,stack)* space) \
1365 return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \
1368 #define DEF_VEC_ALLOC_O_STACK(T) \
1369 VEC_TA(T,base,stack); \
1370 DEF_VEC_ALLOC_FUNC_O_STACK(T) \
1371 DEF_VEC_NONALLOC_FUNCS_O(T,stack) \
1372 struct vec_swallow_trailing_semi
1374 #define DEF_VEC_ALLOC_FUNC_O_STACK(T) \
1375 static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \
1376 (int alloc_, VEC(T,stack)* space) \
1378 return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \
1381 #define DEF_VEC_ALLOC_I_STACK(T) \
1382 VEC_TA(T,base,stack); \
1383 DEF_VEC_ALLOC_FUNC_I_STACK(T) \
1384 DEF_VEC_NONALLOC_FUNCS_I(T,stack) \
1385 struct vec_swallow_trailing_semi
1387 #define DEF_VEC_ALLOC_FUNC_I_STACK(T) \
1388 static inline VEC(T,stack) *VEC_OP (T,stack,alloc1) \
1389 (int alloc_, VEC(T,stack)* space) \
1391 return (VEC(T,stack) *) vec_stack_p_reserve_exact_1 (alloc_, space); \
1394 #endif /* GCC_VEC_H */