In gcc/: 2011-04-14 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / tree-ssa-coalesce.c
blobe7490e6813c53515532b486c5395b43f0f1955aa
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tree-pretty-print.h"
29 #include "bitmap.h"
30 #include "tree-flow.h"
31 #include "hashtab.h"
32 #include "tree-dump.h"
33 #include "tree-ssa-live.h"
34 #include "diagnostic-core.h"
37 /* This set of routines implements a coalesce_list. This is an object which
38 is used to track pairs of ssa_names which are desirable to coalesce
39 together to avoid copies. Costs are associated with each pair, and when
40 all desired information has been collected, the object can be used to
41 order the pairs for processing. */
43 /* This structure defines a pair entry. */
45 typedef struct coalesce_pair
47 int first_element;
48 int second_element;
49 int cost;
50 } * coalesce_pair_p;
51 typedef const struct coalesce_pair *const_coalesce_pair_p;
53 typedef struct cost_one_pair_d
55 int first_element;
56 int second_element;
57 struct cost_one_pair_d *next;
58 } * cost_one_pair_p;
60 /* This structure maintains the list of coalesce pairs. */
62 typedef struct coalesce_list_d
64 htab_t list; /* Hash table. */
65 coalesce_pair_p *sorted; /* List when sorted. */
66 int num_sorted; /* Number in the sorted list. */
67 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
68 } *coalesce_list_p;
70 #define NO_BEST_COALESCE -1
71 #define MUST_COALESCE_COST INT_MAX
74 /* Return cost of execution of copy instruction with FREQUENCY. */
76 static inline int
77 coalesce_cost (int frequency, bool optimize_for_size)
79 /* Base costs on BB frequencies bounded by 1. */
80 int cost = frequency;
82 if (!cost)
83 cost = 1;
85 if (optimize_for_size)
86 cost = 1;
88 return cost;
92 /* Return the cost of executing a copy instruction in basic block BB. */
94 static inline int
95 coalesce_cost_bb (basic_block bb)
97 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
101 /* Return the cost of executing a copy instruction on edge E. */
103 static inline int
104 coalesce_cost_edge (edge e)
106 int mult = 1;
108 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
109 if (EDGE_CRITICAL_P (e))
110 mult = 2;
111 if (e->flags & EDGE_ABNORMAL)
112 return MUST_COALESCE_COST;
113 if (e->flags & EDGE_EH)
115 edge e2;
116 edge_iterator ei;
117 FOR_EACH_EDGE (e2, ei, e->dest->preds)
118 if (e2 != e)
120 /* Putting code on EH edge that leads to BB
121 with multiple predecestors imply splitting of
122 edge too. */
123 if (mult < 2)
124 mult = 2;
125 /* If there are multiple EH predecestors, we
126 also copy EH regions and produce separate
127 landing pad. This is expensive. */
128 if (e2->flags & EDGE_EH)
130 mult = 5;
131 break;
136 return coalesce_cost (EDGE_FREQUENCY (e),
137 optimize_edge_for_size_p (e)) * mult;
141 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
142 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
143 NO_BEST_COALESCE is returned if there aren't any. */
145 static inline int
146 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
148 cost_one_pair_p ptr;
150 ptr = cl->cost_one_list;
151 if (!ptr)
152 return NO_BEST_COALESCE;
154 *p1 = ptr->first_element;
155 *p2 = ptr->second_element;
156 cl->cost_one_list = ptr->next;
158 free (ptr);
160 return 1;
163 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
164 2 elements via P1 and P2. Their calculated cost is returned by the function.
165 NO_BEST_COALESCE is returned if the coalesce list is empty. */
167 static inline int
168 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
170 coalesce_pair_p node;
171 int ret;
173 if (cl->sorted == NULL)
174 return pop_cost_one_pair (cl, p1, p2);
176 if (cl->num_sorted == 0)
177 return pop_cost_one_pair (cl, p1, p2);
179 node = cl->sorted[--(cl->num_sorted)];
180 *p1 = node->first_element;
181 *p2 = node->second_element;
182 ret = node->cost;
183 free (node);
185 return ret;
189 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
191 /* Hash function for coalesce list. Calculate hash for PAIR. */
193 static unsigned int
194 coalesce_pair_map_hash (const void *pair)
196 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
197 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
199 return COALESCE_HASH_FN (a,b);
203 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
204 returning TRUE if the two pairs are equivalent. */
206 static int
207 coalesce_pair_map_eq (const void *pair1, const void *pair2)
209 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
210 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
212 return (p1->first_element == p2->first_element
213 && p1->second_element == p2->second_element);
217 /* Create a new empty coalesce list object and return it. */
219 static inline coalesce_list_p
220 create_coalesce_list (void)
222 coalesce_list_p list;
223 unsigned size = num_ssa_names * 3;
225 if (size < 40)
226 size = 40;
228 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
229 list->list = htab_create (size, coalesce_pair_map_hash,
230 coalesce_pair_map_eq, NULL);
231 list->sorted = NULL;
232 list->num_sorted = 0;
233 list->cost_one_list = NULL;
234 return list;
238 /* Delete coalesce list CL. */
240 static inline void
241 delete_coalesce_list (coalesce_list_p cl)
243 gcc_assert (cl->cost_one_list == NULL);
244 htab_delete (cl->list);
245 if (cl->sorted)
246 free (cl->sorted);
247 gcc_assert (cl->num_sorted == 0);
248 free (cl);
252 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
253 one isn't found, return NULL if CREATE is false, otherwise create a new
254 coalesce pair object and return it. */
256 static coalesce_pair_p
257 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
259 struct coalesce_pair p;
260 void **slot;
261 unsigned int hash;
263 /* Normalize so that p1 is the smaller value. */
264 if (p2 < p1)
266 p.first_element = p2;
267 p.second_element = p1;
269 else
271 p.first_element = p1;
272 p.second_element = p2;
275 hash = coalesce_pair_map_hash (&p);
276 slot = htab_find_slot_with_hash (cl->list, &p, hash,
277 create ? INSERT : NO_INSERT);
278 if (!slot)
279 return NULL;
281 if (!*slot)
283 struct coalesce_pair * pair = XNEW (struct coalesce_pair);
284 gcc_assert (cl->sorted == NULL);
285 pair->first_element = p.first_element;
286 pair->second_element = p.second_element;
287 pair->cost = 0;
288 *slot = (void *)pair;
291 return (struct coalesce_pair *) *slot;
294 static inline void
295 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
297 cost_one_pair_p pair;
299 pair = XNEW (struct cost_one_pair_d);
300 pair->first_element = p1;
301 pair->second_element = p2;
302 pair->next = cl->cost_one_list;
303 cl->cost_one_list = pair;
307 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
309 static inline void
310 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
312 coalesce_pair_p node;
314 gcc_assert (cl->sorted == NULL);
315 if (p1 == p2)
316 return;
318 node = find_coalesce_pair (cl, p1, p2, true);
320 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
321 if (node->cost < MUST_COALESCE_COST - 1)
323 if (value < MUST_COALESCE_COST - 1)
324 node->cost += value;
325 else
326 node->cost = value;
331 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
333 static int
334 compare_pairs (const void *p1, const void *p2)
336 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
337 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
338 int result;
340 result = (* pp1)->cost - (* pp2)->cost;
341 /* Since qsort does not guarantee stability we use the elements
342 as a secondary key. This provides us with independence from
343 the host's implementation of the sorting algorithm. */
344 if (result == 0)
346 result = (* pp2)->first_element - (* pp1)->first_element;
347 if (result == 0)
348 result = (* pp2)->second_element - (* pp1)->second_element;
351 return result;
355 /* Return the number of unique coalesce pairs in CL. */
357 static inline int
358 num_coalesce_pairs (coalesce_list_p cl)
360 return htab_elements (cl->list);
364 /* Iterator over hash table pairs. */
365 typedef struct
367 htab_iterator hti;
368 } coalesce_pair_iterator;
371 /* Return first partition pair from list CL, initializing iterator ITER. */
373 static inline coalesce_pair_p
374 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
376 coalesce_pair_p pair;
378 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
379 return pair;
383 /* Return TRUE if there are no more partitions in for ITER to process. */
385 static inline bool
386 end_coalesce_pair_p (coalesce_pair_iterator *iter)
388 return end_htab_p (&(iter->hti));
392 /* Return the next partition pair to be visited by ITER. */
394 static inline coalesce_pair_p
395 next_coalesce_pair (coalesce_pair_iterator *iter)
397 coalesce_pair_p pair;
399 pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
400 return pair;
404 /* Iterate over CL using ITER, returning values in PAIR. */
406 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
407 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
408 !end_coalesce_pair_p (&(ITER)); \
409 (PAIR) = next_coalesce_pair (&(ITER)))
412 /* Prepare CL for removal of preferred pairs. When finished they are sorted
413 in order from most important coalesce to least important. */
415 static void
416 sort_coalesce_list (coalesce_list_p cl)
418 unsigned x, num;
419 coalesce_pair_p p;
420 coalesce_pair_iterator ppi;
422 gcc_assert (cl->sorted == NULL);
424 num = num_coalesce_pairs (cl);
425 cl->num_sorted = num;
426 if (num == 0)
427 return;
429 /* Allocate a vector for the pair pointers. */
430 cl->sorted = XNEWVEC (coalesce_pair_p, num);
432 /* Populate the vector with pointers to the pairs. */
433 x = 0;
434 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
435 cl->sorted[x++] = p;
436 gcc_assert (x == num);
438 /* Already sorted. */
439 if (num == 1)
440 return;
442 /* If there are only 2, just pick swap them if the order isn't correct. */
443 if (num == 2)
445 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
447 p = cl->sorted[0];
448 cl->sorted[0] = cl->sorted[1];
449 cl->sorted[1] = p;
451 return;
454 /* Only call qsort if there are more than 2 items. */
455 if (num > 2)
456 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
460 /* Send debug info for coalesce list CL to file F. */
462 static void
463 dump_coalesce_list (FILE *f, coalesce_list_p cl)
465 coalesce_pair_p node;
466 coalesce_pair_iterator ppi;
467 int x;
468 tree var;
470 if (cl->sorted == NULL)
472 fprintf (f, "Coalesce List:\n");
473 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
475 tree var1 = ssa_name (node->first_element);
476 tree var2 = ssa_name (node->second_element);
477 print_generic_expr (f, var1, TDF_SLIM);
478 fprintf (f, " <-> ");
479 print_generic_expr (f, var2, TDF_SLIM);
480 fprintf (f, " (%1d), ", node->cost);
481 fprintf (f, "\n");
484 else
486 fprintf (f, "Sorted Coalesce list:\n");
487 for (x = cl->num_sorted - 1 ; x >=0; x--)
489 node = cl->sorted[x];
490 fprintf (f, "(%d) ", node->cost);
491 var = ssa_name (node->first_element);
492 print_generic_expr (f, var, TDF_SLIM);
493 fprintf (f, " <-> ");
494 var = ssa_name (node->second_element);
495 print_generic_expr (f, var, TDF_SLIM);
496 fprintf (f, "\n");
502 /* This represents a conflict graph. Implemented as an array of bitmaps.
503 A full matrix is used for conflicts rather than just upper triangular form.
504 this make sit much simpler and faster to perform conflict merges. */
506 typedef struct ssa_conflicts_d
508 unsigned size;
509 bitmap *conflicts;
510 } * ssa_conflicts_p;
513 /* Return an empty new conflict graph for SIZE elements. */
515 static inline ssa_conflicts_p
516 ssa_conflicts_new (unsigned size)
518 ssa_conflicts_p ptr;
520 ptr = XNEW (struct ssa_conflicts_d);
521 ptr->conflicts = XCNEWVEC (bitmap, size);
522 ptr->size = size;
523 return ptr;
527 /* Free storage for conflict graph PTR. */
529 static inline void
530 ssa_conflicts_delete (ssa_conflicts_p ptr)
532 unsigned x;
533 for (x = 0; x < ptr->size; x++)
534 if (ptr->conflicts[x])
535 BITMAP_FREE (ptr->conflicts[x]);
537 free (ptr->conflicts);
538 free (ptr);
542 /* Test if elements X and Y conflict in graph PTR. */
544 static inline bool
545 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
547 bitmap b;
549 gcc_checking_assert (x < ptr->size);
550 gcc_checking_assert (y < ptr->size);
551 gcc_checking_assert (x != y);
553 b = ptr->conflicts[x];
554 if (b)
555 /* Avoid the lookup if Y has no conflicts. */
556 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
557 else
558 return false;
562 /* Add a conflict with Y to the bitmap for X in graph PTR. */
564 static inline void
565 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
567 /* If there are no conflicts yet, allocate the bitmap and set bit. */
568 if (!ptr->conflicts[x])
569 ptr->conflicts[x] = BITMAP_ALLOC (NULL);
570 bitmap_set_bit (ptr->conflicts[x], y);
574 /* Add conflicts between X and Y in graph PTR. */
576 static inline void
577 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
579 gcc_checking_assert (x < ptr->size);
580 gcc_checking_assert (y < ptr->size);
581 gcc_checking_assert (x != y);
582 ssa_conflicts_add_one (ptr, x, y);
583 ssa_conflicts_add_one (ptr, y, x);
587 /* Merge all Y's conflict into X in graph PTR. */
589 static inline void
590 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
592 unsigned z;
593 bitmap_iterator bi;
595 gcc_assert (x != y);
596 if (!(ptr->conflicts[y]))
597 return;
599 /* Add a conflict between X and every one Y has. If the bitmap doesn't
600 exist, then it has already been coalesced, and we don't need to add a
601 conflict. */
602 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
603 if (ptr->conflicts[z])
604 bitmap_set_bit (ptr->conflicts[z], x);
606 if (ptr->conflicts[x])
608 /* If X has conflicts, add Y's to X. */
609 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
610 BITMAP_FREE (ptr->conflicts[y]);
612 else
614 /* If X has no conflicts, simply use Y's. */
615 ptr->conflicts[x] = ptr->conflicts[y];
616 ptr->conflicts[y] = NULL;
621 /* Dump a conflicts graph. */
623 static void
624 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
626 unsigned x;
628 fprintf (file, "\nConflict graph:\n");
630 for (x = 0; x < ptr->size; x++)
631 if (ptr->conflicts[x])
633 fprintf (dump_file, "%d: ", x);
634 dump_bitmap (file, ptr->conflicts[x]);
639 /* This structure is used to efficiently record the current status of live
640 SSA_NAMES when building a conflict graph.
641 LIVE_BASE_VAR has a bit set for each base variable which has at least one
642 ssa version live.
643 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
644 index, and is used to track what partitions of each base variable are
645 live. This makes it easy to add conflicts between just live partitions
646 with the same base variable.
647 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
648 marked as being live. This delays clearing of these bitmaps until
649 they are actually needed again. */
651 typedef struct live_track_d
653 bitmap live_base_var; /* Indicates if a basevar is live. */
654 bitmap *live_base_partitions; /* Live partitions for each basevar. */
655 var_map map; /* Var_map being used for partition mapping. */
656 } * live_track_p;
659 /* This routine will create a new live track structure based on the partitions
660 in MAP. */
662 static live_track_p
663 new_live_track (var_map map)
665 live_track_p ptr;
666 int lim, x;
668 /* Make sure there is a partition view in place. */
669 gcc_assert (map->partition_to_base_index != NULL);
671 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
672 ptr->map = map;
673 lim = num_basevars (map);
674 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
675 ptr->live_base_var = BITMAP_ALLOC (NULL);
676 for (x = 0; x < lim; x++)
677 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
678 return ptr;
682 /* This routine will free the memory associated with PTR. */
684 static void
685 delete_live_track (live_track_p ptr)
687 int x, lim;
689 lim = num_basevars (ptr->map);
690 for (x = 0; x < lim; x++)
691 BITMAP_FREE (ptr->live_base_partitions[x]);
692 BITMAP_FREE (ptr->live_base_var);
693 free (ptr->live_base_partitions);
694 free (ptr);
698 /* This function will remove PARTITION from the live list in PTR. */
700 static inline void
701 live_track_remove_partition (live_track_p ptr, int partition)
703 int root;
705 root = basevar_index (ptr->map, partition);
706 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
707 /* If the element list is empty, make the base variable not live either. */
708 if (bitmap_empty_p (ptr->live_base_partitions[root]))
709 bitmap_clear_bit (ptr->live_base_var, root);
713 /* This function will adds PARTITION to the live list in PTR. */
715 static inline void
716 live_track_add_partition (live_track_p ptr, int partition)
718 int root;
720 root = basevar_index (ptr->map, partition);
721 /* If this base var wasn't live before, it is now. Clear the element list
722 since it was delayed until needed. */
723 if (bitmap_set_bit (ptr->live_base_var, root))
724 bitmap_clear (ptr->live_base_partitions[root]);
725 bitmap_set_bit (ptr->live_base_partitions[root], partition);
730 /* Clear the live bit for VAR in PTR. */
732 static inline void
733 live_track_clear_var (live_track_p ptr, tree var)
735 int p;
737 p = var_to_partition (ptr->map, var);
738 if (p != NO_PARTITION)
739 live_track_remove_partition (ptr, p);
743 /* Return TRUE if VAR is live in PTR. */
745 static inline bool
746 live_track_live_p (live_track_p ptr, tree var)
748 int p, root;
750 p = var_to_partition (ptr->map, var);
751 if (p != NO_PARTITION)
753 root = basevar_index (ptr->map, p);
754 if (bitmap_bit_p (ptr->live_base_var, root))
755 return bitmap_bit_p (ptr->live_base_partitions[root], p);
757 return false;
761 /* This routine will add USE to PTR. USE will be marked as live in both the
762 ssa live map and the live bitmap for the root of USE. */
764 static inline void
765 live_track_process_use (live_track_p ptr, tree use)
767 int p;
769 p = var_to_partition (ptr->map, use);
770 if (p == NO_PARTITION)
771 return;
773 /* Mark as live in the appropriate live list. */
774 live_track_add_partition (ptr, p);
778 /* This routine will process a DEF in PTR. DEF will be removed from the live
779 lists, and if there are any other live partitions with the same base
780 variable, conflicts will be added to GRAPH. */
782 static inline void
783 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
785 int p, root;
786 bitmap b;
787 unsigned x;
788 bitmap_iterator bi;
790 p = var_to_partition (ptr->map, def);
791 if (p == NO_PARTITION)
792 return;
794 /* Clear the liveness bit. */
795 live_track_remove_partition (ptr, p);
797 /* If the bitmap isn't empty now, conflicts need to be added. */
798 root = basevar_index (ptr->map, p);
799 if (bitmap_bit_p (ptr->live_base_var, root))
801 b = ptr->live_base_partitions[root];
802 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
803 ssa_conflicts_add (graph, p, x);
808 /* Initialize PTR with the partitions set in INIT. */
810 static inline void
811 live_track_init (live_track_p ptr, bitmap init)
813 unsigned p;
814 bitmap_iterator bi;
816 /* Mark all live on exit partitions. */
817 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
818 live_track_add_partition (ptr, p);
822 /* This routine will clear all live partitions in PTR. */
824 static inline void
825 live_track_clear_base_vars (live_track_p ptr)
827 /* Simply clear the live base list. Anything marked as live in the element
828 lists will be cleared later if/when the base variable ever comes alive
829 again. */
830 bitmap_clear (ptr->live_base_var);
834 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
835 partition view of the var_map liveinfo is based on get entries in the
836 conflict graph. Only conflicts between ssa_name partitions with the same
837 base variable are added. */
839 static ssa_conflicts_p
840 build_ssa_conflict_graph (tree_live_info_p liveinfo)
842 ssa_conflicts_p graph;
843 var_map map;
844 basic_block bb;
845 ssa_op_iter iter;
846 live_track_p live;
848 map = live_var_map (liveinfo);
849 graph = ssa_conflicts_new (num_var_partitions (map));
851 live = new_live_track (map);
853 FOR_EACH_BB (bb)
855 gimple_stmt_iterator gsi;
857 /* Start with live on exit temporaries. */
858 live_track_init (live, live_on_exit (liveinfo, bb));
860 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
862 tree var;
863 gimple stmt = gsi_stmt (gsi);
865 /* A copy between 2 partitions does not introduce an interference
866 by itself. If they did, you would never be able to coalesce
867 two things which are copied. If the two variables really do
868 conflict, they will conflict elsewhere in the program.
870 This is handled by simply removing the SRC of the copy from the
871 live list, and processing the stmt normally. */
872 if (is_gimple_assign (stmt))
874 tree lhs = gimple_assign_lhs (stmt);
875 tree rhs1 = gimple_assign_rhs1 (stmt);
876 if (gimple_assign_copy_p (stmt)
877 && TREE_CODE (lhs) == SSA_NAME
878 && TREE_CODE (rhs1) == SSA_NAME)
879 live_track_clear_var (live, rhs1);
881 else if (is_gimple_debug (stmt))
882 continue;
884 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
885 live_track_process_def (live, var, graph);
887 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
888 live_track_process_use (live, var);
891 /* If result of a PHI is unused, looping over the statements will not
892 record any conflicts since the def was never live. Since the PHI node
893 is going to be translated out of SSA form, it will insert a copy.
894 There must be a conflict recorded between the result of the PHI and
895 any variables that are live. Otherwise the out-of-ssa translation
896 may create incorrect code. */
897 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
899 gimple phi = gsi_stmt (gsi);
900 tree result = PHI_RESULT (phi);
901 if (live_track_live_p (live, result))
902 live_track_process_def (live, result, graph);
905 live_track_clear_base_vars (live);
908 delete_live_track (live);
909 return graph;
913 /* Shortcut routine to print messages to file F of the form:
914 "STR1 EXPR1 STR2 EXPR2 STR3." */
916 static inline void
917 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
918 tree expr2, const char *str3)
920 fprintf (f, "%s", str1);
921 print_generic_expr (f, expr1, TDF_SLIM);
922 fprintf (f, "%s", str2);
923 print_generic_expr (f, expr2, TDF_SLIM);
924 fprintf (f, "%s", str3);
928 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is
929 the phi node at fault, I is the argument index at fault. A message is
930 printed and compilation is then terminated. */
932 static inline void
933 abnormal_corrupt (gimple phi, int i)
935 edge e = gimple_phi_arg_edge (phi, i);
936 tree res = gimple_phi_result (phi);
937 tree arg = gimple_phi_arg_def (phi, i);
939 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
940 e->src->index, e->dest->index);
941 fprintf (stderr, "Argument %d (", i);
942 print_generic_expr (stderr, arg, TDF_SLIM);
943 if (TREE_CODE (arg) != SSA_NAME)
944 fprintf (stderr, ") is not an SSA_NAME.\n");
945 else
947 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
948 fprintf (stderr, ") does not have the same base variable as the result ");
949 print_generic_stmt (stderr, res, TDF_SLIM);
952 internal_error ("SSA corruption");
956 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
958 static inline void
959 fail_abnormal_edge_coalesce (int x, int y)
961 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
962 fprintf (stderr, " which are marked as MUST COALESCE.\n");
963 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
964 fprintf (stderr, " and ");
965 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
967 internal_error ("SSA corruption");
971 /* This function creates a var_map for the current function as well as creating
972 a coalesce list for use later in the out of ssa process. */
974 static var_map
975 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
977 gimple_stmt_iterator gsi;
978 basic_block bb;
979 tree var;
980 gimple stmt;
981 tree first;
982 var_map map;
983 ssa_op_iter iter;
984 int v1, v2, cost;
985 unsigned i;
987 #ifdef ENABLE_CHECKING
988 bitmap used_in_real_ops;
989 bitmap used_in_virtual_ops;
991 used_in_real_ops = BITMAP_ALLOC (NULL);
992 used_in_virtual_ops = BITMAP_ALLOC (NULL);
993 #endif
995 map = init_var_map (num_ssa_names);
997 FOR_EACH_BB (bb)
999 tree arg;
1001 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1003 gimple phi = gsi_stmt (gsi);
1004 size_t i;
1005 int ver;
1006 tree res;
1007 bool saw_copy = false;
1009 res = gimple_phi_result (phi);
1010 ver = SSA_NAME_VERSION (res);
1011 register_ssa_partition (map, res);
1013 /* Register ssa_names and coalesces between the args and the result
1014 of all PHI. */
1015 for (i = 0; i < gimple_phi_num_args (phi); i++)
1017 edge e = gimple_phi_arg_edge (phi, i);
1018 arg = PHI_ARG_DEF (phi, i);
1019 if (TREE_CODE (arg) == SSA_NAME)
1020 register_ssa_partition (map, arg);
1021 if (TREE_CODE (arg) == SSA_NAME
1022 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
1024 saw_copy = true;
1025 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1026 if ((e->flags & EDGE_ABNORMAL) == 0)
1028 int cost = coalesce_cost_edge (e);
1029 if (cost == 1 && has_single_use (arg))
1030 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1031 else
1032 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1035 else
1036 if (e->flags & EDGE_ABNORMAL)
1037 abnormal_corrupt (phi, i);
1039 if (saw_copy)
1040 bitmap_set_bit (used_in_copy, ver);
1043 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1045 stmt = gsi_stmt (gsi);
1047 if (is_gimple_debug (stmt))
1048 continue;
1050 /* Register USE and DEF operands in each statement. */
1051 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1052 register_ssa_partition (map, var);
1054 /* Check for copy coalesces. */
1055 switch (gimple_code (stmt))
1057 case GIMPLE_ASSIGN:
1059 tree lhs = gimple_assign_lhs (stmt);
1060 tree rhs1 = gimple_assign_rhs1 (stmt);
1062 if (gimple_assign_copy_p (stmt)
1063 && TREE_CODE (lhs) == SSA_NAME
1064 && TREE_CODE (rhs1) == SSA_NAME
1065 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs1))
1067 v1 = SSA_NAME_VERSION (lhs);
1068 v2 = SSA_NAME_VERSION (rhs1);
1069 cost = coalesce_cost_bb (bb);
1070 add_coalesce (cl, v1, v2, cost);
1071 bitmap_set_bit (used_in_copy, v1);
1072 bitmap_set_bit (used_in_copy, v2);
1075 break;
1077 case GIMPLE_ASM:
1079 unsigned long noutputs, i;
1080 unsigned long ninputs;
1081 tree *outputs, link;
1082 noutputs = gimple_asm_noutputs (stmt);
1083 ninputs = gimple_asm_ninputs (stmt);
1084 outputs = (tree *) alloca (noutputs * sizeof (tree));
1085 for (i = 0; i < noutputs; ++i) {
1086 link = gimple_asm_output_op (stmt, i);
1087 outputs[i] = TREE_VALUE (link);
1090 for (i = 0; i < ninputs; ++i)
1092 const char *constraint;
1093 tree input;
1094 char *end;
1095 unsigned long match;
1097 link = gimple_asm_input_op (stmt, i);
1098 constraint
1099 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1100 input = TREE_VALUE (link);
1102 if (TREE_CODE (input) != SSA_NAME)
1103 continue;
1105 match = strtoul (constraint, &end, 10);
1106 if (match >= noutputs || end == constraint)
1107 continue;
1109 if (TREE_CODE (outputs[match]) != SSA_NAME)
1110 continue;
1112 v1 = SSA_NAME_VERSION (outputs[match]);
1113 v2 = SSA_NAME_VERSION (input);
1115 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1117 cost = coalesce_cost (REG_BR_PROB_BASE,
1118 optimize_bb_for_size_p (bb));
1119 add_coalesce (cl, v1, v2, cost);
1120 bitmap_set_bit (used_in_copy, v1);
1121 bitmap_set_bit (used_in_copy, v2);
1124 break;
1127 default:
1128 break;
1131 #ifdef ENABLE_CHECKING
1132 /* Mark real uses and defs. */
1133 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1134 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
1136 /* Validate that virtual ops don't get used in funny ways. */
1137 if (gimple_vuse (stmt))
1138 bitmap_set_bit (used_in_virtual_ops,
1139 DECL_UID (SSA_NAME_VAR (gimple_vuse (stmt))));
1140 #endif /* ENABLE_CHECKING */
1144 /* Now process result decls and live on entry variables for entry into
1145 the coalesce list. */
1146 first = NULL_TREE;
1147 for (i = 1; i < num_ssa_names; i++)
1149 var = ssa_name (i);
1150 if (var != NULL_TREE && is_gimple_reg (var))
1152 /* Add coalesces between all the result decls. */
1153 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1155 if (first == NULL_TREE)
1156 first = var;
1157 else
1159 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1160 v1 = SSA_NAME_VERSION (first);
1161 v2 = SSA_NAME_VERSION (var);
1162 bitmap_set_bit (used_in_copy, v1);
1163 bitmap_set_bit (used_in_copy, v2);
1164 cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1165 add_coalesce (cl, v1, v2, cost);
1168 /* Mark any default_def variables as being in the coalesce list
1169 since they will have to be coalesced with the base variable. If
1170 not marked as present, they won't be in the coalesce view. */
1171 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var
1172 && !has_zero_uses (var))
1173 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1177 #if defined ENABLE_CHECKING
1179 unsigned i;
1180 bitmap both = BITMAP_ALLOC (NULL);
1181 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
1182 if (!bitmap_empty_p (both))
1184 bitmap_iterator bi;
1186 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
1187 fprintf (stderr, "Variable %s used in real and virtual operands\n",
1188 get_name (referenced_var (i)));
1189 internal_error ("SSA corruption");
1192 BITMAP_FREE (used_in_real_ops);
1193 BITMAP_FREE (used_in_virtual_ops);
1194 BITMAP_FREE (both);
1196 #endif
1198 return map;
1202 /* Attempt to coalesce ssa versions X and Y together using the partition
1203 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1204 DEBUG, if it is nun-NULL. */
1206 static inline bool
1207 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1208 FILE *debug)
1210 int z;
1211 tree var1, var2;
1212 int p1, p2;
1214 p1 = var_to_partition (map, ssa_name (x));
1215 p2 = var_to_partition (map, ssa_name (y));
1217 if (debug)
1219 fprintf (debug, "(%d)", x);
1220 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1221 fprintf (debug, " & (%d)", y);
1222 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1225 if (p1 == p2)
1227 if (debug)
1228 fprintf (debug, ": Already Coalesced.\n");
1229 return true;
1232 if (debug)
1233 fprintf (debug, " [map: %d, %d] ", p1, p2);
1236 if (!ssa_conflicts_test_p (graph, p1, p2))
1238 var1 = partition_to_var (map, p1);
1239 var2 = partition_to_var (map, p2);
1240 z = var_union (map, var1, var2);
1241 if (z == NO_PARTITION)
1243 if (debug)
1244 fprintf (debug, ": Unable to perform partition union.\n");
1245 return false;
1248 /* z is the new combined partition. Remove the other partition from
1249 the list, and merge the conflicts. */
1250 if (z == p1)
1251 ssa_conflicts_merge (graph, p1, p2);
1252 else
1253 ssa_conflicts_merge (graph, p2, p1);
1255 if (debug)
1256 fprintf (debug, ": Success -> %d\n", z);
1257 return true;
1260 if (debug)
1261 fprintf (debug, ": Fail due to conflict\n");
1263 return false;
1267 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1268 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1270 static void
1271 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1272 FILE *debug)
1274 int x = 0, y = 0;
1275 tree var1, var2;
1276 int cost;
1277 basic_block bb;
1278 edge e;
1279 edge_iterator ei;
1281 /* First, coalesce all the copies across abnormal edges. These are not placed
1282 in the coalesce list because they do not need to be sorted, and simply
1283 consume extra memory/compilation time in large programs. */
1285 FOR_EACH_BB (bb)
1287 FOR_EACH_EDGE (e, ei, bb->preds)
1288 if (e->flags & EDGE_ABNORMAL)
1290 gimple_stmt_iterator gsi;
1291 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1292 gsi_next (&gsi))
1294 gimple phi = gsi_stmt (gsi);
1295 tree res = PHI_RESULT (phi);
1296 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1297 int v1 = SSA_NAME_VERSION (res);
1298 int v2 = SSA_NAME_VERSION (arg);
1300 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1301 abnormal_corrupt (phi, e->dest_idx);
1303 if (debug)
1304 fprintf (debug, "Abnormal coalesce: ");
1306 if (!attempt_coalesce (map, graph, v1, v2, debug))
1307 fail_abnormal_edge_coalesce (v1, v2);
1312 /* Now process the items in the coalesce list. */
1314 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1316 var1 = ssa_name (x);
1317 var2 = ssa_name (y);
1319 /* Assert the coalesces have the same base variable. */
1320 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1322 if (debug)
1323 fprintf (debug, "Coalesce list: ");
1324 attempt_coalesce (map, graph, x, y, debug);
1328 /* Returns a hash code for P. */
1330 static hashval_t
1331 hash_ssa_name_by_var (const void *p)
1333 const_tree n = (const_tree) p;
1334 return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n));
1337 /* Returns nonzero if P1 and P2 are equal. */
1339 static int
1340 eq_ssa_name_by_var (const void *p1, const void *p2)
1342 const_tree n1 = (const_tree) p1;
1343 const_tree n2 = (const_tree) p2;
1344 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1347 /* Reduce the number of copies by coalescing variables in the function. Return
1348 a partition map with the resulting coalesces. */
1350 extern var_map
1351 coalesce_ssa_name (void)
1353 tree_live_info_p liveinfo;
1354 ssa_conflicts_p graph;
1355 coalesce_list_p cl;
1356 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1357 var_map map;
1358 unsigned int i;
1359 static htab_t ssa_name_hash;
1361 cl = create_coalesce_list ();
1362 map = create_outofssa_var_map (cl, used_in_copies);
1364 /* We need to coalesce all names originating same SSA_NAME_VAR
1365 so debug info remains undisturbed. */
1366 if (!optimize)
1368 ssa_name_hash = htab_create (10, hash_ssa_name_by_var,
1369 eq_ssa_name_by_var, NULL);
1370 for (i = 1; i < num_ssa_names; i++)
1372 tree a = ssa_name (i);
1374 if (a
1375 && SSA_NAME_VAR (a)
1376 && !DECL_ARTIFICIAL (SSA_NAME_VAR (a))
1377 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
1379 tree *slot = (tree *) htab_find_slot (ssa_name_hash, a, INSERT);
1381 if (!*slot)
1382 *slot = a;
1383 else
1385 add_coalesce (cl, SSA_NAME_VERSION (a), SSA_NAME_VERSION (*slot),
1386 MUST_COALESCE_COST - 1);
1387 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1388 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1392 htab_delete (ssa_name_hash);
1394 if (dump_file && (dump_flags & TDF_DETAILS))
1395 dump_var_map (dump_file, map);
1397 /* Don't calculate live ranges for variables not in the coalesce list. */
1398 partition_view_bitmap (map, used_in_copies, true);
1399 BITMAP_FREE (used_in_copies);
1401 if (num_var_partitions (map) < 1)
1403 delete_coalesce_list (cl);
1404 return map;
1407 if (dump_file && (dump_flags & TDF_DETAILS))
1408 dump_var_map (dump_file, map);
1410 liveinfo = calculate_live_ranges (map);
1412 if (dump_file && (dump_flags & TDF_DETAILS))
1413 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1415 /* Build a conflict graph. */
1416 graph = build_ssa_conflict_graph (liveinfo);
1417 delete_tree_live_info (liveinfo);
1418 if (dump_file && (dump_flags & TDF_DETAILS))
1419 ssa_conflicts_dump (dump_file, graph);
1421 sort_coalesce_list (cl);
1423 if (dump_file && (dump_flags & TDF_DETAILS))
1425 fprintf (dump_file, "\nAfter sorting:\n");
1426 dump_coalesce_list (dump_file, cl);
1429 /* First, coalesce all live on entry variables to their base variable.
1430 This will ensure the first use is coming from the correct location. */
1432 if (dump_file && (dump_flags & TDF_DETAILS))
1433 dump_var_map (dump_file, map);
1435 /* Now coalesce everything in the list. */
1436 coalesce_partitions (map, graph, cl,
1437 ((dump_flags & TDF_DETAILS) ? dump_file
1438 : NULL));
1440 delete_coalesce_list (cl);
1441 ssa_conflicts_delete (graph);
1443 return map;