In gcc/: 2011-04-14 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / ifcvt.c
blobb34aee27379598be259f81c981d8eaaf388a8eb8
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010,
3 2011
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "diagnostic-core.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
50 #ifndef HAVE_conditional_move
51 #define HAVE_conditional_move 0
52 #endif
53 #ifndef HAVE_incscc
54 #define HAVE_incscc 0
55 #endif
56 #ifndef HAVE_decscc
57 #define HAVE_decscc 0
58 #endif
59 #ifndef HAVE_trap
60 #define HAVE_trap 0
61 #endif
63 #ifndef MAX_CONDITIONAL_EXECUTE
64 #define MAX_CONDITIONAL_EXECUTE \
65 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
66 + 1)
67 #endif
69 #define IFCVT_MULTIPLE_DUMPS 1
71 #define NULL_BLOCK ((basic_block) NULL)
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* Forward references. */
87 static int count_bb_insns (const_basic_block);
88 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
89 static rtx first_active_insn (basic_block);
90 static rtx last_active_insn (basic_block, int);
91 static rtx find_active_insn_before (basic_block, rtx);
92 static rtx find_active_insn_after (basic_block, rtx);
93 static basic_block block_fallthru (basic_block);
94 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
95 static rtx cond_exec_get_condition (rtx);
96 static rtx noce_get_condition (rtx, rtx *, bool);
97 static int noce_operand_ok (const_rtx);
98 static void merge_if_block (ce_if_block_t *);
99 static int find_cond_trap (basic_block, edge, edge);
100 static basic_block find_if_header (basic_block, int);
101 static int block_jumps_and_fallthru_p (basic_block, basic_block);
102 static int noce_find_if_block (basic_block, edge, edge, int);
103 static int cond_exec_find_if_block (ce_if_block_t *);
104 static int find_if_case_1 (basic_block, edge, edge);
105 static int find_if_case_2 (basic_block, edge, edge);
106 static int dead_or_predicable (basic_block, basic_block, basic_block,
107 basic_block, int);
108 static void noce_emit_move_insn (rtx, rtx);
109 static rtx block_has_only_trap (basic_block);
111 /* Count the number of non-jump active insns in BB. */
113 static int
114 count_bb_insns (const_basic_block bb)
116 int count = 0;
117 rtx insn = BB_HEAD (bb);
119 while (1)
121 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
122 count++;
124 if (insn == BB_END (bb))
125 break;
126 insn = NEXT_INSN (insn);
129 return count;
132 /* Determine whether the total insn_rtx_cost on non-jump insns in
133 basic block BB is less than MAX_COST. This function returns
134 false if the cost of any instruction could not be estimated. */
136 static bool
137 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
139 int count = 0;
140 rtx insn = BB_HEAD (bb);
141 bool speed = optimize_bb_for_speed_p (bb);
143 while (1)
145 if (NONJUMP_INSN_P (insn))
147 int cost = insn_rtx_cost (PATTERN (insn), speed);
148 if (cost == 0)
149 return false;
151 /* If this instruction is the load or set of a "stack" register,
152 such as a floating point register on x87, then the cost of
153 speculatively executing this insn may need to include
154 the additional cost of popping its result off of the
155 register stack. Unfortunately, correctly recognizing and
156 accounting for this additional overhead is tricky, so for
157 now we simply prohibit such speculative execution. */
158 #ifdef STACK_REGS
160 rtx set = single_set (insn);
161 if (set && STACK_REG_P (SET_DEST (set)))
162 return false;
164 #endif
166 count += cost;
167 if (count >= max_cost)
168 return false;
170 else if (CALL_P (insn))
171 return false;
173 if (insn == BB_END (bb))
174 break;
175 insn = NEXT_INSN (insn);
178 return true;
181 /* Return the first non-jump active insn in the basic block. */
183 static rtx
184 first_active_insn (basic_block bb)
186 rtx insn = BB_HEAD (bb);
188 if (LABEL_P (insn))
190 if (insn == BB_END (bb))
191 return NULL_RTX;
192 insn = NEXT_INSN (insn);
195 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
197 if (insn == BB_END (bb))
198 return NULL_RTX;
199 insn = NEXT_INSN (insn);
202 if (JUMP_P (insn))
203 return NULL_RTX;
205 return insn;
208 /* Return the last non-jump active (non-jump) insn in the basic block. */
210 static rtx
211 last_active_insn (basic_block bb, int skip_use_p)
213 rtx insn = BB_END (bb);
214 rtx head = BB_HEAD (bb);
216 while (NOTE_P (insn)
217 || JUMP_P (insn)
218 || DEBUG_INSN_P (insn)
219 || (skip_use_p
220 && NONJUMP_INSN_P (insn)
221 && GET_CODE (PATTERN (insn)) == USE))
223 if (insn == head)
224 return NULL_RTX;
225 insn = PREV_INSN (insn);
228 if (LABEL_P (insn))
229 return NULL_RTX;
231 return insn;
234 /* Return the active insn before INSN inside basic block CURR_BB. */
236 static rtx
237 find_active_insn_before (basic_block curr_bb, rtx insn)
239 if (!insn || insn == BB_HEAD (curr_bb))
240 return NULL_RTX;
242 while ((insn = PREV_INSN (insn)) != NULL_RTX)
244 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
245 break;
247 /* No other active insn all the way to the start of the basic block. */
248 if (insn == BB_HEAD (curr_bb))
249 return NULL_RTX;
252 return insn;
255 /* Return the active insn after INSN inside basic block CURR_BB. */
257 static rtx
258 find_active_insn_after (basic_block curr_bb, rtx insn)
260 if (!insn || insn == BB_END (curr_bb))
261 return NULL_RTX;
263 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
265 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
266 break;
268 /* No other active insn all the way to the end of the basic block. */
269 if (insn == BB_END (curr_bb))
270 return NULL_RTX;
273 return insn;
276 /* Return the basic block reached by falling though the basic block BB. */
278 static basic_block
279 block_fallthru (basic_block bb)
281 edge e = find_fallthru_edge (bb->succs);
283 return (e) ? e->dest : NULL_BLOCK;
286 /* Go through a bunch of insns, converting them to conditional
287 execution format if possible. Return TRUE if all of the non-note
288 insns were processed. */
290 static int
291 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
292 /* if block information */rtx start,
293 /* first insn to look at */rtx end,
294 /* last insn to look at */rtx test,
295 /* conditional execution test */rtx prob_val,
296 /* probability of branch taken. */int mod_ok)
298 int must_be_last = FALSE;
299 rtx insn;
300 rtx xtest;
301 rtx pattern;
303 if (!start || !end)
304 return FALSE;
306 for (insn = start; ; insn = NEXT_INSN (insn))
308 /* dwarf2out can't cope with conditional prologues. */
309 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
310 return FALSE;
312 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
313 goto insn_done;
315 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
317 /* Remove USE insns that get in the way. */
318 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
320 /* ??? Ug. Actually unlinking the thing is problematic,
321 given what we'd have to coordinate with our callers. */
322 SET_INSN_DELETED (insn);
323 goto insn_done;
326 /* Last insn wasn't last? */
327 if (must_be_last)
328 return FALSE;
330 if (modified_in_p (test, insn))
332 if (!mod_ok)
333 return FALSE;
334 must_be_last = TRUE;
337 /* Now build the conditional form of the instruction. */
338 pattern = PATTERN (insn);
339 xtest = copy_rtx (test);
341 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
342 two conditions. */
343 if (GET_CODE (pattern) == COND_EXEC)
345 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
346 return FALSE;
348 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
349 COND_EXEC_TEST (pattern));
350 pattern = COND_EXEC_CODE (pattern);
353 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
355 /* If the machine needs to modify the insn being conditionally executed,
356 say for example to force a constant integer operand into a temp
357 register, do so here. */
358 #ifdef IFCVT_MODIFY_INSN
359 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
360 if (! pattern)
361 return FALSE;
362 #endif
364 validate_change (insn, &PATTERN (insn), pattern, 1);
366 if (CALL_P (insn) && prob_val)
367 validate_change (insn, &REG_NOTES (insn),
368 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
369 REG_NOTES (insn)), 1);
371 insn_done:
372 if (insn == end)
373 break;
376 return TRUE;
379 /* Return the condition for a jump. Do not do any special processing. */
381 static rtx
382 cond_exec_get_condition (rtx jump)
384 rtx test_if, cond;
386 if (any_condjump_p (jump))
387 test_if = SET_SRC (pc_set (jump));
388 else
389 return NULL_RTX;
390 cond = XEXP (test_if, 0);
392 /* If this branches to JUMP_LABEL when the condition is false,
393 reverse the condition. */
394 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
395 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
397 enum rtx_code rev = reversed_comparison_code (cond, jump);
398 if (rev == UNKNOWN)
399 return NULL_RTX;
401 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
402 XEXP (cond, 1));
405 return cond;
408 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
409 to conditional execution. Return TRUE if we were successful at
410 converting the block. */
412 static int
413 cond_exec_process_if_block (ce_if_block_t * ce_info,
414 /* if block information */int do_multiple_p)
416 basic_block test_bb = ce_info->test_bb; /* last test block */
417 basic_block then_bb = ce_info->then_bb; /* THEN */
418 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
419 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
420 rtx then_start; /* first insn in THEN block */
421 rtx then_end; /* last insn + 1 in THEN block */
422 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
423 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
424 int max; /* max # of insns to convert. */
425 int then_mod_ok; /* whether conditional mods are ok in THEN */
426 rtx true_expr; /* test for else block insns */
427 rtx false_expr; /* test for then block insns */
428 rtx true_prob_val; /* probability of else block */
429 rtx false_prob_val; /* probability of then block */
430 rtx then_last_head = NULL_RTX; /* Last match at the head of THEN */
431 rtx else_last_head = NULL_RTX; /* Last match at the head of ELSE */
432 rtx then_first_tail = NULL_RTX; /* First match at the tail of THEN */
433 rtx else_first_tail = NULL_RTX; /* First match at the tail of ELSE */
434 int then_n_insns, else_n_insns, n_insns;
435 enum rtx_code false_code;
437 /* If test is comprised of && or || elements, and we've failed at handling
438 all of them together, just use the last test if it is the special case of
439 && elements without an ELSE block. */
440 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
442 if (else_bb || ! ce_info->and_and_p)
443 return FALSE;
445 ce_info->test_bb = test_bb = ce_info->last_test_bb;
446 ce_info->num_multiple_test_blocks = 0;
447 ce_info->num_and_and_blocks = 0;
448 ce_info->num_or_or_blocks = 0;
451 /* Find the conditional jump to the ELSE or JOIN part, and isolate
452 the test. */
453 test_expr = cond_exec_get_condition (BB_END (test_bb));
454 if (! test_expr)
455 return FALSE;
457 /* If the conditional jump is more than just a conditional jump,
458 then we can not do conditional execution conversion on this block. */
459 if (! onlyjump_p (BB_END (test_bb)))
460 return FALSE;
462 /* Collect the bounds of where we're to search, skipping any labels, jumps
463 and notes at the beginning and end of the block. Then count the total
464 number of insns and see if it is small enough to convert. */
465 then_start = first_active_insn (then_bb);
466 then_end = last_active_insn (then_bb, TRUE);
467 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
468 n_insns = then_n_insns;
469 max = MAX_CONDITIONAL_EXECUTE;
471 if (else_bb)
473 int n_matching;
475 max *= 2;
476 else_start = first_active_insn (else_bb);
477 else_end = last_active_insn (else_bb, TRUE);
478 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
479 n_insns += else_n_insns;
481 /* Look for matching sequences at the head and tail of the two blocks,
482 and limit the range of insns to be converted if possible. */
483 n_matching = flow_find_cross_jump (then_bb, else_bb,
484 &then_first_tail, &else_first_tail,
485 NULL);
486 if (then_first_tail == BB_HEAD (then_bb))
487 then_start = then_end = NULL_RTX;
488 if (else_first_tail == BB_HEAD (else_bb))
489 else_start = else_end = NULL_RTX;
491 if (n_matching > 0)
493 if (then_end)
494 then_end = find_active_insn_before (then_bb, then_first_tail);
495 if (else_end)
496 else_end = find_active_insn_before (else_bb, else_first_tail);
497 n_insns -= 2 * n_matching;
500 if (then_start && else_start)
502 int longest_match = MIN (then_n_insns - n_matching,
503 else_n_insns - n_matching);
504 n_matching
505 = flow_find_head_matching_sequence (then_bb, else_bb,
506 &then_last_head,
507 &else_last_head,
508 longest_match);
510 if (n_matching > 0)
512 rtx insn;
514 /* We won't pass the insns in the head sequence to
515 cond_exec_process_insns, so we need to test them here
516 to make sure that they don't clobber the condition. */
517 for (insn = BB_HEAD (then_bb);
518 insn != NEXT_INSN (then_last_head);
519 insn = NEXT_INSN (insn))
520 if (!LABEL_P (insn) && !NOTE_P (insn)
521 && !DEBUG_INSN_P (insn)
522 && modified_in_p (test_expr, insn))
523 return FALSE;
526 if (then_last_head == then_end)
527 then_start = then_end = NULL_RTX;
528 if (else_last_head == else_end)
529 else_start = else_end = NULL_RTX;
531 if (n_matching > 0)
533 if (then_start)
534 then_start = find_active_insn_after (then_bb, then_last_head);
535 if (else_start)
536 else_start = find_active_insn_after (else_bb, else_last_head);
537 n_insns -= 2 * n_matching;
542 if (n_insns > max)
543 return FALSE;
545 /* Map test_expr/test_jump into the appropriate MD tests to use on
546 the conditionally executed code. */
548 true_expr = test_expr;
550 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
551 if (false_code != UNKNOWN)
552 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
553 XEXP (true_expr, 0), XEXP (true_expr, 1));
554 else
555 false_expr = NULL_RTX;
557 #ifdef IFCVT_MODIFY_TESTS
558 /* If the machine description needs to modify the tests, such as setting a
559 conditional execution register from a comparison, it can do so here. */
560 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
562 /* See if the conversion failed. */
563 if (!true_expr || !false_expr)
564 goto fail;
565 #endif
567 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
568 if (true_prob_val)
570 true_prob_val = XEXP (true_prob_val, 0);
571 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
573 else
574 false_prob_val = NULL_RTX;
576 /* If we have && or || tests, do them here. These tests are in the adjacent
577 blocks after the first block containing the test. */
578 if (ce_info->num_multiple_test_blocks > 0)
580 basic_block bb = test_bb;
581 basic_block last_test_bb = ce_info->last_test_bb;
583 if (! false_expr)
584 goto fail;
588 rtx start, end;
589 rtx t, f;
590 enum rtx_code f_code;
592 bb = block_fallthru (bb);
593 start = first_active_insn (bb);
594 end = last_active_insn (bb, TRUE);
595 if (start
596 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
597 false_prob_val, FALSE))
598 goto fail;
600 /* If the conditional jump is more than just a conditional jump, then
601 we can not do conditional execution conversion on this block. */
602 if (! onlyjump_p (BB_END (bb)))
603 goto fail;
605 /* Find the conditional jump and isolate the test. */
606 t = cond_exec_get_condition (BB_END (bb));
607 if (! t)
608 goto fail;
610 f_code = reversed_comparison_code (t, BB_END (bb));
611 if (f_code == UNKNOWN)
612 goto fail;
614 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
615 if (ce_info->and_and_p)
617 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
618 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
620 else
622 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
623 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
626 /* If the machine description needs to modify the tests, such as
627 setting a conditional execution register from a comparison, it can
628 do so here. */
629 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
630 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
632 /* See if the conversion failed. */
633 if (!t || !f)
634 goto fail;
635 #endif
637 true_expr = t;
638 false_expr = f;
640 while (bb != last_test_bb);
643 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
644 on then THEN block. */
645 then_mod_ok = (else_bb == NULL_BLOCK);
647 /* Go through the THEN and ELSE blocks converting the insns if possible
648 to conditional execution. */
650 if (then_end
651 && (! false_expr
652 || ! cond_exec_process_insns (ce_info, then_start, then_end,
653 false_expr, false_prob_val,
654 then_mod_ok)))
655 goto fail;
657 if (else_bb && else_end
658 && ! cond_exec_process_insns (ce_info, else_start, else_end,
659 true_expr, true_prob_val, TRUE))
660 goto fail;
662 /* If we cannot apply the changes, fail. Do not go through the normal fail
663 processing, since apply_change_group will call cancel_changes. */
664 if (! apply_change_group ())
666 #ifdef IFCVT_MODIFY_CANCEL
667 /* Cancel any machine dependent changes. */
668 IFCVT_MODIFY_CANCEL (ce_info);
669 #endif
670 return FALSE;
673 #ifdef IFCVT_MODIFY_FINAL
674 /* Do any machine dependent final modifications. */
675 IFCVT_MODIFY_FINAL (ce_info);
676 #endif
678 /* Conversion succeeded. */
679 if (dump_file)
680 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
681 n_insns, (n_insns == 1) ? " was" : "s were");
683 /* Merge the blocks! If we had matching sequences, make sure to delete one
684 copy at the appropriate location first: delete the copy in the THEN branch
685 for a tail sequence so that the remaining one is executed last for both
686 branches, and delete the copy in the ELSE branch for a head sequence so
687 that the remaining one is executed first for both branches. */
688 if (then_first_tail)
690 rtx from = then_first_tail;
691 if (!INSN_P (from))
692 from = find_active_insn_after (then_bb, from);
693 delete_insn_chain (from, BB_END (then_bb), false);
695 if (else_last_head)
696 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
698 merge_if_block (ce_info);
699 cond_exec_changed_p = TRUE;
700 return TRUE;
702 fail:
703 #ifdef IFCVT_MODIFY_CANCEL
704 /* Cancel any machine dependent changes. */
705 IFCVT_MODIFY_CANCEL (ce_info);
706 #endif
708 cancel_changes (0);
709 return FALSE;
712 /* Used by noce_process_if_block to communicate with its subroutines.
714 The subroutines know that A and B may be evaluated freely. They
715 know that X is a register. They should insert new instructions
716 before cond_earliest. */
718 struct noce_if_info
720 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
721 basic_block test_bb, then_bb, else_bb, join_bb;
723 /* The jump that ends TEST_BB. */
724 rtx jump;
726 /* The jump condition. */
727 rtx cond;
729 /* New insns should be inserted before this one. */
730 rtx cond_earliest;
732 /* Insns in the THEN and ELSE block. There is always just this
733 one insns in those blocks. The insns are single_set insns.
734 If there was no ELSE block, INSN_B is the last insn before
735 COND_EARLIEST, or NULL_RTX. In the former case, the insn
736 operands are still valid, as if INSN_B was moved down below
737 the jump. */
738 rtx insn_a, insn_b;
740 /* The SET_SRC of INSN_A and INSN_B. */
741 rtx a, b;
743 /* The SET_DEST of INSN_A. */
744 rtx x;
746 /* True if this if block is not canonical. In the canonical form of
747 if blocks, the THEN_BB is the block reached via the fallthru edge
748 from TEST_BB. For the noce transformations, we allow the symmetric
749 form as well. */
750 bool then_else_reversed;
752 /* Estimated cost of the particular branch instruction. */
753 int branch_cost;
756 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
757 static int noce_try_move (struct noce_if_info *);
758 static int noce_try_store_flag (struct noce_if_info *);
759 static int noce_try_addcc (struct noce_if_info *);
760 static int noce_try_store_flag_constants (struct noce_if_info *);
761 static int noce_try_store_flag_mask (struct noce_if_info *);
762 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
763 rtx, rtx, rtx);
764 static int noce_try_cmove (struct noce_if_info *);
765 static int noce_try_cmove_arith (struct noce_if_info *);
766 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
767 static int noce_try_minmax (struct noce_if_info *);
768 static int noce_try_abs (struct noce_if_info *);
769 static int noce_try_sign_mask (struct noce_if_info *);
771 /* Helper function for noce_try_store_flag*. */
773 static rtx
774 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
775 int normalize)
777 rtx cond = if_info->cond;
778 int cond_complex;
779 enum rtx_code code;
781 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
782 || ! general_operand (XEXP (cond, 1), VOIDmode));
784 /* If earliest == jump, or when the condition is complex, try to
785 build the store_flag insn directly. */
787 if (cond_complex)
789 rtx set = pc_set (if_info->jump);
790 cond = XEXP (SET_SRC (set), 0);
791 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
792 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
793 reversep = !reversep;
794 if (if_info->then_else_reversed)
795 reversep = !reversep;
798 if (reversep)
799 code = reversed_comparison_code (cond, if_info->jump);
800 else
801 code = GET_CODE (cond);
803 if ((if_info->cond_earliest == if_info->jump || cond_complex)
804 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
806 rtx tmp;
808 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
809 XEXP (cond, 1));
810 tmp = gen_rtx_SET (VOIDmode, x, tmp);
812 start_sequence ();
813 tmp = emit_insn (tmp);
815 if (recog_memoized (tmp) >= 0)
817 tmp = get_insns ();
818 end_sequence ();
819 emit_insn (tmp);
821 if_info->cond_earliest = if_info->jump;
823 return x;
826 end_sequence ();
829 /* Don't even try if the comparison operands or the mode of X are weird. */
830 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
831 return NULL_RTX;
833 return emit_store_flag (x, code, XEXP (cond, 0),
834 XEXP (cond, 1), VOIDmode,
835 (code == LTU || code == LEU
836 || code == GEU || code == GTU), normalize);
839 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
840 X is the destination/target and Y is the value to copy. */
842 static void
843 noce_emit_move_insn (rtx x, rtx y)
845 enum machine_mode outmode;
846 rtx outer, inner;
847 int bitpos;
849 if (GET_CODE (x) != STRICT_LOW_PART)
851 rtx seq, insn, target;
852 optab ot;
854 start_sequence ();
855 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
856 otherwise construct a suitable SET pattern ourselves. */
857 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
858 ? emit_move_insn (x, y)
859 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
860 seq = get_insns ();
861 end_sequence ();
863 if (recog_memoized (insn) <= 0)
865 if (GET_CODE (x) == ZERO_EXTRACT)
867 rtx op = XEXP (x, 0);
868 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
869 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
871 /* store_bit_field expects START to be relative to
872 BYTES_BIG_ENDIAN and adjusts this value for machines with
873 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
874 invoke store_bit_field again it is necessary to have the START
875 value from the first call. */
876 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
878 if (MEM_P (op))
879 start = BITS_PER_UNIT - start - size;
880 else
882 gcc_assert (REG_P (op));
883 start = BITS_PER_WORD - start - size;
887 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
888 store_bit_field (op, size, start, GET_MODE (x), y);
889 return;
892 switch (GET_RTX_CLASS (GET_CODE (y)))
894 case RTX_UNARY:
895 ot = code_to_optab[GET_CODE (y)];
896 if (ot)
898 start_sequence ();
899 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
900 if (target != NULL_RTX)
902 if (target != x)
903 emit_move_insn (x, target);
904 seq = get_insns ();
906 end_sequence ();
908 break;
910 case RTX_BIN_ARITH:
911 case RTX_COMM_ARITH:
912 ot = code_to_optab[GET_CODE (y)];
913 if (ot)
915 start_sequence ();
916 target = expand_binop (GET_MODE (y), ot,
917 XEXP (y, 0), XEXP (y, 1),
918 x, 0, OPTAB_DIRECT);
919 if (target != NULL_RTX)
921 if (target != x)
922 emit_move_insn (x, target);
923 seq = get_insns ();
925 end_sequence ();
927 break;
929 default:
930 break;
934 emit_insn (seq);
935 return;
938 outer = XEXP (x, 0);
939 inner = XEXP (outer, 0);
940 outmode = GET_MODE (outer);
941 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
942 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
945 /* Return sequence of instructions generated by if conversion. This
946 function calls end_sequence() to end the current stream, ensures
947 that are instructions are unshared, recognizable non-jump insns.
948 On failure, this function returns a NULL_RTX. */
950 static rtx
951 end_ifcvt_sequence (struct noce_if_info *if_info)
953 rtx insn;
954 rtx seq = get_insns ();
956 set_used_flags (if_info->x);
957 set_used_flags (if_info->cond);
958 unshare_all_rtl_in_chain (seq);
959 end_sequence ();
961 /* Make sure that all of the instructions emitted are recognizable,
962 and that we haven't introduced a new jump instruction.
963 As an exercise for the reader, build a general mechanism that
964 allows proper placement of required clobbers. */
965 for (insn = seq; insn; insn = NEXT_INSN (insn))
966 if (JUMP_P (insn)
967 || recog_memoized (insn) == -1)
968 return NULL_RTX;
970 return seq;
973 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
974 "if (a == b) x = a; else x = b" into "x = b". */
976 static int
977 noce_try_move (struct noce_if_info *if_info)
979 rtx cond = if_info->cond;
980 enum rtx_code code = GET_CODE (cond);
981 rtx y, seq;
983 if (code != NE && code != EQ)
984 return FALSE;
986 /* This optimization isn't valid if either A or B could be a NaN
987 or a signed zero. */
988 if (HONOR_NANS (GET_MODE (if_info->x))
989 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
990 return FALSE;
992 /* Check whether the operands of the comparison are A and in
993 either order. */
994 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
995 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
996 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
997 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
999 y = (code == EQ) ? if_info->a : if_info->b;
1001 /* Avoid generating the move if the source is the destination. */
1002 if (! rtx_equal_p (if_info->x, y))
1004 start_sequence ();
1005 noce_emit_move_insn (if_info->x, y);
1006 seq = end_ifcvt_sequence (if_info);
1007 if (!seq)
1008 return FALSE;
1010 emit_insn_before_setloc (seq, if_info->jump,
1011 INSN_LOCATOR (if_info->insn_a));
1013 return TRUE;
1015 return FALSE;
1018 /* Convert "if (test) x = 1; else x = 0".
1020 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1021 tried in noce_try_store_flag_constants after noce_try_cmove has had
1022 a go at the conversion. */
1024 static int
1025 noce_try_store_flag (struct noce_if_info *if_info)
1027 int reversep;
1028 rtx target, seq;
1030 if (CONST_INT_P (if_info->b)
1031 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1032 && if_info->a == const0_rtx)
1033 reversep = 0;
1034 else if (if_info->b == const0_rtx
1035 && CONST_INT_P (if_info->a)
1036 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1037 && (reversed_comparison_code (if_info->cond, if_info->jump)
1038 != UNKNOWN))
1039 reversep = 1;
1040 else
1041 return FALSE;
1043 start_sequence ();
1045 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1046 if (target)
1048 if (target != if_info->x)
1049 noce_emit_move_insn (if_info->x, target);
1051 seq = end_ifcvt_sequence (if_info);
1052 if (! seq)
1053 return FALSE;
1055 emit_insn_before_setloc (seq, if_info->jump,
1056 INSN_LOCATOR (if_info->insn_a));
1057 return TRUE;
1059 else
1061 end_sequence ();
1062 return FALSE;
1066 /* Convert "if (test) x = a; else x = b", for A and B constant. */
1068 static int
1069 noce_try_store_flag_constants (struct noce_if_info *if_info)
1071 rtx target, seq;
1072 int reversep;
1073 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1074 int normalize, can_reverse;
1075 enum machine_mode mode;
1077 if (CONST_INT_P (if_info->a)
1078 && CONST_INT_P (if_info->b))
1080 mode = GET_MODE (if_info->x);
1081 ifalse = INTVAL (if_info->a);
1082 itrue = INTVAL (if_info->b);
1084 /* Make sure we can represent the difference between the two values. */
1085 if ((itrue - ifalse > 0)
1086 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1087 return FALSE;
1089 diff = trunc_int_for_mode (itrue - ifalse, mode);
1091 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
1092 != UNKNOWN);
1094 reversep = 0;
1095 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1096 normalize = 0;
1097 else if (ifalse == 0 && exact_log2 (itrue) >= 0
1098 && (STORE_FLAG_VALUE == 1
1099 || if_info->branch_cost >= 2))
1100 normalize = 1;
1101 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
1102 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
1103 normalize = 1, reversep = 1;
1104 else if (itrue == -1
1105 && (STORE_FLAG_VALUE == -1
1106 || if_info->branch_cost >= 2))
1107 normalize = -1;
1108 else if (ifalse == -1 && can_reverse
1109 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
1110 normalize = -1, reversep = 1;
1111 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
1112 || if_info->branch_cost >= 3)
1113 normalize = -1;
1114 else
1115 return FALSE;
1117 if (reversep)
1119 tmp = itrue; itrue = ifalse; ifalse = tmp;
1120 diff = trunc_int_for_mode (-diff, mode);
1123 start_sequence ();
1124 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1125 if (! target)
1127 end_sequence ();
1128 return FALSE;
1131 /* if (test) x = 3; else x = 4;
1132 => x = 3 + (test == 0); */
1133 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1135 target = expand_simple_binop (mode,
1136 (diff == STORE_FLAG_VALUE
1137 ? PLUS : MINUS),
1138 GEN_INT (ifalse), target, if_info->x, 0,
1139 OPTAB_WIDEN);
1142 /* if (test) x = 8; else x = 0;
1143 => x = (test != 0) << 3; */
1144 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1146 target = expand_simple_binop (mode, ASHIFT,
1147 target, GEN_INT (tmp), if_info->x, 0,
1148 OPTAB_WIDEN);
1151 /* if (test) x = -1; else x = b;
1152 => x = -(test != 0) | b; */
1153 else if (itrue == -1)
1155 target = expand_simple_binop (mode, IOR,
1156 target, GEN_INT (ifalse), if_info->x, 0,
1157 OPTAB_WIDEN);
1160 /* if (test) x = a; else x = b;
1161 => x = (-(test != 0) & (b - a)) + a; */
1162 else
1164 target = expand_simple_binop (mode, AND,
1165 target, GEN_INT (diff), if_info->x, 0,
1166 OPTAB_WIDEN);
1167 if (target)
1168 target = expand_simple_binop (mode, PLUS,
1169 target, GEN_INT (ifalse),
1170 if_info->x, 0, OPTAB_WIDEN);
1173 if (! target)
1175 end_sequence ();
1176 return FALSE;
1179 if (target != if_info->x)
1180 noce_emit_move_insn (if_info->x, target);
1182 seq = end_ifcvt_sequence (if_info);
1183 if (!seq)
1184 return FALSE;
1186 emit_insn_before_setloc (seq, if_info->jump,
1187 INSN_LOCATOR (if_info->insn_a));
1188 return TRUE;
1191 return FALSE;
1194 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1195 similarly for "foo--". */
1197 static int
1198 noce_try_addcc (struct noce_if_info *if_info)
1200 rtx target, seq;
1201 int subtract, normalize;
1203 if (GET_CODE (if_info->a) == PLUS
1204 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1205 && (reversed_comparison_code (if_info->cond, if_info->jump)
1206 != UNKNOWN))
1208 rtx cond = if_info->cond;
1209 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1211 /* First try to use addcc pattern. */
1212 if (general_operand (XEXP (cond, 0), VOIDmode)
1213 && general_operand (XEXP (cond, 1), VOIDmode))
1215 start_sequence ();
1216 target = emit_conditional_add (if_info->x, code,
1217 XEXP (cond, 0),
1218 XEXP (cond, 1),
1219 VOIDmode,
1220 if_info->b,
1221 XEXP (if_info->a, 1),
1222 GET_MODE (if_info->x),
1223 (code == LTU || code == GEU
1224 || code == LEU || code == GTU));
1225 if (target)
1227 if (target != if_info->x)
1228 noce_emit_move_insn (if_info->x, target);
1230 seq = end_ifcvt_sequence (if_info);
1231 if (!seq)
1232 return FALSE;
1234 emit_insn_before_setloc (seq, if_info->jump,
1235 INSN_LOCATOR (if_info->insn_a));
1236 return TRUE;
1238 end_sequence ();
1241 /* If that fails, construct conditional increment or decrement using
1242 setcc. */
1243 if (if_info->branch_cost >= 2
1244 && (XEXP (if_info->a, 1) == const1_rtx
1245 || XEXP (if_info->a, 1) == constm1_rtx))
1247 start_sequence ();
1248 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1249 subtract = 0, normalize = 0;
1250 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1251 subtract = 1, normalize = 0;
1252 else
1253 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1256 target = noce_emit_store_flag (if_info,
1257 gen_reg_rtx (GET_MODE (if_info->x)),
1258 1, normalize);
1260 if (target)
1261 target = expand_simple_binop (GET_MODE (if_info->x),
1262 subtract ? MINUS : PLUS,
1263 if_info->b, target, if_info->x,
1264 0, OPTAB_WIDEN);
1265 if (target)
1267 if (target != if_info->x)
1268 noce_emit_move_insn (if_info->x, target);
1270 seq = end_ifcvt_sequence (if_info);
1271 if (!seq)
1272 return FALSE;
1274 emit_insn_before_setloc (seq, if_info->jump,
1275 INSN_LOCATOR (if_info->insn_a));
1276 return TRUE;
1278 end_sequence ();
1282 return FALSE;
1285 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1287 static int
1288 noce_try_store_flag_mask (struct noce_if_info *if_info)
1290 rtx target, seq;
1291 int reversep;
1293 reversep = 0;
1294 if ((if_info->branch_cost >= 2
1295 || STORE_FLAG_VALUE == -1)
1296 && ((if_info->a == const0_rtx
1297 && rtx_equal_p (if_info->b, if_info->x))
1298 || ((reversep = (reversed_comparison_code (if_info->cond,
1299 if_info->jump)
1300 != UNKNOWN))
1301 && if_info->b == const0_rtx
1302 && rtx_equal_p (if_info->a, if_info->x))))
1304 start_sequence ();
1305 target = noce_emit_store_flag (if_info,
1306 gen_reg_rtx (GET_MODE (if_info->x)),
1307 reversep, -1);
1308 if (target)
1309 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1310 if_info->x,
1311 target, if_info->x, 0,
1312 OPTAB_WIDEN);
1314 if (target)
1316 if (target != if_info->x)
1317 noce_emit_move_insn (if_info->x, target);
1319 seq = end_ifcvt_sequence (if_info);
1320 if (!seq)
1321 return FALSE;
1323 emit_insn_before_setloc (seq, if_info->jump,
1324 INSN_LOCATOR (if_info->insn_a));
1325 return TRUE;
1328 end_sequence ();
1331 return FALSE;
1334 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1336 static rtx
1337 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1338 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1340 rtx target ATTRIBUTE_UNUSED;
1341 int unsignedp ATTRIBUTE_UNUSED;
1343 /* If earliest == jump, try to build the cmove insn directly.
1344 This is helpful when combine has created some complex condition
1345 (like for alpha's cmovlbs) that we can't hope to regenerate
1346 through the normal interface. */
1348 if (if_info->cond_earliest == if_info->jump)
1350 rtx tmp;
1352 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1353 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1354 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1356 start_sequence ();
1357 tmp = emit_insn (tmp);
1359 if (recog_memoized (tmp) >= 0)
1361 tmp = get_insns ();
1362 end_sequence ();
1363 emit_insn (tmp);
1365 return x;
1368 end_sequence ();
1371 /* Don't even try if the comparison operands are weird. */
1372 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1373 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1374 return NULL_RTX;
1376 #if HAVE_conditional_move
1377 unsignedp = (code == LTU || code == GEU
1378 || code == LEU || code == GTU);
1380 target = emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1381 vtrue, vfalse, GET_MODE (x),
1382 unsignedp);
1383 if (target)
1384 return target;
1386 /* We might be faced with a situation like:
1388 x = (reg:M TARGET)
1389 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1390 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1392 We can't do a conditional move in mode M, but it's possible that we
1393 could do a conditional move in mode N instead and take a subreg of
1394 the result.
1396 If we can't create new pseudos, though, don't bother. */
1397 if (reload_completed)
1398 return NULL_RTX;
1400 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1402 rtx reg_vtrue = SUBREG_REG (vtrue);
1403 rtx reg_vfalse = SUBREG_REG (vfalse);
1404 unsigned int byte_vtrue = SUBREG_BYTE (vtrue);
1405 unsigned int byte_vfalse = SUBREG_BYTE (vfalse);
1406 rtx promoted_target;
1408 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1409 || byte_vtrue != byte_vfalse
1410 || (SUBREG_PROMOTED_VAR_P (vtrue)
1411 != SUBREG_PROMOTED_VAR_P (vfalse))
1412 || (SUBREG_PROMOTED_UNSIGNED_P (vtrue)
1413 != SUBREG_PROMOTED_UNSIGNED_P (vfalse)))
1414 return NULL_RTX;
1416 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1418 target = emit_conditional_move (promoted_target, code, cmp_a, cmp_b,
1419 VOIDmode, reg_vtrue, reg_vfalse,
1420 GET_MODE (reg_vtrue), unsignedp);
1421 /* Nope, couldn't do it in that mode either. */
1422 if (!target)
1423 return NULL_RTX;
1425 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1426 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1427 SUBREG_PROMOTED_UNSIGNED_SET (target, SUBREG_PROMOTED_UNSIGNED_P (vtrue));
1428 emit_move_insn (x, target);
1429 return x;
1431 else
1432 return NULL_RTX;
1433 #else
1434 /* We'll never get here, as noce_process_if_block doesn't call the
1435 functions involved. Ifdef code, however, should be discouraged
1436 because it leads to typos in the code not selected. However,
1437 emit_conditional_move won't exist either. */
1438 return NULL_RTX;
1439 #endif
1442 /* Try only simple constants and registers here. More complex cases
1443 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1444 has had a go at it. */
1446 static int
1447 noce_try_cmove (struct noce_if_info *if_info)
1449 enum rtx_code code;
1450 rtx target, seq;
1452 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1453 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1455 start_sequence ();
1457 code = GET_CODE (if_info->cond);
1458 target = noce_emit_cmove (if_info, if_info->x, code,
1459 XEXP (if_info->cond, 0),
1460 XEXP (if_info->cond, 1),
1461 if_info->a, if_info->b);
1463 if (target)
1465 if (target != if_info->x)
1466 noce_emit_move_insn (if_info->x, target);
1468 seq = end_ifcvt_sequence (if_info);
1469 if (!seq)
1470 return FALSE;
1472 emit_insn_before_setloc (seq, if_info->jump,
1473 INSN_LOCATOR (if_info->insn_a));
1474 return TRUE;
1476 else
1478 end_sequence ();
1479 return FALSE;
1483 return FALSE;
1486 /* Try more complex cases involving conditional_move. */
1488 static int
1489 noce_try_cmove_arith (struct noce_if_info *if_info)
1491 rtx a = if_info->a;
1492 rtx b = if_info->b;
1493 rtx x = if_info->x;
1494 rtx orig_a, orig_b;
1495 rtx insn_a, insn_b;
1496 rtx tmp, target;
1497 int is_mem = 0;
1498 int insn_cost;
1499 enum rtx_code code;
1501 /* A conditional move from two memory sources is equivalent to a
1502 conditional on their addresses followed by a load. Don't do this
1503 early because it'll screw alias analysis. Note that we've
1504 already checked for no side effects. */
1505 /* ??? FIXME: Magic number 5. */
1506 if (cse_not_expected
1507 && MEM_P (a) && MEM_P (b)
1508 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b)
1509 && if_info->branch_cost >= 5)
1511 enum machine_mode address_mode
1512 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (a));
1514 a = XEXP (a, 0);
1515 b = XEXP (b, 0);
1516 x = gen_reg_rtx (address_mode);
1517 is_mem = 1;
1520 /* ??? We could handle this if we knew that a load from A or B could
1521 not fault. This is also true if we've already loaded
1522 from the address along the path from ENTRY. */
1523 else if (may_trap_p (a) || may_trap_p (b))
1524 return FALSE;
1526 /* if (test) x = a + b; else x = c - d;
1527 => y = a + b;
1528 x = c - d;
1529 if (test)
1530 x = y;
1533 code = GET_CODE (if_info->cond);
1534 insn_a = if_info->insn_a;
1535 insn_b = if_info->insn_b;
1537 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1538 if insn_rtx_cost can't be estimated. */
1539 if (insn_a)
1541 insn_cost
1542 = insn_rtx_cost (PATTERN (insn_a),
1543 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1544 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1545 return FALSE;
1547 else
1548 insn_cost = 0;
1550 if (insn_b)
1552 insn_cost
1553 += insn_rtx_cost (PATTERN (insn_b),
1554 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1555 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1556 return FALSE;
1559 /* Possibly rearrange operands to make things come out more natural. */
1560 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1562 int reversep = 0;
1563 if (rtx_equal_p (b, x))
1564 reversep = 1;
1565 else if (general_operand (b, GET_MODE (b)))
1566 reversep = 1;
1568 if (reversep)
1570 code = reversed_comparison_code (if_info->cond, if_info->jump);
1571 tmp = a, a = b, b = tmp;
1572 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1576 start_sequence ();
1578 orig_a = a;
1579 orig_b = b;
1581 /* If either operand is complex, load it into a register first.
1582 The best way to do this is to copy the original insn. In this
1583 way we preserve any clobbers etc that the insn may have had.
1584 This is of course not possible in the IS_MEM case. */
1585 if (! general_operand (a, GET_MODE (a)))
1587 rtx set;
1589 if (is_mem)
1591 tmp = gen_reg_rtx (GET_MODE (a));
1592 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1594 else if (! insn_a)
1595 goto end_seq_and_fail;
1596 else
1598 a = gen_reg_rtx (GET_MODE (a));
1599 tmp = copy_rtx (insn_a);
1600 set = single_set (tmp);
1601 SET_DEST (set) = a;
1602 tmp = emit_insn (PATTERN (tmp));
1604 if (recog_memoized (tmp) < 0)
1605 goto end_seq_and_fail;
1607 if (! general_operand (b, GET_MODE (b)))
1609 rtx set, last;
1611 if (is_mem)
1613 tmp = gen_reg_rtx (GET_MODE (b));
1614 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1616 else if (! insn_b)
1617 goto end_seq_and_fail;
1618 else
1620 b = gen_reg_rtx (GET_MODE (b));
1621 tmp = copy_rtx (insn_b);
1622 set = single_set (tmp);
1623 SET_DEST (set) = b;
1624 tmp = PATTERN (tmp);
1627 /* If insn to set up A clobbers any registers B depends on, try to
1628 swap insn that sets up A with the one that sets up B. If even
1629 that doesn't help, punt. */
1630 last = get_last_insn ();
1631 if (last && modified_in_p (orig_b, last))
1633 tmp = emit_insn_before (tmp, get_insns ());
1634 if (modified_in_p (orig_a, tmp))
1635 goto end_seq_and_fail;
1637 else
1638 tmp = emit_insn (tmp);
1640 if (recog_memoized (tmp) < 0)
1641 goto end_seq_and_fail;
1644 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1645 XEXP (if_info->cond, 1), a, b);
1647 if (! target)
1648 goto end_seq_and_fail;
1650 /* If we're handling a memory for above, emit the load now. */
1651 if (is_mem)
1653 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1655 /* Copy over flags as appropriate. */
1656 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1657 MEM_VOLATILE_P (tmp) = 1;
1658 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1659 MEM_IN_STRUCT_P (tmp) = 1;
1660 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1661 MEM_SCALAR_P (tmp) = 1;
1662 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1663 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1664 set_mem_align (tmp,
1665 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1667 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
1668 set_mem_addr_space (tmp, MEM_ADDR_SPACE (if_info->a));
1670 noce_emit_move_insn (if_info->x, tmp);
1672 else if (target != x)
1673 noce_emit_move_insn (x, target);
1675 tmp = end_ifcvt_sequence (if_info);
1676 if (!tmp)
1677 return FALSE;
1679 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1680 return TRUE;
1682 end_seq_and_fail:
1683 end_sequence ();
1684 return FALSE;
1687 /* For most cases, the simplified condition we found is the best
1688 choice, but this is not the case for the min/max/abs transforms.
1689 For these we wish to know that it is A or B in the condition. */
1691 static rtx
1692 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1693 rtx *earliest)
1695 rtx cond, set, insn;
1696 int reverse;
1698 /* If target is already mentioned in the known condition, return it. */
1699 if (reg_mentioned_p (target, if_info->cond))
1701 *earliest = if_info->cond_earliest;
1702 return if_info->cond;
1705 set = pc_set (if_info->jump);
1706 cond = XEXP (SET_SRC (set), 0);
1707 reverse
1708 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1709 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1710 if (if_info->then_else_reversed)
1711 reverse = !reverse;
1713 /* If we're looking for a constant, try to make the conditional
1714 have that constant in it. There are two reasons why it may
1715 not have the constant we want:
1717 1. GCC may have needed to put the constant in a register, because
1718 the target can't compare directly against that constant. For
1719 this case, we look for a SET immediately before the comparison
1720 that puts a constant in that register.
1722 2. GCC may have canonicalized the conditional, for example
1723 replacing "if x < 4" with "if x <= 3". We can undo that (or
1724 make equivalent types of changes) to get the constants we need
1725 if they're off by one in the right direction. */
1727 if (CONST_INT_P (target))
1729 enum rtx_code code = GET_CODE (if_info->cond);
1730 rtx op_a = XEXP (if_info->cond, 0);
1731 rtx op_b = XEXP (if_info->cond, 1);
1732 rtx prev_insn;
1734 /* First, look to see if we put a constant in a register. */
1735 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1736 if (prev_insn
1737 && BLOCK_FOR_INSN (prev_insn)
1738 == BLOCK_FOR_INSN (if_info->cond_earliest)
1739 && INSN_P (prev_insn)
1740 && GET_CODE (PATTERN (prev_insn)) == SET)
1742 rtx src = find_reg_equal_equiv_note (prev_insn);
1743 if (!src)
1744 src = SET_SRC (PATTERN (prev_insn));
1745 if (CONST_INT_P (src))
1747 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1748 op_a = src;
1749 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1750 op_b = src;
1752 if (CONST_INT_P (op_a))
1754 rtx tmp = op_a;
1755 op_a = op_b;
1756 op_b = tmp;
1757 code = swap_condition (code);
1762 /* Now, look to see if we can get the right constant by
1763 adjusting the conditional. */
1764 if (CONST_INT_P (op_b))
1766 HOST_WIDE_INT desired_val = INTVAL (target);
1767 HOST_WIDE_INT actual_val = INTVAL (op_b);
1769 switch (code)
1771 case LT:
1772 if (actual_val == desired_val + 1)
1774 code = LE;
1775 op_b = GEN_INT (desired_val);
1777 break;
1778 case LE:
1779 if (actual_val == desired_val - 1)
1781 code = LT;
1782 op_b = GEN_INT (desired_val);
1784 break;
1785 case GT:
1786 if (actual_val == desired_val - 1)
1788 code = GE;
1789 op_b = GEN_INT (desired_val);
1791 break;
1792 case GE:
1793 if (actual_val == desired_val + 1)
1795 code = GT;
1796 op_b = GEN_INT (desired_val);
1798 break;
1799 default:
1800 break;
1804 /* If we made any changes, generate a new conditional that is
1805 equivalent to what we started with, but has the right
1806 constants in it. */
1807 if (code != GET_CODE (if_info->cond)
1808 || op_a != XEXP (if_info->cond, 0)
1809 || op_b != XEXP (if_info->cond, 1))
1811 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1812 *earliest = if_info->cond_earliest;
1813 return cond;
1817 cond = canonicalize_condition (if_info->jump, cond, reverse,
1818 earliest, target, false, true);
1819 if (! cond || ! reg_mentioned_p (target, cond))
1820 return NULL;
1822 /* We almost certainly searched back to a different place.
1823 Need to re-verify correct lifetimes. */
1825 /* X may not be mentioned in the range (cond_earliest, jump]. */
1826 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1827 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1828 return NULL;
1830 /* A and B may not be modified in the range [cond_earliest, jump). */
1831 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1832 if (INSN_P (insn)
1833 && (modified_in_p (if_info->a, insn)
1834 || modified_in_p (if_info->b, insn)))
1835 return NULL;
1837 return cond;
1840 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1842 static int
1843 noce_try_minmax (struct noce_if_info *if_info)
1845 rtx cond, earliest, target, seq;
1846 enum rtx_code code, op;
1847 int unsignedp;
1849 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1850 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1851 to get the target to tell us... */
1852 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1853 || HONOR_NANS (GET_MODE (if_info->x)))
1854 return FALSE;
1856 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1857 if (!cond)
1858 return FALSE;
1860 /* Verify the condition is of the form we expect, and canonicalize
1861 the comparison code. */
1862 code = GET_CODE (cond);
1863 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1865 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1866 return FALSE;
1868 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1870 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1871 return FALSE;
1872 code = swap_condition (code);
1874 else
1875 return FALSE;
1877 /* Determine what sort of operation this is. Note that the code is for
1878 a taken branch, so the code->operation mapping appears backwards. */
1879 switch (code)
1881 case LT:
1882 case LE:
1883 case UNLT:
1884 case UNLE:
1885 op = SMAX;
1886 unsignedp = 0;
1887 break;
1888 case GT:
1889 case GE:
1890 case UNGT:
1891 case UNGE:
1892 op = SMIN;
1893 unsignedp = 0;
1894 break;
1895 case LTU:
1896 case LEU:
1897 op = UMAX;
1898 unsignedp = 1;
1899 break;
1900 case GTU:
1901 case GEU:
1902 op = UMIN;
1903 unsignedp = 1;
1904 break;
1905 default:
1906 return FALSE;
1909 start_sequence ();
1911 target = expand_simple_binop (GET_MODE (if_info->x), op,
1912 if_info->a, if_info->b,
1913 if_info->x, unsignedp, OPTAB_WIDEN);
1914 if (! target)
1916 end_sequence ();
1917 return FALSE;
1919 if (target != if_info->x)
1920 noce_emit_move_insn (if_info->x, target);
1922 seq = end_ifcvt_sequence (if_info);
1923 if (!seq)
1924 return FALSE;
1926 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1927 if_info->cond = cond;
1928 if_info->cond_earliest = earliest;
1930 return TRUE;
1933 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
1934 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
1935 etc. */
1937 static int
1938 noce_try_abs (struct noce_if_info *if_info)
1940 rtx cond, earliest, target, seq, a, b, c;
1941 int negate;
1942 bool one_cmpl = false;
1944 /* Reject modes with signed zeros. */
1945 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1946 return FALSE;
1948 /* Recognize A and B as constituting an ABS or NABS. The canonical
1949 form is a branch around the negation, taken when the object is the
1950 first operand of a comparison against 0 that evaluates to true. */
1951 a = if_info->a;
1952 b = if_info->b;
1953 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1954 negate = 0;
1955 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1957 c = a; a = b; b = c;
1958 negate = 1;
1960 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
1962 negate = 0;
1963 one_cmpl = true;
1965 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
1967 c = a; a = b; b = c;
1968 negate = 1;
1969 one_cmpl = true;
1971 else
1972 return FALSE;
1974 cond = noce_get_alt_condition (if_info, b, &earliest);
1975 if (!cond)
1976 return FALSE;
1978 /* Verify the condition is of the form we expect. */
1979 if (rtx_equal_p (XEXP (cond, 0), b))
1980 c = XEXP (cond, 1);
1981 else if (rtx_equal_p (XEXP (cond, 1), b))
1983 c = XEXP (cond, 0);
1984 negate = !negate;
1986 else
1987 return FALSE;
1989 /* Verify that C is zero. Search one step backward for a
1990 REG_EQUAL note or a simple source if necessary. */
1991 if (REG_P (c))
1993 rtx set, insn = prev_nonnote_insn (earliest);
1994 if (insn
1995 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
1996 && (set = single_set (insn))
1997 && rtx_equal_p (SET_DEST (set), c))
1999 rtx note = find_reg_equal_equiv_note (insn);
2000 if (note)
2001 c = XEXP (note, 0);
2002 else
2003 c = SET_SRC (set);
2005 else
2006 return FALSE;
2008 if (MEM_P (c)
2009 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2010 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2011 c = get_pool_constant (XEXP (c, 0));
2013 /* Work around funny ideas get_condition has wrt canonicalization.
2014 Note that these rtx constants are known to be CONST_INT, and
2015 therefore imply integer comparisons. */
2016 if (c == constm1_rtx && GET_CODE (cond) == GT)
2018 else if (c == const1_rtx && GET_CODE (cond) == LT)
2020 else if (c != CONST0_RTX (GET_MODE (b)))
2021 return FALSE;
2023 /* Determine what sort of operation this is. */
2024 switch (GET_CODE (cond))
2026 case LT:
2027 case LE:
2028 case UNLT:
2029 case UNLE:
2030 negate = !negate;
2031 break;
2032 case GT:
2033 case GE:
2034 case UNGT:
2035 case UNGE:
2036 break;
2037 default:
2038 return FALSE;
2041 start_sequence ();
2042 if (one_cmpl)
2043 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2044 if_info->x);
2045 else
2046 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2048 /* ??? It's a quandary whether cmove would be better here, especially
2049 for integers. Perhaps combine will clean things up. */
2050 if (target && negate)
2052 if (one_cmpl)
2053 target = expand_simple_unop (GET_MODE (target), NOT, target,
2054 if_info->x, 0);
2055 else
2056 target = expand_simple_unop (GET_MODE (target), NEG, target,
2057 if_info->x, 0);
2060 if (! target)
2062 end_sequence ();
2063 return FALSE;
2066 if (target != if_info->x)
2067 noce_emit_move_insn (if_info->x, target);
2069 seq = end_ifcvt_sequence (if_info);
2070 if (!seq)
2071 return FALSE;
2073 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2074 if_info->cond = cond;
2075 if_info->cond_earliest = earliest;
2077 return TRUE;
2080 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2082 static int
2083 noce_try_sign_mask (struct noce_if_info *if_info)
2085 rtx cond, t, m, c, seq;
2086 enum machine_mode mode;
2087 enum rtx_code code;
2088 bool t_unconditional;
2090 cond = if_info->cond;
2091 code = GET_CODE (cond);
2092 m = XEXP (cond, 0);
2093 c = XEXP (cond, 1);
2095 t = NULL_RTX;
2096 if (if_info->a == const0_rtx)
2098 if ((code == LT && c == const0_rtx)
2099 || (code == LE && c == constm1_rtx))
2100 t = if_info->b;
2102 else if (if_info->b == const0_rtx)
2104 if ((code == GE && c == const0_rtx)
2105 || (code == GT && c == constm1_rtx))
2106 t = if_info->a;
2109 if (! t || side_effects_p (t))
2110 return FALSE;
2112 /* We currently don't handle different modes. */
2113 mode = GET_MODE (t);
2114 if (GET_MODE (m) != mode)
2115 return FALSE;
2117 /* This is only profitable if T is unconditionally executed/evaluated in the
2118 original insn sequence or T is cheap. The former happens if B is the
2119 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2120 INSN_B which can happen for e.g. conditional stores to memory. For the
2121 cost computation use the block TEST_BB where the evaluation will end up
2122 after the transformation. */
2123 t_unconditional =
2124 (t == if_info->b
2125 && (if_info->insn_b == NULL_RTX
2126 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2127 if (!(t_unconditional
2128 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
2129 < COSTS_N_INSNS (2))))
2130 return FALSE;
2132 start_sequence ();
2133 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2134 "(signed) m >> 31" directly. This benefits targets with specialized
2135 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2136 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2137 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2138 : NULL_RTX;
2140 if (!t)
2142 end_sequence ();
2143 return FALSE;
2146 noce_emit_move_insn (if_info->x, t);
2148 seq = end_ifcvt_sequence (if_info);
2149 if (!seq)
2150 return FALSE;
2152 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
2153 return TRUE;
2157 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2158 transformations. */
2160 static int
2161 noce_try_bitop (struct noce_if_info *if_info)
2163 rtx cond, x, a, result, seq;
2164 enum machine_mode mode;
2165 enum rtx_code code;
2166 int bitnum;
2168 x = if_info->x;
2169 cond = if_info->cond;
2170 code = GET_CODE (cond);
2172 /* Check for no else condition. */
2173 if (! rtx_equal_p (x, if_info->b))
2174 return FALSE;
2176 /* Check for a suitable condition. */
2177 if (code != NE && code != EQ)
2178 return FALSE;
2179 if (XEXP (cond, 1) != const0_rtx)
2180 return FALSE;
2181 cond = XEXP (cond, 0);
2183 /* ??? We could also handle AND here. */
2184 if (GET_CODE (cond) == ZERO_EXTRACT)
2186 if (XEXP (cond, 1) != const1_rtx
2187 || !CONST_INT_P (XEXP (cond, 2))
2188 || ! rtx_equal_p (x, XEXP (cond, 0)))
2189 return FALSE;
2190 bitnum = INTVAL (XEXP (cond, 2));
2191 mode = GET_MODE (x);
2192 if (BITS_BIG_ENDIAN)
2193 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2194 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2195 return FALSE;
2197 else
2198 return FALSE;
2200 a = if_info->a;
2201 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2203 /* Check for "if (X & C) x = x op C". */
2204 if (! rtx_equal_p (x, XEXP (a, 0))
2205 || !CONST_INT_P (XEXP (a, 1))
2206 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2207 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2208 return FALSE;
2210 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2211 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2212 if (GET_CODE (a) == IOR)
2213 result = (code == NE) ? a : NULL_RTX;
2214 else if (code == NE)
2216 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2217 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2218 result = simplify_gen_binary (IOR, mode, x, result);
2220 else
2222 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2223 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2224 result = simplify_gen_binary (AND, mode, x, result);
2227 else if (GET_CODE (a) == AND)
2229 /* Check for "if (X & C) x &= ~C". */
2230 if (! rtx_equal_p (x, XEXP (a, 0))
2231 || !CONST_INT_P (XEXP (a, 1))
2232 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2233 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2234 return FALSE;
2236 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2237 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2238 result = (code == EQ) ? a : NULL_RTX;
2240 else
2241 return FALSE;
2243 if (result)
2245 start_sequence ();
2246 noce_emit_move_insn (x, result);
2247 seq = end_ifcvt_sequence (if_info);
2248 if (!seq)
2249 return FALSE;
2251 emit_insn_before_setloc (seq, if_info->jump,
2252 INSN_LOCATOR (if_info->insn_a));
2254 return TRUE;
2258 /* Similar to get_condition, only the resulting condition must be
2259 valid at JUMP, instead of at EARLIEST.
2261 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2262 THEN block of the caller, and we have to reverse the condition. */
2264 static rtx
2265 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2267 rtx cond, set, tmp;
2268 bool reverse;
2270 if (! any_condjump_p (jump))
2271 return NULL_RTX;
2273 set = pc_set (jump);
2275 /* If this branches to JUMP_LABEL when the condition is false,
2276 reverse the condition. */
2277 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2278 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2280 /* We may have to reverse because the caller's if block is not canonical,
2281 i.e. the THEN block isn't the fallthrough block for the TEST block
2282 (see find_if_header). */
2283 if (then_else_reversed)
2284 reverse = !reverse;
2286 /* If the condition variable is a register and is MODE_INT, accept it. */
2288 cond = XEXP (SET_SRC (set), 0);
2289 tmp = XEXP (cond, 0);
2290 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2292 *earliest = jump;
2294 if (reverse)
2295 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2296 GET_MODE (cond), tmp, XEXP (cond, 1));
2297 return cond;
2300 /* Otherwise, fall back on canonicalize_condition to do the dirty
2301 work of manipulating MODE_CC values and COMPARE rtx codes. */
2302 tmp = canonicalize_condition (jump, cond, reverse, earliest,
2303 NULL_RTX, false, true);
2305 /* We don't handle side-effects in the condition, like handling
2306 REG_INC notes and making sure no duplicate conditions are emitted. */
2307 if (tmp != NULL_RTX && side_effects_p (tmp))
2308 return NULL_RTX;
2310 return tmp;
2313 /* Return true if OP is ok for if-then-else processing. */
2315 static int
2316 noce_operand_ok (const_rtx op)
2318 /* We special-case memories, so handle any of them with
2319 no address side effects. */
2320 if (MEM_P (op))
2321 return ! side_effects_p (XEXP (op, 0));
2323 if (side_effects_p (op))
2324 return FALSE;
2326 return ! may_trap_p (op);
2329 /* Return true if a write into MEM may trap or fault. */
2331 static bool
2332 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2334 rtx addr;
2336 if (MEM_READONLY_P (mem))
2337 return true;
2339 if (may_trap_or_fault_p (mem))
2340 return true;
2342 addr = XEXP (mem, 0);
2344 /* Call target hook to avoid the effects of -fpic etc.... */
2345 addr = targetm.delegitimize_address (addr);
2347 while (addr)
2348 switch (GET_CODE (addr))
2350 case CONST:
2351 case PRE_DEC:
2352 case PRE_INC:
2353 case POST_DEC:
2354 case POST_INC:
2355 case POST_MODIFY:
2356 addr = XEXP (addr, 0);
2357 break;
2358 case LO_SUM:
2359 case PRE_MODIFY:
2360 addr = XEXP (addr, 1);
2361 break;
2362 case PLUS:
2363 if (CONST_INT_P (XEXP (addr, 1)))
2364 addr = XEXP (addr, 0);
2365 else
2366 return false;
2367 break;
2368 case LABEL_REF:
2369 return true;
2370 case SYMBOL_REF:
2371 if (SYMBOL_REF_DECL (addr)
2372 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2373 return true;
2374 return false;
2375 default:
2376 return false;
2379 return false;
2382 /* Return whether we can use store speculation for MEM. TOP_BB is the
2383 basic block above the conditional block where we are considering
2384 doing the speculative store. We look for whether MEM is set
2385 unconditionally later in the function. */
2387 static bool
2388 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2390 basic_block dominator;
2392 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2393 dominator != NULL;
2394 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2396 rtx insn;
2398 FOR_BB_INSNS (dominator, insn)
2400 /* If we see something that might be a memory barrier, we
2401 have to stop looking. Even if the MEM is set later in
2402 the function, we still don't want to set it
2403 unconditionally before the barrier. */
2404 if (INSN_P (insn)
2405 && (volatile_insn_p (PATTERN (insn))
2406 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2407 return false;
2409 if (memory_modified_in_insn_p (mem, insn))
2410 return true;
2411 if (modified_in_p (XEXP (mem, 0), insn))
2412 return false;
2417 return false;
2420 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2421 it without using conditional execution. Return TRUE if we were successful
2422 at converting the block. */
2424 static int
2425 noce_process_if_block (struct noce_if_info *if_info)
2427 basic_block test_bb = if_info->test_bb; /* test block */
2428 basic_block then_bb = if_info->then_bb; /* THEN */
2429 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2430 basic_block join_bb = if_info->join_bb; /* JOIN */
2431 rtx jump = if_info->jump;
2432 rtx cond = if_info->cond;
2433 rtx insn_a, insn_b;
2434 rtx set_a, set_b;
2435 rtx orig_x, x, a, b;
2437 /* We're looking for patterns of the form
2439 (1) if (...) x = a; else x = b;
2440 (2) x = b; if (...) x = a;
2441 (3) if (...) x = a; // as if with an initial x = x.
2443 The later patterns require jumps to be more expensive.
2445 ??? For future expansion, look for multiple X in such patterns. */
2447 /* Look for one of the potential sets. */
2448 insn_a = first_active_insn (then_bb);
2449 if (! insn_a
2450 || insn_a != last_active_insn (then_bb, FALSE)
2451 || (set_a = single_set (insn_a)) == NULL_RTX)
2452 return FALSE;
2454 x = SET_DEST (set_a);
2455 a = SET_SRC (set_a);
2457 /* Look for the other potential set. Make sure we've got equivalent
2458 destinations. */
2459 /* ??? This is overconservative. Storing to two different mems is
2460 as easy as conditionally computing the address. Storing to a
2461 single mem merely requires a scratch memory to use as one of the
2462 destination addresses; often the memory immediately below the
2463 stack pointer is available for this. */
2464 set_b = NULL_RTX;
2465 if (else_bb)
2467 insn_b = first_active_insn (else_bb);
2468 if (! insn_b
2469 || insn_b != last_active_insn (else_bb, FALSE)
2470 || (set_b = single_set (insn_b)) == NULL_RTX
2471 || ! rtx_equal_p (x, SET_DEST (set_b)))
2472 return FALSE;
2474 else
2476 insn_b = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2477 /* We're going to be moving the evaluation of B down from above
2478 COND_EARLIEST to JUMP. Make sure the relevant data is still
2479 intact. */
2480 if (! insn_b
2481 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
2482 || !NONJUMP_INSN_P (insn_b)
2483 || (set_b = single_set (insn_b)) == NULL_RTX
2484 || ! rtx_equal_p (x, SET_DEST (set_b))
2485 || ! noce_operand_ok (SET_SRC (set_b))
2486 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2487 || modified_between_p (SET_SRC (set_b), insn_b, jump)
2488 /* Likewise with X. In particular this can happen when
2489 noce_get_condition looks farther back in the instruction
2490 stream than one might expect. */
2491 || reg_overlap_mentioned_p (x, cond)
2492 || reg_overlap_mentioned_p (x, a)
2493 || modified_between_p (x, insn_b, jump))
2494 insn_b = set_b = NULL_RTX;
2497 /* If x has side effects then only the if-then-else form is safe to
2498 convert. But even in that case we would need to restore any notes
2499 (such as REG_INC) at then end. That can be tricky if
2500 noce_emit_move_insn expands to more than one insn, so disable the
2501 optimization entirely for now if there are side effects. */
2502 if (side_effects_p (x))
2503 return FALSE;
2505 b = (set_b ? SET_SRC (set_b) : x);
2507 /* Only operate on register destinations, and even then avoid extending
2508 the lifetime of hard registers on small register class machines. */
2509 orig_x = x;
2510 if (!REG_P (x)
2511 || (HARD_REGISTER_P (x)
2512 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
2514 if (GET_MODE (x) == BLKmode)
2515 return FALSE;
2517 if (GET_CODE (x) == ZERO_EXTRACT
2518 && (!CONST_INT_P (XEXP (x, 1))
2519 || !CONST_INT_P (XEXP (x, 2))))
2520 return FALSE;
2522 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2523 ? XEXP (x, 0) : x));
2526 /* Don't operate on sources that may trap or are volatile. */
2527 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2528 return FALSE;
2530 retry:
2531 /* Set up the info block for our subroutines. */
2532 if_info->insn_a = insn_a;
2533 if_info->insn_b = insn_b;
2534 if_info->x = x;
2535 if_info->a = a;
2536 if_info->b = b;
2538 /* Try optimizations in some approximation of a useful order. */
2539 /* ??? Should first look to see if X is live incoming at all. If it
2540 isn't, we don't need anything but an unconditional set. */
2542 /* Look and see if A and B are really the same. Avoid creating silly
2543 cmove constructs that no one will fix up later. */
2544 if (rtx_equal_p (a, b))
2546 /* If we have an INSN_B, we don't have to create any new rtl. Just
2547 move the instruction that we already have. If we don't have an
2548 INSN_B, that means that A == X, and we've got a noop move. In
2549 that case don't do anything and let the code below delete INSN_A. */
2550 if (insn_b && else_bb)
2552 rtx note;
2554 if (else_bb && insn_b == BB_END (else_bb))
2555 BB_END (else_bb) = PREV_INSN (insn_b);
2556 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2558 /* If there was a REG_EQUAL note, delete it since it may have been
2559 true due to this insn being after a jump. */
2560 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2561 remove_note (insn_b, note);
2563 insn_b = NULL_RTX;
2565 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2566 x must be executed twice. */
2567 else if (insn_b && side_effects_p (orig_x))
2568 return FALSE;
2570 x = orig_x;
2571 goto success;
2574 if (!set_b && MEM_P (orig_x))
2576 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2577 for optimizations if writing to x may trap or fault,
2578 i.e. it's a memory other than a static var or a stack slot,
2579 is misaligned on strict aligned machines or is read-only. If
2580 x is a read-only memory, then the program is valid only if we
2581 avoid the store into it. If there are stores on both the
2582 THEN and ELSE arms, then we can go ahead with the conversion;
2583 either the program is broken, or the condition is always
2584 false such that the other memory is selected. */
2585 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2586 return FALSE;
2588 /* Avoid store speculation: given "if (...) x = a" where x is a
2589 MEM, we only want to do the store if x is always set
2590 somewhere in the function. This avoids cases like
2591 if (pthread_mutex_trylock(mutex))
2592 ++global_variable;
2593 where we only want global_variable to be changed if the mutex
2594 is held. FIXME: This should ideally be expressed directly in
2595 RTL somehow. */
2596 if (!noce_can_store_speculate_p (test_bb, orig_x))
2597 return FALSE;
2600 if (noce_try_move (if_info))
2601 goto success;
2602 if (noce_try_store_flag (if_info))
2603 goto success;
2604 if (noce_try_bitop (if_info))
2605 goto success;
2606 if (noce_try_minmax (if_info))
2607 goto success;
2608 if (noce_try_abs (if_info))
2609 goto success;
2610 if (HAVE_conditional_move
2611 && noce_try_cmove (if_info))
2612 goto success;
2613 if (! targetm.have_conditional_execution ())
2615 if (noce_try_store_flag_constants (if_info))
2616 goto success;
2617 if (noce_try_addcc (if_info))
2618 goto success;
2619 if (noce_try_store_flag_mask (if_info))
2620 goto success;
2621 if (HAVE_conditional_move
2622 && noce_try_cmove_arith (if_info))
2623 goto success;
2624 if (noce_try_sign_mask (if_info))
2625 goto success;
2628 if (!else_bb && set_b)
2630 insn_b = set_b = NULL_RTX;
2631 b = orig_x;
2632 goto retry;
2635 return FALSE;
2637 success:
2639 /* If we used a temporary, fix it up now. */
2640 if (orig_x != x)
2642 rtx seq;
2644 start_sequence ();
2645 noce_emit_move_insn (orig_x, x);
2646 seq = get_insns ();
2647 set_used_flags (orig_x);
2648 unshare_all_rtl_in_chain (seq);
2649 end_sequence ();
2651 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2654 /* The original THEN and ELSE blocks may now be removed. The test block
2655 must now jump to the join block. If the test block and the join block
2656 can be merged, do so. */
2657 if (else_bb)
2659 delete_basic_block (else_bb);
2660 num_true_changes++;
2662 else
2663 remove_edge (find_edge (test_bb, join_bb));
2665 remove_edge (find_edge (then_bb, join_bb));
2666 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2667 delete_basic_block (then_bb);
2668 num_true_changes++;
2670 if (can_merge_blocks_p (test_bb, join_bb))
2672 merge_blocks (test_bb, join_bb);
2673 num_true_changes++;
2676 num_updated_if_blocks++;
2677 return TRUE;
2680 /* Check whether a block is suitable for conditional move conversion.
2681 Every insn must be a simple set of a register to a constant or a
2682 register. For each assignment, store the value in the array VALS,
2683 indexed by register number, then store the register number in
2684 REGS. COND is the condition we will test. */
2686 static int
2687 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs,
2688 rtx cond)
2690 rtx insn;
2692 /* We can only handle simple jumps at the end of the basic block.
2693 It is almost impossible to update the CFG otherwise. */
2694 insn = BB_END (bb);
2695 if (JUMP_P (insn) && !onlyjump_p (insn))
2696 return FALSE;
2698 FOR_BB_INSNS (bb, insn)
2700 rtx set, dest, src;
2702 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2703 continue;
2704 set = single_set (insn);
2705 if (!set)
2706 return FALSE;
2708 dest = SET_DEST (set);
2709 src = SET_SRC (set);
2710 if (!REG_P (dest)
2711 || (HARD_REGISTER_P (dest)
2712 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
2713 return FALSE;
2715 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2716 return FALSE;
2718 if (side_effects_p (src) || side_effects_p (dest))
2719 return FALSE;
2721 if (may_trap_p (src) || may_trap_p (dest))
2722 return FALSE;
2724 /* Don't try to handle this if the source register was
2725 modified earlier in the block. */
2726 if ((REG_P (src)
2727 && vals[REGNO (src)] != NULL)
2728 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2729 && vals[REGNO (SUBREG_REG (src))] != NULL))
2730 return FALSE;
2732 /* Don't try to handle this if the destination register was
2733 modified earlier in the block. */
2734 if (vals[REGNO (dest)] != NULL)
2735 return FALSE;
2737 /* Don't try to handle this if the condition uses the
2738 destination register. */
2739 if (reg_overlap_mentioned_p (dest, cond))
2740 return FALSE;
2742 /* Don't try to handle this if the source register is modified
2743 later in the block. */
2744 if (!CONSTANT_P (src)
2745 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2746 return FALSE;
2748 vals[REGNO (dest)] = src;
2750 VEC_safe_push (int, heap, *regs, REGNO (dest));
2753 return TRUE;
2756 /* Given a basic block BB suitable for conditional move conversion,
2757 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2758 register values depending on COND, emit the insns in the block as
2759 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2760 processed. The caller has started a sequence for the conversion.
2761 Return true if successful, false if something goes wrong. */
2763 static bool
2764 cond_move_convert_if_block (struct noce_if_info *if_infop,
2765 basic_block bb, rtx cond,
2766 rtx *then_vals, rtx *else_vals,
2767 bool else_block_p)
2769 enum rtx_code code;
2770 rtx insn, cond_arg0, cond_arg1;
2772 code = GET_CODE (cond);
2773 cond_arg0 = XEXP (cond, 0);
2774 cond_arg1 = XEXP (cond, 1);
2776 FOR_BB_INSNS (bb, insn)
2778 rtx set, target, dest, t, e;
2779 unsigned int regno;
2781 /* ??? Maybe emit conditional debug insn? */
2782 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
2783 continue;
2784 set = single_set (insn);
2785 gcc_assert (set && REG_P (SET_DEST (set)));
2787 dest = SET_DEST (set);
2788 regno = REGNO (dest);
2790 t = then_vals[regno];
2791 e = else_vals[regno];
2793 if (else_block_p)
2795 /* If this register was set in the then block, we already
2796 handled this case there. */
2797 if (t)
2798 continue;
2799 t = dest;
2800 gcc_assert (e);
2802 else
2804 gcc_assert (t);
2805 if (!e)
2806 e = dest;
2809 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2810 t, e);
2811 if (!target)
2812 return false;
2814 if (target != dest)
2815 noce_emit_move_insn (dest, target);
2818 return true;
2821 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2822 it using only conditional moves. Return TRUE if we were successful at
2823 converting the block. */
2825 static int
2826 cond_move_process_if_block (struct noce_if_info *if_info)
2828 basic_block test_bb = if_info->test_bb;
2829 basic_block then_bb = if_info->then_bb;
2830 basic_block else_bb = if_info->else_bb;
2831 basic_block join_bb = if_info->join_bb;
2832 rtx jump = if_info->jump;
2833 rtx cond = if_info->cond;
2834 rtx seq, loc_insn;
2835 int max_reg, size, c, reg;
2836 rtx *then_vals;
2837 rtx *else_vals;
2838 VEC (int, heap) *then_regs = NULL;
2839 VEC (int, heap) *else_regs = NULL;
2840 unsigned int i;
2842 /* Build a mapping for each block to the value used for each
2843 register. */
2844 max_reg = max_reg_num ();
2845 size = (max_reg + 1) * sizeof (rtx);
2846 then_vals = (rtx *) alloca (size);
2847 else_vals = (rtx *) alloca (size);
2848 memset (then_vals, 0, size);
2849 memset (else_vals, 0, size);
2851 /* Make sure the blocks are suitable. */
2852 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2853 || (else_bb
2854 && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2856 VEC_free (int, heap, then_regs);
2857 VEC_free (int, heap, else_regs);
2858 return FALSE;
2861 /* Make sure the blocks can be used together. If the same register
2862 is set in both blocks, and is not set to a constant in both
2863 cases, then both blocks must set it to the same register. We
2864 have already verified that if it is set to a register, that the
2865 source register does not change after the assignment. Also count
2866 the number of registers set in only one of the blocks. */
2867 c = 0;
2868 FOR_EACH_VEC_ELT (int, then_regs, i, reg)
2870 if (!then_vals[reg] && !else_vals[reg])
2871 continue;
2873 if (!else_vals[reg])
2874 ++c;
2875 else
2877 if (!CONSTANT_P (then_vals[reg])
2878 && !CONSTANT_P (else_vals[reg])
2879 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2881 VEC_free (int, heap, then_regs);
2882 VEC_free (int, heap, else_regs);
2883 return FALSE;
2888 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2889 FOR_EACH_VEC_ELT (int, else_regs, i, reg)
2890 if (!then_vals[reg])
2891 ++c;
2893 /* Make sure it is reasonable to convert this block. What matters
2894 is the number of assignments currently made in only one of the
2895 branches, since if we convert we are going to always execute
2896 them. */
2897 if (c > MAX_CONDITIONAL_EXECUTE)
2899 VEC_free (int, heap, then_regs);
2900 VEC_free (int, heap, else_regs);
2901 return FALSE;
2904 /* Try to emit the conditional moves. First do the then block,
2905 then do anything left in the else blocks. */
2906 start_sequence ();
2907 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2908 then_vals, else_vals, false)
2909 || (else_bb
2910 && !cond_move_convert_if_block (if_info, else_bb, cond,
2911 then_vals, else_vals, true)))
2913 end_sequence ();
2914 VEC_free (int, heap, then_regs);
2915 VEC_free (int, heap, else_regs);
2916 return FALSE;
2918 seq = end_ifcvt_sequence (if_info);
2919 if (!seq)
2921 VEC_free (int, heap, then_regs);
2922 VEC_free (int, heap, else_regs);
2923 return FALSE;
2926 loc_insn = first_active_insn (then_bb);
2927 if (!loc_insn)
2929 loc_insn = first_active_insn (else_bb);
2930 gcc_assert (loc_insn);
2932 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2934 if (else_bb)
2936 delete_basic_block (else_bb);
2937 num_true_changes++;
2939 else
2940 remove_edge (find_edge (test_bb, join_bb));
2942 remove_edge (find_edge (then_bb, join_bb));
2943 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2944 delete_basic_block (then_bb);
2945 num_true_changes++;
2947 if (can_merge_blocks_p (test_bb, join_bb))
2949 merge_blocks (test_bb, join_bb);
2950 num_true_changes++;
2953 num_updated_if_blocks++;
2955 VEC_free (int, heap, then_regs);
2956 VEC_free (int, heap, else_regs);
2957 return TRUE;
2961 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2962 IF-THEN-ELSE-JOIN block.
2964 If so, we'll try to convert the insns to not require the branch,
2965 using only transformations that do not require conditional execution.
2967 Return TRUE if we were successful at converting the block. */
2969 static int
2970 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
2971 int pass)
2973 basic_block then_bb, else_bb, join_bb;
2974 bool then_else_reversed = false;
2975 rtx jump, cond;
2976 rtx cond_earliest;
2977 struct noce_if_info if_info;
2979 /* We only ever should get here before reload. */
2980 gcc_assert (!reload_completed);
2982 /* Recognize an IF-THEN-ELSE-JOIN block. */
2983 if (single_pred_p (then_edge->dest)
2984 && single_succ_p (then_edge->dest)
2985 && single_pred_p (else_edge->dest)
2986 && single_succ_p (else_edge->dest)
2987 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2989 then_bb = then_edge->dest;
2990 else_bb = else_edge->dest;
2991 join_bb = single_succ (then_bb);
2993 /* Recognize an IF-THEN-JOIN block. */
2994 else if (single_pred_p (then_edge->dest)
2995 && single_succ_p (then_edge->dest)
2996 && single_succ (then_edge->dest) == else_edge->dest)
2998 then_bb = then_edge->dest;
2999 else_bb = NULL_BLOCK;
3000 join_bb = else_edge->dest;
3002 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3003 of basic blocks in cfglayout mode does not matter, so the fallthrough
3004 edge can go to any basic block (and not just to bb->next_bb, like in
3005 cfgrtl mode). */
3006 else if (single_pred_p (else_edge->dest)
3007 && single_succ_p (else_edge->dest)
3008 && single_succ (else_edge->dest) == then_edge->dest)
3010 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3011 To make this work, we have to invert the THEN and ELSE blocks
3012 and reverse the jump condition. */
3013 then_bb = else_edge->dest;
3014 else_bb = NULL_BLOCK;
3015 join_bb = single_succ (then_bb);
3016 then_else_reversed = true;
3018 else
3019 /* Not a form we can handle. */
3020 return FALSE;
3022 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3023 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3024 return FALSE;
3025 if (else_bb
3026 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3027 return FALSE;
3029 num_possible_if_blocks++;
3031 if (dump_file)
3033 fprintf (dump_file,
3034 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
3035 (else_bb) ? "-ELSE" : "",
3036 pass, test_bb->index, then_bb->index);
3038 if (else_bb)
3039 fprintf (dump_file, ", else %d", else_bb->index);
3041 fprintf (dump_file, ", join %d\n", join_bb->index);
3044 /* If the conditional jump is more than just a conditional
3045 jump, then we can not do if-conversion on this block. */
3046 jump = BB_END (test_bb);
3047 if (! onlyjump_p (jump))
3048 return FALSE;
3050 /* If this is not a standard conditional jump, we can't parse it. */
3051 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
3052 if (!cond)
3053 return FALSE;
3055 /* We must be comparing objects whose modes imply the size. */
3056 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3057 return FALSE;
3059 /* Initialize an IF_INFO struct to pass around. */
3060 memset (&if_info, 0, sizeof if_info);
3061 if_info.test_bb = test_bb;
3062 if_info.then_bb = then_bb;
3063 if_info.else_bb = else_bb;
3064 if_info.join_bb = join_bb;
3065 if_info.cond = cond;
3066 if_info.cond_earliest = cond_earliest;
3067 if_info.jump = jump;
3068 if_info.then_else_reversed = then_else_reversed;
3069 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
3070 predictable_edge_p (then_edge));
3072 /* Do the real work. */
3074 if (noce_process_if_block (&if_info))
3075 return TRUE;
3077 if (HAVE_conditional_move
3078 && cond_move_process_if_block (&if_info))
3079 return TRUE;
3081 return FALSE;
3085 /* Merge the blocks and mark for local life update. */
3087 static void
3088 merge_if_block (struct ce_if_block * ce_info)
3090 basic_block test_bb = ce_info->test_bb; /* last test block */
3091 basic_block then_bb = ce_info->then_bb; /* THEN */
3092 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
3093 basic_block join_bb = ce_info->join_bb; /* join block */
3094 basic_block combo_bb;
3096 /* All block merging is done into the lower block numbers. */
3098 combo_bb = test_bb;
3099 df_set_bb_dirty (test_bb);
3101 /* Merge any basic blocks to handle && and || subtests. Each of
3102 the blocks are on the fallthru path from the predecessor block. */
3103 if (ce_info->num_multiple_test_blocks > 0)
3105 basic_block bb = test_bb;
3106 basic_block last_test_bb = ce_info->last_test_bb;
3107 basic_block fallthru = block_fallthru (bb);
3111 bb = fallthru;
3112 fallthru = block_fallthru (bb);
3113 merge_blocks (combo_bb, bb);
3114 num_true_changes++;
3116 while (bb != last_test_bb);
3119 /* Merge TEST block into THEN block. Normally the THEN block won't have a
3120 label, but it might if there were || tests. That label's count should be
3121 zero, and it normally should be removed. */
3123 if (then_bb)
3125 merge_blocks (combo_bb, then_bb);
3126 num_true_changes++;
3129 /* The ELSE block, if it existed, had a label. That label count
3130 will almost always be zero, but odd things can happen when labels
3131 get their addresses taken. */
3132 if (else_bb)
3134 merge_blocks (combo_bb, else_bb);
3135 num_true_changes++;
3138 /* If there was no join block reported, that means it was not adjacent
3139 to the others, and so we cannot merge them. */
3141 if (! join_bb)
3143 rtx last = BB_END (combo_bb);
3145 /* The outgoing edge for the current COMBO block should already
3146 be correct. Verify this. */
3147 if (EDGE_COUNT (combo_bb->succs) == 0)
3148 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
3149 || (NONJUMP_INSN_P (last)
3150 && GET_CODE (PATTERN (last)) == TRAP_IF
3151 && (TRAP_CONDITION (PATTERN (last))
3152 == const_true_rtx)));
3154 else
3155 /* There should still be something at the end of the THEN or ELSE
3156 blocks taking us to our final destination. */
3157 gcc_assert (JUMP_P (last)
3158 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
3159 && CALL_P (last)
3160 && SIBLING_CALL_P (last))
3161 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
3162 && can_throw_internal (last)));
3165 /* The JOIN block may have had quite a number of other predecessors too.
3166 Since we've already merged the TEST, THEN and ELSE blocks, we should
3167 have only one remaining edge from our if-then-else diamond. If there
3168 is more than one remaining edge, it must come from elsewhere. There
3169 may be zero incoming edges if the THEN block didn't actually join
3170 back up (as with a call to a non-return function). */
3171 else if (EDGE_COUNT (join_bb->preds) < 2
3172 && join_bb != EXIT_BLOCK_PTR)
3174 /* We can merge the JOIN cleanly and update the dataflow try
3175 again on this pass.*/
3176 merge_blocks (combo_bb, join_bb);
3177 num_true_changes++;
3179 else
3181 /* We cannot merge the JOIN. */
3183 /* The outgoing edge for the current COMBO block should already
3184 be correct. Verify this. */
3185 gcc_assert (single_succ_p (combo_bb)
3186 && single_succ (combo_bb) == join_bb);
3188 /* Remove the jump and cruft from the end of the COMBO block. */
3189 if (join_bb != EXIT_BLOCK_PTR)
3190 tidy_fallthru_edge (single_succ_edge (combo_bb));
3193 num_updated_if_blocks++;
3196 /* Find a block ending in a simple IF condition and try to transform it
3197 in some way. When converting a multi-block condition, put the new code
3198 in the first such block and delete the rest. Return a pointer to this
3199 first block if some transformation was done. Return NULL otherwise. */
3201 static basic_block
3202 find_if_header (basic_block test_bb, int pass)
3204 ce_if_block_t ce_info;
3205 edge then_edge;
3206 edge else_edge;
3208 /* The kind of block we're looking for has exactly two successors. */
3209 if (EDGE_COUNT (test_bb->succs) != 2)
3210 return NULL;
3212 then_edge = EDGE_SUCC (test_bb, 0);
3213 else_edge = EDGE_SUCC (test_bb, 1);
3215 if (df_get_bb_dirty (then_edge->dest))
3216 return NULL;
3217 if (df_get_bb_dirty (else_edge->dest))
3218 return NULL;
3220 /* Neither edge should be abnormal. */
3221 if ((then_edge->flags & EDGE_COMPLEX)
3222 || (else_edge->flags & EDGE_COMPLEX))
3223 return NULL;
3225 /* Nor exit the loop. */
3226 if ((then_edge->flags & EDGE_LOOP_EXIT)
3227 || (else_edge->flags & EDGE_LOOP_EXIT))
3228 return NULL;
3230 /* The THEN edge is canonically the one that falls through. */
3231 if (then_edge->flags & EDGE_FALLTHRU)
3233 else if (else_edge->flags & EDGE_FALLTHRU)
3235 edge e = else_edge;
3236 else_edge = then_edge;
3237 then_edge = e;
3239 else
3240 /* Otherwise this must be a multiway branch of some sort. */
3241 return NULL;
3243 memset (&ce_info, 0, sizeof (ce_info));
3244 ce_info.test_bb = test_bb;
3245 ce_info.then_bb = then_edge->dest;
3246 ce_info.else_bb = else_edge->dest;
3247 ce_info.pass = pass;
3249 #ifdef IFCVT_INIT_EXTRA_FIELDS
3250 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3251 #endif
3253 if (!reload_completed
3254 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3255 goto success;
3257 if (reload_completed
3258 && targetm.have_conditional_execution ()
3259 && cond_exec_find_if_block (&ce_info))
3260 goto success;
3262 if (HAVE_trap
3263 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
3264 && find_cond_trap (test_bb, then_edge, else_edge))
3265 goto success;
3267 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3268 && (reload_completed || !targetm.have_conditional_execution ()))
3270 if (find_if_case_1 (test_bb, then_edge, else_edge))
3271 goto success;
3272 if (find_if_case_2 (test_bb, then_edge, else_edge))
3273 goto success;
3276 return NULL;
3278 success:
3279 if (dump_file)
3280 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3281 /* Set this so we continue looking. */
3282 cond_exec_changed_p = TRUE;
3283 return ce_info.test_bb;
3286 /* Return true if a block has two edges, one of which falls through to the next
3287 block, and the other jumps to a specific block, so that we can tell if the
3288 block is part of an && test or an || test. Returns either -1 or the number
3289 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3291 static int
3292 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3294 edge cur_edge;
3295 int fallthru_p = FALSE;
3296 int jump_p = FALSE;
3297 rtx insn;
3298 rtx end;
3299 int n_insns = 0;
3300 edge_iterator ei;
3302 if (!cur_bb || !target_bb)
3303 return -1;
3305 /* If no edges, obviously it doesn't jump or fallthru. */
3306 if (EDGE_COUNT (cur_bb->succs) == 0)
3307 return FALSE;
3309 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3311 if (cur_edge->flags & EDGE_COMPLEX)
3312 /* Anything complex isn't what we want. */
3313 return -1;
3315 else if (cur_edge->flags & EDGE_FALLTHRU)
3316 fallthru_p = TRUE;
3318 else if (cur_edge->dest == target_bb)
3319 jump_p = TRUE;
3321 else
3322 return -1;
3325 if ((jump_p & fallthru_p) == 0)
3326 return -1;
3328 /* Don't allow calls in the block, since this is used to group && and ||
3329 together for conditional execution support. ??? we should support
3330 conditional execution support across calls for IA-64 some day, but
3331 for now it makes the code simpler. */
3332 end = BB_END (cur_bb);
3333 insn = BB_HEAD (cur_bb);
3335 while (insn != NULL_RTX)
3337 if (CALL_P (insn))
3338 return -1;
3340 if (INSN_P (insn)
3341 && !JUMP_P (insn)
3342 && !DEBUG_INSN_P (insn)
3343 && GET_CODE (PATTERN (insn)) != USE
3344 && GET_CODE (PATTERN (insn)) != CLOBBER)
3345 n_insns++;
3347 if (insn == end)
3348 break;
3350 insn = NEXT_INSN (insn);
3353 return n_insns;
3356 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3357 block. If so, we'll try to convert the insns to not require the branch.
3358 Return TRUE if we were successful at converting the block. */
3360 static int
3361 cond_exec_find_if_block (struct ce_if_block * ce_info)
3363 basic_block test_bb = ce_info->test_bb;
3364 basic_block then_bb = ce_info->then_bb;
3365 basic_block else_bb = ce_info->else_bb;
3366 basic_block join_bb = NULL_BLOCK;
3367 edge cur_edge;
3368 basic_block next;
3369 edge_iterator ei;
3371 ce_info->last_test_bb = test_bb;
3373 /* We only ever should get here after reload,
3374 and if we have conditional execution. */
3375 gcc_assert (reload_completed && targetm.have_conditional_execution ());
3377 /* Discover if any fall through predecessors of the current test basic block
3378 were && tests (which jump to the else block) or || tests (which jump to
3379 the then block). */
3380 if (single_pred_p (test_bb)
3381 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3383 basic_block bb = single_pred (test_bb);
3384 basic_block target_bb;
3385 int max_insns = MAX_CONDITIONAL_EXECUTE;
3386 int n_insns;
3388 /* Determine if the preceding block is an && or || block. */
3389 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3391 ce_info->and_and_p = TRUE;
3392 target_bb = else_bb;
3394 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3396 ce_info->and_and_p = FALSE;
3397 target_bb = then_bb;
3399 else
3400 target_bb = NULL_BLOCK;
3402 if (target_bb && n_insns <= max_insns)
3404 int total_insns = 0;
3405 int blocks = 0;
3407 ce_info->last_test_bb = test_bb;
3409 /* Found at least one && or || block, look for more. */
3412 ce_info->test_bb = test_bb = bb;
3413 total_insns += n_insns;
3414 blocks++;
3416 if (!single_pred_p (bb))
3417 break;
3419 bb = single_pred (bb);
3420 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3422 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3424 ce_info->num_multiple_test_blocks = blocks;
3425 ce_info->num_multiple_test_insns = total_insns;
3427 if (ce_info->and_and_p)
3428 ce_info->num_and_and_blocks = blocks;
3429 else
3430 ce_info->num_or_or_blocks = blocks;
3434 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3435 other than any || blocks which jump to the THEN block. */
3436 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3437 return FALSE;
3439 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3440 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3442 if (cur_edge->flags & EDGE_COMPLEX)
3443 return FALSE;
3446 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3448 if (cur_edge->flags & EDGE_COMPLEX)
3449 return FALSE;
3452 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3453 if (EDGE_COUNT (then_bb->succs) > 0
3454 && (!single_succ_p (then_bb)
3455 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3456 || (epilogue_completed
3457 && tablejump_p (BB_END (then_bb), NULL, NULL))))
3458 return FALSE;
3460 /* If the THEN block has no successors, conditional execution can still
3461 make a conditional call. Don't do this unless the ELSE block has
3462 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3463 Check for the last insn of the THEN block being an indirect jump, which
3464 is listed as not having any successors, but confuses the rest of the CE
3465 code processing. ??? we should fix this in the future. */
3466 if (EDGE_COUNT (then_bb->succs) == 0)
3468 if (single_pred_p (else_bb))
3470 rtx last_insn = BB_END (then_bb);
3472 while (last_insn
3473 && NOTE_P (last_insn)
3474 && last_insn != BB_HEAD (then_bb))
3475 last_insn = PREV_INSN (last_insn);
3477 if (last_insn
3478 && JUMP_P (last_insn)
3479 && ! simplejump_p (last_insn))
3480 return FALSE;
3482 join_bb = else_bb;
3483 else_bb = NULL_BLOCK;
3485 else
3486 return FALSE;
3489 /* If the THEN block's successor is the other edge out of the TEST block,
3490 then we have an IF-THEN combo without an ELSE. */
3491 else if (single_succ (then_bb) == else_bb)
3493 join_bb = else_bb;
3494 else_bb = NULL_BLOCK;
3497 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3498 has exactly one predecessor and one successor, and the outgoing edge
3499 is not complex, then we have an IF-THEN-ELSE combo. */
3500 else if (single_succ_p (else_bb)
3501 && single_succ (then_bb) == single_succ (else_bb)
3502 && single_pred_p (else_bb)
3503 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3504 && !(epilogue_completed
3505 && tablejump_p (BB_END (else_bb), NULL, NULL)))
3506 join_bb = single_succ (else_bb);
3508 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3509 else
3510 return FALSE;
3512 num_possible_if_blocks++;
3514 if (dump_file)
3516 fprintf (dump_file,
3517 "\nIF-THEN%s block found, pass %d, start block %d "
3518 "[insn %d], then %d [%d]",
3519 (else_bb) ? "-ELSE" : "",
3520 ce_info->pass,
3521 test_bb->index,
3522 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3523 then_bb->index,
3524 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3526 if (else_bb)
3527 fprintf (dump_file, ", else %d [%d]",
3528 else_bb->index,
3529 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3531 fprintf (dump_file, ", join %d [%d]",
3532 join_bb->index,
3533 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3535 if (ce_info->num_multiple_test_blocks > 0)
3536 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3537 ce_info->num_multiple_test_blocks,
3538 (ce_info->and_and_p) ? "&&" : "||",
3539 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3540 ce_info->last_test_bb->index,
3541 ((BB_HEAD (ce_info->last_test_bb))
3542 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3543 : -1));
3545 fputc ('\n', dump_file);
3548 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3549 first condition for free, since we've already asserted that there's a
3550 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3551 we checked the FALLTHRU flag, those are already adjacent to the last IF
3552 block. */
3553 /* ??? As an enhancement, move the ELSE block. Have to deal with
3554 BLOCK notes, if by no other means than backing out the merge if they
3555 exist. Sticky enough I don't want to think about it now. */
3556 next = then_bb;
3557 if (else_bb && (next = next->next_bb) != else_bb)
3558 return FALSE;
3559 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3561 if (else_bb)
3562 join_bb = NULL;
3563 else
3564 return FALSE;
3567 /* Do the real work. */
3569 ce_info->else_bb = else_bb;
3570 ce_info->join_bb = join_bb;
3572 /* If we have && and || tests, try to first handle combining the && and ||
3573 tests into the conditional code, and if that fails, go back and handle
3574 it without the && and ||, which at present handles the && case if there
3575 was no ELSE block. */
3576 if (cond_exec_process_if_block (ce_info, TRUE))
3577 return TRUE;
3579 if (ce_info->num_multiple_test_blocks)
3581 cancel_changes (0);
3583 if (cond_exec_process_if_block (ce_info, FALSE))
3584 return TRUE;
3587 return FALSE;
3590 /* Convert a branch over a trap, or a branch
3591 to a trap, into a conditional trap. */
3593 static int
3594 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3596 basic_block then_bb = then_edge->dest;
3597 basic_block else_bb = else_edge->dest;
3598 basic_block other_bb, trap_bb;
3599 rtx trap, jump, cond, cond_earliest, seq;
3600 enum rtx_code code;
3602 /* Locate the block with the trap instruction. */
3603 /* ??? While we look for no successors, we really ought to allow
3604 EH successors. Need to fix merge_if_block for that to work. */
3605 if ((trap = block_has_only_trap (then_bb)) != NULL)
3606 trap_bb = then_bb, other_bb = else_bb;
3607 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3608 trap_bb = else_bb, other_bb = then_bb;
3609 else
3610 return FALSE;
3612 if (dump_file)
3614 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3615 test_bb->index, trap_bb->index);
3618 /* If this is not a standard conditional jump, we can't parse it. */
3619 jump = BB_END (test_bb);
3620 cond = noce_get_condition (jump, &cond_earliest, false);
3621 if (! cond)
3622 return FALSE;
3624 /* If the conditional jump is more than just a conditional jump, then
3625 we can not do if-conversion on this block. */
3626 if (! onlyjump_p (jump))
3627 return FALSE;
3629 /* We must be comparing objects whose modes imply the size. */
3630 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3631 return FALSE;
3633 /* Reverse the comparison code, if necessary. */
3634 code = GET_CODE (cond);
3635 if (then_bb == trap_bb)
3637 code = reversed_comparison_code (cond, jump);
3638 if (code == UNKNOWN)
3639 return FALSE;
3642 /* Attempt to generate the conditional trap. */
3643 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3644 copy_rtx (XEXP (cond, 1)),
3645 TRAP_CODE (PATTERN (trap)));
3646 if (seq == NULL)
3647 return FALSE;
3649 /* Emit the new insns before cond_earliest. */
3650 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3652 /* Delete the trap block if possible. */
3653 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3654 df_set_bb_dirty (test_bb);
3655 df_set_bb_dirty (then_bb);
3656 df_set_bb_dirty (else_bb);
3658 if (EDGE_COUNT (trap_bb->preds) == 0)
3660 delete_basic_block (trap_bb);
3661 num_true_changes++;
3664 /* Wire together the blocks again. */
3665 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3666 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3667 else
3669 rtx lab, newjump;
3671 lab = JUMP_LABEL (jump);
3672 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3673 LABEL_NUSES (lab) += 1;
3674 JUMP_LABEL (newjump) = lab;
3675 emit_barrier_after (newjump);
3677 delete_insn (jump);
3679 if (can_merge_blocks_p (test_bb, other_bb))
3681 merge_blocks (test_bb, other_bb);
3682 num_true_changes++;
3685 num_updated_if_blocks++;
3686 return TRUE;
3689 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3690 return it. */
3692 static rtx
3693 block_has_only_trap (basic_block bb)
3695 rtx trap;
3697 /* We're not the exit block. */
3698 if (bb == EXIT_BLOCK_PTR)
3699 return NULL_RTX;
3701 /* The block must have no successors. */
3702 if (EDGE_COUNT (bb->succs) > 0)
3703 return NULL_RTX;
3705 /* The only instruction in the THEN block must be the trap. */
3706 trap = first_active_insn (bb);
3707 if (! (trap == BB_END (bb)
3708 && GET_CODE (PATTERN (trap)) == TRAP_IF
3709 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3710 return NULL_RTX;
3712 return trap;
3715 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3716 transformable, but not necessarily the other. There need be no
3717 JOIN block.
3719 Return TRUE if we were successful at converting the block.
3721 Cases we'd like to look at:
3724 if (test) goto over; // x not live
3725 x = a;
3726 goto label;
3727 over:
3729 becomes
3731 x = a;
3732 if (! test) goto label;
3735 if (test) goto E; // x not live
3736 x = big();
3737 goto L;
3739 x = b;
3740 goto M;
3742 becomes
3744 x = b;
3745 if (test) goto M;
3746 x = big();
3747 goto L;
3749 (3) // This one's really only interesting for targets that can do
3750 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3751 // it results in multiple branches on a cache line, which often
3752 // does not sit well with predictors.
3754 if (test1) goto E; // predicted not taken
3755 x = a;
3756 if (test2) goto F;
3759 x = b;
3762 becomes
3764 x = a;
3765 if (test1) goto E;
3766 if (test2) goto F;
3768 Notes:
3770 (A) Don't do (2) if the branch is predicted against the block we're
3771 eliminating. Do it anyway if we can eliminate a branch; this requires
3772 that the sole successor of the eliminated block postdominate the other
3773 side of the if.
3775 (B) With CE, on (3) we can steal from both sides of the if, creating
3777 if (test1) x = a;
3778 if (!test1) x = b;
3779 if (test1) goto J;
3780 if (test2) goto F;
3784 Again, this is most useful if J postdominates.
3786 (C) CE substitutes for helpful life information.
3788 (D) These heuristics need a lot of work. */
3790 /* Tests for case 1 above. */
3792 static int
3793 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3795 basic_block then_bb = then_edge->dest;
3796 basic_block else_bb = else_edge->dest;
3797 basic_block new_bb;
3798 int then_bb_index;
3800 /* If we are partitioning hot/cold basic blocks, we don't want to
3801 mess up unconditional or indirect jumps that cross between hot
3802 and cold sections.
3804 Basic block partitioning may result in some jumps that appear to
3805 be optimizable (or blocks that appear to be mergeable), but which really
3806 must be left untouched (they are required to make it safely across
3807 partition boundaries). See the comments at the top of
3808 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3810 if ((BB_END (then_bb)
3811 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3812 || (BB_END (test_bb)
3813 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3814 || (BB_END (else_bb)
3815 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3816 NULL_RTX)))
3817 return FALSE;
3819 /* THEN has one successor. */
3820 if (!single_succ_p (then_bb))
3821 return FALSE;
3823 /* THEN does not fall through, but is not strange either. */
3824 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3825 return FALSE;
3827 /* THEN has one predecessor. */
3828 if (!single_pred_p (then_bb))
3829 return FALSE;
3831 /* THEN must do something. */
3832 if (forwarder_block_p (then_bb))
3833 return FALSE;
3835 num_possible_if_blocks++;
3836 if (dump_file)
3837 fprintf (dump_file,
3838 "\nIF-CASE-1 found, start %d, then %d\n",
3839 test_bb->index, then_bb->index);
3841 /* THEN is small. */
3842 if (! cheap_bb_rtx_cost_p (then_bb,
3843 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3844 predictable_edge_p (then_edge)))))
3845 return FALSE;
3847 /* Registers set are dead, or are predicable. */
3848 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3849 single_succ (then_bb), 1))
3850 return FALSE;
3852 /* Conversion went ok, including moving the insns and fixing up the
3853 jump. Adjust the CFG to match. */
3855 /* We can avoid creating a new basic block if then_bb is immediately
3856 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3857 thru to else_bb. */
3859 if (then_bb->next_bb == else_bb
3860 && then_bb->prev_bb == test_bb
3861 && else_bb != EXIT_BLOCK_PTR)
3863 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3864 new_bb = 0;
3866 else
3867 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3868 else_bb);
3870 df_set_bb_dirty (test_bb);
3871 df_set_bb_dirty (else_bb);
3873 then_bb_index = then_bb->index;
3874 delete_basic_block (then_bb);
3876 /* Make rest of code believe that the newly created block is the THEN_BB
3877 block we removed. */
3878 if (new_bb)
3880 df_bb_replace (then_bb_index, new_bb);
3881 /* Since the fallthru edge was redirected from test_bb to new_bb,
3882 we need to ensure that new_bb is in the same partition as
3883 test bb (you can not fall through across section boundaries). */
3884 BB_COPY_PARTITION (new_bb, test_bb);
3887 num_true_changes++;
3888 num_updated_if_blocks++;
3890 return TRUE;
3893 /* Test for case 2 above. */
3895 static int
3896 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3898 basic_block then_bb = then_edge->dest;
3899 basic_block else_bb = else_edge->dest;
3900 edge else_succ;
3901 rtx note;
3903 /* If we are partitioning hot/cold basic blocks, we don't want to
3904 mess up unconditional or indirect jumps that cross between hot
3905 and cold sections.
3907 Basic block partitioning may result in some jumps that appear to
3908 be optimizable (or blocks that appear to be mergeable), but which really
3909 must be left untouched (they are required to make it safely across
3910 partition boundaries). See the comments at the top of
3911 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3913 if ((BB_END (then_bb)
3914 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3915 || (BB_END (test_bb)
3916 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3917 || (BB_END (else_bb)
3918 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3919 NULL_RTX)))
3920 return FALSE;
3922 /* ELSE has one successor. */
3923 if (!single_succ_p (else_bb))
3924 return FALSE;
3925 else
3926 else_succ = single_succ_edge (else_bb);
3928 /* ELSE outgoing edge is not complex. */
3929 if (else_succ->flags & EDGE_COMPLEX)
3930 return FALSE;
3932 /* ELSE has one predecessor. */
3933 if (!single_pred_p (else_bb))
3934 return FALSE;
3936 /* THEN is not EXIT. */
3937 if (then_bb->index < NUM_FIXED_BLOCKS)
3938 return FALSE;
3940 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3941 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3942 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3944 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3945 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3946 else_succ->dest))
3948 else
3949 return FALSE;
3951 num_possible_if_blocks++;
3952 if (dump_file)
3953 fprintf (dump_file,
3954 "\nIF-CASE-2 found, start %d, else %d\n",
3955 test_bb->index, else_bb->index);
3957 /* ELSE is small. */
3958 if (! cheap_bb_rtx_cost_p (else_bb,
3959 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3960 predictable_edge_p (else_edge)))))
3961 return FALSE;
3963 /* Registers set are dead, or are predicable. */
3964 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3965 return FALSE;
3967 /* Conversion went ok, including moving the insns and fixing up the
3968 jump. Adjust the CFG to match. */
3970 df_set_bb_dirty (test_bb);
3971 df_set_bb_dirty (then_bb);
3972 delete_basic_block (else_bb);
3974 num_true_changes++;
3975 num_updated_if_blocks++;
3977 /* ??? We may now fallthru from one of THEN's successors into a join
3978 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3980 return TRUE;
3983 /* Used by the code above to perform the actual rtl transformations.
3984 Return TRUE if successful.
3986 TEST_BB is the block containing the conditional branch. MERGE_BB
3987 is the block containing the code to manipulate. NEW_DEST is the
3988 label TEST_BB should be branching to after the conversion.
3989 REVERSEP is true if the sense of the branch should be reversed. */
3991 static int
3992 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3993 basic_block other_bb, basic_block new_dest, int reversep)
3995 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3996 bitmap merge_set = NULL;
3997 /* Number of pending changes. */
3998 int n_validated_changes = 0;
4000 jump = BB_END (test_bb);
4002 /* Find the extent of the real code in the merge block. */
4003 head = BB_HEAD (merge_bb);
4004 end = BB_END (merge_bb);
4006 while (DEBUG_INSN_P (end) && end != head)
4007 end = PREV_INSN (end);
4009 /* If merge_bb ends with a tablejump, predicating/moving insn's
4010 into test_bb and then deleting merge_bb will result in the jumptable
4011 that follows merge_bb being removed along with merge_bb and then we
4012 get an unresolved reference to the jumptable. */
4013 if (tablejump_p (end, NULL, NULL))
4014 return FALSE;
4016 if (LABEL_P (head))
4017 head = NEXT_INSN (head);
4018 while (DEBUG_INSN_P (head) && head != end)
4019 head = NEXT_INSN (head);
4020 if (NOTE_P (head))
4022 if (head == end)
4024 head = end = NULL_RTX;
4025 goto no_body;
4027 head = NEXT_INSN (head);
4028 while (DEBUG_INSN_P (head) && head != end)
4029 head = NEXT_INSN (head);
4032 if (JUMP_P (end))
4034 if (head == end)
4036 head = end = NULL_RTX;
4037 goto no_body;
4039 end = PREV_INSN (end);
4040 while (DEBUG_INSN_P (end) && end != head)
4041 end = PREV_INSN (end);
4044 /* Disable handling dead code by conditional execution if the machine needs
4045 to do anything funny with the tests, etc. */
4046 #ifndef IFCVT_MODIFY_TESTS
4047 if (targetm.have_conditional_execution ())
4049 /* In the conditional execution case, we have things easy. We know
4050 the condition is reversible. We don't have to check life info
4051 because we're going to conditionally execute the code anyway.
4052 All that's left is making sure the insns involved can actually
4053 be predicated. */
4055 rtx cond, prob_val;
4057 cond = cond_exec_get_condition (jump);
4058 if (! cond)
4059 return FALSE;
4061 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
4062 if (prob_val)
4063 prob_val = XEXP (prob_val, 0);
4065 if (reversep)
4067 enum rtx_code rev = reversed_comparison_code (cond, jump);
4068 if (rev == UNKNOWN)
4069 return FALSE;
4070 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
4071 XEXP (cond, 1));
4072 if (prob_val)
4073 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
4076 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
4077 && verify_changes (0))
4078 n_validated_changes = num_validated_changes ();
4079 else
4080 cancel_changes (0);
4082 earliest = jump;
4084 #endif
4086 /* If we allocated new pseudos (e.g. in the conditional move
4087 expander called from noce_emit_cmove), we must resize the
4088 array first. */
4089 if (max_regno < max_reg_num ())
4090 max_regno = max_reg_num ();
4092 /* Try the NCE path if the CE path did not result in any changes. */
4093 if (n_validated_changes == 0)
4095 rtx cond, insn;
4096 regset live;
4097 bool success;
4099 /* In the non-conditional execution case, we have to verify that there
4100 are no trapping operations, no calls, no references to memory, and
4101 that any registers modified are dead at the branch site. */
4103 if (!any_condjump_p (jump))
4104 return FALSE;
4106 /* Find the extent of the conditional. */
4107 cond = noce_get_condition (jump, &earliest, false);
4108 if (!cond)
4109 return FALSE;
4111 live = BITMAP_ALLOC (&reg_obstack);
4112 simulate_backwards_to_point (merge_bb, live, end);
4113 success = can_move_insns_across (head, end, earliest, jump,
4114 merge_bb, live,
4115 df_get_live_in (other_bb), NULL);
4116 BITMAP_FREE (live);
4117 if (!success)
4118 return FALSE;
4120 /* Collect the set of registers set in MERGE_BB. */
4121 merge_set = BITMAP_ALLOC (&reg_obstack);
4123 FOR_BB_INSNS (merge_bb, insn)
4124 if (NONDEBUG_INSN_P (insn))
4125 df_simulate_find_defs (insn, merge_set);
4128 no_body:
4129 /* We don't want to use normal invert_jump or redirect_jump because
4130 we don't want to delete_insn called. Also, we want to do our own
4131 change group management. */
4133 old_dest = JUMP_LABEL (jump);
4134 if (other_bb != new_dest)
4136 new_label = block_label (new_dest);
4137 if (reversep
4138 ? ! invert_jump_1 (jump, new_label)
4139 : ! redirect_jump_1 (jump, new_label))
4140 goto cancel;
4143 if (verify_changes (n_validated_changes))
4144 confirm_change_group ();
4145 else
4146 goto cancel;
4148 if (other_bb != new_dest)
4150 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4152 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4153 if (reversep)
4155 gcov_type count, probability;
4156 count = BRANCH_EDGE (test_bb)->count;
4157 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4158 FALLTHRU_EDGE (test_bb)->count = count;
4159 probability = BRANCH_EDGE (test_bb)->probability;
4160 BRANCH_EDGE (test_bb)->probability
4161 = FALLTHRU_EDGE (test_bb)->probability;
4162 FALLTHRU_EDGE (test_bb)->probability = probability;
4163 update_br_prob_note (test_bb);
4167 /* Move the insns out of MERGE_BB to before the branch. */
4168 if (head != NULL)
4170 rtx insn;
4172 if (end == BB_END (merge_bb))
4173 BB_END (merge_bb) = PREV_INSN (head);
4175 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
4176 notes being moved might become invalid. */
4177 insn = head;
4180 rtx note, set;
4182 if (! INSN_P (insn))
4183 continue;
4184 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4185 if (! note)
4186 continue;
4187 set = single_set (insn);
4188 if (!set || !function_invariant_p (SET_SRC (set))
4189 || !function_invariant_p (XEXP (note, 0)))
4190 remove_note (insn, note);
4191 } while (insn != end && (insn = NEXT_INSN (insn)));
4193 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
4194 notes referring to the registers being set might become invalid. */
4195 if (merge_set)
4197 unsigned i;
4198 bitmap_iterator bi;
4200 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
4201 remove_reg_equal_equiv_notes_for_regno (i);
4203 BITMAP_FREE (merge_set);
4206 reorder_insns (head, end, PREV_INSN (earliest));
4209 /* Remove the jump and edge if we can. */
4210 if (other_bb == new_dest)
4212 delete_insn (jump);
4213 remove_edge (BRANCH_EDGE (test_bb));
4214 /* ??? Can't merge blocks here, as then_bb is still in use.
4215 At minimum, the merge will get done just before bb-reorder. */
4218 return TRUE;
4220 cancel:
4221 cancel_changes (0);
4223 if (merge_set)
4224 BITMAP_FREE (merge_set);
4226 return FALSE;
4229 /* Main entry point for all if-conversion. */
4231 static void
4232 if_convert (void)
4234 basic_block bb;
4235 int pass;
4237 if (optimize == 1)
4239 df_live_add_problem ();
4240 df_live_set_all_dirty ();
4243 num_possible_if_blocks = 0;
4244 num_updated_if_blocks = 0;
4245 num_true_changes = 0;
4247 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4248 mark_loop_exit_edges ();
4249 loop_optimizer_finalize ();
4250 free_dominance_info (CDI_DOMINATORS);
4252 /* Compute postdominators. */
4253 calculate_dominance_info (CDI_POST_DOMINATORS);
4255 df_set_flags (DF_LR_RUN_DCE);
4257 /* Go through each of the basic blocks looking for things to convert. If we
4258 have conditional execution, we make multiple passes to allow us to handle
4259 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4260 pass = 0;
4263 df_analyze ();
4264 /* Only need to do dce on the first pass. */
4265 df_clear_flags (DF_LR_RUN_DCE);
4266 cond_exec_changed_p = FALSE;
4267 pass++;
4269 #ifdef IFCVT_MULTIPLE_DUMPS
4270 if (dump_file && pass > 1)
4271 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4272 #endif
4274 FOR_EACH_BB (bb)
4276 basic_block new_bb;
4277 while (!df_get_bb_dirty (bb)
4278 && (new_bb = find_if_header (bb, pass)) != NULL)
4279 bb = new_bb;
4282 #ifdef IFCVT_MULTIPLE_DUMPS
4283 if (dump_file && cond_exec_changed_p)
4285 if (dump_flags & TDF_SLIM)
4286 print_rtl_slim_with_bb (dump_file, get_insns (), dump_flags);
4287 else
4288 print_rtl_with_bb (dump_file, get_insns ());
4290 #endif
4292 while (cond_exec_changed_p);
4294 #ifdef IFCVT_MULTIPLE_DUMPS
4295 if (dump_file)
4296 fprintf (dump_file, "\n\n========== no more changes\n");
4297 #endif
4299 free_dominance_info (CDI_POST_DOMINATORS);
4301 if (dump_file)
4302 fflush (dump_file);
4304 clear_aux_for_blocks ();
4306 /* If we allocated new pseudos, we must resize the array for sched1. */
4307 if (max_regno < max_reg_num ())
4308 max_regno = max_reg_num ();
4310 /* Write the final stats. */
4311 if (dump_file && num_possible_if_blocks > 0)
4313 fprintf (dump_file,
4314 "\n%d possible IF blocks searched.\n",
4315 num_possible_if_blocks);
4316 fprintf (dump_file,
4317 "%d IF blocks converted.\n",
4318 num_updated_if_blocks);
4319 fprintf (dump_file,
4320 "%d true changes made.\n\n\n",
4321 num_true_changes);
4324 if (optimize == 1)
4325 df_remove_problem (df_live);
4327 #ifdef ENABLE_CHECKING
4328 verify_flow_info ();
4329 #endif
4332 static bool
4333 gate_handle_if_conversion (void)
4335 return (optimize > 0)
4336 && dbg_cnt (if_conversion);
4339 /* If-conversion and CFG cleanup. */
4340 static unsigned int
4341 rest_of_handle_if_conversion (void)
4343 if (flag_if_conversion)
4345 if (dump_file)
4346 dump_flow_info (dump_file, dump_flags);
4347 cleanup_cfg (CLEANUP_EXPENSIVE);
4348 if_convert ();
4351 cleanup_cfg (0);
4352 return 0;
4355 struct rtl_opt_pass pass_rtl_ifcvt =
4358 RTL_PASS,
4359 "ce1", /* name */
4360 gate_handle_if_conversion, /* gate */
4361 rest_of_handle_if_conversion, /* execute */
4362 NULL, /* sub */
4363 NULL, /* next */
4364 0, /* static_pass_number */
4365 TV_IFCVT, /* tv_id */
4366 0, /* properties_required */
4367 0, /* properties_provided */
4368 0, /* properties_destroyed */
4369 0, /* todo_flags_start */
4370 TODO_df_finish | TODO_verify_rtl_sharing |
4371 TODO_dump_func /* todo_flags_finish */
4375 static bool
4376 gate_handle_if_after_combine (void)
4378 return optimize > 0 && flag_if_conversion
4379 && dbg_cnt (if_after_combine);
4383 /* Rerun if-conversion, as combine may have simplified things enough
4384 to now meet sequence length restrictions. */
4385 static unsigned int
4386 rest_of_handle_if_after_combine (void)
4388 if_convert ();
4389 return 0;
4392 struct rtl_opt_pass pass_if_after_combine =
4395 RTL_PASS,
4396 "ce2", /* name */
4397 gate_handle_if_after_combine, /* gate */
4398 rest_of_handle_if_after_combine, /* execute */
4399 NULL, /* sub */
4400 NULL, /* next */
4401 0, /* static_pass_number */
4402 TV_IFCVT, /* tv_id */
4403 0, /* properties_required */
4404 0, /* properties_provided */
4405 0, /* properties_destroyed */
4406 0, /* todo_flags_start */
4407 TODO_df_finish | TODO_verify_rtl_sharing |
4408 TODO_dump_func |
4409 TODO_ggc_collect /* todo_flags_finish */
4414 static bool
4415 gate_handle_if_after_reload (void)
4417 return optimize > 0 && flag_if_conversion2
4418 && dbg_cnt (if_after_reload);
4421 static unsigned int
4422 rest_of_handle_if_after_reload (void)
4424 if_convert ();
4425 return 0;
4429 struct rtl_opt_pass pass_if_after_reload =
4432 RTL_PASS,
4433 "ce3", /* name */
4434 gate_handle_if_after_reload, /* gate */
4435 rest_of_handle_if_after_reload, /* execute */
4436 NULL, /* sub */
4437 NULL, /* next */
4438 0, /* static_pass_number */
4439 TV_IFCVT2, /* tv_id */
4440 0, /* properties_required */
4441 0, /* properties_provided */
4442 0, /* properties_destroyed */
4443 0, /* todo_flags_start */
4444 TODO_df_finish | TODO_verify_rtl_sharing |
4445 TODO_dump_func |
4446 TODO_ggc_collect /* todo_flags_finish */