1 /* Copyright (C) 2008-2020 Free Software Foundation, Inc.
2 Contributed by Richard Henderson <rth@redhat.com>.
4 This file is part of the GNU Transactional Memory Library (libitm).
6 Libitm is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
13 FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
31 #if !defined(HAVE_ARCH_GTM_THREAD) || !defined(HAVE_ARCH_GTM_THREAD_DISP)
32 extern __thread gtm_thread_tls _gtm_thr_tls
;
35 // Put this at the start of a cacheline so that serial_lock's writers and
36 // htm_fastpath fields are on the same cacheline, so that HW transactions
37 // only have to pay one cacheline capacity to monitor both.
38 gtm_rwlock
GTM::gtm_thread::serial_lock
39 __attribute__((aligned(HW_CACHELINE_SIZE
)));
40 gtm_thread
*GTM::gtm_thread::list_of_threads
= 0;
41 unsigned GTM::gtm_thread::number_of_threads
= 0;
43 /* ??? Move elsewhere when we figure out library initialization. */
44 uint64_t GTM::gtm_spin_count_var
= 1000;
46 #ifdef HAVE_64BIT_SYNC_BUILTINS
47 static atomic
<_ITM_transactionId_t
> global_tid
;
49 static _ITM_transactionId_t global_tid
;
50 static pthread_mutex_t global_tid_lock
= PTHREAD_MUTEX_INITIALIZER
;
54 // Provides a on-thread-exit callback used to release per-thread data.
55 static pthread_key_t thr_release_key
;
56 static pthread_once_t thr_release_once
= PTHREAD_ONCE_INIT
;
58 /* Allocate a transaction structure. */
60 GTM::gtm_thread::operator new (size_t s
)
64 assert(s
== sizeof(gtm_thread
));
66 tx
= xmalloc (sizeof (gtm_thread
), true);
67 memset (tx
, 0, sizeof (gtm_thread
));
72 /* Free the given transaction. Raises an error if the transaction is still
75 GTM::gtm_thread::operator delete(void *tx
)
81 thread_exit_handler(void *)
83 gtm_thread
*thr
= gtm_thr();
92 if (pthread_key_create(&thr_release_key
, thread_exit_handler
))
93 GTM_fatal("Creating thread release TLS key failed.");
97 GTM::gtm_thread::~gtm_thread()
100 GTM_fatal("Thread exit while a transaction is still active.");
102 // Deregister this transaction.
103 serial_lock
.write_lock ();
104 gtm_thread
**prev
= &list_of_threads
;
105 for (; *prev
; prev
= &(*prev
)->next_thread
)
109 *prev
= (*prev
)->next_thread
;
114 number_of_threads_changed(number_of_threads
+ 1, number_of_threads
);
115 serial_lock
.write_unlock ();
118 GTM::gtm_thread::gtm_thread ()
120 // This object's memory has been set to zero by operator new, so no need
121 // to initialize any of the other primitive-type members that do not have
123 shared_state
.store(-1, memory_order_relaxed
);
125 // Register this transaction with the list of all threads' transactions.
126 serial_lock
.write_lock ();
127 next_thread
= list_of_threads
;
128 list_of_threads
= this;
130 number_of_threads_changed(number_of_threads
- 1, number_of_threads
);
131 serial_lock
.write_unlock ();
133 init_cpp_exceptions ();
135 if (pthread_once(&thr_release_once
, thread_exit_init
))
136 GTM_fatal("Initializing thread release TLS key failed.");
137 // Any non-null value is sufficient to trigger destruction of this
138 // transaction when the current thread terminates.
139 if (pthread_setspecific(thr_release_key
, this))
140 GTM_fatal("Setting thread release TLS key failed.");
143 static inline uint32_t
144 choose_code_path(uint32_t prop
, abi_dispatch
*disp
)
146 if ((prop
& pr_uninstrumentedCode
) && disp
->can_run_uninstrumented_code())
147 return a_runUninstrumentedCode
;
149 return a_runInstrumentedCode
;
152 #ifdef TARGET_BEGIN_TRANSACTION_ATTRIBUTE
153 /* This macro can be used to define target specific attributes for this
154 function. For example, S/390 requires floating point to be disabled in
155 begin_transaction. */
156 TARGET_BEGIN_TRANSACTION_ATTRIBUTE
159 GTM::gtm_thread::begin_transaction (uint32_t prop
, const gtm_jmpbuf
*jb
)
161 static const _ITM_transactionId_t tid_block_size
= 1 << 16;
167 // ??? pr_undoLogCode is not properly defined in the ABI. Are barriers
168 // omitted because they are not necessary (e.g., a transaction on thread-
169 // local data) or because the compiler thinks that some kind of global
170 // synchronization might perform better?
171 if (unlikely(prop
& pr_undoLogCode
))
172 GTM_fatal("pr_undoLogCode not supported");
174 #ifdef USE_HTM_FASTPATH
175 // HTM fastpath. Only chosen in the absence of transaction_cancel to allow
176 // using an uninstrumented code path.
177 // The fastpath is enabled only by dispatch_htm's method group, which uses
178 // serial-mode methods as fallback. Serial-mode transactions cannot execute
179 // concurrently with HW transactions because the latter monitor the serial
180 // lock's writer flag and thus abort if another thread is or becomes a
181 // serial transaction. Therefore, if the fastpath is enabled, then a
182 // transaction is not executing as a HW transaction iff the serial lock is
183 // write-locked. Also, HW transactions monitor the fastpath control
184 // variable, so that they will only execute if dispatch_htm is still the
185 // current method group. This allows us to use htm_fastpath and the serial
186 // lock's writers flag to reliable determine whether the current thread runs
187 // a HW transaction, and thus we do not need to maintain this information in
189 // If an uninstrumented code path is not available, we can still run
190 // instrumented code from a HW transaction because the HTM fastpath kicks
191 // in early in both begin and commit, and the transaction is not canceled.
192 // HW transactions might get requests to switch to serial-irrevocable mode,
193 // but these can be ignored because the HTM provides all necessary
194 // correctness guarantees. Transactions cannot detect whether they are
195 // indeed in serial mode, and HW transactions should never need serial mode
196 // for any internal changes (e.g., they never abort visibly to the STM code
197 // and thus do not trigger the standard retry handling).
198 #ifndef HTM_CUSTOM_FASTPATH
199 if (likely(serial_lock
.get_htm_fastpath() && (prop
& pr_hasNoAbort
)))
201 // Note that the snapshot of htm_fastpath that we take here could be
202 // outdated, and a different method group than dispatch_htm may have
203 // been chosen in the meantime. Therefore, take care not not touch
204 // anything besides the serial lock, which is independent of method
206 for (uint32_t t
= serial_lock
.get_htm_fastpath(); t
; t
--)
208 uint32_t ret
= htm_begin();
209 if (htm_begin_success(ret
))
211 // We are executing a transaction now.
212 // Monitor the writer flag in the serial-mode lock, and abort
213 // if there is an active or waiting serial-mode transaction.
214 // Also checks that htm_fastpath is still nonzero and thus
215 // HW transactions are allowed to run.
216 // Note that this can also happen due to an enclosing
217 // serial-mode transaction; we handle this case below.
218 if (unlikely(serial_lock
.htm_fastpath_disabled()))
221 // We do not need to set a_saveLiveVariables because of HTM.
222 return (prop
& pr_uninstrumentedCode
) ?
223 a_runUninstrumentedCode
: a_runInstrumentedCode
;
225 // The transaction has aborted. Don't retry if it's unlikely that
226 // retrying the transaction will be successful.
227 if (!htm_abort_should_retry(ret
))
229 // Check whether the HTM fastpath has been disabled.
230 if (!serial_lock
.get_htm_fastpath())
232 // Wait until any concurrent serial-mode transactions have finished.
233 // This is an empty critical section, but won't be elided.
234 if (serial_lock
.htm_fastpath_disabled())
237 if (unlikely(tx
== NULL
))
240 tx
= new gtm_thread();
243 // Check whether there is an enclosing serial-mode transaction;
244 // if so, we just continue as a nested transaction and don't
245 // try to use the HTM fastpath. This case can happen when an
246 // outermost relaxed transaction calls unsafe code that starts
250 // Another thread is running a serial-mode transaction. Wait.
251 serial_lock
.read_lock(tx
);
252 serial_lock
.read_unlock(tx
);
253 // TODO We should probably reset the retry count t here, unless
254 // we have retried so often that we should go serial to avoid
260 // If we have a custom HTM fastpath in ITM_beginTransaction, we implement
261 // just the retry policy here. We communicate with the custom fastpath
262 // through additional property bits and return codes, and either transfer
263 // control back to the custom fastpath or run the fallback mechanism. The
264 // fastpath synchronization algorithm itself is the same.
265 // pr_HTMRetryableAbort states that a HW transaction started by the custom
266 // HTM fastpath aborted, and that we thus have to decide whether to retry
267 // the fastpath (returning a_tryHTMFastPath) or just proceed with the
269 if (likely(serial_lock
.get_htm_fastpath() && (prop
& pr_HTMRetryableAbort
)))
272 if (unlikely(tx
== NULL
))
275 tx
= new gtm_thread();
278 // If this is the first abort, reset the retry count. We abuse
279 // restart_total for the retry count, which is fine because our only
280 // other fallback will use serial transactions, which don't use
281 // restart_total but will reset it when committing.
282 if (!(prop
& pr_HTMRetriedAfterAbort
))
283 tx
->restart_total
= gtm_thread::serial_lock
.get_htm_fastpath();
285 if (--tx
->restart_total
> 0)
287 // Wait until any concurrent serial-mode transactions have finished.
288 // Essentially the same code as above.
289 if (!serial_lock
.get_htm_fastpath())
290 goto stop_custom_htm_fastpath
;
291 if (serial_lock
.htm_fastpath_disabled())
294 goto stop_custom_htm_fastpath
;
295 serial_lock
.read_lock(tx
);
296 serial_lock
.read_unlock(tx
);
298 // Let ITM_beginTransaction retry the custom HTM fastpath.
299 return a_tryHTMFastPath
;
302 stop_custom_htm_fastpath
:
307 if (unlikely(tx
== NULL
))
309 // Create the thread object. The constructor will also set up automatic
310 // deletion on thread termination.
311 tx
= new gtm_thread();
317 // This is a nested transaction.
318 // Check prop compatibility:
319 // The ABI requires pr_hasNoFloatUpdate, pr_hasNoVectorUpdate,
320 // pr_hasNoIrrevocable, pr_aWBarriersOmitted, pr_RaRBarriersOmitted, and
321 // pr_hasNoSimpleReads to hold for the full dynamic scope of a
322 // transaction. We could check that these are set for the nested
323 // transaction if they are also set for the parent transaction, but the
324 // ABI does not require these flags to be set if they could be set,
325 // so the check could be too strict.
326 // ??? For pr_readOnly, lexical or dynamic scope is unspecified.
328 if (prop
& pr_hasNoAbort
)
330 // We can use flat nesting, so elide this transaction.
331 if (!(prop
& pr_instrumentedCode
))
333 if (!(tx
->state
& STATE_SERIAL
) ||
334 !(tx
->state
& STATE_IRREVOCABLE
))
335 tx
->serialirr_mode();
337 // Increment nesting level after checking that we have a method that
338 // allows us to continue.
340 return choose_code_path(prop
, abi_disp());
343 // The transaction might abort, so use closed nesting if possible.
344 // pr_hasNoAbort has lexical scope, so the compiler should really have
345 // generated an instrumented code path.
346 assert(prop
& pr_instrumentedCode
);
348 // Create a checkpoint of the current transaction.
349 gtm_transaction_cp
*cp
= tx
->parent_txns
.push();
351 new (&tx
->alloc_actions
) aa_tree
<uintptr_t, gtm_alloc_action
>();
353 // Check whether the current method actually supports closed nesting.
354 // If we can switch to another one, do so.
355 // If not, we assume that actual aborts are infrequent, and rather
356 // restart in _ITM_abortTransaction when we really have to.
358 if (!disp
->closed_nesting())
360 // ??? Should we elide the transaction if there is no alternative
361 // method that supports closed nesting? If we do, we need to set
362 // some flag to prevent _ITM_abortTransaction from aborting the
363 // wrong transaction (i.e., some parent transaction).
364 abi_dispatch
*cn_disp
= disp
->closed_nesting_alternative();
374 // Outermost transaction
375 disp
= tx
->decide_begin_dispatch (prop
);
379 // Initialization that is common for outermost and nested transactions.
385 // As long as we have not exhausted a previously allocated block of TIDs,
386 // we can avoid an atomic operation on a shared cacheline.
387 if (tx
->local_tid
& (tid_block_size
- 1))
388 tx
->id
= tx
->local_tid
++;
391 #ifdef HAVE_64BIT_SYNC_BUILTINS
392 // We don't really care which block of TIDs we get but only that we
393 // acquire one atomically; therefore, relaxed memory order is
395 tx
->id
= global_tid
.fetch_add(tid_block_size
, memory_order_relaxed
);
396 tx
->local_tid
= tx
->id
+ 1;
398 pthread_mutex_lock (&global_tid_lock
);
399 global_tid
+= tid_block_size
;
401 tx
->local_tid
= tx
->id
+ 1;
402 pthread_mutex_unlock (&global_tid_lock
);
406 // Log the number of uncaught exceptions if we might have to roll back this
408 if (tx
->cxa_uncaught_count_ptr
!= 0)
409 tx
->cxa_uncaught_count
= *tx
->cxa_uncaught_count_ptr
;
411 // Run dispatch-specific restart code. Retry until we succeed.
412 GTM::gtm_restart_reason rr
;
413 while ((rr
= disp
->begin_or_restart()) != NO_RESTART
)
415 tx
->decide_retry_strategy(rr
);
419 // Determine the code path to run. Only irrevocable transactions cannot be
420 // restarted, so all other transactions need to save live variables.
421 ret
= choose_code_path(prop
, disp
);
422 if (!(tx
->state
& STATE_IRREVOCABLE
))
423 ret
|= a_saveLiveVariables
;
429 GTM::gtm_transaction_cp::save(gtm_thread
* tx
)
431 // Save everything that we might have to restore on restarts or aborts.
433 undolog_size
= tx
->undolog
.size();
435 /* FIXME! Assignment of an aatree like alloc_actions is unsafe; if either
436 *this or *tx is destroyed, the other ends up pointing to a freed node. */
437 #pragma GCC diagnostic warning "-Wdeprecated-copy"
438 alloc_actions
= tx
->alloc_actions
;
440 user_actions_size
= tx
->user_actions
.size();
443 cxa_catch_count
= tx
->cxa_catch_count
;
444 cxa_uncaught_count
= tx
->cxa_uncaught_count
;
446 nesting
= tx
->nesting
;
450 GTM::gtm_transaction_cp::commit(gtm_thread
* tx
)
452 // Restore state that is not persistent across commits. Exception handling,
453 // information, nesting level, and any logs do not need to be restored on
454 // commits of nested transactions. Allocation actions must be committed
455 // before committing the snapshot.
457 tx
->alloc_actions
= alloc_actions
;
464 GTM::gtm_thread::rollback (gtm_transaction_cp
*cp
, bool aborting
)
466 // The undo log is special in that it used for both thread-local and shared
467 // data. Because of the latter, we have to roll it back before any
468 // dispatch-specific rollback (which handles synchronization with other
470 undolog
.rollback (this, cp
? cp
->undolog_size
: 0);
472 // Perform dispatch-specific rollback.
473 abi_disp()->rollback (cp
);
475 // Roll back all actions that are supposed to happen around the transaction.
476 rollback_user_actions (cp
? cp
->user_actions_size
: 0);
477 commit_allocations (true, (cp
? &cp
->alloc_actions
: 0));
478 revert_cpp_exceptions (cp
);
482 // We do not yet handle restarts of nested transactions. To do that, we
483 // would have to restore some state (jb, id, prop, nesting) not to the
484 // checkpoint but to the transaction that was started from this
485 // checkpoint (e.g., nesting = cp->nesting + 1);
487 // Roll back the rest of the state to the checkpoint.
491 if (cp
->disp
!= abi_disp())
492 set_abi_disp(cp
->disp
);
493 alloc_actions
= cp
->alloc_actions
;
494 nesting
= cp
->nesting
;
498 // Roll back to the outermost transaction.
499 // Restore the jump buffer and transaction properties, which we will
500 // need for the longjmp used to restart or abort the transaction.
501 if (parent_txns
.size() > 0)
503 jb
= parent_txns
[0].jb
;
504 id
= parent_txns
[0].id
;
505 prop
= parent_txns
[0].prop
;
507 // Reset the transaction. Do not reset this->state, which is handled by
508 // the callers. Note that if we are not aborting, we reset the
509 // transaction to the point after having executed begin_transaction
510 // (we will return from it), so the nesting level must be one, not zero.
511 nesting
= (aborting
? 0 : 1);
515 if (this->eh_in_flight
)
517 _Unwind_DeleteException ((_Unwind_Exception
*) this->eh_in_flight
);
518 this->eh_in_flight
= NULL
;
523 _ITM_abortTransaction (_ITM_abortReason reason
)
525 gtm_thread
*tx
= gtm_thr();
527 assert (reason
== userAbort
|| reason
== (userAbort
| outerAbort
));
528 assert ((tx
->prop
& pr_hasNoAbort
) == 0);
530 if (tx
->state
& gtm_thread::STATE_IRREVOCABLE
)
533 // Roll back to innermost transaction.
534 if (tx
->parent_txns
.size() > 0 && !(reason
& outerAbort
))
536 // If the current method does not support closed nesting but we are
537 // nested and must only roll back the innermost transaction, then
538 // restart with a method that supports closed nesting.
539 abi_dispatch
*disp
= abi_disp();
540 if (!disp
->closed_nesting())
541 tx
->restart(RESTART_CLOSED_NESTING
);
543 // The innermost transaction is a closed nested transaction.
544 gtm_transaction_cp
*cp
= tx
->parent_txns
.pop();
545 uint32_t longjmp_prop
= tx
->prop
;
546 gtm_jmpbuf longjmp_jb
= tx
->jb
;
548 tx
->rollback (cp
, true);
550 // Jump to nested transaction (use the saved jump buffer).
551 GTM_longjmp (a_abortTransaction
| a_restoreLiveVariables
,
552 &longjmp_jb
, longjmp_prop
);
556 // There is no nested transaction or an abort of the outermost
557 // transaction was requested, so roll back to the outermost transaction.
558 tx
->rollback (0, true);
560 // Aborting an outermost transaction finishes execution of the whole
561 // transaction. Therefore, reset transaction state.
562 if (tx
->state
& gtm_thread::STATE_SERIAL
)
563 gtm_thread::serial_lock
.write_unlock ();
565 gtm_thread::serial_lock
.read_unlock (tx
);
568 GTM_longjmp (a_abortTransaction
| a_restoreLiveVariables
,
574 GTM::gtm_thread::trycommit ()
578 // Skip any real commit for elided transactions.
579 if (nesting
> 0 && (parent_txns
.size() == 0 ||
580 nesting
> parent_txns
[parent_txns
.size() - 1].nesting
))
585 // Commit of a closed-nested transaction. Remove one checkpoint and add
586 // any effects of this transaction to the parent transaction.
587 gtm_transaction_cp
*cp
= parent_txns
.pop();
588 commit_allocations(false, &cp
->alloc_actions
);
593 // Commit of an outermost transaction.
594 gtm_word priv_time
= 0;
595 if (abi_disp()->trycommit (priv_time
))
597 // The transaction is now finished but we will still access some shared
598 // data if we have to ensure privatization safety.
599 bool do_read_unlock
= false;
600 if (state
& gtm_thread::STATE_SERIAL
)
602 gtm_thread::serial_lock
.write_unlock ();
603 // There are no other active transactions, so there's no need to
604 // enforce privatization safety.
609 // If we have to ensure privatization safety, we must not yet
610 // release the read lock and become inactive because (1) we still
611 // have to go through the list of all transactions, which can be
612 // modified by serial mode threads, and (2) we interpret each
613 // transactions' shared_state in the context of what we believe to
614 // be the current method group (and serial mode transactions can
615 // change the method group). Therefore, if we have to ensure
616 // privatization safety, delay becoming inactive but set a maximum
617 // snapshot time (we have committed and thus have an empty snapshot,
618 // so it will always be most recent). Use release MO so that this
619 // synchronizes with other threads observing our snapshot time.
622 do_read_unlock
= true;
623 shared_state
.store((~(typeof gtm_thread::shared_state
)0) - 1,
624 memory_order_release
);
627 gtm_thread::serial_lock
.read_unlock (this);
631 // We can commit the undo log after dispatch-specific commit and after
632 // making the transaction inactive because we only have to reset
635 // Reset further transaction state.
639 // Ensure privatization safety, if necessary.
642 // There must be a seq_cst fence between the following loads of the
643 // other transactions' shared_state and the dispatch-specific stores
644 // that signal updates by this transaction (e.g., lock
645 // acquisitions). This ensures that if we read prior to other
646 // reader transactions setting their shared_state to 0, then those
647 // readers will observe our updates. We can reuse the seq_cst fence
648 // in serial_lock.read_unlock() if we performed that; if not, we
651 atomic_thread_fence (memory_order_seq_cst
);
652 // TODO Don't just spin but also block using cond vars / futexes
653 // here. Should probably be integrated with the serial lock code.
654 for (gtm_thread
*it
= gtm_thread::list_of_threads
; it
!= 0;
655 it
= it
->next_thread
)
657 if (it
== this) continue;
658 // We need to load other threads' shared_state using acquire
659 // semantics (matching the release semantics of the respective
660 // updates). This is necessary to ensure that the other
661 // threads' memory accesses happen before our actions that
662 // assume privatization safety.
663 // TODO Are there any platform-specific optimizations (e.g.,
664 // merging barriers)?
665 while (it
->shared_state
.load(memory_order_acquire
) < priv_time
)
670 // After ensuring privatization safety, we are now truly inactive and
671 // thus can release the read lock. We will also execute potentially
672 // privatizing actions (e.g., calling free()). User actions are first.
674 gtm_thread::serial_lock
.read_unlock (this);
675 commit_user_actions ();
676 commit_allocations (false, 0);
684 GTM::gtm_thread::restart (gtm_restart_reason r
, bool finish_serial_upgrade
)
686 // Roll back to outermost transaction. Do not reset transaction state because
687 // we will continue executing this transaction.
690 // If we have to restart while an upgrade of the serial lock is happening,
691 // we need to finish this here, after rollback (to ensure privatization
692 // safety despite undo writes) and before deciding about the retry strategy
693 // (which could switch to/from serial mode).
694 if (finish_serial_upgrade
)
695 gtm_thread::serial_lock
.write_upgrade_finish(this);
697 decide_retry_strategy (r
);
699 // Run dispatch-specific restart code. Retry until we succeed.
700 abi_dispatch
* disp
= abi_disp();
701 GTM::gtm_restart_reason rr
;
702 while ((rr
= disp
->begin_or_restart()) != NO_RESTART
)
704 decide_retry_strategy(rr
);
708 GTM_longjmp (choose_code_path(prop
, disp
) | a_restoreLiveVariables
,
713 _ITM_commitTransaction(void)
715 #if defined(USE_HTM_FASTPATH)
716 // HTM fastpath. If we are not executing a HW transaction, then we will be
717 // a serial-mode transaction. If we are, then there will be no other
718 // concurrent serial-mode transaction.
719 // See gtm_thread::begin_transaction.
720 if (likely(!gtm_thread::serial_lock
.htm_fastpath_disabled()))
726 gtm_thread
*tx
= gtm_thr();
727 if (!tx
->trycommit ())
728 tx
->restart (RESTART_VALIDATE_COMMIT
);
732 _ITM_commitTransactionEH(void *exc_ptr
)
734 #if defined(USE_HTM_FASTPATH)
735 // See _ITM_commitTransaction.
736 if (likely(!gtm_thread::serial_lock
.htm_fastpath_disabled()))
742 gtm_thread
*tx
= gtm_thr();
743 if (!tx
->trycommit ())
745 tx
->eh_in_flight
= exc_ptr
;
746 tx
->restart (RESTART_VALIDATE_COMMIT
);