[RS6000] Non-pcrel tests when power10
[official-gcc.git] / gcc / asan.c
blob0b471afff64ea6a0ffbe0add71333ac688c472c6
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2020 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "stringpool.h"
51 #include "attribs.h"
52 #include "asan.h"
53 #include "dojump.h"
54 #include "explow.h"
55 #include "expr.h"
56 #include "output.h"
57 #include "langhooks.h"
58 #include "cfgloop.h"
59 #include "gimple-builder.h"
60 #include "gimple-fold.h"
61 #include "ubsan.h"
62 #include "builtins.h"
63 #include "fnmatch.h"
64 #include "tree-inline.h"
65 #include "tree-ssa.h"
67 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
68 with <2x slowdown on average.
70 The tool consists of two parts:
71 instrumentation module (this file) and a run-time library.
72 The instrumentation module adds a run-time check before every memory insn.
73 For a 8- or 16- byte load accessing address X:
74 ShadowAddr = (X >> 3) + Offset
75 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
76 if (ShadowValue)
77 __asan_report_load8(X);
78 For a load of N bytes (N=1, 2 or 4) from address X:
79 ShadowAddr = (X >> 3) + Offset
80 ShadowValue = *(char*)ShadowAddr;
81 if (ShadowValue)
82 if ((X & 7) + N - 1 > ShadowValue)
83 __asan_report_loadN(X);
84 Stores are instrumented similarly, but using __asan_report_storeN functions.
85 A call too __asan_init_vN() is inserted to the list of module CTORs.
86 N is the version number of the AddressSanitizer API. The changes between the
87 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
89 The run-time library redefines malloc (so that redzone are inserted around
90 the allocated memory) and free (so that reuse of free-ed memory is delayed),
91 provides __asan_report* and __asan_init_vN functions.
93 Read more:
94 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
96 The current implementation supports detection of out-of-bounds and
97 use-after-free in the heap, on the stack and for global variables.
99 [Protection of stack variables]
101 To understand how detection of out-of-bounds and use-after-free works
102 for stack variables, lets look at this example on x86_64 where the
103 stack grows downward:
106 foo ()
108 char a[23] = {0};
109 int b[2] = {0};
111 a[5] = 1;
112 b[1] = 2;
114 return a[5] + b[1];
117 For this function, the stack protected by asan will be organized as
118 follows, from the top of the stack to the bottom:
120 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
122 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
123 the next slot be 32 bytes aligned; this one is called Partial
124 Redzone; this 32 bytes alignment is an asan constraint]
126 Slot 3/ [24 bytes for variable 'a']
128 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
130 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
132 Slot 6/ [8 bytes for variable 'b']
134 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
135 'LEFT RedZone']
137 The 32 bytes of LEFT red zone at the bottom of the stack can be
138 decomposed as such:
140 1/ The first 8 bytes contain a magical asan number that is always
141 0x41B58AB3.
143 2/ The following 8 bytes contains a pointer to a string (to be
144 parsed at runtime by the runtime asan library), which format is
145 the following:
147 "<function-name> <space> <num-of-variables-on-the-stack>
148 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
149 <length-of-var-in-bytes> ){n} "
151 where '(...){n}' means the content inside the parenthesis occurs 'n'
152 times, with 'n' being the number of variables on the stack.
154 3/ The following 8 bytes contain the PC of the current function which
155 will be used by the run-time library to print an error message.
157 4/ The following 8 bytes are reserved for internal use by the run-time.
159 The shadow memory for that stack layout is going to look like this:
161 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
162 The F1 byte pattern is a magic number called
163 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
164 the memory for that shadow byte is part of a the LEFT red zone
165 intended to seat at the bottom of the variables on the stack.
167 - content of shadow memory 8 bytes for slots 6 and 5:
168 0xF4F4F400. The F4 byte pattern is a magic number
169 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
170 memory region for this shadow byte is a PARTIAL red zone
171 intended to pad a variable A, so that the slot following
172 {A,padding} is 32 bytes aligned.
174 Note that the fact that the least significant byte of this
175 shadow memory content is 00 means that 8 bytes of its
176 corresponding memory (which corresponds to the memory of
177 variable 'b') is addressable.
179 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
180 The F2 byte pattern is a magic number called
181 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
182 region for this shadow byte is a MIDDLE red zone intended to
183 seat between two 32 aligned slots of {variable,padding}.
185 - content of shadow memory 8 bytes for slot 3 and 2:
186 0xF4000000. This represents is the concatenation of
187 variable 'a' and the partial red zone following it, like what we
188 had for variable 'b'. The least significant 3 bytes being 00
189 means that the 3 bytes of variable 'a' are addressable.
191 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
192 The F3 byte pattern is a magic number called
193 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
194 region for this shadow byte is a RIGHT red zone intended to seat
195 at the top of the variables of the stack.
197 Note that the real variable layout is done in expand_used_vars in
198 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
199 stack variables as well as the different red zones, emits some
200 prologue code to populate the shadow memory as to poison (mark as
201 non-accessible) the regions of the red zones and mark the regions of
202 stack variables as accessible, and emit some epilogue code to
203 un-poison (mark as accessible) the regions of red zones right before
204 the function exits.
206 [Protection of global variables]
208 The basic idea is to insert a red zone between two global variables
209 and install a constructor function that calls the asan runtime to do
210 the populating of the relevant shadow memory regions at load time.
212 So the global variables are laid out as to insert a red zone between
213 them. The size of the red zones is so that each variable starts on a
214 32 bytes boundary.
216 Then a constructor function is installed so that, for each global
217 variable, it calls the runtime asan library function
218 __asan_register_globals_with an instance of this type:
220 struct __asan_global
222 // Address of the beginning of the global variable.
223 const void *__beg;
225 // Initial size of the global variable.
226 uptr __size;
228 // Size of the global variable + size of the red zone. This
229 // size is 32 bytes aligned.
230 uptr __size_with_redzone;
232 // Name of the global variable.
233 const void *__name;
235 // Name of the module where the global variable is declared.
236 const void *__module_name;
238 // 1 if it has dynamic initialization, 0 otherwise.
239 uptr __has_dynamic_init;
241 // A pointer to struct that contains source location, could be NULL.
242 __asan_global_source_location *__location;
245 A destructor function that calls the runtime asan library function
246 _asan_unregister_globals is also installed. */
248 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
249 static bool asan_shadow_offset_computed;
250 static vec<char *> sanitized_sections;
251 static tree last_alloca_addr;
253 /* Set of variable declarations that are going to be guarded by
254 use-after-scope sanitizer. */
256 hash_set<tree> *asan_handled_variables = NULL;
258 hash_set <tree> *asan_used_labels = NULL;
260 /* Sets shadow offset to value in string VAL. */
262 bool
263 set_asan_shadow_offset (const char *val)
265 char *endp;
267 errno = 0;
268 #ifdef HAVE_LONG_LONG
269 asan_shadow_offset_value = strtoull (val, &endp, 0);
270 #else
271 asan_shadow_offset_value = strtoul (val, &endp, 0);
272 #endif
273 if (!(*val != '\0' && *endp == '\0' && errno == 0))
274 return false;
276 asan_shadow_offset_computed = true;
278 return true;
281 /* Set list of user-defined sections that need to be sanitized. */
283 void
284 set_sanitized_sections (const char *sections)
286 char *pat;
287 unsigned i;
288 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
289 free (pat);
290 sanitized_sections.truncate (0);
292 for (const char *s = sections; *s; )
294 const char *end;
295 for (end = s; *end && *end != ','; ++end);
296 size_t len = end - s;
297 sanitized_sections.safe_push (xstrndup (s, len));
298 s = *end ? end + 1 : end;
302 bool
303 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
305 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
306 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
309 bool
310 asan_sanitize_stack_p (void)
312 return (sanitize_flags_p (SANITIZE_ADDRESS) && param_asan_stack);
315 bool
316 asan_sanitize_allocas_p (void)
318 return (asan_sanitize_stack_p () && param_asan_protect_allocas);
321 /* Checks whether section SEC should be sanitized. */
323 static bool
324 section_sanitized_p (const char *sec)
326 char *pat;
327 unsigned i;
328 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
329 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
330 return true;
331 return false;
334 /* Returns Asan shadow offset. */
336 static unsigned HOST_WIDE_INT
337 asan_shadow_offset ()
339 if (!asan_shadow_offset_computed)
341 asan_shadow_offset_computed = true;
342 asan_shadow_offset_value = targetm.asan_shadow_offset ();
344 return asan_shadow_offset_value;
347 /* Returns Asan shadow offset has been set. */
348 bool
349 asan_shadow_offset_set_p ()
351 return asan_shadow_offset_computed;
354 alias_set_type asan_shadow_set = -1;
356 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
357 alias set is used for all shadow memory accesses. */
358 static GTY(()) tree shadow_ptr_types[3];
360 /* Decl for __asan_option_detect_stack_use_after_return. */
361 static GTY(()) tree asan_detect_stack_use_after_return;
363 /* Hashtable support for memory references used by gimple
364 statements. */
366 /* This type represents a reference to a memory region. */
367 struct asan_mem_ref
369 /* The expression of the beginning of the memory region. */
370 tree start;
372 /* The size of the access. */
373 HOST_WIDE_INT access_size;
376 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
378 /* Initializes an instance of asan_mem_ref. */
380 static void
381 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
383 ref->start = start;
384 ref->access_size = access_size;
387 /* Allocates memory for an instance of asan_mem_ref into the memory
388 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
389 START is the address of (or the expression pointing to) the
390 beginning of memory reference. ACCESS_SIZE is the size of the
391 access to the referenced memory. */
393 static asan_mem_ref*
394 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
396 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
398 asan_mem_ref_init (ref, start, access_size);
399 return ref;
402 /* This builds and returns a pointer to the end of the memory region
403 that starts at START and of length LEN. */
405 tree
406 asan_mem_ref_get_end (tree start, tree len)
408 if (len == NULL_TREE || integer_zerop (len))
409 return start;
411 if (!ptrofftype_p (len))
412 len = convert_to_ptrofftype (len);
414 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
417 /* Return a tree expression that represents the end of the referenced
418 memory region. Beware that this function can actually build a new
419 tree expression. */
421 tree
422 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
424 return asan_mem_ref_get_end (ref->start, len);
427 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
429 static inline hashval_t hash (const asan_mem_ref *);
430 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
433 /* Hash a memory reference. */
435 inline hashval_t
436 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
438 return iterative_hash_expr (mem_ref->start, 0);
441 /* Compare two memory references. We accept the length of either
442 memory references to be NULL_TREE. */
444 inline bool
445 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
446 const asan_mem_ref *m2)
448 return operand_equal_p (m1->start, m2->start, 0);
451 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
453 /* Returns a reference to the hash table containing memory references.
454 This function ensures that the hash table is created. Note that
455 this hash table is updated by the function
456 update_mem_ref_hash_table. */
458 static hash_table<asan_mem_ref_hasher> *
459 get_mem_ref_hash_table ()
461 if (!asan_mem_ref_ht)
462 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
464 return asan_mem_ref_ht;
467 /* Clear all entries from the memory references hash table. */
469 static void
470 empty_mem_ref_hash_table ()
472 if (asan_mem_ref_ht)
473 asan_mem_ref_ht->empty ();
476 /* Free the memory references hash table. */
478 static void
479 free_mem_ref_resources ()
481 delete asan_mem_ref_ht;
482 asan_mem_ref_ht = NULL;
484 asan_mem_ref_pool.release ();
487 /* Return true iff the memory reference REF has been instrumented. */
489 static bool
490 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
492 asan_mem_ref r;
493 asan_mem_ref_init (&r, ref, access_size);
495 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
496 return saved_ref && saved_ref->access_size >= access_size;
499 /* Return true iff the memory reference REF has been instrumented. */
501 static bool
502 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
504 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
507 /* Return true iff access to memory region starting at REF and of
508 length LEN has been instrumented. */
510 static bool
511 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
513 HOST_WIDE_INT size_in_bytes
514 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
516 return size_in_bytes != -1
517 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
520 /* Set REF to the memory reference present in a gimple assignment
521 ASSIGNMENT. Return true upon successful completion, false
522 otherwise. */
524 static bool
525 get_mem_ref_of_assignment (const gassign *assignment,
526 asan_mem_ref *ref,
527 bool *ref_is_store)
529 gcc_assert (gimple_assign_single_p (assignment));
531 if (gimple_store_p (assignment)
532 && !gimple_clobber_p (assignment))
534 ref->start = gimple_assign_lhs (assignment);
535 *ref_is_store = true;
537 else if (gimple_assign_load_p (assignment))
539 ref->start = gimple_assign_rhs1 (assignment);
540 *ref_is_store = false;
542 else
543 return false;
545 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
546 return true;
549 /* Return address of last allocated dynamic alloca. */
551 static tree
552 get_last_alloca_addr ()
554 if (last_alloca_addr)
555 return last_alloca_addr;
557 last_alloca_addr = create_tmp_reg (ptr_type_node, "last_alloca_addr");
558 gassign *g = gimple_build_assign (last_alloca_addr, null_pointer_node);
559 edge e = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
560 gsi_insert_on_edge_immediate (e, g);
561 return last_alloca_addr;
564 /* Insert __asan_allocas_unpoison (top, bottom) call before
565 __builtin_stack_restore (new_sp) call.
566 The pseudocode of this routine should look like this:
567 top = last_alloca_addr;
568 bot = new_sp;
569 __asan_allocas_unpoison (top, bot);
570 last_alloca_addr = new_sp;
571 __builtin_stack_restore (new_sp);
572 In general, we can't use new_sp as bot parameter because on some
573 architectures SP has non zero offset from dynamic stack area. Moreover, on
574 some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
575 particular function only after all callees were expanded to rtl.
576 The most noticeable example is PowerPC{,64}, see
577 http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
578 To overcome the issue we use following trick: pass new_sp as a second
579 parameter to __asan_allocas_unpoison and rewrite it during expansion with
580 new_sp + (virtual_dynamic_stack_rtx - sp) later in
581 expand_asan_emit_allocas_unpoison function. */
583 static void
584 handle_builtin_stack_restore (gcall *call, gimple_stmt_iterator *iter)
586 if (!iter || !asan_sanitize_allocas_p ())
587 return;
589 tree last_alloca = get_last_alloca_addr ();
590 tree restored_stack = gimple_call_arg (call, 0);
591 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON);
592 gimple *g = gimple_build_call (fn, 2, last_alloca, restored_stack);
593 gsi_insert_before (iter, g, GSI_SAME_STMT);
594 g = gimple_build_assign (last_alloca, restored_stack);
595 gsi_insert_before (iter, g, GSI_SAME_STMT);
598 /* Deploy and poison redzones around __builtin_alloca call. To do this, we
599 should replace this call with another one with changed parameters and
600 replace all its uses with new address, so
601 addr = __builtin_alloca (old_size, align);
602 is replaced by
603 left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
604 Following two statements are optimized out if we know that
605 old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
606 redzone.
607 misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
608 partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
609 right_redzone_size = ASAN_RED_ZONE_SIZE;
610 additional_size = left_redzone_size + partial_redzone_size +
611 right_redzone_size;
612 new_size = old_size + additional_size;
613 new_alloca = __builtin_alloca (new_size, max (align, 32))
614 __asan_alloca_poison (new_alloca, old_size)
615 addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
616 last_alloca_addr = new_alloca;
617 ADDITIONAL_SIZE is added to make new memory allocation contain not only
618 requested memory, but also left, partial and right redzones as well as some
619 additional space, required by alignment. */
621 static void
622 handle_builtin_alloca (gcall *call, gimple_stmt_iterator *iter)
624 if (!iter || !asan_sanitize_allocas_p ())
625 return;
627 gassign *g;
628 gcall *gg;
629 const HOST_WIDE_INT redzone_mask = ASAN_RED_ZONE_SIZE - 1;
631 tree last_alloca = get_last_alloca_addr ();
632 tree callee = gimple_call_fndecl (call);
633 tree old_size = gimple_call_arg (call, 0);
634 tree ptr_type = gimple_call_lhs (call) ? TREE_TYPE (gimple_call_lhs (call))
635 : ptr_type_node;
636 tree partial_size = NULL_TREE;
637 unsigned int align
638 = DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
639 ? 0 : tree_to_uhwi (gimple_call_arg (call, 1));
641 /* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
642 bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
643 manually. */
644 align = MAX (align, ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
646 tree alloca_rz_mask = build_int_cst (size_type_node, redzone_mask);
647 tree redzone_size = build_int_cst (size_type_node, ASAN_RED_ZONE_SIZE);
649 /* Extract lower bits from old_size. */
650 wide_int size_nonzero_bits = get_nonzero_bits (old_size);
651 wide_int rz_mask
652 = wi::uhwi (redzone_mask, wi::get_precision (size_nonzero_bits));
653 wide_int old_size_lower_bits = wi::bit_and (size_nonzero_bits, rz_mask);
655 /* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
656 redzone. Otherwise, compute its size here. */
657 if (wi::ne_p (old_size_lower_bits, 0))
659 /* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
660 partial_size = ASAN_RED_ZONE_SIZE - misalign. */
661 g = gimple_build_assign (make_ssa_name (size_type_node, NULL),
662 BIT_AND_EXPR, old_size, alloca_rz_mask);
663 gsi_insert_before (iter, g, GSI_SAME_STMT);
664 tree misalign = gimple_assign_lhs (g);
665 g = gimple_build_assign (make_ssa_name (size_type_node, NULL), MINUS_EXPR,
666 redzone_size, misalign);
667 gsi_insert_before (iter, g, GSI_SAME_STMT);
668 partial_size = gimple_assign_lhs (g);
671 /* additional_size = align + ASAN_RED_ZONE_SIZE. */
672 tree additional_size = build_int_cst (size_type_node, align / BITS_PER_UNIT
673 + ASAN_RED_ZONE_SIZE);
674 /* If alloca has partial redzone, include it to additional_size too. */
675 if (partial_size)
677 /* additional_size += partial_size. */
678 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR,
679 partial_size, additional_size);
680 gsi_insert_before (iter, g, GSI_SAME_STMT);
681 additional_size = gimple_assign_lhs (g);
684 /* new_size = old_size + additional_size. */
685 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR, old_size,
686 additional_size);
687 gsi_insert_before (iter, g, GSI_SAME_STMT);
688 tree new_size = gimple_assign_lhs (g);
690 /* Build new __builtin_alloca call:
691 new_alloca_with_rz = __builtin_alloca (new_size, align). */
692 tree fn = builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN);
693 gg = gimple_build_call (fn, 2, new_size,
694 build_int_cst (size_type_node, align));
695 tree new_alloca_with_rz = make_ssa_name (ptr_type, gg);
696 gimple_call_set_lhs (gg, new_alloca_with_rz);
697 gsi_insert_before (iter, gg, GSI_SAME_STMT);
699 /* new_alloca = new_alloca_with_rz + align. */
700 g = gimple_build_assign (make_ssa_name (ptr_type), POINTER_PLUS_EXPR,
701 new_alloca_with_rz,
702 build_int_cst (size_type_node,
703 align / BITS_PER_UNIT));
704 gsi_insert_before (iter, g, GSI_SAME_STMT);
705 tree new_alloca = gimple_assign_lhs (g);
707 /* Poison newly created alloca redzones:
708 __asan_alloca_poison (new_alloca, old_size). */
709 fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON);
710 gg = gimple_build_call (fn, 2, new_alloca, old_size);
711 gsi_insert_before (iter, gg, GSI_SAME_STMT);
713 /* Save new_alloca_with_rz value into last_alloca to use it during
714 allocas unpoisoning. */
715 g = gimple_build_assign (last_alloca, new_alloca_with_rz);
716 gsi_insert_before (iter, g, GSI_SAME_STMT);
718 /* Finally, replace old alloca ptr with NEW_ALLOCA. */
719 replace_call_with_value (iter, new_alloca);
722 /* Return the memory references contained in a gimple statement
723 representing a builtin call that has to do with memory access. */
725 static bool
726 get_mem_refs_of_builtin_call (gcall *call,
727 asan_mem_ref *src0,
728 tree *src0_len,
729 bool *src0_is_store,
730 asan_mem_ref *src1,
731 tree *src1_len,
732 bool *src1_is_store,
733 asan_mem_ref *dst,
734 tree *dst_len,
735 bool *dst_is_store,
736 bool *dest_is_deref,
737 bool *intercepted_p,
738 gimple_stmt_iterator *iter = NULL)
740 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
742 tree callee = gimple_call_fndecl (call);
743 tree source0 = NULL_TREE, source1 = NULL_TREE,
744 dest = NULL_TREE, len = NULL_TREE;
745 bool is_store = true, got_reference_p = false;
746 HOST_WIDE_INT access_size = 1;
748 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
750 switch (DECL_FUNCTION_CODE (callee))
752 /* (s, s, n) style memops. */
753 case BUILT_IN_BCMP:
754 case BUILT_IN_MEMCMP:
755 source0 = gimple_call_arg (call, 0);
756 source1 = gimple_call_arg (call, 1);
757 len = gimple_call_arg (call, 2);
758 break;
760 /* (src, dest, n) style memops. */
761 case BUILT_IN_BCOPY:
762 source0 = gimple_call_arg (call, 0);
763 dest = gimple_call_arg (call, 1);
764 len = gimple_call_arg (call, 2);
765 break;
767 /* (dest, src, n) style memops. */
768 case BUILT_IN_MEMCPY:
769 case BUILT_IN_MEMCPY_CHK:
770 case BUILT_IN_MEMMOVE:
771 case BUILT_IN_MEMMOVE_CHK:
772 case BUILT_IN_MEMPCPY:
773 case BUILT_IN_MEMPCPY_CHK:
774 dest = gimple_call_arg (call, 0);
775 source0 = gimple_call_arg (call, 1);
776 len = gimple_call_arg (call, 2);
777 break;
779 /* (dest, n) style memops. */
780 case BUILT_IN_BZERO:
781 dest = gimple_call_arg (call, 0);
782 len = gimple_call_arg (call, 1);
783 break;
785 /* (dest, x, n) style memops*/
786 case BUILT_IN_MEMSET:
787 case BUILT_IN_MEMSET_CHK:
788 dest = gimple_call_arg (call, 0);
789 len = gimple_call_arg (call, 2);
790 break;
792 case BUILT_IN_STRLEN:
793 source0 = gimple_call_arg (call, 0);
794 len = gimple_call_lhs (call);
795 break;
797 case BUILT_IN_STACK_RESTORE:
798 handle_builtin_stack_restore (call, iter);
799 break;
801 CASE_BUILT_IN_ALLOCA:
802 handle_builtin_alloca (call, iter);
803 break;
804 /* And now the __atomic* and __sync builtins.
805 These are handled differently from the classical memory
806 access builtins above. */
808 case BUILT_IN_ATOMIC_LOAD_1:
809 is_store = false;
810 /* FALLTHRU */
811 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
812 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
813 case BUILT_IN_SYNC_FETCH_AND_OR_1:
814 case BUILT_IN_SYNC_FETCH_AND_AND_1:
815 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
816 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
817 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
818 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
819 case BUILT_IN_SYNC_OR_AND_FETCH_1:
820 case BUILT_IN_SYNC_AND_AND_FETCH_1:
821 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
822 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
823 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
824 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
825 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
826 case BUILT_IN_SYNC_LOCK_RELEASE_1:
827 case BUILT_IN_ATOMIC_EXCHANGE_1:
828 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
829 case BUILT_IN_ATOMIC_STORE_1:
830 case BUILT_IN_ATOMIC_ADD_FETCH_1:
831 case BUILT_IN_ATOMIC_SUB_FETCH_1:
832 case BUILT_IN_ATOMIC_AND_FETCH_1:
833 case BUILT_IN_ATOMIC_NAND_FETCH_1:
834 case BUILT_IN_ATOMIC_XOR_FETCH_1:
835 case BUILT_IN_ATOMIC_OR_FETCH_1:
836 case BUILT_IN_ATOMIC_FETCH_ADD_1:
837 case BUILT_IN_ATOMIC_FETCH_SUB_1:
838 case BUILT_IN_ATOMIC_FETCH_AND_1:
839 case BUILT_IN_ATOMIC_FETCH_NAND_1:
840 case BUILT_IN_ATOMIC_FETCH_XOR_1:
841 case BUILT_IN_ATOMIC_FETCH_OR_1:
842 access_size = 1;
843 goto do_atomic;
845 case BUILT_IN_ATOMIC_LOAD_2:
846 is_store = false;
847 /* FALLTHRU */
848 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
849 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
850 case BUILT_IN_SYNC_FETCH_AND_OR_2:
851 case BUILT_IN_SYNC_FETCH_AND_AND_2:
852 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
853 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
854 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
855 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
856 case BUILT_IN_SYNC_OR_AND_FETCH_2:
857 case BUILT_IN_SYNC_AND_AND_FETCH_2:
858 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
859 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
860 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
861 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
862 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
863 case BUILT_IN_SYNC_LOCK_RELEASE_2:
864 case BUILT_IN_ATOMIC_EXCHANGE_2:
865 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
866 case BUILT_IN_ATOMIC_STORE_2:
867 case BUILT_IN_ATOMIC_ADD_FETCH_2:
868 case BUILT_IN_ATOMIC_SUB_FETCH_2:
869 case BUILT_IN_ATOMIC_AND_FETCH_2:
870 case BUILT_IN_ATOMIC_NAND_FETCH_2:
871 case BUILT_IN_ATOMIC_XOR_FETCH_2:
872 case BUILT_IN_ATOMIC_OR_FETCH_2:
873 case BUILT_IN_ATOMIC_FETCH_ADD_2:
874 case BUILT_IN_ATOMIC_FETCH_SUB_2:
875 case BUILT_IN_ATOMIC_FETCH_AND_2:
876 case BUILT_IN_ATOMIC_FETCH_NAND_2:
877 case BUILT_IN_ATOMIC_FETCH_XOR_2:
878 case BUILT_IN_ATOMIC_FETCH_OR_2:
879 access_size = 2;
880 goto do_atomic;
882 case BUILT_IN_ATOMIC_LOAD_4:
883 is_store = false;
884 /* FALLTHRU */
885 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
886 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
887 case BUILT_IN_SYNC_FETCH_AND_OR_4:
888 case BUILT_IN_SYNC_FETCH_AND_AND_4:
889 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
890 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
891 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
892 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
893 case BUILT_IN_SYNC_OR_AND_FETCH_4:
894 case BUILT_IN_SYNC_AND_AND_FETCH_4:
895 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
896 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
897 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
898 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
899 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
900 case BUILT_IN_SYNC_LOCK_RELEASE_4:
901 case BUILT_IN_ATOMIC_EXCHANGE_4:
902 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
903 case BUILT_IN_ATOMIC_STORE_4:
904 case BUILT_IN_ATOMIC_ADD_FETCH_4:
905 case BUILT_IN_ATOMIC_SUB_FETCH_4:
906 case BUILT_IN_ATOMIC_AND_FETCH_4:
907 case BUILT_IN_ATOMIC_NAND_FETCH_4:
908 case BUILT_IN_ATOMIC_XOR_FETCH_4:
909 case BUILT_IN_ATOMIC_OR_FETCH_4:
910 case BUILT_IN_ATOMIC_FETCH_ADD_4:
911 case BUILT_IN_ATOMIC_FETCH_SUB_4:
912 case BUILT_IN_ATOMIC_FETCH_AND_4:
913 case BUILT_IN_ATOMIC_FETCH_NAND_4:
914 case BUILT_IN_ATOMIC_FETCH_XOR_4:
915 case BUILT_IN_ATOMIC_FETCH_OR_4:
916 access_size = 4;
917 goto do_atomic;
919 case BUILT_IN_ATOMIC_LOAD_8:
920 is_store = false;
921 /* FALLTHRU */
922 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
923 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
924 case BUILT_IN_SYNC_FETCH_AND_OR_8:
925 case BUILT_IN_SYNC_FETCH_AND_AND_8:
926 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
927 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
928 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
929 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
930 case BUILT_IN_SYNC_OR_AND_FETCH_8:
931 case BUILT_IN_SYNC_AND_AND_FETCH_8:
932 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
933 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
934 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
935 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
936 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
937 case BUILT_IN_SYNC_LOCK_RELEASE_8:
938 case BUILT_IN_ATOMIC_EXCHANGE_8:
939 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
940 case BUILT_IN_ATOMIC_STORE_8:
941 case BUILT_IN_ATOMIC_ADD_FETCH_8:
942 case BUILT_IN_ATOMIC_SUB_FETCH_8:
943 case BUILT_IN_ATOMIC_AND_FETCH_8:
944 case BUILT_IN_ATOMIC_NAND_FETCH_8:
945 case BUILT_IN_ATOMIC_XOR_FETCH_8:
946 case BUILT_IN_ATOMIC_OR_FETCH_8:
947 case BUILT_IN_ATOMIC_FETCH_ADD_8:
948 case BUILT_IN_ATOMIC_FETCH_SUB_8:
949 case BUILT_IN_ATOMIC_FETCH_AND_8:
950 case BUILT_IN_ATOMIC_FETCH_NAND_8:
951 case BUILT_IN_ATOMIC_FETCH_XOR_8:
952 case BUILT_IN_ATOMIC_FETCH_OR_8:
953 access_size = 8;
954 goto do_atomic;
956 case BUILT_IN_ATOMIC_LOAD_16:
957 is_store = false;
958 /* FALLTHRU */
959 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
960 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
961 case BUILT_IN_SYNC_FETCH_AND_OR_16:
962 case BUILT_IN_SYNC_FETCH_AND_AND_16:
963 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
964 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
965 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
966 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
967 case BUILT_IN_SYNC_OR_AND_FETCH_16:
968 case BUILT_IN_SYNC_AND_AND_FETCH_16:
969 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
970 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
971 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
972 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
973 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
974 case BUILT_IN_SYNC_LOCK_RELEASE_16:
975 case BUILT_IN_ATOMIC_EXCHANGE_16:
976 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
977 case BUILT_IN_ATOMIC_STORE_16:
978 case BUILT_IN_ATOMIC_ADD_FETCH_16:
979 case BUILT_IN_ATOMIC_SUB_FETCH_16:
980 case BUILT_IN_ATOMIC_AND_FETCH_16:
981 case BUILT_IN_ATOMIC_NAND_FETCH_16:
982 case BUILT_IN_ATOMIC_XOR_FETCH_16:
983 case BUILT_IN_ATOMIC_OR_FETCH_16:
984 case BUILT_IN_ATOMIC_FETCH_ADD_16:
985 case BUILT_IN_ATOMIC_FETCH_SUB_16:
986 case BUILT_IN_ATOMIC_FETCH_AND_16:
987 case BUILT_IN_ATOMIC_FETCH_NAND_16:
988 case BUILT_IN_ATOMIC_FETCH_XOR_16:
989 case BUILT_IN_ATOMIC_FETCH_OR_16:
990 access_size = 16;
991 /* FALLTHRU */
992 do_atomic:
994 dest = gimple_call_arg (call, 0);
995 /* DEST represents the address of a memory location.
996 instrument_derefs wants the memory location, so lets
997 dereference the address DEST before handing it to
998 instrument_derefs. */
999 tree type = build_nonstandard_integer_type (access_size
1000 * BITS_PER_UNIT, 1);
1001 dest = build2 (MEM_REF, type, dest,
1002 build_int_cst (build_pointer_type (char_type_node), 0));
1003 break;
1006 default:
1007 /* The other builtins memory access are not instrumented in this
1008 function because they either don't have any length parameter,
1009 or their length parameter is just a limit. */
1010 break;
1013 if (len != NULL_TREE)
1015 if (source0 != NULL_TREE)
1017 src0->start = source0;
1018 src0->access_size = access_size;
1019 *src0_len = len;
1020 *src0_is_store = false;
1023 if (source1 != NULL_TREE)
1025 src1->start = source1;
1026 src1->access_size = access_size;
1027 *src1_len = len;
1028 *src1_is_store = false;
1031 if (dest != NULL_TREE)
1033 dst->start = dest;
1034 dst->access_size = access_size;
1035 *dst_len = len;
1036 *dst_is_store = true;
1039 got_reference_p = true;
1041 else if (dest)
1043 dst->start = dest;
1044 dst->access_size = access_size;
1045 *dst_len = NULL_TREE;
1046 *dst_is_store = is_store;
1047 *dest_is_deref = true;
1048 got_reference_p = true;
1051 return got_reference_p;
1054 /* Return true iff a given gimple statement has been instrumented.
1055 Note that the statement is "defined" by the memory references it
1056 contains. */
1058 static bool
1059 has_stmt_been_instrumented_p (gimple *stmt)
1061 if (gimple_assign_single_p (stmt))
1063 bool r_is_store;
1064 asan_mem_ref r;
1065 asan_mem_ref_init (&r, NULL, 1);
1067 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
1068 &r_is_store))
1069 return has_mem_ref_been_instrumented (&r);
1071 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1073 asan_mem_ref src0, src1, dest;
1074 asan_mem_ref_init (&src0, NULL, 1);
1075 asan_mem_ref_init (&src1, NULL, 1);
1076 asan_mem_ref_init (&dest, NULL, 1);
1078 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1079 bool src0_is_store = false, src1_is_store = false,
1080 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
1081 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
1082 &src0, &src0_len, &src0_is_store,
1083 &src1, &src1_len, &src1_is_store,
1084 &dest, &dest_len, &dest_is_store,
1085 &dest_is_deref, &intercepted_p))
1087 if (src0.start != NULL_TREE
1088 && !has_mem_ref_been_instrumented (&src0, src0_len))
1089 return false;
1091 if (src1.start != NULL_TREE
1092 && !has_mem_ref_been_instrumented (&src1, src1_len))
1093 return false;
1095 if (dest.start != NULL_TREE
1096 && !has_mem_ref_been_instrumented (&dest, dest_len))
1097 return false;
1099 return true;
1102 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
1104 asan_mem_ref r;
1105 asan_mem_ref_init (&r, NULL, 1);
1107 r.start = gimple_call_lhs (stmt);
1108 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
1109 return has_mem_ref_been_instrumented (&r);
1112 return false;
1115 /* Insert a memory reference into the hash table. */
1117 static void
1118 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
1120 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
1122 asan_mem_ref r;
1123 asan_mem_ref_init (&r, ref, access_size);
1125 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
1126 if (*slot == NULL || (*slot)->access_size < access_size)
1127 *slot = asan_mem_ref_new (ref, access_size);
1130 /* Initialize shadow_ptr_types array. */
1132 static void
1133 asan_init_shadow_ptr_types (void)
1135 asan_shadow_set = new_alias_set ();
1136 tree types[3] = { signed_char_type_node, short_integer_type_node,
1137 integer_type_node };
1139 for (unsigned i = 0; i < 3; i++)
1141 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
1142 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
1143 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
1146 initialize_sanitizer_builtins ();
1149 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
1151 static tree
1152 asan_pp_string (pretty_printer *pp)
1154 const char *buf = pp_formatted_text (pp);
1155 size_t len = strlen (buf);
1156 tree ret = build_string (len + 1, buf);
1157 TREE_TYPE (ret)
1158 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
1159 build_index_type (size_int (len)));
1160 TREE_READONLY (ret) = 1;
1161 TREE_STATIC (ret) = 1;
1162 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
1165 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
1166 though. */
1168 static void
1169 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
1171 rtx_insn *insn, *insns, *jump;
1172 rtx_code_label *top_label;
1173 rtx end, addr, tmp;
1175 gcc_assert ((len & 3) == 0);
1176 start_sequence ();
1177 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
1178 insns = get_insns ();
1179 end_sequence ();
1180 for (insn = insns; insn; insn = NEXT_INSN (insn))
1181 if (CALL_P (insn))
1182 break;
1183 if (insn == NULL_RTX)
1185 emit_insn (insns);
1186 return;
1189 top_label = gen_label_rtx ();
1190 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1191 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1192 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1193 emit_label (top_label);
1195 emit_move_insn (shadow_mem, const0_rtx);
1196 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1197 true, OPTAB_LIB_WIDEN);
1198 if (tmp != addr)
1199 emit_move_insn (addr, tmp);
1200 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1201 jump = get_last_insn ();
1202 gcc_assert (JUMP_P (jump));
1203 add_reg_br_prob_note (jump,
1204 profile_probability::guessed_always ()
1205 .apply_scale (80, 100));
1208 void
1209 asan_function_start (void)
1211 section *fnsec = function_section (current_function_decl);
1212 switch_to_section (fnsec);
1213 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1214 current_function_funcdef_no);
1217 /* Return number of shadow bytes that are occupied by a local variable
1218 of SIZE bytes. */
1220 static unsigned HOST_WIDE_INT
1221 shadow_mem_size (unsigned HOST_WIDE_INT size)
1223 /* It must be possible to align stack variables to granularity
1224 of shadow memory. */
1225 gcc_assert (BITS_PER_UNIT
1226 * ASAN_SHADOW_GRANULARITY <= MAX_SUPPORTED_STACK_ALIGNMENT);
1228 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1231 /* Always emit 4 bytes at a time. */
1232 #define RZ_BUFFER_SIZE 4
1234 /* ASAN redzone buffer container that handles emission of shadow bytes. */
1235 class asan_redzone_buffer
1237 public:
1238 /* Constructor. */
1239 asan_redzone_buffer (rtx shadow_mem, HOST_WIDE_INT prev_offset):
1240 m_shadow_mem (shadow_mem), m_prev_offset (prev_offset),
1241 m_original_offset (prev_offset), m_shadow_bytes (RZ_BUFFER_SIZE)
1244 /* Emit VALUE shadow byte at a given OFFSET. */
1245 void emit_redzone_byte (HOST_WIDE_INT offset, unsigned char value);
1247 /* Emit RTX emission of the content of the buffer. */
1248 void flush_redzone_payload (void);
1250 private:
1251 /* Flush if the content of the buffer is full
1252 (equal to RZ_BUFFER_SIZE). */
1253 void flush_if_full (void);
1255 /* Memory where we last emitted a redzone payload. */
1256 rtx m_shadow_mem;
1258 /* Relative offset where we last emitted a redzone payload. */
1259 HOST_WIDE_INT m_prev_offset;
1261 /* Relative original offset. Used for checking only. */
1262 HOST_WIDE_INT m_original_offset;
1264 public:
1265 /* Buffer with redzone payload. */
1266 auto_vec<unsigned char> m_shadow_bytes;
1269 /* Emit VALUE shadow byte at a given OFFSET. */
1271 void
1272 asan_redzone_buffer::emit_redzone_byte (HOST_WIDE_INT offset,
1273 unsigned char value)
1275 gcc_assert ((offset & (ASAN_SHADOW_GRANULARITY - 1)) == 0);
1276 gcc_assert (offset >= m_prev_offset);
1278 HOST_WIDE_INT off
1279 = m_prev_offset + ASAN_SHADOW_GRANULARITY * m_shadow_bytes.length ();
1280 if (off == offset)
1282 /* Consecutive shadow memory byte. */
1283 m_shadow_bytes.safe_push (value);
1284 flush_if_full ();
1286 else
1288 if (!m_shadow_bytes.is_empty ())
1289 flush_redzone_payload ();
1291 /* Maybe start earlier in order to use aligned store. */
1292 HOST_WIDE_INT align = (offset - m_prev_offset) % ASAN_RED_ZONE_SIZE;
1293 if (align)
1295 offset -= align;
1296 for (unsigned i = 0; i < align / BITS_PER_UNIT; i++)
1297 m_shadow_bytes.safe_push (0);
1300 /* Adjust m_prev_offset and m_shadow_mem. */
1301 HOST_WIDE_INT diff = offset - m_prev_offset;
1302 m_shadow_mem = adjust_address (m_shadow_mem, VOIDmode,
1303 diff >> ASAN_SHADOW_SHIFT);
1304 m_prev_offset = offset;
1305 m_shadow_bytes.safe_push (value);
1306 flush_if_full ();
1310 /* Emit RTX emission of the content of the buffer. */
1312 void
1313 asan_redzone_buffer::flush_redzone_payload (void)
1315 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
1317 if (m_shadow_bytes.is_empty ())
1318 return;
1320 /* Be sure we always emit to an aligned address. */
1321 gcc_assert (((m_prev_offset - m_original_offset)
1322 & (ASAN_RED_ZONE_SIZE - 1)) == 0);
1324 /* Fill it to RZ_BUFFER_SIZE bytes with zeros if needed. */
1325 unsigned l = m_shadow_bytes.length ();
1326 for (unsigned i = 0; i <= RZ_BUFFER_SIZE - l; i++)
1327 m_shadow_bytes.safe_push (0);
1329 if (dump_file && (dump_flags & TDF_DETAILS))
1330 fprintf (dump_file,
1331 "Flushing rzbuffer at offset %" PRId64 " with: ", m_prev_offset);
1333 unsigned HOST_WIDE_INT val = 0;
1334 for (unsigned i = 0; i < RZ_BUFFER_SIZE; i++)
1336 unsigned char v
1337 = m_shadow_bytes[BYTES_BIG_ENDIAN ? RZ_BUFFER_SIZE - i - 1 : i];
1338 val |= (unsigned HOST_WIDE_INT)v << (BITS_PER_UNIT * i);
1339 if (dump_file && (dump_flags & TDF_DETAILS))
1340 fprintf (dump_file, "%02x ", v);
1343 if (dump_file && (dump_flags & TDF_DETAILS))
1344 fprintf (dump_file, "\n");
1346 rtx c = gen_int_mode (val, SImode);
1347 m_shadow_mem = adjust_address (m_shadow_mem, SImode, 0);
1348 emit_move_insn (m_shadow_mem, c);
1349 m_shadow_bytes.truncate (0);
1352 /* Flush if the content of the buffer is full
1353 (equal to RZ_BUFFER_SIZE). */
1355 void
1356 asan_redzone_buffer::flush_if_full (void)
1358 if (m_shadow_bytes.length () == RZ_BUFFER_SIZE)
1359 flush_redzone_payload ();
1362 /* Insert code to protect stack vars. The prologue sequence should be emitted
1363 directly, epilogue sequence returned. BASE is the register holding the
1364 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1365 array contains pairs of offsets in reverse order, always the end offset
1366 of some gap that needs protection followed by starting offset,
1367 and DECLS is an array of representative decls for each var partition.
1368 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1369 elements long (OFFSETS include gap before the first variable as well
1370 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1371 register which stack vars DECL_RTLs are based on. Either BASE should be
1372 assigned to PBASE, when not doing use after return protection, or
1373 corresponding address based on __asan_stack_malloc* return value. */
1375 rtx_insn *
1376 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1377 HOST_WIDE_INT *offsets, tree *decls, int length)
1379 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1380 rtx_code_label *lab;
1381 rtx_insn *insns;
1382 char buf[32];
1383 HOST_WIDE_INT base_offset = offsets[length - 1];
1384 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1385 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1386 HOST_WIDE_INT last_offset, last_size, last_size_aligned;
1387 int l;
1388 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1389 tree str_cst, decl, id;
1390 int use_after_return_class = -1;
1392 if (shadow_ptr_types[0] == NULL_TREE)
1393 asan_init_shadow_ptr_types ();
1395 expanded_location cfun_xloc
1396 = expand_location (DECL_SOURCE_LOCATION (current_function_decl));
1398 /* First of all, prepare the description string. */
1399 pretty_printer asan_pp;
1401 pp_decimal_int (&asan_pp, length / 2 - 1);
1402 pp_space (&asan_pp);
1403 for (l = length - 2; l; l -= 2)
1405 tree decl = decls[l / 2 - 1];
1406 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1407 pp_space (&asan_pp);
1408 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1409 pp_space (&asan_pp);
1411 expanded_location xloc
1412 = expand_location (DECL_SOURCE_LOCATION (decl));
1413 char location[32];
1415 if (xloc.file == cfun_xloc.file)
1416 sprintf (location, ":%d", xloc.line);
1417 else
1418 location[0] = '\0';
1420 if (DECL_P (decl) && DECL_NAME (decl))
1422 unsigned idlen
1423 = IDENTIFIER_LENGTH (DECL_NAME (decl)) + strlen (location);
1424 pp_decimal_int (&asan_pp, idlen);
1425 pp_space (&asan_pp);
1426 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1427 pp_string (&asan_pp, location);
1429 else
1430 pp_string (&asan_pp, "9 <unknown>");
1432 if (l > 2)
1433 pp_space (&asan_pp);
1435 str_cst = asan_pp_string (&asan_pp);
1437 /* Emit the prologue sequence. */
1438 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1439 && param_asan_use_after_return)
1441 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1442 /* __asan_stack_malloc_N guarantees alignment
1443 N < 6 ? (64 << N) : 4096 bytes. */
1444 if (alignb > (use_after_return_class < 6
1445 ? (64U << use_after_return_class) : 4096U))
1446 use_after_return_class = -1;
1447 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1448 base_align_bias = ((asan_frame_size + alignb - 1)
1449 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1452 /* Align base if target is STRICT_ALIGNMENT. */
1453 if (STRICT_ALIGNMENT)
1455 const HOST_WIDE_INT align
1456 = (GET_MODE_ALIGNMENT (SImode) / BITS_PER_UNIT) << ASAN_SHADOW_SHIFT;
1457 base = expand_binop (Pmode, and_optab, base, gen_int_mode (-align, Pmode),
1458 NULL_RTX, 1, OPTAB_DIRECT);
1461 if (use_after_return_class == -1 && pbase)
1462 emit_move_insn (pbase, base);
1464 base = expand_binop (Pmode, add_optab, base,
1465 gen_int_mode (base_offset - base_align_bias, Pmode),
1466 NULL_RTX, 1, OPTAB_DIRECT);
1467 orig_base = NULL_RTX;
1468 if (use_after_return_class != -1)
1470 if (asan_detect_stack_use_after_return == NULL_TREE)
1472 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1473 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1474 integer_type_node);
1475 SET_DECL_ASSEMBLER_NAME (decl, id);
1476 TREE_ADDRESSABLE (decl) = 1;
1477 DECL_ARTIFICIAL (decl) = 1;
1478 DECL_IGNORED_P (decl) = 1;
1479 DECL_EXTERNAL (decl) = 1;
1480 TREE_STATIC (decl) = 1;
1481 TREE_PUBLIC (decl) = 1;
1482 TREE_USED (decl) = 1;
1483 asan_detect_stack_use_after_return = decl;
1485 orig_base = gen_reg_rtx (Pmode);
1486 emit_move_insn (orig_base, base);
1487 ret = expand_normal (asan_detect_stack_use_after_return);
1488 lab = gen_label_rtx ();
1489 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1490 VOIDmode, 0, lab,
1491 profile_probability::very_likely ());
1492 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1493 use_after_return_class);
1494 ret = init_one_libfunc (buf);
1495 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
1496 GEN_INT (asan_frame_size
1497 + base_align_bias),
1498 TYPE_MODE (pointer_sized_int_node));
1499 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1500 and NULL otherwise. Check RET value is NULL here and jump over the
1501 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1502 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1503 VOIDmode, 0, lab,
1504 profile_probability:: very_unlikely ());
1505 ret = convert_memory_address (Pmode, ret);
1506 emit_move_insn (base, ret);
1507 emit_label (lab);
1508 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1509 gen_int_mode (base_align_bias
1510 - base_offset, Pmode),
1511 NULL_RTX, 1, OPTAB_DIRECT));
1513 mem = gen_rtx_MEM (ptr_mode, base);
1514 mem = adjust_address (mem, VOIDmode, base_align_bias);
1515 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1516 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1517 emit_move_insn (mem, expand_normal (str_cst));
1518 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1519 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1520 id = get_identifier (buf);
1521 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1522 VAR_DECL, id, char_type_node);
1523 SET_DECL_ASSEMBLER_NAME (decl, id);
1524 TREE_ADDRESSABLE (decl) = 1;
1525 TREE_READONLY (decl) = 1;
1526 DECL_ARTIFICIAL (decl) = 1;
1527 DECL_IGNORED_P (decl) = 1;
1528 TREE_STATIC (decl) = 1;
1529 TREE_PUBLIC (decl) = 0;
1530 TREE_USED (decl) = 1;
1531 DECL_INITIAL (decl) = decl;
1532 TREE_ASM_WRITTEN (decl) = 1;
1533 TREE_ASM_WRITTEN (id) = 1;
1534 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1535 shadow_base = expand_binop (Pmode, lshr_optab, base,
1536 gen_int_shift_amount (Pmode, ASAN_SHADOW_SHIFT),
1537 NULL_RTX, 1, OPTAB_DIRECT);
1538 shadow_base
1539 = plus_constant (Pmode, shadow_base,
1540 asan_shadow_offset ()
1541 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1542 gcc_assert (asan_shadow_set != -1
1543 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1544 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1545 set_mem_alias_set (shadow_mem, asan_shadow_set);
1546 if (STRICT_ALIGNMENT)
1547 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1548 prev_offset = base_offset;
1550 asan_redzone_buffer rz_buffer (shadow_mem, prev_offset);
1551 for (l = length; l; l -= 2)
1553 if (l == 2)
1554 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1555 offset = offsets[l - 1];
1557 bool extra_byte = (offset - base_offset) & (ASAN_SHADOW_GRANULARITY - 1);
1558 /* If a red-zone is not aligned to ASAN_SHADOW_GRANULARITY then
1559 the previous stack variable has size % ASAN_SHADOW_GRANULARITY != 0.
1560 In that case we have to emit one extra byte that will describe
1561 how many bytes (our of ASAN_SHADOW_GRANULARITY) can be accessed. */
1562 if (extra_byte)
1564 HOST_WIDE_INT aoff
1565 = base_offset + ((offset - base_offset)
1566 & ~(ASAN_SHADOW_GRANULARITY - HOST_WIDE_INT_1));
1567 rz_buffer.emit_redzone_byte (aoff, offset - aoff);
1568 offset = aoff + ASAN_SHADOW_GRANULARITY;
1571 /* Calculate size of red zone payload. */
1572 while (offset < offsets[l - 2])
1574 rz_buffer.emit_redzone_byte (offset, cur_shadow_byte);
1575 offset += ASAN_SHADOW_GRANULARITY;
1578 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1581 /* As the automatic variables are aligned to
1582 ASAN_RED_ZONE_SIZE / ASAN_SHADOW_GRANULARITY, the buffer should be
1583 flushed here. */
1584 gcc_assert (rz_buffer.m_shadow_bytes.is_empty ());
1586 do_pending_stack_adjust ();
1588 /* Construct epilogue sequence. */
1589 start_sequence ();
1591 lab = NULL;
1592 if (use_after_return_class != -1)
1594 rtx_code_label *lab2 = gen_label_rtx ();
1595 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1596 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1597 VOIDmode, 0, lab2,
1598 profile_probability::very_likely ());
1599 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1600 set_mem_alias_set (shadow_mem, asan_shadow_set);
1601 mem = gen_rtx_MEM (ptr_mode, base);
1602 mem = adjust_address (mem, VOIDmode, base_align_bias);
1603 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1604 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1605 if (use_after_return_class < 5
1606 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1607 BITS_PER_UNIT, true))
1609 /* Emit:
1610 memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
1611 **SavedFlagPtr(FakeStack, class_id) = 0
1613 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1614 BITS_PER_UNIT, true, RETURN_BEGIN);
1616 unsigned HOST_WIDE_INT offset
1617 = (1 << (use_after_return_class + 6));
1618 offset -= GET_MODE_SIZE (ptr_mode);
1619 mem = gen_rtx_MEM (ptr_mode, base);
1620 mem = adjust_address (mem, ptr_mode, offset);
1621 rtx addr = gen_reg_rtx (ptr_mode);
1622 emit_move_insn (addr, mem);
1623 addr = convert_memory_address (Pmode, addr);
1624 mem = gen_rtx_MEM (QImode, addr);
1625 emit_move_insn (mem, const0_rtx);
1627 else if (use_after_return_class >= 5
1628 || !set_storage_via_setmem (shadow_mem,
1629 GEN_INT (sz),
1630 gen_int_mode (c, QImode),
1631 BITS_PER_UNIT, BITS_PER_UNIT,
1632 -1, sz, sz, sz))
1634 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1635 use_after_return_class);
1636 ret = init_one_libfunc (buf);
1637 rtx addr = convert_memory_address (ptr_mode, base);
1638 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1639 emit_library_call (ret, LCT_NORMAL, ptr_mode, addr, ptr_mode,
1640 GEN_INT (asan_frame_size + base_align_bias),
1641 TYPE_MODE (pointer_sized_int_node),
1642 orig_addr, ptr_mode);
1644 lab = gen_label_rtx ();
1645 emit_jump (lab);
1646 emit_label (lab2);
1649 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1650 set_mem_alias_set (shadow_mem, asan_shadow_set);
1652 if (STRICT_ALIGNMENT)
1653 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1655 prev_offset = base_offset;
1656 last_offset = base_offset;
1657 last_size = 0;
1658 last_size_aligned = 0;
1659 for (l = length; l; l -= 2)
1661 offset = base_offset + ((offsets[l - 1] - base_offset)
1662 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1663 if (last_offset + last_size_aligned < offset)
1665 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1666 (last_offset - prev_offset)
1667 >> ASAN_SHADOW_SHIFT);
1668 prev_offset = last_offset;
1669 asan_clear_shadow (shadow_mem, last_size_aligned >> ASAN_SHADOW_SHIFT);
1670 last_offset = offset;
1671 last_size = 0;
1673 else
1674 last_size = offset - last_offset;
1675 last_size += base_offset + ((offsets[l - 2] - base_offset)
1676 & ~(ASAN_MIN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1677 - offset;
1679 /* Unpoison shadow memory that corresponds to a variable that is
1680 is subject of use-after-return sanitization. */
1681 if (l > 2)
1683 decl = decls[l / 2 - 2];
1684 if (asan_handled_variables != NULL
1685 && asan_handled_variables->contains (decl))
1687 HOST_WIDE_INT size = offsets[l - 3] - offsets[l - 2];
1688 if (dump_file && (dump_flags & TDF_DETAILS))
1690 const char *n = (DECL_NAME (decl)
1691 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1692 : "<unknown>");
1693 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1694 "%s (%" PRId64 " B)\n", n, size);
1697 last_size += size & ~(ASAN_MIN_RED_ZONE_SIZE - HOST_WIDE_INT_1);
1700 last_size_aligned
1701 = ((last_size + (ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1702 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1704 if (last_size_aligned)
1706 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1707 (last_offset - prev_offset)
1708 >> ASAN_SHADOW_SHIFT);
1709 asan_clear_shadow (shadow_mem, last_size_aligned >> ASAN_SHADOW_SHIFT);
1712 /* Clean-up set with instrumented stack variables. */
1713 delete asan_handled_variables;
1714 asan_handled_variables = NULL;
1715 delete asan_used_labels;
1716 asan_used_labels = NULL;
1718 do_pending_stack_adjust ();
1719 if (lab)
1720 emit_label (lab);
1722 insns = get_insns ();
1723 end_sequence ();
1724 return insns;
1727 /* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
1728 to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
1729 indicates whether we're emitting new instructions sequence or not. */
1731 rtx_insn *
1732 asan_emit_allocas_unpoison (rtx top, rtx bot, rtx_insn *before)
1734 if (before)
1735 push_to_sequence (before);
1736 else
1737 start_sequence ();
1738 rtx ret = init_one_libfunc ("__asan_allocas_unpoison");
1739 top = convert_memory_address (ptr_mode, top);
1740 bot = convert_memory_address (ptr_mode, bot);
1741 emit_library_call (ret, LCT_NORMAL, ptr_mode,
1742 top, ptr_mode, bot, ptr_mode);
1744 do_pending_stack_adjust ();
1745 rtx_insn *insns = get_insns ();
1746 end_sequence ();
1747 return insns;
1750 /* Return true if DECL, a global var, might be overridden and needs
1751 therefore a local alias. */
1753 static bool
1754 asan_needs_local_alias (tree decl)
1756 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1759 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1760 therefore doesn't need protection. */
1762 static bool
1763 is_odr_indicator (tree decl)
1765 return (DECL_ARTIFICIAL (decl)
1766 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1769 /* Return true if DECL is a VAR_DECL that should be protected
1770 by Address Sanitizer, by appending a red zone with protected
1771 shadow memory after it and aligning it to at least
1772 ASAN_RED_ZONE_SIZE bytes. */
1774 bool
1775 asan_protect_global (tree decl, bool ignore_decl_rtl_set_p)
1777 if (!param_asan_globals)
1778 return false;
1780 rtx rtl, symbol;
1782 if (TREE_CODE (decl) == STRING_CST)
1784 /* Instrument all STRING_CSTs except those created
1785 by asan_pp_string here. */
1786 if (shadow_ptr_types[0] != NULL_TREE
1787 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1788 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1789 return false;
1790 return true;
1792 if (!VAR_P (decl)
1793 /* TLS vars aren't statically protectable. */
1794 || DECL_THREAD_LOCAL_P (decl)
1795 /* Externs will be protected elsewhere. */
1796 || DECL_EXTERNAL (decl)
1797 /* PR sanitizer/81697: For architectures that use section anchors first
1798 call to asan_protect_global may occur before DECL_RTL (decl) is set.
1799 We should ignore DECL_RTL_SET_P then, because otherwise the first call
1800 to asan_protect_global will return FALSE and the following calls on the
1801 same decl after setting DECL_RTL (decl) will return TRUE and we'll end
1802 up with inconsistency at runtime. */
1803 || (!DECL_RTL_SET_P (decl) && !ignore_decl_rtl_set_p)
1804 /* Comdat vars pose an ABI problem, we can't know if
1805 the var that is selected by the linker will have
1806 padding or not. */
1807 || DECL_ONE_ONLY (decl)
1808 /* Similarly for common vars. People can use -fno-common.
1809 Note: Linux kernel is built with -fno-common, so we do instrument
1810 globals there even if it is C. */
1811 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1812 /* Don't protect if using user section, often vars placed
1813 into user section from multiple TUs are then assumed
1814 to be an array of such vars, putting padding in there
1815 breaks this assumption. */
1816 || (DECL_SECTION_NAME (decl) != NULL
1817 && !symtab_node::get (decl)->implicit_section
1818 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1819 || DECL_SIZE (decl) == 0
1820 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1821 || TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST
1822 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1823 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1824 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1825 || is_odr_indicator (decl))
1826 return false;
1828 if (!ignore_decl_rtl_set_p || DECL_RTL_SET_P (decl))
1831 rtl = DECL_RTL (decl);
1832 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1833 return false;
1834 symbol = XEXP (rtl, 0);
1836 if (CONSTANT_POOL_ADDRESS_P (symbol)
1837 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1838 return false;
1841 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1842 return false;
1844 if (!TARGET_SUPPORTS_ALIASES && asan_needs_local_alias (decl))
1845 return false;
1847 return true;
1850 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1851 IS_STORE is either 1 (for a store) or 0 (for a load). */
1853 static tree
1854 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1855 int *nargs)
1857 static enum built_in_function report[2][2][6]
1858 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1859 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1860 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1861 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1862 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1863 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1864 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1865 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1866 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1867 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1868 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1869 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1870 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1871 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1872 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1873 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1874 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1875 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1876 if (size_in_bytes == -1)
1878 *nargs = 2;
1879 return builtin_decl_implicit (report[recover_p][is_store][5]);
1881 *nargs = 1;
1882 int size_log2 = exact_log2 (size_in_bytes);
1883 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1886 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1887 IS_STORE is either 1 (for a store) or 0 (for a load). */
1889 static tree
1890 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1891 int *nargs)
1893 static enum built_in_function check[2][2][6]
1894 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1895 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1896 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1897 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1898 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1899 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1900 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1901 BUILT_IN_ASAN_LOAD2_NOABORT,
1902 BUILT_IN_ASAN_LOAD4_NOABORT,
1903 BUILT_IN_ASAN_LOAD8_NOABORT,
1904 BUILT_IN_ASAN_LOAD16_NOABORT,
1905 BUILT_IN_ASAN_LOADN_NOABORT },
1906 { BUILT_IN_ASAN_STORE1_NOABORT,
1907 BUILT_IN_ASAN_STORE2_NOABORT,
1908 BUILT_IN_ASAN_STORE4_NOABORT,
1909 BUILT_IN_ASAN_STORE8_NOABORT,
1910 BUILT_IN_ASAN_STORE16_NOABORT,
1911 BUILT_IN_ASAN_STOREN_NOABORT } } };
1912 if (size_in_bytes == -1)
1914 *nargs = 2;
1915 return builtin_decl_implicit (check[recover_p][is_store][5]);
1917 *nargs = 1;
1918 int size_log2 = exact_log2 (size_in_bytes);
1919 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1922 /* Split the current basic block and create a condition statement
1923 insertion point right before or after the statement pointed to by
1924 ITER. Return an iterator to the point at which the caller might
1925 safely insert the condition statement.
1927 THEN_BLOCK must be set to the address of an uninitialized instance
1928 of basic_block. The function will then set *THEN_BLOCK to the
1929 'then block' of the condition statement to be inserted by the
1930 caller.
1932 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1933 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1935 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1936 block' of the condition statement to be inserted by the caller.
1938 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1939 statements starting from *ITER, and *THEN_BLOCK is a new empty
1940 block.
1942 *ITER is adjusted to point to always point to the first statement
1943 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1944 same as what ITER was pointing to prior to calling this function,
1945 if BEFORE_P is true; otherwise, it is its following statement. */
1947 gimple_stmt_iterator
1948 create_cond_insert_point (gimple_stmt_iterator *iter,
1949 bool before_p,
1950 bool then_more_likely_p,
1951 bool create_then_fallthru_edge,
1952 basic_block *then_block,
1953 basic_block *fallthrough_block)
1955 gimple_stmt_iterator gsi = *iter;
1957 if (!gsi_end_p (gsi) && before_p)
1958 gsi_prev (&gsi);
1960 basic_block cur_bb = gsi_bb (*iter);
1962 edge e = split_block (cur_bb, gsi_stmt (gsi));
1964 /* Get a hold on the 'condition block', the 'then block' and the
1965 'else block'. */
1966 basic_block cond_bb = e->src;
1967 basic_block fallthru_bb = e->dest;
1968 basic_block then_bb = create_empty_bb (cond_bb);
1969 if (current_loops)
1971 add_bb_to_loop (then_bb, cond_bb->loop_father);
1972 loops_state_set (LOOPS_NEED_FIXUP);
1975 /* Set up the newly created 'then block'. */
1976 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1977 profile_probability fallthrough_probability
1978 = then_more_likely_p
1979 ? profile_probability::very_unlikely ()
1980 : profile_probability::very_likely ();
1981 e->probability = fallthrough_probability.invert ();
1982 then_bb->count = e->count ();
1983 if (create_then_fallthru_edge)
1984 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1986 /* Set up the fallthrough basic block. */
1987 e = find_edge (cond_bb, fallthru_bb);
1988 e->flags = EDGE_FALSE_VALUE;
1989 e->probability = fallthrough_probability;
1991 /* Update dominance info for the newly created then_bb; note that
1992 fallthru_bb's dominance info has already been updated by
1993 split_bock. */
1994 if (dom_info_available_p (CDI_DOMINATORS))
1995 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1997 *then_block = then_bb;
1998 *fallthrough_block = fallthru_bb;
1999 *iter = gsi_start_bb (fallthru_bb);
2001 return gsi_last_bb (cond_bb);
2004 /* Insert an if condition followed by a 'then block' right before the
2005 statement pointed to by ITER. The fallthrough block -- which is the
2006 else block of the condition as well as the destination of the
2007 outcoming edge of the 'then block' -- starts with the statement
2008 pointed to by ITER.
2010 COND is the condition of the if.
2012 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
2013 'then block' is higher than the probability of the edge to the
2014 fallthrough block.
2016 Upon completion of the function, *THEN_BB is set to the newly
2017 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
2018 fallthrough block.
2020 *ITER is adjusted to still point to the same statement it was
2021 pointing to initially. */
2023 static void
2024 insert_if_then_before_iter (gcond *cond,
2025 gimple_stmt_iterator *iter,
2026 bool then_more_likely_p,
2027 basic_block *then_bb,
2028 basic_block *fallthrough_bb)
2030 gimple_stmt_iterator cond_insert_point =
2031 create_cond_insert_point (iter,
2032 /*before_p=*/true,
2033 then_more_likely_p,
2034 /*create_then_fallthru_edge=*/true,
2035 then_bb,
2036 fallthrough_bb);
2037 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
2040 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
2041 If RETURN_ADDRESS is set to true, return memory location instread
2042 of a value in the shadow memory. */
2044 static tree
2045 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
2046 tree base_addr, tree shadow_ptr_type,
2047 bool return_address = false)
2049 tree t, uintptr_type = TREE_TYPE (base_addr);
2050 tree shadow_type = TREE_TYPE (shadow_ptr_type);
2051 gimple *g;
2053 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
2054 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
2055 base_addr, t);
2056 gimple_set_location (g, location);
2057 gsi_insert_after (gsi, g, GSI_NEW_STMT);
2059 t = build_int_cst (uintptr_type, asan_shadow_offset ());
2060 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
2061 gimple_assign_lhs (g), t);
2062 gimple_set_location (g, location);
2063 gsi_insert_after (gsi, g, GSI_NEW_STMT);
2065 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
2066 gimple_assign_lhs (g));
2067 gimple_set_location (g, location);
2068 gsi_insert_after (gsi, g, GSI_NEW_STMT);
2070 if (!return_address)
2072 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
2073 build_int_cst (shadow_ptr_type, 0));
2074 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
2075 gimple_set_location (g, location);
2076 gsi_insert_after (gsi, g, GSI_NEW_STMT);
2079 return gimple_assign_lhs (g);
2082 /* BASE can already be an SSA_NAME; in that case, do not create a
2083 new SSA_NAME for it. */
2085 static tree
2086 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
2087 bool before_p)
2089 STRIP_USELESS_TYPE_CONVERSION (base);
2090 if (TREE_CODE (base) == SSA_NAME)
2091 return base;
2092 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)), base);
2093 gimple_set_location (g, loc);
2094 if (before_p)
2095 gsi_insert_before (iter, g, GSI_SAME_STMT);
2096 else
2097 gsi_insert_after (iter, g, GSI_NEW_STMT);
2098 return gimple_assign_lhs (g);
2101 /* LEN can already have necessary size and precision;
2102 in that case, do not create a new variable. */
2104 tree
2105 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
2106 bool before_p)
2108 if (ptrofftype_p (len))
2109 return len;
2110 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
2111 NOP_EXPR, len);
2112 gimple_set_location (g, loc);
2113 if (before_p)
2114 gsi_insert_before (iter, g, GSI_SAME_STMT);
2115 else
2116 gsi_insert_after (iter, g, GSI_NEW_STMT);
2117 return gimple_assign_lhs (g);
2120 /* Instrument the memory access instruction BASE. Insert new
2121 statements before or after ITER.
2123 Note that the memory access represented by BASE can be either an
2124 SSA_NAME, or a non-SSA expression. LOCATION is the source code
2125 location. IS_STORE is TRUE for a store, FALSE for a load.
2126 BEFORE_P is TRUE for inserting the instrumentation code before
2127 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
2128 for a scalar memory access and FALSE for memory region access.
2129 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
2130 length. ALIGN tells alignment of accessed memory object.
2132 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
2133 memory region have already been instrumented.
2135 If BEFORE_P is TRUE, *ITER is arranged to still point to the
2136 statement it was pointing to prior to calling this function,
2137 otherwise, it points to the statement logically following it. */
2139 static void
2140 build_check_stmt (location_t loc, tree base, tree len,
2141 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
2142 bool is_non_zero_len, bool before_p, bool is_store,
2143 bool is_scalar_access, unsigned int align = 0)
2145 gimple_stmt_iterator gsi = *iter;
2146 gimple *g;
2148 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
2150 gsi = *iter;
2152 base = unshare_expr (base);
2153 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
2155 if (len)
2157 len = unshare_expr (len);
2158 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
2160 else
2162 gcc_assert (size_in_bytes != -1);
2163 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
2166 if (size_in_bytes > 1)
2168 if ((size_in_bytes & (size_in_bytes - 1)) != 0
2169 || size_in_bytes > 16)
2170 is_scalar_access = false;
2171 else if (align && align < size_in_bytes * BITS_PER_UNIT)
2173 /* On non-strict alignment targets, if
2174 16-byte access is just 8-byte aligned,
2175 this will result in misaligned shadow
2176 memory 2 byte load, but otherwise can
2177 be handled using one read. */
2178 if (size_in_bytes != 16
2179 || STRICT_ALIGNMENT
2180 || align < 8 * BITS_PER_UNIT)
2181 is_scalar_access = false;
2185 HOST_WIDE_INT flags = 0;
2186 if (is_store)
2187 flags |= ASAN_CHECK_STORE;
2188 if (is_non_zero_len)
2189 flags |= ASAN_CHECK_NON_ZERO_LEN;
2190 if (is_scalar_access)
2191 flags |= ASAN_CHECK_SCALAR_ACCESS;
2193 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
2194 build_int_cst (integer_type_node, flags),
2195 base, len,
2196 build_int_cst (integer_type_node,
2197 align / BITS_PER_UNIT));
2198 gimple_set_location (g, loc);
2199 if (before_p)
2200 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2201 else
2203 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2204 gsi_next (&gsi);
2205 *iter = gsi;
2209 /* If T represents a memory access, add instrumentation code before ITER.
2210 LOCATION is source code location.
2211 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
2213 static void
2214 instrument_derefs (gimple_stmt_iterator *iter, tree t,
2215 location_t location, bool is_store)
2217 if (is_store && !param_asan_instrument_writes)
2218 return;
2219 if (!is_store && !param_asan_instrument_reads)
2220 return;
2222 tree type, base;
2223 HOST_WIDE_INT size_in_bytes;
2224 if (location == UNKNOWN_LOCATION)
2225 location = EXPR_LOCATION (t);
2227 type = TREE_TYPE (t);
2228 switch (TREE_CODE (t))
2230 case ARRAY_REF:
2231 case COMPONENT_REF:
2232 case INDIRECT_REF:
2233 case MEM_REF:
2234 case VAR_DECL:
2235 case BIT_FIELD_REF:
2236 break;
2237 /* FALLTHRU */
2238 default:
2239 return;
2242 size_in_bytes = int_size_in_bytes (type);
2243 if (size_in_bytes <= 0)
2244 return;
2246 poly_int64 bitsize, bitpos;
2247 tree offset;
2248 machine_mode mode;
2249 int unsignedp, reversep, volatilep = 0;
2250 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
2251 &unsignedp, &reversep, &volatilep);
2253 if (TREE_CODE (t) == COMPONENT_REF
2254 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
2256 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
2257 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
2258 TREE_OPERAND (t, 0), repr,
2259 TREE_OPERAND (t, 2)),
2260 location, is_store);
2261 return;
2264 if (!multiple_p (bitpos, BITS_PER_UNIT)
2265 || maybe_ne (bitsize, size_in_bytes * BITS_PER_UNIT))
2266 return;
2268 if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
2269 return;
2271 poly_int64 decl_size;
2272 if (VAR_P (inner)
2273 && offset == NULL_TREE
2274 && DECL_SIZE (inner)
2275 && poly_int_tree_p (DECL_SIZE (inner), &decl_size)
2276 && known_subrange_p (bitpos, bitsize, 0, decl_size))
2278 if (DECL_THREAD_LOCAL_P (inner))
2279 return;
2280 if (!param_asan_globals && is_global_var (inner))
2281 return;
2282 if (!TREE_STATIC (inner))
2284 /* Automatic vars in the current function will be always
2285 accessible. */
2286 if (decl_function_context (inner) == current_function_decl
2287 && (!asan_sanitize_use_after_scope ()
2288 || !TREE_ADDRESSABLE (inner)))
2289 return;
2291 /* Always instrument external vars, they might be dynamically
2292 initialized. */
2293 else if (!DECL_EXTERNAL (inner))
2295 /* For static vars if they are known not to be dynamically
2296 initialized, they will be always accessible. */
2297 varpool_node *vnode = varpool_node::get (inner);
2298 if (vnode && !vnode->dynamically_initialized)
2299 return;
2303 base = build_fold_addr_expr (t);
2304 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
2306 unsigned int align = get_object_alignment (t);
2307 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
2308 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
2309 is_store, /*is_scalar_access*/true, align);
2310 update_mem_ref_hash_table (base, size_in_bytes);
2311 update_mem_ref_hash_table (t, size_in_bytes);
2316 /* Insert a memory reference into the hash table if access length
2317 can be determined in compile time. */
2319 static void
2320 maybe_update_mem_ref_hash_table (tree base, tree len)
2322 if (!POINTER_TYPE_P (TREE_TYPE (base))
2323 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
2324 return;
2326 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2328 if (size_in_bytes != -1)
2329 update_mem_ref_hash_table (base, size_in_bytes);
2332 /* Instrument an access to a contiguous memory region that starts at
2333 the address pointed to by BASE, over a length of LEN (expressed in
2334 the sizeof (*BASE) bytes). ITER points to the instruction before
2335 which the instrumentation instructions must be inserted. LOCATION
2336 is the source location that the instrumentation instructions must
2337 have. If IS_STORE is true, then the memory access is a store;
2338 otherwise, it's a load. */
2340 static void
2341 instrument_mem_region_access (tree base, tree len,
2342 gimple_stmt_iterator *iter,
2343 location_t location, bool is_store)
2345 if (!POINTER_TYPE_P (TREE_TYPE (base))
2346 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
2347 || integer_zerop (len))
2348 return;
2350 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2352 if ((size_in_bytes == -1)
2353 || !has_mem_ref_been_instrumented (base, size_in_bytes))
2355 build_check_stmt (location, base, len, size_in_bytes, iter,
2356 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
2357 is_store, /*is_scalar_access*/false, /*align*/0);
2360 maybe_update_mem_ref_hash_table (base, len);
2361 *iter = gsi_for_stmt (gsi_stmt (*iter));
2364 /* Instrument the call to a built-in memory access function that is
2365 pointed to by the iterator ITER.
2367 Upon completion, return TRUE iff *ITER has been advanced to the
2368 statement following the one it was originally pointing to. */
2370 static bool
2371 instrument_builtin_call (gimple_stmt_iterator *iter)
2373 if (!param_asan_memintrin)
2374 return false;
2376 bool iter_advanced_p = false;
2377 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
2379 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
2381 location_t loc = gimple_location (call);
2383 asan_mem_ref src0, src1, dest;
2384 asan_mem_ref_init (&src0, NULL, 1);
2385 asan_mem_ref_init (&src1, NULL, 1);
2386 asan_mem_ref_init (&dest, NULL, 1);
2388 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
2389 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
2390 dest_is_deref = false, intercepted_p = true;
2392 if (get_mem_refs_of_builtin_call (call,
2393 &src0, &src0_len, &src0_is_store,
2394 &src1, &src1_len, &src1_is_store,
2395 &dest, &dest_len, &dest_is_store,
2396 &dest_is_deref, &intercepted_p, iter))
2398 if (dest_is_deref)
2400 instrument_derefs (iter, dest.start, loc, dest_is_store);
2401 gsi_next (iter);
2402 iter_advanced_p = true;
2404 else if (!intercepted_p
2405 && (src0_len || src1_len || dest_len))
2407 if (src0.start != NULL_TREE)
2408 instrument_mem_region_access (src0.start, src0_len,
2409 iter, loc, /*is_store=*/false);
2410 if (src1.start != NULL_TREE)
2411 instrument_mem_region_access (src1.start, src1_len,
2412 iter, loc, /*is_store=*/false);
2413 if (dest.start != NULL_TREE)
2414 instrument_mem_region_access (dest.start, dest_len,
2415 iter, loc, /*is_store=*/true);
2417 *iter = gsi_for_stmt (call);
2418 gsi_next (iter);
2419 iter_advanced_p = true;
2421 else
2423 if (src0.start != NULL_TREE)
2424 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2425 if (src1.start != NULL_TREE)
2426 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2427 if (dest.start != NULL_TREE)
2428 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2431 return iter_advanced_p;
2434 /* Instrument the assignment statement ITER if it is subject to
2435 instrumentation. Return TRUE iff instrumentation actually
2436 happened. In that case, the iterator ITER is advanced to the next
2437 logical expression following the one initially pointed to by ITER,
2438 and the relevant memory reference that which access has been
2439 instrumented is added to the memory references hash table. */
2441 static bool
2442 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2444 gimple *s = gsi_stmt (*iter);
2446 gcc_assert (gimple_assign_single_p (s));
2448 tree ref_expr = NULL_TREE;
2449 bool is_store, is_instrumented = false;
2451 if (gimple_store_p (s))
2453 ref_expr = gimple_assign_lhs (s);
2454 is_store = true;
2455 instrument_derefs (iter, ref_expr,
2456 gimple_location (s),
2457 is_store);
2458 is_instrumented = true;
2461 if (gimple_assign_load_p (s))
2463 ref_expr = gimple_assign_rhs1 (s);
2464 is_store = false;
2465 instrument_derefs (iter, ref_expr,
2466 gimple_location (s),
2467 is_store);
2468 is_instrumented = true;
2471 if (is_instrumented)
2472 gsi_next (iter);
2474 return is_instrumented;
2477 /* Instrument the function call pointed to by the iterator ITER, if it
2478 is subject to instrumentation. At the moment, the only function
2479 calls that are instrumented are some built-in functions that access
2480 memory. Look at instrument_builtin_call to learn more.
2482 Upon completion return TRUE iff *ITER was advanced to the statement
2483 following the one it was originally pointing to. */
2485 static bool
2486 maybe_instrument_call (gimple_stmt_iterator *iter)
2488 gimple *stmt = gsi_stmt (*iter);
2489 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2491 if (is_builtin && instrument_builtin_call (iter))
2492 return true;
2494 if (gimple_call_noreturn_p (stmt))
2496 if (is_builtin)
2498 tree callee = gimple_call_fndecl (stmt);
2499 switch (DECL_FUNCTION_CODE (callee))
2501 case BUILT_IN_UNREACHABLE:
2502 case BUILT_IN_TRAP:
2503 /* Don't instrument these. */
2504 return false;
2505 default:
2506 break;
2509 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2510 gimple *g = gimple_build_call (decl, 0);
2511 gimple_set_location (g, gimple_location (stmt));
2512 gsi_insert_before (iter, g, GSI_SAME_STMT);
2515 bool instrumented = false;
2516 if (gimple_store_p (stmt))
2518 tree ref_expr = gimple_call_lhs (stmt);
2519 instrument_derefs (iter, ref_expr,
2520 gimple_location (stmt),
2521 /*is_store=*/true);
2523 instrumented = true;
2526 /* Walk through gimple_call arguments and check them id needed. */
2527 unsigned args_num = gimple_call_num_args (stmt);
2528 for (unsigned i = 0; i < args_num; ++i)
2530 tree arg = gimple_call_arg (stmt, i);
2531 /* If ARG is not a non-aggregate register variable, compiler in general
2532 creates temporary for it and pass it as argument to gimple call.
2533 But in some cases, e.g. when we pass by value a small structure that
2534 fits to register, compiler can avoid extra overhead by pulling out
2535 these temporaries. In this case, we should check the argument. */
2536 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2538 instrument_derefs (iter, arg,
2539 gimple_location (stmt),
2540 /*is_store=*/false);
2541 instrumented = true;
2544 if (instrumented)
2545 gsi_next (iter);
2546 return instrumented;
2549 /* Walk each instruction of all basic block and instrument those that
2550 represent memory references: loads, stores, or function calls.
2551 In a given basic block, this function avoids instrumenting memory
2552 references that have already been instrumented. */
2554 static void
2555 transform_statements (void)
2557 basic_block bb, last_bb = NULL;
2558 gimple_stmt_iterator i;
2559 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2561 FOR_EACH_BB_FN (bb, cfun)
2563 basic_block prev_bb = bb;
2565 if (bb->index >= saved_last_basic_block) continue;
2567 /* Flush the mem ref hash table, if current bb doesn't have
2568 exactly one predecessor, or if that predecessor (skipping
2569 over asan created basic blocks) isn't the last processed
2570 basic block. Thus we effectively flush on extended basic
2571 block boundaries. */
2572 while (single_pred_p (prev_bb))
2574 prev_bb = single_pred (prev_bb);
2575 if (prev_bb->index < saved_last_basic_block)
2576 break;
2578 if (prev_bb != last_bb)
2579 empty_mem_ref_hash_table ();
2580 last_bb = bb;
2582 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2584 gimple *s = gsi_stmt (i);
2586 if (has_stmt_been_instrumented_p (s))
2587 gsi_next (&i);
2588 else if (gimple_assign_single_p (s)
2589 && !gimple_clobber_p (s)
2590 && maybe_instrument_assignment (&i))
2591 /* Nothing to do as maybe_instrument_assignment advanced
2592 the iterator I. */;
2593 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2594 /* Nothing to do as maybe_instrument_call
2595 advanced the iterator I. */;
2596 else
2598 /* No instrumentation happened.
2600 If the current instruction is a function call that
2601 might free something, let's forget about the memory
2602 references that got instrumented. Otherwise we might
2603 miss some instrumentation opportunities. Do the same
2604 for a ASAN_MARK poisoning internal function. */
2605 if (is_gimple_call (s)
2606 && (!nonfreeing_call_p (s)
2607 || asan_mark_p (s, ASAN_MARK_POISON)))
2608 empty_mem_ref_hash_table ();
2610 gsi_next (&i);
2614 free_mem_ref_resources ();
2617 /* Build
2618 __asan_before_dynamic_init (module_name)
2620 __asan_after_dynamic_init ()
2621 call. */
2623 tree
2624 asan_dynamic_init_call (bool after_p)
2626 if (shadow_ptr_types[0] == NULL_TREE)
2627 asan_init_shadow_ptr_types ();
2629 tree fn = builtin_decl_implicit (after_p
2630 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2631 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2632 tree module_name_cst = NULL_TREE;
2633 if (!after_p)
2635 pretty_printer module_name_pp;
2636 pp_string (&module_name_pp, main_input_filename);
2638 module_name_cst = asan_pp_string (&module_name_pp);
2639 module_name_cst = fold_convert (const_ptr_type_node,
2640 module_name_cst);
2643 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2646 /* Build
2647 struct __asan_global
2649 const void *__beg;
2650 uptr __size;
2651 uptr __size_with_redzone;
2652 const void *__name;
2653 const void *__module_name;
2654 uptr __has_dynamic_init;
2655 __asan_global_source_location *__location;
2656 char *__odr_indicator;
2657 } type. */
2659 static tree
2660 asan_global_struct (void)
2662 static const char *field_names[]
2663 = { "__beg", "__size", "__size_with_redzone",
2664 "__name", "__module_name", "__has_dynamic_init", "__location",
2665 "__odr_indicator" };
2666 tree fields[ARRAY_SIZE (field_names)], ret;
2667 unsigned i;
2669 ret = make_node (RECORD_TYPE);
2670 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2672 fields[i]
2673 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2674 get_identifier (field_names[i]),
2675 (i == 0 || i == 3) ? const_ptr_type_node
2676 : pointer_sized_int_node);
2677 DECL_CONTEXT (fields[i]) = ret;
2678 if (i)
2679 DECL_CHAIN (fields[i - 1]) = fields[i];
2681 tree type_decl = build_decl (input_location, TYPE_DECL,
2682 get_identifier ("__asan_global"), ret);
2683 DECL_IGNORED_P (type_decl) = 1;
2684 DECL_ARTIFICIAL (type_decl) = 1;
2685 TYPE_FIELDS (ret) = fields[0];
2686 TYPE_NAME (ret) = type_decl;
2687 TYPE_STUB_DECL (ret) = type_decl;
2688 TYPE_ARTIFICIAL (ret) = 1;
2689 layout_type (ret);
2690 return ret;
2693 /* Create and return odr indicator symbol for DECL.
2694 TYPE is __asan_global struct type as returned by asan_global_struct. */
2696 static tree
2697 create_odr_indicator (tree decl, tree type)
2699 char *name;
2700 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2701 tree decl_name
2702 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2703 : DECL_NAME (decl));
2704 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2705 if (decl_name == NULL_TREE)
2706 return build_int_cst (uptr, 0);
2707 const char *dname = IDENTIFIER_POINTER (decl_name);
2708 if (HAS_DECL_ASSEMBLER_NAME_P (decl))
2709 dname = targetm.strip_name_encoding (dname);
2710 size_t len = strlen (dname) + sizeof ("__odr_asan_");
2711 name = XALLOCAVEC (char, len);
2712 snprintf (name, len, "__odr_asan_%s", dname);
2713 #ifndef NO_DOT_IN_LABEL
2714 name[sizeof ("__odr_asan") - 1] = '.';
2715 #elif !defined(NO_DOLLAR_IN_LABEL)
2716 name[sizeof ("__odr_asan") - 1] = '$';
2717 #endif
2718 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2719 char_type_node);
2720 TREE_ADDRESSABLE (var) = 1;
2721 TREE_READONLY (var) = 0;
2722 TREE_THIS_VOLATILE (var) = 1;
2723 DECL_ARTIFICIAL (var) = 1;
2724 DECL_IGNORED_P (var) = 1;
2725 TREE_STATIC (var) = 1;
2726 TREE_PUBLIC (var) = 1;
2727 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2728 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2730 TREE_USED (var) = 1;
2731 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2732 build_int_cst (unsigned_type_node, 0));
2733 TREE_CONSTANT (ctor) = 1;
2734 TREE_STATIC (ctor) = 1;
2735 DECL_INITIAL (var) = ctor;
2736 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2737 NULL, DECL_ATTRIBUTES (var));
2738 make_decl_rtl (var);
2739 varpool_node::finalize_decl (var);
2740 return fold_convert (uptr, build_fold_addr_expr (var));
2743 /* Return true if DECL, a global var, might be overridden and needs
2744 an additional odr indicator symbol. */
2746 static bool
2747 asan_needs_odr_indicator_p (tree decl)
2749 /* Don't emit ODR indicators for kernel because:
2750 a) Kernel is written in C thus doesn't need ODR indicators.
2751 b) Some kernel code may have assumptions about symbols containing specific
2752 patterns in their names. Since ODR indicators contain original names
2753 of symbols they are emitted for, these assumptions would be broken for
2754 ODR indicator symbols. */
2755 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2756 && !DECL_ARTIFICIAL (decl)
2757 && !DECL_WEAK (decl)
2758 && TREE_PUBLIC (decl));
2761 /* Append description of a single global DECL into vector V.
2762 TYPE is __asan_global struct type as returned by asan_global_struct. */
2764 static void
2765 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2767 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2768 unsigned HOST_WIDE_INT size;
2769 tree str_cst, module_name_cst, refdecl = decl;
2770 vec<constructor_elt, va_gc> *vinner = NULL;
2772 pretty_printer asan_pp, module_name_pp;
2774 if (DECL_NAME (decl))
2775 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2776 else
2777 pp_string (&asan_pp, "<unknown>");
2778 str_cst = asan_pp_string (&asan_pp);
2780 pp_string (&module_name_pp, main_input_filename);
2781 module_name_cst = asan_pp_string (&module_name_pp);
2783 if (asan_needs_local_alias (decl))
2785 char buf[20];
2786 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2787 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2788 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2789 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2790 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2791 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2792 DECL_NOT_GIMPLE_REG_P (refdecl) = DECL_NOT_GIMPLE_REG_P (decl);
2793 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2794 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2795 TREE_STATIC (refdecl) = 1;
2796 TREE_PUBLIC (refdecl) = 0;
2797 TREE_USED (refdecl) = 1;
2798 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2801 tree odr_indicator_ptr
2802 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2803 : build_int_cst (uptr, 0));
2804 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2805 fold_convert (const_ptr_type_node,
2806 build_fold_addr_expr (refdecl)));
2807 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2808 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2809 size += asan_red_zone_size (size);
2810 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2811 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2812 fold_convert (const_ptr_type_node, str_cst));
2813 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2814 fold_convert (const_ptr_type_node, module_name_cst));
2815 varpool_node *vnode = varpool_node::get (decl);
2816 int has_dynamic_init = 0;
2817 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2818 proper fix for PR 79061 will be applied. */
2819 if (!in_lto_p)
2820 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2821 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2822 build_int_cst (uptr, has_dynamic_init));
2823 tree locptr = NULL_TREE;
2824 location_t loc = DECL_SOURCE_LOCATION (decl);
2825 expanded_location xloc = expand_location (loc);
2826 if (xloc.file != NULL)
2828 static int lasanloccnt = 0;
2829 char buf[25];
2830 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2831 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2832 ubsan_get_source_location_type ());
2833 TREE_STATIC (var) = 1;
2834 TREE_PUBLIC (var) = 0;
2835 DECL_ARTIFICIAL (var) = 1;
2836 DECL_IGNORED_P (var) = 1;
2837 pretty_printer filename_pp;
2838 pp_string (&filename_pp, xloc.file);
2839 tree str = asan_pp_string (&filename_pp);
2840 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2841 NULL_TREE, str, NULL_TREE,
2842 build_int_cst (unsigned_type_node,
2843 xloc.line), NULL_TREE,
2844 build_int_cst (unsigned_type_node,
2845 xloc.column));
2846 TREE_CONSTANT (ctor) = 1;
2847 TREE_STATIC (ctor) = 1;
2848 DECL_INITIAL (var) = ctor;
2849 varpool_node::finalize_decl (var);
2850 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2852 else
2853 locptr = build_int_cst (uptr, 0);
2854 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2855 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2856 init = build_constructor (type, vinner);
2857 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2860 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2861 void
2862 initialize_sanitizer_builtins (void)
2864 tree decl;
2866 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2867 return;
2869 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2870 tree BT_FN_VOID_PTR
2871 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2872 tree BT_FN_VOID_CONST_PTR
2873 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2874 tree BT_FN_VOID_PTR_PTR
2875 = build_function_type_list (void_type_node, ptr_type_node,
2876 ptr_type_node, NULL_TREE);
2877 tree BT_FN_VOID_PTR_PTR_PTR
2878 = build_function_type_list (void_type_node, ptr_type_node,
2879 ptr_type_node, ptr_type_node, NULL_TREE);
2880 tree BT_FN_VOID_PTR_PTRMODE
2881 = build_function_type_list (void_type_node, ptr_type_node,
2882 pointer_sized_int_node, NULL_TREE);
2883 tree BT_FN_VOID_INT
2884 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2885 tree BT_FN_SIZE_CONST_PTR_INT
2886 = build_function_type_list (size_type_node, const_ptr_type_node,
2887 integer_type_node, NULL_TREE);
2889 tree BT_FN_VOID_UINT8_UINT8
2890 = build_function_type_list (void_type_node, unsigned_char_type_node,
2891 unsigned_char_type_node, NULL_TREE);
2892 tree BT_FN_VOID_UINT16_UINT16
2893 = build_function_type_list (void_type_node, uint16_type_node,
2894 uint16_type_node, NULL_TREE);
2895 tree BT_FN_VOID_UINT32_UINT32
2896 = build_function_type_list (void_type_node, uint32_type_node,
2897 uint32_type_node, NULL_TREE);
2898 tree BT_FN_VOID_UINT64_UINT64
2899 = build_function_type_list (void_type_node, uint64_type_node,
2900 uint64_type_node, NULL_TREE);
2901 tree BT_FN_VOID_FLOAT_FLOAT
2902 = build_function_type_list (void_type_node, float_type_node,
2903 float_type_node, NULL_TREE);
2904 tree BT_FN_VOID_DOUBLE_DOUBLE
2905 = build_function_type_list (void_type_node, double_type_node,
2906 double_type_node, NULL_TREE);
2907 tree BT_FN_VOID_UINT64_PTR
2908 = build_function_type_list (void_type_node, uint64_type_node,
2909 ptr_type_node, NULL_TREE);
2911 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2912 tree BT_FN_IX_CONST_VPTR_INT[5];
2913 tree BT_FN_IX_VPTR_IX_INT[5];
2914 tree BT_FN_VOID_VPTR_IX_INT[5];
2915 tree vptr
2916 = build_pointer_type (build_qualified_type (void_type_node,
2917 TYPE_QUAL_VOLATILE));
2918 tree cvptr
2919 = build_pointer_type (build_qualified_type (void_type_node,
2920 TYPE_QUAL_VOLATILE
2921 |TYPE_QUAL_CONST));
2922 tree boolt
2923 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2924 int i;
2925 for (i = 0; i < 5; i++)
2927 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2928 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2929 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2930 integer_type_node, integer_type_node,
2931 NULL_TREE);
2932 BT_FN_IX_CONST_VPTR_INT[i]
2933 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2934 BT_FN_IX_VPTR_IX_INT[i]
2935 = build_function_type_list (ix, vptr, ix, integer_type_node,
2936 NULL_TREE);
2937 BT_FN_VOID_VPTR_IX_INT[i]
2938 = build_function_type_list (void_type_node, vptr, ix,
2939 integer_type_node, NULL_TREE);
2941 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2942 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2943 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2944 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2945 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2946 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2947 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2948 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2949 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2950 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2951 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2952 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2953 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2954 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2955 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2956 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2957 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2958 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2959 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2960 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2961 #undef ATTR_NOTHROW_LEAF_LIST
2962 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2963 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2964 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2965 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2966 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2967 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2968 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2969 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2970 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2971 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2972 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2973 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2974 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2975 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2976 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2977 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2978 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2979 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2980 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2981 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2982 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2983 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2984 #undef DEF_BUILTIN_STUB
2985 #define DEF_BUILTIN_STUB(ENUM, NAME)
2986 #undef DEF_SANITIZER_BUILTIN_1
2987 #define DEF_SANITIZER_BUILTIN_1(ENUM, NAME, TYPE, ATTRS) \
2988 do { \
2989 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2990 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2991 set_call_expr_flags (decl, ATTRS); \
2992 set_builtin_decl (ENUM, decl, true); \
2993 } while (0)
2994 #undef DEF_SANITIZER_BUILTIN
2995 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2996 DEF_SANITIZER_BUILTIN_1 (ENUM, NAME, TYPE, ATTRS);
2998 #include "sanitizer.def"
3000 /* -fsanitize=object-size uses __builtin_object_size, but that might
3001 not be available for e.g. Fortran at this point. We use
3002 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
3003 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
3004 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
3005 DEF_SANITIZER_BUILTIN_1 (BUILT_IN_OBJECT_SIZE, "object_size",
3006 BT_FN_SIZE_CONST_PTR_INT,
3007 ATTR_PURE_NOTHROW_LEAF_LIST);
3009 #undef DEF_SANITIZER_BUILTIN_1
3010 #undef DEF_SANITIZER_BUILTIN
3011 #undef DEF_BUILTIN_STUB
3014 /* Called via htab_traverse. Count number of emitted
3015 STRING_CSTs in the constant hash table. */
3018 count_string_csts (constant_descriptor_tree **slot,
3019 unsigned HOST_WIDE_INT *data)
3021 struct constant_descriptor_tree *desc = *slot;
3022 if (TREE_CODE (desc->value) == STRING_CST
3023 && TREE_ASM_WRITTEN (desc->value)
3024 && asan_protect_global (desc->value))
3025 ++*data;
3026 return 1;
3029 /* Helper structure to pass two parameters to
3030 add_string_csts. */
3032 struct asan_add_string_csts_data
3034 tree type;
3035 vec<constructor_elt, va_gc> *v;
3038 /* Called via hash_table::traverse. Call asan_add_global
3039 on emitted STRING_CSTs from the constant hash table. */
3042 add_string_csts (constant_descriptor_tree **slot,
3043 asan_add_string_csts_data *aascd)
3045 struct constant_descriptor_tree *desc = *slot;
3046 if (TREE_CODE (desc->value) == STRING_CST
3047 && TREE_ASM_WRITTEN (desc->value)
3048 && asan_protect_global (desc->value))
3050 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
3051 aascd->type, aascd->v);
3053 return 1;
3056 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
3057 invoke ggc_collect. */
3058 static GTY(()) tree asan_ctor_statements;
3060 /* Module-level instrumentation.
3061 - Insert __asan_init_vN() into the list of CTORs.
3062 - TODO: insert redzones around globals.
3065 void
3066 asan_finish_file (void)
3068 varpool_node *vnode;
3069 unsigned HOST_WIDE_INT gcount = 0;
3071 if (shadow_ptr_types[0] == NULL_TREE)
3072 asan_init_shadow_ptr_types ();
3073 /* Avoid instrumenting code in the asan ctors/dtors.
3074 We don't need to insert padding after the description strings,
3075 nor after .LASAN* array. */
3076 flag_sanitize &= ~SANITIZE_ADDRESS;
3078 /* For user-space we want asan constructors to run first.
3079 Linux kernel does not support priorities other than default, and the only
3080 other user of constructors is coverage. So we run with the default
3081 priority. */
3082 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
3083 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
3085 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3087 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
3088 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
3089 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
3090 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
3092 FOR_EACH_DEFINED_VARIABLE (vnode)
3093 if (TREE_ASM_WRITTEN (vnode->decl)
3094 && asan_protect_global (vnode->decl))
3095 ++gcount;
3096 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
3097 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
3098 (&gcount);
3099 if (gcount)
3101 tree type = asan_global_struct (), var, ctor;
3102 tree dtor_statements = NULL_TREE;
3103 vec<constructor_elt, va_gc> *v;
3104 char buf[20];
3106 type = build_array_type_nelts (type, gcount);
3107 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
3108 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
3109 type);
3110 TREE_STATIC (var) = 1;
3111 TREE_PUBLIC (var) = 0;
3112 DECL_ARTIFICIAL (var) = 1;
3113 DECL_IGNORED_P (var) = 1;
3114 vec_alloc (v, gcount);
3115 FOR_EACH_DEFINED_VARIABLE (vnode)
3116 if (TREE_ASM_WRITTEN (vnode->decl)
3117 && asan_protect_global (vnode->decl))
3118 asan_add_global (vnode->decl, TREE_TYPE (type), v);
3119 struct asan_add_string_csts_data aascd;
3120 aascd.type = TREE_TYPE (type);
3121 aascd.v = v;
3122 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
3123 (&aascd);
3124 ctor = build_constructor (type, v);
3125 TREE_CONSTANT (ctor) = 1;
3126 TREE_STATIC (ctor) = 1;
3127 DECL_INITIAL (var) = ctor;
3128 SET_DECL_ALIGN (var, MAX (DECL_ALIGN (var),
3129 ASAN_SHADOW_GRANULARITY * BITS_PER_UNIT));
3131 varpool_node::finalize_decl (var);
3133 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
3134 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
3135 append_to_statement_list (build_call_expr (fn, 2,
3136 build_fold_addr_expr (var),
3137 gcount_tree),
3138 &asan_ctor_statements);
3140 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
3141 append_to_statement_list (build_call_expr (fn, 2,
3142 build_fold_addr_expr (var),
3143 gcount_tree),
3144 &dtor_statements);
3145 cgraph_build_static_cdtor ('D', dtor_statements, priority);
3147 if (asan_ctor_statements)
3148 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
3149 flag_sanitize |= SANITIZE_ADDRESS;
3152 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
3153 on SHADOW address. Newly added statements will be added to ITER with
3154 given location LOC. We mark SIZE bytes in shadow memory, where
3155 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
3156 end of a variable. */
3158 static void
3159 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
3160 tree shadow,
3161 unsigned HOST_WIDE_INT base_addr_offset,
3162 bool is_clobber, unsigned size,
3163 unsigned last_chunk_size)
3165 tree shadow_ptr_type;
3167 switch (size)
3169 case 1:
3170 shadow_ptr_type = shadow_ptr_types[0];
3171 break;
3172 case 2:
3173 shadow_ptr_type = shadow_ptr_types[1];
3174 break;
3175 case 4:
3176 shadow_ptr_type = shadow_ptr_types[2];
3177 break;
3178 default:
3179 gcc_unreachable ();
3182 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
3183 unsigned HOST_WIDE_INT val = 0;
3184 unsigned last_pos = size;
3185 if (last_chunk_size && !is_clobber)
3186 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
3187 for (unsigned i = 0; i < size; ++i)
3189 unsigned char shadow_c = c;
3190 if (i == last_pos)
3191 shadow_c = last_chunk_size;
3192 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
3195 /* Handle last chunk in unpoisoning. */
3196 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
3198 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
3199 build_int_cst (shadow_ptr_type, base_addr_offset));
3201 gimple *g = gimple_build_assign (dest, magic);
3202 gimple_set_location (g, loc);
3203 gsi_insert_after (iter, g, GSI_NEW_STMT);
3206 /* Expand the ASAN_MARK builtins. */
3208 bool
3209 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
3211 gimple *g = gsi_stmt (*iter);
3212 location_t loc = gimple_location (g);
3213 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
3214 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
3216 tree base = gimple_call_arg (g, 1);
3217 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
3218 tree decl = TREE_OPERAND (base, 0);
3220 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
3221 if (TREE_CODE (decl) == COMPONENT_REF
3222 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
3223 decl = TREE_OPERAND (decl, 0);
3225 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
3227 if (is_poison)
3229 if (asan_handled_variables == NULL)
3230 asan_handled_variables = new hash_set<tree> (16);
3231 asan_handled_variables->add (decl);
3233 tree len = gimple_call_arg (g, 2);
3235 gcc_assert (tree_fits_shwi_p (len));
3236 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
3237 gcc_assert (size_in_bytes);
3239 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3240 NOP_EXPR, base);
3241 gimple_set_location (g, loc);
3242 gsi_replace (iter, g, false);
3243 tree base_addr = gimple_assign_lhs (g);
3245 /* Generate direct emission if size_in_bytes is small. */
3246 if (size_in_bytes
3247 <= (unsigned)param_use_after_scope_direct_emission_threshold)
3249 const unsigned HOST_WIDE_INT shadow_size
3250 = shadow_mem_size (size_in_bytes);
3251 const unsigned int shadow_align
3252 = (get_pointer_alignment (base) / BITS_PER_UNIT) >> ASAN_SHADOW_SHIFT;
3254 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
3255 shadow_ptr_types[0], true);
3257 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
3259 unsigned size = 1;
3260 if (shadow_size - offset >= 4
3261 && (!STRICT_ALIGNMENT || shadow_align >= 4))
3262 size = 4;
3263 else if (shadow_size - offset >= 2
3264 && (!STRICT_ALIGNMENT || shadow_align >= 2))
3265 size = 2;
3267 unsigned HOST_WIDE_INT last_chunk_size = 0;
3268 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
3269 if (s > size_in_bytes)
3270 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
3272 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
3273 size, last_chunk_size);
3274 offset += size;
3277 else
3279 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3280 NOP_EXPR, len);
3281 gimple_set_location (g, loc);
3282 gsi_insert_before (iter, g, GSI_SAME_STMT);
3283 tree sz_arg = gimple_assign_lhs (g);
3285 tree fun
3286 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
3287 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
3288 g = gimple_build_call (fun, 2, base_addr, sz_arg);
3289 gimple_set_location (g, loc);
3290 gsi_insert_after (iter, g, GSI_NEW_STMT);
3293 return false;
3296 /* Expand the ASAN_{LOAD,STORE} builtins. */
3298 bool
3299 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
3301 gimple *g = gsi_stmt (*iter);
3302 location_t loc = gimple_location (g);
3303 bool recover_p;
3304 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3305 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3306 else
3307 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3309 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
3310 gcc_assert (flags < ASAN_CHECK_LAST);
3311 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
3312 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
3313 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
3315 tree base = gimple_call_arg (g, 1);
3316 tree len = gimple_call_arg (g, 2);
3317 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
3319 HOST_WIDE_INT size_in_bytes
3320 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
3322 if (use_calls)
3324 /* Instrument using callbacks. */
3325 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3326 NOP_EXPR, base);
3327 gimple_set_location (g, loc);
3328 gsi_insert_before (iter, g, GSI_SAME_STMT);
3329 tree base_addr = gimple_assign_lhs (g);
3331 int nargs;
3332 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
3333 if (nargs == 1)
3334 g = gimple_build_call (fun, 1, base_addr);
3335 else
3337 gcc_assert (nargs == 2);
3338 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3339 NOP_EXPR, len);
3340 gimple_set_location (g, loc);
3341 gsi_insert_before (iter, g, GSI_SAME_STMT);
3342 tree sz_arg = gimple_assign_lhs (g);
3343 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
3345 gimple_set_location (g, loc);
3346 gsi_replace (iter, g, false);
3347 return false;
3350 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
3352 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
3353 tree shadow_type = TREE_TYPE (shadow_ptr_type);
3355 gimple_stmt_iterator gsi = *iter;
3357 if (!is_non_zero_len)
3359 /* So, the length of the memory area to asan-protect is
3360 non-constant. Let's guard the generated instrumentation code
3361 like:
3363 if (len != 0)
3365 //asan instrumentation code goes here.
3367 // falltrough instructions, starting with *ITER. */
3369 g = gimple_build_cond (NE_EXPR,
3370 len,
3371 build_int_cst (TREE_TYPE (len), 0),
3372 NULL_TREE, NULL_TREE);
3373 gimple_set_location (g, loc);
3375 basic_block then_bb, fallthrough_bb;
3376 insert_if_then_before_iter (as_a <gcond *> (g), iter,
3377 /*then_more_likely_p=*/true,
3378 &then_bb, &fallthrough_bb);
3379 /* Note that fallthrough_bb starts with the statement that was
3380 pointed to by ITER. */
3382 /* The 'then block' of the 'if (len != 0) condition is where
3383 we'll generate the asan instrumentation code now. */
3384 gsi = gsi_last_bb (then_bb);
3387 /* Get an iterator on the point where we can add the condition
3388 statement for the instrumentation. */
3389 basic_block then_bb, else_bb;
3390 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
3391 /*then_more_likely_p=*/false,
3392 /*create_then_fallthru_edge*/recover_p,
3393 &then_bb,
3394 &else_bb);
3396 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3397 NOP_EXPR, base);
3398 gimple_set_location (g, loc);
3399 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
3400 tree base_addr = gimple_assign_lhs (g);
3402 tree t = NULL_TREE;
3403 if (real_size_in_bytes >= 8)
3405 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3406 shadow_ptr_type);
3407 t = shadow;
3409 else
3411 /* Slow path for 1, 2 and 4 byte accesses. */
3412 /* Test (shadow != 0)
3413 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
3414 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3415 shadow_ptr_type);
3416 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3417 gimple_seq seq = NULL;
3418 gimple_seq_add_stmt (&seq, shadow_test);
3419 /* Aligned (>= 8 bytes) can test just
3420 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
3421 to be 0. */
3422 if (align < 8)
3424 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3425 base_addr, 7));
3426 gimple_seq_add_stmt (&seq,
3427 build_type_cast (shadow_type,
3428 gimple_seq_last (seq)));
3429 if (real_size_in_bytes > 1)
3430 gimple_seq_add_stmt (&seq,
3431 build_assign (PLUS_EXPR,
3432 gimple_seq_last (seq),
3433 real_size_in_bytes - 1));
3434 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3436 else
3437 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3438 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3439 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3440 gimple_seq_last (seq)));
3441 t = gimple_assign_lhs (gimple_seq_last (seq));
3442 gimple_seq_set_location (seq, loc);
3443 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3445 /* For non-constant, misaligned or otherwise weird access sizes,
3446 check first and last byte. */
3447 if (size_in_bytes == -1)
3449 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3450 MINUS_EXPR, len,
3451 build_int_cst (pointer_sized_int_node, 1));
3452 gimple_set_location (g, loc);
3453 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3454 tree last = gimple_assign_lhs (g);
3455 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3456 PLUS_EXPR, base_addr, last);
3457 gimple_set_location (g, loc);
3458 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3459 tree base_end_addr = gimple_assign_lhs (g);
3461 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3462 shadow_ptr_type);
3463 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3464 gimple_seq seq = NULL;
3465 gimple_seq_add_stmt (&seq, shadow_test);
3466 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3467 base_end_addr, 7));
3468 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3469 gimple_seq_last (seq)));
3470 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3471 gimple_seq_last (seq),
3472 shadow));
3473 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3474 gimple_seq_last (seq)));
3475 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3476 gimple_seq_last (seq)));
3477 t = gimple_assign_lhs (gimple_seq_last (seq));
3478 gimple_seq_set_location (seq, loc);
3479 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3483 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3484 NULL_TREE, NULL_TREE);
3485 gimple_set_location (g, loc);
3486 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3488 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3489 gsi = gsi_start_bb (then_bb);
3490 int nargs;
3491 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3492 g = gimple_build_call (fun, nargs, base_addr, len);
3493 gimple_set_location (g, loc);
3494 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3496 gsi_remove (iter, true);
3497 *iter = gsi_start_bb (else_bb);
3499 return true;
3502 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3503 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3505 static tree
3506 create_asan_shadow_var (tree var_decl,
3507 hash_map<tree, tree> &shadow_vars_mapping)
3509 tree *slot = shadow_vars_mapping.get (var_decl);
3510 if (slot == NULL)
3512 tree shadow_var = copy_node (var_decl);
3514 copy_body_data id;
3515 memset (&id, 0, sizeof (copy_body_data));
3516 id.src_fn = id.dst_fn = current_function_decl;
3517 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3519 DECL_ARTIFICIAL (shadow_var) = 1;
3520 DECL_IGNORED_P (shadow_var) = 1;
3521 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3522 gimple_add_tmp_var (shadow_var);
3524 shadow_vars_mapping.put (var_decl, shadow_var);
3525 return shadow_var;
3527 else
3528 return *slot;
3531 /* Expand ASAN_POISON ifn. */
3533 bool
3534 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3535 bool *need_commit_edge_insert,
3536 hash_map<tree, tree> &shadow_vars_mapping)
3538 gimple *g = gsi_stmt (*iter);
3539 tree poisoned_var = gimple_call_lhs (g);
3540 if (!poisoned_var || has_zero_uses (poisoned_var))
3542 gsi_remove (iter, true);
3543 return true;
3546 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3547 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3548 create_tmp_var (TREE_TYPE (poisoned_var)));
3550 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3551 shadow_vars_mapping);
3553 bool recover_p;
3554 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3555 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3556 else
3557 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3558 tree size = DECL_SIZE_UNIT (shadow_var);
3559 gimple *poison_call
3560 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3561 build_int_cst (integer_type_node,
3562 ASAN_MARK_POISON),
3563 build_fold_addr_expr (shadow_var), size);
3565 gimple *use;
3566 imm_use_iterator imm_iter;
3567 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3569 if (is_gimple_debug (use))
3570 continue;
3572 int nargs;
3573 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3574 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3575 &nargs);
3577 gcall *call = gimple_build_call (fun, 1,
3578 build_fold_addr_expr (shadow_var));
3579 gimple_set_location (call, gimple_location (use));
3580 gimple *call_to_insert = call;
3582 /* The USE can be a gimple PHI node. If so, insert the call on
3583 all edges leading to the PHI node. */
3584 if (is_a <gphi *> (use))
3586 gphi *phi = dyn_cast<gphi *> (use);
3587 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3588 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3590 edge e = gimple_phi_arg_edge (phi, i);
3592 /* Do not insert on an edge we can't split. */
3593 if (e->flags & EDGE_ABNORMAL)
3594 continue;
3596 if (call_to_insert == NULL)
3597 call_to_insert = gimple_copy (call);
3599 gsi_insert_seq_on_edge (e, call_to_insert);
3600 *need_commit_edge_insert = true;
3601 call_to_insert = NULL;
3604 else
3606 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3607 if (store_p)
3608 gsi_replace (&gsi, call, true);
3609 else
3610 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3614 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3615 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3616 gsi_replace (iter, poison_call, false);
3618 return true;
3621 /* Instrument the current function. */
3623 static unsigned int
3624 asan_instrument (void)
3626 if (shadow_ptr_types[0] == NULL_TREE)
3627 asan_init_shadow_ptr_types ();
3628 transform_statements ();
3629 last_alloca_addr = NULL_TREE;
3630 return 0;
3633 static bool
3634 gate_asan (void)
3636 return sanitize_flags_p (SANITIZE_ADDRESS);
3639 namespace {
3641 const pass_data pass_data_asan =
3643 GIMPLE_PASS, /* type */
3644 "asan", /* name */
3645 OPTGROUP_NONE, /* optinfo_flags */
3646 TV_NONE, /* tv_id */
3647 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3648 0, /* properties_provided */
3649 0, /* properties_destroyed */
3650 0, /* todo_flags_start */
3651 TODO_update_ssa, /* todo_flags_finish */
3654 class pass_asan : public gimple_opt_pass
3656 public:
3657 pass_asan (gcc::context *ctxt)
3658 : gimple_opt_pass (pass_data_asan, ctxt)
3661 /* opt_pass methods: */
3662 opt_pass * clone () { return new pass_asan (m_ctxt); }
3663 virtual bool gate (function *) { return gate_asan (); }
3664 virtual unsigned int execute (function *) { return asan_instrument (); }
3666 }; // class pass_asan
3668 } // anon namespace
3670 gimple_opt_pass *
3671 make_pass_asan (gcc::context *ctxt)
3673 return new pass_asan (ctxt);
3676 namespace {
3678 const pass_data pass_data_asan_O0 =
3680 GIMPLE_PASS, /* type */
3681 "asan0", /* name */
3682 OPTGROUP_NONE, /* optinfo_flags */
3683 TV_NONE, /* tv_id */
3684 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3685 0, /* properties_provided */
3686 0, /* properties_destroyed */
3687 0, /* todo_flags_start */
3688 TODO_update_ssa, /* todo_flags_finish */
3691 class pass_asan_O0 : public gimple_opt_pass
3693 public:
3694 pass_asan_O0 (gcc::context *ctxt)
3695 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3698 /* opt_pass methods: */
3699 virtual bool gate (function *) { return !optimize && gate_asan (); }
3700 virtual unsigned int execute (function *) { return asan_instrument (); }
3702 }; // class pass_asan_O0
3704 } // anon namespace
3706 gimple_opt_pass *
3707 make_pass_asan_O0 (gcc::context *ctxt)
3709 return new pass_asan_O0 (ctxt);
3712 #include "gt-asan.h"