2013-01-12 Janus Weil <janus@gcc.gnu.org>
[official-gcc.git] / gcc / alias.c
blobdf328ec9d73138ffaa377ea26a93fb27633fea3f
1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "function.h"
29 #include "alias.h"
30 #include "emit-rtl.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "flags.h"
35 #include "diagnostic-core.h"
36 #include "cselib.h"
37 #include "splay-tree.h"
38 #include "ggc.h"
39 #include "langhooks.h"
40 #include "timevar.h"
41 #include "dumpfile.h"
42 #include "target.h"
43 #include "cgraph.h"
44 #include "df.h"
45 #include "tree-ssa-alias.h"
46 #include "pointer-set.h"
47 #include "tree-flow.h"
49 /* The aliasing API provided here solves related but different problems:
51 Say there exists (in c)
53 struct X {
54 struct Y y1;
55 struct Z z2;
56 } x1, *px1, *px2;
58 struct Y y2, *py;
59 struct Z z2, *pz;
62 py = &x1.y1;
63 px2 = &x1;
65 Consider the four questions:
67 Can a store to x1 interfere with px2->y1?
68 Can a store to x1 interfere with px2->z2?
69 Can a store to x1 change the value pointed to by with py?
70 Can a store to x1 change the value pointed to by with pz?
72 The answer to these questions can be yes, yes, yes, and maybe.
74 The first two questions can be answered with a simple examination
75 of the type system. If structure X contains a field of type Y then
76 a store through a pointer to an X can overwrite any field that is
77 contained (recursively) in an X (unless we know that px1 != px2).
79 The last two questions can be solved in the same way as the first
80 two questions but this is too conservative. The observation is
81 that in some cases we can know which (if any) fields are addressed
82 and if those addresses are used in bad ways. This analysis may be
83 language specific. In C, arbitrary operations may be applied to
84 pointers. However, there is some indication that this may be too
85 conservative for some C++ types.
87 The pass ipa-type-escape does this analysis for the types whose
88 instances do not escape across the compilation boundary.
90 Historically in GCC, these two problems were combined and a single
91 data structure that was used to represent the solution to these
92 problems. We now have two similar but different data structures,
93 The data structure to solve the last two questions is similar to
94 the first, but does not contain the fields whose address are never
95 taken. For types that do escape the compilation unit, the data
96 structures will have identical information.
99 /* The alias sets assigned to MEMs assist the back-end in determining
100 which MEMs can alias which other MEMs. In general, two MEMs in
101 different alias sets cannot alias each other, with one important
102 exception. Consider something like:
104 struct S { int i; double d; };
106 a store to an `S' can alias something of either type `int' or type
107 `double'. (However, a store to an `int' cannot alias a `double'
108 and vice versa.) We indicate this via a tree structure that looks
109 like:
110 struct S
113 |/_ _\|
114 int double
116 (The arrows are directed and point downwards.)
117 In this situation we say the alias set for `struct S' is the
118 `superset' and that those for `int' and `double' are `subsets'.
120 To see whether two alias sets can point to the same memory, we must
121 see if either alias set is a subset of the other. We need not trace
122 past immediate descendants, however, since we propagate all
123 grandchildren up one level.
125 Alias set zero is implicitly a superset of all other alias sets.
126 However, this is no actual entry for alias set zero. It is an
127 error to attempt to explicitly construct a subset of zero. */
129 struct GTY(()) alias_set_entry_d {
130 /* The alias set number, as stored in MEM_ALIAS_SET. */
131 alias_set_type alias_set;
133 /* Nonzero if would have a child of zero: this effectively makes this
134 alias set the same as alias set zero. */
135 int has_zero_child;
137 /* The children of the alias set. These are not just the immediate
138 children, but, in fact, all descendants. So, if we have:
140 struct T { struct S s; float f; }
142 continuing our example above, the children here will be all of
143 `int', `double', `float', and `struct S'. */
144 splay_tree GTY((param1_is (int), param2_is (int))) children;
146 typedef struct alias_set_entry_d *alias_set_entry;
148 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
149 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
150 static void record_set (rtx, const_rtx, void *);
151 static int base_alias_check (rtx, rtx, enum machine_mode,
152 enum machine_mode);
153 static rtx find_base_value (rtx);
154 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
155 static int insert_subset_children (splay_tree_node, void*);
156 static alias_set_entry get_alias_set_entry (alias_set_type);
157 static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
158 static tree decl_for_component_ref (tree);
159 static int write_dependence_p (const_rtx, const_rtx, int);
161 static void memory_modified_1 (rtx, const_rtx, void *);
163 /* Set up all info needed to perform alias analysis on memory references. */
165 /* Returns the size in bytes of the mode of X. */
166 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
168 /* Cap the number of passes we make over the insns propagating alias
169 information through set chains.
170 ??? 10 is a completely arbitrary choice. This should be based on the
171 maximum loop depth in the CFG, but we do not have this information
172 available (even if current_loops _is_ available). */
173 #define MAX_ALIAS_LOOP_PASSES 10
175 /* reg_base_value[N] gives an address to which register N is related.
176 If all sets after the first add or subtract to the current value
177 or otherwise modify it so it does not point to a different top level
178 object, reg_base_value[N] is equal to the address part of the source
179 of the first set.
181 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
182 expressions represent three types of base:
184 1. incoming arguments. There is just one ADDRESS to represent all
185 arguments, since we do not know at this level whether accesses
186 based on different arguments can alias. The ADDRESS has id 0.
188 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
189 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
190 Each of these rtxes has a separate ADDRESS associated with it,
191 each with a negative id.
193 GCC is (and is required to be) precise in which register it
194 chooses to access a particular region of stack. We can therefore
195 assume that accesses based on one of these rtxes do not alias
196 accesses based on another of these rtxes.
198 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
199 Each such piece of memory has a separate ADDRESS associated
200 with it, each with an id greater than 0.
202 Accesses based on one ADDRESS do not alias accesses based on other
203 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
204 alias globals either; the ADDRESSes have Pmode to indicate this.
205 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
206 indicate this. */
208 static GTY(()) vec<rtx, va_gc> *reg_base_value;
209 static rtx *new_reg_base_value;
211 /* The single VOIDmode ADDRESS that represents all argument bases.
212 It has id 0. */
213 static GTY(()) rtx arg_base_value;
215 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
216 static int unique_id;
218 /* We preserve the copy of old array around to avoid amount of garbage
219 produced. About 8% of garbage produced were attributed to this
220 array. */
221 static GTY((deletable)) vec<rtx, va_gc> *old_reg_base_value;
223 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
224 registers. */
225 #define UNIQUE_BASE_VALUE_SP -1
226 #define UNIQUE_BASE_VALUE_ARGP -2
227 #define UNIQUE_BASE_VALUE_FP -3
228 #define UNIQUE_BASE_VALUE_HFP -4
230 #define static_reg_base_value \
231 (this_target_rtl->x_static_reg_base_value)
233 #define REG_BASE_VALUE(X) \
234 (REGNO (X) < vec_safe_length (reg_base_value) \
235 ? (*reg_base_value)[REGNO (X)] : 0)
237 /* Vector indexed by N giving the initial (unchanging) value known for
238 pseudo-register N. This vector is initialized in init_alias_analysis,
239 and does not change until end_alias_analysis is called. */
240 static GTY(()) vec<rtx, va_gc> *reg_known_value;
242 /* Vector recording for each reg_known_value whether it is due to a
243 REG_EQUIV note. Future passes (viz., reload) may replace the
244 pseudo with the equivalent expression and so we account for the
245 dependences that would be introduced if that happens.
247 The REG_EQUIV notes created in assign_parms may mention the arg
248 pointer, and there are explicit insns in the RTL that modify the
249 arg pointer. Thus we must ensure that such insns don't get
250 scheduled across each other because that would invalidate the
251 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
252 wrong, but solving the problem in the scheduler will likely give
253 better code, so we do it here. */
254 static sbitmap reg_known_equiv_p;
256 /* True when scanning insns from the start of the rtl to the
257 NOTE_INSN_FUNCTION_BEG note. */
258 static bool copying_arguments;
261 /* The splay-tree used to store the various alias set entries. */
262 static GTY (()) vec<alias_set_entry, va_gc> *alias_sets;
264 /* Build a decomposed reference object for querying the alias-oracle
265 from the MEM rtx and store it in *REF.
266 Returns false if MEM is not suitable for the alias-oracle. */
268 static bool
269 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
271 tree expr = MEM_EXPR (mem);
272 tree base;
274 if (!expr)
275 return false;
277 ao_ref_init (ref, expr);
279 /* Get the base of the reference and see if we have to reject or
280 adjust it. */
281 base = ao_ref_base (ref);
282 if (base == NULL_TREE)
283 return false;
285 /* The tree oracle doesn't like bases that are neither decls
286 nor indirect references of SSA names. */
287 if (!(DECL_P (base)
288 || (TREE_CODE (base) == MEM_REF
289 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
290 || (TREE_CODE (base) == TARGET_MEM_REF
291 && TREE_CODE (TMR_BASE (base)) == SSA_NAME)))
292 return false;
294 /* If this is a reference based on a partitioned decl replace the
295 base with a MEM_REF of the pointer representative we
296 created during stack slot partitioning. */
297 if (TREE_CODE (base) == VAR_DECL
298 && ! is_global_var (base)
299 && cfun->gimple_df->decls_to_pointers != NULL)
301 void *namep;
302 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
303 if (namep)
304 ref->base = build_simple_mem_ref (*(tree *)namep);
307 ref->ref_alias_set = MEM_ALIAS_SET (mem);
309 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
310 is conservative, so trust it. */
311 if (!MEM_OFFSET_KNOWN_P (mem)
312 || !MEM_SIZE_KNOWN_P (mem))
313 return true;
315 /* If the base decl is a parameter we can have negative MEM_OFFSET in
316 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
317 here. */
318 if (MEM_OFFSET (mem) < 0
319 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
320 return true;
322 /* Otherwise continue and refine size and offset we got from analyzing
323 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
325 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
326 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
328 /* The MEM may extend into adjacent fields, so adjust max_size if
329 necessary. */
330 if (ref->max_size != -1
331 && ref->size > ref->max_size)
332 ref->max_size = ref->size;
334 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
335 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
336 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
337 && (ref->offset < 0
338 || (DECL_P (ref->base)
339 && (!host_integerp (DECL_SIZE (ref->base), 1)
340 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
341 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
342 return false;
344 return true;
347 /* Query the alias-oracle on whether the two memory rtx X and MEM may
348 alias. If TBAA_P is set also apply TBAA. Returns true if the
349 two rtxen may alias, false otherwise. */
351 static bool
352 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
354 ao_ref ref1, ref2;
356 if (!ao_ref_from_mem (&ref1, x)
357 || !ao_ref_from_mem (&ref2, mem))
358 return true;
360 return refs_may_alias_p_1 (&ref1, &ref2,
361 tbaa_p
362 && MEM_ALIAS_SET (x) != 0
363 && MEM_ALIAS_SET (mem) != 0);
366 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
367 such an entry, or NULL otherwise. */
369 static inline alias_set_entry
370 get_alias_set_entry (alias_set_type alias_set)
372 return (*alias_sets)[alias_set];
375 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
376 the two MEMs cannot alias each other. */
378 static inline int
379 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
381 /* Perform a basic sanity check. Namely, that there are no alias sets
382 if we're not using strict aliasing. This helps to catch bugs
383 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
384 where a MEM is allocated in some way other than by the use of
385 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
386 use alias sets to indicate that spilled registers cannot alias each
387 other, we might need to remove this check. */
388 gcc_assert (flag_strict_aliasing
389 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
391 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
394 /* Insert the NODE into the splay tree given by DATA. Used by
395 record_alias_subset via splay_tree_foreach. */
397 static int
398 insert_subset_children (splay_tree_node node, void *data)
400 splay_tree_insert ((splay_tree) data, node->key, node->value);
402 return 0;
405 /* Return true if the first alias set is a subset of the second. */
407 bool
408 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
410 alias_set_entry ase;
412 /* Everything is a subset of the "aliases everything" set. */
413 if (set2 == 0)
414 return true;
416 /* Otherwise, check if set1 is a subset of set2. */
417 ase = get_alias_set_entry (set2);
418 if (ase != 0
419 && (ase->has_zero_child
420 || splay_tree_lookup (ase->children,
421 (splay_tree_key) set1)))
422 return true;
423 return false;
426 /* Return 1 if the two specified alias sets may conflict. */
429 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
431 alias_set_entry ase;
433 /* The easy case. */
434 if (alias_sets_must_conflict_p (set1, set2))
435 return 1;
437 /* See if the first alias set is a subset of the second. */
438 ase = get_alias_set_entry (set1);
439 if (ase != 0
440 && (ase->has_zero_child
441 || splay_tree_lookup (ase->children,
442 (splay_tree_key) set2)))
443 return 1;
445 /* Now do the same, but with the alias sets reversed. */
446 ase = get_alias_set_entry (set2);
447 if (ase != 0
448 && (ase->has_zero_child
449 || splay_tree_lookup (ase->children,
450 (splay_tree_key) set1)))
451 return 1;
453 /* The two alias sets are distinct and neither one is the
454 child of the other. Therefore, they cannot conflict. */
455 return 0;
458 /* Return 1 if the two specified alias sets will always conflict. */
461 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
463 if (set1 == 0 || set2 == 0 || set1 == set2)
464 return 1;
466 return 0;
469 /* Return 1 if any MEM object of type T1 will always conflict (using the
470 dependency routines in this file) with any MEM object of type T2.
471 This is used when allocating temporary storage. If T1 and/or T2 are
472 NULL_TREE, it means we know nothing about the storage. */
475 objects_must_conflict_p (tree t1, tree t2)
477 alias_set_type set1, set2;
479 /* If neither has a type specified, we don't know if they'll conflict
480 because we may be using them to store objects of various types, for
481 example the argument and local variables areas of inlined functions. */
482 if (t1 == 0 && t2 == 0)
483 return 0;
485 /* If they are the same type, they must conflict. */
486 if (t1 == t2
487 /* Likewise if both are volatile. */
488 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
489 return 1;
491 set1 = t1 ? get_alias_set (t1) : 0;
492 set2 = t2 ? get_alias_set (t2) : 0;
494 /* We can't use alias_sets_conflict_p because we must make sure
495 that every subtype of t1 will conflict with every subtype of
496 t2 for which a pair of subobjects of these respective subtypes
497 overlaps on the stack. */
498 return alias_sets_must_conflict_p (set1, set2);
501 /* Return true if all nested component references handled by
502 get_inner_reference in T are such that we should use the alias set
503 provided by the object at the heart of T.
505 This is true for non-addressable components (which don't have their
506 own alias set), as well as components of objects in alias set zero.
507 This later point is a special case wherein we wish to override the
508 alias set used by the component, but we don't have per-FIELD_DECL
509 assignable alias sets. */
511 bool
512 component_uses_parent_alias_set (const_tree t)
514 while (1)
516 /* If we're at the end, it vacuously uses its own alias set. */
517 if (!handled_component_p (t))
518 return false;
520 switch (TREE_CODE (t))
522 case COMPONENT_REF:
523 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
524 return true;
525 break;
527 case ARRAY_REF:
528 case ARRAY_RANGE_REF:
529 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
530 return true;
531 break;
533 case REALPART_EXPR:
534 case IMAGPART_EXPR:
535 break;
537 default:
538 /* Bitfields and casts are never addressable. */
539 return true;
542 t = TREE_OPERAND (t, 0);
543 if (get_alias_set (TREE_TYPE (t)) == 0)
544 return true;
548 /* Return the alias set for the memory pointed to by T, which may be
549 either a type or an expression. Return -1 if there is nothing
550 special about dereferencing T. */
552 static alias_set_type
553 get_deref_alias_set_1 (tree t)
555 /* If we're not doing any alias analysis, just assume everything
556 aliases everything else. */
557 if (!flag_strict_aliasing)
558 return 0;
560 /* All we care about is the type. */
561 if (! TYPE_P (t))
562 t = TREE_TYPE (t);
564 /* If we have an INDIRECT_REF via a void pointer, we don't
565 know anything about what that might alias. Likewise if the
566 pointer is marked that way. */
567 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
568 || TYPE_REF_CAN_ALIAS_ALL (t))
569 return 0;
571 return -1;
574 /* Return the alias set for the memory pointed to by T, which may be
575 either a type or an expression. */
577 alias_set_type
578 get_deref_alias_set (tree t)
580 alias_set_type set = get_deref_alias_set_1 (t);
582 /* Fall back to the alias-set of the pointed-to type. */
583 if (set == -1)
585 if (! TYPE_P (t))
586 t = TREE_TYPE (t);
587 set = get_alias_set (TREE_TYPE (t));
590 return set;
593 /* Return the alias set for T, which may be either a type or an
594 expression. Call language-specific routine for help, if needed. */
596 alias_set_type
597 get_alias_set (tree t)
599 alias_set_type set;
601 /* If we're not doing any alias analysis, just assume everything
602 aliases everything else. Also return 0 if this or its type is
603 an error. */
604 if (! flag_strict_aliasing || t == error_mark_node
605 || (! TYPE_P (t)
606 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
607 return 0;
609 /* We can be passed either an expression or a type. This and the
610 language-specific routine may make mutually-recursive calls to each other
611 to figure out what to do. At each juncture, we see if this is a tree
612 that the language may need to handle specially. First handle things that
613 aren't types. */
614 if (! TYPE_P (t))
616 tree inner;
618 /* Give the language a chance to do something with this tree
619 before we look at it. */
620 STRIP_NOPS (t);
621 set = lang_hooks.get_alias_set (t);
622 if (set != -1)
623 return set;
625 /* Get the base object of the reference. */
626 inner = t;
627 while (handled_component_p (inner))
629 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
630 the type of any component references that wrap it to
631 determine the alias-set. */
632 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
633 t = TREE_OPERAND (inner, 0);
634 inner = TREE_OPERAND (inner, 0);
637 /* Handle pointer dereferences here, they can override the
638 alias-set. */
639 if (INDIRECT_REF_P (inner))
641 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
642 if (set != -1)
643 return set;
645 else if (TREE_CODE (inner) == TARGET_MEM_REF)
646 return get_deref_alias_set (TMR_OFFSET (inner));
647 else if (TREE_CODE (inner) == MEM_REF)
649 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
650 if (set != -1)
651 return set;
654 /* If the innermost reference is a MEM_REF that has a
655 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
656 using the memory access type for determining the alias-set. */
657 if (TREE_CODE (inner) == MEM_REF
658 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
659 != TYPE_MAIN_VARIANT
660 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
661 return get_deref_alias_set (TREE_OPERAND (inner, 1));
663 /* Otherwise, pick up the outermost object that we could have a pointer
664 to, processing conversions as above. */
665 while (component_uses_parent_alias_set (t))
667 t = TREE_OPERAND (t, 0);
668 STRIP_NOPS (t);
671 /* If we've already determined the alias set for a decl, just return
672 it. This is necessary for C++ anonymous unions, whose component
673 variables don't look like union members (boo!). */
674 if (TREE_CODE (t) == VAR_DECL
675 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
676 return MEM_ALIAS_SET (DECL_RTL (t));
678 /* Now all we care about is the type. */
679 t = TREE_TYPE (t);
682 /* Variant qualifiers don't affect the alias set, so get the main
683 variant. */
684 t = TYPE_MAIN_VARIANT (t);
686 /* Always use the canonical type as well. If this is a type that
687 requires structural comparisons to identify compatible types
688 use alias set zero. */
689 if (TYPE_STRUCTURAL_EQUALITY_P (t))
691 /* Allow the language to specify another alias set for this
692 type. */
693 set = lang_hooks.get_alias_set (t);
694 if (set != -1)
695 return set;
696 return 0;
699 t = TYPE_CANONICAL (t);
701 /* The canonical type should not require structural equality checks. */
702 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
704 /* If this is a type with a known alias set, return it. */
705 if (TYPE_ALIAS_SET_KNOWN_P (t))
706 return TYPE_ALIAS_SET (t);
708 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
709 if (!COMPLETE_TYPE_P (t))
711 /* For arrays with unknown size the conservative answer is the
712 alias set of the element type. */
713 if (TREE_CODE (t) == ARRAY_TYPE)
714 return get_alias_set (TREE_TYPE (t));
716 /* But return zero as a conservative answer for incomplete types. */
717 return 0;
720 /* See if the language has special handling for this type. */
721 set = lang_hooks.get_alias_set (t);
722 if (set != -1)
723 return set;
725 /* There are no objects of FUNCTION_TYPE, so there's no point in
726 using up an alias set for them. (There are, of course, pointers
727 and references to functions, but that's different.) */
728 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
729 set = 0;
731 /* Unless the language specifies otherwise, let vector types alias
732 their components. This avoids some nasty type punning issues in
733 normal usage. And indeed lets vectors be treated more like an
734 array slice. */
735 else if (TREE_CODE (t) == VECTOR_TYPE)
736 set = get_alias_set (TREE_TYPE (t));
738 /* Unless the language specifies otherwise, treat array types the
739 same as their components. This avoids the asymmetry we get
740 through recording the components. Consider accessing a
741 character(kind=1) through a reference to a character(kind=1)[1:1].
742 Or consider if we want to assign integer(kind=4)[0:D.1387] and
743 integer(kind=4)[4] the same alias set or not.
744 Just be pragmatic here and make sure the array and its element
745 type get the same alias set assigned. */
746 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
747 set = get_alias_set (TREE_TYPE (t));
749 /* From the former common C and C++ langhook implementation:
751 Unfortunately, there is no canonical form of a pointer type.
752 In particular, if we have `typedef int I', then `int *', and
753 `I *' are different types. So, we have to pick a canonical
754 representative. We do this below.
756 Technically, this approach is actually more conservative that
757 it needs to be. In particular, `const int *' and `int *'
758 should be in different alias sets, according to the C and C++
759 standard, since their types are not the same, and so,
760 technically, an `int **' and `const int **' cannot point at
761 the same thing.
763 But, the standard is wrong. In particular, this code is
764 legal C++:
766 int *ip;
767 int **ipp = &ip;
768 const int* const* cipp = ipp;
769 And, it doesn't make sense for that to be legal unless you
770 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
771 the pointed-to types. This issue has been reported to the
772 C++ committee.
774 In addition to the above canonicalization issue, with LTO
775 we should also canonicalize `T (*)[]' to `T *' avoiding
776 alias issues with pointer-to element types and pointer-to
777 array types.
779 Likewise we need to deal with the situation of incomplete
780 pointed-to types and make `*(struct X **)&a' and
781 `*(struct X {} **)&a' alias. Otherwise we will have to
782 guarantee that all pointer-to incomplete type variants
783 will be replaced by pointer-to complete type variants if
784 they are available.
786 With LTO the convenient situation of using `void *' to
787 access and store any pointer type will also become
788 more apparent (and `void *' is just another pointer-to
789 incomplete type). Assigning alias-set zero to `void *'
790 and all pointer-to incomplete types is a not appealing
791 solution. Assigning an effective alias-set zero only
792 affecting pointers might be - by recording proper subset
793 relationships of all pointer alias-sets.
795 Pointer-to function types are another grey area which
796 needs caution. Globbing them all into one alias-set
797 or the above effective zero set would work.
799 For now just assign the same alias-set to all pointers.
800 That's simple and avoids all the above problems. */
801 else if (POINTER_TYPE_P (t)
802 && t != ptr_type_node)
803 set = get_alias_set (ptr_type_node);
805 /* Otherwise make a new alias set for this type. */
806 else
808 /* Each canonical type gets its own alias set, so canonical types
809 shouldn't form a tree. It doesn't really matter for types
810 we handle specially above, so only check it where it possibly
811 would result in a bogus alias set. */
812 gcc_checking_assert (TYPE_CANONICAL (t) == t);
814 set = new_alias_set ();
817 TYPE_ALIAS_SET (t) = set;
819 /* If this is an aggregate type or a complex type, we must record any
820 component aliasing information. */
821 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
822 record_component_aliases (t);
824 return set;
827 /* Return a brand-new alias set. */
829 alias_set_type
830 new_alias_set (void)
832 if (flag_strict_aliasing)
834 if (alias_sets == 0)
835 vec_safe_push (alias_sets, (alias_set_entry) 0);
836 vec_safe_push (alias_sets, (alias_set_entry) 0);
837 return alias_sets->length () - 1;
839 else
840 return 0;
843 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
844 not everything that aliases SUPERSET also aliases SUBSET. For example,
845 in C, a store to an `int' can alias a load of a structure containing an
846 `int', and vice versa. But it can't alias a load of a 'double' member
847 of the same structure. Here, the structure would be the SUPERSET and
848 `int' the SUBSET. This relationship is also described in the comment at
849 the beginning of this file.
851 This function should be called only once per SUPERSET/SUBSET pair.
853 It is illegal for SUPERSET to be zero; everything is implicitly a
854 subset of alias set zero. */
856 void
857 record_alias_subset (alias_set_type superset, alias_set_type subset)
859 alias_set_entry superset_entry;
860 alias_set_entry subset_entry;
862 /* It is possible in complex type situations for both sets to be the same,
863 in which case we can ignore this operation. */
864 if (superset == subset)
865 return;
867 gcc_assert (superset);
869 superset_entry = get_alias_set_entry (superset);
870 if (superset_entry == 0)
872 /* Create an entry for the SUPERSET, so that we have a place to
873 attach the SUBSET. */
874 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
875 superset_entry->alias_set = superset;
876 superset_entry->children
877 = splay_tree_new_ggc (splay_tree_compare_ints,
878 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
879 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
880 superset_entry->has_zero_child = 0;
881 (*alias_sets)[superset] = superset_entry;
884 if (subset == 0)
885 superset_entry->has_zero_child = 1;
886 else
888 subset_entry = get_alias_set_entry (subset);
889 /* If there is an entry for the subset, enter all of its children
890 (if they are not already present) as children of the SUPERSET. */
891 if (subset_entry)
893 if (subset_entry->has_zero_child)
894 superset_entry->has_zero_child = 1;
896 splay_tree_foreach (subset_entry->children, insert_subset_children,
897 superset_entry->children);
900 /* Enter the SUBSET itself as a child of the SUPERSET. */
901 splay_tree_insert (superset_entry->children,
902 (splay_tree_key) subset, 0);
906 /* Record that component types of TYPE, if any, are part of that type for
907 aliasing purposes. For record types, we only record component types
908 for fields that are not marked non-addressable. For array types, we
909 only record the component type if it is not marked non-aliased. */
911 void
912 record_component_aliases (tree type)
914 alias_set_type superset = get_alias_set (type);
915 tree field;
917 if (superset == 0)
918 return;
920 switch (TREE_CODE (type))
922 case RECORD_TYPE:
923 case UNION_TYPE:
924 case QUAL_UNION_TYPE:
925 /* Recursively record aliases for the base classes, if there are any. */
926 if (TYPE_BINFO (type))
928 int i;
929 tree binfo, base_binfo;
931 for (binfo = TYPE_BINFO (type), i = 0;
932 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
933 record_alias_subset (superset,
934 get_alias_set (BINFO_TYPE (base_binfo)));
936 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
937 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
938 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
939 break;
941 case COMPLEX_TYPE:
942 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
943 break;
945 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
946 element type. */
948 default:
949 break;
953 /* Allocate an alias set for use in storing and reading from the varargs
954 spill area. */
956 static GTY(()) alias_set_type varargs_set = -1;
958 alias_set_type
959 get_varargs_alias_set (void)
961 #if 1
962 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
963 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
964 consistently use the varargs alias set for loads from the varargs
965 area. So don't use it anywhere. */
966 return 0;
967 #else
968 if (varargs_set == -1)
969 varargs_set = new_alias_set ();
971 return varargs_set;
972 #endif
975 /* Likewise, but used for the fixed portions of the frame, e.g., register
976 save areas. */
978 static GTY(()) alias_set_type frame_set = -1;
980 alias_set_type
981 get_frame_alias_set (void)
983 if (frame_set == -1)
984 frame_set = new_alias_set ();
986 return frame_set;
989 /* Create a new, unique base with id ID. */
991 static rtx
992 unique_base_value (HOST_WIDE_INT id)
994 return gen_rtx_ADDRESS (Pmode, id);
997 /* Return true if accesses based on any other base value cannot alias
998 those based on X. */
1000 static bool
1001 unique_base_value_p (rtx x)
1003 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1006 /* Return true if X is known to be a base value. */
1008 static bool
1009 known_base_value_p (rtx x)
1011 switch (GET_CODE (x))
1013 case LABEL_REF:
1014 case SYMBOL_REF:
1015 return true;
1017 case ADDRESS:
1018 /* Arguments may or may not be bases; we don't know for sure. */
1019 return GET_MODE (x) != VOIDmode;
1021 default:
1022 return false;
1026 /* Inside SRC, the source of a SET, find a base address. */
1028 static rtx
1029 find_base_value (rtx src)
1031 unsigned int regno;
1033 #if defined (FIND_BASE_TERM)
1034 /* Try machine-dependent ways to find the base term. */
1035 src = FIND_BASE_TERM (src);
1036 #endif
1038 switch (GET_CODE (src))
1040 case SYMBOL_REF:
1041 case LABEL_REF:
1042 return src;
1044 case REG:
1045 regno = REGNO (src);
1046 /* At the start of a function, argument registers have known base
1047 values which may be lost later. Returning an ADDRESS
1048 expression here allows optimization based on argument values
1049 even when the argument registers are used for other purposes. */
1050 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1051 return new_reg_base_value[regno];
1053 /* If a pseudo has a known base value, return it. Do not do this
1054 for non-fixed hard regs since it can result in a circular
1055 dependency chain for registers which have values at function entry.
1057 The test above is not sufficient because the scheduler may move
1058 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1059 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1060 && regno < vec_safe_length (reg_base_value))
1062 /* If we're inside init_alias_analysis, use new_reg_base_value
1063 to reduce the number of relaxation iterations. */
1064 if (new_reg_base_value && new_reg_base_value[regno]
1065 && DF_REG_DEF_COUNT (regno) == 1)
1066 return new_reg_base_value[regno];
1068 if ((*reg_base_value)[regno])
1069 return (*reg_base_value)[regno];
1072 return 0;
1074 case MEM:
1075 /* Check for an argument passed in memory. Only record in the
1076 copying-arguments block; it is too hard to track changes
1077 otherwise. */
1078 if (copying_arguments
1079 && (XEXP (src, 0) == arg_pointer_rtx
1080 || (GET_CODE (XEXP (src, 0)) == PLUS
1081 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1082 return arg_base_value;
1083 return 0;
1085 case CONST:
1086 src = XEXP (src, 0);
1087 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1088 break;
1090 /* ... fall through ... */
1092 case PLUS:
1093 case MINUS:
1095 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1097 /* If either operand is a REG that is a known pointer, then it
1098 is the base. */
1099 if (REG_P (src_0) && REG_POINTER (src_0))
1100 return find_base_value (src_0);
1101 if (REG_P (src_1) && REG_POINTER (src_1))
1102 return find_base_value (src_1);
1104 /* If either operand is a REG, then see if we already have
1105 a known value for it. */
1106 if (REG_P (src_0))
1108 temp = find_base_value (src_0);
1109 if (temp != 0)
1110 src_0 = temp;
1113 if (REG_P (src_1))
1115 temp = find_base_value (src_1);
1116 if (temp!= 0)
1117 src_1 = temp;
1120 /* If either base is named object or a special address
1121 (like an argument or stack reference), then use it for the
1122 base term. */
1123 if (src_0 != 0 && known_base_value_p (src_0))
1124 return src_0;
1126 if (src_1 != 0 && known_base_value_p (src_1))
1127 return src_1;
1129 /* Guess which operand is the base address:
1130 If either operand is a symbol, then it is the base. If
1131 either operand is a CONST_INT, then the other is the base. */
1132 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1133 return find_base_value (src_0);
1134 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1135 return find_base_value (src_1);
1137 return 0;
1140 case LO_SUM:
1141 /* The standard form is (lo_sum reg sym) so look only at the
1142 second operand. */
1143 return find_base_value (XEXP (src, 1));
1145 case AND:
1146 /* If the second operand is constant set the base
1147 address to the first operand. */
1148 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1149 return find_base_value (XEXP (src, 0));
1150 return 0;
1152 case TRUNCATE:
1153 /* As we do not know which address space the pointer is referring to, we can
1154 handle this only if the target does not support different pointer or
1155 address modes depending on the address space. */
1156 if (!target_default_pointer_address_modes_p ())
1157 break;
1158 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1159 break;
1160 /* Fall through. */
1161 case HIGH:
1162 case PRE_INC:
1163 case PRE_DEC:
1164 case POST_INC:
1165 case POST_DEC:
1166 case PRE_MODIFY:
1167 case POST_MODIFY:
1168 return find_base_value (XEXP (src, 0));
1170 case ZERO_EXTEND:
1171 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1172 /* As we do not know which address space the pointer is referring to, we can
1173 handle this only if the target does not support different pointer or
1174 address modes depending on the address space. */
1175 if (!target_default_pointer_address_modes_p ())
1176 break;
1179 rtx temp = find_base_value (XEXP (src, 0));
1181 if (temp != 0 && CONSTANT_P (temp))
1182 temp = convert_memory_address (Pmode, temp);
1184 return temp;
1187 default:
1188 break;
1191 return 0;
1194 /* Called from init_alias_analysis indirectly through note_stores,
1195 or directly if DEST is a register with a REG_NOALIAS note attached.
1196 SET is null in the latter case. */
1198 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1199 register N has been set in this function. */
1200 static sbitmap reg_seen;
1202 static void
1203 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1205 unsigned regno;
1206 rtx src;
1207 int n;
1209 if (!REG_P (dest))
1210 return;
1212 regno = REGNO (dest);
1214 gcc_checking_assert (regno < reg_base_value->length ());
1216 /* If this spans multiple hard registers, then we must indicate that every
1217 register has an unusable value. */
1218 if (regno < FIRST_PSEUDO_REGISTER)
1219 n = hard_regno_nregs[regno][GET_MODE (dest)];
1220 else
1221 n = 1;
1222 if (n != 1)
1224 while (--n >= 0)
1226 bitmap_set_bit (reg_seen, regno + n);
1227 new_reg_base_value[regno + n] = 0;
1229 return;
1232 if (set)
1234 /* A CLOBBER wipes out any old value but does not prevent a previously
1235 unset register from acquiring a base address (i.e. reg_seen is not
1236 set). */
1237 if (GET_CODE (set) == CLOBBER)
1239 new_reg_base_value[regno] = 0;
1240 return;
1242 src = SET_SRC (set);
1244 else
1246 /* There's a REG_NOALIAS note against DEST. */
1247 if (bitmap_bit_p (reg_seen, regno))
1249 new_reg_base_value[regno] = 0;
1250 return;
1252 bitmap_set_bit (reg_seen, regno);
1253 new_reg_base_value[regno] = unique_base_value (unique_id++);
1254 return;
1257 /* If this is not the first set of REGNO, see whether the new value
1258 is related to the old one. There are two cases of interest:
1260 (1) The register might be assigned an entirely new value
1261 that has the same base term as the original set.
1263 (2) The set might be a simple self-modification that
1264 cannot change REGNO's base value.
1266 If neither case holds, reject the original base value as invalid.
1267 Note that the following situation is not detected:
1269 extern int x, y; int *p = &x; p += (&y-&x);
1271 ANSI C does not allow computing the difference of addresses
1272 of distinct top level objects. */
1273 if (new_reg_base_value[regno] != 0
1274 && find_base_value (src) != new_reg_base_value[regno])
1275 switch (GET_CODE (src))
1277 case LO_SUM:
1278 case MINUS:
1279 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1280 new_reg_base_value[regno] = 0;
1281 break;
1282 case PLUS:
1283 /* If the value we add in the PLUS is also a valid base value,
1284 this might be the actual base value, and the original value
1285 an index. */
1287 rtx other = NULL_RTX;
1289 if (XEXP (src, 0) == dest)
1290 other = XEXP (src, 1);
1291 else if (XEXP (src, 1) == dest)
1292 other = XEXP (src, 0);
1294 if (! other || find_base_value (other))
1295 new_reg_base_value[regno] = 0;
1296 break;
1298 case AND:
1299 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1300 new_reg_base_value[regno] = 0;
1301 break;
1302 default:
1303 new_reg_base_value[regno] = 0;
1304 break;
1306 /* If this is the first set of a register, record the value. */
1307 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1308 && ! bitmap_bit_p (reg_seen, regno) && new_reg_base_value[regno] == 0)
1309 new_reg_base_value[regno] = find_base_value (src);
1311 bitmap_set_bit (reg_seen, regno);
1314 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1315 using hard registers with non-null REG_BASE_VALUE for renaming. */
1317 get_reg_base_value (unsigned int regno)
1319 return (*reg_base_value)[regno];
1322 /* If a value is known for REGNO, return it. */
1325 get_reg_known_value (unsigned int regno)
1327 if (regno >= FIRST_PSEUDO_REGISTER)
1329 regno -= FIRST_PSEUDO_REGISTER;
1330 if (regno < vec_safe_length (reg_known_value))
1331 return (*reg_known_value)[regno];
1333 return NULL;
1336 /* Set it. */
1338 static void
1339 set_reg_known_value (unsigned int regno, rtx val)
1341 if (regno >= FIRST_PSEUDO_REGISTER)
1343 regno -= FIRST_PSEUDO_REGISTER;
1344 if (regno < vec_safe_length (reg_known_value))
1345 (*reg_known_value)[regno] = val;
1349 /* Similarly for reg_known_equiv_p. */
1351 bool
1352 get_reg_known_equiv_p (unsigned int regno)
1354 if (regno >= FIRST_PSEUDO_REGISTER)
1356 regno -= FIRST_PSEUDO_REGISTER;
1357 if (regno < vec_safe_length (reg_known_value))
1358 return bitmap_bit_p (reg_known_equiv_p, regno);
1360 return false;
1363 static void
1364 set_reg_known_equiv_p (unsigned int regno, bool val)
1366 if (regno >= FIRST_PSEUDO_REGISTER)
1368 regno -= FIRST_PSEUDO_REGISTER;
1369 if (regno < vec_safe_length (reg_known_value))
1371 if (val)
1372 bitmap_set_bit (reg_known_equiv_p, regno);
1373 else
1374 bitmap_clear_bit (reg_known_equiv_p, regno);
1380 /* Returns a canonical version of X, from the point of view alias
1381 analysis. (For example, if X is a MEM whose address is a register,
1382 and the register has a known value (say a SYMBOL_REF), then a MEM
1383 whose address is the SYMBOL_REF is returned.) */
1386 canon_rtx (rtx x)
1388 /* Recursively look for equivalences. */
1389 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1391 rtx t = get_reg_known_value (REGNO (x));
1392 if (t == x)
1393 return x;
1394 if (t)
1395 return canon_rtx (t);
1398 if (GET_CODE (x) == PLUS)
1400 rtx x0 = canon_rtx (XEXP (x, 0));
1401 rtx x1 = canon_rtx (XEXP (x, 1));
1403 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1405 if (CONST_INT_P (x0))
1406 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1407 else if (CONST_INT_P (x1))
1408 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1409 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1413 /* This gives us much better alias analysis when called from
1414 the loop optimizer. Note we want to leave the original
1415 MEM alone, but need to return the canonicalized MEM with
1416 all the flags with their original values. */
1417 else if (MEM_P (x))
1418 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1420 return x;
1423 /* Return 1 if X and Y are identical-looking rtx's.
1424 Expect that X and Y has been already canonicalized.
1426 We use the data in reg_known_value above to see if two registers with
1427 different numbers are, in fact, equivalent. */
1429 static int
1430 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1432 int i;
1433 int j;
1434 enum rtx_code code;
1435 const char *fmt;
1437 if (x == 0 && y == 0)
1438 return 1;
1439 if (x == 0 || y == 0)
1440 return 0;
1442 if (x == y)
1443 return 1;
1445 code = GET_CODE (x);
1446 /* Rtx's of different codes cannot be equal. */
1447 if (code != GET_CODE (y))
1448 return 0;
1450 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1451 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1453 if (GET_MODE (x) != GET_MODE (y))
1454 return 0;
1456 /* Some RTL can be compared without a recursive examination. */
1457 switch (code)
1459 case REG:
1460 return REGNO (x) == REGNO (y);
1462 case LABEL_REF:
1463 return XEXP (x, 0) == XEXP (y, 0);
1465 case SYMBOL_REF:
1466 return XSTR (x, 0) == XSTR (y, 0);
1468 case VALUE:
1469 CASE_CONST_UNIQUE:
1470 /* There's no need to compare the contents of CONST_DOUBLEs or
1471 CONST_INTs because pointer equality is a good enough
1472 comparison for these nodes. */
1473 return 0;
1475 default:
1476 break;
1479 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1480 if (code == PLUS)
1481 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1482 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1483 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1484 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1485 /* For commutative operations, the RTX match if the operand match in any
1486 order. Also handle the simple binary and unary cases without a loop. */
1487 if (COMMUTATIVE_P (x))
1489 rtx xop0 = canon_rtx (XEXP (x, 0));
1490 rtx yop0 = canon_rtx (XEXP (y, 0));
1491 rtx yop1 = canon_rtx (XEXP (y, 1));
1493 return ((rtx_equal_for_memref_p (xop0, yop0)
1494 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1495 || (rtx_equal_for_memref_p (xop0, yop1)
1496 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1498 else if (NON_COMMUTATIVE_P (x))
1500 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1501 canon_rtx (XEXP (y, 0)))
1502 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1503 canon_rtx (XEXP (y, 1))));
1505 else if (UNARY_P (x))
1506 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1507 canon_rtx (XEXP (y, 0)));
1509 /* Compare the elements. If any pair of corresponding elements
1510 fail to match, return 0 for the whole things.
1512 Limit cases to types which actually appear in addresses. */
1514 fmt = GET_RTX_FORMAT (code);
1515 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1517 switch (fmt[i])
1519 case 'i':
1520 if (XINT (x, i) != XINT (y, i))
1521 return 0;
1522 break;
1524 case 'E':
1525 /* Two vectors must have the same length. */
1526 if (XVECLEN (x, i) != XVECLEN (y, i))
1527 return 0;
1529 /* And the corresponding elements must match. */
1530 for (j = 0; j < XVECLEN (x, i); j++)
1531 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1532 canon_rtx (XVECEXP (y, i, j))) == 0)
1533 return 0;
1534 break;
1536 case 'e':
1537 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1538 canon_rtx (XEXP (y, i))) == 0)
1539 return 0;
1540 break;
1542 /* This can happen for asm operands. */
1543 case 's':
1544 if (strcmp (XSTR (x, i), XSTR (y, i)))
1545 return 0;
1546 break;
1548 /* This can happen for an asm which clobbers memory. */
1549 case '0':
1550 break;
1552 /* It is believed that rtx's at this level will never
1553 contain anything but integers and other rtx's,
1554 except for within LABEL_REFs and SYMBOL_REFs. */
1555 default:
1556 gcc_unreachable ();
1559 return 1;
1562 static rtx
1563 find_base_term (rtx x)
1565 cselib_val *val;
1566 struct elt_loc_list *l, *f;
1567 rtx ret;
1569 #if defined (FIND_BASE_TERM)
1570 /* Try machine-dependent ways to find the base term. */
1571 x = FIND_BASE_TERM (x);
1572 #endif
1574 switch (GET_CODE (x))
1576 case REG:
1577 return REG_BASE_VALUE (x);
1579 case TRUNCATE:
1580 /* As we do not know which address space the pointer is referring to, we can
1581 handle this only if the target does not support different pointer or
1582 address modes depending on the address space. */
1583 if (!target_default_pointer_address_modes_p ())
1584 return 0;
1585 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1586 return 0;
1587 /* Fall through. */
1588 case HIGH:
1589 case PRE_INC:
1590 case PRE_DEC:
1591 case POST_INC:
1592 case POST_DEC:
1593 case PRE_MODIFY:
1594 case POST_MODIFY:
1595 return find_base_term (XEXP (x, 0));
1597 case ZERO_EXTEND:
1598 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1599 /* As we do not know which address space the pointer is referring to, we can
1600 handle this only if the target does not support different pointer or
1601 address modes depending on the address space. */
1602 if (!target_default_pointer_address_modes_p ())
1603 return 0;
1606 rtx temp = find_base_term (XEXP (x, 0));
1608 if (temp != 0 && CONSTANT_P (temp))
1609 temp = convert_memory_address (Pmode, temp);
1611 return temp;
1614 case VALUE:
1615 val = CSELIB_VAL_PTR (x);
1616 ret = NULL_RTX;
1618 if (!val)
1619 return ret;
1621 if (cselib_sp_based_value_p (val))
1622 return static_reg_base_value[STACK_POINTER_REGNUM];
1624 f = val->locs;
1625 /* Temporarily reset val->locs to avoid infinite recursion. */
1626 val->locs = NULL;
1628 for (l = f; l; l = l->next)
1629 if (GET_CODE (l->loc) == VALUE
1630 && CSELIB_VAL_PTR (l->loc)->locs
1631 && !CSELIB_VAL_PTR (l->loc)->locs->next
1632 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1633 continue;
1634 else if ((ret = find_base_term (l->loc)) != 0)
1635 break;
1637 val->locs = f;
1638 return ret;
1640 case LO_SUM:
1641 /* The standard form is (lo_sum reg sym) so look only at the
1642 second operand. */
1643 return find_base_term (XEXP (x, 1));
1645 case CONST:
1646 x = XEXP (x, 0);
1647 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1648 return 0;
1649 /* Fall through. */
1650 case PLUS:
1651 case MINUS:
1653 rtx tmp1 = XEXP (x, 0);
1654 rtx tmp2 = XEXP (x, 1);
1656 /* This is a little bit tricky since we have to determine which of
1657 the two operands represents the real base address. Otherwise this
1658 routine may return the index register instead of the base register.
1660 That may cause us to believe no aliasing was possible, when in
1661 fact aliasing is possible.
1663 We use a few simple tests to guess the base register. Additional
1664 tests can certainly be added. For example, if one of the operands
1665 is a shift or multiply, then it must be the index register and the
1666 other operand is the base register. */
1668 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1669 return find_base_term (tmp2);
1671 /* If either operand is known to be a pointer, then use it
1672 to determine the base term. */
1673 if (REG_P (tmp1) && REG_POINTER (tmp1))
1675 rtx base = find_base_term (tmp1);
1676 if (base)
1677 return base;
1680 if (REG_P (tmp2) && REG_POINTER (tmp2))
1682 rtx base = find_base_term (tmp2);
1683 if (base)
1684 return base;
1687 /* Neither operand was known to be a pointer. Go ahead and find the
1688 base term for both operands. */
1689 tmp1 = find_base_term (tmp1);
1690 tmp2 = find_base_term (tmp2);
1692 /* If either base term is named object or a special address
1693 (like an argument or stack reference), then use it for the
1694 base term. */
1695 if (tmp1 != 0 && known_base_value_p (tmp1))
1696 return tmp1;
1698 if (tmp2 != 0 && known_base_value_p (tmp2))
1699 return tmp2;
1701 /* We could not determine which of the two operands was the
1702 base register and which was the index. So we can determine
1703 nothing from the base alias check. */
1704 return 0;
1707 case AND:
1708 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1709 return find_base_term (XEXP (x, 0));
1710 return 0;
1712 case SYMBOL_REF:
1713 case LABEL_REF:
1714 return x;
1716 default:
1717 return 0;
1721 /* Return true if accesses to address X may alias accesses based
1722 on the stack pointer. */
1724 bool
1725 may_be_sp_based_p (rtx x)
1727 rtx base = find_base_term (x);
1728 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1731 /* Return 0 if the addresses X and Y are known to point to different
1732 objects, 1 if they might be pointers to the same object. */
1734 static int
1735 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1736 enum machine_mode y_mode)
1738 rtx x_base = find_base_term (x);
1739 rtx y_base = find_base_term (y);
1741 /* If the address itself has no known base see if a known equivalent
1742 value has one. If either address still has no known base, nothing
1743 is known about aliasing. */
1744 if (x_base == 0)
1746 rtx x_c;
1748 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1749 return 1;
1751 x_base = find_base_term (x_c);
1752 if (x_base == 0)
1753 return 1;
1756 if (y_base == 0)
1758 rtx y_c;
1759 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1760 return 1;
1762 y_base = find_base_term (y_c);
1763 if (y_base == 0)
1764 return 1;
1767 /* If the base addresses are equal nothing is known about aliasing. */
1768 if (rtx_equal_p (x_base, y_base))
1769 return 1;
1771 /* The base addresses are different expressions. If they are not accessed
1772 via AND, there is no conflict. We can bring knowledge of object
1773 alignment into play here. For example, on alpha, "char a, b;" can
1774 alias one another, though "char a; long b;" cannot. AND addesses may
1775 implicitly alias surrounding objects; i.e. unaligned access in DImode
1776 via AND address can alias all surrounding object types except those
1777 with aligment 8 or higher. */
1778 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1779 return 1;
1780 if (GET_CODE (x) == AND
1781 && (!CONST_INT_P (XEXP (x, 1))
1782 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1783 return 1;
1784 if (GET_CODE (y) == AND
1785 && (!CONST_INT_P (XEXP (y, 1))
1786 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1787 return 1;
1789 /* Differing symbols not accessed via AND never alias. */
1790 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1791 return 0;
1793 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1794 return 0;
1796 return 1;
1799 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1800 whose UID is greater than the int uid that D points to. */
1802 static int
1803 refs_newer_value_cb (rtx *x, void *d)
1805 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1806 return 1;
1808 return 0;
1811 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1812 that of V. */
1814 static bool
1815 refs_newer_value_p (rtx expr, rtx v)
1817 int minuid = CSELIB_VAL_PTR (v)->uid;
1819 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1822 /* Convert the address X into something we can use. This is done by returning
1823 it unchanged unless it is a value; in the latter case we call cselib to get
1824 a more useful rtx. */
1827 get_addr (rtx x)
1829 cselib_val *v;
1830 struct elt_loc_list *l;
1832 if (GET_CODE (x) != VALUE)
1833 return x;
1834 v = CSELIB_VAL_PTR (x);
1835 if (v)
1837 bool have_equivs = cselib_have_permanent_equivalences ();
1838 if (have_equivs)
1839 v = canonical_cselib_val (v);
1840 for (l = v->locs; l; l = l->next)
1841 if (CONSTANT_P (l->loc))
1842 return l->loc;
1843 for (l = v->locs; l; l = l->next)
1844 if (!REG_P (l->loc) && !MEM_P (l->loc)
1845 /* Avoid infinite recursion when potentially dealing with
1846 var-tracking artificial equivalences, by skipping the
1847 equivalences themselves, and not choosing expressions
1848 that refer to newer VALUEs. */
1849 && (!have_equivs
1850 || (GET_CODE (l->loc) != VALUE
1851 && !refs_newer_value_p (l->loc, x))))
1852 return l->loc;
1853 if (have_equivs)
1855 for (l = v->locs; l; l = l->next)
1856 if (REG_P (l->loc)
1857 || (GET_CODE (l->loc) != VALUE
1858 && !refs_newer_value_p (l->loc, x)))
1859 return l->loc;
1860 /* Return the canonical value. */
1861 return v->val_rtx;
1863 if (v->locs)
1864 return v->locs->loc;
1866 return x;
1869 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1870 where SIZE is the size in bytes of the memory reference. If ADDR
1871 is not modified by the memory reference then ADDR is returned. */
1873 static rtx
1874 addr_side_effect_eval (rtx addr, int size, int n_refs)
1876 int offset = 0;
1878 switch (GET_CODE (addr))
1880 case PRE_INC:
1881 offset = (n_refs + 1) * size;
1882 break;
1883 case PRE_DEC:
1884 offset = -(n_refs + 1) * size;
1885 break;
1886 case POST_INC:
1887 offset = n_refs * size;
1888 break;
1889 case POST_DEC:
1890 offset = -n_refs * size;
1891 break;
1893 default:
1894 return addr;
1897 if (offset)
1898 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1899 GEN_INT (offset));
1900 else
1901 addr = XEXP (addr, 0);
1902 addr = canon_rtx (addr);
1904 return addr;
1907 /* Return one if X and Y (memory addresses) reference the
1908 same location in memory or if the references overlap.
1909 Return zero if they do not overlap, else return
1910 minus one in which case they still might reference the same location.
1912 C is an offset accumulator. When
1913 C is nonzero, we are testing aliases between X and Y + C.
1914 XSIZE is the size in bytes of the X reference,
1915 similarly YSIZE is the size in bytes for Y.
1916 Expect that canon_rtx has been already called for X and Y.
1918 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1919 referenced (the reference was BLKmode), so make the most pessimistic
1920 assumptions.
1922 If XSIZE or YSIZE is negative, we may access memory outside the object
1923 being referenced as a side effect. This can happen when using AND to
1924 align memory references, as is done on the Alpha.
1926 Nice to notice that varying addresses cannot conflict with fp if no
1927 local variables had their addresses taken, but that's too hard now.
1929 ??? Contrary to the tree alias oracle this does not return
1930 one for X + non-constant and Y + non-constant when X and Y are equal.
1931 If that is fixed the TBAA hack for union type-punning can be removed. */
1933 static int
1934 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1936 if (GET_CODE (x) == VALUE)
1938 if (REG_P (y))
1940 struct elt_loc_list *l = NULL;
1941 if (CSELIB_VAL_PTR (x))
1942 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
1943 l; l = l->next)
1944 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1945 break;
1946 if (l)
1947 x = y;
1948 else
1949 x = get_addr (x);
1951 /* Don't call get_addr if y is the same VALUE. */
1952 else if (x != y)
1953 x = get_addr (x);
1955 if (GET_CODE (y) == VALUE)
1957 if (REG_P (x))
1959 struct elt_loc_list *l = NULL;
1960 if (CSELIB_VAL_PTR (y))
1961 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
1962 l; l = l->next)
1963 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1964 break;
1965 if (l)
1966 y = x;
1967 else
1968 y = get_addr (y);
1970 /* Don't call get_addr if x is the same VALUE. */
1971 else if (y != x)
1972 y = get_addr (y);
1974 if (GET_CODE (x) == HIGH)
1975 x = XEXP (x, 0);
1976 else if (GET_CODE (x) == LO_SUM)
1977 x = XEXP (x, 1);
1978 else
1979 x = addr_side_effect_eval (x, xsize, 0);
1980 if (GET_CODE (y) == HIGH)
1981 y = XEXP (y, 0);
1982 else if (GET_CODE (y) == LO_SUM)
1983 y = XEXP (y, 1);
1984 else
1985 y = addr_side_effect_eval (y, ysize, 0);
1987 if (rtx_equal_for_memref_p (x, y))
1989 if (xsize <= 0 || ysize <= 0)
1990 return 1;
1991 if (c >= 0 && xsize > c)
1992 return 1;
1993 if (c < 0 && ysize+c > 0)
1994 return 1;
1995 return 0;
1998 /* This code used to check for conflicts involving stack references and
1999 globals but the base address alias code now handles these cases. */
2001 if (GET_CODE (x) == PLUS)
2003 /* The fact that X is canonicalized means that this
2004 PLUS rtx is canonicalized. */
2005 rtx x0 = XEXP (x, 0);
2006 rtx x1 = XEXP (x, 1);
2008 if (GET_CODE (y) == PLUS)
2010 /* The fact that Y is canonicalized means that this
2011 PLUS rtx is canonicalized. */
2012 rtx y0 = XEXP (y, 0);
2013 rtx y1 = XEXP (y, 1);
2015 if (rtx_equal_for_memref_p (x1, y1))
2016 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2017 if (rtx_equal_for_memref_p (x0, y0))
2018 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2019 if (CONST_INT_P (x1))
2021 if (CONST_INT_P (y1))
2022 return memrefs_conflict_p (xsize, x0, ysize, y0,
2023 c - INTVAL (x1) + INTVAL (y1));
2024 else
2025 return memrefs_conflict_p (xsize, x0, ysize, y,
2026 c - INTVAL (x1));
2028 else if (CONST_INT_P (y1))
2029 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2031 return -1;
2033 else if (CONST_INT_P (x1))
2034 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2036 else if (GET_CODE (y) == PLUS)
2038 /* The fact that Y is canonicalized means that this
2039 PLUS rtx is canonicalized. */
2040 rtx y0 = XEXP (y, 0);
2041 rtx y1 = XEXP (y, 1);
2043 if (CONST_INT_P (y1))
2044 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2045 else
2046 return -1;
2049 if (GET_CODE (x) == GET_CODE (y))
2050 switch (GET_CODE (x))
2052 case MULT:
2054 /* Handle cases where we expect the second operands to be the
2055 same, and check only whether the first operand would conflict
2056 or not. */
2057 rtx x0, y0;
2058 rtx x1 = canon_rtx (XEXP (x, 1));
2059 rtx y1 = canon_rtx (XEXP (y, 1));
2060 if (! rtx_equal_for_memref_p (x1, y1))
2061 return -1;
2062 x0 = canon_rtx (XEXP (x, 0));
2063 y0 = canon_rtx (XEXP (y, 0));
2064 if (rtx_equal_for_memref_p (x0, y0))
2065 return (xsize == 0 || ysize == 0
2066 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2068 /* Can't properly adjust our sizes. */
2069 if (!CONST_INT_P (x1))
2070 return -1;
2071 xsize /= INTVAL (x1);
2072 ysize /= INTVAL (x1);
2073 c /= INTVAL (x1);
2074 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2077 default:
2078 break;
2081 /* Deal with alignment ANDs by adjusting offset and size so as to
2082 cover the maximum range, without taking any previously known
2083 alignment into account. */
2084 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2086 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2087 unsigned HOST_WIDE_INT uc = sc;
2088 if (xsize > 0 && sc < 0 && -uc == (uc & -uc))
2090 xsize -= sc + 1;
2091 c -= sc + 1;
2092 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2093 ysize, y, c);
2096 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2098 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2099 unsigned HOST_WIDE_INT uc = sc;
2100 if (ysize > 0 && sc < 0 && -uc == (uc & -uc))
2102 ysize -= sc + 1;
2103 c += sc + 1;
2104 return memrefs_conflict_p (xsize, x,
2105 ysize, canon_rtx (XEXP (y, 0)), c);
2109 if (CONSTANT_P (x))
2111 if (CONST_INT_P (x) && CONST_INT_P (y))
2113 c += (INTVAL (y) - INTVAL (x));
2114 return (xsize <= 0 || ysize <= 0
2115 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2118 if (GET_CODE (x) == CONST)
2120 if (GET_CODE (y) == CONST)
2121 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2122 ysize, canon_rtx (XEXP (y, 0)), c);
2123 else
2124 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2125 ysize, y, c);
2127 if (GET_CODE (y) == CONST)
2128 return memrefs_conflict_p (xsize, x, ysize,
2129 canon_rtx (XEXP (y, 0)), c);
2131 if (CONSTANT_P (y))
2132 return (xsize <= 0 || ysize <= 0
2133 || (rtx_equal_for_memref_p (x, y)
2134 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2136 return -1;
2139 return -1;
2142 /* Functions to compute memory dependencies.
2144 Since we process the insns in execution order, we can build tables
2145 to keep track of what registers are fixed (and not aliased), what registers
2146 are varying in known ways, and what registers are varying in unknown
2147 ways.
2149 If both memory references are volatile, then there must always be a
2150 dependence between the two references, since their order can not be
2151 changed. A volatile and non-volatile reference can be interchanged
2152 though.
2154 We also must allow AND addresses, because they may generate accesses
2155 outside the object being referenced. This is used to generate aligned
2156 addresses from unaligned addresses, for instance, the alpha
2157 storeqi_unaligned pattern. */
2159 /* Read dependence: X is read after read in MEM takes place. There can
2160 only be a dependence here if both reads are volatile, or if either is
2161 an explicit barrier. */
2164 read_dependence (const_rtx mem, const_rtx x)
2166 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2167 return true;
2168 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2169 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2170 return true;
2171 return false;
2174 /* Return true if we can determine that the fields referenced cannot
2175 overlap for any pair of objects. */
2177 static bool
2178 nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
2180 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
2181 const_tree fieldx, fieldy, typex, typey, orig_y;
2183 if (!flag_strict_aliasing
2184 || !x || !y
2185 || TREE_CODE (x) != COMPONENT_REF
2186 || TREE_CODE (y) != COMPONENT_REF)
2187 return false;
2191 /* The comparison has to be done at a common type, since we don't
2192 know how the inheritance hierarchy works. */
2193 orig_y = y;
2196 fieldx = TREE_OPERAND (x, 1);
2197 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2199 y = orig_y;
2202 fieldy = TREE_OPERAND (y, 1);
2203 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2205 if (typex == typey)
2206 goto found;
2208 y = TREE_OPERAND (y, 0);
2210 while (y && TREE_CODE (y) == COMPONENT_REF);
2212 x = TREE_OPERAND (x, 0);
2214 while (x && TREE_CODE (x) == COMPONENT_REF);
2215 /* Never found a common type. */
2216 return false;
2218 found:
2219 /* If we're left with accessing different fields of a structure, then no
2220 possible overlap, unless they are both bitfields. */
2221 if (TREE_CODE (typex) == RECORD_TYPE && fieldx != fieldy)
2222 return !(DECL_BIT_FIELD (fieldx) && DECL_BIT_FIELD (fieldy));
2224 /* The comparison on the current field failed. If we're accessing
2225 a very nested structure, look at the next outer level. */
2226 x = TREE_OPERAND (x, 0);
2227 y = TREE_OPERAND (y, 0);
2229 while (x && y
2230 && TREE_CODE (x) == COMPONENT_REF
2231 && TREE_CODE (y) == COMPONENT_REF);
2233 return false;
2236 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2238 static tree
2239 decl_for_component_ref (tree x)
2243 x = TREE_OPERAND (x, 0);
2245 while (x && TREE_CODE (x) == COMPONENT_REF);
2247 return x && DECL_P (x) ? x : NULL_TREE;
2250 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2251 for the offset of the field reference. *KNOWN_P says whether the
2252 offset is known. */
2254 static void
2255 adjust_offset_for_component_ref (tree x, bool *known_p,
2256 HOST_WIDE_INT *offset)
2258 if (!*known_p)
2259 return;
2262 tree xoffset = component_ref_field_offset (x);
2263 tree field = TREE_OPERAND (x, 1);
2265 if (! host_integerp (xoffset, 1))
2267 *known_p = false;
2268 return;
2270 *offset += (tree_low_cst (xoffset, 1)
2271 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2272 / BITS_PER_UNIT));
2274 x = TREE_OPERAND (x, 0);
2276 while (x && TREE_CODE (x) == COMPONENT_REF);
2279 /* Return nonzero if we can determine the exprs corresponding to memrefs
2280 X and Y and they do not overlap.
2281 If LOOP_VARIANT is set, skip offset-based disambiguation */
2284 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2286 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2287 rtx rtlx, rtly;
2288 rtx basex, basey;
2289 bool moffsetx_known_p, moffsety_known_p;
2290 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2291 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2293 /* Unless both have exprs, we can't tell anything. */
2294 if (exprx == 0 || expry == 0)
2295 return 0;
2297 /* For spill-slot accesses make sure we have valid offsets. */
2298 if ((exprx == get_spill_slot_decl (false)
2299 && ! MEM_OFFSET_KNOWN_P (x))
2300 || (expry == get_spill_slot_decl (false)
2301 && ! MEM_OFFSET_KNOWN_P (y)))
2302 return 0;
2304 /* If the field reference test failed, look at the DECLs involved. */
2305 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2306 if (moffsetx_known_p)
2307 moffsetx = MEM_OFFSET (x);
2308 if (TREE_CODE (exprx) == COMPONENT_REF)
2310 tree t = decl_for_component_ref (exprx);
2311 if (! t)
2312 return 0;
2313 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2314 exprx = t;
2317 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2318 if (moffsety_known_p)
2319 moffsety = MEM_OFFSET (y);
2320 if (TREE_CODE (expry) == COMPONENT_REF)
2322 tree t = decl_for_component_ref (expry);
2323 if (! t)
2324 return 0;
2325 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2326 expry = t;
2329 if (! DECL_P (exprx) || ! DECL_P (expry))
2330 return 0;
2332 /* With invalid code we can end up storing into the constant pool.
2333 Bail out to avoid ICEing when creating RTL for this.
2334 See gfortran.dg/lto/20091028-2_0.f90. */
2335 if (TREE_CODE (exprx) == CONST_DECL
2336 || TREE_CODE (expry) == CONST_DECL)
2337 return 1;
2339 rtlx = DECL_RTL (exprx);
2340 rtly = DECL_RTL (expry);
2342 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2343 can't overlap unless they are the same because we never reuse that part
2344 of the stack frame used for locals for spilled pseudos. */
2345 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2346 && ! rtx_equal_p (rtlx, rtly))
2347 return 1;
2349 /* If we have MEMs referring to different address spaces (which can
2350 potentially overlap), we cannot easily tell from the addresses
2351 whether the references overlap. */
2352 if (MEM_P (rtlx) && MEM_P (rtly)
2353 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2354 return 0;
2356 /* Get the base and offsets of both decls. If either is a register, we
2357 know both are and are the same, so use that as the base. The only
2358 we can avoid overlap is if we can deduce that they are nonoverlapping
2359 pieces of that decl, which is very rare. */
2360 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2361 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2362 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2364 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2365 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2366 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2368 /* If the bases are different, we know they do not overlap if both
2369 are constants or if one is a constant and the other a pointer into the
2370 stack frame. Otherwise a different base means we can't tell if they
2371 overlap or not. */
2372 if (! rtx_equal_p (basex, basey))
2373 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2374 || (CONSTANT_P (basex) && REG_P (basey)
2375 && REGNO_PTR_FRAME_P (REGNO (basey)))
2376 || (CONSTANT_P (basey) && REG_P (basex)
2377 && REGNO_PTR_FRAME_P (REGNO (basex))));
2379 /* Offset based disambiguation not appropriate for loop invariant */
2380 if (loop_invariant)
2381 return 0;
2383 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2384 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2385 : -1);
2386 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2387 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2388 : -1);
2390 /* If we have an offset for either memref, it can update the values computed
2391 above. */
2392 if (moffsetx_known_p)
2393 offsetx += moffsetx, sizex -= moffsetx;
2394 if (moffsety_known_p)
2395 offsety += moffsety, sizey -= moffsety;
2397 /* If a memref has both a size and an offset, we can use the smaller size.
2398 We can't do this if the offset isn't known because we must view this
2399 memref as being anywhere inside the DECL's MEM. */
2400 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2401 sizex = MEM_SIZE (x);
2402 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2403 sizey = MEM_SIZE (y);
2405 /* Put the values of the memref with the lower offset in X's values. */
2406 if (offsetx > offsety)
2408 tem = offsetx, offsetx = offsety, offsety = tem;
2409 tem = sizex, sizex = sizey, sizey = tem;
2412 /* If we don't know the size of the lower-offset value, we can't tell
2413 if they conflict. Otherwise, we do the test. */
2414 return sizex >= 0 && offsety >= offsetx + sizex;
2417 /* Helper for true_dependence and canon_true_dependence.
2418 Checks for true dependence: X is read after store in MEM takes place.
2420 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2421 NULL_RTX, and the canonical addresses of MEM and X are both computed
2422 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2424 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2426 Returns 1 if there is a true dependence, 0 otherwise. */
2428 static int
2429 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2430 const_rtx x, rtx x_addr, bool mem_canonicalized)
2432 rtx base;
2433 int ret;
2435 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2436 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2438 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2439 return 1;
2441 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2442 This is used in epilogue deallocation functions, and in cselib. */
2443 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2444 return 1;
2445 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2446 return 1;
2447 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2448 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2449 return 1;
2451 /* Read-only memory is by definition never modified, and therefore can't
2452 conflict with anything. We don't expect to find read-only set on MEM,
2453 but stupid user tricks can produce them, so don't die. */
2454 if (MEM_READONLY_P (x))
2455 return 0;
2457 /* If we have MEMs referring to different address spaces (which can
2458 potentially overlap), we cannot easily tell from the addresses
2459 whether the references overlap. */
2460 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2461 return 1;
2463 if (! mem_addr)
2465 mem_addr = XEXP (mem, 0);
2466 if (mem_mode == VOIDmode)
2467 mem_mode = GET_MODE (mem);
2470 if (! x_addr)
2472 x_addr = XEXP (x, 0);
2473 if (!((GET_CODE (x_addr) == VALUE
2474 && GET_CODE (mem_addr) != VALUE
2475 && reg_mentioned_p (x_addr, mem_addr))
2476 || (GET_CODE (x_addr) != VALUE
2477 && GET_CODE (mem_addr) == VALUE
2478 && reg_mentioned_p (mem_addr, x_addr))))
2480 x_addr = get_addr (x_addr);
2481 if (! mem_canonicalized)
2482 mem_addr = get_addr (mem_addr);
2486 base = find_base_term (x_addr);
2487 if (base && (GET_CODE (base) == LABEL_REF
2488 || (GET_CODE (base) == SYMBOL_REF
2489 && CONSTANT_POOL_ADDRESS_P (base))))
2490 return 0;
2492 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2493 return 0;
2495 x_addr = canon_rtx (x_addr);
2496 if (!mem_canonicalized)
2497 mem_addr = canon_rtx (mem_addr);
2499 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2500 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2501 return ret;
2503 if (mems_in_disjoint_alias_sets_p (x, mem))
2504 return 0;
2506 if (nonoverlapping_memrefs_p (mem, x, false))
2507 return 0;
2509 if (nonoverlapping_component_refs_p (mem, x))
2510 return 0;
2512 return rtx_refs_may_alias_p (x, mem, true);
2515 /* True dependence: X is read after store in MEM takes place. */
2518 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2520 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2521 x, NULL_RTX, /*mem_canonicalized=*/false);
2524 /* Canonical true dependence: X is read after store in MEM takes place.
2525 Variant of true_dependence which assumes MEM has already been
2526 canonicalized (hence we no longer do that here).
2527 The mem_addr argument has been added, since true_dependence_1 computed
2528 this value prior to canonicalizing. */
2531 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2532 const_rtx x, rtx x_addr)
2534 return true_dependence_1 (mem, mem_mode, mem_addr,
2535 x, x_addr, /*mem_canonicalized=*/true);
2538 /* Returns nonzero if a write to X might alias a previous read from
2539 (or, if WRITEP is nonzero, a write to) MEM. */
2541 static int
2542 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2544 rtx x_addr, mem_addr;
2545 rtx base;
2546 int ret;
2548 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2549 return 1;
2551 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2552 This is used in epilogue deallocation functions. */
2553 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2554 return 1;
2555 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2556 return 1;
2557 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2558 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2559 return 1;
2561 /* A read from read-only memory can't conflict with read-write memory. */
2562 if (!writep && MEM_READONLY_P (mem))
2563 return 0;
2565 /* If we have MEMs referring to different address spaces (which can
2566 potentially overlap), we cannot easily tell from the addresses
2567 whether the references overlap. */
2568 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2569 return 1;
2571 x_addr = XEXP (x, 0);
2572 mem_addr = XEXP (mem, 0);
2573 if (!((GET_CODE (x_addr) == VALUE
2574 && GET_CODE (mem_addr) != VALUE
2575 && reg_mentioned_p (x_addr, mem_addr))
2576 || (GET_CODE (x_addr) != VALUE
2577 && GET_CODE (mem_addr) == VALUE
2578 && reg_mentioned_p (mem_addr, x_addr))))
2580 x_addr = get_addr (x_addr);
2581 mem_addr = get_addr (mem_addr);
2584 if (! writep)
2586 base = find_base_term (mem_addr);
2587 if (base && (GET_CODE (base) == LABEL_REF
2588 || (GET_CODE (base) == SYMBOL_REF
2589 && CONSTANT_POOL_ADDRESS_P (base))))
2590 return 0;
2593 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2594 GET_MODE (mem)))
2595 return 0;
2597 x_addr = canon_rtx (x_addr);
2598 mem_addr = canon_rtx (mem_addr);
2600 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2601 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2602 return ret;
2604 if (nonoverlapping_memrefs_p (x, mem, false))
2605 return 0;
2607 return rtx_refs_may_alias_p (x, mem, false);
2610 /* Anti dependence: X is written after read in MEM takes place. */
2613 anti_dependence (const_rtx mem, const_rtx x)
2615 return write_dependence_p (mem, x, /*writep=*/0);
2618 /* Output dependence: X is written after store in MEM takes place. */
2621 output_dependence (const_rtx mem, const_rtx x)
2623 return write_dependence_p (mem, x, /*writep=*/1);
2628 /* Check whether X may be aliased with MEM. Don't do offset-based
2629 memory disambiguation & TBAA. */
2631 may_alias_p (const_rtx mem, const_rtx x)
2633 rtx x_addr, mem_addr;
2635 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2636 return 1;
2638 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2639 This is used in epilogue deallocation functions. */
2640 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2641 return 1;
2642 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2643 return 1;
2644 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2645 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2646 return 1;
2648 /* Read-only memory is by definition never modified, and therefore can't
2649 conflict with anything. We don't expect to find read-only set on MEM,
2650 but stupid user tricks can produce them, so don't die. */
2651 if (MEM_READONLY_P (x))
2652 return 0;
2654 /* If we have MEMs referring to different address spaces (which can
2655 potentially overlap), we cannot easily tell from the addresses
2656 whether the references overlap. */
2657 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2658 return 1;
2660 x_addr = XEXP (x, 0);
2661 mem_addr = XEXP (mem, 0);
2662 if (!((GET_CODE (x_addr) == VALUE
2663 && GET_CODE (mem_addr) != VALUE
2664 && reg_mentioned_p (x_addr, mem_addr))
2665 || (GET_CODE (x_addr) != VALUE
2666 && GET_CODE (mem_addr) == VALUE
2667 && reg_mentioned_p (mem_addr, x_addr))))
2669 x_addr = get_addr (x_addr);
2670 mem_addr = get_addr (mem_addr);
2673 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2674 return 0;
2676 x_addr = canon_rtx (x_addr);
2677 mem_addr = canon_rtx (mem_addr);
2679 if (nonoverlapping_memrefs_p (mem, x, true))
2680 return 0;
2682 /* TBAA not valid for loop_invarint */
2683 return rtx_refs_may_alias_p (x, mem, false);
2686 void
2687 init_alias_target (void)
2689 int i;
2691 if (!arg_base_value)
2692 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2694 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2696 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2697 /* Check whether this register can hold an incoming pointer
2698 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2699 numbers, so translate if necessary due to register windows. */
2700 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2701 && HARD_REGNO_MODE_OK (i, Pmode))
2702 static_reg_base_value[i] = arg_base_value;
2704 static_reg_base_value[STACK_POINTER_REGNUM]
2705 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2706 static_reg_base_value[ARG_POINTER_REGNUM]
2707 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2708 static_reg_base_value[FRAME_POINTER_REGNUM]
2709 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2710 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2711 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2712 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2713 #endif
2716 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2717 to be memory reference. */
2718 static bool memory_modified;
2719 static void
2720 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2722 if (MEM_P (x))
2724 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2725 memory_modified = true;
2730 /* Return true when INSN possibly modify memory contents of MEM
2731 (i.e. address can be modified). */
2732 bool
2733 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2735 if (!INSN_P (insn))
2736 return false;
2737 memory_modified = false;
2738 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2739 return memory_modified;
2742 /* Return TRUE if the destination of a set is rtx identical to
2743 ITEM. */
2744 static inline bool
2745 set_dest_equal_p (const_rtx set, const_rtx item)
2747 rtx dest = SET_DEST (set);
2748 return rtx_equal_p (dest, item);
2751 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2752 *DEFINITELY* modify the memory contents of MEM. */
2753 bool
2754 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2756 if (!INSN_P (insn))
2757 return false;
2758 insn = PATTERN (insn);
2759 if (GET_CODE (insn) == SET)
2760 return set_dest_equal_p (insn, mem);
2761 else if (GET_CODE (insn) == PARALLEL)
2763 int i;
2764 for (i = 0; i < XVECLEN (insn, 0); i++)
2766 rtx sub = XVECEXP (insn, 0, i);
2767 if (GET_CODE (sub) == SET
2768 && set_dest_equal_p (sub, mem))
2769 return true;
2772 return false;
2775 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2776 array. */
2778 void
2779 init_alias_analysis (void)
2781 unsigned int maxreg = max_reg_num ();
2782 int changed, pass;
2783 int i;
2784 unsigned int ui;
2785 rtx insn, val;
2786 int rpo_cnt;
2787 int *rpo;
2789 timevar_push (TV_ALIAS_ANALYSIS);
2791 vec_safe_grow_cleared (reg_known_value, maxreg - FIRST_PSEUDO_REGISTER);
2792 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2794 /* If we have memory allocated from the previous run, use it. */
2795 if (old_reg_base_value)
2796 reg_base_value = old_reg_base_value;
2798 if (reg_base_value)
2799 reg_base_value->truncate (0);
2801 vec_safe_grow_cleared (reg_base_value, maxreg);
2803 new_reg_base_value = XNEWVEC (rtx, maxreg);
2804 reg_seen = sbitmap_alloc (maxreg);
2806 /* The basic idea is that each pass through this loop will use the
2807 "constant" information from the previous pass to propagate alias
2808 information through another level of assignments.
2810 The propagation is done on the CFG in reverse post-order, to propagate
2811 things forward as far as possible in each iteration.
2813 This could get expensive if the assignment chains are long. Maybe
2814 we should throttle the number of iterations, possibly based on
2815 the optimization level or flag_expensive_optimizations.
2817 We could propagate more information in the first pass by making use
2818 of DF_REG_DEF_COUNT to determine immediately that the alias information
2819 for a pseudo is "constant".
2821 A program with an uninitialized variable can cause an infinite loop
2822 here. Instead of doing a full dataflow analysis to detect such problems
2823 we just cap the number of iterations for the loop.
2825 The state of the arrays for the set chain in question does not matter
2826 since the program has undefined behavior. */
2828 rpo = XNEWVEC (int, n_basic_blocks);
2829 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2831 pass = 0;
2834 /* Assume nothing will change this iteration of the loop. */
2835 changed = 0;
2837 /* We want to assign the same IDs each iteration of this loop, so
2838 start counting from one each iteration of the loop. */
2839 unique_id = 1;
2841 /* We're at the start of the function each iteration through the
2842 loop, so we're copying arguments. */
2843 copying_arguments = true;
2845 /* Wipe the potential alias information clean for this pass. */
2846 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2848 /* Wipe the reg_seen array clean. */
2849 bitmap_clear (reg_seen);
2851 /* Mark all hard registers which may contain an address.
2852 The stack, frame and argument pointers may contain an address.
2853 An argument register which can hold a Pmode value may contain
2854 an address even if it is not in BASE_REGS.
2856 The address expression is VOIDmode for an argument and
2857 Pmode for other registers. */
2859 memcpy (new_reg_base_value, static_reg_base_value,
2860 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2862 /* Walk the insns adding values to the new_reg_base_value array. */
2863 for (i = 0; i < rpo_cnt; i++)
2865 basic_block bb = BASIC_BLOCK (rpo[i]);
2866 FOR_BB_INSNS (bb, insn)
2868 if (NONDEBUG_INSN_P (insn))
2870 rtx note, set;
2872 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2873 /* The prologue/epilogue insns are not threaded onto the
2874 insn chain until after reload has completed. Thus,
2875 there is no sense wasting time checking if INSN is in
2876 the prologue/epilogue until after reload has completed. */
2877 if (reload_completed
2878 && prologue_epilogue_contains (insn))
2879 continue;
2880 #endif
2882 /* If this insn has a noalias note, process it, Otherwise,
2883 scan for sets. A simple set will have no side effects
2884 which could change the base value of any other register. */
2886 if (GET_CODE (PATTERN (insn)) == SET
2887 && REG_NOTES (insn) != 0
2888 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2889 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2890 else
2891 note_stores (PATTERN (insn), record_set, NULL);
2893 set = single_set (insn);
2895 if (set != 0
2896 && REG_P (SET_DEST (set))
2897 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2899 unsigned int regno = REGNO (SET_DEST (set));
2900 rtx src = SET_SRC (set);
2901 rtx t;
2903 note = find_reg_equal_equiv_note (insn);
2904 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2905 && DF_REG_DEF_COUNT (regno) != 1)
2906 note = NULL_RTX;
2908 if (note != NULL_RTX
2909 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2910 && ! rtx_varies_p (XEXP (note, 0), 1)
2911 && ! reg_overlap_mentioned_p (SET_DEST (set),
2912 XEXP (note, 0)))
2914 set_reg_known_value (regno, XEXP (note, 0));
2915 set_reg_known_equiv_p (regno,
2916 REG_NOTE_KIND (note) == REG_EQUIV);
2918 else if (DF_REG_DEF_COUNT (regno) == 1
2919 && GET_CODE (src) == PLUS
2920 && REG_P (XEXP (src, 0))
2921 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2922 && CONST_INT_P (XEXP (src, 1)))
2924 t = plus_constant (GET_MODE (src), t,
2925 INTVAL (XEXP (src, 1)));
2926 set_reg_known_value (regno, t);
2927 set_reg_known_equiv_p (regno, false);
2929 else if (DF_REG_DEF_COUNT (regno) == 1
2930 && ! rtx_varies_p (src, 1))
2932 set_reg_known_value (regno, src);
2933 set_reg_known_equiv_p (regno, false);
2937 else if (NOTE_P (insn)
2938 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2939 copying_arguments = false;
2943 /* Now propagate values from new_reg_base_value to reg_base_value. */
2944 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2946 for (ui = 0; ui < maxreg; ui++)
2948 if (new_reg_base_value[ui]
2949 && new_reg_base_value[ui] != (*reg_base_value)[ui]
2950 && ! rtx_equal_p (new_reg_base_value[ui], (*reg_base_value)[ui]))
2952 (*reg_base_value)[ui] = new_reg_base_value[ui];
2953 changed = 1;
2957 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2958 XDELETEVEC (rpo);
2960 /* Fill in the remaining entries. */
2961 FOR_EACH_VEC_ELT (*reg_known_value, i, val)
2963 int regno = i + FIRST_PSEUDO_REGISTER;
2964 if (! val)
2965 set_reg_known_value (regno, regno_reg_rtx[regno]);
2968 /* Clean up. */
2969 free (new_reg_base_value);
2970 new_reg_base_value = 0;
2971 sbitmap_free (reg_seen);
2972 reg_seen = 0;
2973 timevar_pop (TV_ALIAS_ANALYSIS);
2976 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
2977 Special API for var-tracking pass purposes. */
2979 void
2980 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
2982 (*reg_base_value)[REGNO (reg1)] = REG_BASE_VALUE (reg2);
2985 void
2986 end_alias_analysis (void)
2988 old_reg_base_value = reg_base_value;
2989 vec_free (reg_known_value);
2990 sbitmap_free (reg_known_equiv_p);
2993 #include "gt-alias.h"