1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Xinliang David Li <davidxl@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
32 #include "pointer-set.h"
33 #include "tree-flow.h"
35 #include "tree-inline.h"
37 #include "tree-pass.h"
38 #include "diagnostic-core.h"
40 /* This implements the pass that does predicate aware warning on uses of
41 possibly uninitialized variables. The pass first collects the set of
42 possibly uninitialized SSA names. For each such name, it walks through
43 all its immediate uses. For each immediate use, it rebuilds the condition
44 expression (the predicate) that guards the use. The predicate is then
45 examined to see if the variable is always defined under that same condition.
46 This is done either by pruning the unrealizable paths that lead to the
47 default definitions or by checking if the predicate set that guards the
48 defining paths is a superset of the use predicate. */
51 /* Pointer set of potentially undefined ssa names, i.e.,
52 ssa names that are defined by phi with operands that
53 are not defined or potentially undefined. */
54 static struct pointer_set_t
*possibly_undefined_names
= 0;
56 /* Bit mask handling macros. */
57 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
58 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
59 #define MASK_EMPTY(mask) (mask == 0)
61 /* Returns the first bit position (starting from LSB)
62 in mask that is non zero. Returns -1 if the mask is empty. */
64 get_mask_first_set_bit (unsigned mask
)
70 while ((mask
& (1 << pos
)) == 0)
75 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
78 /* Return true if T, an SSA_NAME, has an undefined value. */
81 ssa_undefined_value_p (tree t
)
83 tree var
= SSA_NAME_VAR (t
);
87 /* Parameters get their initial value from the function entry. */
88 else if (TREE_CODE (var
) == PARM_DECL
)
90 /* When returning by reference the return address is actually a hidden
92 else if (TREE_CODE (var
) == RESULT_DECL
&& DECL_BY_REFERENCE (var
))
94 /* Hard register variables get their initial value from the ether. */
95 else if (TREE_CODE (var
) == VAR_DECL
&& DECL_HARD_REGISTER (var
))
98 /* The value is undefined iff its definition statement is empty. */
99 return (gimple_nop_p (SSA_NAME_DEF_STMT (t
))
100 || (possibly_undefined_names
101 && pointer_set_contains (possibly_undefined_names
, t
)));
104 /* Like ssa_undefined_value_p, but don't return true if TREE_NO_WARNING
105 is set on SSA_NAME_VAR. */
108 uninit_undefined_value_p (tree t
)
110 if (!ssa_undefined_value_p (t
))
112 if (SSA_NAME_VAR (t
) && TREE_NO_WARNING (SSA_NAME_VAR (t
)))
117 /* Checks if the operand OPND of PHI is defined by
118 another phi with one operand defined by this PHI,
119 but the rest operands are all defined. If yes,
120 returns true to skip this this operand as being
121 redundant. Can be enhanced to be more general. */
124 can_skip_redundant_opnd (tree opnd
, gimple phi
)
130 phi_def
= gimple_phi_result (phi
);
131 op_def
= SSA_NAME_DEF_STMT (opnd
);
132 if (gimple_code (op_def
) != GIMPLE_PHI
)
134 n
= gimple_phi_num_args (op_def
);
135 for (i
= 0; i
< n
; ++i
)
137 tree op
= gimple_phi_arg_def (op_def
, i
);
138 if (TREE_CODE (op
) != SSA_NAME
)
140 if (op
!= phi_def
&& uninit_undefined_value_p (op
))
147 /* Returns a bit mask holding the positions of arguments in PHI
148 that have empty (or possibly empty) definitions. */
151 compute_uninit_opnds_pos (gimple phi
)
154 unsigned uninit_opnds
= 0;
156 n
= gimple_phi_num_args (phi
);
157 /* Bail out for phi with too many args. */
161 for (i
= 0; i
< n
; ++i
)
163 tree op
= gimple_phi_arg_def (phi
, i
);
164 if (TREE_CODE (op
) == SSA_NAME
165 && uninit_undefined_value_p (op
)
166 && !can_skip_redundant_opnd (op
, phi
))
168 if (cfun
->has_nonlocal_label
|| cfun
->calls_setjmp
)
170 /* Ignore SSA_NAMEs that appear on abnormal edges
172 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
175 MASK_SET_BIT (uninit_opnds
, i
);
181 /* Find the immediate postdominator PDOM of the specified
182 basic block BLOCK. */
184 static inline basic_block
185 find_pdom (basic_block block
)
187 if (block
== EXIT_BLOCK_PTR
)
188 return EXIT_BLOCK_PTR
;
192 = get_immediate_dominator (CDI_POST_DOMINATORS
, block
);
194 return EXIT_BLOCK_PTR
;
199 /* Find the immediate DOM of the specified
200 basic block BLOCK. */
202 static inline basic_block
203 find_dom (basic_block block
)
205 if (block
== ENTRY_BLOCK_PTR
)
206 return ENTRY_BLOCK_PTR
;
209 basic_block bb
= get_immediate_dominator (CDI_DOMINATORS
, block
);
211 return ENTRY_BLOCK_PTR
;
216 /* Returns true if BB1 is postdominating BB2 and BB1 is
217 not a loop exit bb. The loop exit bb check is simple and does
218 not cover all cases. */
221 is_non_loop_exit_postdominating (basic_block bb1
, basic_block bb2
)
223 if (!dominated_by_p (CDI_POST_DOMINATORS
, bb2
, bb1
))
226 if (single_pred_p (bb1
) && !single_succ_p (bb2
))
232 /* Find the closest postdominator of a specified BB, which is control
235 static inline basic_block
236 find_control_equiv_block (basic_block bb
)
240 pdom
= find_pdom (bb
);
242 /* Skip the postdominating bb that is also loop exit. */
243 if (!is_non_loop_exit_postdominating (pdom
, bb
))
246 if (dominated_by_p (CDI_DOMINATORS
, pdom
, bb
))
252 #define MAX_NUM_CHAINS 8
253 #define MAX_CHAIN_LEN 5
254 #define MAX_POSTDOM_CHECK 8
256 /* Computes the control dependence chains (paths of edges)
257 for DEP_BB up to the dominating basic block BB (the head node of a
258 chain should be dominated by it). CD_CHAINS is pointer to a
259 dynamic array holding the result chains. CUR_CD_CHAIN is the current
260 chain being computed. *NUM_CHAINS is total number of chains. The
261 function returns true if the information is successfully computed,
262 return false if there is no control dependence or not computed. */
265 compute_control_dep_chain (basic_block bb
, basic_block dep_bb
,
266 vec
<edge
> *cd_chains
,
268 vec
<edge
> *cur_cd_chain
)
273 bool found_cd_chain
= false;
274 size_t cur_chain_len
= 0;
276 if (EDGE_COUNT (bb
->succs
) < 2)
279 /* Could use a set instead. */
280 cur_chain_len
= cur_cd_chain
->length ();
281 if (cur_chain_len
> MAX_CHAIN_LEN
)
284 for (i
= 0; i
< cur_chain_len
; i
++)
286 edge e
= (*cur_cd_chain
)[i
];
287 /* cycle detected. */
292 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
295 int post_dom_check
= 0;
296 if (e
->flags
& (EDGE_FAKE
| EDGE_ABNORMAL
))
300 cur_cd_chain
->safe_push (e
);
301 while (!is_non_loop_exit_postdominating (cd_bb
, bb
))
305 /* Found a direct control dependence. */
306 if (*num_chains
< MAX_NUM_CHAINS
)
308 cd_chains
[*num_chains
] = cur_cd_chain
->copy ();
311 found_cd_chain
= true;
312 /* check path from next edge. */
316 /* Now check if DEP_BB is indirectly control dependent on BB. */
317 if (compute_control_dep_chain (cd_bb
, dep_bb
, cd_chains
,
318 num_chains
, cur_cd_chain
))
320 found_cd_chain
= true;
324 cd_bb
= find_pdom (cd_bb
);
326 if (cd_bb
== EXIT_BLOCK_PTR
|| post_dom_check
> MAX_POSTDOM_CHECK
)
329 cur_cd_chain
->pop ();
330 gcc_assert (cur_cd_chain
->length () == cur_chain_len
);
332 gcc_assert (cur_cd_chain
->length () == cur_chain_len
);
334 return found_cd_chain
;
337 typedef struct use_pred_info
345 /* Converts the chains of control dependence edges into a set of
346 predicates. A control dependence chain is represented by a vector
347 edges. DEP_CHAINS points to an array of dependence chains.
348 NUM_CHAINS is the size of the chain array. One edge in a dependence
349 chain is mapped to predicate expression represented by use_pred_info_t
350 type. One dependence chain is converted to a composite predicate that
351 is the result of AND operation of use_pred_info_t mapped to each edge.
352 A composite predicate is presented by a vector of use_pred_info_t. On
353 return, *PREDS points to the resulting array of composite predicates.
354 *NUM_PREDS is the number of composite predictes. */
357 convert_control_dep_chain_into_preds (vec
<edge
> *dep_chains
,
359 vec
<use_pred_info_t
> **preds
,
362 bool has_valid_pred
= false;
364 if (num_chains
== 0 || num_chains
>= MAX_NUM_CHAINS
)
367 /* Now convert the control dep chain into a set
369 typedef vec
<use_pred_info_t
> vec_use_pred_info_t_heap
;
370 *preds
= XCNEWVEC (vec_use_pred_info_t_heap
, num_chains
);
371 *num_preds
= num_chains
;
373 for (i
= 0; i
< num_chains
; i
++)
375 vec
<edge
> one_cd_chain
= dep_chains
[i
];
377 has_valid_pred
= false;
378 for (j
= 0; j
< one_cd_chain
.length (); j
++)
381 gimple_stmt_iterator gsi
;
382 basic_block guard_bb
;
383 use_pred_info_t one_pred
;
388 gsi
= gsi_last_bb (guard_bb
);
391 has_valid_pred
= false;
394 cond_stmt
= gsi_stmt (gsi
);
395 if (gimple_code (cond_stmt
) == GIMPLE_CALL
396 && EDGE_COUNT (e
->src
->succs
) >= 2)
398 /* Ignore EH edge. Can add assertion
399 on the other edge's flag. */
402 /* Skip if there is essentially one succesor. */
403 if (EDGE_COUNT (e
->src
->succs
) == 2)
409 FOR_EACH_EDGE (e1
, ei1
, e
->src
->succs
)
411 if (EDGE_COUNT (e1
->dest
->succs
) == 0)
420 if (gimple_code (cond_stmt
) != GIMPLE_COND
)
422 has_valid_pred
= false;
425 one_pred
= XNEW (struct use_pred_info
);
426 one_pred
->cond
= cond_stmt
;
427 one_pred
->invert
= !!(e
->flags
& EDGE_FALSE_VALUE
);
428 (*preds
)[i
].safe_push (one_pred
);
429 has_valid_pred
= true;
435 return has_valid_pred
;
438 /* Computes all control dependence chains for USE_BB. The control
439 dependence chains are then converted to an array of composite
440 predicates pointed to by PREDS. PHI_BB is the basic block of
441 the phi whose result is used in USE_BB. */
444 find_predicates (vec
<use_pred_info_t
> **preds
,
449 size_t num_chains
= 0, i
;
450 vec
<edge
> *dep_chains
= 0;
451 vec
<edge
> cur_chain
= vNULL
;
452 bool has_valid_pred
= false;
453 basic_block cd_root
= 0;
455 typedef vec
<edge
> vec_edge_heap
;
456 dep_chains
= XCNEWVEC (vec_edge_heap
, MAX_NUM_CHAINS
);
458 /* First find the closest bb that is control equivalent to PHI_BB
459 that also dominates USE_BB. */
461 while (dominated_by_p (CDI_DOMINATORS
, use_bb
, cd_root
))
463 basic_block ctrl_eq_bb
= find_control_equiv_block (cd_root
);
464 if (ctrl_eq_bb
&& dominated_by_p (CDI_DOMINATORS
, use_bb
, ctrl_eq_bb
))
465 cd_root
= ctrl_eq_bb
;
470 compute_control_dep_chain (cd_root
, use_bb
,
471 dep_chains
, &num_chains
,
475 = convert_control_dep_chain_into_preds (dep_chains
,
479 /* Free individual chain */
480 cur_chain
.release ();
481 for (i
= 0; i
< num_chains
; i
++)
482 dep_chains
[i
].release ();
484 return has_valid_pred
;
487 /* Computes the set of incoming edges of PHI that have non empty
488 definitions of a phi chain. The collection will be done
489 recursively on operands that are defined by phis. CD_ROOT
490 is the control dependence root. *EDGES holds the result, and
491 VISITED_PHIS is a pointer set for detecting cycles. */
494 collect_phi_def_edges (gimple phi
, basic_block cd_root
,
496 struct pointer_set_t
*visited_phis
)
502 if (pointer_set_insert (visited_phis
, phi
))
505 n
= gimple_phi_num_args (phi
);
506 for (i
= 0; i
< n
; i
++)
508 opnd_edge
= gimple_phi_arg_edge (phi
, i
);
509 opnd
= gimple_phi_arg_def (phi
, i
);
511 if (TREE_CODE (opnd
) != SSA_NAME
)
513 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
515 fprintf (dump_file
, "\n[CHECK] Found def edge %d in ", (int)i
);
516 print_gimple_stmt (dump_file
, phi
, 0, 0);
518 edges
->safe_push (opnd_edge
);
522 gimple def
= SSA_NAME_DEF_STMT (opnd
);
524 if (gimple_code (def
) == GIMPLE_PHI
525 && dominated_by_p (CDI_DOMINATORS
,
526 gimple_bb (def
), cd_root
))
527 collect_phi_def_edges (def
, cd_root
, edges
,
529 else if (!uninit_undefined_value_p (opnd
))
531 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
533 fprintf (dump_file
, "\n[CHECK] Found def edge %d in ", (int)i
);
534 print_gimple_stmt (dump_file
, phi
, 0, 0);
536 edges
->safe_push (opnd_edge
);
542 /* For each use edge of PHI, computes all control dependence chains.
543 The control dependence chains are then converted to an array of
544 composite predicates pointed to by PREDS. */
547 find_def_preds (vec
<use_pred_info_t
> **preds
,
548 size_t *num_preds
, gimple phi
)
550 size_t num_chains
= 0, i
, n
;
551 vec
<edge
> *dep_chains
= 0;
552 vec
<edge
> cur_chain
= vNULL
;
553 vec
<edge
> def_edges
= vNULL
;
554 bool has_valid_pred
= false;
555 basic_block phi_bb
, cd_root
= 0;
556 struct pointer_set_t
*visited_phis
;
558 typedef vec
<edge
> vec_edge_heap
;
559 dep_chains
= XCNEWVEC (vec_edge_heap
, MAX_NUM_CHAINS
);
561 phi_bb
= gimple_bb (phi
);
562 /* First find the closest dominating bb to be
563 the control dependence root */
564 cd_root
= find_dom (phi_bb
);
568 visited_phis
= pointer_set_create ();
569 collect_phi_def_edges (phi
, cd_root
, &def_edges
, visited_phis
);
570 pointer_set_destroy (visited_phis
);
572 n
= def_edges
.length ();
576 for (i
= 0; i
< n
; i
++)
581 opnd_edge
= def_edges
[i
];
582 prev_nc
= num_chains
;
583 compute_control_dep_chain (cd_root
, opnd_edge
->src
,
584 dep_chains
, &num_chains
,
586 /* Free individual chain */
587 cur_chain
.release ();
589 /* Now update the newly added chains with
590 the phi operand edge: */
591 if (EDGE_COUNT (opnd_edge
->src
->succs
) > 1)
593 if (prev_nc
== num_chains
594 && num_chains
< MAX_NUM_CHAINS
)
596 for (j
= prev_nc
; j
< num_chains
; j
++)
598 dep_chains
[j
].safe_push (opnd_edge
);
604 = convert_control_dep_chain_into_preds (dep_chains
,
608 for (i
= 0; i
< num_chains
; i
++)
609 dep_chains
[i
].release ();
611 return has_valid_pred
;
614 /* Dumps the predicates (PREDS) for USESTMT. */
617 dump_predicates (gimple usestmt
, size_t num_preds
,
618 vec
<use_pred_info_t
> *preds
,
622 vec
<use_pred_info_t
> one_pred_chain
;
623 fprintf (dump_file
, msg
);
624 print_gimple_stmt (dump_file
, usestmt
, 0, 0);
625 fprintf (dump_file
, "is guarded by :\n");
626 /* do some dumping here: */
627 for (i
= 0; i
< num_preds
; i
++)
631 one_pred_chain
= preds
[i
];
632 np
= one_pred_chain
.length ();
634 for (j
= 0; j
< np
; j
++)
636 use_pred_info_t one_pred
638 if (one_pred
->invert
)
639 fprintf (dump_file
, " (.NOT.) ");
640 print_gimple_stmt (dump_file
, one_pred
->cond
, 0, 0);
642 fprintf (dump_file
, "(.AND.)\n");
644 if (i
< num_preds
- 1)
645 fprintf (dump_file
, "(.OR.)\n");
649 /* Destroys the predicate set *PREDS. */
652 destroy_predicate_vecs (size_t n
,
653 vec
<use_pred_info_t
> * preds
)
656 for (i
= 0; i
< n
; i
++)
658 for (j
= 0; j
< preds
[i
].length (); j
++)
666 /* Computes the 'normalized' conditional code with operand
667 swapping and condition inversion. */
669 static enum tree_code
670 get_cmp_code (enum tree_code orig_cmp_code
,
671 bool swap_cond
, bool invert
)
673 enum tree_code tc
= orig_cmp_code
;
676 tc
= swap_tree_comparison (orig_cmp_code
);
678 tc
= invert_tree_comparison (tc
, false);
695 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
696 all values in the range satisfies (x CMPC BOUNDARY) == true. */
699 is_value_included_in (tree val
, tree boundary
, enum tree_code cmpc
)
701 bool inverted
= false;
705 /* Only handle integer constant here. */
706 if (TREE_CODE (val
) != INTEGER_CST
707 || TREE_CODE (boundary
) != INTEGER_CST
)
710 is_unsigned
= TYPE_UNSIGNED (TREE_TYPE (val
));
712 if (cmpc
== GE_EXPR
|| cmpc
== GT_EXPR
715 cmpc
= invert_tree_comparison (cmpc
, false);
722 result
= tree_int_cst_equal (val
, boundary
);
723 else if (cmpc
== LT_EXPR
)
724 result
= INT_CST_LT_UNSIGNED (val
, boundary
);
727 gcc_assert (cmpc
== LE_EXPR
);
728 result
= (tree_int_cst_equal (val
, boundary
)
729 || INT_CST_LT_UNSIGNED (val
, boundary
));
735 result
= tree_int_cst_equal (val
, boundary
);
736 else if (cmpc
== LT_EXPR
)
737 result
= INT_CST_LT (val
, boundary
);
740 gcc_assert (cmpc
== LE_EXPR
);
741 result
= (tree_int_cst_equal (val
, boundary
)
742 || INT_CST_LT (val
, boundary
));
752 /* Returns true if PRED is common among all the predicate
753 chains (PREDS) (and therefore can be factored out).
754 NUM_PRED_CHAIN is the size of array PREDS. */
757 find_matching_predicate_in_rest_chains (use_pred_info_t pred
,
758 vec
<use_pred_info_t
> *preds
,
759 size_t num_pred_chains
)
764 if (num_pred_chains
== 1)
767 for (i
= 1; i
< num_pred_chains
; i
++)
770 vec
<use_pred_info_t
> one_chain
= preds
[i
];
771 n
= one_chain
.length ();
772 for (j
= 0; j
< n
; j
++)
774 use_pred_info_t pred2
776 /* can relax the condition comparison to not
777 use address comparison. However, the most common
778 case is that multiple control dependent paths share
779 a common path prefix, so address comparison should
782 if (pred2
->cond
== pred
->cond
783 && pred2
->invert
== pred
->invert
)
795 /* Forward declaration. */
797 is_use_properly_guarded (gimple use_stmt
,
800 unsigned uninit_opnds
,
801 struct pointer_set_t
*visited_phis
);
803 /* Returns true if all uninitialized opnds are pruned. Returns false
804 otherwise. PHI is the phi node with uninitialized operands,
805 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
806 FLAG_DEF is the statement defining the flag guarding the use of the
807 PHI output, BOUNDARY_CST is the const value used in the predicate
808 associated with the flag, CMP_CODE is the comparison code used in
809 the predicate, VISITED_PHIS is the pointer set of phis visited, and
810 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
816 flag_1 = phi <0, 1> // (1)
817 var_1 = phi <undef, some_val>
821 flag_2 = phi <0, flag_1, flag_1> // (2)
822 var_2 = phi <undef, var_1, var_1>
829 Because some flag arg in (1) is not constant, if we do not look into the
830 flag phis recursively, it is conservatively treated as unknown and var_1
831 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
832 a false warning will be emitted. Checking recursively into (1), the compiler can
833 find out that only some_val (which is defined) can flow into (3) which is OK.
838 prune_uninit_phi_opnds_in_unrealizable_paths (
839 gimple phi
, unsigned uninit_opnds
,
840 gimple flag_def
, tree boundary_cst
,
841 enum tree_code cmp_code
,
842 struct pointer_set_t
*visited_phis
,
843 bitmap
*visited_flag_phis
)
847 for (i
= 0; i
< MIN (32, gimple_phi_num_args (flag_def
)); i
++)
851 if (!MASK_TEST_BIT (uninit_opnds
, i
))
854 flag_arg
= gimple_phi_arg_def (flag_def
, i
);
855 if (!is_gimple_constant (flag_arg
))
857 gimple flag_arg_def
, phi_arg_def
;
859 unsigned uninit_opnds_arg_phi
;
861 if (TREE_CODE (flag_arg
) != SSA_NAME
)
863 flag_arg_def
= SSA_NAME_DEF_STMT (flag_arg
);
864 if (gimple_code (flag_arg_def
) != GIMPLE_PHI
)
867 phi_arg
= gimple_phi_arg_def (phi
, i
);
868 if (TREE_CODE (phi_arg
) != SSA_NAME
)
871 phi_arg_def
= SSA_NAME_DEF_STMT (phi_arg
);
872 if (gimple_code (phi_arg_def
) != GIMPLE_PHI
)
875 if (gimple_bb (phi_arg_def
) != gimple_bb (flag_arg_def
))
878 if (!*visited_flag_phis
)
879 *visited_flag_phis
= BITMAP_ALLOC (NULL
);
881 if (bitmap_bit_p (*visited_flag_phis
,
882 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
))))
885 bitmap_set_bit (*visited_flag_phis
,
886 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
)));
888 /* Now recursively prune the uninitialized phi args. */
889 uninit_opnds_arg_phi
= compute_uninit_opnds_pos (phi_arg_def
);
890 if (!prune_uninit_phi_opnds_in_unrealizable_paths (
891 phi_arg_def
, uninit_opnds_arg_phi
,
892 flag_arg_def
, boundary_cst
, cmp_code
,
893 visited_phis
, visited_flag_phis
))
896 bitmap_clear_bit (*visited_flag_phis
,
897 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def
)));
901 /* Now check if the constant is in the guarded range. */
902 if (is_value_included_in (flag_arg
, boundary_cst
, cmp_code
))
907 /* Now that we know that this undefined edge is not
908 pruned. If the operand is defined by another phi,
909 we can further prune the incoming edges of that
910 phi by checking the predicates of this operands. */
912 opnd
= gimple_phi_arg_def (phi
, i
);
913 opnd_def
= SSA_NAME_DEF_STMT (opnd
);
914 if (gimple_code (opnd_def
) == GIMPLE_PHI
)
917 unsigned uninit_opnds2
918 = compute_uninit_opnds_pos (opnd_def
);
919 gcc_assert (!MASK_EMPTY (uninit_opnds2
));
920 opnd_edge
= gimple_phi_arg_edge (phi
, i
);
921 if (!is_use_properly_guarded (phi
,
936 /* A helper function that determines if the predicate set
937 of the use is not overlapping with that of the uninit paths.
938 The most common senario of guarded use is in Example 1:
951 The real world examples are usually more complicated, but similar
952 and usually result from inlining:
954 bool init_func (int * x)
973 Another possible use scenario is in the following trivial example:
985 Predicate analysis needs to compute the composite predicate:
987 1) 'x' use predicate: (n > 0) .AND. (m < 2)
988 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
989 (the predicate chain for phi operand defs can be computed
990 starting from a bb that is control equivalent to the phi's
991 bb and is dominating the operand def.)
993 and check overlapping:
994 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
997 This implementation provides framework that can handle
998 scenarios. (Note that many simple cases are handled properly
999 without the predicate analysis -- this is due to jump threading
1000 transformation which eliminates the merge point thus makes
1001 path sensitive analysis unnecessary.)
1003 NUM_PREDS is the number is the number predicate chains, PREDS is
1004 the array of chains, PHI is the phi node whose incoming (undefined)
1005 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1006 uninit operand positions. VISITED_PHIS is the pointer set of phi
1007 stmts being checked. */
1011 use_pred_not_overlap_with_undef_path_pred (
1013 vec
<use_pred_info_t
> *preds
,
1014 gimple phi
, unsigned uninit_opnds
,
1015 struct pointer_set_t
*visited_phis
)
1018 gimple flag_def
= 0;
1019 tree boundary_cst
= 0;
1020 enum tree_code cmp_code
;
1021 bool swap_cond
= false;
1022 bool invert
= false;
1023 vec
<use_pred_info_t
> the_pred_chain
;
1024 bitmap visited_flag_phis
= NULL
;
1025 bool all_pruned
= false;
1027 gcc_assert (num_preds
> 0);
1028 /* Find within the common prefix of multiple predicate chains
1029 a predicate that is a comparison of a flag variable against
1031 the_pred_chain
= preds
[0];
1032 n
= the_pred_chain
.length ();
1033 for (i
= 0; i
< n
; i
++)
1036 tree cond_lhs
, cond_rhs
, flag
= 0;
1038 use_pred_info_t the_pred
1039 = the_pred_chain
[i
];
1041 cond
= the_pred
->cond
;
1042 invert
= the_pred
->invert
;
1043 cond_lhs
= gimple_cond_lhs (cond
);
1044 cond_rhs
= gimple_cond_rhs (cond
);
1045 cmp_code
= gimple_cond_code (cond
);
1047 if (cond_lhs
!= NULL_TREE
&& TREE_CODE (cond_lhs
) == SSA_NAME
1048 && cond_rhs
!= NULL_TREE
&& is_gimple_constant (cond_rhs
))
1050 boundary_cst
= cond_rhs
;
1053 else if (cond_rhs
!= NULL_TREE
&& TREE_CODE (cond_rhs
) == SSA_NAME
1054 && cond_lhs
!= NULL_TREE
&& is_gimple_constant (cond_lhs
))
1056 boundary_cst
= cond_lhs
;
1064 flag_def
= SSA_NAME_DEF_STMT (flag
);
1069 if ((gimple_code (flag_def
) == GIMPLE_PHI
)
1070 && (gimple_bb (flag_def
) == gimple_bb (phi
))
1071 && find_matching_predicate_in_rest_chains (
1072 the_pred
, preds
, num_preds
))
1081 /* Now check all the uninit incoming edge has a constant flag value
1082 that is in conflict with the use guard/predicate. */
1083 cmp_code
= get_cmp_code (cmp_code
, swap_cond
, invert
);
1085 if (cmp_code
== ERROR_MARK
)
1088 all_pruned
= prune_uninit_phi_opnds_in_unrealizable_paths (phi
,
1094 &visited_flag_phis
);
1096 if (visited_flag_phis
)
1097 BITMAP_FREE (visited_flag_phis
);
1102 /* Returns true if TC is AND or OR */
1105 is_and_or_or (enum tree_code tc
, tree typ
)
1107 return (tc
== BIT_IOR_EXPR
1108 || (tc
== BIT_AND_EXPR
1109 && (typ
== 0 || TREE_CODE (typ
) == BOOLEAN_TYPE
)));
1112 typedef struct norm_cond
1115 enum tree_code cond_code
;
1120 /* Normalizes gimple condition COND. The normalization follows
1121 UD chains to form larger condition expression trees. NORM_COND
1122 holds the normalized result. COND_CODE is the logical opcode
1123 (AND or OR) of the normalized tree. */
1126 normalize_cond_1 (gimple cond
,
1127 norm_cond_t norm_cond
,
1128 enum tree_code cond_code
)
1130 enum gimple_code gc
;
1131 enum tree_code cur_cond_code
;
1134 gc
= gimple_code (cond
);
1135 if (gc
!= GIMPLE_ASSIGN
)
1137 norm_cond
->conds
.safe_push (cond
);
1141 cur_cond_code
= gimple_assign_rhs_code (cond
);
1142 rhs1
= gimple_assign_rhs1 (cond
);
1143 rhs2
= gimple_assign_rhs2 (cond
);
1144 if (cur_cond_code
== NE_EXPR
)
1146 if (integer_zerop (rhs2
)
1147 && (TREE_CODE (rhs1
) == SSA_NAME
))
1149 SSA_NAME_DEF_STMT (rhs1
),
1150 norm_cond
, cond_code
);
1151 else if (integer_zerop (rhs1
)
1152 && (TREE_CODE (rhs2
) == SSA_NAME
))
1154 SSA_NAME_DEF_STMT (rhs2
),
1155 norm_cond
, cond_code
);
1157 norm_cond
->conds
.safe_push (cond
);
1162 if (is_and_or_or (cur_cond_code
, TREE_TYPE (rhs1
))
1163 && (cond_code
== cur_cond_code
|| cond_code
== ERROR_MARK
)
1164 && (TREE_CODE (rhs1
) == SSA_NAME
&& TREE_CODE (rhs2
) == SSA_NAME
))
1166 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs1
),
1167 norm_cond
, cur_cond_code
);
1168 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs2
),
1169 norm_cond
, cur_cond_code
);
1170 norm_cond
->cond_code
= cur_cond_code
;
1173 norm_cond
->conds
.safe_push (cond
);
1176 /* See normalize_cond_1 for details. INVERT is a flag to indicate
1177 if COND needs to be inverted or not. */
1180 normalize_cond (gimple cond
, norm_cond_t norm_cond
, bool invert
)
1182 enum tree_code cond_code
;
1184 norm_cond
->cond_code
= ERROR_MARK
;
1185 norm_cond
->invert
= false;
1186 norm_cond
->conds
.create (0);
1187 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
1188 cond_code
= gimple_cond_code (cond
);
1190 cond_code
= invert_tree_comparison (cond_code
, false);
1192 if (cond_code
== NE_EXPR
)
1194 if (integer_zerop (gimple_cond_rhs (cond
))
1195 && (TREE_CODE (gimple_cond_lhs (cond
)) == SSA_NAME
))
1197 SSA_NAME_DEF_STMT (gimple_cond_lhs (cond
)),
1198 norm_cond
, ERROR_MARK
);
1199 else if (integer_zerop (gimple_cond_lhs (cond
))
1200 && (TREE_CODE (gimple_cond_rhs (cond
)) == SSA_NAME
))
1202 SSA_NAME_DEF_STMT (gimple_cond_rhs (cond
)),
1203 norm_cond
, ERROR_MARK
);
1206 norm_cond
->conds
.safe_push (cond
);
1207 norm_cond
->invert
= invert
;
1212 norm_cond
->conds
.safe_push (cond
);
1213 norm_cond
->invert
= invert
;
1216 gcc_assert (norm_cond
->conds
.length () == 1
1217 || is_and_or_or (norm_cond
->cond_code
, NULL
));
1220 /* Returns true if the domain for condition COND1 is a subset of
1221 COND2. REVERSE is a flag. when it is true the function checks
1222 if COND1 is a superset of COND2. INVERT1 and INVERT2 are flags
1223 to indicate if COND1 and COND2 need to be inverted or not. */
1226 is_gcond_subset_of (gimple cond1
, bool invert1
,
1227 gimple cond2
, bool invert2
,
1230 enum gimple_code gc1
, gc2
;
1231 enum tree_code cond1_code
, cond2_code
;
1233 tree cond1_lhs
, cond1_rhs
, cond2_lhs
, cond2_rhs
;
1235 /* Take the short cut. */
1246 gc1
= gimple_code (cond1
);
1247 gc2
= gimple_code (cond2
);
1249 if ((gc1
!= GIMPLE_ASSIGN
&& gc1
!= GIMPLE_COND
)
1250 || (gc2
!= GIMPLE_ASSIGN
&& gc2
!= GIMPLE_COND
))
1251 return cond1
== cond2
;
1253 cond1_code
= ((gc1
== GIMPLE_ASSIGN
)
1254 ? gimple_assign_rhs_code (cond1
)
1255 : gimple_cond_code (cond1
));
1257 cond2_code
= ((gc2
== GIMPLE_ASSIGN
)
1258 ? gimple_assign_rhs_code (cond2
)
1259 : gimple_cond_code (cond2
));
1261 if (TREE_CODE_CLASS (cond1_code
) != tcc_comparison
1262 || TREE_CODE_CLASS (cond2_code
) != tcc_comparison
)
1266 cond1_code
= invert_tree_comparison (cond1_code
, false);
1268 cond2_code
= invert_tree_comparison (cond2_code
, false);
1270 cond1_lhs
= ((gc1
== GIMPLE_ASSIGN
)
1271 ? gimple_assign_rhs1 (cond1
)
1272 : gimple_cond_lhs (cond1
));
1273 cond1_rhs
= ((gc1
== GIMPLE_ASSIGN
)
1274 ? gimple_assign_rhs2 (cond1
)
1275 : gimple_cond_rhs (cond1
));
1276 cond2_lhs
= ((gc2
== GIMPLE_ASSIGN
)
1277 ? gimple_assign_rhs1 (cond2
)
1278 : gimple_cond_lhs (cond2
));
1279 cond2_rhs
= ((gc2
== GIMPLE_ASSIGN
)
1280 ? gimple_assign_rhs2 (cond2
)
1281 : gimple_cond_rhs (cond2
));
1283 /* Assuming const operands have been swapped to the
1284 rhs at this point of the analysis. */
1286 if (cond1_lhs
!= cond2_lhs
)
1289 if (!is_gimple_constant (cond1_rhs
)
1290 || TREE_CODE (cond1_rhs
) != INTEGER_CST
)
1291 return (cond1_rhs
== cond2_rhs
);
1293 if (!is_gimple_constant (cond2_rhs
)
1294 || TREE_CODE (cond2_rhs
) != INTEGER_CST
)
1295 return (cond1_rhs
== cond2_rhs
);
1297 if (cond1_code
== EQ_EXPR
)
1298 return is_value_included_in (cond1_rhs
,
1299 cond2_rhs
, cond2_code
);
1300 if (cond1_code
== NE_EXPR
|| cond2_code
== EQ_EXPR
)
1301 return ((cond2_code
== cond1_code
)
1302 && tree_int_cst_equal (cond1_rhs
, cond2_rhs
));
1304 if (((cond1_code
== GE_EXPR
|| cond1_code
== GT_EXPR
)
1305 && (cond2_code
== LE_EXPR
|| cond2_code
== LT_EXPR
))
1306 || ((cond1_code
== LE_EXPR
|| cond1_code
== LT_EXPR
)
1307 && (cond2_code
== GE_EXPR
|| cond2_code
== GT_EXPR
)))
1310 if (cond1_code
!= GE_EXPR
&& cond1_code
!= GT_EXPR
1311 && cond1_code
!= LE_EXPR
&& cond1_code
!= LT_EXPR
)
1314 if (cond1_code
== GT_EXPR
)
1316 cond1_code
= GE_EXPR
;
1317 cond1_rhs
= fold_binary (PLUS_EXPR
, TREE_TYPE (cond1_rhs
),
1319 fold_convert (TREE_TYPE (cond1_rhs
),
1322 else if (cond1_code
== LT_EXPR
)
1324 cond1_code
= LE_EXPR
;
1325 cond1_rhs
= fold_binary (MINUS_EXPR
, TREE_TYPE (cond1_rhs
),
1327 fold_convert (TREE_TYPE (cond1_rhs
),
1334 gcc_assert (cond1_code
== GE_EXPR
|| cond1_code
== LE_EXPR
);
1336 if (cond2_code
== GE_EXPR
|| cond2_code
== GT_EXPR
||
1337 cond2_code
== LE_EXPR
|| cond2_code
== LT_EXPR
)
1338 return is_value_included_in (cond1_rhs
,
1339 cond2_rhs
, cond2_code
);
1340 else if (cond2_code
== NE_EXPR
)
1342 (is_value_included_in (cond1_rhs
,
1343 cond2_rhs
, cond2_code
)
1344 && !is_value_included_in (cond2_rhs
,
1345 cond1_rhs
, cond1_code
));
1349 /* Returns true if the domain of the condition expression
1350 in COND is a subset of any of the sub-conditions
1351 of the normalized condtion NORM_COND. INVERT is a flag
1352 to indicate of the COND needs to be inverted.
1353 REVERSE is a flag. When it is true, the check is reversed --
1354 it returns true if COND is a superset of any of the subconditions
1358 is_subset_of_any (gimple cond
, bool invert
,
1359 norm_cond_t norm_cond
, bool reverse
)
1362 size_t len
= norm_cond
->conds
.length ();
1364 for (i
= 0; i
< len
; i
++)
1366 if (is_gcond_subset_of (cond
, invert
,
1367 norm_cond
->conds
[i
],
1374 /* NORM_COND1 and NORM_COND2 are normalized logical/BIT OR
1375 expressions (formed by following UD chains not control
1376 dependence chains). The function returns true of domain
1377 of and expression NORM_COND1 is a subset of NORM_COND2's.
1378 The implementation is conservative, and it returns false if
1379 it the inclusion relationship may not hold. */
1382 is_or_set_subset_of (norm_cond_t norm_cond1
,
1383 norm_cond_t norm_cond2
)
1386 size_t len
= norm_cond1
->conds
.length ();
1388 for (i
= 0; i
< len
; i
++)
1390 if (!is_subset_of_any (norm_cond1
->conds
[i
],
1391 false, norm_cond2
, false))
1397 /* NORM_COND1 and NORM_COND2 are normalized logical AND
1398 expressions (formed by following UD chains not control
1399 dependence chains). The function returns true of domain
1400 of and expression NORM_COND1 is a subset of NORM_COND2's. */
1403 is_and_set_subset_of (norm_cond_t norm_cond1
,
1404 norm_cond_t norm_cond2
)
1407 size_t len
= norm_cond2
->conds
.length ();
1409 for (i
= 0; i
< len
; i
++)
1411 if (!is_subset_of_any (norm_cond2
->conds
[i
],
1412 false, norm_cond1
, true))
1418 /* Returns true of the domain if NORM_COND1 is a subset
1419 of that of NORM_COND2. Returns false if it can not be
1423 is_norm_cond_subset_of (norm_cond_t norm_cond1
,
1424 norm_cond_t norm_cond2
)
1427 enum tree_code code1
, code2
;
1429 code1
= norm_cond1
->cond_code
;
1430 code2
= norm_cond2
->cond_code
;
1432 if (code1
== BIT_AND_EXPR
)
1434 /* Both conditions are AND expressions. */
1435 if (code2
== BIT_AND_EXPR
)
1436 return is_and_set_subset_of (norm_cond1
, norm_cond2
);
1437 /* NORM_COND1 is an AND expression, and NORM_COND2 is an OR
1438 expression. In this case, returns true if any subexpression
1439 of NORM_COND1 is a subset of any subexpression of NORM_COND2. */
1440 else if (code2
== BIT_IOR_EXPR
)
1443 len1
= norm_cond1
->conds
.length ();
1444 for (i
= 0; i
< len1
; i
++)
1446 gimple cond1
= norm_cond1
->conds
[i
];
1447 if (is_subset_of_any (cond1
, false, norm_cond2
, false))
1454 gcc_assert (code2
== ERROR_MARK
);
1455 gcc_assert (norm_cond2
->conds
.length () == 1);
1456 return is_subset_of_any (norm_cond2
->conds
[0],
1457 norm_cond2
->invert
, norm_cond1
, true);
1460 /* NORM_COND1 is an OR expression */
1461 else if (code1
== BIT_IOR_EXPR
)
1466 return is_or_set_subset_of (norm_cond1
, norm_cond2
);
1470 gcc_assert (code1
== ERROR_MARK
);
1471 gcc_assert (norm_cond1
->conds
.length () == 1);
1472 /* Conservatively returns false if NORM_COND1 is non-decomposible
1473 and NORM_COND2 is an AND expression. */
1474 if (code2
== BIT_AND_EXPR
)
1477 if (code2
== BIT_IOR_EXPR
)
1478 return is_subset_of_any (norm_cond1
->conds
[0],
1479 norm_cond1
->invert
, norm_cond2
, false);
1481 gcc_assert (code2
== ERROR_MARK
);
1482 gcc_assert (norm_cond2
->conds
.length () == 1);
1483 return is_gcond_subset_of (norm_cond1
->conds
[0],
1485 norm_cond2
->conds
[0],
1486 norm_cond2
->invert
, false);
1490 /* Returns true of the domain of single predicate expression
1491 EXPR1 is a subset of that of EXPR2. Returns false if it
1492 can not be proved. */
1495 is_pred_expr_subset_of (use_pred_info_t expr1
,
1496 use_pred_info_t expr2
)
1498 gimple cond1
, cond2
;
1499 enum tree_code code1
, code2
;
1500 struct norm_cond norm_cond1
, norm_cond2
;
1501 bool is_subset
= false;
1503 cond1
= expr1
->cond
;
1504 cond2
= expr2
->cond
;
1505 code1
= gimple_cond_code (cond1
);
1506 code2
= gimple_cond_code (cond2
);
1509 code1
= invert_tree_comparison (code1
, false);
1511 code2
= invert_tree_comparison (code2
, false);
1513 /* Fast path -- match exactly */
1514 if ((gimple_cond_lhs (cond1
) == gimple_cond_lhs (cond2
))
1515 && (gimple_cond_rhs (cond1
) == gimple_cond_rhs (cond2
))
1516 && (code1
== code2
))
1519 /* Normalize conditions. To keep NE_EXPR, do not invert
1520 with both need inversion. */
1521 normalize_cond (cond1
, &norm_cond1
, (expr1
->invert
));
1522 normalize_cond (cond2
, &norm_cond2
, (expr2
->invert
));
1524 is_subset
= is_norm_cond_subset_of (&norm_cond1
, &norm_cond2
);
1527 norm_cond1
.conds
.release ();
1528 norm_cond2
.conds
.release ();
1532 /* Returns true if the domain of PRED1 is a subset
1533 of that of PRED2. Returns false if it can not be proved so. */
1536 is_pred_chain_subset_of (vec
<use_pred_info_t
> pred1
,
1537 vec
<use_pred_info_t
> pred2
)
1539 size_t np1
, np2
, i1
, i2
;
1541 np1
= pred1
.length ();
1542 np2
= pred2
.length ();
1544 for (i2
= 0; i2
< np2
; i2
++)
1547 use_pred_info_t info2
1549 for (i1
= 0; i1
< np1
; i1
++)
1551 use_pred_info_t info1
1553 if (is_pred_expr_subset_of (info1
, info2
))
1565 /* Returns true if the domain defined by
1566 one pred chain ONE_PRED is a subset of the domain
1567 of *PREDS. It returns false if ONE_PRED's domain is
1568 not a subset of any of the sub-domains of PREDS (
1569 corresponding to each individual chains in it), even
1570 though it may be still be a subset of whole domain
1571 of PREDS which is the union (ORed) of all its subdomains.
1572 In other words, the result is conservative. */
1575 is_included_in (vec
<use_pred_info_t
> one_pred
,
1576 vec
<use_pred_info_t
> *preds
,
1581 for (i
= 0; i
< n
; i
++)
1583 if (is_pred_chain_subset_of (one_pred
, preds
[i
]))
1590 /* compares two predicate sets PREDS1 and PREDS2 and returns
1591 true if the domain defined by PREDS1 is a superset
1592 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1593 PREDS2 respectively. The implementation chooses not to build
1594 generic trees (and relying on the folding capability of the
1595 compiler), but instead performs brute force comparison of
1596 individual predicate chains (won't be a compile time problem
1597 as the chains are pretty short). When the function returns
1598 false, it does not necessarily mean *PREDS1 is not a superset
1599 of *PREDS2, but mean it may not be so since the analysis can
1600 not prove it. In such cases, false warnings may still be
1604 is_superset_of (vec
<use_pred_info_t
> *preds1
,
1606 vec
<use_pred_info_t
> *preds2
,
1610 vec
<use_pred_info_t
> one_pred_chain
;
1612 for (i
= 0; i
< n2
; i
++)
1614 one_pred_chain
= preds2
[i
];
1615 if (!is_included_in (one_pred_chain
, preds1
, n1
))
1622 /* Comparison function used by qsort. It is used to
1623 sort predicate chains to allow predicate
1627 pred_chain_length_cmp (const void *p1
, const void *p2
)
1629 use_pred_info_t i1
, i2
;
1630 vec
<use_pred_info_t
> const *chain1
1631 = (vec
<use_pred_info_t
> const *)p1
;
1632 vec
<use_pred_info_t
> const *chain2
1633 = (vec
<use_pred_info_t
> const *)p2
;
1635 if (chain1
->length () != chain2
->length ())
1636 return (chain1
->length () - chain2
->length ());
1641 /* Allow predicates with similar prefix come together. */
1642 if (!i1
->invert
&& i2
->invert
)
1644 else if (i1
->invert
&& !i2
->invert
)
1647 return gimple_uid (i1
->cond
) - gimple_uid (i2
->cond
);
1650 /* x OR (!x AND y) is equivalent to x OR y.
1651 This function normalizes x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3)
1652 into x1 OR x2 OR x3. PREDS is the predicate chains, and N is
1653 the number of chains. Returns true if normalization happens. */
1656 normalize_preds (vec
<use_pred_info_t
> *preds
, size_t *n
)
1659 vec
<use_pred_info_t
> pred_chain
;
1660 vec
<use_pred_info_t
> x
= vNULL
;
1661 use_pred_info_t xj
= 0, nxj
= 0;
1666 /* First sort the chains in ascending order of lengths. */
1667 qsort (preds
, *n
, sizeof (void *), pred_chain_length_cmp
);
1668 pred_chain
= preds
[0];
1669 ll
= pred_chain
.length ();
1674 use_pred_info_t xx
, yy
, xx2
, nyy
;
1675 vec
<use_pred_info_t
> pred_chain2
= preds
[1];
1676 if (pred_chain2
.length () != 2)
1679 /* See if simplification x AND y OR x AND !y is possible. */
1682 xx2
= pred_chain2
[0];
1683 nyy
= pred_chain2
[1];
1684 if (gimple_cond_lhs (xx
->cond
) != gimple_cond_lhs (xx2
->cond
)
1685 || gimple_cond_rhs (xx
->cond
) != gimple_cond_rhs (xx2
->cond
)
1686 || gimple_cond_code (xx
->cond
) != gimple_cond_code (xx2
->cond
)
1687 || (xx
->invert
!= xx2
->invert
))
1689 if (gimple_cond_lhs (yy
->cond
) != gimple_cond_lhs (nyy
->cond
)
1690 || gimple_cond_rhs (yy
->cond
) != gimple_cond_rhs (nyy
->cond
)
1691 || gimple_cond_code (yy
->cond
) != gimple_cond_code (nyy
->cond
)
1692 || (yy
->invert
== nyy
->invert
))
1695 /* Now merge the first two chains. */
1699 pred_chain
.release ();
1700 pred_chain2
.release ();
1701 pred_chain
.safe_push (xx
);
1702 preds
[0] = pred_chain
;
1703 for (i
= 1; i
< *n
- 1; i
++)
1704 preds
[i
] = preds
[i
+ 1];
1706 preds
[*n
- 1].create (0);
1713 x
.safe_push (pred_chain
[0]);
1715 /* The loop extracts x1, x2, x3, etc from chains
1716 x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3) OR ... */
1717 for (i
= 1; i
< *n
; i
++)
1719 pred_chain
= preds
[i
];
1720 if (pred_chain
.length () != i
+ 1)
1723 for (j
= 0; j
< i
; j
++)
1726 nxj
= pred_chain
[j
];
1728 /* Check if nxj is !xj */
1729 if (gimple_cond_lhs (xj
->cond
) != gimple_cond_lhs (nxj
->cond
)
1730 || gimple_cond_rhs (xj
->cond
) != gimple_cond_rhs (nxj
->cond
)
1731 || gimple_cond_code (xj
->cond
) != gimple_cond_code (nxj
->cond
)
1732 || (xj
->invert
== nxj
->invert
))
1736 x
.safe_push (pred_chain
[i
]);
1739 /* Now normalize the pred chains using the extraced x1, x2, x3 etc. */
1740 for (j
= 0; j
< *n
; j
++)
1745 t
= XNEW (struct use_pred_info
);
1751 for (i
= 0; i
< *n
; i
++)
1753 pred_chain
= preds
[i
];
1754 for (j
= 0; j
< pred_chain
.length (); j
++)
1755 free (pred_chain
[j
]);
1756 pred_chain
.release ();
1758 pred_chain
.safe_push (x
[i
]);
1759 preds
[i
] = pred_chain
;
1766 /* Computes the predicates that guard the use and checks
1767 if the incoming paths that have empty (or possibly
1768 empty) definition can be pruned/filtered. The function returns
1769 true if it can be determined that the use of PHI's def in
1770 USE_STMT is guarded with a predicate set not overlapping with
1771 predicate sets of all runtime paths that do not have a definition.
1772 Returns false if it is not or it can not be determined. USE_BB is
1773 the bb of the use (for phi operand use, the bb is not the bb of
1774 the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
1775 is a bit vector. If an operand of PHI is uninitialized, the
1776 corresponding bit in the vector is 1. VISIED_PHIS is a pointer
1777 set of phis being visted. */
1780 is_use_properly_guarded (gimple use_stmt
,
1783 unsigned uninit_opnds
,
1784 struct pointer_set_t
*visited_phis
)
1787 vec
<use_pred_info_t
> *preds
= 0;
1788 vec
<use_pred_info_t
> *def_preds
= 0;
1789 size_t num_preds
= 0, num_def_preds
= 0;
1790 bool has_valid_preds
= false;
1791 bool is_properly_guarded
= false;
1793 if (pointer_set_insert (visited_phis
, phi
))
1796 phi_bb
= gimple_bb (phi
);
1798 if (is_non_loop_exit_postdominating (use_bb
, phi_bb
))
1801 has_valid_preds
= find_predicates (&preds
, &num_preds
,
1804 if (!has_valid_preds
)
1806 destroy_predicate_vecs (num_preds
, preds
);
1811 dump_predicates (use_stmt
, num_preds
, preds
,
1814 has_valid_preds
= find_def_preds (&def_preds
,
1815 &num_def_preds
, phi
);
1817 if (has_valid_preds
)
1821 dump_predicates (phi
, num_def_preds
, def_preds
,
1822 "Operand defs of phi ");
1824 normed
= normalize_preds (def_preds
, &num_def_preds
);
1825 if (normed
&& dump_file
)
1827 fprintf (dump_file
, "\nNormalized to\n");
1828 dump_predicates (phi
, num_def_preds
, def_preds
,
1829 "Operand defs of phi ");
1831 is_properly_guarded
=
1832 is_superset_of (def_preds
, num_def_preds
,
1836 /* further prune the dead incoming phi edges. */
1837 if (!is_properly_guarded
)
1839 = use_pred_not_overlap_with_undef_path_pred (
1840 num_preds
, preds
, phi
, uninit_opnds
, visited_phis
);
1842 destroy_predicate_vecs (num_preds
, preds
);
1843 destroy_predicate_vecs (num_def_preds
, def_preds
);
1844 return is_properly_guarded
;
1847 /* Searches through all uses of a potentially
1848 uninitialized variable defined by PHI and returns a use
1849 statement if the use is not properly guarded. It returns
1850 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
1851 holding the position(s) of uninit PHI operands. WORKLIST
1852 is the vector of candidate phis that may be updated by this
1853 function. ADDED_TO_WORKLIST is the pointer set tracking
1854 if the new phi is already in the worklist. */
1857 find_uninit_use (gimple phi
, unsigned uninit_opnds
,
1858 vec
<gimple
> *worklist
,
1859 struct pointer_set_t
*added_to_worklist
)
1862 use_operand_p use_p
;
1864 imm_use_iterator iter
;
1866 phi_result
= gimple_phi_result (phi
);
1868 FOR_EACH_IMM_USE_FAST (use_p
, iter
, phi_result
)
1870 struct pointer_set_t
*visited_phis
;
1873 use_stmt
= USE_STMT (use_p
);
1874 if (is_gimple_debug (use_stmt
))
1877 visited_phis
= pointer_set_create ();
1879 if (gimple_code (use_stmt
) == GIMPLE_PHI
)
1880 use_bb
= gimple_phi_arg_edge (use_stmt
,
1881 PHI_ARG_INDEX_FROM_USE (use_p
))->src
;
1883 use_bb
= gimple_bb (use_stmt
);
1885 if (is_use_properly_guarded (use_stmt
,
1891 pointer_set_destroy (visited_phis
);
1894 pointer_set_destroy (visited_phis
);
1896 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1898 fprintf (dump_file
, "[CHECK]: Found unguarded use: ");
1899 print_gimple_stmt (dump_file
, use_stmt
, 0, 0);
1901 /* Found one real use, return. */
1902 if (gimple_code (use_stmt
) != GIMPLE_PHI
)
1905 /* Found a phi use that is not guarded,
1906 add the phi to the worklist. */
1907 if (!pointer_set_insert (added_to_worklist
,
1910 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1912 fprintf (dump_file
, "[WORKLIST]: Update worklist with phi: ");
1913 print_gimple_stmt (dump_file
, use_stmt
, 0, 0);
1916 worklist
->safe_push (use_stmt
);
1917 pointer_set_insert (possibly_undefined_names
, phi_result
);
1924 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
1925 and gives warning if there exists a runtime path from the entry to a
1926 use of the PHI def that does not contain a definition. In other words,
1927 the warning is on the real use. The more dead paths that can be pruned
1928 by the compiler, the fewer false positives the warning is. WORKLIST
1929 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
1930 a pointer set tracking if the new phi is added to the worklist or not. */
1933 warn_uninitialized_phi (gimple phi
, vec
<gimple
> *worklist
,
1934 struct pointer_set_t
*added_to_worklist
)
1936 unsigned uninit_opnds
;
1937 gimple uninit_use_stmt
= 0;
1940 /* Don't look at virtual operands. */
1941 if (virtual_operand_p (gimple_phi_result (phi
)))
1944 uninit_opnds
= compute_uninit_opnds_pos (phi
);
1946 if (MASK_EMPTY (uninit_opnds
))
1949 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1951 fprintf (dump_file
, "[CHECK]: examining phi: ");
1952 print_gimple_stmt (dump_file
, phi
, 0, 0);
1955 /* Now check if we have any use of the value without proper guard. */
1956 uninit_use_stmt
= find_uninit_use (phi
, uninit_opnds
,
1957 worklist
, added_to_worklist
);
1959 /* All uses are properly guarded. */
1960 if (!uninit_use_stmt
)
1963 uninit_op
= gimple_phi_arg_def (phi
, MASK_FIRST_SET_BIT (uninit_opnds
));
1964 if (SSA_NAME_VAR (uninit_op
) == NULL_TREE
)
1966 warn_uninit (OPT_Wmaybe_uninitialized
, uninit_op
, SSA_NAME_VAR (uninit_op
),
1967 SSA_NAME_VAR (uninit_op
),
1968 "%qD may be used uninitialized in this function",
1974 /* Entry point to the late uninitialized warning pass. */
1977 execute_late_warn_uninitialized (void)
1980 gimple_stmt_iterator gsi
;
1981 vec
<gimple
> worklist
= vNULL
;
1982 struct pointer_set_t
*added_to_worklist
;
1984 calculate_dominance_info (CDI_DOMINATORS
);
1985 calculate_dominance_info (CDI_POST_DOMINATORS
);
1986 /* Re-do the plain uninitialized variable check, as optimization may have
1987 straightened control flow. Do this first so that we don't accidentally
1988 get a "may be" warning when we'd have seen an "is" warning later. */
1989 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
1991 timevar_push (TV_TREE_UNINIT
);
1993 possibly_undefined_names
= pointer_set_create ();
1994 added_to_worklist
= pointer_set_create ();
1996 /* Initialize worklist */
1998 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2000 gimple phi
= gsi_stmt (gsi
);
2003 n
= gimple_phi_num_args (phi
);
2005 /* Don't look at virtual operands. */
2006 if (virtual_operand_p (gimple_phi_result (phi
)))
2009 for (i
= 0; i
< n
; ++i
)
2011 tree op
= gimple_phi_arg_def (phi
, i
);
2012 if (TREE_CODE (op
) == SSA_NAME
2013 && uninit_undefined_value_p (op
))
2015 worklist
.safe_push (phi
);
2016 pointer_set_insert (added_to_worklist
, phi
);
2017 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2019 fprintf (dump_file
, "[WORKLIST]: add to initial list: ");
2020 print_gimple_stmt (dump_file
, phi
, 0, 0);
2027 while (worklist
.length () != 0)
2030 cur_phi
= worklist
.pop ();
2031 warn_uninitialized_phi (cur_phi
, &worklist
, added_to_worklist
);
2034 worklist
.release ();
2035 pointer_set_destroy (added_to_worklist
);
2036 pointer_set_destroy (possibly_undefined_names
);
2037 possibly_undefined_names
= NULL
;
2038 free_dominance_info (CDI_POST_DOMINATORS
);
2039 timevar_pop (TV_TREE_UNINIT
);
2044 gate_warn_uninitialized (void)
2046 return warn_uninitialized
!= 0;
2049 struct gimple_opt_pass pass_late_warn_uninitialized
=
2053 "uninit", /* name */
2054 OPTGROUP_NONE
, /* optinfo_flags */
2055 gate_warn_uninitialized
, /* gate */
2056 execute_late_warn_uninitialized
, /* execute */
2059 0, /* static_pass_number */
2060 TV_NONE
, /* tv_id */
2061 PROP_ssa
, /* properties_required */
2062 0, /* properties_provided */
2063 0, /* properties_destroyed */
2064 0, /* todo_flags_start */
2065 0 /* todo_flags_finish */