Use -fbuilding-libgcc for more target macros used in libgcc.
[official-gcc.git] / gcc / dominance.c
blobc8b47a3cf3e0151a8437b9fd1798dbb0de30bae5
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
30 The algorithm computes this dominator tree implicitly by computing for
31 each block its immediate dominator. We use tree balancing and path
32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33 slowly growing functional inverse of the Ackerman function. */
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "rtl.h"
40 #include "hard-reg-set.h"
41 #include "obstack.h"
42 #include "basic-block.h"
43 #include "diagnostic-core.h"
44 #include "et-forest.h"
45 #include "timevar.h"
46 #include "hash-map.h"
47 #include "graphds.h"
48 #include "bitmap.h"
50 /* We name our nodes with integers, beginning with 1. Zero is reserved for
51 'undefined' or 'end of list'. The name of each node is given by the dfs
52 number of the corresponding basic block. Please note, that we include the
53 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
54 support multiple entry points. Its dfs number is of course 1. */
56 /* Type of Basic Block aka. TBB */
57 typedef unsigned int TBB;
59 /* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
64 struct dom_info
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representative
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
98 /* If x is the DFS-index of a node which corresponds with a basic block,
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
104 /* This is the next free DFS number when creating the DFS tree. */
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
114 static void init_dom_info (struct dom_info *, enum cdi_direction);
115 static void free_dom_info (struct dom_info *);
116 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
117 static void calc_dfs_tree (struct dom_info *, bool);
118 static void compress (struct dom_info *, TBB);
119 static TBB eval (struct dom_info *, TBB);
120 static void link_roots (struct dom_info *, TBB, TBB);
121 static void calc_idoms (struct dom_info *, bool);
122 void debug_dominance_info (enum cdi_direction);
123 void debug_dominance_tree (enum cdi_direction, basic_block);
125 /* Helper macro for allocating and initializing an array,
126 for aesthetic reasons. */
127 #define init_ar(var, type, num, content) \
128 do \
130 unsigned int i = 1; /* Catch content == i. */ \
131 if (! (content)) \
132 (var) = XCNEWVEC (type, num); \
133 else \
135 (var) = XNEWVEC (type, (num)); \
136 for (i = 0; i < num; i++) \
137 (var)[i] = (content); \
140 while (0)
142 /* Allocate all needed memory in a pessimistic fashion (so we round up).
143 This initializes the contents of DI, which already must be allocated. */
145 static void
146 init_dom_info (struct dom_info *di, enum cdi_direction dir)
148 /* We need memory for n_basic_blocks nodes. */
149 unsigned int num = n_basic_blocks_for_fn (cfun);
150 init_ar (di->dfs_parent, TBB, num, 0);
151 init_ar (di->path_min, TBB, num, i);
152 init_ar (di->key, TBB, num, i);
153 init_ar (di->dom, TBB, num, 0);
155 init_ar (di->bucket, TBB, num, 0);
156 init_ar (di->next_bucket, TBB, num, 0);
158 init_ar (di->set_chain, TBB, num, 0);
159 init_ar (di->set_size, unsigned int, num, 1);
160 init_ar (di->set_child, TBB, num, 0);
162 init_ar (di->dfs_order, TBB,
163 (unsigned int) last_basic_block_for_fn (cfun) + 1, 0);
164 init_ar (di->dfs_to_bb, basic_block, num, 0);
166 di->dfsnum = 1;
167 di->nodes = 0;
169 switch (dir)
171 case CDI_DOMINATORS:
172 di->fake_exit_edge = NULL;
173 break;
174 case CDI_POST_DOMINATORS:
175 di->fake_exit_edge = BITMAP_ALLOC (NULL);
176 break;
177 default:
178 gcc_unreachable ();
179 break;
183 #undef init_ar
185 /* Map dominance calculation type to array index used for various
186 dominance information arrays. This version is simple -- it will need
187 to be modified, obviously, if additional values are added to
188 cdi_direction. */
190 static unsigned int
191 dom_convert_dir_to_idx (enum cdi_direction dir)
193 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
194 return dir - 1;
197 /* Free all allocated memory in DI, but not DI itself. */
199 static void
200 free_dom_info (struct dom_info *di)
202 free (di->dfs_parent);
203 free (di->path_min);
204 free (di->key);
205 free (di->dom);
206 free (di->bucket);
207 free (di->next_bucket);
208 free (di->set_chain);
209 free (di->set_size);
210 free (di->set_child);
211 free (di->dfs_order);
212 free (di->dfs_to_bb);
213 BITMAP_FREE (di->fake_exit_edge);
216 /* The nonrecursive variant of creating a DFS tree. DI is our working
217 structure, BB the starting basic block for this tree and REVERSE
218 is true, if predecessors should be visited instead of successors of a
219 node. After this is done all nodes reachable from BB were visited, have
220 assigned their dfs number and are linked together to form a tree. */
222 static void
223 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
225 /* We call this _only_ if bb is not already visited. */
226 edge e;
227 TBB child_i, my_i = 0;
228 edge_iterator *stack;
229 edge_iterator ei, einext;
230 int sp;
231 /* Start block (the entry block for forward problem, exit block for backward
232 problem). */
233 basic_block en_block;
234 /* Ending block. */
235 basic_block ex_block;
237 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
238 sp = 0;
240 /* Initialize our border blocks, and the first edge. */
241 if (reverse)
243 ei = ei_start (bb->preds);
244 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
245 ex_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
247 else
249 ei = ei_start (bb->succs);
250 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
251 ex_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
254 /* When the stack is empty we break out of this loop. */
255 while (1)
257 basic_block bn;
259 /* This loop traverses edges e in depth first manner, and fills the
260 stack. */
261 while (!ei_end_p (ei))
263 e = ei_edge (ei);
265 /* Deduce from E the current and the next block (BB and BN), and the
266 next edge. */
267 if (reverse)
269 bn = e->src;
271 /* If the next node BN is either already visited or a border
272 block the current edge is useless, and simply overwritten
273 with the next edge out of the current node. */
274 if (bn == ex_block || di->dfs_order[bn->index])
276 ei_next (&ei);
277 continue;
279 bb = e->dest;
280 einext = ei_start (bn->preds);
282 else
284 bn = e->dest;
285 if (bn == ex_block || di->dfs_order[bn->index])
287 ei_next (&ei);
288 continue;
290 bb = e->src;
291 einext = ei_start (bn->succs);
294 gcc_assert (bn != en_block);
296 /* Fill the DFS tree info calculatable _before_ recursing. */
297 if (bb != en_block)
298 my_i = di->dfs_order[bb->index];
299 else
300 my_i = di->dfs_order[last_basic_block_for_fn (cfun)];
301 child_i = di->dfs_order[bn->index] = di->dfsnum++;
302 di->dfs_to_bb[child_i] = bn;
303 di->dfs_parent[child_i] = my_i;
305 /* Save the current point in the CFG on the stack, and recurse. */
306 stack[sp++] = ei;
307 ei = einext;
310 if (!sp)
311 break;
312 ei = stack[--sp];
314 /* OK. The edge-list was exhausted, meaning normally we would
315 end the recursion. After returning from the recursive call,
316 there were (may be) other statements which were run after a
317 child node was completely considered by DFS. Here is the
318 point to do it in the non-recursive variant.
319 E.g. The block just completed is in e->dest for forward DFS,
320 the block not yet completed (the parent of the one above)
321 in e->src. This could be used e.g. for computing the number of
322 descendants or the tree depth. */
323 ei_next (&ei);
325 free (stack);
328 /* The main entry for calculating the DFS tree or forest. DI is our working
329 structure and REVERSE is true, if we are interested in the reverse flow
330 graph. In that case the result is not necessarily a tree but a forest,
331 because there may be nodes from which the EXIT_BLOCK is unreachable. */
333 static void
334 calc_dfs_tree (struct dom_info *di, bool reverse)
336 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
337 basic_block begin = (reverse
338 ? EXIT_BLOCK_PTR_FOR_FN (cfun) : ENTRY_BLOCK_PTR_FOR_FN (cfun));
339 di->dfs_order[last_basic_block_for_fn (cfun)] = di->dfsnum;
340 di->dfs_to_bb[di->dfsnum] = begin;
341 di->dfsnum++;
343 calc_dfs_tree_nonrec (di, begin, reverse);
345 if (reverse)
347 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
348 They are reverse-unreachable. In the dom-case we disallow such
349 nodes, but in post-dom we have to deal with them.
351 There are two situations in which this occurs. First, noreturn
352 functions. Second, infinite loops. In the first case we need to
353 pretend that there is an edge to the exit block. In the second
354 case, we wind up with a forest. We need to process all noreturn
355 blocks before we know if we've got any infinite loops. */
357 basic_block b;
358 bool saw_unconnected = false;
360 FOR_EACH_BB_REVERSE_FN (b, cfun)
362 if (EDGE_COUNT (b->succs) > 0)
364 if (di->dfs_order[b->index] == 0)
365 saw_unconnected = true;
366 continue;
368 bitmap_set_bit (di->fake_exit_edge, b->index);
369 di->dfs_order[b->index] = di->dfsnum;
370 di->dfs_to_bb[di->dfsnum] = b;
371 di->dfs_parent[di->dfsnum] =
372 di->dfs_order[last_basic_block_for_fn (cfun)];
373 di->dfsnum++;
374 calc_dfs_tree_nonrec (di, b, reverse);
377 if (saw_unconnected)
379 FOR_EACH_BB_REVERSE_FN (b, cfun)
381 basic_block b2;
382 if (di->dfs_order[b->index])
383 continue;
384 b2 = dfs_find_deadend (b);
385 gcc_checking_assert (di->dfs_order[b2->index] == 0);
386 bitmap_set_bit (di->fake_exit_edge, b2->index);
387 di->dfs_order[b2->index] = di->dfsnum;
388 di->dfs_to_bb[di->dfsnum] = b2;
389 di->dfs_parent[di->dfsnum] =
390 di->dfs_order[last_basic_block_for_fn (cfun)];
391 di->dfsnum++;
392 calc_dfs_tree_nonrec (di, b2, reverse);
393 gcc_checking_assert (di->dfs_order[b->index]);
398 di->nodes = di->dfsnum - 1;
400 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
401 gcc_assert (di->nodes == (unsigned int) n_basic_blocks_for_fn (cfun) - 1);
404 /* Compress the path from V to the root of its set and update path_min at the
405 same time. After compress(di, V) set_chain[V] is the root of the set V is
406 in and path_min[V] is the node with the smallest key[] value on the path
407 from V to that root. */
409 static void
410 compress (struct dom_info *di, TBB v)
412 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
413 greater than 5 even for huge graphs (I've not seen call depth > 4).
414 Also performance wise compress() ranges _far_ behind eval(). */
415 TBB parent = di->set_chain[v];
416 if (di->set_chain[parent])
418 compress (di, parent);
419 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
420 di->path_min[v] = di->path_min[parent];
421 di->set_chain[v] = di->set_chain[parent];
425 /* Compress the path from V to the set root of V if needed (when the root has
426 changed since the last call). Returns the node with the smallest key[]
427 value on the path from V to the root. */
429 static inline TBB
430 eval (struct dom_info *di, TBB v)
432 /* The representative of the set V is in, also called root (as the set
433 representation is a tree). */
434 TBB rep = di->set_chain[v];
436 /* V itself is the root. */
437 if (!rep)
438 return di->path_min[v];
440 /* Compress only if necessary. */
441 if (di->set_chain[rep])
443 compress (di, v);
444 rep = di->set_chain[v];
447 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
448 return di->path_min[v];
449 else
450 return di->path_min[rep];
453 /* This essentially merges the two sets of V and W, giving a single set with
454 the new root V. The internal representation of these disjoint sets is a
455 balanced tree. Currently link(V,W) is only used with V being the parent
456 of W. */
458 static void
459 link_roots (struct dom_info *di, TBB v, TBB w)
461 TBB s = w;
463 /* Rebalance the tree. */
464 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
466 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
467 >= 2 * di->set_size[di->set_child[s]])
469 di->set_chain[di->set_child[s]] = s;
470 di->set_child[s] = di->set_child[di->set_child[s]];
472 else
474 di->set_size[di->set_child[s]] = di->set_size[s];
475 s = di->set_chain[s] = di->set_child[s];
479 di->path_min[s] = di->path_min[w];
480 di->set_size[v] += di->set_size[w];
481 if (di->set_size[v] < 2 * di->set_size[w])
483 TBB tmp = s;
484 s = di->set_child[v];
485 di->set_child[v] = tmp;
488 /* Merge all subtrees. */
489 while (s)
491 di->set_chain[s] = v;
492 s = di->set_child[s];
496 /* This calculates the immediate dominators (or post-dominators if REVERSE is
497 true). DI is our working structure and should hold the DFS forest.
498 On return the immediate dominator to node V is in di->dom[V]. */
500 static void
501 calc_idoms (struct dom_info *di, bool reverse)
503 TBB v, w, k, par;
504 basic_block en_block;
505 edge_iterator ei, einext;
507 if (reverse)
508 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
509 else
510 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
512 /* Go backwards in DFS order, to first look at the leafs. */
513 v = di->nodes;
514 while (v > 1)
516 basic_block bb = di->dfs_to_bb[v];
517 edge e;
519 par = di->dfs_parent[v];
520 k = v;
522 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
524 if (reverse)
526 /* If this block has a fake edge to exit, process that first. */
527 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
529 einext = ei;
530 einext.index = 0;
531 goto do_fake_exit_edge;
535 /* Search all direct predecessors for the smallest node with a path
536 to them. That way we have the smallest node with also a path to
537 us only over nodes behind us. In effect we search for our
538 semidominator. */
539 while (!ei_end_p (ei))
541 TBB k1;
542 basic_block b;
544 e = ei_edge (ei);
545 b = (reverse) ? e->dest : e->src;
546 einext = ei;
547 ei_next (&einext);
549 if (b == en_block)
551 do_fake_exit_edge:
552 k1 = di->dfs_order[last_basic_block_for_fn (cfun)];
554 else
555 k1 = di->dfs_order[b->index];
557 /* Call eval() only if really needed. If k1 is above V in DFS tree,
558 then we know, that eval(k1) == k1 and key[k1] == k1. */
559 if (k1 > v)
560 k1 = di->key[eval (di, k1)];
561 if (k1 < k)
562 k = k1;
564 ei = einext;
567 di->key[v] = k;
568 link_roots (di, par, v);
569 di->next_bucket[v] = di->bucket[k];
570 di->bucket[k] = v;
572 /* Transform semidominators into dominators. */
573 for (w = di->bucket[par]; w; w = di->next_bucket[w])
575 k = eval (di, w);
576 if (di->key[k] < di->key[w])
577 di->dom[w] = k;
578 else
579 di->dom[w] = par;
581 /* We don't need to cleanup next_bucket[]. */
582 di->bucket[par] = 0;
583 v--;
586 /* Explicitly define the dominators. */
587 di->dom[1] = 0;
588 for (v = 2; v <= di->nodes; v++)
589 if (di->dom[v] != di->key[v])
590 di->dom[v] = di->dom[di->dom[v]];
593 /* Assign dfs numbers starting from NUM to NODE and its sons. */
595 static void
596 assign_dfs_numbers (struct et_node *node, int *num)
598 struct et_node *son;
600 node->dfs_num_in = (*num)++;
602 if (node->son)
604 assign_dfs_numbers (node->son, num);
605 for (son = node->son->right; son != node->son; son = son->right)
606 assign_dfs_numbers (son, num);
609 node->dfs_num_out = (*num)++;
612 /* Compute the data necessary for fast resolving of dominator queries in a
613 static dominator tree. */
615 static void
616 compute_dom_fast_query (enum cdi_direction dir)
618 int num = 0;
619 basic_block bb;
620 unsigned int dir_index = dom_convert_dir_to_idx (dir);
622 gcc_checking_assert (dom_info_available_p (dir));
624 if (dom_computed[dir_index] == DOM_OK)
625 return;
627 FOR_ALL_BB_FN (bb, cfun)
629 if (!bb->dom[dir_index]->father)
630 assign_dfs_numbers (bb->dom[dir_index], &num);
633 dom_computed[dir_index] = DOM_OK;
636 /* The main entry point into this module. DIR is set depending on whether
637 we want to compute dominators or postdominators. */
639 void
640 calculate_dominance_info (enum cdi_direction dir)
642 struct dom_info di;
643 basic_block b;
644 unsigned int dir_index = dom_convert_dir_to_idx (dir);
645 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
647 if (dom_computed[dir_index] == DOM_OK)
648 return;
650 timevar_push (TV_DOMINANCE);
651 if (!dom_info_available_p (dir))
653 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
655 FOR_ALL_BB_FN (b, cfun)
657 b->dom[dir_index] = et_new_tree (b);
659 n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
661 init_dom_info (&di, dir);
662 calc_dfs_tree (&di, reverse);
663 calc_idoms (&di, reverse);
665 FOR_EACH_BB_FN (b, cfun)
667 TBB d = di.dom[di.dfs_order[b->index]];
669 if (di.dfs_to_bb[d])
670 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
673 free_dom_info (&di);
674 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
677 compute_dom_fast_query (dir);
679 timevar_pop (TV_DOMINANCE);
682 /* Free dominance information for direction DIR. */
683 void
684 free_dominance_info (function *fn, enum cdi_direction dir)
686 basic_block bb;
687 unsigned int dir_index = dom_convert_dir_to_idx (dir);
689 if (!dom_info_available_p (fn, dir))
690 return;
692 FOR_ALL_BB_FN (bb, fn)
694 et_free_tree_force (bb->dom[dir_index]);
695 bb->dom[dir_index] = NULL;
697 et_free_pools ();
699 fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
701 fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
704 void
705 free_dominance_info (enum cdi_direction dir)
707 free_dominance_info (cfun, dir);
710 /* Return the immediate dominator of basic block BB. */
711 basic_block
712 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
714 unsigned int dir_index = dom_convert_dir_to_idx (dir);
715 struct et_node *node = bb->dom[dir_index];
717 gcc_checking_assert (dom_computed[dir_index]);
719 if (!node->father)
720 return NULL;
722 return (basic_block) node->father->data;
725 /* Set the immediate dominator of the block possibly removing
726 existing edge. NULL can be used to remove any edge. */
727 void
728 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
729 basic_block dominated_by)
731 unsigned int dir_index = dom_convert_dir_to_idx (dir);
732 struct et_node *node = bb->dom[dir_index];
734 gcc_checking_assert (dom_computed[dir_index]);
736 if (node->father)
738 if (node->father->data == dominated_by)
739 return;
740 et_split (node);
743 if (dominated_by)
744 et_set_father (node, dominated_by->dom[dir_index]);
746 if (dom_computed[dir_index] == DOM_OK)
747 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
750 /* Returns the list of basic blocks immediately dominated by BB, in the
751 direction DIR. */
752 vec<basic_block>
753 get_dominated_by (enum cdi_direction dir, basic_block bb)
755 unsigned int dir_index = dom_convert_dir_to_idx (dir);
756 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
757 vec<basic_block> bbs = vNULL;
759 gcc_checking_assert (dom_computed[dir_index]);
761 if (!son)
762 return vNULL;
764 bbs.safe_push ((basic_block) son->data);
765 for (ason = son->right; ason != son; ason = ason->right)
766 bbs.safe_push ((basic_block) ason->data);
768 return bbs;
771 /* Returns the list of basic blocks that are immediately dominated (in
772 direction DIR) by some block between N_REGION ones stored in REGION,
773 except for blocks in the REGION itself. */
775 vec<basic_block>
776 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
777 unsigned n_region)
779 unsigned i;
780 basic_block dom;
781 vec<basic_block> doms = vNULL;
783 for (i = 0; i < n_region; i++)
784 region[i]->flags |= BB_DUPLICATED;
785 for (i = 0; i < n_region; i++)
786 for (dom = first_dom_son (dir, region[i]);
787 dom;
788 dom = next_dom_son (dir, dom))
789 if (!(dom->flags & BB_DUPLICATED))
790 doms.safe_push (dom);
791 for (i = 0; i < n_region; i++)
792 region[i]->flags &= ~BB_DUPLICATED;
794 return doms;
797 /* Returns the list of basic blocks including BB dominated by BB, in the
798 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
799 produce a vector containing all dominated blocks. The vector will be sorted
800 in preorder. */
802 vec<basic_block>
803 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
805 vec<basic_block> bbs = vNULL;
806 unsigned i;
807 unsigned next_level_start;
809 i = 0;
810 bbs.safe_push (bb);
811 next_level_start = 1; /* = bbs.length (); */
815 basic_block son;
817 bb = bbs[i++];
818 for (son = first_dom_son (dir, bb);
819 son;
820 son = next_dom_son (dir, son))
821 bbs.safe_push (son);
823 if (i == next_level_start && --depth)
824 next_level_start = bbs.length ();
826 while (i < next_level_start);
828 return bbs;
831 /* Returns the list of basic blocks including BB dominated by BB, in the
832 direction DIR. The vector will be sorted in preorder. */
834 vec<basic_block>
835 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
837 return get_dominated_to_depth (dir, bb, 0);
840 /* Redirect all edges pointing to BB to TO. */
841 void
842 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
843 basic_block to)
845 unsigned int dir_index = dom_convert_dir_to_idx (dir);
846 struct et_node *bb_node, *to_node, *son;
848 bb_node = bb->dom[dir_index];
849 to_node = to->dom[dir_index];
851 gcc_checking_assert (dom_computed[dir_index]);
853 if (!bb_node->son)
854 return;
856 while (bb_node->son)
858 son = bb_node->son;
860 et_split (son);
861 et_set_father (son, to_node);
864 if (dom_computed[dir_index] == DOM_OK)
865 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
868 /* Find first basic block in the tree dominating both BB1 and BB2. */
869 basic_block
870 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
872 unsigned int dir_index = dom_convert_dir_to_idx (dir);
874 gcc_checking_assert (dom_computed[dir_index]);
876 if (!bb1)
877 return bb2;
878 if (!bb2)
879 return bb1;
881 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
885 /* Find the nearest common dominator for the basic blocks in BLOCKS,
886 using dominance direction DIR. */
888 basic_block
889 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
891 unsigned i, first;
892 bitmap_iterator bi;
893 basic_block dom;
895 first = bitmap_first_set_bit (blocks);
896 dom = BASIC_BLOCK_FOR_FN (cfun, first);
897 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
898 if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
899 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));
901 return dom;
904 /* Given a dominator tree, we can determine whether one thing
905 dominates another in constant time by using two DFS numbers:
907 1. The number for when we visit a node on the way down the tree
908 2. The number for when we visit a node on the way back up the tree
910 You can view these as bounds for the range of dfs numbers the
911 nodes in the subtree of the dominator tree rooted at that node
912 will contain.
914 The dominator tree is always a simple acyclic tree, so there are
915 only three possible relations two nodes in the dominator tree have
916 to each other:
918 1. Node A is above Node B (and thus, Node A dominates node B)
927 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
928 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
929 because we must hit A in the dominator tree *before* B on the walk
930 down, and we will hit A *after* B on the walk back up
932 2. Node A is below node B (and thus, node B dominates node A)
941 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
942 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
944 This is because we must hit A in the dominator tree *after* B on
945 the walk down, and we will hit A *before* B on the walk back up
947 3. Node A and B are siblings (and thus, neither dominates the other)
955 In the above case, DFS_Number_In of A will *always* be <=
956 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
957 DFS_Number_Out of B. This is because we will always finish the dfs
958 walk of one of the subtrees before the other, and thus, the dfs
959 numbers for one subtree can't intersect with the range of dfs
960 numbers for the other subtree. If you swap A and B's position in
961 the dominator tree, the comparison changes direction, but the point
962 is that both comparisons will always go the same way if there is no
963 dominance relationship.
965 Thus, it is sufficient to write
967 A_Dominates_B (node A, node B)
969 return DFS_Number_In(A) <= DFS_Number_In(B)
970 && DFS_Number_Out (A) >= DFS_Number_Out(B);
973 A_Dominated_by_B (node A, node B)
975 return DFS_Number_In(A) >= DFS_Number_In(A)
976 && DFS_Number_Out (A) <= DFS_Number_Out(B);
977 } */
979 /* Return TRUE in case BB1 is dominated by BB2. */
980 bool
981 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
983 unsigned int dir_index = dom_convert_dir_to_idx (dir);
984 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
986 gcc_checking_assert (dom_computed[dir_index]);
988 if (dom_computed[dir_index] == DOM_OK)
989 return (n1->dfs_num_in >= n2->dfs_num_in
990 && n1->dfs_num_out <= n2->dfs_num_out);
992 return et_below (n1, n2);
995 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
997 unsigned
998 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
1000 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1001 struct et_node *n = bb->dom[dir_index];
1003 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1004 return n->dfs_num_in;
1007 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
1009 unsigned
1010 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1012 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1013 struct et_node *n = bb->dom[dir_index];
1015 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1016 return n->dfs_num_out;
1019 /* Verify invariants of dominator structure. */
1020 DEBUG_FUNCTION void
1021 verify_dominators (enum cdi_direction dir)
1023 int err = 0;
1024 basic_block bb, imm_bb, imm_bb_correct;
1025 struct dom_info di;
1026 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
1028 gcc_assert (dom_info_available_p (dir));
1030 init_dom_info (&di, dir);
1031 calc_dfs_tree (&di, reverse);
1032 calc_idoms (&di, reverse);
1034 FOR_EACH_BB_FN (bb, cfun)
1036 imm_bb = get_immediate_dominator (dir, bb);
1037 if (!imm_bb)
1039 error ("dominator of %d status unknown", bb->index);
1040 err = 1;
1043 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
1044 if (imm_bb != imm_bb_correct)
1046 error ("dominator of %d should be %d, not %d",
1047 bb->index, imm_bb_correct->index, imm_bb->index);
1048 err = 1;
1052 free_dom_info (&di);
1053 gcc_assert (!err);
1056 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1057 assuming that dominators of other blocks are correct. We also use it to
1058 recompute the dominators in a restricted area, by iterating it until it
1059 reaches a fixed point. */
1061 basic_block
1062 recompute_dominator (enum cdi_direction dir, basic_block bb)
1064 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1065 basic_block dom_bb = NULL;
1066 edge e;
1067 edge_iterator ei;
1069 gcc_checking_assert (dom_computed[dir_index]);
1071 if (dir == CDI_DOMINATORS)
1073 FOR_EACH_EDGE (e, ei, bb->preds)
1075 if (!dominated_by_p (dir, e->src, bb))
1076 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1079 else
1081 FOR_EACH_EDGE (e, ei, bb->succs)
1083 if (!dominated_by_p (dir, e->dest, bb))
1084 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1088 return dom_bb;
1091 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1092 of BBS. We assume that all the immediate dominators except for those of the
1093 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1094 currently recorded immediate dominators of blocks in BBS really dominate the
1095 blocks. The basic blocks for that we determine the dominator are removed
1096 from BBS. */
1098 static void
1099 prune_bbs_to_update_dominators (vec<basic_block> bbs,
1100 bool conservative)
1102 unsigned i;
1103 bool single;
1104 basic_block bb, dom = NULL;
1105 edge_iterator ei;
1106 edge e;
1108 for (i = 0; bbs.iterate (i, &bb);)
1110 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1111 goto succeed;
1113 if (single_pred_p (bb))
1115 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1116 goto succeed;
1119 if (!conservative)
1120 goto fail;
1122 single = true;
1123 dom = NULL;
1124 FOR_EACH_EDGE (e, ei, bb->preds)
1126 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1127 continue;
1129 if (!dom)
1130 dom = e->src;
1131 else
1133 single = false;
1134 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1138 gcc_assert (dom != NULL);
1139 if (single
1140 || find_edge (dom, bb))
1142 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1143 goto succeed;
1146 fail:
1147 i++;
1148 continue;
1150 succeed:
1151 bbs.unordered_remove (i);
1155 /* Returns root of the dominance tree in the direction DIR that contains
1156 BB. */
1158 static basic_block
1159 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1161 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1164 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1165 for the sons of Y, found using the SON and BROTHER arrays representing
1166 the dominance tree of graph G. BBS maps the vertices of G to the basic
1167 blocks. */
1169 static void
1170 determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
1171 int y, int *son, int *brother)
1173 bitmap gprime;
1174 int i, a, nc;
1175 vec<int> *sccs;
1176 basic_block bb, dom, ybb;
1177 unsigned si;
1178 edge e;
1179 edge_iterator ei;
1181 if (son[y] == -1)
1182 return;
1183 if (y == (int) bbs.length ())
1184 ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1185 else
1186 ybb = bbs[y];
1188 if (brother[son[y]] == -1)
1190 /* Handle the common case Y has just one son specially. */
1191 bb = bbs[son[y]];
1192 set_immediate_dominator (CDI_DOMINATORS, bb,
1193 recompute_dominator (CDI_DOMINATORS, bb));
1194 identify_vertices (g, y, son[y]);
1195 return;
1198 gprime = BITMAP_ALLOC (NULL);
1199 for (a = son[y]; a != -1; a = brother[a])
1200 bitmap_set_bit (gprime, a);
1202 nc = graphds_scc (g, gprime);
1203 BITMAP_FREE (gprime);
1205 /* ??? Needed to work around the pre-processor confusion with
1206 using a multi-argument template type as macro argument. */
1207 typedef vec<int> vec_int_heap;
1208 sccs = XCNEWVEC (vec_int_heap, nc);
1209 for (a = son[y]; a != -1; a = brother[a])
1210 sccs[g->vertices[a].component].safe_push (a);
1212 for (i = nc - 1; i >= 0; i--)
1214 dom = NULL;
1215 FOR_EACH_VEC_ELT (sccs[i], si, a)
1217 bb = bbs[a];
1218 FOR_EACH_EDGE (e, ei, bb->preds)
1220 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1221 continue;
1223 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1227 gcc_assert (dom != NULL);
1228 FOR_EACH_VEC_ELT (sccs[i], si, a)
1230 bb = bbs[a];
1231 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1235 for (i = 0; i < nc; i++)
1236 sccs[i].release ();
1237 free (sccs);
1239 for (a = son[y]; a != -1; a = brother[a])
1240 identify_vertices (g, y, a);
1243 /* Recompute dominance information for basic blocks in the set BBS. The
1244 function assumes that the immediate dominators of all the other blocks
1245 in CFG are correct, and that there are no unreachable blocks.
1247 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1248 a block of BBS in the current dominance tree dominate it. */
1250 void
1251 iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
1252 bool conservative)
1254 unsigned i;
1255 basic_block bb, dom;
1256 struct graph *g;
1257 int n, y;
1258 size_t dom_i;
1259 edge e;
1260 edge_iterator ei;
1261 int *parent, *son, *brother;
1262 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1264 /* We only support updating dominators. There are some problems with
1265 updating postdominators (need to add fake edges from infinite loops
1266 and noreturn functions), and since we do not currently use
1267 iterate_fix_dominators for postdominators, any attempt to handle these
1268 problems would be unused, untested, and almost surely buggy. We keep
1269 the DIR argument for consistency with the rest of the dominator analysis
1270 interface. */
1271 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
1273 /* The algorithm we use takes inspiration from the following papers, although
1274 the details are quite different from any of them:
1276 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1277 Dominator Tree of a Reducible Flowgraph
1278 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1279 dominator trees
1280 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1281 Algorithm
1283 First, we use the following heuristics to decrease the size of the BBS
1284 set:
1285 a) if BB has a single predecessor, then its immediate dominator is this
1286 predecessor
1287 additionally, if CONSERVATIVE is true:
1288 b) if all the predecessors of BB except for one (X) are dominated by BB,
1289 then X is the immediate dominator of BB
1290 c) if the nearest common ancestor of the predecessors of BB is X and
1291 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1293 Then, we need to establish the dominance relation among the basic blocks
1294 in BBS. We split the dominance tree by removing the immediate dominator
1295 edges from BBS, creating a forest F. We form a graph G whose vertices
1296 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1297 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1298 whose root is X. We then determine dominance tree of G. Note that
1299 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1300 In this step, we can use arbitrary algorithm to determine dominators.
1301 We decided to prefer the algorithm [3] to the algorithm of
1302 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1303 10 during gcc bootstrap), and [3] should perform better in this case.
1305 Finally, we need to determine the immediate dominators for the basic
1306 blocks of BBS. If the immediate dominator of X in G is Y, then
1307 the immediate dominator of X in CFG belongs to the tree of F rooted in
1308 Y. We process the dominator tree T of G recursively, starting from leaves.
1309 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1310 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1311 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1312 the following observations:
1313 (i) the immediate dominator of all blocks in a strongly connected
1314 component of G' is the same
1315 (ii) if X has no predecessors in G', then the immediate dominator of X
1316 is the nearest common ancestor of the predecessors of X in the
1317 subtree of F rooted in Y
1318 Therefore, it suffices to find the topological ordering of G', and
1319 process the nodes X_i in this order using the rules (i) and (ii).
1320 Then, we contract all the nodes X_i with Y in G, so that the further
1321 steps work correctly. */
1323 if (!conservative)
1325 /* Split the tree now. If the idoms of blocks in BBS are not
1326 conservatively correct, setting the dominators using the
1327 heuristics in prune_bbs_to_update_dominators could
1328 create cycles in the dominance "tree", and cause ICE. */
1329 FOR_EACH_VEC_ELT (bbs, i, bb)
1330 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1333 prune_bbs_to_update_dominators (bbs, conservative);
1334 n = bbs.length ();
1336 if (n == 0)
1337 return;
1339 if (n == 1)
1341 bb = bbs[0];
1342 set_immediate_dominator (CDI_DOMINATORS, bb,
1343 recompute_dominator (CDI_DOMINATORS, bb));
1344 return;
1347 /* Construct the graph G. */
1348 hash_map<basic_block, int> map (251);
1349 FOR_EACH_VEC_ELT (bbs, i, bb)
1351 /* If the dominance tree is conservatively correct, split it now. */
1352 if (conservative)
1353 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1354 map.put (bb, i);
1356 map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);
1358 g = new_graph (n + 1);
1359 for (y = 0; y < g->n_vertices; y++)
1360 g->vertices[y].data = BITMAP_ALLOC (NULL);
1361 FOR_EACH_VEC_ELT (bbs, i, bb)
1363 FOR_EACH_EDGE (e, ei, bb->preds)
1365 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1366 if (dom == bb)
1367 continue;
1369 dom_i = *map.get (dom);
1371 /* Do not include parallel edges to G. */
1372 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1373 continue;
1375 add_edge (g, dom_i, i);
1378 for (y = 0; y < g->n_vertices; y++)
1379 BITMAP_FREE (g->vertices[y].data);
1381 /* Find the dominator tree of G. */
1382 son = XNEWVEC (int, n + 1);
1383 brother = XNEWVEC (int, n + 1);
1384 parent = XNEWVEC (int, n + 1);
1385 graphds_domtree (g, n, parent, son, brother);
1387 /* Finally, traverse the tree and find the immediate dominators. */
1388 for (y = n; son[y] != -1; y = son[y])
1389 continue;
1390 while (y != -1)
1392 determine_dominators_for_sons (g, bbs, y, son, brother);
1394 if (brother[y] != -1)
1396 y = brother[y];
1397 while (son[y] != -1)
1398 y = son[y];
1400 else
1401 y = parent[y];
1404 free (son);
1405 free (brother);
1406 free (parent);
1408 free_graph (g);
1411 void
1412 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1414 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1416 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
1418 n_bbs_in_dom_tree[dir_index]++;
1420 bb->dom[dir_index] = et_new_tree (bb);
1422 if (dom_computed[dir_index] == DOM_OK)
1423 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1426 void
1427 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1429 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1431 gcc_checking_assert (dom_computed[dir_index]);
1433 et_free_tree (bb->dom[dir_index]);
1434 bb->dom[dir_index] = NULL;
1435 n_bbs_in_dom_tree[dir_index]--;
1437 if (dom_computed[dir_index] == DOM_OK)
1438 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1441 /* Returns the first son of BB in the dominator or postdominator tree
1442 as determined by DIR. */
1444 basic_block
1445 first_dom_son (enum cdi_direction dir, basic_block bb)
1447 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1448 struct et_node *son = bb->dom[dir_index]->son;
1450 return (basic_block) (son ? son->data : NULL);
1453 /* Returns the next dominance son after BB in the dominator or postdominator
1454 tree as determined by DIR, or NULL if it was the last one. */
1456 basic_block
1457 next_dom_son (enum cdi_direction dir, basic_block bb)
1459 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1460 struct et_node *next = bb->dom[dir_index]->right;
1462 return (basic_block) (next->father->son == next ? NULL : next->data);
1465 /* Return dominance availability for dominance info DIR. */
1467 enum dom_state
1468 dom_info_state (function *fn, enum cdi_direction dir)
1470 if (!fn->cfg)
1471 return DOM_NONE;
1473 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1474 return fn->cfg->x_dom_computed[dir_index];
1477 enum dom_state
1478 dom_info_state (enum cdi_direction dir)
1480 return dom_info_state (cfun, dir);
1483 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1485 void
1486 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1488 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1490 dom_computed[dir_index] = new_state;
1493 /* Returns true if dominance information for direction DIR is available. */
1495 bool
1496 dom_info_available_p (function *fn, enum cdi_direction dir)
1498 return dom_info_state (fn, dir) != DOM_NONE;
1501 bool
1502 dom_info_available_p (enum cdi_direction dir)
1504 return dom_info_available_p (cfun, dir);
1507 DEBUG_FUNCTION void
1508 debug_dominance_info (enum cdi_direction dir)
1510 basic_block bb, bb2;
1511 FOR_EACH_BB_FN (bb, cfun)
1512 if ((bb2 = get_immediate_dominator (dir, bb)))
1513 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1516 /* Prints to stderr representation of the dominance tree (for direction DIR)
1517 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1518 the first line of the output is not indented. */
1520 static void
1521 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1522 unsigned indent, bool indent_first)
1524 basic_block son;
1525 unsigned i;
1526 bool first = true;
1528 if (indent_first)
1529 for (i = 0; i < indent; i++)
1530 fprintf (stderr, "\t");
1531 fprintf (stderr, "%d\t", root->index);
1533 for (son = first_dom_son (dir, root);
1534 son;
1535 son = next_dom_son (dir, son))
1537 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1538 first = false;
1541 if (first)
1542 fprintf (stderr, "\n");
1545 /* Prints to stderr representation of the dominance tree (for direction DIR)
1546 rooted in ROOT. */
1548 DEBUG_FUNCTION void
1549 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1551 debug_dominance_tree_1 (dir, root, 0, false);