PR target/58115
[official-gcc.git] / gcc / ada / sem_ch5.adb
bloba29aece272c84efbd2ef7e9b4efeecf945d8172b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Unblocked_Exit_Count : Nat := 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range (R_Copy : Node_Id);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment (N : Node_Id) is
92 Lhs : constant Node_Id := Name (N);
93 Rhs : constant Node_Id := Expression (N);
94 T1 : Entity_Id;
95 T2 : Entity_Id;
96 Decl : Node_Id;
98 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
102 procedure Kill_Lhs;
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
109 (Opnd : Node_Id;
110 Opnd_Type : in out Entity_Id);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
120 begin
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted (N) then
125 return;
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name (N) then
130 declare
131 Ent : constant Entity_Id := Entity (N);
133 begin
134 if Ekind (Ent) = E_In_Parameter then
135 Error_Msg_N
136 ("assignment to IN mode parameter not allowed", N);
138 -- Renamings of protected private components are turned into
139 -- constants when compiling a protected function. In the case
140 -- of single protected types, the private component appears
141 -- directly.
143 elsif (Is_Prival (Ent)
144 and then
145 (Ekind (Current_Scope) = E_Function
146 or else Ekind (Enclosing_Dynamic_Scope
147 (Current_Scope)) = E_Function))
148 or else
149 (Ekind (Ent) = E_Component
150 and then Is_Protected_Type (Scope (Ent)))
151 then
152 Error_Msg_N
153 ("protected function cannot modify protected object", N);
155 elsif Ekind (Ent) = E_Loop_Parameter then
156 Error_Msg_N
157 ("assignment to loop parameter not allowed", N);
159 else
160 Error_Msg_N
161 ("left hand side of assignment must be a variable", N);
162 end if;
163 end;
165 -- For indexed components or selected components, test prefix
167 elsif Nkind (N) = N_Indexed_Component then
168 Diagnose_Non_Variable_Lhs (Prefix (N));
170 -- Another special case for assignment to discriminant
172 elsif Nkind (N) = N_Selected_Component then
173 if Present (Entity (Selector_Name (N)))
174 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
175 then
176 Error_Msg_N
177 ("assignment to discriminant not allowed", N);
178 else
179 Diagnose_Non_Variable_Lhs (Prefix (N));
180 end if;
182 else
183 -- If we fall through, we have no special message to issue!
185 Error_Msg_N ("left hand side of assignment must be a variable", N);
186 end if;
187 end Diagnose_Non_Variable_Lhs;
189 --------------
190 -- Kill_LHS --
191 --------------
193 procedure Kill_Lhs is
194 begin
195 if Is_Entity_Name (Lhs) then
196 declare
197 Ent : constant Entity_Id := Entity (Lhs);
198 begin
199 if Present (Ent) then
200 Kill_Current_Values (Ent);
201 end if;
202 end;
203 end if;
204 end Kill_Lhs;
206 -------------------------
207 -- Set_Assignment_Type --
208 -------------------------
210 procedure Set_Assignment_Type
211 (Opnd : Node_Id;
212 Opnd_Type : in out Entity_Id)
214 begin
215 Require_Entity (Opnd);
217 -- If the assignment operand is an in-out or out parameter, then we
218 -- get the actual subtype (needed for the unconstrained case). If the
219 -- operand is the actual in an entry declaration, then within the
220 -- accept statement it is replaced with a local renaming, which may
221 -- also have an actual subtype.
223 if Is_Entity_Name (Opnd)
224 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
225 or else Ekind_In (Entity (Opnd),
226 E_In_Out_Parameter,
227 E_Generic_In_Out_Parameter)
228 or else
229 (Ekind (Entity (Opnd)) = E_Variable
230 and then Nkind (Parent (Entity (Opnd))) =
231 N_Object_Renaming_Declaration
232 and then Nkind (Parent (Parent (Entity (Opnd)))) =
233 N_Accept_Statement))
234 then
235 Opnd_Type := Get_Actual_Subtype (Opnd);
237 -- If assignment operand is a component reference, then we get the
238 -- actual subtype of the component for the unconstrained case.
240 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
241 and then not Is_Unchecked_Union (Opnd_Type)
242 then
243 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
245 if Present (Decl) then
246 Insert_Action (N, Decl);
247 Mark_Rewrite_Insertion (Decl);
248 Analyze (Decl);
249 Opnd_Type := Defining_Identifier (Decl);
250 Set_Etype (Opnd, Opnd_Type);
251 Freeze_Itype (Opnd_Type, N);
253 elsif Is_Constrained (Etype (Opnd)) then
254 Opnd_Type := Etype (Opnd);
255 end if;
257 -- For slice, use the constrained subtype created for the slice
259 elsif Nkind (Opnd) = N_Slice then
260 Opnd_Type := Etype (Opnd);
261 end if;
262 end Set_Assignment_Type;
264 -- Start of processing for Analyze_Assignment
266 begin
267 Mark_Coextensions (N, Rhs);
269 Analyze (Rhs);
270 Analyze (Lhs);
272 -- Ensure that we never do an assignment on a variable marked as
273 -- as Safe_To_Reevaluate.
275 pragma Assert (not Is_Entity_Name (Lhs)
276 or else Ekind (Entity (Lhs)) /= E_Variable
277 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
279 -- Start type analysis for assignment
281 T1 := Etype (Lhs);
283 -- In the most general case, both Lhs and Rhs can be overloaded, and we
284 -- must compute the intersection of the possible types on each side.
286 if Is_Overloaded (Lhs) then
287 declare
288 I : Interp_Index;
289 It : Interp;
291 begin
292 T1 := Any_Type;
293 Get_First_Interp (Lhs, I, It);
295 while Present (It.Typ) loop
296 if Has_Compatible_Type (Rhs, It.Typ) then
297 if T1 /= Any_Type then
299 -- An explicit dereference is overloaded if the prefix
300 -- is. Try to remove the ambiguity on the prefix, the
301 -- error will be posted there if the ambiguity is real.
303 if Nkind (Lhs) = N_Explicit_Dereference then
304 declare
305 PI : Interp_Index;
306 PI1 : Interp_Index := 0;
307 PIt : Interp;
308 Found : Boolean;
310 begin
311 Found := False;
312 Get_First_Interp (Prefix (Lhs), PI, PIt);
314 while Present (PIt.Typ) loop
315 if Is_Access_Type (PIt.Typ)
316 and then Has_Compatible_Type
317 (Rhs, Designated_Type (PIt.Typ))
318 then
319 if Found then
320 PIt :=
321 Disambiguate (Prefix (Lhs),
322 PI1, PI, Any_Type);
324 if PIt = No_Interp then
325 Error_Msg_N
326 ("ambiguous left-hand side"
327 & " in assignment", Lhs);
328 exit;
329 else
330 Resolve (Prefix (Lhs), PIt.Typ);
331 end if;
333 exit;
334 else
335 Found := True;
336 PI1 := PI;
337 end if;
338 end if;
340 Get_Next_Interp (PI, PIt);
341 end loop;
342 end;
344 else
345 Error_Msg_N
346 ("ambiguous left-hand side in assignment", Lhs);
347 exit;
348 end if;
349 else
350 T1 := It.Typ;
351 end if;
352 end if;
354 Get_Next_Interp (I, It);
355 end loop;
356 end;
358 if T1 = Any_Type then
359 Error_Msg_N
360 ("no valid types for left-hand side for assignment", Lhs);
361 Kill_Lhs;
362 return;
363 end if;
364 end if;
366 -- The resulting assignment type is T1, so now we will resolve the left
367 -- hand side of the assignment using this determined type.
369 Resolve (Lhs, T1);
371 -- Cases where Lhs is not a variable
373 if not Is_Variable (Lhs) then
375 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
376 -- protected object.
378 declare
379 Ent : Entity_Id;
380 S : Entity_Id;
382 begin
383 if Ada_Version >= Ada_2005 then
385 -- Handle chains of renamings
387 Ent := Lhs;
388 while Nkind (Ent) in N_Has_Entity
389 and then Present (Entity (Ent))
390 and then Present (Renamed_Object (Entity (Ent)))
391 loop
392 Ent := Renamed_Object (Entity (Ent));
393 end loop;
395 if (Nkind (Ent) = N_Attribute_Reference
396 and then Attribute_Name (Ent) = Name_Priority)
398 -- Renamings of the attribute Priority applied to protected
399 -- objects have been previously expanded into calls to the
400 -- Get_Ceiling run-time subprogram.
402 or else
403 (Nkind (Ent) = N_Function_Call
404 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
405 or else
406 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
407 then
408 -- The enclosing subprogram cannot be a protected function
410 S := Current_Scope;
411 while not (Is_Subprogram (S)
412 and then Convention (S) = Convention_Protected)
413 and then S /= Standard_Standard
414 loop
415 S := Scope (S);
416 end loop;
418 if Ekind (S) = E_Function
419 and then Convention (S) = Convention_Protected
420 then
421 Error_Msg_N
422 ("protected function cannot modify protected object",
423 Lhs);
424 end if;
426 -- Changes of the ceiling priority of the protected object
427 -- are only effective if the Ceiling_Locking policy is in
428 -- effect (AARM D.5.2 (5/2)).
430 if Locking_Policy /= 'C' then
431 Error_Msg_N ("assignment to the attribute PRIORITY has " &
432 "no effect??", Lhs);
433 Error_Msg_N ("\since no Locking_Policy has been " &
434 "specified??", Lhs);
435 end if;
437 return;
438 end if;
439 end if;
440 end;
442 Diagnose_Non_Variable_Lhs (Lhs);
443 return;
445 -- Error of assigning to limited type. We do however allow this in
446 -- certain cases where the front end generates the assignments.
448 elsif Is_Limited_Type (T1)
449 and then not Assignment_OK (Lhs)
450 and then not Assignment_OK (Original_Node (Lhs))
451 and then not Is_Value_Type (T1)
452 then
453 -- CPP constructors can only be called in declarations
455 if Is_CPP_Constructor_Call (Rhs) then
456 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
457 else
458 Error_Msg_N
459 ("left hand of assignment must not be limited type", Lhs);
460 Explain_Limited_Type (T1, Lhs);
461 end if;
462 return;
464 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
465 -- abstract. This is only checked when the assignment Comes_From_Source,
466 -- because in some cases the expander generates such assignments (such
467 -- in the _assign operation for an abstract type).
469 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
470 Error_Msg_N
471 ("target of assignment operation must not be abstract", Lhs);
472 end if;
474 -- Resolution may have updated the subtype, in case the left-hand side
475 -- is a private protected component. Use the correct subtype to avoid
476 -- scoping issues in the back-end.
478 T1 := Etype (Lhs);
480 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
481 -- type. For example:
483 -- limited with P;
484 -- package Pkg is
485 -- type Acc is access P.T;
486 -- end Pkg;
488 -- with Pkg; use Acc;
489 -- procedure Example is
490 -- A, B : Acc;
491 -- begin
492 -- A.all := B.all; -- ERROR
493 -- end Example;
495 if Nkind (Lhs) = N_Explicit_Dereference
496 and then Ekind (T1) = E_Incomplete_Type
497 then
498 Error_Msg_N ("invalid use of incomplete type", Lhs);
499 Kill_Lhs;
500 return;
501 end if;
503 -- Now we can complete the resolution of the right hand side
505 Set_Assignment_Type (Lhs, T1);
506 Resolve (Rhs, T1);
508 -- This is the point at which we check for an unset reference
510 Check_Unset_Reference (Rhs);
511 Check_Unprotected_Access (Lhs, Rhs);
513 -- Remaining steps are skipped if Rhs was syntactically in error
515 if Rhs = Error then
516 Kill_Lhs;
517 return;
518 end if;
520 T2 := Etype (Rhs);
522 if not Covers (T1, T2) then
523 Wrong_Type (Rhs, Etype (Lhs));
524 Kill_Lhs;
525 return;
526 end if;
528 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
529 -- types, use the non-limited view if available
531 if Nkind (Rhs) = N_Explicit_Dereference
532 and then Ekind (T2) = E_Incomplete_Type
533 and then Is_Tagged_Type (T2)
534 and then Present (Non_Limited_View (T2))
535 then
536 T2 := Non_Limited_View (T2);
537 end if;
539 Set_Assignment_Type (Rhs, T2);
541 if Total_Errors_Detected /= 0 then
542 if No (T1) then
543 T1 := Any_Type;
544 end if;
546 if No (T2) then
547 T2 := Any_Type;
548 end if;
549 end if;
551 if T1 = Any_Type or else T2 = Any_Type then
552 Kill_Lhs;
553 return;
554 end if;
556 -- If the rhs is class-wide or dynamically tagged, then require the lhs
557 -- to be class-wide. The case where the rhs is a dynamically tagged call
558 -- to a dispatching operation with a controlling access result is
559 -- excluded from this check, since the target has an access type (and
560 -- no tag propagation occurs in that case).
562 if (Is_Class_Wide_Type (T2)
563 or else (Is_Dynamically_Tagged (Rhs)
564 and then not Is_Access_Type (T1)))
565 and then not Is_Class_Wide_Type (T1)
566 then
567 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
569 elsif Is_Class_Wide_Type (T1)
570 and then not Is_Class_Wide_Type (T2)
571 and then not Is_Tag_Indeterminate (Rhs)
572 and then not Is_Dynamically_Tagged (Rhs)
573 then
574 Error_Msg_N ("dynamically tagged expression required!", Rhs);
575 end if;
577 -- Propagate the tag from a class-wide target to the rhs when the rhs
578 -- is a tag-indeterminate call.
580 if Is_Tag_Indeterminate (Rhs) then
581 if Is_Class_Wide_Type (T1) then
582 Propagate_Tag (Lhs, Rhs);
584 elsif Nkind (Rhs) = N_Function_Call
585 and then Is_Entity_Name (Name (Rhs))
586 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
587 then
588 Error_Msg_N
589 ("call to abstract function must be dispatching", Name (Rhs));
591 elsif Nkind (Rhs) = N_Qualified_Expression
592 and then Nkind (Expression (Rhs)) = N_Function_Call
593 and then Is_Entity_Name (Name (Expression (Rhs)))
594 and then
595 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
596 then
597 Error_Msg_N
598 ("call to abstract function must be dispatching",
599 Name (Expression (Rhs)));
600 end if;
601 end if;
603 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
604 -- apply an implicit conversion of the rhs to that type to force
605 -- appropriate static and run-time accessibility checks. This applies
606 -- as well to anonymous access-to-subprogram types that are component
607 -- subtypes or formal parameters.
609 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
610 if Is_Local_Anonymous_Access (T1)
611 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
613 -- Handle assignment to an Ada 2012 stand-alone object
614 -- of an anonymous access type.
616 or else (Ekind (T1) = E_Anonymous_Access_Type
617 and then Nkind (Associated_Node_For_Itype (T1)) =
618 N_Object_Declaration)
620 then
621 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
622 Analyze_And_Resolve (Rhs, T1);
623 end if;
624 end if;
626 -- Ada 2005 (AI-231): Assignment to not null variable
628 if Ada_Version >= Ada_2005
629 and then Can_Never_Be_Null (T1)
630 and then not Assignment_OK (Lhs)
631 then
632 -- Case where we know the right hand side is null
634 if Known_Null (Rhs) then
635 Apply_Compile_Time_Constraint_Error
636 (N => Rhs,
637 Msg =>
638 "(Ada 2005) null not allowed in null-excluding objects??",
639 Reason => CE_Null_Not_Allowed);
641 -- We still mark this as a possible modification, that's necessary
642 -- to reset Is_True_Constant, and desirable for xref purposes.
644 Note_Possible_Modification (Lhs, Sure => True);
645 return;
647 -- If we know the right hand side is non-null, then we convert to the
648 -- target type, since we don't need a run time check in that case.
650 elsif not Can_Never_Be_Null (T2) then
651 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
652 Analyze_And_Resolve (Rhs, T1);
653 end if;
654 end if;
656 if Is_Scalar_Type (T1) then
657 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
659 -- For array types, verify that lengths match. If the right hand side
660 -- is a function call that has been inlined, the assignment has been
661 -- rewritten as a block, and the constraint check will be applied to the
662 -- assignment within the block.
664 elsif Is_Array_Type (T1)
665 and then (Nkind (Rhs) /= N_Type_Conversion
666 or else Is_Constrained (Etype (Rhs)))
667 and then (Nkind (Rhs) /= N_Function_Call
668 or else Nkind (N) /= N_Block_Statement)
669 then
670 -- Assignment verifies that the length of the Lsh and Rhs are equal,
671 -- but of course the indexes do not have to match. If the right-hand
672 -- side is a type conversion to an unconstrained type, a length check
673 -- is performed on the expression itself during expansion. In rare
674 -- cases, the redundant length check is computed on an index type
675 -- with a different representation, triggering incorrect code in the
676 -- back end.
678 Apply_Length_Check (Rhs, Etype (Lhs));
680 else
681 -- Discriminant checks are applied in the course of expansion
683 null;
684 end if;
686 -- Note: modifications of the Lhs may only be recorded after
687 -- checks have been applied.
689 Note_Possible_Modification (Lhs, Sure => True);
691 -- ??? a real accessibility check is needed when ???
693 -- Post warning for redundant assignment or variable to itself
695 if Warn_On_Redundant_Constructs
697 -- We only warn for source constructs
699 and then Comes_From_Source (N)
701 -- Where the object is the same on both sides
703 and then Same_Object (Lhs, Original_Node (Rhs))
705 -- But exclude the case where the right side was an operation that
706 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
707 -- don't want to warn in such a case, since it is reasonable to write
708 -- such expressions especially when K is defined symbolically in some
709 -- other package.
711 and then Nkind (Original_Node (Rhs)) not in N_Op
712 then
713 if Nkind (Lhs) in N_Has_Entity then
714 Error_Msg_NE -- CODEFIX
715 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
716 else
717 Error_Msg_N -- CODEFIX
718 ("?r?useless assignment of object to itself!", N);
719 end if;
720 end if;
722 -- Check for non-allowed composite assignment
724 if not Support_Composite_Assign_On_Target
725 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
726 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
727 then
728 Error_Msg_CRT ("composite assignment", N);
729 end if;
731 -- Check elaboration warning for left side if not in elab code
733 if not In_Subprogram_Or_Concurrent_Unit then
734 Check_Elab_Assign (Lhs);
735 end if;
737 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
738 -- assignment is a source assignment in the extended main source unit.
739 -- We are not interested in any reference information outside this
740 -- context, or in compiler generated assignment statements.
742 if Comes_From_Source (N)
743 and then In_Extended_Main_Source_Unit (Lhs)
744 then
745 Set_Referenced_Modified (Lhs, Out_Param => False);
746 end if;
748 -- Final step. If left side is an entity, then we may be able to reset
749 -- the current tracked values to new safe values. We only have something
750 -- to do if the left side is an entity name, and expansion has not
751 -- modified the node into something other than an assignment, and of
752 -- course we only capture values if it is safe to do so.
754 if Is_Entity_Name (Lhs)
755 and then Nkind (N) = N_Assignment_Statement
756 then
757 declare
758 Ent : constant Entity_Id := Entity (Lhs);
760 begin
761 if Safe_To_Capture_Value (N, Ent) then
763 -- If simple variable on left side, warn if this assignment
764 -- blots out another one (rendering it useless). We only do
765 -- this for source assignments, otherwise we can generate bogus
766 -- warnings when an assignment is rewritten as another
767 -- assignment, and gets tied up with itself.
769 if Warn_On_Modified_Unread
770 and then Is_Assignable (Ent)
771 and then Comes_From_Source (N)
772 and then In_Extended_Main_Source_Unit (Ent)
773 then
774 Warn_On_Useless_Assignment (Ent, N);
775 end if;
777 -- If we are assigning an access type and the left side is an
778 -- entity, then make sure that the Is_Known_[Non_]Null flags
779 -- properly reflect the state of the entity after assignment.
781 if Is_Access_Type (T1) then
782 if Known_Non_Null (Rhs) then
783 Set_Is_Known_Non_Null (Ent, True);
785 elsif Known_Null (Rhs)
786 and then not Can_Never_Be_Null (Ent)
787 then
788 Set_Is_Known_Null (Ent, True);
790 else
791 Set_Is_Known_Null (Ent, False);
793 if not Can_Never_Be_Null (Ent) then
794 Set_Is_Known_Non_Null (Ent, False);
795 end if;
796 end if;
798 -- For discrete types, we may be able to set the current value
799 -- if the value is known at compile time.
801 elsif Is_Discrete_Type (T1)
802 and then Compile_Time_Known_Value (Rhs)
803 then
804 Set_Current_Value (Ent, Rhs);
805 else
806 Set_Current_Value (Ent, Empty);
807 end if;
809 -- If not safe to capture values, kill them
811 else
812 Kill_Lhs;
813 end if;
814 end;
815 end if;
817 -- If assigning to an object in whole or in part, note location of
818 -- assignment in case no one references value. We only do this for
819 -- source assignments, otherwise we can generate bogus warnings when an
820 -- assignment is rewritten as another assignment, and gets tied up with
821 -- itself.
823 declare
824 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
825 begin
826 if Present (Ent)
827 and then Safe_To_Capture_Value (N, Ent)
828 and then Nkind (N) = N_Assignment_Statement
829 and then Warn_On_Modified_Unread
830 and then Is_Assignable (Ent)
831 and then Comes_From_Source (N)
832 and then In_Extended_Main_Source_Unit (Ent)
833 then
834 Set_Last_Assignment (Ent, Lhs);
835 end if;
836 end;
838 Analyze_Dimension (N);
839 end Analyze_Assignment;
841 -----------------------------
842 -- Analyze_Block_Statement --
843 -----------------------------
845 procedure Analyze_Block_Statement (N : Node_Id) is
846 procedure Install_Return_Entities (Scop : Entity_Id);
847 -- Install all entities of return statement scope Scop in the visibility
848 -- chain except for the return object since its entity is reused in a
849 -- renaming.
851 -----------------------------
852 -- Install_Return_Entities --
853 -----------------------------
855 procedure Install_Return_Entities (Scop : Entity_Id) is
856 Id : Entity_Id;
858 begin
859 Id := First_Entity (Scop);
860 while Present (Id) loop
862 -- Do not install the return object
864 if not Ekind_In (Id, E_Constant, E_Variable)
865 or else not Is_Return_Object (Id)
866 then
867 Install_Entity (Id);
868 end if;
870 Next_Entity (Id);
871 end loop;
872 end Install_Return_Entities;
874 -- Local constants and variables
876 Decls : constant List_Id := Declarations (N);
877 Id : constant Node_Id := Identifier (N);
878 HSS : constant Node_Id := Handled_Statement_Sequence (N);
880 Is_BIP_Return_Statement : Boolean;
882 -- Start of processing for Analyze_Block_Statement
884 begin
885 -- In SPARK mode, we reject block statements. Note that the case of
886 -- block statements generated by the expander is fine.
888 if Nkind (Original_Node (N)) = N_Block_Statement then
889 Check_SPARK_Restriction ("block statement is not allowed", N);
890 end if;
892 -- If no handled statement sequence is present, things are really messed
893 -- up, and we just return immediately (defence against previous errors).
895 if No (HSS) then
896 Check_Error_Detected;
897 return;
898 end if;
900 -- Detect whether the block is actually a rewritten return statement of
901 -- a build-in-place function.
903 Is_BIP_Return_Statement :=
904 Present (Id)
905 and then Present (Entity (Id))
906 and then Ekind (Entity (Id)) = E_Return_Statement
907 and then Is_Build_In_Place_Function
908 (Return_Applies_To (Entity (Id)));
910 -- Normal processing with HSS present
912 declare
913 EH : constant List_Id := Exception_Handlers (HSS);
914 Ent : Entity_Id := Empty;
915 S : Entity_Id;
917 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
918 -- Recursively save value of this global, will be restored on exit
920 begin
921 -- Initialize unblocked exit count for statements of begin block
922 -- plus one for each exception handler that is present.
924 Unblocked_Exit_Count := 1;
926 if Present (EH) then
927 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
928 end if;
930 -- If a label is present analyze it and mark it as referenced
932 if Present (Id) then
933 Analyze (Id);
934 Ent := Entity (Id);
936 -- An error defense. If we have an identifier, but no entity, then
937 -- something is wrong. If previous errors, then just remove the
938 -- identifier and continue, otherwise raise an exception.
940 if No (Ent) then
941 Check_Error_Detected;
942 Set_Identifier (N, Empty);
944 else
945 Set_Ekind (Ent, E_Block);
946 Generate_Reference (Ent, N, ' ');
947 Generate_Definition (Ent);
949 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
950 Set_Label_Construct (Parent (Ent), N);
951 end if;
952 end if;
953 end if;
955 -- If no entity set, create a label entity
957 if No (Ent) then
958 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
959 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
960 Set_Parent (Ent, N);
961 end if;
963 Set_Etype (Ent, Standard_Void_Type);
964 Set_Block_Node (Ent, Identifier (N));
965 Push_Scope (Ent);
967 -- The block served as an extended return statement. Ensure that any
968 -- entities created during the analysis and expansion of the return
969 -- object declaration are once again visible.
971 if Is_BIP_Return_Statement then
972 Install_Return_Entities (Ent);
973 end if;
975 if Present (Decls) then
976 Analyze_Declarations (Decls);
977 Check_Completion;
978 Inspect_Deferred_Constant_Completion (Decls);
979 end if;
981 Analyze (HSS);
982 Process_End_Label (HSS, 'e', Ent);
984 -- If exception handlers are present, then we indicate that enclosing
985 -- scopes contain a block with handlers. We only need to mark non-
986 -- generic scopes.
988 if Present (EH) then
989 S := Scope (Ent);
990 loop
991 Set_Has_Nested_Block_With_Handler (S);
992 exit when Is_Overloadable (S)
993 or else Ekind (S) = E_Package
994 or else Is_Generic_Unit (S);
995 S := Scope (S);
996 end loop;
997 end if;
999 Check_References (Ent);
1000 Warn_On_Useless_Assignments (Ent);
1001 End_Scope;
1003 if Unblocked_Exit_Count = 0 then
1004 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1005 Check_Unreachable_Code (N);
1006 else
1007 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1008 end if;
1009 end;
1010 end Analyze_Block_Statement;
1012 ----------------------------
1013 -- Analyze_Case_Statement --
1014 ----------------------------
1016 procedure Analyze_Case_Statement (N : Node_Id) is
1017 Exp : Node_Id;
1018 Exp_Type : Entity_Id;
1019 Exp_Btype : Entity_Id;
1020 Last_Choice : Nat;
1022 Others_Present : Boolean;
1023 -- Indicates if Others was present
1025 pragma Warnings (Off, Last_Choice);
1026 -- Don't care about assigned value
1028 Statements_Analyzed : Boolean := False;
1029 -- Set True if at least some statement sequences get analyzed. If False
1030 -- on exit, means we had a serious error that prevented full analysis of
1031 -- the case statement, and as a result it is not a good idea to output
1032 -- warning messages about unreachable code.
1034 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1035 -- Recursively save value of this global, will be restored on exit
1037 procedure Non_Static_Choice_Error (Choice : Node_Id);
1038 -- Error routine invoked by the generic instantiation below when the
1039 -- case statement has a non static choice.
1041 procedure Process_Statements (Alternative : Node_Id);
1042 -- Analyzes the statements associated with a case alternative. Needed
1043 -- by instantiation below.
1045 package Analyze_Case_Choices is new
1046 Generic_Analyze_Choices
1047 (Process_Associated_Node => Process_Statements);
1048 use Analyze_Case_Choices;
1049 -- Instantiation of the generic choice analysis package
1051 package Check_Case_Choices is new
1052 Generic_Check_Choices
1053 (Process_Empty_Choice => No_OP,
1054 Process_Non_Static_Choice => Non_Static_Choice_Error,
1055 Process_Associated_Node => No_Op);
1056 use Check_Case_Choices;
1057 -- Instantiation of the generic choice processing package
1059 -----------------------------
1060 -- Non_Static_Choice_Error --
1061 -----------------------------
1063 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1064 begin
1065 Flag_Non_Static_Expr
1066 ("choice given in case statement is not static!", Choice);
1067 end Non_Static_Choice_Error;
1069 ------------------------
1070 -- Process_Statements --
1071 ------------------------
1073 procedure Process_Statements (Alternative : Node_Id) is
1074 Choices : constant List_Id := Discrete_Choices (Alternative);
1075 Ent : Entity_Id;
1077 begin
1078 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1079 Statements_Analyzed := True;
1081 -- An interesting optimization. If the case statement expression
1082 -- is a simple entity, then we can set the current value within an
1083 -- alternative if the alternative has one possible value.
1085 -- case N is
1086 -- when 1 => alpha
1087 -- when 2 | 3 => beta
1088 -- when others => gamma
1090 -- Here we know that N is initially 1 within alpha, but for beta and
1091 -- gamma, we do not know anything more about the initial value.
1093 if Is_Entity_Name (Exp) then
1094 Ent := Entity (Exp);
1096 if Ekind_In (Ent, E_Variable,
1097 E_In_Out_Parameter,
1098 E_Out_Parameter)
1099 then
1100 if List_Length (Choices) = 1
1101 and then Nkind (First (Choices)) in N_Subexpr
1102 and then Compile_Time_Known_Value (First (Choices))
1103 then
1104 Set_Current_Value (Entity (Exp), First (Choices));
1105 end if;
1107 Analyze_Statements (Statements (Alternative));
1109 -- After analyzing the case, set the current value to empty
1110 -- since we won't know what it is for the next alternative
1111 -- (unless reset by this same circuit), or after the case.
1113 Set_Current_Value (Entity (Exp), Empty);
1114 return;
1115 end if;
1116 end if;
1118 -- Case where expression is not an entity name of a variable
1120 Analyze_Statements (Statements (Alternative));
1121 end Process_Statements;
1123 -- Start of processing for Analyze_Case_Statement
1125 begin
1126 Unblocked_Exit_Count := 0;
1127 Exp := Expression (N);
1128 Analyze (Exp);
1130 -- The expression must be of any discrete type. In rare cases, the
1131 -- expander constructs a case statement whose expression has a private
1132 -- type whose full view is discrete. This can happen when generating
1133 -- a stream operation for a variant type after the type is frozen,
1134 -- when the partial of view of the type of the discriminant is private.
1135 -- In that case, use the full view to analyze case alternatives.
1137 if not Is_Overloaded (Exp)
1138 and then not Comes_From_Source (N)
1139 and then Is_Private_Type (Etype (Exp))
1140 and then Present (Full_View (Etype (Exp)))
1141 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1142 then
1143 Resolve (Exp, Etype (Exp));
1144 Exp_Type := Full_View (Etype (Exp));
1146 else
1147 Analyze_And_Resolve (Exp, Any_Discrete);
1148 Exp_Type := Etype (Exp);
1149 end if;
1151 Check_Unset_Reference (Exp);
1152 Exp_Btype := Base_Type (Exp_Type);
1154 -- The expression must be of a discrete type which must be determinable
1155 -- independently of the context in which the expression occurs, but
1156 -- using the fact that the expression must be of a discrete type.
1157 -- Moreover, the type this expression must not be a character literal
1158 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1160 -- If error already reported by Resolve, nothing more to do
1162 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1163 return;
1165 elsif Exp_Btype = Any_Character then
1166 Error_Msg_N
1167 ("character literal as case expression is ambiguous", Exp);
1168 return;
1170 elsif Ada_Version = Ada_83
1171 and then (Is_Generic_Type (Exp_Btype)
1172 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1173 then
1174 Error_Msg_N
1175 ("(Ada 83) case expression cannot be of a generic type", Exp);
1176 return;
1177 end if;
1179 -- If the case expression is a formal object of mode in out, then treat
1180 -- it as having a nonstatic subtype by forcing use of the base type
1181 -- (which has to get passed to Check_Case_Choices below). Also use base
1182 -- type when the case expression is parenthesized.
1184 if Paren_Count (Exp) > 0
1185 or else (Is_Entity_Name (Exp)
1186 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1187 then
1188 Exp_Type := Exp_Btype;
1189 end if;
1191 -- Call instantiated procedures to analyzwe and check discrete choices
1193 Analyze_Choices (Alternatives (N), Exp_Type);
1194 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1196 -- Case statement with single OTHERS alternative not allowed in SPARK
1198 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1199 Check_SPARK_Restriction
1200 ("OTHERS as unique case alternative is not allowed", N);
1201 end if;
1203 if Exp_Type = Universal_Integer and then not Others_Present then
1204 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1205 end if;
1207 -- If all our exits were blocked by unconditional transfers of control,
1208 -- then the entire CASE statement acts as an unconditional transfer of
1209 -- control, so treat it like one, and check unreachable code. Skip this
1210 -- test if we had serious errors preventing any statement analysis.
1212 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1213 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1214 Check_Unreachable_Code (N);
1215 else
1216 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1217 end if;
1219 -- If the expander is active it will detect the case of a statically
1220 -- determined single alternative and remove warnings for the case, but
1221 -- if we are not doing expansion, that circuit won't be active. Here we
1222 -- duplicate the effect of removing warnings in the same way, so that
1223 -- we will get the same set of warnings in -gnatc mode.
1225 if not Expander_Active
1226 and then Compile_Time_Known_Value (Expression (N))
1227 and then Serious_Errors_Detected = 0
1228 then
1229 declare
1230 Chosen : constant Node_Id := Find_Static_Alternative (N);
1231 Alt : Node_Id;
1233 begin
1234 Alt := First (Alternatives (N));
1235 while Present (Alt) loop
1236 if Alt /= Chosen then
1237 Remove_Warning_Messages (Statements (Alt));
1238 end if;
1240 Next (Alt);
1241 end loop;
1242 end;
1243 end if;
1244 end Analyze_Case_Statement;
1246 ----------------------------
1247 -- Analyze_Exit_Statement --
1248 ----------------------------
1250 -- If the exit includes a name, it must be the name of a currently open
1251 -- loop. Otherwise there must be an innermost open loop on the stack, to
1252 -- which the statement implicitly refers.
1254 -- Additionally, in SPARK mode:
1256 -- The exit can only name the closest enclosing loop;
1258 -- An exit with a when clause must be directly contained in a loop;
1260 -- An exit without a when clause must be directly contained in an
1261 -- if-statement with no elsif or else, which is itself directly contained
1262 -- in a loop. The exit must be the last statement in the if-statement.
1264 procedure Analyze_Exit_Statement (N : Node_Id) is
1265 Target : constant Node_Id := Name (N);
1266 Cond : constant Node_Id := Condition (N);
1267 Scope_Id : Entity_Id;
1268 U_Name : Entity_Id;
1269 Kind : Entity_Kind;
1271 begin
1272 if No (Cond) then
1273 Check_Unreachable_Code (N);
1274 end if;
1276 if Present (Target) then
1277 Analyze (Target);
1278 U_Name := Entity (Target);
1280 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1281 Error_Msg_N ("invalid loop name in exit statement", N);
1282 return;
1284 else
1285 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1286 Check_SPARK_Restriction
1287 ("exit label must name the closest enclosing loop", N);
1288 end if;
1290 Set_Has_Exit (U_Name);
1291 end if;
1293 else
1294 U_Name := Empty;
1295 end if;
1297 for J in reverse 0 .. Scope_Stack.Last loop
1298 Scope_Id := Scope_Stack.Table (J).Entity;
1299 Kind := Ekind (Scope_Id);
1301 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1302 Set_Has_Exit (Scope_Id);
1303 exit;
1305 elsif Kind = E_Block
1306 or else Kind = E_Loop
1307 or else Kind = E_Return_Statement
1308 then
1309 null;
1311 else
1312 Error_Msg_N
1313 ("cannot exit from program unit or accept statement", N);
1314 return;
1315 end if;
1316 end loop;
1318 -- Verify that if present the condition is a Boolean expression
1320 if Present (Cond) then
1321 Analyze_And_Resolve (Cond, Any_Boolean);
1322 Check_Unset_Reference (Cond);
1323 end if;
1325 -- In SPARK mode, verify that the exit statement respects the SPARK
1326 -- restrictions.
1328 if Present (Cond) then
1329 if Nkind (Parent (N)) /= N_Loop_Statement then
1330 Check_SPARK_Restriction
1331 ("exit with when clause must be directly in loop", N);
1332 end if;
1334 else
1335 if Nkind (Parent (N)) /= N_If_Statement then
1336 if Nkind (Parent (N)) = N_Elsif_Part then
1337 Check_SPARK_Restriction
1338 ("exit must be in IF without ELSIF", N);
1339 else
1340 Check_SPARK_Restriction ("exit must be directly in IF", N);
1341 end if;
1343 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1344 Check_SPARK_Restriction
1345 ("exit must be in IF directly in loop", N);
1347 -- First test the presence of ELSE, so that an exit in an ELSE leads
1348 -- to an error mentioning the ELSE.
1350 elsif Present (Else_Statements (Parent (N))) then
1351 Check_SPARK_Restriction ("exit must be in IF without ELSE", N);
1353 -- An exit in an ELSIF does not reach here, as it would have been
1354 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1356 elsif Present (Elsif_Parts (Parent (N))) then
1357 Check_SPARK_Restriction ("exit must be in IF without ELSIF", N);
1358 end if;
1359 end if;
1361 -- Chain exit statement to associated loop entity
1363 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1364 Set_First_Exit_Statement (Scope_Id, N);
1366 -- Since the exit may take us out of a loop, any previous assignment
1367 -- statement is not useless, so clear last assignment indications. It
1368 -- is OK to keep other current values, since if the exit statement
1369 -- does not exit, then the current values are still valid.
1371 Kill_Current_Values (Last_Assignment_Only => True);
1372 end Analyze_Exit_Statement;
1374 ----------------------------
1375 -- Analyze_Goto_Statement --
1376 ----------------------------
1378 procedure Analyze_Goto_Statement (N : Node_Id) is
1379 Label : constant Node_Id := Name (N);
1380 Scope_Id : Entity_Id;
1381 Label_Scope : Entity_Id;
1382 Label_Ent : Entity_Id;
1384 begin
1385 Check_SPARK_Restriction ("goto statement is not allowed", N);
1387 -- Actual semantic checks
1389 Check_Unreachable_Code (N);
1390 Kill_Current_Values (Last_Assignment_Only => True);
1392 Analyze (Label);
1393 Label_Ent := Entity (Label);
1395 -- Ignore previous error
1397 if Label_Ent = Any_Id then
1398 Check_Error_Detected;
1399 return;
1401 -- We just have a label as the target of a goto
1403 elsif Ekind (Label_Ent) /= E_Label then
1404 Error_Msg_N ("target of goto statement must be a label", Label);
1405 return;
1407 -- Check that the target of the goto is reachable according to Ada
1408 -- scoping rules. Note: the special gotos we generate for optimizing
1409 -- local handling of exceptions would violate these rules, but we mark
1410 -- such gotos as analyzed when built, so this code is never entered.
1412 elsif not Reachable (Label_Ent) then
1413 Error_Msg_N ("target of goto statement is not reachable", Label);
1414 return;
1415 end if;
1417 -- Here if goto passes initial validity checks
1419 Label_Scope := Enclosing_Scope (Label_Ent);
1421 for J in reverse 0 .. Scope_Stack.Last loop
1422 Scope_Id := Scope_Stack.Table (J).Entity;
1424 if Label_Scope = Scope_Id
1425 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1426 then
1427 if Scope_Id /= Label_Scope then
1428 Error_Msg_N
1429 ("cannot exit from program unit or accept statement", N);
1430 end if;
1432 return;
1433 end if;
1434 end loop;
1436 raise Program_Error;
1437 end Analyze_Goto_Statement;
1439 --------------------------
1440 -- Analyze_If_Statement --
1441 --------------------------
1443 -- A special complication arises in the analysis of if statements
1445 -- The expander has circuitry to completely delete code that it can tell
1446 -- will not be executed (as a result of compile time known conditions). In
1447 -- the analyzer, we ensure that code that will be deleted in this manner
1448 -- is analyzed but not expanded. This is obviously more efficient, but
1449 -- more significantly, difficulties arise if code is expanded and then
1450 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1451 -- generated in deleted code must be frozen from start, because the nodes
1452 -- on which they depend will not be available at the freeze point.
1454 procedure Analyze_If_Statement (N : Node_Id) is
1455 E : Node_Id;
1457 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1458 -- Recursively save value of this global, will be restored on exit
1460 Save_In_Deleted_Code : Boolean;
1462 Del : Boolean := False;
1463 -- This flag gets set True if a True condition has been found, which
1464 -- means that remaining ELSE/ELSIF parts are deleted.
1466 procedure Analyze_Cond_Then (Cnode : Node_Id);
1467 -- This is applied to either the N_If_Statement node itself or to an
1468 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1469 -- statements associated with it.
1471 -----------------------
1472 -- Analyze_Cond_Then --
1473 -----------------------
1475 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1476 Cond : constant Node_Id := Condition (Cnode);
1477 Tstm : constant List_Id := Then_Statements (Cnode);
1479 begin
1480 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1481 Analyze_And_Resolve (Cond, Any_Boolean);
1482 Check_Unset_Reference (Cond);
1483 Set_Current_Value_Condition (Cnode);
1485 -- If already deleting, then just analyze then statements
1487 if Del then
1488 Analyze_Statements (Tstm);
1490 -- Compile time known value, not deleting yet
1492 elsif Compile_Time_Known_Value (Cond) then
1493 Save_In_Deleted_Code := In_Deleted_Code;
1495 -- If condition is True, then analyze the THEN statements and set
1496 -- no expansion for ELSE and ELSIF parts.
1498 if Is_True (Expr_Value (Cond)) then
1499 Analyze_Statements (Tstm);
1500 Del := True;
1501 Expander_Mode_Save_And_Set (False);
1502 In_Deleted_Code := True;
1504 -- If condition is False, analyze THEN with expansion off
1506 else -- Is_False (Expr_Value (Cond))
1507 Expander_Mode_Save_And_Set (False);
1508 In_Deleted_Code := True;
1509 Analyze_Statements (Tstm);
1510 Expander_Mode_Restore;
1511 In_Deleted_Code := Save_In_Deleted_Code;
1512 end if;
1514 -- Not known at compile time, not deleting, normal analysis
1516 else
1517 Analyze_Statements (Tstm);
1518 end if;
1519 end Analyze_Cond_Then;
1521 -- Start of Analyze_If_Statement
1523 begin
1524 -- Initialize exit count for else statements. If there is no else part,
1525 -- this count will stay non-zero reflecting the fact that the uncovered
1526 -- else case is an unblocked exit.
1528 Unblocked_Exit_Count := 1;
1529 Analyze_Cond_Then (N);
1531 -- Now to analyze the elsif parts if any are present
1533 if Present (Elsif_Parts (N)) then
1534 E := First (Elsif_Parts (N));
1535 while Present (E) loop
1536 Analyze_Cond_Then (E);
1537 Next (E);
1538 end loop;
1539 end if;
1541 if Present (Else_Statements (N)) then
1542 Analyze_Statements (Else_Statements (N));
1543 end if;
1545 -- If all our exits were blocked by unconditional transfers of control,
1546 -- then the entire IF statement acts as an unconditional transfer of
1547 -- control, so treat it like one, and check unreachable code.
1549 if Unblocked_Exit_Count = 0 then
1550 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1551 Check_Unreachable_Code (N);
1552 else
1553 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1554 end if;
1556 if Del then
1557 Expander_Mode_Restore;
1558 In_Deleted_Code := Save_In_Deleted_Code;
1559 end if;
1561 if not Expander_Active
1562 and then Compile_Time_Known_Value (Condition (N))
1563 and then Serious_Errors_Detected = 0
1564 then
1565 if Is_True (Expr_Value (Condition (N))) then
1566 Remove_Warning_Messages (Else_Statements (N));
1568 if Present (Elsif_Parts (N)) then
1569 E := First (Elsif_Parts (N));
1570 while Present (E) loop
1571 Remove_Warning_Messages (Then_Statements (E));
1572 Next (E);
1573 end loop;
1574 end if;
1576 else
1577 Remove_Warning_Messages (Then_Statements (N));
1578 end if;
1579 end if;
1581 -- Warn on redundant if statement that has no effect
1583 -- Note, we could also check empty ELSIF parts ???
1585 if Warn_On_Redundant_Constructs
1587 -- If statement must be from source
1589 and then Comes_From_Source (N)
1591 -- Condition must not have obvious side effect
1593 and then Has_No_Obvious_Side_Effects (Condition (N))
1595 -- No elsif parts of else part
1597 and then No (Elsif_Parts (N))
1598 and then No (Else_Statements (N))
1600 -- Then must be a single null statement
1602 and then List_Length (Then_Statements (N)) = 1
1603 then
1604 -- Go to original node, since we may have rewritten something as
1605 -- a null statement (e.g. a case we could figure the outcome of).
1607 declare
1608 T : constant Node_Id := First (Then_Statements (N));
1609 S : constant Node_Id := Original_Node (T);
1611 begin
1612 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1613 Error_Msg_N ("if statement has no effect?r?", N);
1614 end if;
1615 end;
1616 end if;
1617 end Analyze_If_Statement;
1619 ----------------------------------------
1620 -- Analyze_Implicit_Label_Declaration --
1621 ----------------------------------------
1623 -- An implicit label declaration is generated in the innermost enclosing
1624 -- declarative part. This is done for labels, and block and loop names.
1626 -- Note: any changes in this routine may need to be reflected in
1627 -- Analyze_Label_Entity.
1629 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1630 Id : constant Node_Id := Defining_Identifier (N);
1631 begin
1632 Enter_Name (Id);
1633 Set_Ekind (Id, E_Label);
1634 Set_Etype (Id, Standard_Void_Type);
1635 Set_Enclosing_Scope (Id, Current_Scope);
1636 end Analyze_Implicit_Label_Declaration;
1638 ------------------------------
1639 -- Analyze_Iteration_Scheme --
1640 ------------------------------
1642 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1643 Cond : Node_Id;
1644 Iter_Spec : Node_Id;
1645 Loop_Spec : Node_Id;
1647 begin
1648 -- For an infinite loop, there is no iteration scheme
1650 if No (N) then
1651 return;
1652 end if;
1654 Cond := Condition (N);
1655 Iter_Spec := Iterator_Specification (N);
1656 Loop_Spec := Loop_Parameter_Specification (N);
1658 if Present (Cond) then
1659 Analyze_And_Resolve (Cond, Any_Boolean);
1660 Check_Unset_Reference (Cond);
1661 Set_Current_Value_Condition (N);
1663 elsif Present (Iter_Spec) then
1664 Analyze_Iterator_Specification (Iter_Spec);
1666 else
1667 Analyze_Loop_Parameter_Specification (Loop_Spec);
1668 end if;
1669 end Analyze_Iteration_Scheme;
1671 ------------------------------------
1672 -- Analyze_Iterator_Specification --
1673 ------------------------------------
1675 procedure Analyze_Iterator_Specification (N : Node_Id) is
1676 Loc : constant Source_Ptr := Sloc (N);
1677 Def_Id : constant Node_Id := Defining_Identifier (N);
1678 Subt : constant Node_Id := Subtype_Indication (N);
1679 Iter_Name : constant Node_Id := Name (N);
1681 Ent : Entity_Id;
1682 Typ : Entity_Id;
1684 begin
1685 Enter_Name (Def_Id);
1687 if Present (Subt) then
1688 Analyze (Subt);
1689 end if;
1691 Preanalyze_Range (Iter_Name);
1693 -- Set the kind of the loop variable, which is not visible within
1694 -- the iterator name.
1696 Set_Ekind (Def_Id, E_Variable);
1698 -- If the domain of iteration is an expression, create a declaration for
1699 -- it, so that finalization actions are introduced outside of the loop.
1700 -- The declaration must be a renaming because the body of the loop may
1701 -- assign to elements.
1703 if not Is_Entity_Name (Iter_Name)
1705 -- When the context is a quantified expression, the renaming
1706 -- declaration is delayed until the expansion phase if we are
1707 -- doing expansion.
1709 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1710 or else Operating_Mode = Check_Semantics)
1712 -- Do not perform this expansion in SPARK mode, since the formal
1713 -- verification directly deals with the source form of the iterator.
1715 and then not SPARK_Mode
1716 then
1717 declare
1718 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1719 Decl : Node_Id;
1721 begin
1722 Typ := Etype (Iter_Name);
1724 -- Protect against malformed iterator
1726 if Typ = Any_Type then
1727 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1728 return;
1729 end if;
1731 -- The name in the renaming declaration may be a function call.
1732 -- Indicate that it does not come from source, to suppress
1733 -- spurious warnings on renamings of parameterless functions,
1734 -- a common enough idiom in user-defined iterators.
1736 Decl :=
1737 Make_Object_Renaming_Declaration (Loc,
1738 Defining_Identifier => Id,
1739 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
1740 Name =>
1741 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
1743 Insert_Actions (Parent (Parent (N)), New_List (Decl));
1744 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
1745 Set_Etype (Id, Typ);
1746 Set_Etype (Name (N), Typ);
1747 end;
1749 -- Container is an entity or an array with uncontrolled components, or
1750 -- else it is a container iterator given by a function call, typically
1751 -- called Iterate in the case of predefined containers, even though
1752 -- Iterate is not a reserved name. What matters is that the return type
1753 -- of the function is an iterator type.
1755 elsif Is_Entity_Name (Iter_Name) then
1756 Analyze (Iter_Name);
1758 if Nkind (Iter_Name) = N_Function_Call then
1759 declare
1760 C : constant Node_Id := Name (Iter_Name);
1761 I : Interp_Index;
1762 It : Interp;
1764 begin
1765 if not Is_Overloaded (Iter_Name) then
1766 Resolve (Iter_Name, Etype (C));
1768 else
1769 Get_First_Interp (C, I, It);
1770 while It.Typ /= Empty loop
1771 if Reverse_Present (N) then
1772 if Is_Reversible_Iterator (It.Typ) then
1773 Resolve (Iter_Name, It.Typ);
1774 exit;
1775 end if;
1777 elsif Is_Iterator (It.Typ) then
1778 Resolve (Iter_Name, It.Typ);
1779 exit;
1780 end if;
1782 Get_Next_Interp (I, It);
1783 end loop;
1784 end if;
1785 end;
1787 -- Domain of iteration is not overloaded
1789 else
1790 Resolve (Iter_Name, Etype (Iter_Name));
1791 end if;
1792 end if;
1794 Typ := Etype (Iter_Name);
1796 if Is_Array_Type (Typ) then
1797 if Of_Present (N) then
1798 Set_Etype (Def_Id, Component_Type (Typ));
1800 -- Here we have a missing Range attribute
1802 else
1803 Error_Msg_N
1804 ("missing Range attribute in iteration over an array", N);
1806 -- In Ada 2012 mode, this may be an attempt at an iterator
1808 if Ada_Version >= Ada_2012 then
1809 Error_Msg_NE
1810 ("\if& is meant to designate an element of the array, use OF",
1811 N, Def_Id);
1812 end if;
1814 -- Prevent cascaded errors
1816 Set_Ekind (Def_Id, E_Loop_Parameter);
1817 Set_Etype (Def_Id, Etype (First_Index (Typ)));
1818 end if;
1820 -- Check for type error in iterator
1822 elsif Typ = Any_Type then
1823 return;
1825 -- Iteration over a container
1827 else
1828 Set_Ekind (Def_Id, E_Loop_Parameter);
1830 if Of_Present (N) then
1832 -- The type of the loop variable is the Iterator_Element aspect of
1833 -- the container type.
1835 declare
1836 Element : constant Entity_Id :=
1837 Find_Value_Of_Aspect (Typ, Aspect_Iterator_Element);
1838 begin
1839 if No (Element) then
1840 Error_Msg_NE ("cannot iterate over&", N, Typ);
1841 return;
1842 else
1843 Set_Etype (Def_Id, Entity (Element));
1845 -- If the container has a variable indexing aspect, the
1846 -- element is a variable and is modifiable in the loop.
1848 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
1849 Set_Ekind (Def_Id, E_Variable);
1850 end if;
1851 end if;
1852 end;
1854 else
1855 -- For an iteration of the form IN, the name must denote an
1856 -- iterator, typically the result of a call to Iterate. Give a
1857 -- useful error message when the name is a container by itself.
1859 if Is_Entity_Name (Original_Node (Name (N)))
1860 and then not Is_Iterator (Typ)
1861 then
1862 if not Has_Aspect (Typ, Aspect_Iterator_Element) then
1863 Error_Msg_NE
1864 ("cannot iterate over&", Name (N), Typ);
1865 else
1866 Error_Msg_N
1867 ("name must be an iterator, not a container", Name (N));
1868 end if;
1870 Error_Msg_NE
1871 ("\to iterate directly over the elements of a container, " &
1872 "write `of &`", Name (N), Original_Node (Name (N)));
1873 end if;
1875 -- The result type of Iterate function is the classwide type of
1876 -- the interface parent. We need the specific Cursor type defined
1877 -- in the container package.
1879 Ent := First_Entity (Scope (Typ));
1880 while Present (Ent) loop
1881 if Chars (Ent) = Name_Cursor then
1882 Set_Etype (Def_Id, Etype (Ent));
1883 exit;
1884 end if;
1886 Next_Entity (Ent);
1887 end loop;
1888 end if;
1889 end if;
1890 end Analyze_Iterator_Specification;
1892 -------------------
1893 -- Analyze_Label --
1894 -------------------
1896 -- Note: the semantic work required for analyzing labels (setting them as
1897 -- reachable) was done in a prepass through the statements in the block,
1898 -- so that forward gotos would be properly handled. See Analyze_Statements
1899 -- for further details. The only processing required here is to deal with
1900 -- optimizations that depend on an assumption of sequential control flow,
1901 -- since of course the occurrence of a label breaks this assumption.
1903 procedure Analyze_Label (N : Node_Id) is
1904 pragma Warnings (Off, N);
1905 begin
1906 Kill_Current_Values;
1907 end Analyze_Label;
1909 --------------------------
1910 -- Analyze_Label_Entity --
1911 --------------------------
1913 procedure Analyze_Label_Entity (E : Entity_Id) is
1914 begin
1915 Set_Ekind (E, E_Label);
1916 Set_Etype (E, Standard_Void_Type);
1917 Set_Enclosing_Scope (E, Current_Scope);
1918 Set_Reachable (E, True);
1919 end Analyze_Label_Entity;
1921 ------------------------------------------
1922 -- Analyze_Loop_Parameter_Specification --
1923 ------------------------------------------
1925 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
1926 Loop_Nod : constant Node_Id := Parent (Parent (N));
1928 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
1929 -- If the bounds are given by a 'Range reference on a function call
1930 -- that returns a controlled array, introduce an explicit declaration
1931 -- to capture the bounds, so that the function result can be finalized
1932 -- in timely fashion.
1934 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
1935 -- N is the node for an arbitrary construct. This function searches the
1936 -- construct N to see if any expressions within it contain function
1937 -- calls that use the secondary stack, returning True if any such call
1938 -- is found, and False otherwise.
1940 procedure Process_Bounds (R : Node_Id);
1941 -- If the iteration is given by a range, create temporaries and
1942 -- assignment statements block to capture the bounds and perform
1943 -- required finalization actions in case a bound includes a function
1944 -- call that uses the temporary stack. We first pre-analyze a copy of
1945 -- the range in order to determine the expected type, and analyze and
1946 -- resolve the original bounds.
1948 --------------------------------------
1949 -- Check_Controlled_Array_Attribute --
1950 --------------------------------------
1952 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
1953 begin
1954 if Nkind (DS) = N_Attribute_Reference
1955 and then Is_Entity_Name (Prefix (DS))
1956 and then Ekind (Entity (Prefix (DS))) = E_Function
1957 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
1958 and then
1959 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
1960 and then Expander_Active
1961 then
1962 declare
1963 Loc : constant Source_Ptr := Sloc (N);
1964 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
1965 Indx : constant Entity_Id :=
1966 Base_Type (Etype (First_Index (Arr)));
1967 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
1968 Decl : Node_Id;
1970 begin
1971 Decl :=
1972 Make_Subtype_Declaration (Loc,
1973 Defining_Identifier => Subt,
1974 Subtype_Indication =>
1975 Make_Subtype_Indication (Loc,
1976 Subtype_Mark => New_Reference_To (Indx, Loc),
1977 Constraint =>
1978 Make_Range_Constraint (Loc, Relocate_Node (DS))));
1979 Insert_Before (Loop_Nod, Decl);
1980 Analyze (Decl);
1982 Rewrite (DS,
1983 Make_Attribute_Reference (Loc,
1984 Prefix => New_Reference_To (Subt, Loc),
1985 Attribute_Name => Attribute_Name (DS)));
1987 Analyze (DS);
1988 end;
1989 end if;
1990 end Check_Controlled_Array_Attribute;
1992 ------------------------------------
1993 -- Has_Call_Using_Secondary_Stack --
1994 ------------------------------------
1996 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
1998 function Check_Call (N : Node_Id) return Traverse_Result;
1999 -- Check if N is a function call which uses the secondary stack
2001 ----------------
2002 -- Check_Call --
2003 ----------------
2005 function Check_Call (N : Node_Id) return Traverse_Result is
2006 Nam : Node_Id;
2007 Subp : Entity_Id;
2008 Return_Typ : Entity_Id;
2010 begin
2011 if Nkind (N) = N_Function_Call then
2012 Nam := Name (N);
2014 -- Call using access to subprogram with explicit dereference
2016 if Nkind (Nam) = N_Explicit_Dereference then
2017 Subp := Etype (Nam);
2019 -- Call using a selected component notation or Ada 2005 object
2020 -- operation notation
2022 elsif Nkind (Nam) = N_Selected_Component then
2023 Subp := Entity (Selector_Name (Nam));
2025 -- Common case
2027 else
2028 Subp := Entity (Nam);
2029 end if;
2031 Return_Typ := Etype (Subp);
2033 if Is_Composite_Type (Return_Typ)
2034 and then not Is_Constrained (Return_Typ)
2035 then
2036 return Abandon;
2038 elsif Sec_Stack_Needed_For_Return (Subp) then
2039 return Abandon;
2040 end if;
2041 end if;
2043 -- Continue traversing the tree
2045 return OK;
2046 end Check_Call;
2048 function Check_Calls is new Traverse_Func (Check_Call);
2050 -- Start of processing for Has_Call_Using_Secondary_Stack
2052 begin
2053 return Check_Calls (N) = Abandon;
2054 end Has_Call_Using_Secondary_Stack;
2056 --------------------
2057 -- Process_Bounds --
2058 --------------------
2060 procedure Process_Bounds (R : Node_Id) is
2061 Loc : constant Source_Ptr := Sloc (N);
2063 function One_Bound
2064 (Original_Bound : Node_Id;
2065 Analyzed_Bound : Node_Id;
2066 Typ : Entity_Id) return Node_Id;
2067 -- Capture value of bound and return captured value
2069 ---------------
2070 -- One_Bound --
2071 ---------------
2073 function One_Bound
2074 (Original_Bound : Node_Id;
2075 Analyzed_Bound : Node_Id;
2076 Typ : Entity_Id) return Node_Id
2078 Assign : Node_Id;
2079 Decl : Node_Id;
2080 Id : Entity_Id;
2082 begin
2083 -- If the bound is a constant or an object, no need for a separate
2084 -- declaration. If the bound is the result of previous expansion
2085 -- it is already analyzed and should not be modified. Note that
2086 -- the Bound will be resolved later, if needed, as part of the
2087 -- call to Make_Index (literal bounds may need to be resolved to
2088 -- type Integer).
2090 if Analyzed (Original_Bound) then
2091 return Original_Bound;
2093 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2094 N_Character_Literal)
2095 or else Is_Entity_Name (Analyzed_Bound)
2096 then
2097 Analyze_And_Resolve (Original_Bound, Typ);
2098 return Original_Bound;
2099 end if;
2101 -- Normally, the best approach is simply to generate a constant
2102 -- declaration that captures the bound. However, there is a nasty
2103 -- case where this is wrong. If the bound is complex, and has a
2104 -- possible use of the secondary stack, we need to generate a
2105 -- separate assignment statement to ensure the creation of a block
2106 -- which will release the secondary stack.
2108 -- We prefer the constant declaration, since it leaves us with a
2109 -- proper trace of the value, useful in optimizations that get rid
2110 -- of junk range checks.
2112 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2113 Analyze_And_Resolve (Original_Bound, Typ);
2114 Force_Evaluation (Original_Bound);
2115 return Original_Bound;
2116 end if;
2118 Id := Make_Temporary (Loc, 'R', Original_Bound);
2120 -- Here we make a declaration with a separate assignment
2121 -- statement, and insert before loop header.
2123 Decl :=
2124 Make_Object_Declaration (Loc,
2125 Defining_Identifier => Id,
2126 Object_Definition => New_Occurrence_Of (Typ, Loc));
2128 Assign :=
2129 Make_Assignment_Statement (Loc,
2130 Name => New_Occurrence_Of (Id, Loc),
2131 Expression => Relocate_Node (Original_Bound));
2133 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2135 -- Now that this temporary variable is initialized we decorate it
2136 -- as safe-to-reevaluate to inform to the backend that no further
2137 -- asignment will be issued and hence it can be handled as side
2138 -- effect free. Note that this decoration must be done when the
2139 -- assignment has been analyzed because otherwise it will be
2140 -- rejected (see Analyze_Assignment).
2142 Set_Is_Safe_To_Reevaluate (Id);
2144 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2146 if Nkind (Assign) = N_Assignment_Statement then
2147 return Expression (Assign);
2148 else
2149 return Original_Bound;
2150 end if;
2151 end One_Bound;
2153 Hi : constant Node_Id := High_Bound (R);
2154 Lo : constant Node_Id := Low_Bound (R);
2155 R_Copy : constant Node_Id := New_Copy_Tree (R);
2156 New_Hi : Node_Id;
2157 New_Lo : Node_Id;
2158 Typ : Entity_Id;
2160 -- Start of processing for Process_Bounds
2162 begin
2163 Set_Parent (R_Copy, Parent (R));
2164 Preanalyze_Range (R_Copy);
2165 Typ := Etype (R_Copy);
2167 -- If the type of the discrete range is Universal_Integer, then the
2168 -- bound's type must be resolved to Integer, and any object used to
2169 -- hold the bound must also have type Integer, unless the literal
2170 -- bounds are constant-folded expressions with a user-defined type.
2172 if Typ = Universal_Integer then
2173 if Nkind (Lo) = N_Integer_Literal
2174 and then Present (Etype (Lo))
2175 and then Scope (Etype (Lo)) /= Standard_Standard
2176 then
2177 Typ := Etype (Lo);
2179 elsif Nkind (Hi) = N_Integer_Literal
2180 and then Present (Etype (Hi))
2181 and then Scope (Etype (Hi)) /= Standard_Standard
2182 then
2183 Typ := Etype (Hi);
2185 else
2186 Typ := Standard_Integer;
2187 end if;
2188 end if;
2190 Set_Etype (R, Typ);
2192 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2193 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2195 -- Propagate staticness to loop range itself, in case the
2196 -- corresponding subtype is static.
2198 if New_Lo /= Lo and then Is_Static_Expression (New_Lo) then
2199 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2200 end if;
2202 if New_Hi /= Hi and then Is_Static_Expression (New_Hi) then
2203 Rewrite (High_Bound (R), New_Copy (New_Hi));
2204 end if;
2205 end Process_Bounds;
2207 -- Local variables
2209 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2210 Id : constant Entity_Id := Defining_Identifier (N);
2212 DS_Copy : Node_Id;
2214 -- Start of processing for Analyze_Loop_Parameter_Specification
2216 begin
2217 Enter_Name (Id);
2219 -- We always consider the loop variable to be referenced, since the loop
2220 -- may be used just for counting purposes.
2222 Generate_Reference (Id, N, ' ');
2224 -- Check for the case of loop variable hiding a local variable (used
2225 -- later on to give a nice warning if the hidden variable is never
2226 -- assigned).
2228 declare
2229 H : constant Entity_Id := Homonym (Id);
2230 begin
2231 if Present (H)
2232 and then Ekind (H) = E_Variable
2233 and then Is_Discrete_Type (Etype (H))
2234 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2235 then
2236 Set_Hiding_Loop_Variable (H, Id);
2237 end if;
2238 end;
2240 -- Loop parameter specification must include subtype mark in SPARK
2242 if Nkind (DS) = N_Range then
2243 Check_SPARK_Restriction
2244 ("loop parameter specification must include subtype mark", N);
2245 end if;
2247 -- Analyze the subtype definition and create temporaries for the bounds.
2248 -- Do not evaluate the range when preanalyzing a quantified expression
2249 -- because bounds expressed as function calls with side effects will be
2250 -- erroneously replicated.
2252 if Nkind (DS) = N_Range
2253 and then Expander_Active
2254 and then Nkind (Parent (N)) /= N_Quantified_Expression
2255 then
2256 Process_Bounds (DS);
2258 -- Either the expander not active or the range of iteration is a subtype
2259 -- indication, an entity, or a function call that yields an aggregate or
2260 -- a container.
2262 else
2263 DS_Copy := New_Copy_Tree (DS);
2264 Set_Parent (DS_Copy, Parent (DS));
2265 Preanalyze_Range (DS_Copy);
2267 -- Ada 2012: If the domain of iteration is a function call, it is the
2268 -- new iterator form.
2270 if Nkind (DS_Copy) = N_Function_Call
2271 or else (Is_Entity_Name (DS_Copy)
2272 and then not Is_Type (Entity (DS_Copy)))
2273 then
2274 -- This is an iterator specification. Rewrite it as such and
2275 -- analyze it to capture function calls that may require
2276 -- finalization actions.
2278 declare
2279 I_Spec : constant Node_Id :=
2280 Make_Iterator_Specification (Sloc (N),
2281 Defining_Identifier => Relocate_Node (Id),
2282 Name => DS_Copy,
2283 Subtype_Indication => Empty,
2284 Reverse_Present => Reverse_Present (N));
2285 Scheme : constant Node_Id := Parent (N);
2287 begin
2288 Set_Iterator_Specification (Scheme, I_Spec);
2289 Set_Loop_Parameter_Specification (Scheme, Empty);
2290 Analyze_Iterator_Specification (I_Spec);
2292 -- In a generic context, analyze the original domain of
2293 -- iteration, for name capture.
2295 if not Expander_Active then
2296 Analyze (DS);
2297 end if;
2299 -- Set kind of loop parameter, which may be used in the
2300 -- subsequent analysis of the condition in a quantified
2301 -- expression.
2303 Set_Ekind (Id, E_Loop_Parameter);
2304 return;
2305 end;
2307 -- Domain of iteration is not a function call, and is side-effect
2308 -- free.
2310 else
2311 -- A quantified expression that appears in a pre/post condition
2312 -- is pre-analyzed several times. If the range is given by an
2313 -- attribute reference it is rewritten as a range, and this is
2314 -- done even with expansion disabled. If the type is already set
2315 -- do not reanalyze, because a range with static bounds may be
2316 -- typed Integer by default.
2318 if Nkind (Parent (N)) = N_Quantified_Expression
2319 and then Present (Etype (DS))
2320 then
2321 null;
2322 else
2323 Analyze (DS);
2324 end if;
2325 end if;
2326 end if;
2328 if DS = Error then
2329 return;
2330 end if;
2332 -- Some additional checks if we are iterating through a type
2334 if Is_Entity_Name (DS)
2335 and then Present (Entity (DS))
2336 and then Is_Type (Entity (DS))
2337 then
2338 -- The subtype indication may denote the completion of an incomplete
2339 -- type declaration.
2341 if Ekind (Entity (DS)) = E_Incomplete_Type then
2342 Set_Entity (DS, Get_Full_View (Entity (DS)));
2343 Set_Etype (DS, Entity (DS));
2344 end if;
2346 -- Attempt to iterate through non-static predicate. Note that a type
2347 -- with inherited predicates may have both static and dynamic forms.
2348 -- In this case it is not sufficent to check the static predicate
2349 -- function only, look for a dynamic predicate aspect as well.
2351 if Is_Discrete_Type (Entity (DS))
2352 and then Present (Predicate_Function (Entity (DS)))
2353 and then (No (Static_Predicate (Entity (DS)))
2354 or else Has_Dynamic_Predicate_Aspect (Entity (DS)))
2355 then
2356 Bad_Predicated_Subtype_Use
2357 ("cannot use subtype& with non-static predicate for loop " &
2358 "iteration", DS, Entity (DS), Suggest_Static => True);
2359 end if;
2360 end if;
2362 -- Error if not discrete type
2364 if not Is_Discrete_Type (Etype (DS)) then
2365 Wrong_Type (DS, Any_Discrete);
2366 Set_Etype (DS, Any_Type);
2367 end if;
2369 Check_Controlled_Array_Attribute (DS);
2371 Make_Index (DS, N, In_Iter_Schm => True);
2372 Set_Ekind (Id, E_Loop_Parameter);
2374 -- A quantified expression which appears in a pre- or post-condition may
2375 -- be analyzed multiple times. The analysis of the range creates several
2376 -- itypes which reside in different scopes depending on whether the pre-
2377 -- or post-condition has been expanded. Update the type of the loop
2378 -- variable to reflect the proper itype at each stage of analysis.
2380 if No (Etype (Id))
2381 or else Etype (Id) = Any_Type
2382 or else
2383 (Present (Etype (Id))
2384 and then Is_Itype (Etype (Id))
2385 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2386 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2387 N_Quantified_Expression)
2388 then
2389 Set_Etype (Id, Etype (DS));
2390 end if;
2392 -- Treat a range as an implicit reference to the type, to inhibit
2393 -- spurious warnings.
2395 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2396 Set_Is_Known_Valid (Id, True);
2398 -- The loop is not a declarative part, so the loop variable must be
2399 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2400 -- expression because the freeze node will not be inserted into the
2401 -- tree due to flag Is_Spec_Expression being set.
2403 if Nkind (Parent (N)) /= N_Quantified_Expression then
2404 declare
2405 Flist : constant List_Id := Freeze_Entity (Id, N);
2406 begin
2407 if Is_Non_Empty_List (Flist) then
2408 Insert_Actions (N, Flist);
2409 end if;
2410 end;
2411 end if;
2413 -- Check for null or possibly null range and issue warning. We suppress
2414 -- such messages in generic templates and instances, because in practice
2415 -- they tend to be dubious in these cases.
2417 if Nkind (DS) = N_Range and then Comes_From_Source (N) then
2418 declare
2419 L : constant Node_Id := Low_Bound (DS);
2420 H : constant Node_Id := High_Bound (DS);
2422 begin
2423 -- If range of loop is null, issue warning
2425 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2427 -- Suppress the warning if inside a generic template or
2428 -- instance, since in practice they tend to be dubious in these
2429 -- cases since they can result from intended parametrization.
2431 if not Inside_A_Generic and then not In_Instance then
2433 -- Specialize msg if invalid values could make the loop
2434 -- non-null after all.
2436 if Compile_Time_Compare
2437 (L, H, Assume_Valid => False) = GT
2438 then
2439 Error_Msg_N
2440 ("??loop range is null, loop will not execute", DS);
2442 -- Since we know the range of the loop is null, set the
2443 -- appropriate flag to remove the loop entirely during
2444 -- expansion.
2446 Set_Is_Null_Loop (Loop_Nod);
2448 -- Here is where the loop could execute because of invalid
2449 -- values, so issue appropriate message and in this case we
2450 -- do not set the Is_Null_Loop flag since the loop may
2451 -- execute.
2453 else
2454 Error_Msg_N
2455 ("??loop range may be null, loop may not execute",
2456 DS);
2457 Error_Msg_N
2458 ("??can only execute if invalid values are present",
2459 DS);
2460 end if;
2461 end if;
2463 -- In either case, suppress warnings in the body of the loop,
2464 -- since it is likely that these warnings will be inappropriate
2465 -- if the loop never actually executes, which is likely.
2467 Set_Suppress_Loop_Warnings (Loop_Nod);
2469 -- The other case for a warning is a reverse loop where the
2470 -- upper bound is the integer literal zero or one, and the
2471 -- lower bound may exceed this value.
2473 -- For example, we have
2475 -- for J in reverse N .. 1 loop
2477 -- In practice, this is very likely to be a case of reversing
2478 -- the bounds incorrectly in the range.
2480 elsif Reverse_Present (N)
2481 and then Nkind (Original_Node (H)) = N_Integer_Literal
2482 and then
2483 (Intval (Original_Node (H)) = Uint_0
2484 or else
2485 Intval (Original_Node (H)) = Uint_1)
2486 then
2487 -- Lower bound may in fact be known and known not to exceed
2488 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2490 if Compile_Time_Known_Value (L)
2491 and then Expr_Value (L) <= Expr_Value (H)
2492 then
2493 null;
2495 -- Otherwise warning is warranted
2497 else
2498 Error_Msg_N ("??loop range may be null", DS);
2499 Error_Msg_N ("\??bounds may be wrong way round", DS);
2500 end if;
2501 end if;
2502 end;
2503 end if;
2504 end Analyze_Loop_Parameter_Specification;
2506 ----------------------------
2507 -- Analyze_Loop_Statement --
2508 ----------------------------
2510 procedure Analyze_Loop_Statement (N : Node_Id) is
2512 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
2513 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2514 -- container iteration.
2516 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
2517 -- Determine whether node N is the sole statement of a block
2519 ---------------------------
2520 -- Is_Container_Iterator --
2521 ---------------------------
2523 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
2524 begin
2525 -- Infinite loop
2527 if No (Iter) then
2528 return False;
2530 -- While loop
2532 elsif Present (Condition (Iter)) then
2533 return False;
2535 -- for Def_Id in [reverse] Name loop
2536 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2538 elsif Present (Iterator_Specification (Iter)) then
2539 declare
2540 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
2541 Nam_Copy : Node_Id;
2543 begin
2544 Nam_Copy := New_Copy_Tree (Nam);
2545 Set_Parent (Nam_Copy, Parent (Nam));
2546 Preanalyze_Range (Nam_Copy);
2548 -- The only two options here are iteration over a container or
2549 -- an array.
2551 return not Is_Array_Type (Etype (Nam_Copy));
2552 end;
2554 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
2556 else
2557 declare
2558 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
2559 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
2560 DS_Copy : Node_Id;
2562 begin
2563 DS_Copy := New_Copy_Tree (DS);
2564 Set_Parent (DS_Copy, Parent (DS));
2565 Preanalyze_Range (DS_Copy);
2567 -- Check for a call to Iterate ()
2569 return
2570 Nkind (DS_Copy) = N_Function_Call
2571 and then Needs_Finalization (Etype (DS_Copy));
2572 end;
2573 end if;
2574 end Is_Container_Iterator;
2576 -------------------------
2577 -- Is_Wrapped_In_Block --
2578 -------------------------
2580 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
2581 HSS : constant Node_Id := Parent (N);
2583 begin
2584 return
2585 Nkind (HSS) = N_Handled_Sequence_Of_Statements
2586 and then Nkind (Parent (HSS)) = N_Block_Statement
2587 and then First (Statements (HSS)) = N
2588 and then No (Next (First (Statements (HSS))));
2589 end Is_Wrapped_In_Block;
2591 -- Local declarations
2593 Id : constant Node_Id := Identifier (N);
2594 Iter : constant Node_Id := Iteration_Scheme (N);
2595 Loc : constant Source_Ptr := Sloc (N);
2596 Ent : Entity_Id;
2597 Stmt : Node_Id;
2599 -- Start of processing for Analyze_Loop_Statement
2601 begin
2602 if Present (Id) then
2604 -- Make name visible, e.g. for use in exit statements. Loop labels
2605 -- are always considered to be referenced.
2607 Analyze (Id);
2608 Ent := Entity (Id);
2610 -- Guard against serious error (typically, a scope mismatch when
2611 -- semantic analysis is requested) by creating loop entity to
2612 -- continue analysis.
2614 if No (Ent) then
2615 if Total_Errors_Detected /= 0 then
2616 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2617 else
2618 raise Program_Error;
2619 end if;
2621 else
2622 Generate_Reference (Ent, N, ' ');
2623 Generate_Definition (Ent);
2625 -- If we found a label, mark its type. If not, ignore it, since it
2626 -- means we have a conflicting declaration, which would already
2627 -- have been diagnosed at declaration time. Set Label_Construct
2628 -- of the implicit label declaration, which is not created by the
2629 -- parser for generic units.
2631 if Ekind (Ent) = E_Label then
2632 Set_Ekind (Ent, E_Loop);
2634 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
2635 Set_Label_Construct (Parent (Ent), N);
2636 end if;
2637 end if;
2638 end if;
2640 -- Case of no identifier present
2642 else
2643 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2644 Set_Etype (Ent, Standard_Void_Type);
2645 Set_Parent (Ent, N);
2646 end if;
2648 -- Iteration over a container in Ada 2012 involves the creation of a
2649 -- controlled iterator object. Wrap the loop in a block to ensure the
2650 -- timely finalization of the iterator and release of container locks.
2652 if Ada_Version >= Ada_2012
2653 and then Is_Container_Iterator (Iter)
2654 and then not Is_Wrapped_In_Block (N)
2655 then
2656 Rewrite (N,
2657 Make_Block_Statement (Loc,
2658 Declarations => New_List,
2659 Handled_Statement_Sequence =>
2660 Make_Handled_Sequence_Of_Statements (Loc,
2661 Statements => New_List (Relocate_Node (N)))));
2663 Analyze (N);
2664 return;
2665 end if;
2667 -- Kill current values on entry to loop, since statements in the body of
2668 -- the loop may have been executed before the loop is entered. Similarly
2669 -- we kill values after the loop, since we do not know that the body of
2670 -- the loop was executed.
2672 Kill_Current_Values;
2673 Push_Scope (Ent);
2674 Analyze_Iteration_Scheme (Iter);
2676 -- Check for following case which merits a warning if the type E of is
2677 -- a multi-dimensional array (and no explicit subscript ranges present).
2679 -- for J in E'Range
2680 -- for K in E'Range
2682 if Present (Iter)
2683 and then Present (Loop_Parameter_Specification (Iter))
2684 then
2685 declare
2686 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
2687 DSD : constant Node_Id :=
2688 Original_Node (Discrete_Subtype_Definition (LPS));
2689 begin
2690 if Nkind (DSD) = N_Attribute_Reference
2691 and then Attribute_Name (DSD) = Name_Range
2692 and then No (Expressions (DSD))
2693 then
2694 declare
2695 Typ : constant Entity_Id := Etype (Prefix (DSD));
2696 begin
2697 if Is_Array_Type (Typ)
2698 and then Number_Dimensions (Typ) > 1
2699 and then Nkind (Parent (N)) = N_Loop_Statement
2700 and then Present (Iteration_Scheme (Parent (N)))
2701 then
2702 declare
2703 OIter : constant Node_Id :=
2704 Iteration_Scheme (Parent (N));
2705 OLPS : constant Node_Id :=
2706 Loop_Parameter_Specification (OIter);
2707 ODSD : constant Node_Id :=
2708 Original_Node (Discrete_Subtype_Definition (OLPS));
2709 begin
2710 if Nkind (ODSD) = N_Attribute_Reference
2711 and then Attribute_Name (ODSD) = Name_Range
2712 and then No (Expressions (ODSD))
2713 and then Etype (Prefix (ODSD)) = Typ
2714 then
2715 Error_Msg_Sloc := Sloc (ODSD);
2716 Error_Msg_N
2717 ("inner range same as outer range#??", DSD);
2718 end if;
2719 end;
2720 end if;
2721 end;
2722 end if;
2723 end;
2724 end if;
2726 -- Analyze the statements of the body except in the case of an Ada 2012
2727 -- iterator with the expander active. In this case the expander will do
2728 -- a rewrite of the loop into a while loop. We will then analyze the
2729 -- loop body when we analyze this while loop.
2731 -- We need to do this delay because if the container is for indefinite
2732 -- types the actual subtype of the components will only be determined
2733 -- when the cursor declaration is analyzed.
2735 -- If the expander is not active, or in SPARK mode, then we want to
2736 -- analyze the loop body now even in the Ada 2012 iterator case, since
2737 -- the rewriting will not be done. Insert the loop variable in the
2738 -- current scope, if not done when analysing the iteration scheme.
2740 if No (Iter)
2741 or else No (Iterator_Specification (Iter))
2742 or else not Full_Expander_Active
2743 then
2744 if Present (Iter)
2745 and then Present (Iterator_Specification (Iter))
2746 then
2747 declare
2748 Id : constant Entity_Id :=
2749 Defining_Identifier (Iterator_Specification (Iter));
2750 begin
2751 if Scope (Id) /= Current_Scope then
2752 Enter_Name (Id);
2753 end if;
2754 end;
2755 end if;
2757 Analyze_Statements (Statements (N));
2758 end if;
2760 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
2761 -- the loop is transformed into a conditional block. Retrieve the loop.
2763 Stmt := N;
2765 if Subject_To_Loop_Entry_Attributes (Stmt) then
2766 Stmt := Find_Loop_In_Conditional_Block (Stmt);
2767 end if;
2769 -- Finish up processing for the loop. We kill all current values, since
2770 -- in general we don't know if the statements in the loop have been
2771 -- executed. We could do a bit better than this with a loop that we
2772 -- know will execute at least once, but it's not worth the trouble and
2773 -- the front end is not in the business of flow tracing.
2775 Process_End_Label (Stmt, 'e', Ent);
2776 End_Scope;
2777 Kill_Current_Values;
2779 -- Check for infinite loop. Skip check for generated code, since it
2780 -- justs waste time and makes debugging the routine called harder.
2782 -- Note that we have to wait till the body of the loop is fully analyzed
2783 -- before making this call, since Check_Infinite_Loop_Warning relies on
2784 -- being able to use semantic visibility information to find references.
2786 if Comes_From_Source (Stmt) then
2787 Check_Infinite_Loop_Warning (Stmt);
2788 end if;
2790 -- Code after loop is unreachable if the loop has no WHILE or FOR and
2791 -- contains no EXIT statements within the body of the loop.
2793 if No (Iter) and then not Has_Exit (Ent) then
2794 Check_Unreachable_Code (Stmt);
2795 end if;
2796 end Analyze_Loop_Statement;
2798 ----------------------------
2799 -- Analyze_Null_Statement --
2800 ----------------------------
2802 -- Note: the semantics of the null statement is implemented by a single
2803 -- null statement, too bad everything isn't as simple as this!
2805 procedure Analyze_Null_Statement (N : Node_Id) is
2806 pragma Warnings (Off, N);
2807 begin
2808 null;
2809 end Analyze_Null_Statement;
2811 ------------------------
2812 -- Analyze_Statements --
2813 ------------------------
2815 procedure Analyze_Statements (L : List_Id) is
2816 S : Node_Id;
2817 Lab : Entity_Id;
2819 begin
2820 -- The labels declared in the statement list are reachable from
2821 -- statements in the list. We do this as a prepass so that any goto
2822 -- statement will be properly flagged if its target is not reachable.
2823 -- This is not required, but is nice behavior!
2825 S := First (L);
2826 while Present (S) loop
2827 if Nkind (S) = N_Label then
2828 Analyze (Identifier (S));
2829 Lab := Entity (Identifier (S));
2831 -- If we found a label mark it as reachable
2833 if Ekind (Lab) = E_Label then
2834 Generate_Definition (Lab);
2835 Set_Reachable (Lab);
2837 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
2838 Set_Label_Construct (Parent (Lab), S);
2839 end if;
2841 -- If we failed to find a label, it means the implicit declaration
2842 -- of the label was hidden. A for-loop parameter can do this to
2843 -- a label with the same name inside the loop, since the implicit
2844 -- label declaration is in the innermost enclosing body or block
2845 -- statement.
2847 else
2848 Error_Msg_Sloc := Sloc (Lab);
2849 Error_Msg_N
2850 ("implicit label declaration for & is hidden#",
2851 Identifier (S));
2852 end if;
2853 end if;
2855 Next (S);
2856 end loop;
2858 -- Perform semantic analysis on all statements
2860 Conditional_Statements_Begin;
2862 S := First (L);
2863 while Present (S) loop
2864 Analyze (S);
2866 -- Remove dimension in all statements
2868 Remove_Dimension_In_Statement (S);
2869 Next (S);
2870 end loop;
2872 Conditional_Statements_End;
2874 -- Make labels unreachable. Visibility is not sufficient, because labels
2875 -- in one if-branch for example are not reachable from the other branch,
2876 -- even though their declarations are in the enclosing declarative part.
2878 S := First (L);
2879 while Present (S) loop
2880 if Nkind (S) = N_Label then
2881 Set_Reachable (Entity (Identifier (S)), False);
2882 end if;
2884 Next (S);
2885 end loop;
2886 end Analyze_Statements;
2888 ----------------------------
2889 -- Check_Unreachable_Code --
2890 ----------------------------
2892 procedure Check_Unreachable_Code (N : Node_Id) is
2893 Error_Node : Node_Id;
2894 P : Node_Id;
2896 begin
2897 if Is_List_Member (N) and then Comes_From_Source (N) then
2898 declare
2899 Nxt : Node_Id;
2901 begin
2902 Nxt := Original_Node (Next (N));
2904 -- Skip past pragmas
2906 while Nkind (Nxt) = N_Pragma loop
2907 Nxt := Original_Node (Next (Nxt));
2908 end loop;
2910 -- If a label follows us, then we never have dead code, since
2911 -- someone could branch to the label, so we just ignore it, unless
2912 -- we are in formal mode where goto statements are not allowed.
2914 if Nkind (Nxt) = N_Label
2915 and then not Restriction_Check_Required (SPARK_05)
2916 then
2917 return;
2919 -- Otherwise see if we have a real statement following us
2921 elsif Present (Nxt)
2922 and then Comes_From_Source (Nxt)
2923 and then Is_Statement (Nxt)
2924 then
2925 -- Special very annoying exception. If we have a return that
2926 -- follows a raise, then we allow it without a warning, since
2927 -- the Ada RM annoyingly requires a useless return here!
2929 if Nkind (Original_Node (N)) /= N_Raise_Statement
2930 or else Nkind (Nxt) /= N_Simple_Return_Statement
2931 then
2932 -- The rather strange shenanigans with the warning message
2933 -- here reflects the fact that Kill_Dead_Code is very good
2934 -- at removing warnings in deleted code, and this is one
2935 -- warning we would prefer NOT to have removed.
2937 Error_Node := Nxt;
2939 -- If we have unreachable code, analyze and remove the
2940 -- unreachable code, since it is useless and we don't
2941 -- want to generate junk warnings.
2943 -- We skip this step if we are not in code generation mode.
2944 -- This is the one case where we remove dead code in the
2945 -- semantics as opposed to the expander, and we do not want
2946 -- to remove code if we are not in code generation mode,
2947 -- since this messes up the ASIS trees.
2949 -- Note that one might react by moving the whole circuit to
2950 -- exp_ch5, but then we lose the warning in -gnatc mode.
2952 if Operating_Mode = Generate_Code then
2953 loop
2954 Nxt := Next (N);
2956 -- Quit deleting when we have nothing more to delete
2957 -- or if we hit a label (since someone could transfer
2958 -- control to a label, so we should not delete it).
2960 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
2962 -- Statement/declaration is to be deleted
2964 Analyze (Nxt);
2965 Remove (Nxt);
2966 Kill_Dead_Code (Nxt);
2967 end loop;
2968 end if;
2970 -- Now issue the warning (or error in formal mode)
2972 if Restriction_Check_Required (SPARK_05) then
2973 Check_SPARK_Restriction
2974 ("unreachable code is not allowed", Error_Node);
2975 else
2976 Error_Msg ("??unreachable code!", Sloc (Error_Node));
2977 end if;
2978 end if;
2980 -- If the unconditional transfer of control instruction is the
2981 -- last statement of a sequence, then see if our parent is one of
2982 -- the constructs for which we count unblocked exits, and if so,
2983 -- adjust the count.
2985 else
2986 P := Parent (N);
2988 -- Statements in THEN part or ELSE part of IF statement
2990 if Nkind (P) = N_If_Statement then
2991 null;
2993 -- Statements in ELSIF part of an IF statement
2995 elsif Nkind (P) = N_Elsif_Part then
2996 P := Parent (P);
2997 pragma Assert (Nkind (P) = N_If_Statement);
2999 -- Statements in CASE statement alternative
3001 elsif Nkind (P) = N_Case_Statement_Alternative then
3002 P := Parent (P);
3003 pragma Assert (Nkind (P) = N_Case_Statement);
3005 -- Statements in body of block
3007 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
3008 and then Nkind (Parent (P)) = N_Block_Statement
3009 then
3010 -- The original loop is now placed inside a block statement
3011 -- due to the expansion of attribute 'Loop_Entry. Return as
3012 -- this is not a "real" block for the purposes of exit
3013 -- counting.
3015 if Nkind (N) = N_Loop_Statement
3016 and then Subject_To_Loop_Entry_Attributes (N)
3017 then
3018 return;
3019 end if;
3021 -- Statements in exception handler in a block
3023 elsif Nkind (P) = N_Exception_Handler
3024 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
3025 and then Nkind (Parent (Parent (P))) = N_Block_Statement
3026 then
3027 null;
3029 -- None of these cases, so return
3031 else
3032 return;
3033 end if;
3035 -- This was one of the cases we are looking for (i.e. the
3036 -- parent construct was IF, CASE or block) so decrement count.
3038 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
3039 end if;
3040 end;
3041 end if;
3042 end Check_Unreachable_Code;
3044 ----------------------
3045 -- Preanalyze_Range --
3046 ----------------------
3048 procedure Preanalyze_Range (R_Copy : Node_Id) is
3049 Save_Analysis : constant Boolean := Full_Analysis;
3050 Typ : Entity_Id;
3052 begin
3053 Full_Analysis := False;
3054 Expander_Mode_Save_And_Set (False);
3056 Analyze (R_Copy);
3058 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
3060 -- Apply preference rules for range of predefined integer types, or
3061 -- diagnose true ambiguity.
3063 declare
3064 I : Interp_Index;
3065 It : Interp;
3066 Found : Entity_Id := Empty;
3068 begin
3069 Get_First_Interp (R_Copy, I, It);
3070 while Present (It.Typ) loop
3071 if Is_Discrete_Type (It.Typ) then
3072 if No (Found) then
3073 Found := It.Typ;
3074 else
3075 if Scope (Found) = Standard_Standard then
3076 null;
3078 elsif Scope (It.Typ) = Standard_Standard then
3079 Found := It.Typ;
3081 else
3082 -- Both of them are user-defined
3084 Error_Msg_N
3085 ("ambiguous bounds in range of iteration", R_Copy);
3086 Error_Msg_N ("\possible interpretations:", R_Copy);
3087 Error_Msg_NE ("\\} ", R_Copy, Found);
3088 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
3089 exit;
3090 end if;
3091 end if;
3092 end if;
3094 Get_Next_Interp (I, It);
3095 end loop;
3096 end;
3097 end if;
3099 -- Subtype mark in iteration scheme
3101 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
3102 null;
3104 -- Expression in range, or Ada 2012 iterator
3106 elsif Nkind (R_Copy) in N_Subexpr then
3107 Resolve (R_Copy);
3108 Typ := Etype (R_Copy);
3110 if Is_Discrete_Type (Typ) then
3111 null;
3113 -- Check that the resulting object is an iterable container
3115 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
3116 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
3117 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
3118 then
3119 null;
3121 -- The expression may yield an implicit reference to an iterable
3122 -- container. Insert explicit dereference so that proper type is
3123 -- visible in the loop.
3125 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
3126 declare
3127 Disc : Entity_Id;
3129 begin
3130 Disc := First_Discriminant (Typ);
3131 while Present (Disc) loop
3132 if Has_Implicit_Dereference (Disc) then
3133 Build_Explicit_Dereference (R_Copy, Disc);
3134 exit;
3135 end if;
3137 Next_Discriminant (Disc);
3138 end loop;
3139 end;
3141 end if;
3142 end if;
3144 Expander_Mode_Restore;
3145 Full_Analysis := Save_Analysis;
3146 end Preanalyze_Range;
3148 end Sem_Ch5;