PR target/58115
[official-gcc.git] / gcc / ada / s-gearop.adb
blobf84280ee8bb41bb89cf88d7d56feaa904eb7e1e5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME COMPONENTS --
4 -- --
5 -- S Y S T E M . G E N E R I C _ A R R A Y _ O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2006-2012, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 with Ada.Numerics; use Ada.Numerics;
34 package body System.Generic_Array_Operations is
36 function Check_Unit_Last
37 (Index : Integer;
38 Order : Positive;
39 First : Integer) return Integer;
40 pragma Inline_Always (Check_Unit_Last);
41 -- Compute index of last element returned by Unit_Vector or Unit_Matrix.
42 -- A separate function is needed to allow raising Constraint_Error before
43 -- declaring the function result variable. The result variable needs to be
44 -- declared first, to allow front-end inlining.
46 --------------
47 -- Diagonal --
48 --------------
50 function Diagonal (A : Matrix) return Vector is
51 N : constant Natural := Natural'Min (A'Length (1), A'Length (2));
52 begin
53 return R : Vector (A'First (1) .. A'First (1) + N - 1) do
54 for J in 0 .. N - 1 loop
55 R (R'First + J) := A (A'First (1) + J, A'First (2) + J);
56 end loop;
57 end return;
58 end Diagonal;
60 --------------------------
61 -- Square_Matrix_Length --
62 --------------------------
64 function Square_Matrix_Length (A : Matrix) return Natural is
65 begin
66 if A'Length (1) /= A'Length (2) then
67 raise Constraint_Error with "matrix is not square";
68 else
69 return A'Length (1);
70 end if;
71 end Square_Matrix_Length;
73 ---------------------
74 -- Check_Unit_Last --
75 ---------------------
77 function Check_Unit_Last
78 (Index : Integer;
79 Order : Positive;
80 First : Integer) return Integer
82 begin
83 -- Order the tests carefully to avoid overflow
85 if Index < First
86 or else First > Integer'Last - Order + 1
87 or else Index > First + (Order - 1)
88 then
89 raise Constraint_Error;
90 end if;
92 return First + (Order - 1);
93 end Check_Unit_Last;
95 ---------------------
96 -- Back_Substitute --
97 ---------------------
99 procedure Back_Substitute (M, N : in out Matrix) is
100 pragma Assert (M'First (1) = N'First (1)
101 and then
102 M'Last (1) = N'Last (1));
104 procedure Sub_Row
105 (M : in out Matrix;
106 Target : Integer;
107 Source : Integer;
108 Factor : Scalar);
109 -- Elementary row operation that subtracts Factor * M (Source, <>) from
110 -- M (Target, <>)
112 -------------
113 -- Sub_Row --
114 -------------
116 procedure Sub_Row
117 (M : in out Matrix;
118 Target : Integer;
119 Source : Integer;
120 Factor : Scalar)
122 begin
123 for J in M'Range (2) loop
124 M (Target, J) := M (Target, J) - Factor * M (Source, J);
125 end loop;
126 end Sub_Row;
128 -- Local declarations
130 Max_Col : Integer := M'Last (2);
132 -- Start of processing for Back_Substitute
134 begin
135 Do_Rows : for Row in reverse M'Range (1) loop
136 Find_Non_Zero : for Col in reverse M'First (2) .. Max_Col loop
137 if Is_Non_Zero (M (Row, Col)) then
139 -- Found first non-zero element, so subtract a multiple of this
140 -- element from all higher rows, to reduce all other elements
141 -- in this column to zero.
143 declare
144 -- We can't use a for loop, as we'd need to iterate to
145 -- Row - 1, but that expression will overflow if M'First
146 -- equals Integer'First, which is true for aggregates
147 -- without explicit bounds..
149 J : Integer := M'First (1);
151 begin
152 while J < Row loop
153 Sub_Row (N, J, Row, (M (J, Col) / M (Row, Col)));
154 Sub_Row (M, J, Row, (M (J, Col) / M (Row, Col)));
155 J := J + 1;
156 end loop;
157 end;
159 -- Avoid potential overflow in the subtraction below
161 exit Do_Rows when Col = M'First (2);
163 Max_Col := Col - 1;
165 exit Find_Non_Zero;
166 end if;
167 end loop Find_Non_Zero;
168 end loop Do_Rows;
169 end Back_Substitute;
171 -----------------------
172 -- Forward_Eliminate --
173 -----------------------
175 procedure Forward_Eliminate
176 (M : in out Matrix;
177 N : in out Matrix;
178 Det : out Scalar)
180 pragma Assert (M'First (1) = N'First (1)
181 and then
182 M'Last (1) = N'Last (1));
184 -- The following are variations of the elementary matrix row operations:
185 -- row switching, row multiplication and row addition. Because in this
186 -- algorithm the addition factor is always a negated value, we chose to
187 -- use row subtraction instead. Similarly, instead of multiplying by
188 -- a reciprocal, we divide.
190 procedure Sub_Row
191 (M : in out Matrix;
192 Target : Integer;
193 Source : Integer;
194 Factor : Scalar);
195 -- Subtrace Factor * M (Source, <>) from M (Target, <>)
197 procedure Divide_Row
198 (M, N : in out Matrix;
199 Row : Integer;
200 Scale : Scalar);
201 -- Divide M (Row) and N (Row) by Scale, and update Det
203 procedure Switch_Row
204 (M, N : in out Matrix;
205 Row_1 : Integer;
206 Row_2 : Integer);
207 -- Exchange M (Row_1) and N (Row_1) with M (Row_2) and N (Row_2),
208 -- negating Det in the process.
210 -------------
211 -- Sub_Row --
212 -------------
214 procedure Sub_Row
215 (M : in out Matrix;
216 Target : Integer;
217 Source : Integer;
218 Factor : Scalar)
220 begin
221 for J in M'Range (2) loop
222 M (Target, J) := M (Target, J) - Factor * M (Source, J);
223 end loop;
224 end Sub_Row;
226 ----------------
227 -- Divide_Row --
228 ----------------
230 procedure Divide_Row
231 (M, N : in out Matrix;
232 Row : Integer;
233 Scale : Scalar)
235 begin
236 Det := Det * Scale;
238 for J in M'Range (2) loop
239 M (Row, J) := M (Row, J) / Scale;
240 end loop;
242 for J in N'Range (2) loop
243 N (Row - M'First (1) + N'First (1), J) :=
244 N (Row - M'First (1) + N'First (1), J) / Scale;
245 end loop;
246 end Divide_Row;
248 ----------------
249 -- Switch_Row --
250 ----------------
252 procedure Switch_Row
253 (M, N : in out Matrix;
254 Row_1 : Integer;
255 Row_2 : Integer)
257 procedure Swap (X, Y : in out Scalar);
258 -- Exchange the values of X and Y
260 ----------
261 -- Swap --
262 ----------
264 procedure Swap (X, Y : in out Scalar) is
265 T : constant Scalar := X;
266 begin
267 X := Y;
268 Y := T;
269 end Swap;
271 -- Start of processing for Switch_Row
273 begin
274 if Row_1 /= Row_2 then
275 Det := Zero - Det;
277 for J in M'Range (2) loop
278 Swap (M (Row_1, J), M (Row_2, J));
279 end loop;
281 for J in N'Range (2) loop
282 Swap (N (Row_1 - M'First (1) + N'First (1), J),
283 N (Row_2 - M'First (1) + N'First (1), J));
284 end loop;
285 end if;
286 end Switch_Row;
288 -- Local declarations
290 Row : Integer := M'First (1);
292 -- Start of processing for Forward_Eliminate
294 begin
295 Det := One;
297 for J in M'Range (2) loop
298 declare
299 Max_Row : Integer := Row;
300 Max_Abs : Real'Base := 0.0;
302 begin
303 -- Find best pivot in column J, starting in row Row
305 for K in Row .. M'Last (1) loop
306 declare
307 New_Abs : constant Real'Base := abs M (K, J);
308 begin
309 if Max_Abs < New_Abs then
310 Max_Abs := New_Abs;
311 Max_Row := K;
312 end if;
313 end;
314 end loop;
316 if Max_Abs > 0.0 then
317 Switch_Row (M, N, Row, Max_Row);
319 -- The temporaries below are necessary to force a copy of the
320 -- value and avoid improper aliasing.
322 declare
323 Scale : constant Scalar := M (Row, J);
324 begin
325 Divide_Row (M, N, Row, Scale);
326 end;
328 for U in Row + 1 .. M'Last (1) loop
329 declare
330 Factor : constant Scalar := M (U, J);
331 begin
332 Sub_Row (N, U, Row, Factor);
333 Sub_Row (M, U, Row, Factor);
334 end;
335 end loop;
337 exit when Row >= M'Last (1);
339 Row := Row + 1;
341 else
342 -- Set zero (note that we do not have literals)
344 Det := Zero;
345 end if;
346 end;
347 end loop;
348 end Forward_Eliminate;
350 -------------------
351 -- Inner_Product --
352 -------------------
354 function Inner_Product
355 (Left : Left_Vector;
356 Right : Right_Vector) return Result_Scalar
358 R : Result_Scalar := Zero;
360 begin
361 if Left'Length /= Right'Length then
362 raise Constraint_Error with
363 "vectors are of different length in inner product";
364 end if;
366 for J in Left'Range loop
367 R := R + Left (J) * Right (J - Left'First + Right'First);
368 end loop;
370 return R;
371 end Inner_Product;
373 -------------
374 -- L2_Norm --
375 -------------
377 function L2_Norm (X : X_Vector) return Result_Real'Base is
378 Sum : Result_Real'Base := 0.0;
380 begin
381 for J in X'Range loop
382 Sum := Sum + Result_Real'Base (abs X (J))**2;
383 end loop;
385 return Sqrt (Sum);
386 end L2_Norm;
388 ----------------------------------
389 -- Matrix_Elementwise_Operation --
390 ----------------------------------
392 function Matrix_Elementwise_Operation (X : X_Matrix) return Result_Matrix is
393 begin
394 return R : Result_Matrix (X'Range (1), X'Range (2)) do
395 for J in R'Range (1) loop
396 for K in R'Range (2) loop
397 R (J, K) := Operation (X (J, K));
398 end loop;
399 end loop;
400 end return;
401 end Matrix_Elementwise_Operation;
403 ----------------------------------
404 -- Vector_Elementwise_Operation --
405 ----------------------------------
407 function Vector_Elementwise_Operation (X : X_Vector) return Result_Vector is
408 begin
409 return R : Result_Vector (X'Range) do
410 for J in R'Range loop
411 R (J) := Operation (X (J));
412 end loop;
413 end return;
414 end Vector_Elementwise_Operation;
416 -----------------------------------------
417 -- Matrix_Matrix_Elementwise_Operation --
418 -----------------------------------------
420 function Matrix_Matrix_Elementwise_Operation
421 (Left : Left_Matrix;
422 Right : Right_Matrix) return Result_Matrix
424 begin
425 return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
426 if Left'Length (1) /= Right'Length (1)
427 or else
428 Left'Length (2) /= Right'Length (2)
429 then
430 raise Constraint_Error with
431 "matrices are of different dimension in elementwise operation";
432 end if;
434 for J in R'Range (1) loop
435 for K in R'Range (2) loop
436 R (J, K) :=
437 Operation
438 (Left (J, K),
439 Right
440 (J - R'First (1) + Right'First (1),
441 K - R'First (2) + Right'First (2)));
442 end loop;
443 end loop;
444 end return;
445 end Matrix_Matrix_Elementwise_Operation;
447 ------------------------------------------------
448 -- Matrix_Matrix_Scalar_Elementwise_Operation --
449 ------------------------------------------------
451 function Matrix_Matrix_Scalar_Elementwise_Operation
452 (X : X_Matrix;
453 Y : Y_Matrix;
454 Z : Z_Scalar) return Result_Matrix
456 begin
457 return R : Result_Matrix (X'Range (1), X'Range (2)) do
458 if X'Length (1) /= Y'Length (1)
459 or else
460 X'Length (2) /= Y'Length (2)
461 then
462 raise Constraint_Error with
463 "matrices are of different dimension in elementwise operation";
464 end if;
466 for J in R'Range (1) loop
467 for K in R'Range (2) loop
468 R (J, K) :=
469 Operation
470 (X (J, K),
471 Y (J - R'First (1) + Y'First (1),
472 K - R'First (2) + Y'First (2)),
474 end loop;
475 end loop;
476 end return;
477 end Matrix_Matrix_Scalar_Elementwise_Operation;
479 -----------------------------------------
480 -- Vector_Vector_Elementwise_Operation --
481 -----------------------------------------
483 function Vector_Vector_Elementwise_Operation
484 (Left : Left_Vector;
485 Right : Right_Vector) return Result_Vector
487 begin
488 return R : Result_Vector (Left'Range) do
489 if Left'Length /= Right'Length then
490 raise Constraint_Error with
491 "vectors are of different length in elementwise operation";
492 end if;
494 for J in R'Range loop
495 R (J) := Operation (Left (J), Right (J - R'First + Right'First));
496 end loop;
497 end return;
498 end Vector_Vector_Elementwise_Operation;
500 ------------------------------------------------
501 -- Vector_Vector_Scalar_Elementwise_Operation --
502 ------------------------------------------------
504 function Vector_Vector_Scalar_Elementwise_Operation
505 (X : X_Vector;
506 Y : Y_Vector;
507 Z : Z_Scalar) return Result_Vector is
508 begin
509 return R : Result_Vector (X'Range) do
510 if X'Length /= Y'Length then
511 raise Constraint_Error with
512 "vectors are of different length in elementwise operation";
513 end if;
515 for J in R'Range loop
516 R (J) := Operation (X (J), Y (J - X'First + Y'First), Z);
517 end loop;
518 end return;
519 end Vector_Vector_Scalar_Elementwise_Operation;
521 -----------------------------------------
522 -- Matrix_Scalar_Elementwise_Operation --
523 -----------------------------------------
525 function Matrix_Scalar_Elementwise_Operation
526 (Left : Left_Matrix;
527 Right : Right_Scalar) return Result_Matrix
529 begin
530 return R : Result_Matrix (Left'Range (1), Left'Range (2)) do
531 for J in R'Range (1) loop
532 for K in R'Range (2) loop
533 R (J, K) := Operation (Left (J, K), Right);
534 end loop;
535 end loop;
536 end return;
537 end Matrix_Scalar_Elementwise_Operation;
539 -----------------------------------------
540 -- Vector_Scalar_Elementwise_Operation --
541 -----------------------------------------
543 function Vector_Scalar_Elementwise_Operation
544 (Left : Left_Vector;
545 Right : Right_Scalar) return Result_Vector
547 begin
548 return R : Result_Vector (Left'Range) do
549 for J in R'Range loop
550 R (J) := Operation (Left (J), Right);
551 end loop;
552 end return;
553 end Vector_Scalar_Elementwise_Operation;
555 -----------------------------------------
556 -- Scalar_Matrix_Elementwise_Operation --
557 -----------------------------------------
559 function Scalar_Matrix_Elementwise_Operation
560 (Left : Left_Scalar;
561 Right : Right_Matrix) return Result_Matrix
563 begin
564 return R : Result_Matrix (Right'Range (1), Right'Range (2)) do
565 for J in R'Range (1) loop
566 for K in R'Range (2) loop
567 R (J, K) := Operation (Left, Right (J, K));
568 end loop;
569 end loop;
570 end return;
571 end Scalar_Matrix_Elementwise_Operation;
573 -----------------------------------------
574 -- Scalar_Vector_Elementwise_Operation --
575 -----------------------------------------
577 function Scalar_Vector_Elementwise_Operation
578 (Left : Left_Scalar;
579 Right : Right_Vector) return Result_Vector
581 begin
582 return R : Result_Vector (Right'Range) do
583 for J in R'Range loop
584 R (J) := Operation (Left, Right (J));
585 end loop;
586 end return;
587 end Scalar_Vector_Elementwise_Operation;
589 ----------
590 -- Sqrt --
591 ----------
593 function Sqrt (X : Real'Base) return Real'Base is
594 Root, Next : Real'Base;
596 begin
597 -- Be defensive: any comparisons with NaN values will yield False.
599 if not (X > 0.0) then
600 if X = 0.0 then
601 return X;
602 else
603 raise Argument_Error;
604 end if;
606 elsif X > Real'Base'Last then
608 -- X is infinity, which is its own square root
610 return X;
611 end if;
613 -- Compute an initial estimate based on:
615 -- X = M * R**E and Sqrt (X) = Sqrt (M) * R**(E / 2.0),
617 -- where M is the mantissa, R is the radix and E the exponent.
619 -- By ignoring the mantissa and ignoring the case of an odd
620 -- exponent, we get a final error that is at most R. In other words,
621 -- the result has about a single bit precision.
623 Root := Real'Base (Real'Machine_Radix) ** (Real'Exponent (X) / 2);
625 -- Because of the poor initial estimate, use the Babylonian method of
626 -- computing the square root, as it is stable for all inputs. Every step
627 -- will roughly double the precision of the result. Just a few steps
628 -- suffice in most cases. Eight iterations should give about 2**8 bits
629 -- of precision.
631 for J in 1 .. 8 loop
632 Next := (Root + X / Root) / 2.0;
633 exit when Root = Next;
634 Root := Next;
635 end loop;
637 return Root;
638 end Sqrt;
640 ---------------------------
641 -- Matrix_Matrix_Product --
642 ---------------------------
644 function Matrix_Matrix_Product
645 (Left : Left_Matrix;
646 Right : Right_Matrix) return Result_Matrix
648 begin
649 return R : Result_Matrix (Left'Range (1), Right'Range (2)) do
650 if Left'Length (2) /= Right'Length (1) then
651 raise Constraint_Error with
652 "incompatible dimensions in matrix multiplication";
653 end if;
655 for J in R'Range (1) loop
656 for K in R'Range (2) loop
657 declare
658 S : Result_Scalar := Zero;
660 begin
661 for M in Left'Range (2) loop
662 S := S + Left (J, M) *
663 Right
664 (M - Left'First (2) + Right'First (1), K);
665 end loop;
667 R (J, K) := S;
668 end;
669 end loop;
670 end loop;
671 end return;
672 end Matrix_Matrix_Product;
674 ----------------------------
675 -- Matrix_Vector_Solution --
676 ----------------------------
678 function Matrix_Vector_Solution (A : Matrix; X : Vector) return Vector is
679 N : constant Natural := A'Length (1);
680 MA : Matrix := A;
681 MX : Matrix (A'Range (1), 1 .. 1);
682 R : Vector (A'Range (2));
683 Det : Scalar;
685 begin
686 if A'Length (2) /= N then
687 raise Constraint_Error with "matrix is not square";
688 end if;
690 if X'Length /= N then
691 raise Constraint_Error with "incompatible vector length";
692 end if;
694 for J in 0 .. MX'Length (1) - 1 loop
695 MX (MX'First (1) + J, 1) := X (X'First + J);
696 end loop;
698 Forward_Eliminate (MA, MX, Det);
699 Back_Substitute (MA, MX);
701 for J in 0 .. R'Length - 1 loop
702 R (R'First + J) := MX (MX'First (1) + J, 1);
703 end loop;
705 return R;
706 end Matrix_Vector_Solution;
708 ----------------------------
709 -- Matrix_Matrix_Solution --
710 ----------------------------
712 function Matrix_Matrix_Solution (A, X : Matrix) return Matrix is
713 N : constant Natural := A'Length (1);
714 MA : Matrix (A'Range (2), A'Range (2));
715 MB : Matrix (A'Range (2), X'Range (2));
716 Det : Scalar;
718 begin
719 if A'Length (2) /= N then
720 raise Constraint_Error with "matrix is not square";
721 end if;
723 if X'Length (1) /= N then
724 raise Constraint_Error with "matrices have unequal number of rows";
725 end if;
727 for J in 0 .. A'Length (1) - 1 loop
728 for K in MA'Range (2) loop
729 MA (MA'First (1) + J, K) := A (A'First (1) + J, K);
730 end loop;
732 for K in MB'Range (2) loop
733 MB (MB'First (1) + J, K) := X (X'First (1) + J, K);
734 end loop;
735 end loop;
737 Forward_Eliminate (MA, MB, Det);
738 Back_Substitute (MA, MB);
740 return MB;
741 end Matrix_Matrix_Solution;
743 ---------------------------
744 -- Matrix_Vector_Product --
745 ---------------------------
747 function Matrix_Vector_Product
748 (Left : Matrix;
749 Right : Right_Vector) return Result_Vector
751 begin
752 return R : Result_Vector (Left'Range (1)) do
753 if Left'Length (2) /= Right'Length then
754 raise Constraint_Error with
755 "incompatible dimensions in matrix-vector multiplication";
756 end if;
758 for J in Left'Range (1) loop
759 declare
760 S : Result_Scalar := Zero;
762 begin
763 for K in Left'Range (2) loop
764 S := S + Left (J, K)
765 * Right (K - Left'First (2) + Right'First);
766 end loop;
768 R (J) := S;
769 end;
770 end loop;
771 end return;
772 end Matrix_Vector_Product;
774 -------------------
775 -- Outer_Product --
776 -------------------
778 function Outer_Product
779 (Left : Left_Vector;
780 Right : Right_Vector) return Matrix
782 begin
783 return R : Matrix (Left'Range, Right'Range) do
784 for J in R'Range (1) loop
785 for K in R'Range (2) loop
786 R (J, K) := Left (J) * Right (K);
787 end loop;
788 end loop;
789 end return;
790 end Outer_Product;
792 -----------------
793 -- Swap_Column --
794 -----------------
796 procedure Swap_Column (A : in out Matrix; Left, Right : Integer) is
797 Temp : Scalar;
798 begin
799 for J in A'Range (1) loop
800 Temp := A (J, Left);
801 A (J, Left) := A (J, Right);
802 A (J, Right) := Temp;
803 end loop;
804 end Swap_Column;
806 ---------------
807 -- Transpose --
808 ---------------
810 procedure Transpose (A : Matrix; R : out Matrix) is
811 begin
812 for J in R'Range (1) loop
813 for K in R'Range (2) loop
814 R (J, K) := A (K - R'First (2) + A'First (1),
815 J - R'First (1) + A'First (2));
816 end loop;
817 end loop;
818 end Transpose;
820 -------------------------------
821 -- Update_Matrix_With_Matrix --
822 -------------------------------
824 procedure Update_Matrix_With_Matrix (X : in out X_Matrix; Y : Y_Matrix) is
825 begin
826 if X'Length (1) /= Y'Length (1)
827 or else
828 X'Length (2) /= Y'Length (2)
829 then
830 raise Constraint_Error with
831 "matrices are of different dimension in update operation";
832 end if;
834 for J in X'Range (1) loop
835 for K in X'Range (2) loop
836 Update (X (J, K), Y (J - X'First (1) + Y'First (1),
837 K - X'First (2) + Y'First (2)));
838 end loop;
839 end loop;
840 end Update_Matrix_With_Matrix;
842 -------------------------------
843 -- Update_Vector_With_Vector --
844 -------------------------------
846 procedure Update_Vector_With_Vector (X : in out X_Vector; Y : Y_Vector) is
847 begin
848 if X'Length /= Y'Length then
849 raise Constraint_Error with
850 "vectors are of different length in update operation";
851 end if;
853 for J in X'Range loop
854 Update (X (J), Y (J - X'First + Y'First));
855 end loop;
856 end Update_Vector_With_Vector;
858 -----------------
859 -- Unit_Matrix --
860 -----------------
862 function Unit_Matrix
863 (Order : Positive;
864 First_1 : Integer := 1;
865 First_2 : Integer := 1) return Matrix
867 begin
868 return R : Matrix (First_1 .. Check_Unit_Last (First_1, Order, First_1),
869 First_2 .. Check_Unit_Last (First_2, Order, First_2))
871 R := (others => (others => Zero));
873 for J in 0 .. Order - 1 loop
874 R (First_1 + J, First_2 + J) := One;
875 end loop;
876 end return;
877 end Unit_Matrix;
879 -----------------
880 -- Unit_Vector --
881 -----------------
883 function Unit_Vector
884 (Index : Integer;
885 Order : Positive;
886 First : Integer := 1) return Vector
888 begin
889 return R : Vector (First .. Check_Unit_Last (Index, Order, First)) do
890 R := (others => Zero);
891 R (Index) := One;
892 end return;
893 end Unit_Vector;
895 ---------------------------
896 -- Vector_Matrix_Product --
897 ---------------------------
899 function Vector_Matrix_Product
900 (Left : Left_Vector;
901 Right : Matrix) return Result_Vector
903 begin
904 return R : Result_Vector (Right'Range (2)) do
905 if Left'Length /= Right'Length (1) then
906 raise Constraint_Error with
907 "incompatible dimensions in vector-matrix multiplication";
908 end if;
910 for J in Right'Range (2) loop
911 declare
912 S : Result_Scalar := Zero;
914 begin
915 for K in Right'Range (1) loop
916 S := S + Left (K - Right'First (1)
917 + Left'First) * Right (K, J);
918 end loop;
920 R (J) := S;
921 end;
922 end loop;
923 end return;
924 end Vector_Matrix_Product;
926 end System.Generic_Array_Operations;