* tree-vect-loop-manip.c (vect_do_peeling): Don't skip vector loop
[official-gcc.git] / gcc / tree-vect-loop.c
blob92d9a28fd9a998c981e3351ef48f869392893b79
1 /* Loop Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "cfgloop.h"
46 #include "params.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "tree-if-conv.h"
54 /* Loop Vectorization Pass.
56 This pass tries to vectorize loops.
58 For example, the vectorizer transforms the following simple loop:
60 short a[N]; short b[N]; short c[N]; int i;
62 for (i=0; i<N; i++){
63 a[i] = b[i] + c[i];
66 as if it was manually vectorized by rewriting the source code into:
68 typedef int __attribute__((mode(V8HI))) v8hi;
69 short a[N]; short b[N]; short c[N]; int i;
70 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
71 v8hi va, vb, vc;
73 for (i=0; i<N/8; i++){
74 vb = pb[i];
75 vc = pc[i];
76 va = vb + vc;
77 pa[i] = va;
80 The main entry to this pass is vectorize_loops(), in which
81 the vectorizer applies a set of analyses on a given set of loops,
82 followed by the actual vectorization transformation for the loops that
83 had successfully passed the analysis phase.
84 Throughout this pass we make a distinction between two types of
85 data: scalars (which are represented by SSA_NAMES), and memory references
86 ("data-refs"). These two types of data require different handling both
87 during analysis and transformation. The types of data-refs that the
88 vectorizer currently supports are ARRAY_REFS which base is an array DECL
89 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
90 accesses are required to have a simple (consecutive) access pattern.
92 Analysis phase:
93 ===============
94 The driver for the analysis phase is vect_analyze_loop().
95 It applies a set of analyses, some of which rely on the scalar evolution
96 analyzer (scev) developed by Sebastian Pop.
98 During the analysis phase the vectorizer records some information
99 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
100 loop, as well as general information about the loop as a whole, which is
101 recorded in a "loop_vec_info" struct attached to each loop.
103 Transformation phase:
104 =====================
105 The loop transformation phase scans all the stmts in the loop, and
106 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
107 the loop that needs to be vectorized. It inserts the vector code sequence
108 just before the scalar stmt S, and records a pointer to the vector code
109 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
110 attached to S). This pointer will be used for the vectorization of following
111 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
112 otherwise, we rely on dead code elimination for removing it.
114 For example, say stmt S1 was vectorized into stmt VS1:
116 VS1: vb = px[i];
117 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
118 S2: a = b;
120 To vectorize stmt S2, the vectorizer first finds the stmt that defines
121 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
122 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
123 resulting sequence would be:
125 VS1: vb = px[i];
126 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
127 VS2: va = vb;
128 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
130 Operands that are not SSA_NAMEs, are data-refs that appear in
131 load/store operations (like 'x[i]' in S1), and are handled differently.
133 Target modeling:
134 =================
135 Currently the only target specific information that is used is the
136 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
137 Targets that can support different sizes of vectors, for now will need
138 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
139 flexibility will be added in the future.
141 Since we only vectorize operations which vector form can be
142 expressed using existing tree codes, to verify that an operation is
143 supported, the vectorizer checks the relevant optab at the relevant
144 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
145 the value found is CODE_FOR_nothing, then there's no target support, and
146 we can't vectorize the stmt.
148 For additional information on this project see:
149 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
152 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
154 /* Function vect_determine_vectorization_factor
156 Determine the vectorization factor (VF). VF is the number of data elements
157 that are operated upon in parallel in a single iteration of the vectorized
158 loop. For example, when vectorizing a loop that operates on 4byte elements,
159 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
160 elements can fit in a single vector register.
162 We currently support vectorization of loops in which all types operated upon
163 are of the same size. Therefore this function currently sets VF according to
164 the size of the types operated upon, and fails if there are multiple sizes
165 in the loop.
167 VF is also the factor by which the loop iterations are strip-mined, e.g.:
168 original loop:
169 for (i=0; i<N; i++){
170 a[i] = b[i] + c[i];
173 vectorized loop:
174 for (i=0; i<N; i+=VF){
175 a[i:VF] = b[i:VF] + c[i:VF];
179 static bool
180 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
182 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
183 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
184 unsigned nbbs = loop->num_nodes;
185 unsigned int vectorization_factor = 0;
186 tree scalar_type = NULL_TREE;
187 gphi *phi;
188 tree vectype;
189 unsigned int nunits;
190 stmt_vec_info stmt_info;
191 unsigned i;
192 HOST_WIDE_INT dummy;
193 gimple *stmt, *pattern_stmt = NULL;
194 gimple_seq pattern_def_seq = NULL;
195 gimple_stmt_iterator pattern_def_si = gsi_none ();
196 bool analyze_pattern_stmt = false;
197 bool bool_result;
198 auto_vec<stmt_vec_info> mask_producers;
200 if (dump_enabled_p ())
201 dump_printf_loc (MSG_NOTE, vect_location,
202 "=== vect_determine_vectorization_factor ===\n");
204 for (i = 0; i < nbbs; i++)
206 basic_block bb = bbs[i];
208 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
209 gsi_next (&si))
211 phi = si.phi ();
212 stmt_info = vinfo_for_stmt (phi);
213 if (dump_enabled_p ())
215 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
216 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
219 gcc_assert (stmt_info);
221 if (STMT_VINFO_RELEVANT_P (stmt_info)
222 || STMT_VINFO_LIVE_P (stmt_info))
224 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
225 scalar_type = TREE_TYPE (PHI_RESULT (phi));
227 if (dump_enabled_p ())
229 dump_printf_loc (MSG_NOTE, vect_location,
230 "get vectype for scalar type: ");
231 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
232 dump_printf (MSG_NOTE, "\n");
235 vectype = get_vectype_for_scalar_type (scalar_type);
236 if (!vectype)
238 if (dump_enabled_p ())
240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
241 "not vectorized: unsupported "
242 "data-type ");
243 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
244 scalar_type);
245 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
247 return false;
249 STMT_VINFO_VECTYPE (stmt_info) = vectype;
251 if (dump_enabled_p ())
253 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
254 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
255 dump_printf (MSG_NOTE, "\n");
258 nunits = TYPE_VECTOR_SUBPARTS (vectype);
259 if (dump_enabled_p ())
260 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
261 nunits);
263 if (!vectorization_factor
264 || (nunits > vectorization_factor))
265 vectorization_factor = nunits;
269 for (gimple_stmt_iterator si = gsi_start_bb (bb);
270 !gsi_end_p (si) || analyze_pattern_stmt;)
272 tree vf_vectype;
274 if (analyze_pattern_stmt)
275 stmt = pattern_stmt;
276 else
277 stmt = gsi_stmt (si);
279 stmt_info = vinfo_for_stmt (stmt);
281 if (dump_enabled_p ())
283 dump_printf_loc (MSG_NOTE, vect_location,
284 "==> examining statement: ");
285 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 gcc_assert (stmt_info);
290 /* Skip stmts which do not need to be vectorized. */
291 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
292 && !STMT_VINFO_LIVE_P (stmt_info))
293 || gimple_clobber_p (stmt))
295 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
296 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
297 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
298 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
300 stmt = pattern_stmt;
301 stmt_info = vinfo_for_stmt (pattern_stmt);
302 if (dump_enabled_p ())
304 dump_printf_loc (MSG_NOTE, vect_location,
305 "==> examining pattern statement: ");
306 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
309 else
311 if (dump_enabled_p ())
312 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
313 gsi_next (&si);
314 continue;
317 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
318 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
319 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
320 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
321 analyze_pattern_stmt = true;
323 /* If a pattern statement has def stmts, analyze them too. */
324 if (is_pattern_stmt_p (stmt_info))
326 if (pattern_def_seq == NULL)
328 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
329 pattern_def_si = gsi_start (pattern_def_seq);
331 else if (!gsi_end_p (pattern_def_si))
332 gsi_next (&pattern_def_si);
333 if (pattern_def_seq != NULL)
335 gimple *pattern_def_stmt = NULL;
336 stmt_vec_info pattern_def_stmt_info = NULL;
338 while (!gsi_end_p (pattern_def_si))
340 pattern_def_stmt = gsi_stmt (pattern_def_si);
341 pattern_def_stmt_info
342 = vinfo_for_stmt (pattern_def_stmt);
343 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
344 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
345 break;
346 gsi_next (&pattern_def_si);
349 if (!gsi_end_p (pattern_def_si))
351 if (dump_enabled_p ())
353 dump_printf_loc (MSG_NOTE, vect_location,
354 "==> examining pattern def stmt: ");
355 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
356 pattern_def_stmt, 0);
359 stmt = pattern_def_stmt;
360 stmt_info = pattern_def_stmt_info;
362 else
364 pattern_def_si = gsi_none ();
365 analyze_pattern_stmt = false;
368 else
369 analyze_pattern_stmt = false;
372 if (gimple_get_lhs (stmt) == NULL_TREE
373 /* MASK_STORE has no lhs, but is ok. */
374 && (!is_gimple_call (stmt)
375 || !gimple_call_internal_p (stmt)
376 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
378 if (is_gimple_call (stmt))
380 /* Ignore calls with no lhs. These must be calls to
381 #pragma omp simd functions, and what vectorization factor
382 it really needs can't be determined until
383 vectorizable_simd_clone_call. */
384 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 pattern_def_seq = NULL;
387 gsi_next (&si);
389 continue;
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "not vectorized: irregular stmt.");
395 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
398 return false;
401 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
403 if (dump_enabled_p ())
405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
406 "not vectorized: vector stmt in loop:");
407 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
409 return false;
412 bool_result = false;
414 if (STMT_VINFO_VECTYPE (stmt_info))
416 /* The only case when a vectype had been already set is for stmts
417 that contain a dataref, or for "pattern-stmts" (stmts
418 generated by the vectorizer to represent/replace a certain
419 idiom). */
420 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
421 || is_pattern_stmt_p (stmt_info)
422 || !gsi_end_p (pattern_def_si));
423 vectype = STMT_VINFO_VECTYPE (stmt_info);
425 else
427 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
428 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
429 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
430 else
431 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
433 /* Bool ops don't participate in vectorization factor
434 computation. For comparison use compared types to
435 compute a factor. */
436 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)
437 && is_gimple_assign (stmt)
438 && gimple_assign_rhs_code (stmt) != COND_EXPR)
440 if (STMT_VINFO_RELEVANT_P (stmt_info)
441 || STMT_VINFO_LIVE_P (stmt_info))
442 mask_producers.safe_push (stmt_info);
443 bool_result = true;
445 if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
446 == tcc_comparison
447 && !VECT_SCALAR_BOOLEAN_TYPE_P
448 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
449 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
450 else
452 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
454 pattern_def_seq = NULL;
455 gsi_next (&si);
457 continue;
461 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location,
464 "get vectype for scalar type: ");
465 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
466 dump_printf (MSG_NOTE, "\n");
468 vectype = get_vectype_for_scalar_type (scalar_type);
469 if (!vectype)
471 if (dump_enabled_p ())
473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
474 "not vectorized: unsupported "
475 "data-type ");
476 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
477 scalar_type);
478 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
480 return false;
483 if (!bool_result)
484 STMT_VINFO_VECTYPE (stmt_info) = vectype;
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
489 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
490 dump_printf (MSG_NOTE, "\n");
494 /* Don't try to compute VF out scalar types if we stmt
495 produces boolean vector. Use result vectype instead. */
496 if (VECTOR_BOOLEAN_TYPE_P (vectype))
497 vf_vectype = vectype;
498 else
500 /* The vectorization factor is according to the smallest
501 scalar type (or the largest vector size, but we only
502 support one vector size per loop). */
503 if (!bool_result)
504 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
505 &dummy);
506 if (dump_enabled_p ())
508 dump_printf_loc (MSG_NOTE, vect_location,
509 "get vectype for scalar type: ");
510 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
511 dump_printf (MSG_NOTE, "\n");
513 vf_vectype = get_vectype_for_scalar_type (scalar_type);
515 if (!vf_vectype)
517 if (dump_enabled_p ())
519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
520 "not vectorized: unsupported data-type ");
521 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
522 scalar_type);
523 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
525 return false;
528 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
529 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
531 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "not vectorized: different sized vector "
535 "types in statement, ");
536 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
537 vectype);
538 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
539 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
540 vf_vectype);
541 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
543 return false;
546 if (dump_enabled_p ())
548 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
549 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
550 dump_printf (MSG_NOTE, "\n");
553 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
554 if (dump_enabled_p ())
555 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
556 if (!vectorization_factor
557 || (nunits > vectorization_factor))
558 vectorization_factor = nunits;
560 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
562 pattern_def_seq = NULL;
563 gsi_next (&si);
568 /* TODO: Analyze cost. Decide if worth while to vectorize. */
569 if (dump_enabled_p ())
570 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
571 vectorization_factor);
572 if (vectorization_factor <= 1)
574 if (dump_enabled_p ())
575 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
576 "not vectorized: unsupported data-type\n");
577 return false;
579 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
581 for (i = 0; i < mask_producers.length (); i++)
583 tree mask_type = NULL;
585 stmt = STMT_VINFO_STMT (mask_producers[i]);
587 if (is_gimple_assign (stmt)
588 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
589 && !VECT_SCALAR_BOOLEAN_TYPE_P
590 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
592 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
593 mask_type = get_mask_type_for_scalar_type (scalar_type);
595 if (!mask_type)
597 if (dump_enabled_p ())
598 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
599 "not vectorized: unsupported mask\n");
600 return false;
603 else
605 tree rhs;
606 ssa_op_iter iter;
607 gimple *def_stmt;
608 enum vect_def_type dt;
610 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
612 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
613 &def_stmt, &dt, &vectype))
615 if (dump_enabled_p ())
617 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
618 "not vectorized: can't compute mask type "
619 "for statement, ");
620 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
623 return false;
626 /* No vectype probably means external definition.
627 Allow it in case there is another operand which
628 allows to determine mask type. */
629 if (!vectype)
630 continue;
632 if (!mask_type)
633 mask_type = vectype;
634 else if (TYPE_VECTOR_SUBPARTS (mask_type)
635 != TYPE_VECTOR_SUBPARTS (vectype))
637 if (dump_enabled_p ())
639 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
640 "not vectorized: different sized masks "
641 "types in statement, ");
642 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
643 mask_type);
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
646 vectype);
647 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
649 return false;
651 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
652 != VECTOR_BOOLEAN_TYPE_P (vectype))
654 if (dump_enabled_p ())
656 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
657 "not vectorized: mixed mask and "
658 "nonmask vector types in statement, ");
659 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
660 mask_type);
661 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
662 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
663 vectype);
664 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
666 return false;
670 /* We may compare boolean value loaded as vector of integers.
671 Fix mask_type in such case. */
672 if (mask_type
673 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
674 && gimple_code (stmt) == GIMPLE_ASSIGN
675 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
676 mask_type = build_same_sized_truth_vector_type (mask_type);
679 /* No mask_type should mean loop invariant predicate.
680 This is probably a subject for optimization in
681 if-conversion. */
682 if (!mask_type)
684 if (dump_enabled_p ())
686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
687 "not vectorized: can't compute mask type "
688 "for statement, ");
689 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
692 return false;
695 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
698 return true;
702 /* Function vect_is_simple_iv_evolution.
704 FORNOW: A simple evolution of an induction variables in the loop is
705 considered a polynomial evolution. */
707 static bool
708 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
709 tree * step)
711 tree init_expr;
712 tree step_expr;
713 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
714 basic_block bb;
716 /* When there is no evolution in this loop, the evolution function
717 is not "simple". */
718 if (evolution_part == NULL_TREE)
719 return false;
721 /* When the evolution is a polynomial of degree >= 2
722 the evolution function is not "simple". */
723 if (tree_is_chrec (evolution_part))
724 return false;
726 step_expr = evolution_part;
727 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
729 if (dump_enabled_p ())
731 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
732 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
733 dump_printf (MSG_NOTE, ", init: ");
734 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
735 dump_printf (MSG_NOTE, "\n");
738 *init = init_expr;
739 *step = step_expr;
741 if (TREE_CODE (step_expr) != INTEGER_CST
742 && (TREE_CODE (step_expr) != SSA_NAME
743 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
744 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
745 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
746 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
747 || !flag_associative_math)))
748 && (TREE_CODE (step_expr) != REAL_CST
749 || !flag_associative_math))
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "step unknown.\n");
754 return false;
757 return true;
760 /* Function vect_analyze_scalar_cycles_1.
762 Examine the cross iteration def-use cycles of scalar variables
763 in LOOP. LOOP_VINFO represents the loop that is now being
764 considered for vectorization (can be LOOP, or an outer-loop
765 enclosing LOOP). */
767 static void
768 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
770 basic_block bb = loop->header;
771 tree init, step;
772 auto_vec<gimple *, 64> worklist;
773 gphi_iterator gsi;
774 bool double_reduc;
776 if (dump_enabled_p ())
777 dump_printf_loc (MSG_NOTE, vect_location,
778 "=== vect_analyze_scalar_cycles ===\n");
780 /* First - identify all inductions. Reduction detection assumes that all the
781 inductions have been identified, therefore, this order must not be
782 changed. */
783 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
785 gphi *phi = gsi.phi ();
786 tree access_fn = NULL;
787 tree def = PHI_RESULT (phi);
788 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
790 if (dump_enabled_p ())
792 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
793 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
796 /* Skip virtual phi's. The data dependences that are associated with
797 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
798 if (virtual_operand_p (def))
799 continue;
801 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
803 /* Analyze the evolution function. */
804 access_fn = analyze_scalar_evolution (loop, def);
805 if (access_fn)
807 STRIP_NOPS (access_fn);
808 if (dump_enabled_p ())
810 dump_printf_loc (MSG_NOTE, vect_location,
811 "Access function of PHI: ");
812 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
813 dump_printf (MSG_NOTE, "\n");
815 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
816 = initial_condition_in_loop_num (access_fn, loop->num);
817 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
818 = evolution_part_in_loop_num (access_fn, loop->num);
821 if (!access_fn
822 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
823 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
824 && TREE_CODE (step) != INTEGER_CST))
826 worklist.safe_push (phi);
827 continue;
830 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
831 != NULL_TREE);
832 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
834 if (dump_enabled_p ())
835 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
836 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
840 /* Second - identify all reductions and nested cycles. */
841 while (worklist.length () > 0)
843 gimple *phi = worklist.pop ();
844 tree def = PHI_RESULT (phi);
845 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
846 gimple *reduc_stmt;
848 if (dump_enabled_p ())
850 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
851 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
854 gcc_assert (!virtual_operand_p (def)
855 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
857 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi,
858 &double_reduc, false);
859 if (reduc_stmt)
861 if (double_reduc)
863 if (dump_enabled_p ())
864 dump_printf_loc (MSG_NOTE, vect_location,
865 "Detected double reduction.\n");
867 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
868 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
869 vect_double_reduction_def;
871 else
873 if (loop != LOOP_VINFO_LOOP (loop_vinfo))
875 if (dump_enabled_p ())
876 dump_printf_loc (MSG_NOTE, vect_location,
877 "Detected vectorizable nested cycle.\n");
879 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
880 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
881 vect_nested_cycle;
883 else
885 if (dump_enabled_p ())
886 dump_printf_loc (MSG_NOTE, vect_location,
887 "Detected reduction.\n");
889 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
890 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
891 vect_reduction_def;
892 /* Store the reduction cycles for possible vectorization in
893 loop-aware SLP. */
894 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
898 else
899 if (dump_enabled_p ())
900 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
901 "Unknown def-use cycle pattern.\n");
906 /* Function vect_analyze_scalar_cycles.
908 Examine the cross iteration def-use cycles of scalar variables, by
909 analyzing the loop-header PHIs of scalar variables. Classify each
910 cycle as one of the following: invariant, induction, reduction, unknown.
911 We do that for the loop represented by LOOP_VINFO, and also to its
912 inner-loop, if exists.
913 Examples for scalar cycles:
915 Example1: reduction:
917 loop1:
918 for (i=0; i<N; i++)
919 sum += a[i];
921 Example2: induction:
923 loop2:
924 for (i=0; i<N; i++)
925 a[i] = i; */
927 static void
928 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
930 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
932 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
934 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
935 Reductions in such inner-loop therefore have different properties than
936 the reductions in the nest that gets vectorized:
937 1. When vectorized, they are executed in the same order as in the original
938 scalar loop, so we can't change the order of computation when
939 vectorizing them.
940 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
941 current checks are too strict. */
943 if (loop->inner)
944 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
947 /* Transfer group and reduction information from STMT to its pattern stmt. */
949 static void
950 vect_fixup_reduc_chain (gimple *stmt)
952 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
953 gimple *stmtp;
954 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
955 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
956 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
959 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
960 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
961 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
962 if (stmt)
963 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
964 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
966 while (stmt);
967 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
970 /* Fixup scalar cycles that now have their stmts detected as patterns. */
972 static void
973 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
975 gimple *first;
976 unsigned i;
978 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
979 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
981 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
982 while (next)
984 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
985 break;
986 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
988 /* If not all stmt in the chain are patterns try to handle
989 the chain without patterns. */
990 if (! next)
992 vect_fixup_reduc_chain (first);
993 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
994 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
999 /* Function vect_get_loop_niters.
1001 Determine how many iterations the loop is executed and place it
1002 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1003 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
1004 niter information holds in ASSUMPTIONS.
1006 Return the loop exit condition. */
1009 static gcond *
1010 vect_get_loop_niters (struct loop *loop, tree *assumptions,
1011 tree *number_of_iterations, tree *number_of_iterationsm1)
1013 edge exit = single_exit (loop);
1014 struct tree_niter_desc niter_desc;
1015 tree niter_assumptions, niter, may_be_zero;
1016 gcond *cond = get_loop_exit_condition (loop);
1018 *assumptions = boolean_true_node;
1019 *number_of_iterationsm1 = chrec_dont_know;
1020 *number_of_iterations = chrec_dont_know;
1021 if (dump_enabled_p ())
1022 dump_printf_loc (MSG_NOTE, vect_location,
1023 "=== get_loop_niters ===\n");
1025 if (!exit)
1026 return cond;
1028 niter = chrec_dont_know;
1029 may_be_zero = NULL_TREE;
1030 niter_assumptions = boolean_true_node;
1031 if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
1032 || chrec_contains_undetermined (niter_desc.niter))
1033 return cond;
1035 niter_assumptions = niter_desc.assumptions;
1036 may_be_zero = niter_desc.may_be_zero;
1037 niter = niter_desc.niter;
1039 if (may_be_zero && integer_zerop (may_be_zero))
1040 may_be_zero = NULL_TREE;
1042 if (may_be_zero)
1044 if (COMPARISON_CLASS_P (may_be_zero))
1046 /* Try to combine may_be_zero with assumptions, this can simplify
1047 computation of niter expression. */
1048 if (niter_assumptions && !integer_nonzerop (niter_assumptions))
1049 niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1050 niter_assumptions,
1051 fold_build1 (TRUTH_NOT_EXPR,
1052 boolean_type_node,
1053 may_be_zero));
1054 else
1055 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
1056 build_int_cst (TREE_TYPE (niter), 0), niter);
1058 may_be_zero = NULL_TREE;
1060 else if (integer_nonzerop (may_be_zero))
1062 *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
1063 *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
1064 return cond;
1066 else
1067 return cond;
1070 *assumptions = niter_assumptions;
1071 *number_of_iterationsm1 = niter;
1073 /* We want the number of loop header executions which is the number
1074 of latch executions plus one.
1075 ??? For UINT_MAX latch executions this number overflows to zero
1076 for loops like do { n++; } while (n != 0); */
1077 if (niter && !chrec_contains_undetermined (niter))
1078 niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
1079 build_int_cst (TREE_TYPE (niter), 1));
1080 *number_of_iterations = niter;
1082 return cond;
1085 /* Function bb_in_loop_p
1087 Used as predicate for dfs order traversal of the loop bbs. */
1089 static bool
1090 bb_in_loop_p (const_basic_block bb, const void *data)
1092 const struct loop *const loop = (const struct loop *)data;
1093 if (flow_bb_inside_loop_p (loop, bb))
1094 return true;
1095 return false;
1099 /* Function new_loop_vec_info.
1101 Create and initialize a new loop_vec_info struct for LOOP, as well as
1102 stmt_vec_info structs for all the stmts in LOOP. */
1104 static loop_vec_info
1105 new_loop_vec_info (struct loop *loop)
1107 loop_vec_info res;
1108 basic_block *bbs;
1109 gimple_stmt_iterator si;
1110 unsigned int i, nbbs;
1112 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1113 res->kind = vec_info::loop;
1114 LOOP_VINFO_LOOP (res) = loop;
1116 bbs = get_loop_body (loop);
1118 /* Create/Update stmt_info for all stmts in the loop. */
1119 for (i = 0; i < loop->num_nodes; i++)
1121 basic_block bb = bbs[i];
1123 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1125 gimple *phi = gsi_stmt (si);
1126 gimple_set_uid (phi, 0);
1127 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
1130 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1132 gimple *stmt = gsi_stmt (si);
1133 gimple_set_uid (stmt, 0);
1134 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
1138 /* CHECKME: We want to visit all BBs before their successors (except for
1139 latch blocks, for which this assertion wouldn't hold). In the simple
1140 case of the loop forms we allow, a dfs order of the BBs would the same
1141 as reversed postorder traversal, so we are safe. */
1143 free (bbs);
1144 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1145 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1146 bbs, loop->num_nodes, loop);
1147 gcc_assert (nbbs == loop->num_nodes);
1149 LOOP_VINFO_BBS (res) = bbs;
1150 LOOP_VINFO_NITERSM1 (res) = NULL;
1151 LOOP_VINFO_NITERS (res) = NULL;
1152 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
1153 LOOP_VINFO_NITERS_ASSUMPTIONS (res) = NULL;
1154 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
1155 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1156 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
1157 LOOP_VINFO_VECT_FACTOR (res) = 0;
1158 LOOP_VINFO_LOOP_NEST (res) = vNULL;
1159 LOOP_VINFO_DATAREFS (res) = vNULL;
1160 LOOP_VINFO_DDRS (res) = vNULL;
1161 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1162 LOOP_VINFO_MAY_MISALIGN_STMTS (res) = vNULL;
1163 LOOP_VINFO_MAY_ALIAS_DDRS (res) = vNULL;
1164 LOOP_VINFO_GROUPED_STORES (res) = vNULL;
1165 LOOP_VINFO_REDUCTIONS (res) = vNULL;
1166 LOOP_VINFO_REDUCTION_CHAINS (res) = vNULL;
1167 LOOP_VINFO_SLP_INSTANCES (res) = vNULL;
1168 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
1169 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
1170 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
1171 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
1172 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
1173 LOOP_VINFO_ORIG_LOOP_INFO (res) = NULL;
1175 return res;
1179 /* Function destroy_loop_vec_info.
1181 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1182 stmts in the loop. */
1184 void
1185 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1187 struct loop *loop;
1188 basic_block *bbs;
1189 int nbbs;
1190 gimple_stmt_iterator si;
1191 int j;
1192 vec<slp_instance> slp_instances;
1193 slp_instance instance;
1194 bool swapped;
1196 if (!loop_vinfo)
1197 return;
1199 loop = LOOP_VINFO_LOOP (loop_vinfo);
1201 bbs = LOOP_VINFO_BBS (loop_vinfo);
1202 nbbs = clean_stmts ? loop->num_nodes : 0;
1203 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
1205 for (j = 0; j < nbbs; j++)
1207 basic_block bb = bbs[j];
1208 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1209 free_stmt_vec_info (gsi_stmt (si));
1211 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1213 gimple *stmt = gsi_stmt (si);
1215 /* We may have broken canonical form by moving a constant
1216 into RHS1 of a commutative op. Fix such occurrences. */
1217 if (swapped && is_gimple_assign (stmt))
1219 enum tree_code code = gimple_assign_rhs_code (stmt);
1221 if ((code == PLUS_EXPR
1222 || code == POINTER_PLUS_EXPR
1223 || code == MULT_EXPR)
1224 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1225 swap_ssa_operands (stmt,
1226 gimple_assign_rhs1_ptr (stmt),
1227 gimple_assign_rhs2_ptr (stmt));
1228 else if (code == COND_EXPR
1229 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
1231 tree cond_expr = gimple_assign_rhs1 (stmt);
1232 enum tree_code cond_code = TREE_CODE (cond_expr);
1234 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
1236 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
1237 0));
1238 cond_code = invert_tree_comparison (cond_code,
1239 honor_nans);
1240 if (cond_code != ERROR_MARK)
1242 TREE_SET_CODE (cond_expr, cond_code);
1243 swap_ssa_operands (stmt,
1244 gimple_assign_rhs2_ptr (stmt),
1245 gimple_assign_rhs3_ptr (stmt));
1251 /* Free stmt_vec_info. */
1252 free_stmt_vec_info (stmt);
1253 gsi_next (&si);
1257 free (LOOP_VINFO_BBS (loop_vinfo));
1258 vect_destroy_datarefs (loop_vinfo);
1259 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1260 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1261 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1262 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
1263 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1264 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1265 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1266 vect_free_slp_instance (instance);
1268 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1269 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1270 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1271 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1273 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1274 loop_vinfo->scalar_cost_vec.release ();
1276 free (loop_vinfo);
1277 loop->aux = NULL;
1281 /* Calculate the cost of one scalar iteration of the loop. */
1282 static void
1283 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1285 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1286 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1287 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1288 int innerloop_iters, i;
1290 /* Count statements in scalar loop. Using this as scalar cost for a single
1291 iteration for now.
1293 TODO: Add outer loop support.
1295 TODO: Consider assigning different costs to different scalar
1296 statements. */
1298 /* FORNOW. */
1299 innerloop_iters = 1;
1300 if (loop->inner)
1301 innerloop_iters = 50; /* FIXME */
1303 for (i = 0; i < nbbs; i++)
1305 gimple_stmt_iterator si;
1306 basic_block bb = bbs[i];
1308 if (bb->loop_father == loop->inner)
1309 factor = innerloop_iters;
1310 else
1311 factor = 1;
1313 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1315 gimple *stmt = gsi_stmt (si);
1316 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1318 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1319 continue;
1321 /* Skip stmts that are not vectorized inside the loop. */
1322 if (stmt_info
1323 && !STMT_VINFO_RELEVANT_P (stmt_info)
1324 && (!STMT_VINFO_LIVE_P (stmt_info)
1325 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1326 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1327 continue;
1329 vect_cost_for_stmt kind;
1330 if (STMT_VINFO_DATA_REF (stmt_info))
1332 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1333 kind = scalar_load;
1334 else
1335 kind = scalar_store;
1337 else
1338 kind = scalar_stmt;
1340 scalar_single_iter_cost
1341 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1342 factor, kind, stmt_info, 0, vect_prologue);
1345 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1346 = scalar_single_iter_cost;
1350 /* Function vect_analyze_loop_form_1.
1352 Verify that certain CFG restrictions hold, including:
1353 - the loop has a pre-header
1354 - the loop has a single entry and exit
1355 - the loop exit condition is simple enough
1356 - the number of iterations can be analyzed, i.e, a countable loop. The
1357 niter could be analyzed under some assumptions. */
1359 bool
1360 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1361 tree *assumptions, tree *number_of_iterationsm1,
1362 tree *number_of_iterations, gcond **inner_loop_cond)
1364 if (dump_enabled_p ())
1365 dump_printf_loc (MSG_NOTE, vect_location,
1366 "=== vect_analyze_loop_form ===\n");
1368 /* Different restrictions apply when we are considering an inner-most loop,
1369 vs. an outer (nested) loop.
1370 (FORNOW. May want to relax some of these restrictions in the future). */
1372 if (!loop->inner)
1374 /* Inner-most loop. We currently require that the number of BBs is
1375 exactly 2 (the header and latch). Vectorizable inner-most loops
1376 look like this:
1378 (pre-header)
1380 header <--------+
1381 | | |
1382 | +--> latch --+
1384 (exit-bb) */
1386 if (loop->num_nodes != 2)
1388 if (dump_enabled_p ())
1389 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1390 "not vectorized: control flow in loop.\n");
1391 return false;
1394 if (empty_block_p (loop->header))
1396 if (dump_enabled_p ())
1397 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1398 "not vectorized: empty loop.\n");
1399 return false;
1402 else
1404 struct loop *innerloop = loop->inner;
1405 edge entryedge;
1407 /* Nested loop. We currently require that the loop is doubly-nested,
1408 contains a single inner loop, and the number of BBs is exactly 5.
1409 Vectorizable outer-loops look like this:
1411 (pre-header)
1413 header <---+
1415 inner-loop |
1417 tail ------+
1419 (exit-bb)
1421 The inner-loop has the properties expected of inner-most loops
1422 as described above. */
1424 if ((loop->inner)->inner || (loop->inner)->next)
1426 if (dump_enabled_p ())
1427 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1428 "not vectorized: multiple nested loops.\n");
1429 return false;
1432 if (loop->num_nodes != 5)
1434 if (dump_enabled_p ())
1435 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1436 "not vectorized: control flow in loop.\n");
1437 return false;
1440 entryedge = loop_preheader_edge (innerloop);
1441 if (entryedge->src != loop->header
1442 || !single_exit (innerloop)
1443 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1445 if (dump_enabled_p ())
1446 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1447 "not vectorized: unsupported outerloop form.\n");
1448 return false;
1451 /* Analyze the inner-loop. */
1452 tree inner_niterm1, inner_niter, inner_assumptions;
1453 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1454 &inner_assumptions, &inner_niterm1,
1455 &inner_niter, NULL)
1456 /* Don't support analyzing niter under assumptions for inner
1457 loop. */
1458 || !integer_onep (inner_assumptions))
1460 if (dump_enabled_p ())
1461 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1462 "not vectorized: Bad inner loop.\n");
1463 return false;
1466 if (!expr_invariant_in_loop_p (loop, inner_niter))
1468 if (dump_enabled_p ())
1469 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1470 "not vectorized: inner-loop count not"
1471 " invariant.\n");
1472 return false;
1475 if (dump_enabled_p ())
1476 dump_printf_loc (MSG_NOTE, vect_location,
1477 "Considering outer-loop vectorization.\n");
1480 if (!single_exit (loop)
1481 || EDGE_COUNT (loop->header->preds) != 2)
1483 if (dump_enabled_p ())
1485 if (!single_exit (loop))
1486 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1487 "not vectorized: multiple exits.\n");
1488 else if (EDGE_COUNT (loop->header->preds) != 2)
1489 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1490 "not vectorized: too many incoming edges.\n");
1492 return false;
1495 /* We assume that the loop exit condition is at the end of the loop. i.e,
1496 that the loop is represented as a do-while (with a proper if-guard
1497 before the loop if needed), where the loop header contains all the
1498 executable statements, and the latch is empty. */
1499 if (!empty_block_p (loop->latch)
1500 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1502 if (dump_enabled_p ())
1503 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1504 "not vectorized: latch block not empty.\n");
1505 return false;
1508 /* Make sure the exit is not abnormal. */
1509 edge e = single_exit (loop);
1510 if (e->flags & EDGE_ABNORMAL)
1512 if (dump_enabled_p ())
1513 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1514 "not vectorized: abnormal loop exit edge.\n");
1515 return false;
1518 *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
1519 number_of_iterationsm1);
1520 if (!*loop_cond)
1522 if (dump_enabled_p ())
1523 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1524 "not vectorized: complicated exit condition.\n");
1525 return false;
1528 if (integer_zerop (*assumptions)
1529 || !*number_of_iterations
1530 || chrec_contains_undetermined (*number_of_iterations))
1532 if (dump_enabled_p ())
1533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1534 "not vectorized: number of iterations cannot be "
1535 "computed.\n");
1536 return false;
1539 if (integer_zerop (*number_of_iterations))
1541 if (dump_enabled_p ())
1542 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1543 "not vectorized: number of iterations = 0.\n");
1544 return false;
1547 return true;
1550 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1552 loop_vec_info
1553 vect_analyze_loop_form (struct loop *loop)
1555 tree assumptions, number_of_iterations, number_of_iterationsm1;
1556 gcond *loop_cond, *inner_loop_cond = NULL;
1558 if (! vect_analyze_loop_form_1 (loop, &loop_cond,
1559 &assumptions, &number_of_iterationsm1,
1560 &number_of_iterations, &inner_loop_cond))
1561 return NULL;
1563 loop_vec_info loop_vinfo = new_loop_vec_info (loop);
1564 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1565 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1566 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1567 if (!integer_onep (assumptions))
1569 /* We consider to vectorize this loop by versioning it under
1570 some assumptions. In order to do this, we need to clear
1571 existing information computed by scev and niter analyzer. */
1572 scev_reset_htab ();
1573 free_numbers_of_iterations_estimates_loop (loop);
1574 /* Also set flag for this loop so that following scev and niter
1575 analysis are done under the assumptions. */
1576 loop_constraint_set (loop, LOOP_C_FINITE);
1577 /* Also record the assumptions for versioning. */
1578 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
1581 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1583 if (dump_enabled_p ())
1585 dump_printf_loc (MSG_NOTE, vect_location,
1586 "Symbolic number of iterations is ");
1587 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1588 dump_printf (MSG_NOTE, "\n");
1592 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1593 if (inner_loop_cond)
1594 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1595 = loop_exit_ctrl_vec_info_type;
1597 gcc_assert (!loop->aux);
1598 loop->aux = loop_vinfo;
1599 return loop_vinfo;
1604 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1605 statements update the vectorization factor. */
1607 static void
1608 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1610 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1611 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1612 int nbbs = loop->num_nodes;
1613 unsigned int vectorization_factor;
1614 int i;
1616 if (dump_enabled_p ())
1617 dump_printf_loc (MSG_NOTE, vect_location,
1618 "=== vect_update_vf_for_slp ===\n");
1620 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1621 gcc_assert (vectorization_factor != 0);
1623 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1624 vectorization factor of the loop is the unrolling factor required by
1625 the SLP instances. If that unrolling factor is 1, we say, that we
1626 perform pure SLP on loop - cross iteration parallelism is not
1627 exploited. */
1628 bool only_slp_in_loop = true;
1629 for (i = 0; i < nbbs; i++)
1631 basic_block bb = bbs[i];
1632 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1633 gsi_next (&si))
1635 gimple *stmt = gsi_stmt (si);
1636 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1637 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1638 && STMT_VINFO_RELATED_STMT (stmt_info))
1640 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1641 stmt_info = vinfo_for_stmt (stmt);
1643 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1644 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1645 && !PURE_SLP_STMT (stmt_info))
1646 /* STMT needs both SLP and loop-based vectorization. */
1647 only_slp_in_loop = false;
1651 if (only_slp_in_loop)
1653 dump_printf_loc (MSG_NOTE, vect_location,
1654 "Loop contains only SLP stmts\n");
1655 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1657 else
1659 dump_printf_loc (MSG_NOTE, vect_location,
1660 "Loop contains SLP and non-SLP stmts\n");
1661 vectorization_factor
1662 = least_common_multiple (vectorization_factor,
1663 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1666 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1667 if (dump_enabled_p ())
1668 dump_printf_loc (MSG_NOTE, vect_location,
1669 "Updating vectorization factor to %d\n",
1670 vectorization_factor);
1673 /* Function vect_analyze_loop_operations.
1675 Scan the loop stmts and make sure they are all vectorizable. */
1677 static bool
1678 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1680 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1681 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1682 int nbbs = loop->num_nodes;
1683 int i;
1684 stmt_vec_info stmt_info;
1685 bool need_to_vectorize = false;
1686 bool ok;
1688 if (dump_enabled_p ())
1689 dump_printf_loc (MSG_NOTE, vect_location,
1690 "=== vect_analyze_loop_operations ===\n");
1692 for (i = 0; i < nbbs; i++)
1694 basic_block bb = bbs[i];
1696 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1697 gsi_next (&si))
1699 gphi *phi = si.phi ();
1700 ok = true;
1702 stmt_info = vinfo_for_stmt (phi);
1703 if (dump_enabled_p ())
1705 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1706 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1708 if (virtual_operand_p (gimple_phi_result (phi)))
1709 continue;
1711 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1712 (i.e., a phi in the tail of the outer-loop). */
1713 if (! is_loop_header_bb_p (bb))
1715 /* FORNOW: we currently don't support the case that these phis
1716 are not used in the outerloop (unless it is double reduction,
1717 i.e., this phi is vect_reduction_def), cause this case
1718 requires to actually do something here. */
1719 if (STMT_VINFO_LIVE_P (stmt_info)
1720 && STMT_VINFO_DEF_TYPE (stmt_info)
1721 != vect_double_reduction_def)
1723 if (dump_enabled_p ())
1724 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1725 "Unsupported loop-closed phi in "
1726 "outer-loop.\n");
1727 return false;
1730 /* If PHI is used in the outer loop, we check that its operand
1731 is defined in the inner loop. */
1732 if (STMT_VINFO_RELEVANT_P (stmt_info))
1734 tree phi_op;
1735 gimple *op_def_stmt;
1737 if (gimple_phi_num_args (phi) != 1)
1738 return false;
1740 phi_op = PHI_ARG_DEF (phi, 0);
1741 if (TREE_CODE (phi_op) != SSA_NAME)
1742 return false;
1744 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1745 if (gimple_nop_p (op_def_stmt)
1746 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1747 || !vinfo_for_stmt (op_def_stmt))
1748 return false;
1750 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1751 != vect_used_in_outer
1752 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1753 != vect_used_in_outer_by_reduction)
1754 return false;
1757 continue;
1760 gcc_assert (stmt_info);
1762 if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1763 || STMT_VINFO_LIVE_P (stmt_info))
1764 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1766 /* A scalar-dependence cycle that we don't support. */
1767 if (dump_enabled_p ())
1768 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1769 "not vectorized: scalar dependence cycle.\n");
1770 return false;
1773 if (STMT_VINFO_RELEVANT_P (stmt_info))
1775 need_to_vectorize = true;
1776 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
1777 && ! PURE_SLP_STMT (stmt_info))
1778 ok = vectorizable_induction (phi, NULL, NULL, NULL);
1781 if (ok && STMT_VINFO_LIVE_P (stmt_info))
1782 ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL);
1784 if (!ok)
1786 if (dump_enabled_p ())
1788 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1789 "not vectorized: relevant phi not "
1790 "supported: ");
1791 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1793 return false;
1797 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1798 gsi_next (&si))
1800 gimple *stmt = gsi_stmt (si);
1801 if (!gimple_clobber_p (stmt)
1802 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1803 return false;
1805 } /* bbs */
1807 /* All operations in the loop are either irrelevant (deal with loop
1808 control, or dead), or only used outside the loop and can be moved
1809 out of the loop (e.g. invariants, inductions). The loop can be
1810 optimized away by scalar optimizations. We're better off not
1811 touching this loop. */
1812 if (!need_to_vectorize)
1814 if (dump_enabled_p ())
1815 dump_printf_loc (MSG_NOTE, vect_location,
1816 "All the computation can be taken out of the loop.\n");
1817 if (dump_enabled_p ())
1818 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1819 "not vectorized: redundant loop. no profit to "
1820 "vectorize.\n");
1821 return false;
1824 return true;
1828 /* Function vect_analyze_loop_2.
1830 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1831 for it. The different analyses will record information in the
1832 loop_vec_info struct. */
1833 static bool
1834 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1836 bool ok;
1837 int max_vf = MAX_VECTORIZATION_FACTOR;
1838 int min_vf = 2;
1839 unsigned int n_stmts = 0;
1841 /* The first group of checks is independent of the vector size. */
1842 fatal = true;
1844 /* Find all data references in the loop (which correspond to vdefs/vuses)
1845 and analyze their evolution in the loop. */
1847 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1849 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1850 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1852 if (dump_enabled_p ())
1853 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1854 "not vectorized: loop nest containing two "
1855 "or more consecutive inner loops cannot be "
1856 "vectorized\n");
1857 return false;
1860 for (unsigned i = 0; i < loop->num_nodes; i++)
1861 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1862 !gsi_end_p (gsi); gsi_next (&gsi))
1864 gimple *stmt = gsi_stmt (gsi);
1865 if (is_gimple_debug (stmt))
1866 continue;
1867 ++n_stmts;
1868 if (!find_data_references_in_stmt (loop, stmt,
1869 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1871 if (is_gimple_call (stmt) && loop->safelen)
1873 tree fndecl = gimple_call_fndecl (stmt), op;
1874 if (fndecl != NULL_TREE)
1876 cgraph_node *node = cgraph_node::get (fndecl);
1877 if (node != NULL && node->simd_clones != NULL)
1879 unsigned int j, n = gimple_call_num_args (stmt);
1880 for (j = 0; j < n; j++)
1882 op = gimple_call_arg (stmt, j);
1883 if (DECL_P (op)
1884 || (REFERENCE_CLASS_P (op)
1885 && get_base_address (op)))
1886 break;
1888 op = gimple_call_lhs (stmt);
1889 /* Ignore #pragma omp declare simd functions
1890 if they don't have data references in the
1891 call stmt itself. */
1892 if (j == n
1893 && !(op
1894 && (DECL_P (op)
1895 || (REFERENCE_CLASS_P (op)
1896 && get_base_address (op)))))
1897 continue;
1901 if (dump_enabled_p ())
1902 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1903 "not vectorized: loop contains function "
1904 "calls or data references that cannot "
1905 "be analyzed\n");
1906 return false;
1910 /* Analyze the data references and also adjust the minimal
1911 vectorization factor according to the loads and stores. */
1913 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1914 if (!ok)
1916 if (dump_enabled_p ())
1917 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1918 "bad data references.\n");
1919 return false;
1922 /* Classify all cross-iteration scalar data-flow cycles.
1923 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1924 vect_analyze_scalar_cycles (loop_vinfo);
1926 vect_pattern_recog (loop_vinfo);
1928 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1930 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1931 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1933 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1934 if (!ok)
1936 if (dump_enabled_p ())
1937 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1938 "bad data access.\n");
1939 return false;
1942 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1944 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1945 if (!ok)
1947 if (dump_enabled_p ())
1948 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1949 "unexpected pattern.\n");
1950 return false;
1953 /* While the rest of the analysis below depends on it in some way. */
1954 fatal = false;
1956 /* Analyze data dependences between the data-refs in the loop
1957 and adjust the maximum vectorization factor according to
1958 the dependences.
1959 FORNOW: fail at the first data dependence that we encounter. */
1961 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1962 if (!ok
1963 || max_vf < min_vf)
1965 if (dump_enabled_p ())
1966 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1967 "bad data dependence.\n");
1968 return false;
1971 ok = vect_determine_vectorization_factor (loop_vinfo);
1972 if (!ok)
1974 if (dump_enabled_p ())
1975 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1976 "can't determine vectorization factor.\n");
1977 return false;
1979 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1981 if (dump_enabled_p ())
1982 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1983 "bad data dependence.\n");
1984 return false;
1987 /* Compute the scalar iteration cost. */
1988 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1990 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1991 HOST_WIDE_INT estimated_niter;
1992 unsigned th;
1993 int min_scalar_loop_bound;
1995 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1996 ok = vect_analyze_slp (loop_vinfo, n_stmts);
1997 if (!ok)
1998 return false;
2000 /* If there are any SLP instances mark them as pure_slp. */
2001 bool slp = vect_make_slp_decision (loop_vinfo);
2002 if (slp)
2004 /* Find stmts that need to be both vectorized and SLPed. */
2005 vect_detect_hybrid_slp (loop_vinfo);
2007 /* Update the vectorization factor based on the SLP decision. */
2008 vect_update_vf_for_slp (loop_vinfo);
2011 /* This is the point where we can re-start analysis with SLP forced off. */
2012 start_over:
2014 /* Now the vectorization factor is final. */
2015 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2016 gcc_assert (vectorization_factor != 0);
2018 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
2019 dump_printf_loc (MSG_NOTE, vect_location,
2020 "vectorization_factor = %d, niters = "
2021 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
2022 LOOP_VINFO_INT_NITERS (loop_vinfo));
2024 HOST_WIDE_INT max_niter
2025 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2026 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2027 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
2028 || (max_niter != -1
2029 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
2031 if (dump_enabled_p ())
2032 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2033 "not vectorized: iteration count smaller than "
2034 "vectorization factor.\n");
2035 return false;
2038 /* Analyze the alignment of the data-refs in the loop.
2039 Fail if a data reference is found that cannot be vectorized. */
2041 ok = vect_analyze_data_refs_alignment (loop_vinfo);
2042 if (!ok)
2044 if (dump_enabled_p ())
2045 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2046 "bad data alignment.\n");
2047 return false;
2050 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2051 It is important to call pruning after vect_analyze_data_ref_accesses,
2052 since we use grouping information gathered by interleaving analysis. */
2053 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
2054 if (!ok)
2055 return false;
2057 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2058 vectorization. */
2059 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
2061 /* This pass will decide on using loop versioning and/or loop peeling in
2062 order to enhance the alignment of data references in the loop. */
2063 ok = vect_enhance_data_refs_alignment (loop_vinfo);
2064 if (!ok)
2066 if (dump_enabled_p ())
2067 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2068 "bad data alignment.\n");
2069 return false;
2073 if (slp)
2075 /* Analyze operations in the SLP instances. Note this may
2076 remove unsupported SLP instances which makes the above
2077 SLP kind detection invalid. */
2078 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2079 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
2080 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2081 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2082 goto again;
2085 /* Scan all the remaining operations in the loop that are not subject
2086 to SLP and make sure they are vectorizable. */
2087 ok = vect_analyze_loop_operations (loop_vinfo);
2088 if (!ok)
2090 if (dump_enabled_p ())
2091 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2092 "bad operation or unsupported loop bound.\n");
2093 return false;
2096 /* If epilog loop is required because of data accesses with gaps,
2097 one additional iteration needs to be peeled. Check if there is
2098 enough iterations for vectorization. */
2099 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2100 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2102 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2103 tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2105 if (wi::to_widest (scalar_niters) < vf)
2107 if (dump_enabled_p ())
2108 dump_printf_loc (MSG_NOTE, vect_location,
2109 "loop has no enough iterations to support"
2110 " peeling for gaps.\n");
2111 return false;
2115 /* Analyze cost. Decide if worth while to vectorize. */
2116 int min_profitable_estimate, min_profitable_iters;
2117 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2118 &min_profitable_estimate);
2120 if (min_profitable_iters < 0)
2122 if (dump_enabled_p ())
2123 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2124 "not vectorized: vectorization not profitable.\n");
2125 if (dump_enabled_p ())
2126 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2127 "not vectorized: vector version will never be "
2128 "profitable.\n");
2129 goto again;
2132 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2133 * vectorization_factor) - 1);
2135 /* Use the cost model only if it is more conservative than user specified
2136 threshold. */
2137 th = (unsigned) min_scalar_loop_bound;
2138 if (min_profitable_iters
2139 && (!min_scalar_loop_bound
2140 || min_profitable_iters > min_scalar_loop_bound))
2141 th = (unsigned) min_profitable_iters;
2143 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2145 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2146 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
2148 if (dump_enabled_p ())
2149 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2150 "not vectorized: vectorization not profitable.\n");
2151 if (dump_enabled_p ())
2152 dump_printf_loc (MSG_NOTE, vect_location,
2153 "not vectorized: iteration count smaller than user "
2154 "specified loop bound parameter or minimum profitable "
2155 "iterations (whichever is more conservative).\n");
2156 goto again;
2159 estimated_niter
2160 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2161 if (estimated_niter == -1)
2162 estimated_niter = max_niter;
2163 if (estimated_niter != -1
2164 && ((unsigned HOST_WIDE_INT) estimated_niter
2165 <= MAX (th, (unsigned)min_profitable_estimate)))
2167 if (dump_enabled_p ())
2168 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2169 "not vectorized: estimated iteration count too "
2170 "small.\n");
2171 if (dump_enabled_p ())
2172 dump_printf_loc (MSG_NOTE, vect_location,
2173 "not vectorized: estimated iteration count smaller "
2174 "than specified loop bound parameter or minimum "
2175 "profitable iterations (whichever is more "
2176 "conservative).\n");
2177 goto again;
2180 /* Decide whether we need to create an epilogue loop to handle
2181 remaining scalar iterations. */
2182 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) + 1)
2183 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2184 * LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2186 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2187 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2189 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2190 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2191 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2192 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2194 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2195 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2196 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2197 /* In case of versioning, check if the maximum number of
2198 iterations is greater than th. If they are identical,
2199 the epilogue is unnecessary. */
2200 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2201 || (unsigned HOST_WIDE_INT) max_niter > th)))
2202 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2204 /* If an epilogue loop is required make sure we can create one. */
2205 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2206 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2208 if (dump_enabled_p ())
2209 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2210 if (!vect_can_advance_ivs_p (loop_vinfo)
2211 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2212 single_exit (LOOP_VINFO_LOOP
2213 (loop_vinfo))))
2215 if (dump_enabled_p ())
2216 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2217 "not vectorized: can't create required "
2218 "epilog loop\n");
2219 goto again;
2223 /* During peeling, we need to check if number of loop iterations is
2224 enough for both peeled prolog loop and vector loop. This check
2225 can be merged along with threshold check of loop versioning, so
2226 increase threshold for this case if necessary. */
2227 if (LOOP_REQUIRES_VERSIONING (loop_vinfo)
2228 && (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2229 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
2231 unsigned niters_th;
2233 /* Niters for peeled prolog loop. */
2234 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2236 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2237 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
2239 niters_th = TYPE_VECTOR_SUBPARTS (vectype) - 1;
2241 else
2242 niters_th = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2244 /* Niters for at least one iteration of vectorized loop. */
2245 niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2246 /* One additional iteration because of peeling for gap. */
2247 if (!LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2248 niters_th++;
2249 if (LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) < niters_th)
2250 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = niters_th;
2253 gcc_assert (vectorization_factor
2254 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2256 /* Ok to vectorize! */
2257 return true;
2259 again:
2260 /* Try again with SLP forced off but if we didn't do any SLP there is
2261 no point in re-trying. */
2262 if (!slp)
2263 return false;
2265 /* If there are reduction chains re-trying will fail anyway. */
2266 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2267 return false;
2269 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2270 via interleaving or lane instructions. */
2271 slp_instance instance;
2272 slp_tree node;
2273 unsigned i, j;
2274 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2276 stmt_vec_info vinfo;
2277 vinfo = vinfo_for_stmt
2278 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2279 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2280 continue;
2281 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2282 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2283 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2284 if (! vect_store_lanes_supported (vectype, size)
2285 && ! vect_grouped_store_supported (vectype, size))
2286 return false;
2287 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2289 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2290 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2291 bool single_element_p = !STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo);
2292 size = STMT_VINFO_GROUP_SIZE (vinfo);
2293 vectype = STMT_VINFO_VECTYPE (vinfo);
2294 if (! vect_load_lanes_supported (vectype, size)
2295 && ! vect_grouped_load_supported (vectype, single_element_p,
2296 size))
2297 return false;
2301 if (dump_enabled_p ())
2302 dump_printf_loc (MSG_NOTE, vect_location,
2303 "re-trying with SLP disabled\n");
2305 /* Roll back state appropriately. No SLP this time. */
2306 slp = false;
2307 /* Restore vectorization factor as it were without SLP. */
2308 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2309 /* Free the SLP instances. */
2310 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2311 vect_free_slp_instance (instance);
2312 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2313 /* Reset SLP type to loop_vect on all stmts. */
2314 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2316 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2317 for (gimple_stmt_iterator si = gsi_start_phis (bb);
2318 !gsi_end_p (si); gsi_next (&si))
2320 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2321 STMT_SLP_TYPE (stmt_info) = loop_vect;
2323 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2324 !gsi_end_p (si); gsi_next (&si))
2326 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2327 STMT_SLP_TYPE (stmt_info) = loop_vect;
2328 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2330 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2331 STMT_SLP_TYPE (stmt_info) = loop_vect;
2332 for (gimple_stmt_iterator pi
2333 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2334 !gsi_end_p (pi); gsi_next (&pi))
2336 gimple *pstmt = gsi_stmt (pi);
2337 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2342 /* Free optimized alias test DDRS. */
2343 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2344 /* Reset target cost data. */
2345 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2346 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2347 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2348 /* Reset assorted flags. */
2349 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2350 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2351 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2353 goto start_over;
2356 /* Function vect_analyze_loop.
2358 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2359 for it. The different analyses will record information in the
2360 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2361 be vectorized. */
2362 loop_vec_info
2363 vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo)
2365 loop_vec_info loop_vinfo;
2366 unsigned int vector_sizes;
2368 /* Autodetect first vector size we try. */
2369 current_vector_size = 0;
2370 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2372 if (dump_enabled_p ())
2373 dump_printf_loc (MSG_NOTE, vect_location,
2374 "===== analyze_loop_nest =====\n");
2376 if (loop_outer (loop)
2377 && loop_vec_info_for_loop (loop_outer (loop))
2378 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2380 if (dump_enabled_p ())
2381 dump_printf_loc (MSG_NOTE, vect_location,
2382 "outer-loop already vectorized.\n");
2383 return NULL;
2386 while (1)
2388 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2389 loop_vinfo = vect_analyze_loop_form (loop);
2390 if (!loop_vinfo)
2392 if (dump_enabled_p ())
2393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2394 "bad loop form.\n");
2395 return NULL;
2398 bool fatal = false;
2400 if (orig_loop_vinfo)
2401 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
2403 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2405 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2407 return loop_vinfo;
2410 destroy_loop_vec_info (loop_vinfo, true);
2412 vector_sizes &= ~current_vector_size;
2413 if (fatal
2414 || vector_sizes == 0
2415 || current_vector_size == 0)
2416 return NULL;
2418 /* Try the next biggest vector size. */
2419 current_vector_size = 1 << floor_log2 (vector_sizes);
2420 if (dump_enabled_p ())
2421 dump_printf_loc (MSG_NOTE, vect_location,
2422 "***** Re-trying analysis with "
2423 "vector size %d\n", current_vector_size);
2428 /* Function reduction_code_for_scalar_code
2430 Input:
2431 CODE - tree_code of a reduction operations.
2433 Output:
2434 REDUC_CODE - the corresponding tree-code to be used to reduce the
2435 vector of partial results into a single scalar result, or ERROR_MARK
2436 if the operation is a supported reduction operation, but does not have
2437 such a tree-code.
2439 Return FALSE if CODE currently cannot be vectorized as reduction. */
2441 static bool
2442 reduction_code_for_scalar_code (enum tree_code code,
2443 enum tree_code *reduc_code)
2445 switch (code)
2447 case MAX_EXPR:
2448 *reduc_code = REDUC_MAX_EXPR;
2449 return true;
2451 case MIN_EXPR:
2452 *reduc_code = REDUC_MIN_EXPR;
2453 return true;
2455 case PLUS_EXPR:
2456 *reduc_code = REDUC_PLUS_EXPR;
2457 return true;
2459 case MULT_EXPR:
2460 case MINUS_EXPR:
2461 case BIT_IOR_EXPR:
2462 case BIT_XOR_EXPR:
2463 case BIT_AND_EXPR:
2464 *reduc_code = ERROR_MARK;
2465 return true;
2467 default:
2468 return false;
2473 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2474 STMT is printed with a message MSG. */
2476 static void
2477 report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
2479 dump_printf_loc (msg_type, vect_location, "%s", msg);
2480 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2484 /* Detect SLP reduction of the form:
2486 #a1 = phi <a5, a0>
2487 a2 = operation (a1)
2488 a3 = operation (a2)
2489 a4 = operation (a3)
2490 a5 = operation (a4)
2492 #a = phi <a5>
2494 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2495 FIRST_STMT is the first reduction stmt in the chain
2496 (a2 = operation (a1)).
2498 Return TRUE if a reduction chain was detected. */
2500 static bool
2501 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2502 gimple *first_stmt)
2504 struct loop *loop = (gimple_bb (phi))->loop_father;
2505 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2506 enum tree_code code;
2507 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2508 stmt_vec_info use_stmt_info, current_stmt_info;
2509 tree lhs;
2510 imm_use_iterator imm_iter;
2511 use_operand_p use_p;
2512 int nloop_uses, size = 0, n_out_of_loop_uses;
2513 bool found = false;
2515 if (loop != vect_loop)
2516 return false;
2518 lhs = PHI_RESULT (phi);
2519 code = gimple_assign_rhs_code (first_stmt);
2520 while (1)
2522 nloop_uses = 0;
2523 n_out_of_loop_uses = 0;
2524 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2526 gimple *use_stmt = USE_STMT (use_p);
2527 if (is_gimple_debug (use_stmt))
2528 continue;
2530 /* Check if we got back to the reduction phi. */
2531 if (use_stmt == phi)
2533 loop_use_stmt = use_stmt;
2534 found = true;
2535 break;
2538 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2540 loop_use_stmt = use_stmt;
2541 nloop_uses++;
2543 else
2544 n_out_of_loop_uses++;
2546 /* There are can be either a single use in the loop or two uses in
2547 phi nodes. */
2548 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2549 return false;
2552 if (found)
2553 break;
2555 /* We reached a statement with no loop uses. */
2556 if (nloop_uses == 0)
2557 return false;
2559 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2560 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2561 return false;
2563 if (!is_gimple_assign (loop_use_stmt)
2564 || code != gimple_assign_rhs_code (loop_use_stmt)
2565 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2566 return false;
2568 /* Insert USE_STMT into reduction chain. */
2569 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2570 if (current_stmt)
2572 current_stmt_info = vinfo_for_stmt (current_stmt);
2573 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2574 GROUP_FIRST_ELEMENT (use_stmt_info)
2575 = GROUP_FIRST_ELEMENT (current_stmt_info);
2577 else
2578 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2580 lhs = gimple_assign_lhs (loop_use_stmt);
2581 current_stmt = loop_use_stmt;
2582 size++;
2585 if (!found || loop_use_stmt != phi || size < 2)
2586 return false;
2588 /* Swap the operands, if needed, to make the reduction operand be the second
2589 operand. */
2590 lhs = PHI_RESULT (phi);
2591 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2592 while (next_stmt)
2594 if (gimple_assign_rhs2 (next_stmt) == lhs)
2596 tree op = gimple_assign_rhs1 (next_stmt);
2597 gimple *def_stmt = NULL;
2599 if (TREE_CODE (op) == SSA_NAME)
2600 def_stmt = SSA_NAME_DEF_STMT (op);
2602 /* Check that the other def is either defined in the loop
2603 ("vect_internal_def"), or it's an induction (defined by a
2604 loop-header phi-node). */
2605 if (def_stmt
2606 && gimple_bb (def_stmt)
2607 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2608 && (is_gimple_assign (def_stmt)
2609 || is_gimple_call (def_stmt)
2610 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2611 == vect_induction_def
2612 || (gimple_code (def_stmt) == GIMPLE_PHI
2613 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2614 == vect_internal_def
2615 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2617 lhs = gimple_assign_lhs (next_stmt);
2618 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2619 continue;
2622 return false;
2624 else
2626 tree op = gimple_assign_rhs2 (next_stmt);
2627 gimple *def_stmt = NULL;
2629 if (TREE_CODE (op) == SSA_NAME)
2630 def_stmt = SSA_NAME_DEF_STMT (op);
2632 /* Check that the other def is either defined in the loop
2633 ("vect_internal_def"), or it's an induction (defined by a
2634 loop-header phi-node). */
2635 if (def_stmt
2636 && gimple_bb (def_stmt)
2637 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2638 && (is_gimple_assign (def_stmt)
2639 || is_gimple_call (def_stmt)
2640 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2641 == vect_induction_def
2642 || (gimple_code (def_stmt) == GIMPLE_PHI
2643 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2644 == vect_internal_def
2645 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2647 if (dump_enabled_p ())
2649 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2650 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2653 swap_ssa_operands (next_stmt,
2654 gimple_assign_rhs1_ptr (next_stmt),
2655 gimple_assign_rhs2_ptr (next_stmt));
2656 update_stmt (next_stmt);
2658 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2659 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2661 else
2662 return false;
2665 lhs = gimple_assign_lhs (next_stmt);
2666 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2669 /* Save the chain for further analysis in SLP detection. */
2670 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2671 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2672 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2674 return true;
2678 /* Function vect_is_simple_reduction
2680 (1) Detect a cross-iteration def-use cycle that represents a simple
2681 reduction computation. We look for the following pattern:
2683 loop_header:
2684 a1 = phi < a0, a2 >
2685 a3 = ...
2686 a2 = operation (a3, a1)
2690 a3 = ...
2691 loop_header:
2692 a1 = phi < a0, a2 >
2693 a2 = operation (a3, a1)
2695 such that:
2696 1. operation is commutative and associative and it is safe to
2697 change the order of the computation
2698 2. no uses for a2 in the loop (a2 is used out of the loop)
2699 3. no uses of a1 in the loop besides the reduction operation
2700 4. no uses of a1 outside the loop.
2702 Conditions 1,4 are tested here.
2703 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2705 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2706 nested cycles.
2708 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2709 reductions:
2711 a1 = phi < a0, a2 >
2712 inner loop (def of a3)
2713 a2 = phi < a3 >
2715 (4) Detect condition expressions, ie:
2716 for (int i = 0; i < N; i++)
2717 if (a[i] < val)
2718 ret_val = a[i];
2722 static gimple *
2723 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2724 bool *double_reduc,
2725 bool need_wrapping_integral_overflow,
2726 enum vect_reduction_type *v_reduc_type)
2728 struct loop *loop = (gimple_bb (phi))->loop_father;
2729 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2730 edge latch_e = loop_latch_edge (loop);
2731 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2732 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2733 enum tree_code orig_code, code;
2734 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2735 tree type;
2736 int nloop_uses;
2737 tree name;
2738 imm_use_iterator imm_iter;
2739 use_operand_p use_p;
2740 bool phi_def;
2742 *double_reduc = false;
2743 *v_reduc_type = TREE_CODE_REDUCTION;
2745 /* Check validity of the reduction only for the innermost loop. */
2746 bool check_reduction = ! flow_loop_nested_p (vect_loop, loop);
2747 gcc_assert ((check_reduction && loop == vect_loop)
2748 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2750 name = PHI_RESULT (phi);
2751 /* ??? If there are no uses of the PHI result the inner loop reduction
2752 won't be detected as possibly double-reduction by vectorizable_reduction
2753 because that tries to walk the PHI arg from the preheader edge which
2754 can be constant. See PR60382. */
2755 if (has_zero_uses (name))
2756 return NULL;
2757 nloop_uses = 0;
2758 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2760 gimple *use_stmt = USE_STMT (use_p);
2761 if (is_gimple_debug (use_stmt))
2762 continue;
2764 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2766 if (dump_enabled_p ())
2767 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2768 "intermediate value used outside loop.\n");
2770 return NULL;
2773 nloop_uses++;
2774 if (nloop_uses > 1)
2776 if (dump_enabled_p ())
2777 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2778 "reduction used in loop.\n");
2779 return NULL;
2782 phi_use_stmt = use_stmt;
2785 if (TREE_CODE (loop_arg) != SSA_NAME)
2787 if (dump_enabled_p ())
2789 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2790 "reduction: not ssa_name: ");
2791 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2792 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2794 return NULL;
2797 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2798 if (!def_stmt)
2800 if (dump_enabled_p ())
2801 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2802 "reduction: no def_stmt.\n");
2803 return NULL;
2806 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2808 if (dump_enabled_p ())
2809 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2810 return NULL;
2813 if (is_gimple_assign (def_stmt))
2815 name = gimple_assign_lhs (def_stmt);
2816 phi_def = false;
2818 else
2820 name = PHI_RESULT (def_stmt);
2821 phi_def = true;
2824 nloop_uses = 0;
2825 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2827 gimple *use_stmt = USE_STMT (use_p);
2828 if (is_gimple_debug (use_stmt))
2829 continue;
2830 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2831 nloop_uses++;
2832 if (nloop_uses > 1)
2834 if (dump_enabled_p ())
2835 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2836 "reduction used in loop.\n");
2837 return NULL;
2841 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2842 defined in the inner loop. */
2843 if (phi_def)
2845 op1 = PHI_ARG_DEF (def_stmt, 0);
2847 if (gimple_phi_num_args (def_stmt) != 1
2848 || TREE_CODE (op1) != SSA_NAME)
2850 if (dump_enabled_p ())
2851 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2852 "unsupported phi node definition.\n");
2854 return NULL;
2857 def1 = SSA_NAME_DEF_STMT (op1);
2858 if (gimple_bb (def1)
2859 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2860 && loop->inner
2861 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2862 && is_gimple_assign (def1)
2863 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2865 if (dump_enabled_p ())
2866 report_vect_op (MSG_NOTE, def_stmt,
2867 "detected double reduction: ");
2869 *double_reduc = true;
2870 return def_stmt;
2873 return NULL;
2876 code = orig_code = gimple_assign_rhs_code (def_stmt);
2878 /* We can handle "res -= x[i]", which is non-associative by
2879 simply rewriting this into "res += -x[i]". Avoid changing
2880 gimple instruction for the first simple tests and only do this
2881 if we're allowed to change code at all. */
2882 if (code == MINUS_EXPR
2883 && (op1 = gimple_assign_rhs1 (def_stmt))
2884 && TREE_CODE (op1) == SSA_NAME
2885 && SSA_NAME_DEF_STMT (op1) == phi)
2886 code = PLUS_EXPR;
2888 if (code == COND_EXPR)
2890 if (check_reduction)
2891 *v_reduc_type = COND_REDUCTION;
2893 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2895 if (dump_enabled_p ())
2896 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2897 "reduction: not commutative/associative: ");
2898 return NULL;
2901 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2903 if (code != COND_EXPR)
2905 if (dump_enabled_p ())
2906 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2907 "reduction: not binary operation: ");
2909 return NULL;
2912 op3 = gimple_assign_rhs1 (def_stmt);
2913 if (COMPARISON_CLASS_P (op3))
2915 op4 = TREE_OPERAND (op3, 1);
2916 op3 = TREE_OPERAND (op3, 0);
2919 op1 = gimple_assign_rhs2 (def_stmt);
2920 op2 = gimple_assign_rhs3 (def_stmt);
2922 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2924 if (dump_enabled_p ())
2925 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2926 "reduction: uses not ssa_names: ");
2928 return NULL;
2931 else
2933 op1 = gimple_assign_rhs1 (def_stmt);
2934 op2 = gimple_assign_rhs2 (def_stmt);
2936 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2938 if (dump_enabled_p ())
2939 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2940 "reduction: uses not ssa_names: ");
2942 return NULL;
2946 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2947 if ((TREE_CODE (op1) == SSA_NAME
2948 && !types_compatible_p (type,TREE_TYPE (op1)))
2949 || (TREE_CODE (op2) == SSA_NAME
2950 && !types_compatible_p (type, TREE_TYPE (op2)))
2951 || (op3 && TREE_CODE (op3) == SSA_NAME
2952 && !types_compatible_p (type, TREE_TYPE (op3)))
2953 || (op4 && TREE_CODE (op4) == SSA_NAME
2954 && !types_compatible_p (type, TREE_TYPE (op4))))
2956 if (dump_enabled_p ())
2958 dump_printf_loc (MSG_NOTE, vect_location,
2959 "reduction: multiple types: operation type: ");
2960 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2961 dump_printf (MSG_NOTE, ", operands types: ");
2962 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2963 TREE_TYPE (op1));
2964 dump_printf (MSG_NOTE, ",");
2965 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2966 TREE_TYPE (op2));
2967 if (op3)
2969 dump_printf (MSG_NOTE, ",");
2970 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2971 TREE_TYPE (op3));
2974 if (op4)
2976 dump_printf (MSG_NOTE, ",");
2977 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2978 TREE_TYPE (op4));
2980 dump_printf (MSG_NOTE, "\n");
2983 return NULL;
2986 /* Check that it's ok to change the order of the computation.
2987 Generally, when vectorizing a reduction we change the order of the
2988 computation. This may change the behavior of the program in some
2989 cases, so we need to check that this is ok. One exception is when
2990 vectorizing an outer-loop: the inner-loop is executed sequentially,
2991 and therefore vectorizing reductions in the inner-loop during
2992 outer-loop vectorization is safe. */
2994 if (*v_reduc_type != COND_REDUCTION
2995 && check_reduction)
2997 /* CHECKME: check for !flag_finite_math_only too? */
2998 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
3000 /* Changing the order of operations changes the semantics. */
3001 if (dump_enabled_p ())
3002 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3003 "reduction: unsafe fp math optimization: ");
3004 return NULL;
3006 else if (INTEGRAL_TYPE_P (type))
3008 if (!operation_no_trapping_overflow (type, code))
3010 /* Changing the order of operations changes the semantics. */
3011 if (dump_enabled_p ())
3012 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3013 "reduction: unsafe int math optimization"
3014 " (overflow traps): ");
3015 return NULL;
3017 if (need_wrapping_integral_overflow
3018 && !TYPE_OVERFLOW_WRAPS (type)
3019 && operation_can_overflow (code))
3021 /* Changing the order of operations changes the semantics. */
3022 if (dump_enabled_p ())
3023 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3024 "reduction: unsafe int math optimization"
3025 " (overflow doesn't wrap): ");
3026 return NULL;
3029 else if (SAT_FIXED_POINT_TYPE_P (type))
3031 /* Changing the order of operations changes the semantics. */
3032 if (dump_enabled_p ())
3033 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3034 "reduction: unsafe fixed-point math optimization: ");
3035 return NULL;
3039 /* Reduction is safe. We're dealing with one of the following:
3040 1) integer arithmetic and no trapv
3041 2) floating point arithmetic, and special flags permit this optimization
3042 3) nested cycle (i.e., outer loop vectorization). */
3043 if (TREE_CODE (op1) == SSA_NAME)
3044 def1 = SSA_NAME_DEF_STMT (op1);
3046 if (TREE_CODE (op2) == SSA_NAME)
3047 def2 = SSA_NAME_DEF_STMT (op2);
3049 if (code != COND_EXPR
3050 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
3052 if (dump_enabled_p ())
3053 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
3054 return NULL;
3057 /* Check that one def is the reduction def, defined by PHI,
3058 the other def is either defined in the loop ("vect_internal_def"),
3059 or it's an induction (defined by a loop-header phi-node). */
3061 if (def2 && def2 == phi
3062 && (code == COND_EXPR
3063 || !def1 || gimple_nop_p (def1)
3064 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
3065 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
3066 && (is_gimple_assign (def1)
3067 || is_gimple_call (def1)
3068 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3069 == vect_induction_def
3070 || (gimple_code (def1) == GIMPLE_PHI
3071 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3072 == vect_internal_def
3073 && !is_loop_header_bb_p (gimple_bb (def1)))))))
3075 if (dump_enabled_p ())
3076 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3077 return def_stmt;
3080 if (def1 && def1 == phi
3081 && (code == COND_EXPR
3082 || !def2 || gimple_nop_p (def2)
3083 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
3084 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
3085 && (is_gimple_assign (def2)
3086 || is_gimple_call (def2)
3087 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3088 == vect_induction_def
3089 || (gimple_code (def2) == GIMPLE_PHI
3090 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3091 == vect_internal_def
3092 && !is_loop_header_bb_p (gimple_bb (def2)))))))
3094 if (check_reduction && orig_code != MINUS_EXPR)
3096 /* Check if we can swap operands (just for simplicity - so that
3097 the rest of the code can assume that the reduction variable
3098 is always the last (second) argument). */
3099 if (code == COND_EXPR)
3101 /* Swap cond_expr by inverting the condition. */
3102 tree cond_expr = gimple_assign_rhs1 (def_stmt);
3103 enum tree_code invert_code = ERROR_MARK;
3104 enum tree_code cond_code = TREE_CODE (cond_expr);
3106 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
3108 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
3109 invert_code = invert_tree_comparison (cond_code, honor_nans);
3111 if (invert_code != ERROR_MARK)
3113 TREE_SET_CODE (cond_expr, invert_code);
3114 swap_ssa_operands (def_stmt,
3115 gimple_assign_rhs2_ptr (def_stmt),
3116 gimple_assign_rhs3_ptr (def_stmt));
3118 else
3120 if (dump_enabled_p ())
3121 report_vect_op (MSG_NOTE, def_stmt,
3122 "detected reduction: cannot swap operands "
3123 "for cond_expr");
3124 return NULL;
3127 else
3128 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
3129 gimple_assign_rhs2_ptr (def_stmt));
3131 if (dump_enabled_p ())
3132 report_vect_op (MSG_NOTE, def_stmt,
3133 "detected reduction: need to swap operands: ");
3135 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
3136 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
3138 else
3140 if (dump_enabled_p ())
3141 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3144 return def_stmt;
3147 /* Try to find SLP reduction chain. */
3148 if (check_reduction && code != COND_EXPR
3149 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3151 if (dump_enabled_p ())
3152 report_vect_op (MSG_NOTE, def_stmt,
3153 "reduction: detected reduction chain: ");
3155 return def_stmt;
3158 if (dump_enabled_p ())
3159 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3160 "reduction: unknown pattern: ");
3162 return NULL;
3165 /* Wrapper around vect_is_simple_reduction, which will modify code
3166 in-place if it enables detection of more reductions. Arguments
3167 as there. */
3169 gimple *
3170 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3171 bool *double_reduc,
3172 bool need_wrapping_integral_overflow)
3174 enum vect_reduction_type v_reduc_type;
3175 gimple *def = vect_is_simple_reduction (loop_info, phi, double_reduc,
3176 need_wrapping_integral_overflow,
3177 &v_reduc_type);
3178 if (def)
3180 stmt_vec_info reduc_def_info = vinfo_for_stmt (phi);
3181 STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
3182 STMT_VINFO_REDUC_DEF (reduc_def_info) = def;
3184 return def;
3187 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3189 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3190 int *peel_iters_epilogue,
3191 stmt_vector_for_cost *scalar_cost_vec,
3192 stmt_vector_for_cost *prologue_cost_vec,
3193 stmt_vector_for_cost *epilogue_cost_vec)
3195 int retval = 0;
3196 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3198 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3200 *peel_iters_epilogue = vf/2;
3201 if (dump_enabled_p ())
3202 dump_printf_loc (MSG_NOTE, vect_location,
3203 "cost model: epilogue peel iters set to vf/2 "
3204 "because loop iterations are unknown .\n");
3206 /* If peeled iterations are known but number of scalar loop
3207 iterations are unknown, count a taken branch per peeled loop. */
3208 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3209 NULL, 0, vect_prologue);
3210 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3211 NULL, 0, vect_epilogue);
3213 else
3215 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3216 peel_iters_prologue = niters < peel_iters_prologue ?
3217 niters : peel_iters_prologue;
3218 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3219 /* If we need to peel for gaps, but no peeling is required, we have to
3220 peel VF iterations. */
3221 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3222 *peel_iters_epilogue = vf;
3225 stmt_info_for_cost *si;
3226 int j;
3227 if (peel_iters_prologue)
3228 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3230 stmt_vec_info stmt_info
3231 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3232 retval += record_stmt_cost (prologue_cost_vec,
3233 si->count * peel_iters_prologue,
3234 si->kind, stmt_info, si->misalign,
3235 vect_prologue);
3237 if (*peel_iters_epilogue)
3238 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3240 stmt_vec_info stmt_info
3241 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3242 retval += record_stmt_cost (epilogue_cost_vec,
3243 si->count * *peel_iters_epilogue,
3244 si->kind, stmt_info, si->misalign,
3245 vect_epilogue);
3248 return retval;
3251 /* Function vect_estimate_min_profitable_iters
3253 Return the number of iterations required for the vector version of the
3254 loop to be profitable relative to the cost of the scalar version of the
3255 loop.
3257 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3258 of iterations for vectorization. -1 value means loop vectorization
3259 is not profitable. This returned value may be used for dynamic
3260 profitability check.
3262 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3263 for static check against estimated number of iterations. */
3265 static void
3266 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3267 int *ret_min_profitable_niters,
3268 int *ret_min_profitable_estimate)
3270 int min_profitable_iters;
3271 int min_profitable_estimate;
3272 int peel_iters_prologue;
3273 int peel_iters_epilogue;
3274 unsigned vec_inside_cost = 0;
3275 int vec_outside_cost = 0;
3276 unsigned vec_prologue_cost = 0;
3277 unsigned vec_epilogue_cost = 0;
3278 int scalar_single_iter_cost = 0;
3279 int scalar_outside_cost = 0;
3280 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3281 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3282 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3284 /* Cost model disabled. */
3285 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3287 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3288 *ret_min_profitable_niters = 0;
3289 *ret_min_profitable_estimate = 0;
3290 return;
3293 /* Requires loop versioning tests to handle misalignment. */
3294 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3296 /* FIXME: Make cost depend on complexity of individual check. */
3297 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3298 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3299 vect_prologue);
3300 dump_printf (MSG_NOTE,
3301 "cost model: Adding cost of checks for loop "
3302 "versioning to treat misalignment.\n");
3305 /* Requires loop versioning with alias checks. */
3306 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3308 /* FIXME: Make cost depend on complexity of individual check. */
3309 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3310 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3311 vect_prologue);
3312 dump_printf (MSG_NOTE,
3313 "cost model: Adding cost of checks for loop "
3314 "versioning aliasing.\n");
3317 /* Requires loop versioning with niter checks. */
3318 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
3320 /* FIXME: Make cost depend on complexity of individual check. */
3321 (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
3322 vect_prologue);
3323 dump_printf (MSG_NOTE,
3324 "cost model: Adding cost of checks for loop "
3325 "versioning niters.\n");
3328 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3329 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3330 vect_prologue);
3332 /* Count statements in scalar loop. Using this as scalar cost for a single
3333 iteration for now.
3335 TODO: Add outer loop support.
3337 TODO: Consider assigning different costs to different scalar
3338 statements. */
3340 scalar_single_iter_cost
3341 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3343 /* Add additional cost for the peeled instructions in prologue and epilogue
3344 loop.
3346 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3347 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3349 TODO: Build an expression that represents peel_iters for prologue and
3350 epilogue to be used in a run-time test. */
3352 if (npeel < 0)
3354 peel_iters_prologue = vf/2;
3355 dump_printf (MSG_NOTE, "cost model: "
3356 "prologue peel iters set to vf/2.\n");
3358 /* If peeling for alignment is unknown, loop bound of main loop becomes
3359 unknown. */
3360 peel_iters_epilogue = vf/2;
3361 dump_printf (MSG_NOTE, "cost model: "
3362 "epilogue peel iters set to vf/2 because "
3363 "peeling for alignment is unknown.\n");
3365 /* If peeled iterations are unknown, count a taken branch and a not taken
3366 branch per peeled loop. Even if scalar loop iterations are known,
3367 vector iterations are not known since peeled prologue iterations are
3368 not known. Hence guards remain the same. */
3369 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3370 NULL, 0, vect_prologue);
3371 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3372 NULL, 0, vect_prologue);
3373 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3374 NULL, 0, vect_epilogue);
3375 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3376 NULL, 0, vect_epilogue);
3377 stmt_info_for_cost *si;
3378 int j;
3379 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3381 struct _stmt_vec_info *stmt_info
3382 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3383 (void) add_stmt_cost (target_cost_data,
3384 si->count * peel_iters_prologue,
3385 si->kind, stmt_info, si->misalign,
3386 vect_prologue);
3387 (void) add_stmt_cost (target_cost_data,
3388 si->count * peel_iters_epilogue,
3389 si->kind, stmt_info, si->misalign,
3390 vect_epilogue);
3393 else
3395 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3396 stmt_info_for_cost *si;
3397 int j;
3398 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3400 prologue_cost_vec.create (2);
3401 epilogue_cost_vec.create (2);
3402 peel_iters_prologue = npeel;
3404 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3405 &peel_iters_epilogue,
3406 &LOOP_VINFO_SCALAR_ITERATION_COST
3407 (loop_vinfo),
3408 &prologue_cost_vec,
3409 &epilogue_cost_vec);
3411 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3413 struct _stmt_vec_info *stmt_info
3414 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3415 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3416 si->misalign, vect_prologue);
3419 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3421 struct _stmt_vec_info *stmt_info
3422 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3423 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3424 si->misalign, vect_epilogue);
3427 prologue_cost_vec.release ();
3428 epilogue_cost_vec.release ();
3431 /* FORNOW: The scalar outside cost is incremented in one of the
3432 following ways:
3434 1. The vectorizer checks for alignment and aliasing and generates
3435 a condition that allows dynamic vectorization. A cost model
3436 check is ANDED with the versioning condition. Hence scalar code
3437 path now has the added cost of the versioning check.
3439 if (cost > th & versioning_check)
3440 jmp to vector code
3442 Hence run-time scalar is incremented by not-taken branch cost.
3444 2. The vectorizer then checks if a prologue is required. If the
3445 cost model check was not done before during versioning, it has to
3446 be done before the prologue check.
3448 if (cost <= th)
3449 prologue = scalar_iters
3450 if (prologue == 0)
3451 jmp to vector code
3452 else
3453 execute prologue
3454 if (prologue == num_iters)
3455 go to exit
3457 Hence the run-time scalar cost is incremented by a taken branch,
3458 plus a not-taken branch, plus a taken branch cost.
3460 3. The vectorizer then checks if an epilogue is required. If the
3461 cost model check was not done before during prologue check, it
3462 has to be done with the epilogue check.
3464 if (prologue == 0)
3465 jmp to vector code
3466 else
3467 execute prologue
3468 if (prologue == num_iters)
3469 go to exit
3470 vector code:
3471 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3472 jmp to epilogue
3474 Hence the run-time scalar cost should be incremented by 2 taken
3475 branches.
3477 TODO: The back end may reorder the BBS's differently and reverse
3478 conditions/branch directions. Change the estimates below to
3479 something more reasonable. */
3481 /* If the number of iterations is known and we do not do versioning, we can
3482 decide whether to vectorize at compile time. Hence the scalar version
3483 do not carry cost model guard costs. */
3484 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3485 || LOOP_REQUIRES_VERSIONING (loop_vinfo))
3487 /* Cost model check occurs at versioning. */
3488 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3489 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3490 else
3492 /* Cost model check occurs at prologue generation. */
3493 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3494 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3495 + vect_get_stmt_cost (cond_branch_not_taken);
3496 /* Cost model check occurs at epilogue generation. */
3497 else
3498 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3502 /* Complete the target-specific cost calculations. */
3503 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3504 &vec_inside_cost, &vec_epilogue_cost);
3506 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3508 if (dump_enabled_p ())
3510 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3511 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3512 vec_inside_cost);
3513 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3514 vec_prologue_cost);
3515 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3516 vec_epilogue_cost);
3517 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3518 scalar_single_iter_cost);
3519 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3520 scalar_outside_cost);
3521 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3522 vec_outside_cost);
3523 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3524 peel_iters_prologue);
3525 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3526 peel_iters_epilogue);
3529 /* Calculate number of iterations required to make the vector version
3530 profitable, relative to the loop bodies only. The following condition
3531 must hold true:
3532 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3533 where
3534 SIC = scalar iteration cost, VIC = vector iteration cost,
3535 VOC = vector outside cost, VF = vectorization factor,
3536 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3537 SOC = scalar outside cost for run time cost model check. */
3539 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3541 if (vec_outside_cost <= 0)
3542 min_profitable_iters = 1;
3543 else
3545 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3546 - vec_inside_cost * peel_iters_prologue
3547 - vec_inside_cost * peel_iters_epilogue)
3548 / ((scalar_single_iter_cost * vf)
3549 - vec_inside_cost);
3551 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3552 <= (((int) vec_inside_cost * min_profitable_iters)
3553 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3554 min_profitable_iters++;
3557 /* vector version will never be profitable. */
3558 else
3560 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3561 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3562 "did not happen for a simd loop");
3564 if (dump_enabled_p ())
3565 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3566 "cost model: the vector iteration cost = %d "
3567 "divided by the scalar iteration cost = %d "
3568 "is greater or equal to the vectorization factor = %d"
3569 ".\n",
3570 vec_inside_cost, scalar_single_iter_cost, vf);
3571 *ret_min_profitable_niters = -1;
3572 *ret_min_profitable_estimate = -1;
3573 return;
3576 dump_printf (MSG_NOTE,
3577 " Calculated minimum iters for profitability: %d\n",
3578 min_profitable_iters);
3580 min_profitable_iters =
3581 min_profitable_iters < vf ? vf : min_profitable_iters;
3583 /* Because the condition we create is:
3584 if (niters <= min_profitable_iters)
3585 then skip the vectorized loop. */
3586 min_profitable_iters--;
3588 if (dump_enabled_p ())
3589 dump_printf_loc (MSG_NOTE, vect_location,
3590 " Runtime profitability threshold = %d\n",
3591 min_profitable_iters);
3593 *ret_min_profitable_niters = min_profitable_iters;
3595 /* Calculate number of iterations required to make the vector version
3596 profitable, relative to the loop bodies only.
3598 Non-vectorized variant is SIC * niters and it must win over vector
3599 variant on the expected loop trip count. The following condition must hold true:
3600 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3602 if (vec_outside_cost <= 0)
3603 min_profitable_estimate = 1;
3604 else
3606 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3607 - vec_inside_cost * peel_iters_prologue
3608 - vec_inside_cost * peel_iters_epilogue)
3609 / ((scalar_single_iter_cost * vf)
3610 - vec_inside_cost);
3612 min_profitable_estimate --;
3613 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3614 if (dump_enabled_p ())
3615 dump_printf_loc (MSG_NOTE, vect_location,
3616 " Static estimate profitability threshold = %d\n",
3617 min_profitable_estimate);
3619 *ret_min_profitable_estimate = min_profitable_estimate;
3622 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3623 vector elements (not bits) for a vector of mode MODE. */
3624 static void
3625 calc_vec_perm_mask_for_shift (enum machine_mode mode, unsigned int offset,
3626 unsigned char *sel)
3628 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3630 for (i = 0; i < nelt; i++)
3631 sel[i] = (i + offset) & (2*nelt - 1);
3634 /* Checks whether the target supports whole-vector shifts for vectors of mode
3635 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3636 it supports vec_perm_const with masks for all necessary shift amounts. */
3637 static bool
3638 have_whole_vector_shift (enum machine_mode mode)
3640 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3641 return true;
3643 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3644 return false;
3646 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3647 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3649 for (i = nelt/2; i >= 1; i/=2)
3651 calc_vec_perm_mask_for_shift (mode, i, sel);
3652 if (!can_vec_perm_p (mode, false, sel))
3653 return false;
3655 return true;
3658 /* Return the reduction operand (with index REDUC_INDEX) of STMT. */
3660 static tree
3661 get_reduction_op (gimple *stmt, int reduc_index)
3663 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3665 case GIMPLE_SINGLE_RHS:
3666 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3667 == ternary_op);
3668 return TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3669 case GIMPLE_UNARY_RHS:
3670 return gimple_assign_rhs1 (stmt);
3671 case GIMPLE_BINARY_RHS:
3672 return (reduc_index
3673 ? gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt));
3674 case GIMPLE_TERNARY_RHS:
3675 return gimple_op (stmt, reduc_index + 1);
3676 default:
3677 gcc_unreachable ();
3681 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3682 functions. Design better to avoid maintenance issues. */
3684 /* Function vect_model_reduction_cost.
3686 Models cost for a reduction operation, including the vector ops
3687 generated within the strip-mine loop, the initial definition before
3688 the loop, and the epilogue code that must be generated. */
3690 static bool
3691 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3692 int ncopies, int reduc_index)
3694 int prologue_cost = 0, epilogue_cost = 0;
3695 enum tree_code code;
3696 optab optab;
3697 tree vectype;
3698 gimple *stmt, *orig_stmt;
3699 tree reduction_op;
3700 machine_mode mode;
3701 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3702 struct loop *loop = NULL;
3703 void *target_cost_data;
3705 if (loop_vinfo)
3707 loop = LOOP_VINFO_LOOP (loop_vinfo);
3708 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3710 else
3711 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3713 /* Condition reductions generate two reductions in the loop. */
3714 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3715 ncopies *= 2;
3717 /* Cost of reduction op inside loop. */
3718 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3719 stmt_info, 0, vect_body);
3720 stmt = STMT_VINFO_STMT (stmt_info);
3722 reduction_op = get_reduction_op (stmt, reduc_index);
3724 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3725 if (!vectype)
3727 if (dump_enabled_p ())
3729 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3730 "unsupported data-type ");
3731 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3732 TREE_TYPE (reduction_op));
3733 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3735 return false;
3738 mode = TYPE_MODE (vectype);
3739 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3741 if (!orig_stmt)
3742 orig_stmt = STMT_VINFO_STMT (stmt_info);
3744 code = gimple_assign_rhs_code (orig_stmt);
3746 /* Add in cost for initial definition.
3747 For cond reduction we have four vectors: initial index, step, initial
3748 result of the data reduction, initial value of the index reduction. */
3749 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3750 == COND_REDUCTION ? 4 : 1;
3751 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3752 scalar_to_vec, stmt_info, 0,
3753 vect_prologue);
3755 /* Determine cost of epilogue code.
3757 We have a reduction operator that will reduce the vector in one statement.
3758 Also requires scalar extract. */
3760 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3762 if (reduc_code != ERROR_MARK)
3764 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3766 /* An EQ stmt and an COND_EXPR stmt. */
3767 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3768 vector_stmt, stmt_info, 0,
3769 vect_epilogue);
3770 /* Reduction of the max index and a reduction of the found
3771 values. */
3772 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3773 vec_to_scalar, stmt_info, 0,
3774 vect_epilogue);
3775 /* A broadcast of the max value. */
3776 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3777 scalar_to_vec, stmt_info, 0,
3778 vect_epilogue);
3780 else
3782 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3783 stmt_info, 0, vect_epilogue);
3784 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3785 vec_to_scalar, stmt_info, 0,
3786 vect_epilogue);
3789 else
3791 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3792 tree bitsize =
3793 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3794 int element_bitsize = tree_to_uhwi (bitsize);
3795 int nelements = vec_size_in_bits / element_bitsize;
3797 optab = optab_for_tree_code (code, vectype, optab_default);
3799 /* We have a whole vector shift available. */
3800 if (VECTOR_MODE_P (mode)
3801 && optab_handler (optab, mode) != CODE_FOR_nothing
3802 && have_whole_vector_shift (mode))
3804 /* Final reduction via vector shifts and the reduction operator.
3805 Also requires scalar extract. */
3806 epilogue_cost += add_stmt_cost (target_cost_data,
3807 exact_log2 (nelements) * 2,
3808 vector_stmt, stmt_info, 0,
3809 vect_epilogue);
3810 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3811 vec_to_scalar, stmt_info, 0,
3812 vect_epilogue);
3814 else
3815 /* Use extracts and reduction op for final reduction. For N
3816 elements, we have N extracts and N-1 reduction ops. */
3817 epilogue_cost += add_stmt_cost (target_cost_data,
3818 nelements + nelements - 1,
3819 vector_stmt, stmt_info, 0,
3820 vect_epilogue);
3824 if (dump_enabled_p ())
3825 dump_printf (MSG_NOTE,
3826 "vect_model_reduction_cost: inside_cost = %d, "
3827 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3828 prologue_cost, epilogue_cost);
3830 return true;
3834 /* Function vect_model_induction_cost.
3836 Models cost for induction operations. */
3838 static void
3839 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3841 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3842 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3843 unsigned inside_cost, prologue_cost;
3845 if (PURE_SLP_STMT (stmt_info))
3846 return;
3848 /* loop cost for vec_loop. */
3849 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3850 stmt_info, 0, vect_body);
3852 /* prologue cost for vec_init and vec_step. */
3853 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3854 stmt_info, 0, vect_prologue);
3856 if (dump_enabled_p ())
3857 dump_printf_loc (MSG_NOTE, vect_location,
3858 "vect_model_induction_cost: inside_cost = %d, "
3859 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3864 /* Function get_initial_def_for_reduction
3866 Input:
3867 STMT - a stmt that performs a reduction operation in the loop.
3868 INIT_VAL - the initial value of the reduction variable
3870 Output:
3871 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3872 of the reduction (used for adjusting the epilog - see below).
3873 Return a vector variable, initialized according to the operation that STMT
3874 performs. This vector will be used as the initial value of the
3875 vector of partial results.
3877 Option1 (adjust in epilog): Initialize the vector as follows:
3878 add/bit or/xor: [0,0,...,0,0]
3879 mult/bit and: [1,1,...,1,1]
3880 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3881 and when necessary (e.g. add/mult case) let the caller know
3882 that it needs to adjust the result by init_val.
3884 Option2: Initialize the vector as follows:
3885 add/bit or/xor: [init_val,0,0,...,0]
3886 mult/bit and: [init_val,1,1,...,1]
3887 min/max/cond_expr: [init_val,init_val,...,init_val]
3888 and no adjustments are needed.
3890 For example, for the following code:
3892 s = init_val;
3893 for (i=0;i<n;i++)
3894 s = s + a[i];
3896 STMT is 's = s + a[i]', and the reduction variable is 's'.
3897 For a vector of 4 units, we want to return either [0,0,0,init_val],
3898 or [0,0,0,0] and let the caller know that it needs to adjust
3899 the result at the end by 'init_val'.
3901 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3902 initialization vector is simpler (same element in all entries), if
3903 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3905 A cost model should help decide between these two schemes. */
3907 tree
3908 get_initial_def_for_reduction (gimple *stmt, tree init_val,
3909 tree *adjustment_def)
3911 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3912 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3913 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3914 tree scalar_type = TREE_TYPE (init_val);
3915 tree vectype = get_vectype_for_scalar_type (scalar_type);
3916 int nunits;
3917 enum tree_code code = gimple_assign_rhs_code (stmt);
3918 tree def_for_init;
3919 tree init_def;
3920 tree *elts;
3921 int i;
3922 bool nested_in_vect_loop = false;
3923 REAL_VALUE_TYPE real_init_val = dconst0;
3924 int int_init_val = 0;
3925 gimple *def_stmt = NULL;
3926 gimple_seq stmts = NULL;
3928 gcc_assert (vectype);
3929 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3931 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3932 || SCALAR_FLOAT_TYPE_P (scalar_type));
3934 if (nested_in_vect_loop_p (loop, stmt))
3935 nested_in_vect_loop = true;
3936 else
3937 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3939 /* In case of double reduction we only create a vector variable to be put
3940 in the reduction phi node. The actual statement creation is done in
3941 vect_create_epilog_for_reduction. */
3942 if (adjustment_def && nested_in_vect_loop
3943 && TREE_CODE (init_val) == SSA_NAME
3944 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3945 && gimple_code (def_stmt) == GIMPLE_PHI
3946 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3947 && vinfo_for_stmt (def_stmt)
3948 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3949 == vect_double_reduction_def)
3951 *adjustment_def = NULL;
3952 return vect_create_destination_var (init_val, vectype);
3955 /* In case of a nested reduction do not use an adjustment def as
3956 that case is not supported by the epilogue generation correctly
3957 if ncopies is not one. */
3958 if (adjustment_def && nested_in_vect_loop)
3960 *adjustment_def = NULL;
3961 return vect_get_vec_def_for_operand (init_val, stmt);
3964 switch (code)
3966 case WIDEN_SUM_EXPR:
3967 case DOT_PROD_EXPR:
3968 case SAD_EXPR:
3969 case PLUS_EXPR:
3970 case MINUS_EXPR:
3971 case BIT_IOR_EXPR:
3972 case BIT_XOR_EXPR:
3973 case MULT_EXPR:
3974 case BIT_AND_EXPR:
3975 /* ADJUSMENT_DEF is NULL when called from
3976 vect_create_epilog_for_reduction to vectorize double reduction. */
3977 if (adjustment_def)
3978 *adjustment_def = init_val;
3980 if (code == MULT_EXPR)
3982 real_init_val = dconst1;
3983 int_init_val = 1;
3986 if (code == BIT_AND_EXPR)
3987 int_init_val = -1;
3989 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3990 def_for_init = build_real (scalar_type, real_init_val);
3991 else
3992 def_for_init = build_int_cst (scalar_type, int_init_val);
3994 /* Create a vector of '0' or '1' except the first element. */
3995 elts = XALLOCAVEC (tree, nunits);
3996 for (i = nunits - 2; i >= 0; --i)
3997 elts[i + 1] = def_for_init;
3999 /* Option1: the first element is '0' or '1' as well. */
4000 if (adjustment_def)
4002 elts[0] = def_for_init;
4003 init_def = build_vector (vectype, elts);
4004 break;
4007 /* Option2: the first element is INIT_VAL. */
4008 elts[0] = init_val;
4009 if (TREE_CONSTANT (init_val))
4010 init_def = build_vector (vectype, elts);
4011 else
4013 vec<constructor_elt, va_gc> *v;
4014 vec_alloc (v, nunits);
4015 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
4016 for (i = 1; i < nunits; ++i)
4017 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
4018 init_def = build_constructor (vectype, v);
4021 break;
4023 case MIN_EXPR:
4024 case MAX_EXPR:
4025 case COND_EXPR:
4026 if (adjustment_def)
4028 *adjustment_def = NULL_TREE;
4029 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4031 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4032 break;
4035 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4036 if (! gimple_seq_empty_p (stmts))
4037 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4038 init_def = build_vector_from_val (vectype, init_val);
4039 break;
4041 default:
4042 gcc_unreachable ();
4045 return init_def;
4048 /* Function vect_create_epilog_for_reduction
4050 Create code at the loop-epilog to finalize the result of a reduction
4051 computation.
4053 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4054 reduction statements.
4055 STMT is the scalar reduction stmt that is being vectorized.
4056 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4057 number of elements that we can fit in a vectype (nunits). In this case
4058 we have to generate more than one vector stmt - i.e - we need to "unroll"
4059 the vector stmt by a factor VF/nunits. For more details see documentation
4060 in vectorizable_operation.
4061 REDUC_CODE is the tree-code for the epilog reduction.
4062 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4063 computation.
4064 REDUC_INDEX is the index of the operand in the right hand side of the
4065 statement that is defined by REDUCTION_PHI.
4066 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4067 SLP_NODE is an SLP node containing a group of reduction statements. The
4068 first one in this group is STMT.
4069 INDUCTION_INDEX is the index of the loop for condition reductions.
4070 Otherwise it is undefined.
4072 This function:
4073 1. Creates the reduction def-use cycles: sets the arguments for
4074 REDUCTION_PHIS:
4075 The loop-entry argument is the vectorized initial-value of the reduction.
4076 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4077 sums.
4078 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4079 by applying the operation specified by REDUC_CODE if available, or by
4080 other means (whole-vector shifts or a scalar loop).
4081 The function also creates a new phi node at the loop exit to preserve
4082 loop-closed form, as illustrated below.
4084 The flow at the entry to this function:
4086 loop:
4087 vec_def = phi <null, null> # REDUCTION_PHI
4088 VECT_DEF = vector_stmt # vectorized form of STMT
4089 s_loop = scalar_stmt # (scalar) STMT
4090 loop_exit:
4091 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4092 use <s_out0>
4093 use <s_out0>
4095 The above is transformed by this function into:
4097 loop:
4098 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4099 VECT_DEF = vector_stmt # vectorized form of STMT
4100 s_loop = scalar_stmt # (scalar) STMT
4101 loop_exit:
4102 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4103 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4104 v_out2 = reduce <v_out1>
4105 s_out3 = extract_field <v_out2, 0>
4106 s_out4 = adjust_result <s_out3>
4107 use <s_out4>
4108 use <s_out4>
4111 static void
4112 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4113 int ncopies, enum tree_code reduc_code,
4114 vec<gimple *> reduction_phis,
4115 int reduc_index, bool double_reduc,
4116 slp_tree slp_node, tree induction_index)
4118 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4119 stmt_vec_info prev_phi_info;
4120 tree vectype;
4121 machine_mode mode;
4122 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4123 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4124 basic_block exit_bb;
4125 tree scalar_dest;
4126 tree scalar_type;
4127 gimple *new_phi = NULL, *phi;
4128 gimple_stmt_iterator exit_gsi;
4129 tree vec_dest;
4130 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4131 gimple *epilog_stmt = NULL;
4132 enum tree_code code = gimple_assign_rhs_code (stmt);
4133 gimple *exit_phi;
4134 tree bitsize;
4135 tree adjustment_def = NULL;
4136 tree vec_initial_def = NULL;
4137 tree reduction_op, expr, def, initial_def = NULL;
4138 tree orig_name, scalar_result;
4139 imm_use_iterator imm_iter, phi_imm_iter;
4140 use_operand_p use_p, phi_use_p;
4141 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4142 bool nested_in_vect_loop = false;
4143 auto_vec<gimple *> new_phis;
4144 auto_vec<gimple *> inner_phis;
4145 enum vect_def_type dt = vect_unknown_def_type;
4146 int j, i;
4147 auto_vec<tree> scalar_results;
4148 unsigned int group_size = 1, k, ratio;
4149 auto_vec<tree> vec_initial_defs;
4150 auto_vec<gimple *> phis;
4151 bool slp_reduc = false;
4152 tree new_phi_result;
4153 gimple *inner_phi = NULL;
4155 if (slp_node)
4156 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4158 if (nested_in_vect_loop_p (loop, stmt))
4160 outer_loop = loop;
4161 loop = loop->inner;
4162 nested_in_vect_loop = true;
4163 gcc_assert (!slp_node);
4166 reduction_op = get_reduction_op (stmt, reduc_index);
4168 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
4169 gcc_assert (vectype);
4170 mode = TYPE_MODE (vectype);
4172 /* 1. Create the reduction def-use cycle:
4173 Set the arguments of REDUCTION_PHIS, i.e., transform
4175 loop:
4176 vec_def = phi <null, null> # REDUCTION_PHI
4177 VECT_DEF = vector_stmt # vectorized form of STMT
4180 into:
4182 loop:
4183 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4184 VECT_DEF = vector_stmt # vectorized form of STMT
4187 (in case of SLP, do it for all the phis). */
4189 /* Get the loop-entry arguments. */
4190 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4191 if (slp_node)
4192 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
4193 NULL, slp_node, reduc_index);
4194 else
4196 /* Get at the scalar def before the loop, that defines the initial value
4197 of the reduction variable. */
4198 gimple *def_stmt = SSA_NAME_DEF_STMT (reduction_op);
4199 initial_def = PHI_ARG_DEF_FROM_EDGE (def_stmt,
4200 loop_preheader_edge (loop));
4201 vect_is_simple_use (initial_def, loop_vinfo, &def_stmt, &initial_def_dt);
4202 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4203 &adjustment_def);
4204 vec_initial_defs.create (1);
4205 vec_initial_defs.quick_push (vec_initial_def);
4208 /* Set phi nodes arguments. */
4209 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4211 tree vec_init_def, def;
4212 gimple_seq stmts;
4213 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4214 true, NULL_TREE);
4215 if (stmts)
4216 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4218 def = vect_defs[i];
4219 for (j = 0; j < ncopies; j++)
4221 if (j != 0)
4223 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4224 if (nested_in_vect_loop)
4225 vec_init_def
4226 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4227 vec_init_def);
4230 /* Set the loop-entry arg of the reduction-phi. */
4232 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4233 == INTEGER_INDUC_COND_REDUCTION)
4235 /* Initialise the reduction phi to zero. This prevents initial
4236 values of non-zero interferring with the reduction op. */
4237 gcc_assert (ncopies == 1);
4238 gcc_assert (i == 0);
4240 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4241 tree zero_vec = build_zero_cst (vec_init_def_type);
4243 add_phi_arg (as_a <gphi *> (phi), zero_vec,
4244 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4246 else
4247 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4248 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4250 /* Set the loop-latch arg for the reduction-phi. */
4251 if (j > 0)
4252 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4254 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4255 UNKNOWN_LOCATION);
4257 if (dump_enabled_p ())
4259 dump_printf_loc (MSG_NOTE, vect_location,
4260 "transform reduction: created def-use cycle: ");
4261 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4262 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4267 /* 2. Create epilog code.
4268 The reduction epilog code operates across the elements of the vector
4269 of partial results computed by the vectorized loop.
4270 The reduction epilog code consists of:
4272 step 1: compute the scalar result in a vector (v_out2)
4273 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4274 step 3: adjust the scalar result (s_out3) if needed.
4276 Step 1 can be accomplished using one the following three schemes:
4277 (scheme 1) using reduc_code, if available.
4278 (scheme 2) using whole-vector shifts, if available.
4279 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4280 combined.
4282 The overall epilog code looks like this:
4284 s_out0 = phi <s_loop> # original EXIT_PHI
4285 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4286 v_out2 = reduce <v_out1> # step 1
4287 s_out3 = extract_field <v_out2, 0> # step 2
4288 s_out4 = adjust_result <s_out3> # step 3
4290 (step 3 is optional, and steps 1 and 2 may be combined).
4291 Lastly, the uses of s_out0 are replaced by s_out4. */
4294 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4295 v_out1 = phi <VECT_DEF>
4296 Store them in NEW_PHIS. */
4298 exit_bb = single_exit (loop)->dest;
4299 prev_phi_info = NULL;
4300 new_phis.create (vect_defs.length ());
4301 FOR_EACH_VEC_ELT (vect_defs, i, def)
4303 for (j = 0; j < ncopies; j++)
4305 tree new_def = copy_ssa_name (def);
4306 phi = create_phi_node (new_def, exit_bb);
4307 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4308 if (j == 0)
4309 new_phis.quick_push (phi);
4310 else
4312 def = vect_get_vec_def_for_stmt_copy (dt, def);
4313 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4316 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4317 prev_phi_info = vinfo_for_stmt (phi);
4321 /* The epilogue is created for the outer-loop, i.e., for the loop being
4322 vectorized. Create exit phis for the outer loop. */
4323 if (double_reduc)
4325 loop = outer_loop;
4326 exit_bb = single_exit (loop)->dest;
4327 inner_phis.create (vect_defs.length ());
4328 FOR_EACH_VEC_ELT (new_phis, i, phi)
4330 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4331 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4332 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4333 PHI_RESULT (phi));
4334 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4335 loop_vinfo));
4336 inner_phis.quick_push (phi);
4337 new_phis[i] = outer_phi;
4338 prev_phi_info = vinfo_for_stmt (outer_phi);
4339 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4341 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4342 new_result = copy_ssa_name (PHI_RESULT (phi));
4343 outer_phi = create_phi_node (new_result, exit_bb);
4344 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4345 PHI_RESULT (phi));
4346 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4347 loop_vinfo));
4348 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4349 prev_phi_info = vinfo_for_stmt (outer_phi);
4354 exit_gsi = gsi_after_labels (exit_bb);
4356 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4357 (i.e. when reduc_code is not available) and in the final adjustment
4358 code (if needed). Also get the original scalar reduction variable as
4359 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4360 represents a reduction pattern), the tree-code and scalar-def are
4361 taken from the original stmt that the pattern-stmt (STMT) replaces.
4362 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4363 are taken from STMT. */
4365 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4366 if (!orig_stmt)
4368 /* Regular reduction */
4369 orig_stmt = stmt;
4371 else
4373 /* Reduction pattern */
4374 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4375 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4376 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4379 code = gimple_assign_rhs_code (orig_stmt);
4380 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4381 partial results are added and not subtracted. */
4382 if (code == MINUS_EXPR)
4383 code = PLUS_EXPR;
4385 scalar_dest = gimple_assign_lhs (orig_stmt);
4386 scalar_type = TREE_TYPE (scalar_dest);
4387 scalar_results.create (group_size);
4388 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4389 bitsize = TYPE_SIZE (scalar_type);
4391 /* In case this is a reduction in an inner-loop while vectorizing an outer
4392 loop - we don't need to extract a single scalar result at the end of the
4393 inner-loop (unless it is double reduction, i.e., the use of reduction is
4394 outside the outer-loop). The final vector of partial results will be used
4395 in the vectorized outer-loop, or reduced to a scalar result at the end of
4396 the outer-loop. */
4397 if (nested_in_vect_loop && !double_reduc)
4398 goto vect_finalize_reduction;
4400 /* SLP reduction without reduction chain, e.g.,
4401 # a1 = phi <a2, a0>
4402 # b1 = phi <b2, b0>
4403 a2 = operation (a1)
4404 b2 = operation (b1) */
4405 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4407 /* In case of reduction chain, e.g.,
4408 # a1 = phi <a3, a0>
4409 a2 = operation (a1)
4410 a3 = operation (a2),
4412 we may end up with more than one vector result. Here we reduce them to
4413 one vector. */
4414 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4416 tree first_vect = PHI_RESULT (new_phis[0]);
4417 tree tmp;
4418 gassign *new_vec_stmt = NULL;
4420 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4421 for (k = 1; k < new_phis.length (); k++)
4423 gimple *next_phi = new_phis[k];
4424 tree second_vect = PHI_RESULT (next_phi);
4426 tmp = build2 (code, vectype, first_vect, second_vect);
4427 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4428 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4429 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4430 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4433 new_phi_result = first_vect;
4434 if (new_vec_stmt)
4436 new_phis.truncate (0);
4437 new_phis.safe_push (new_vec_stmt);
4440 else
4441 new_phi_result = PHI_RESULT (new_phis[0]);
4443 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4445 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4446 various data values where the condition matched and another vector
4447 (INDUCTION_INDEX) containing all the indexes of those matches. We
4448 need to extract the last matching index (which will be the index with
4449 highest value) and use this to index into the data vector.
4450 For the case where there were no matches, the data vector will contain
4451 all default values and the index vector will be all zeros. */
4453 /* Get various versions of the type of the vector of indexes. */
4454 tree index_vec_type = TREE_TYPE (induction_index);
4455 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4456 tree index_scalar_type = TREE_TYPE (index_vec_type);
4457 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4458 (index_vec_type);
4460 /* Get an unsigned integer version of the type of the data vector. */
4461 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
4462 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4463 tree vectype_unsigned = build_vector_type
4464 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4466 /* First we need to create a vector (ZERO_VEC) of zeros and another
4467 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4468 can create using a MAX reduction and then expanding.
4469 In the case where the loop never made any matches, the max index will
4470 be zero. */
4472 /* Vector of {0, 0, 0,...}. */
4473 tree zero_vec = make_ssa_name (vectype);
4474 tree zero_vec_rhs = build_zero_cst (vectype);
4475 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4476 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4478 /* Find maximum value from the vector of found indexes. */
4479 tree max_index = make_ssa_name (index_scalar_type);
4480 gimple *max_index_stmt = gimple_build_assign (max_index, REDUC_MAX_EXPR,
4481 induction_index);
4482 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4484 /* Vector of {max_index, max_index, max_index,...}. */
4485 tree max_index_vec = make_ssa_name (index_vec_type);
4486 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4487 max_index);
4488 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4489 max_index_vec_rhs);
4490 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4492 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4493 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4494 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4495 otherwise. Only one value should match, resulting in a vector
4496 (VEC_COND) with one data value and the rest zeros.
4497 In the case where the loop never made any matches, every index will
4498 match, resulting in a vector with all data values (which will all be
4499 the default value). */
4501 /* Compare the max index vector to the vector of found indexes to find
4502 the position of the max value. */
4503 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4504 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4505 induction_index,
4506 max_index_vec);
4507 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4509 /* Use the compare to choose either values from the data vector or
4510 zero. */
4511 tree vec_cond = make_ssa_name (vectype);
4512 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4513 vec_compare, new_phi_result,
4514 zero_vec);
4515 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4517 /* Finally we need to extract the data value from the vector (VEC_COND)
4518 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4519 reduction, but because this doesn't exist, we can use a MAX reduction
4520 instead. The data value might be signed or a float so we need to cast
4521 it first.
4522 In the case where the loop never made any matches, the data values are
4523 all identical, and so will reduce down correctly. */
4525 /* Make the matched data values unsigned. */
4526 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4527 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4528 vec_cond);
4529 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4530 VIEW_CONVERT_EXPR,
4531 vec_cond_cast_rhs);
4532 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4534 /* Reduce down to a scalar value. */
4535 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4536 optab ot = optab_for_tree_code (REDUC_MAX_EXPR, vectype_unsigned,
4537 optab_default);
4538 gcc_assert (optab_handler (ot, TYPE_MODE (vectype_unsigned))
4539 != CODE_FOR_nothing);
4540 gimple *data_reduc_stmt = gimple_build_assign (data_reduc,
4541 REDUC_MAX_EXPR,
4542 vec_cond_cast);
4543 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4545 /* Convert the reduced value back to the result type and set as the
4546 result. */
4547 tree data_reduc_cast = build1 (VIEW_CONVERT_EXPR, scalar_type,
4548 data_reduc);
4549 epilog_stmt = gimple_build_assign (new_scalar_dest, data_reduc_cast);
4550 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4551 gimple_assign_set_lhs (epilog_stmt, new_temp);
4552 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4553 scalar_results.safe_push (new_temp);
4556 /* 2.3 Create the reduction code, using one of the three schemes described
4557 above. In SLP we simply need to extract all the elements from the
4558 vector (without reducing them), so we use scalar shifts. */
4559 else if (reduc_code != ERROR_MARK && !slp_reduc)
4561 tree tmp;
4562 tree vec_elem_type;
4564 /* Case 1: Create:
4565 v_out2 = reduc_expr <v_out1> */
4567 if (dump_enabled_p ())
4568 dump_printf_loc (MSG_NOTE, vect_location,
4569 "Reduce using direct vector reduction.\n");
4571 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
4572 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
4574 tree tmp_dest =
4575 vect_create_destination_var (scalar_dest, vec_elem_type);
4576 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
4577 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
4578 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
4579 gimple_assign_set_lhs (epilog_stmt, new_temp);
4580 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4582 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
4584 else
4585 tmp = build1 (reduc_code, scalar_type, new_phi_result);
4587 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
4588 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4589 gimple_assign_set_lhs (epilog_stmt, new_temp);
4590 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4592 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4593 == INTEGER_INDUC_COND_REDUCTION)
4595 /* Earlier we set the initial value to be zero. Check the result
4596 and if it is zero then replace with the original initial
4597 value. */
4598 tree zero = build_zero_cst (scalar_type);
4599 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
4601 tmp = make_ssa_name (new_scalar_dest);
4602 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
4603 initial_def, new_temp);
4604 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4605 new_temp = tmp;
4608 scalar_results.safe_push (new_temp);
4610 else
4612 bool reduce_with_shift = have_whole_vector_shift (mode);
4613 int element_bitsize = tree_to_uhwi (bitsize);
4614 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4615 tree vec_temp;
4617 /* Regardless of whether we have a whole vector shift, if we're
4618 emulating the operation via tree-vect-generic, we don't want
4619 to use it. Only the first round of the reduction is likely
4620 to still be profitable via emulation. */
4621 /* ??? It might be better to emit a reduction tree code here, so that
4622 tree-vect-generic can expand the first round via bit tricks. */
4623 if (!VECTOR_MODE_P (mode))
4624 reduce_with_shift = false;
4625 else
4627 optab optab = optab_for_tree_code (code, vectype, optab_default);
4628 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4629 reduce_with_shift = false;
4632 if (reduce_with_shift && !slp_reduc)
4634 int nelements = vec_size_in_bits / element_bitsize;
4635 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
4637 int elt_offset;
4639 tree zero_vec = build_zero_cst (vectype);
4640 /* Case 2: Create:
4641 for (offset = nelements/2; offset >= 1; offset/=2)
4643 Create: va' = vec_shift <va, offset>
4644 Create: va = vop <va, va'>
4645 } */
4647 tree rhs;
4649 if (dump_enabled_p ())
4650 dump_printf_loc (MSG_NOTE, vect_location,
4651 "Reduce using vector shifts\n");
4653 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4654 new_temp = new_phi_result;
4655 for (elt_offset = nelements / 2;
4656 elt_offset >= 1;
4657 elt_offset /= 2)
4659 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
4660 tree mask = vect_gen_perm_mask_any (vectype, sel);
4661 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
4662 new_temp, zero_vec, mask);
4663 new_name = make_ssa_name (vec_dest, epilog_stmt);
4664 gimple_assign_set_lhs (epilog_stmt, new_name);
4665 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4667 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
4668 new_temp);
4669 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4670 gimple_assign_set_lhs (epilog_stmt, new_temp);
4671 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4674 /* 2.4 Extract the final scalar result. Create:
4675 s_out3 = extract_field <v_out2, bitpos> */
4677 if (dump_enabled_p ())
4678 dump_printf_loc (MSG_NOTE, vect_location,
4679 "extract scalar result\n");
4681 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
4682 bitsize, bitsize_zero_node);
4683 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4684 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4685 gimple_assign_set_lhs (epilog_stmt, new_temp);
4686 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4687 scalar_results.safe_push (new_temp);
4689 else
4691 /* Case 3: Create:
4692 s = extract_field <v_out2, 0>
4693 for (offset = element_size;
4694 offset < vector_size;
4695 offset += element_size;)
4697 Create: s' = extract_field <v_out2, offset>
4698 Create: s = op <s, s'> // For non SLP cases
4699 } */
4701 if (dump_enabled_p ())
4702 dump_printf_loc (MSG_NOTE, vect_location,
4703 "Reduce using scalar code.\n");
4705 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4706 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4708 int bit_offset;
4709 if (gimple_code (new_phi) == GIMPLE_PHI)
4710 vec_temp = PHI_RESULT (new_phi);
4711 else
4712 vec_temp = gimple_assign_lhs (new_phi);
4713 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4714 bitsize_zero_node);
4715 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4716 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4717 gimple_assign_set_lhs (epilog_stmt, new_temp);
4718 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4720 /* In SLP we don't need to apply reduction operation, so we just
4721 collect s' values in SCALAR_RESULTS. */
4722 if (slp_reduc)
4723 scalar_results.safe_push (new_temp);
4725 for (bit_offset = element_bitsize;
4726 bit_offset < vec_size_in_bits;
4727 bit_offset += element_bitsize)
4729 tree bitpos = bitsize_int (bit_offset);
4730 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4731 bitsize, bitpos);
4733 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4734 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4735 gimple_assign_set_lhs (epilog_stmt, new_name);
4736 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4738 if (slp_reduc)
4740 /* In SLP we don't need to apply reduction operation, so
4741 we just collect s' values in SCALAR_RESULTS. */
4742 new_temp = new_name;
4743 scalar_results.safe_push (new_name);
4745 else
4747 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
4748 new_name, new_temp);
4749 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4750 gimple_assign_set_lhs (epilog_stmt, new_temp);
4751 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4756 /* The only case where we need to reduce scalar results in SLP, is
4757 unrolling. If the size of SCALAR_RESULTS is greater than
4758 GROUP_SIZE, we reduce them combining elements modulo
4759 GROUP_SIZE. */
4760 if (slp_reduc)
4762 tree res, first_res, new_res;
4763 gimple *new_stmt;
4765 /* Reduce multiple scalar results in case of SLP unrolling. */
4766 for (j = group_size; scalar_results.iterate (j, &res);
4767 j++)
4769 first_res = scalar_results[j % group_size];
4770 new_stmt = gimple_build_assign (new_scalar_dest, code,
4771 first_res, res);
4772 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4773 gimple_assign_set_lhs (new_stmt, new_res);
4774 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4775 scalar_results[j % group_size] = new_res;
4778 else
4779 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4780 scalar_results.safe_push (new_temp);
4784 vect_finalize_reduction:
4786 if (double_reduc)
4787 loop = loop->inner;
4789 /* 2.5 Adjust the final result by the initial value of the reduction
4790 variable. (When such adjustment is not needed, then
4791 'adjustment_def' is zero). For example, if code is PLUS we create:
4792 new_temp = loop_exit_def + adjustment_def */
4794 if (adjustment_def)
4796 gcc_assert (!slp_reduc);
4797 if (nested_in_vect_loop)
4799 new_phi = new_phis[0];
4800 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4801 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4802 new_dest = vect_create_destination_var (scalar_dest, vectype);
4804 else
4806 new_temp = scalar_results[0];
4807 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4808 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4809 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4812 epilog_stmt = gimple_build_assign (new_dest, expr);
4813 new_temp = make_ssa_name (new_dest, epilog_stmt);
4814 gimple_assign_set_lhs (epilog_stmt, new_temp);
4815 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4816 if (nested_in_vect_loop)
4818 set_vinfo_for_stmt (epilog_stmt,
4819 new_stmt_vec_info (epilog_stmt, loop_vinfo));
4820 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4821 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4823 if (!double_reduc)
4824 scalar_results.quick_push (new_temp);
4825 else
4826 scalar_results[0] = new_temp;
4828 else
4829 scalar_results[0] = new_temp;
4831 new_phis[0] = epilog_stmt;
4834 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4835 phis with new adjusted scalar results, i.e., replace use <s_out0>
4836 with use <s_out4>.
4838 Transform:
4839 loop_exit:
4840 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4841 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4842 v_out2 = reduce <v_out1>
4843 s_out3 = extract_field <v_out2, 0>
4844 s_out4 = adjust_result <s_out3>
4845 use <s_out0>
4846 use <s_out0>
4848 into:
4850 loop_exit:
4851 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4852 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4853 v_out2 = reduce <v_out1>
4854 s_out3 = extract_field <v_out2, 0>
4855 s_out4 = adjust_result <s_out3>
4856 use <s_out4>
4857 use <s_out4> */
4860 /* In SLP reduction chain we reduce vector results into one vector if
4861 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4862 the last stmt in the reduction chain, since we are looking for the loop
4863 exit phi node. */
4864 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4866 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
4867 /* Handle reduction patterns. */
4868 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
4869 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
4871 scalar_dest = gimple_assign_lhs (dest_stmt);
4872 group_size = 1;
4875 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4876 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4877 need to match SCALAR_RESULTS with corresponding statements. The first
4878 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4879 the first vector stmt, etc.
4880 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4881 if (group_size > new_phis.length ())
4883 ratio = group_size / new_phis.length ();
4884 gcc_assert (!(group_size % new_phis.length ()));
4886 else
4887 ratio = 1;
4889 for (k = 0; k < group_size; k++)
4891 if (k % ratio == 0)
4893 epilog_stmt = new_phis[k / ratio];
4894 reduction_phi = reduction_phis[k / ratio];
4895 if (double_reduc)
4896 inner_phi = inner_phis[k / ratio];
4899 if (slp_reduc)
4901 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4903 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4904 /* SLP statements can't participate in patterns. */
4905 gcc_assert (!orig_stmt);
4906 scalar_dest = gimple_assign_lhs (current_stmt);
4909 phis.create (3);
4910 /* Find the loop-closed-use at the loop exit of the original scalar
4911 result. (The reduction result is expected to have two immediate uses -
4912 one at the latch block, and one at the loop exit). */
4913 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4914 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
4915 && !is_gimple_debug (USE_STMT (use_p)))
4916 phis.safe_push (USE_STMT (use_p));
4918 /* While we expect to have found an exit_phi because of loop-closed-ssa
4919 form we can end up without one if the scalar cycle is dead. */
4921 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4923 if (outer_loop)
4925 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4926 gphi *vect_phi;
4928 /* FORNOW. Currently not supporting the case that an inner-loop
4929 reduction is not used in the outer-loop (but only outside the
4930 outer-loop), unless it is double reduction. */
4931 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4932 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4933 || double_reduc);
4935 if (double_reduc)
4936 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
4937 else
4938 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4939 if (!double_reduc
4940 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4941 != vect_double_reduction_def)
4942 continue;
4944 /* Handle double reduction:
4946 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4947 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4948 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4949 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4951 At that point the regular reduction (stmt2 and stmt3) is
4952 already vectorized, as well as the exit phi node, stmt4.
4953 Here we vectorize the phi node of double reduction, stmt1, and
4954 update all relevant statements. */
4956 /* Go through all the uses of s2 to find double reduction phi
4957 node, i.e., stmt1 above. */
4958 orig_name = PHI_RESULT (exit_phi);
4959 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4961 stmt_vec_info use_stmt_vinfo;
4962 stmt_vec_info new_phi_vinfo;
4963 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4964 basic_block bb = gimple_bb (use_stmt);
4965 gimple *use;
4967 /* Check that USE_STMT is really double reduction phi
4968 node. */
4969 if (gimple_code (use_stmt) != GIMPLE_PHI
4970 || gimple_phi_num_args (use_stmt) != 2
4971 || bb->loop_father != outer_loop)
4972 continue;
4973 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4974 if (!use_stmt_vinfo
4975 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4976 != vect_double_reduction_def)
4977 continue;
4979 /* Create vector phi node for double reduction:
4980 vs1 = phi <vs0, vs2>
4981 vs1 was created previously in this function by a call to
4982 vect_get_vec_def_for_operand and is stored in
4983 vec_initial_def;
4984 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4985 vs0 is created here. */
4987 /* Create vector phi node. */
4988 vect_phi = create_phi_node (vec_initial_def, bb);
4989 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4990 loop_vec_info_for_loop (outer_loop));
4991 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4993 /* Create vs0 - initial def of the double reduction phi. */
4994 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4995 loop_preheader_edge (outer_loop));
4996 init_def = get_initial_def_for_reduction (stmt,
4997 preheader_arg, NULL);
4998 vect_phi_init = vect_init_vector (use_stmt, init_def,
4999 vectype, NULL);
5001 /* Update phi node arguments with vs0 and vs2. */
5002 add_phi_arg (vect_phi, vect_phi_init,
5003 loop_preheader_edge (outer_loop),
5004 UNKNOWN_LOCATION);
5005 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5006 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5007 if (dump_enabled_p ())
5009 dump_printf_loc (MSG_NOTE, vect_location,
5010 "created double reduction phi node: ");
5011 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5014 vect_phi_res = PHI_RESULT (vect_phi);
5016 /* Replace the use, i.e., set the correct vs1 in the regular
5017 reduction phi node. FORNOW, NCOPIES is always 1, so the
5018 loop is redundant. */
5019 use = reduction_phi;
5020 for (j = 0; j < ncopies; j++)
5022 edge pr_edge = loop_preheader_edge (loop);
5023 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5024 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5030 phis.release ();
5031 if (nested_in_vect_loop)
5033 if (double_reduc)
5034 loop = outer_loop;
5035 else
5036 continue;
5039 phis.create (3);
5040 /* Find the loop-closed-use at the loop exit of the original scalar
5041 result. (The reduction result is expected to have two immediate uses,
5042 one at the latch block, and one at the loop exit). For double
5043 reductions we are looking for exit phis of the outer loop. */
5044 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5046 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5048 if (!is_gimple_debug (USE_STMT (use_p)))
5049 phis.safe_push (USE_STMT (use_p));
5051 else
5053 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5055 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5057 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5059 if (!flow_bb_inside_loop_p (loop,
5060 gimple_bb (USE_STMT (phi_use_p)))
5061 && !is_gimple_debug (USE_STMT (phi_use_p)))
5062 phis.safe_push (USE_STMT (phi_use_p));
5068 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5070 /* Replace the uses: */
5071 orig_name = PHI_RESULT (exit_phi);
5072 scalar_result = scalar_results[k];
5073 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5074 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5075 SET_USE (use_p, scalar_result);
5078 phis.release ();
5083 /* Function is_nonwrapping_integer_induction.
5085 Check if STMT (which is part of loop LOOP) both increments and
5086 does not cause overflow. */
5088 static bool
5089 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5091 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5092 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5093 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5094 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5095 widest_int ni, max_loop_value, lhs_max;
5096 bool overflow = false;
5098 /* Make sure the loop is integer based. */
5099 if (TREE_CODE (base) != INTEGER_CST
5100 || TREE_CODE (step) != INTEGER_CST)
5101 return false;
5103 /* Check that the induction increments. */
5104 if (tree_int_cst_sgn (step) == -1)
5105 return false;
5107 /* Check that the max size of the loop will not wrap. */
5109 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5110 return true;
5112 if (! max_stmt_executions (loop, &ni))
5113 return false;
5115 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5116 &overflow);
5117 if (overflow)
5118 return false;
5120 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5121 TYPE_SIGN (lhs_type), &overflow);
5122 if (overflow)
5123 return false;
5125 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5126 <= TYPE_PRECISION (lhs_type));
5129 /* Function vectorizable_reduction.
5131 Check if STMT performs a reduction operation that can be vectorized.
5132 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5133 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5134 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5136 This function also handles reduction idioms (patterns) that have been
5137 recognized in advance during vect_pattern_recog. In this case, STMT may be
5138 of this form:
5139 X = pattern_expr (arg0, arg1, ..., X)
5140 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5141 sequence that had been detected and replaced by the pattern-stmt (STMT).
5143 This function also handles reduction of condition expressions, for example:
5144 for (int i = 0; i < N; i++)
5145 if (a[i] < value)
5146 last = a[i];
5147 This is handled by vectorising the loop and creating an additional vector
5148 containing the loop indexes for which "a[i] < value" was true. In the
5149 function epilogue this is reduced to a single max value and then used to
5150 index into the vector of results.
5152 In some cases of reduction patterns, the type of the reduction variable X is
5153 different than the type of the other arguments of STMT.
5154 In such cases, the vectype that is used when transforming STMT into a vector
5155 stmt is different than the vectype that is used to determine the
5156 vectorization factor, because it consists of a different number of elements
5157 than the actual number of elements that are being operated upon in parallel.
5159 For example, consider an accumulation of shorts into an int accumulator.
5160 On some targets it's possible to vectorize this pattern operating on 8
5161 shorts at a time (hence, the vectype for purposes of determining the
5162 vectorization factor should be V8HI); on the other hand, the vectype that
5163 is used to create the vector form is actually V4SI (the type of the result).
5165 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5166 indicates what is the actual level of parallelism (V8HI in the example), so
5167 that the right vectorization factor would be derived. This vectype
5168 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5169 be used to create the vectorized stmt. The right vectype for the vectorized
5170 stmt is obtained from the type of the result X:
5171 get_vectype_for_scalar_type (TREE_TYPE (X))
5173 This means that, contrary to "regular" reductions (or "regular" stmts in
5174 general), the following equation:
5175 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5176 does *NOT* necessarily hold for reduction patterns. */
5178 bool
5179 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5180 gimple **vec_stmt, slp_tree slp_node)
5182 tree vec_dest;
5183 tree scalar_dest;
5184 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
5185 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5186 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5187 tree vectype_in = NULL_TREE;
5188 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5189 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5190 enum tree_code code, orig_code, epilog_reduc_code;
5191 machine_mode vec_mode;
5192 int op_type;
5193 optab optab, reduc_optab;
5194 tree new_temp = NULL_TREE;
5195 gimple *def_stmt;
5196 enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
5197 gphi *new_phi = NULL;
5198 tree scalar_type;
5199 bool is_simple_use;
5200 gimple *orig_stmt;
5201 stmt_vec_info orig_stmt_info;
5202 tree expr = NULL_TREE;
5203 int i;
5204 int ncopies;
5205 int epilog_copies;
5206 stmt_vec_info prev_stmt_info, prev_phi_info;
5207 bool single_defuse_cycle = false;
5208 tree reduc_def = NULL_TREE;
5209 gimple *new_stmt = NULL;
5210 int j;
5211 tree ops[3];
5212 bool nested_cycle = false, found_nested_cycle_def = false;
5213 gimple *reduc_def_stmt = NULL;
5214 bool double_reduc = false;
5215 basic_block def_bb;
5216 struct loop * def_stmt_loop, *outer_loop = NULL;
5217 tree def_arg;
5218 gimple *def_arg_stmt;
5219 auto_vec<tree> vec_oprnds0;
5220 auto_vec<tree> vec_oprnds1;
5221 auto_vec<tree> vect_defs;
5222 auto_vec<gimple *> phis;
5223 int vec_num;
5224 tree def0, def1, tem, op1 = NULL_TREE;
5225 bool first_p = true;
5226 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5227 tree cond_reduc_val = NULL_TREE;
5229 /* In case of reduction chain we switch to the first stmt in the chain, but
5230 we don't update STMT_INFO, since only the last stmt is marked as reduction
5231 and has reduction properties. */
5232 if (GROUP_FIRST_ELEMENT (stmt_info)
5233 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5235 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5236 first_p = false;
5239 if (nested_in_vect_loop_p (loop, stmt))
5241 outer_loop = loop;
5242 loop = loop->inner;
5243 nested_cycle = true;
5246 /* 1. Is vectorizable reduction? */
5247 /* Not supportable if the reduction variable is used in the loop, unless
5248 it's a reduction chain. */
5249 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5250 && !GROUP_FIRST_ELEMENT (stmt_info))
5251 return false;
5253 /* Reductions that are not used even in an enclosing outer-loop,
5254 are expected to be "live" (used out of the loop). */
5255 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5256 && !STMT_VINFO_LIVE_P (stmt_info))
5257 return false;
5259 /* Make sure it was already recognized as a reduction computation. */
5260 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5261 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5262 return false;
5264 /* 2. Has this been recognized as a reduction pattern?
5266 Check if STMT represents a pattern that has been recognized
5267 in earlier analysis stages. For stmts that represent a pattern,
5268 the STMT_VINFO_RELATED_STMT field records the last stmt in
5269 the original sequence that constitutes the pattern. */
5271 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5272 if (orig_stmt)
5274 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5275 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5276 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5279 /* 3. Check the operands of the operation. The first operands are defined
5280 inside the loop body. The last operand is the reduction variable,
5281 which is defined by the loop-header-phi. */
5283 gcc_assert (is_gimple_assign (stmt));
5285 /* Flatten RHS. */
5286 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5288 case GIMPLE_SINGLE_RHS:
5289 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
5290 if (op_type == ternary_op)
5292 tree rhs = gimple_assign_rhs1 (stmt);
5293 ops[0] = TREE_OPERAND (rhs, 0);
5294 ops[1] = TREE_OPERAND (rhs, 1);
5295 ops[2] = TREE_OPERAND (rhs, 2);
5296 code = TREE_CODE (rhs);
5298 else
5299 return false;
5300 break;
5302 case GIMPLE_BINARY_RHS:
5303 code = gimple_assign_rhs_code (stmt);
5304 op_type = TREE_CODE_LENGTH (code);
5305 gcc_assert (op_type == binary_op);
5306 ops[0] = gimple_assign_rhs1 (stmt);
5307 ops[1] = gimple_assign_rhs2 (stmt);
5308 break;
5310 case GIMPLE_TERNARY_RHS:
5311 code = gimple_assign_rhs_code (stmt);
5312 op_type = TREE_CODE_LENGTH (code);
5313 gcc_assert (op_type == ternary_op);
5314 ops[0] = gimple_assign_rhs1 (stmt);
5315 ops[1] = gimple_assign_rhs2 (stmt);
5316 ops[2] = gimple_assign_rhs3 (stmt);
5317 break;
5319 case GIMPLE_UNARY_RHS:
5320 return false;
5322 default:
5323 gcc_unreachable ();
5325 /* The default is that the reduction variable is the last in statement. */
5326 int reduc_index = op_type - 1;
5327 if (code == MINUS_EXPR)
5328 reduc_index = 0;
5330 if (code == COND_EXPR && slp_node)
5331 return false;
5333 scalar_dest = gimple_assign_lhs (stmt);
5334 scalar_type = TREE_TYPE (scalar_dest);
5335 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5336 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5337 return false;
5339 /* Do not try to vectorize bit-precision reductions. */
5340 if ((TYPE_PRECISION (scalar_type)
5341 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
5342 return false;
5344 /* All uses but the last are expected to be defined in the loop.
5345 The last use is the reduction variable. In case of nested cycle this
5346 assumption is not true: we use reduc_index to record the index of the
5347 reduction variable. */
5348 for (i = 0; i < op_type; i++)
5350 if (i == reduc_index)
5351 continue;
5353 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5354 if (i == 0 && code == COND_EXPR)
5355 continue;
5357 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5358 &def_stmt, &dt, &tem);
5359 if (!vectype_in)
5360 vectype_in = tem;
5361 gcc_assert (is_simple_use);
5363 if (dt != vect_internal_def
5364 && dt != vect_external_def
5365 && dt != vect_constant_def
5366 && dt != vect_induction_def
5367 && !(dt == vect_nested_cycle && nested_cycle))
5368 return false;
5370 if (dt == vect_nested_cycle)
5372 found_nested_cycle_def = true;
5373 reduc_def_stmt = def_stmt;
5374 reduc_index = i;
5377 if (i == 1 && code == COND_EXPR)
5379 /* Record how value of COND_EXPR is defined. */
5380 if (dt == vect_constant_def)
5382 cond_reduc_dt = dt;
5383 cond_reduc_val = ops[i];
5385 if (dt == vect_induction_def && def_stmt != NULL
5386 && is_nonwrapping_integer_induction (def_stmt, loop))
5387 cond_reduc_dt = dt;
5391 is_simple_use = vect_is_simple_use (ops[reduc_index], loop_vinfo,
5392 &def_stmt, &dt, &tem);
5393 if (!vectype_in)
5394 vectype_in = tem;
5395 gcc_assert (is_simple_use);
5396 if (!found_nested_cycle_def)
5397 reduc_def_stmt = def_stmt;
5399 if (reduc_def_stmt && gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5400 return false;
5402 if (!(dt == vect_reduction_def
5403 || dt == vect_nested_cycle
5404 || ((dt == vect_internal_def || dt == vect_external_def
5405 || dt == vect_constant_def || dt == vect_induction_def)
5406 && nested_cycle && found_nested_cycle_def)))
5408 /* For pattern recognized stmts, orig_stmt might be a reduction,
5409 but some helper statements for the pattern might not, or
5410 might be COND_EXPRs with reduction uses in the condition. */
5411 gcc_assert (orig_stmt);
5412 return false;
5415 stmt_vec_info reduc_def_info = vinfo_for_stmt (reduc_def_stmt);
5416 enum vect_reduction_type v_reduc_type
5417 = STMT_VINFO_REDUC_TYPE (reduc_def_info);
5418 gimple *tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);
5420 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5421 /* If we have a condition reduction, see if we can simplify it further. */
5422 if (v_reduc_type == COND_REDUCTION)
5424 if (cond_reduc_dt == vect_induction_def)
5426 if (dump_enabled_p ())
5427 dump_printf_loc (MSG_NOTE, vect_location,
5428 "condition expression based on "
5429 "integer induction.\n");
5430 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5431 = INTEGER_INDUC_COND_REDUCTION;
5434 /* Loop peeling modifies initial value of reduction PHI, which
5435 makes the reduction stmt to be transformed different to the
5436 original stmt analyzed. We need to record reduction code for
5437 CONST_COND_REDUCTION type reduction at analyzing stage, thus
5438 it can be used directly at transform stage. */
5439 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
5440 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
5442 /* Also set the reduction type to CONST_COND_REDUCTION. */
5443 gcc_assert (cond_reduc_dt == vect_constant_def);
5444 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
5446 else if (cond_reduc_dt == vect_constant_def)
5448 enum vect_def_type cond_initial_dt;
5449 gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
5450 tree cond_initial_val
5451 = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
5453 gcc_assert (cond_reduc_val != NULL_TREE);
5454 vect_is_simple_use (cond_initial_val, loop_vinfo,
5455 &def_stmt, &cond_initial_dt);
5456 if (cond_initial_dt == vect_constant_def
5457 && types_compatible_p (TREE_TYPE (cond_initial_val),
5458 TREE_TYPE (cond_reduc_val)))
5460 tree e = fold_build2 (LE_EXPR, boolean_type_node,
5461 cond_initial_val, cond_reduc_val);
5462 if (e && (integer_onep (e) || integer_zerop (e)))
5464 if (dump_enabled_p ())
5465 dump_printf_loc (MSG_NOTE, vect_location,
5466 "condition expression based on "
5467 "compile time constant.\n");
5468 /* Record reduction code at analysis stage. */
5469 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
5470 = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
5471 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5472 = CONST_COND_REDUCTION;
5478 if (orig_stmt)
5479 gcc_assert (tmp == orig_stmt
5480 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
5481 else
5482 /* We changed STMT to be the first stmt in reduction chain, hence we
5483 check that in this case the first element in the chain is STMT. */
5484 gcc_assert (stmt == tmp
5485 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
5487 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
5488 return false;
5490 if (slp_node)
5491 ncopies = 1;
5492 else
5493 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5494 / TYPE_VECTOR_SUBPARTS (vectype_in));
5496 gcc_assert (ncopies >= 1);
5498 vec_mode = TYPE_MODE (vectype_in);
5500 if (code == COND_EXPR)
5502 /* Only call during the analysis stage, otherwise we'll lose
5503 STMT_VINFO_TYPE. */
5504 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
5505 ops[reduc_index], 0, NULL))
5507 if (dump_enabled_p ())
5508 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5509 "unsupported condition in reduction\n");
5510 return false;
5513 else
5515 /* 4. Supportable by target? */
5517 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
5518 || code == LROTATE_EXPR || code == RROTATE_EXPR)
5520 /* Shifts and rotates are only supported by vectorizable_shifts,
5521 not vectorizable_reduction. */
5522 if (dump_enabled_p ())
5523 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5524 "unsupported shift or rotation.\n");
5525 return false;
5528 /* 4.1. check support for the operation in the loop */
5529 optab = optab_for_tree_code (code, vectype_in, optab_default);
5530 if (!optab)
5532 if (dump_enabled_p ())
5533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5534 "no optab.\n");
5536 return false;
5539 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
5541 if (dump_enabled_p ())
5542 dump_printf (MSG_NOTE, "op not supported by target.\n");
5544 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5545 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5546 < vect_min_worthwhile_factor (code))
5547 return false;
5549 if (dump_enabled_p ())
5550 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
5553 /* Worthwhile without SIMD support? */
5554 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
5555 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5556 < vect_min_worthwhile_factor (code))
5558 if (dump_enabled_p ())
5559 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5560 "not worthwhile without SIMD support.\n");
5562 return false;
5566 /* 4.2. Check support for the epilog operation.
5568 If STMT represents a reduction pattern, then the type of the
5569 reduction variable may be different than the type of the rest
5570 of the arguments. For example, consider the case of accumulation
5571 of shorts into an int accumulator; The original code:
5572 S1: int_a = (int) short_a;
5573 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5575 was replaced with:
5576 STMT: int_acc = widen_sum <short_a, int_acc>
5578 This means that:
5579 1. The tree-code that is used to create the vector operation in the
5580 epilog code (that reduces the partial results) is not the
5581 tree-code of STMT, but is rather the tree-code of the original
5582 stmt from the pattern that STMT is replacing. I.e, in the example
5583 above we want to use 'widen_sum' in the loop, but 'plus' in the
5584 epilog.
5585 2. The type (mode) we use to check available target support
5586 for the vector operation to be created in the *epilog*, is
5587 determined by the type of the reduction variable (in the example
5588 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5589 However the type (mode) we use to check available target support
5590 for the vector operation to be created *inside the loop*, is
5591 determined by the type of the other arguments to STMT (in the
5592 example we'd check this: optab_handler (widen_sum_optab,
5593 vect_short_mode)).
5595 This is contrary to "regular" reductions, in which the types of all
5596 the arguments are the same as the type of the reduction variable.
5597 For "regular" reductions we can therefore use the same vector type
5598 (and also the same tree-code) when generating the epilog code and
5599 when generating the code inside the loop. */
5601 if (orig_stmt)
5603 /* This is a reduction pattern: get the vectype from the type of the
5604 reduction variable, and get the tree-code from orig_stmt. */
5605 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5606 == TREE_CODE_REDUCTION);
5607 orig_code = gimple_assign_rhs_code (orig_stmt);
5608 gcc_assert (vectype_out);
5609 vec_mode = TYPE_MODE (vectype_out);
5611 else
5613 /* Regular reduction: use the same vectype and tree-code as used for
5614 the vector code inside the loop can be used for the epilog code. */
5615 orig_code = code;
5617 if (code == MINUS_EXPR)
5618 orig_code = PLUS_EXPR;
5620 /* For simple condition reductions, replace with the actual expression
5621 we want to base our reduction around. */
5622 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == CONST_COND_REDUCTION)
5624 orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
5625 gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
5627 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5628 == INTEGER_INDUC_COND_REDUCTION)
5629 orig_code = MAX_EXPR;
5632 if (nested_cycle)
5634 def_bb = gimple_bb (reduc_def_stmt);
5635 def_stmt_loop = def_bb->loop_father;
5636 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5637 loop_preheader_edge (def_stmt_loop));
5638 if (TREE_CODE (def_arg) == SSA_NAME
5639 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5640 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5641 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5642 && vinfo_for_stmt (def_arg_stmt)
5643 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5644 == vect_double_reduction_def)
5645 double_reduc = true;
5648 epilog_reduc_code = ERROR_MARK;
5650 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != COND_REDUCTION)
5652 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5654 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5655 optab_default);
5656 if (!reduc_optab)
5658 if (dump_enabled_p ())
5659 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5660 "no optab for reduction.\n");
5662 epilog_reduc_code = ERROR_MARK;
5664 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5666 if (dump_enabled_p ())
5667 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5668 "reduc op not supported by target.\n");
5670 epilog_reduc_code = ERROR_MARK;
5673 /* When epilog_reduc_code is ERROR_MARK then a reduction will be
5674 generated in the epilog using multiple expressions. This does not
5675 work for condition reductions. */
5676 if (epilog_reduc_code == ERROR_MARK
5677 && (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5678 == INTEGER_INDUC_COND_REDUCTION
5679 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5680 == CONST_COND_REDUCTION))
5682 if (dump_enabled_p ())
5683 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5684 "no reduc code for scalar code.\n");
5685 return false;
5688 else
5690 if (!nested_cycle || double_reduc)
5692 if (dump_enabled_p ())
5693 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5694 "no reduc code for scalar code.\n");
5696 return false;
5700 else
5702 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
5703 cr_index_scalar_type = make_unsigned_type (scalar_precision);
5704 cr_index_vector_type = build_vector_type
5705 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
5707 epilog_reduc_code = REDUC_MAX_EXPR;
5708 optab = optab_for_tree_code (REDUC_MAX_EXPR, cr_index_vector_type,
5709 optab_default);
5710 if (optab_handler (optab, TYPE_MODE (cr_index_vector_type))
5711 == CODE_FOR_nothing)
5713 if (dump_enabled_p ())
5714 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5715 "reduc max op not supported by target.\n");
5716 return false;
5720 if ((double_reduc
5721 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != TREE_CODE_REDUCTION)
5722 && ncopies > 1)
5724 if (dump_enabled_p ())
5725 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5726 "multiple types in double reduction or condition "
5727 "reduction.\n");
5728 return false;
5731 /* In case of widenning multiplication by a constant, we update the type
5732 of the constant to be the type of the other operand. We check that the
5733 constant fits the type in the pattern recognition pass. */
5734 if (code == DOT_PROD_EXPR
5735 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5737 if (TREE_CODE (ops[0]) == INTEGER_CST)
5738 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5739 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5740 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5741 else
5743 if (dump_enabled_p ())
5744 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5745 "invalid types in dot-prod\n");
5747 return false;
5751 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
5753 widest_int ni;
5755 if (! max_loop_iterations (loop, &ni))
5757 if (dump_enabled_p ())
5758 dump_printf_loc (MSG_NOTE, vect_location,
5759 "loop count not known, cannot create cond "
5760 "reduction.\n");
5761 return false;
5763 /* Convert backedges to iterations. */
5764 ni += 1;
5766 /* The additional index will be the same type as the condition. Check
5767 that the loop can fit into this less one (because we'll use up the
5768 zero slot for when there are no matches). */
5769 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
5770 if (wi::geu_p (ni, wi::to_widest (max_index)))
5772 if (dump_enabled_p ())
5773 dump_printf_loc (MSG_NOTE, vect_location,
5774 "loop size is greater than data size.\n");
5775 return false;
5779 if (!vec_stmt) /* transformation not required. */
5781 if (first_p
5782 && !vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies,
5783 reduc_index))
5784 return false;
5785 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5786 return true;
5789 /* Transform. */
5791 if (dump_enabled_p ())
5792 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5794 /* FORNOW: Multiple types are not supported for condition. */
5795 if (code == COND_EXPR)
5796 gcc_assert (ncopies == 1);
5798 /* Create the destination vector */
5799 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5801 /* In case the vectorization factor (VF) is bigger than the number
5802 of elements that we can fit in a vectype (nunits), we have to generate
5803 more than one vector stmt - i.e - we need to "unroll" the
5804 vector stmt by a factor VF/nunits. For more details see documentation
5805 in vectorizable_operation. */
5807 /* If the reduction is used in an outer loop we need to generate
5808 VF intermediate results, like so (e.g. for ncopies=2):
5809 r0 = phi (init, r0)
5810 r1 = phi (init, r1)
5811 r0 = x0 + r0;
5812 r1 = x1 + r1;
5813 (i.e. we generate VF results in 2 registers).
5814 In this case we have a separate def-use cycle for each copy, and therefore
5815 for each copy we get the vector def for the reduction variable from the
5816 respective phi node created for this copy.
5818 Otherwise (the reduction is unused in the loop nest), we can combine
5819 together intermediate results, like so (e.g. for ncopies=2):
5820 r = phi (init, r)
5821 r = x0 + r;
5822 r = x1 + r;
5823 (i.e. we generate VF/2 results in a single register).
5824 In this case for each copy we get the vector def for the reduction variable
5825 from the vectorized reduction operation generated in the previous iteration.
5828 if (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
5830 single_defuse_cycle = true;
5831 epilog_copies = 1;
5833 else
5834 epilog_copies = ncopies;
5836 prev_stmt_info = NULL;
5837 prev_phi_info = NULL;
5838 if (slp_node)
5839 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5840 else
5842 vec_num = 1;
5843 vec_oprnds0.create (1);
5844 if (op_type == ternary_op)
5845 vec_oprnds1.create (1);
5848 phis.create (vec_num);
5849 vect_defs.create (vec_num);
5850 if (!slp_node)
5851 vect_defs.quick_push (NULL_TREE);
5853 for (j = 0; j < ncopies; j++)
5855 if (j == 0 || !single_defuse_cycle)
5857 for (i = 0; i < vec_num; i++)
5859 /* Create the reduction-phi that defines the reduction
5860 operand. */
5861 new_phi = create_phi_node (vec_dest, loop->header);
5862 set_vinfo_for_stmt (new_phi,
5863 new_stmt_vec_info (new_phi, loop_vinfo));
5864 if (j == 0 || slp_node)
5865 phis.quick_push (new_phi);
5869 if (code == COND_EXPR)
5871 gcc_assert (!slp_node);
5872 vectorizable_condition (stmt, gsi, vec_stmt,
5873 PHI_RESULT (phis[0]),
5874 reduc_index, NULL);
5875 /* Multiple types are not supported for condition. */
5876 break;
5879 /* Handle uses. */
5880 if (j == 0)
5882 if (slp_node)
5884 /* Get vec defs for all the operands except the reduction index,
5885 ensuring the ordering of the ops in the vector is kept. */
5886 auto_vec<tree, 3> slp_ops;
5887 auto_vec<vec<tree>, 3> vec_defs;
5889 slp_ops.quick_push (reduc_index == 0 ? NULL : ops[0]);
5890 slp_ops.quick_push (reduc_index == 1 ? NULL : ops[1]);
5891 if (op_type == ternary_op)
5892 slp_ops.quick_push (reduc_index == 2 ? NULL : ops[2]);
5894 vect_get_slp_defs (slp_ops, slp_node, &vec_defs, -1);
5896 vec_oprnds0.safe_splice (vec_defs[reduc_index == 0 ? 1 : 0]);
5897 vec_defs[reduc_index == 0 ? 1 : 0].release ();
5898 if (op_type == ternary_op)
5900 vec_oprnds1.safe_splice (vec_defs[reduc_index == 2 ? 1 : 2]);
5901 vec_defs[reduc_index == 2 ? 1 : 2].release ();
5904 else
5906 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5907 stmt);
5908 vec_oprnds0.quick_push (loop_vec_def0);
5909 if (op_type == ternary_op)
5911 op1 = reduc_index == 0 ? ops[2] : ops[1];
5912 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt);
5913 vec_oprnds1.quick_push (loop_vec_def1);
5917 else
5919 if (!slp_node)
5921 enum vect_def_type dt;
5922 gimple *dummy_stmt;
5924 vect_is_simple_use (ops[!reduc_index], loop_vinfo,
5925 &dummy_stmt, &dt);
5926 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5927 loop_vec_def0);
5928 vec_oprnds0[0] = loop_vec_def0;
5929 if (op_type == ternary_op)
5931 vect_is_simple_use (op1, loop_vinfo, &dummy_stmt, &dt);
5932 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5933 loop_vec_def1);
5934 vec_oprnds1[0] = loop_vec_def1;
5938 if (single_defuse_cycle)
5939 reduc_def = gimple_assign_lhs (new_stmt);
5941 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5944 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5946 if (slp_node)
5947 reduc_def = PHI_RESULT (phis[i]);
5948 else
5950 if (!single_defuse_cycle || j == 0)
5951 reduc_def = PHI_RESULT (new_phi);
5954 def1 = ((op_type == ternary_op)
5955 ? vec_oprnds1[i] : NULL);
5956 if (op_type == binary_op)
5958 if (reduc_index == 0)
5959 expr = build2 (code, vectype_out, reduc_def, def0);
5960 else
5961 expr = build2 (code, vectype_out, def0, reduc_def);
5963 else
5965 if (reduc_index == 0)
5966 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5967 else
5969 if (reduc_index == 1)
5970 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5971 else
5972 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5976 new_stmt = gimple_build_assign (vec_dest, expr);
5977 new_temp = make_ssa_name (vec_dest, new_stmt);
5978 gimple_assign_set_lhs (new_stmt, new_temp);
5979 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5981 if (slp_node)
5983 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5984 vect_defs.quick_push (new_temp);
5986 else
5987 vect_defs[0] = new_temp;
5990 if (slp_node)
5991 continue;
5993 if (j == 0)
5994 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5995 else
5996 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5998 prev_stmt_info = vinfo_for_stmt (new_stmt);
5999 prev_phi_info = vinfo_for_stmt (new_phi);
6002 tree indx_before_incr, indx_after_incr, cond_name = NULL;
6004 /* Finalize the reduction-phi (set its arguments) and create the
6005 epilog reduction code. */
6006 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6008 new_temp = gimple_assign_lhs (*vec_stmt);
6009 vect_defs[0] = new_temp;
6011 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
6012 which is updated with the current index of the loop for every match of
6013 the original loop's cond_expr (VEC_STMT). This results in a vector
6014 containing the last time the condition passed for that vector lane.
6015 The first match will be a 1 to allow 0 to be used for non-matching
6016 indexes. If there are no matches at all then the vector will be all
6017 zeroes. */
6018 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6020 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
6021 int k;
6023 gcc_assert (gimple_assign_rhs_code (*vec_stmt) == VEC_COND_EXPR);
6025 /* First we create a simple vector induction variable which starts
6026 with the values {1,2,3,...} (SERIES_VECT) and increments by the
6027 vector size (STEP). */
6029 /* Create a {1,2,3,...} vector. */
6030 tree *vtemp = XALLOCAVEC (tree, nunits_out);
6031 for (k = 0; k < nunits_out; ++k)
6032 vtemp[k] = build_int_cst (cr_index_scalar_type, k + 1);
6033 tree series_vect = build_vector (cr_index_vector_type, vtemp);
6035 /* Create a vector of the step value. */
6036 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
6037 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
6039 /* Create an induction variable. */
6040 gimple_stmt_iterator incr_gsi;
6041 bool insert_after;
6042 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
6043 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
6044 insert_after, &indx_before_incr, &indx_after_incr);
6046 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
6047 filled with zeros (VEC_ZERO). */
6049 /* Create a vector of 0s. */
6050 tree zero = build_zero_cst (cr_index_scalar_type);
6051 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
6053 /* Create a vector phi node. */
6054 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
6055 new_phi = create_phi_node (new_phi_tree, loop->header);
6056 set_vinfo_for_stmt (new_phi,
6057 new_stmt_vec_info (new_phi, loop_vinfo));
6058 add_phi_arg (new_phi, vec_zero, loop_preheader_edge (loop),
6059 UNKNOWN_LOCATION);
6061 /* Now take the condition from the loops original cond_expr
6062 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
6063 every match uses values from the induction variable
6064 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
6065 (NEW_PHI_TREE).
6066 Finally, we update the phi (NEW_PHI_TREE) to take the value of
6067 the new cond_expr (INDEX_COND_EXPR). */
6069 /* Duplicate the condition from vec_stmt. */
6070 tree ccompare = unshare_expr (gimple_assign_rhs1 (*vec_stmt));
6072 /* Create a conditional, where the condition is taken from vec_stmt
6073 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
6074 else is the phi (NEW_PHI_TREE). */
6075 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
6076 ccompare, indx_before_incr,
6077 new_phi_tree);
6078 cond_name = make_ssa_name (cr_index_vector_type);
6079 gimple *index_condition = gimple_build_assign (cond_name,
6080 index_cond_expr);
6081 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
6082 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
6083 loop_vinfo);
6084 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
6085 set_vinfo_for_stmt (index_condition, index_vec_info);
6087 /* Update the phi with the vec cond. */
6088 add_phi_arg (new_phi, cond_name, loop_latch_edge (loop),
6089 UNKNOWN_LOCATION);
6093 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
6094 epilog_reduc_code, phis, reduc_index,
6095 double_reduc, slp_node, cond_name);
6097 return true;
6100 /* Function vect_min_worthwhile_factor.
6102 For a loop where we could vectorize the operation indicated by CODE,
6103 return the minimum vectorization factor that makes it worthwhile
6104 to use generic vectors. */
6106 vect_min_worthwhile_factor (enum tree_code code)
6108 switch (code)
6110 case PLUS_EXPR:
6111 case MINUS_EXPR:
6112 case NEGATE_EXPR:
6113 return 4;
6115 case BIT_AND_EXPR:
6116 case BIT_IOR_EXPR:
6117 case BIT_XOR_EXPR:
6118 case BIT_NOT_EXPR:
6119 return 2;
6121 default:
6122 return INT_MAX;
6127 /* Function vectorizable_induction
6129 Check if PHI performs an induction computation that can be vectorized.
6130 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6131 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6132 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6134 bool
6135 vectorizable_induction (gimple *phi,
6136 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6137 gimple **vec_stmt, slp_tree slp_node)
6139 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6140 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6141 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6142 unsigned ncopies;
6143 bool nested_in_vect_loop = false;
6144 struct loop *iv_loop;
6145 tree vec_def;
6146 edge pe = loop_preheader_edge (loop);
6147 basic_block new_bb;
6148 tree new_vec, vec_init, vec_step, t;
6149 tree new_name;
6150 gimple *new_stmt;
6151 gphi *induction_phi;
6152 tree induc_def, vec_dest;
6153 tree init_expr, step_expr;
6154 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6155 unsigned i;
6156 tree expr;
6157 gimple_seq stmts;
6158 imm_use_iterator imm_iter;
6159 use_operand_p use_p;
6160 gimple *exit_phi;
6161 edge latch_e;
6162 tree loop_arg;
6163 gimple_stmt_iterator si;
6164 basic_block bb = gimple_bb (phi);
6166 if (gimple_code (phi) != GIMPLE_PHI)
6167 return false;
6169 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6170 return false;
6172 /* Make sure it was recognized as induction computation. */
6173 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
6174 return false;
6176 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6177 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
6179 if (slp_node)
6180 ncopies = 1;
6181 else
6182 ncopies = vf / nunits;
6183 gcc_assert (ncopies >= 1);
6185 /* FORNOW. These restrictions should be relaxed. */
6186 if (nested_in_vect_loop_p (loop, phi))
6188 imm_use_iterator imm_iter;
6189 use_operand_p use_p;
6190 gimple *exit_phi;
6191 edge latch_e;
6192 tree loop_arg;
6194 if (ncopies > 1)
6196 if (dump_enabled_p ())
6197 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6198 "multiple types in nested loop.\n");
6199 return false;
6202 /* FORNOW: outer loop induction with SLP not supported. */
6203 if (STMT_SLP_TYPE (stmt_info))
6204 return false;
6206 exit_phi = NULL;
6207 latch_e = loop_latch_edge (loop->inner);
6208 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6209 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6211 gimple *use_stmt = USE_STMT (use_p);
6212 if (is_gimple_debug (use_stmt))
6213 continue;
6215 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6217 exit_phi = use_stmt;
6218 break;
6221 if (exit_phi)
6223 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6224 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6225 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6227 if (dump_enabled_p ())
6228 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6229 "inner-loop induction only used outside "
6230 "of the outer vectorized loop.\n");
6231 return false;
6235 nested_in_vect_loop = true;
6236 iv_loop = loop->inner;
6238 else
6239 iv_loop = loop;
6240 gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
6242 if (!vec_stmt) /* transformation not required. */
6244 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6245 if (dump_enabled_p ())
6246 dump_printf_loc (MSG_NOTE, vect_location,
6247 "=== vectorizable_induction ===\n");
6248 vect_model_induction_cost (stmt_info, ncopies);
6249 return true;
6252 /* Transform. */
6254 /* Compute a vector variable, initialized with the first VF values of
6255 the induction variable. E.g., for an iv with IV_PHI='X' and
6256 evolution S, for a vector of 4 units, we want to compute:
6257 [X, X + S, X + 2*S, X + 3*S]. */
6259 if (dump_enabled_p ())
6260 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6262 latch_e = loop_latch_edge (iv_loop);
6263 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6265 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
6266 gcc_assert (step_expr != NULL_TREE);
6268 pe = loop_preheader_edge (iv_loop);
6269 init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
6270 loop_preheader_edge (iv_loop));
6272 /* Convert the step to the desired type. */
6273 stmts = NULL;
6274 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
6275 if (stmts)
6277 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6278 gcc_assert (!new_bb);
6281 /* Find the first insertion point in the BB. */
6282 si = gsi_after_labels (bb);
6284 /* For SLP induction we have to generate several IVs as for example
6285 with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
6286 [i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
6287 [VF*S, VF*S, VF*S, VF*S] for all. */
6288 if (slp_node)
6290 /* Convert the init to the desired type. */
6291 stmts = NULL;
6292 init_expr = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6293 if (stmts)
6295 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6296 gcc_assert (!new_bb);
6299 /* Generate [VF*S, VF*S, ... ]. */
6300 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6302 expr = build_int_cst (integer_type_node, vf);
6303 expr = fold_convert (TREE_TYPE (step_expr), expr);
6305 else
6306 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6307 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6308 expr, step_expr);
6309 if (! CONSTANT_CLASS_P (new_name))
6310 new_name = vect_init_vector (phi, new_name,
6311 TREE_TYPE (step_expr), NULL);
6312 new_vec = build_vector_from_val (vectype, new_name);
6313 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6315 /* Now generate the IVs. */
6316 unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6317 unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6318 unsigned elts = nunits * nvects;
6319 unsigned nivs = least_common_multiple (group_size, nunits) / nunits;
6320 gcc_assert (elts % group_size == 0);
6321 tree elt = init_expr;
6322 unsigned ivn;
6323 for (ivn = 0; ivn < nivs; ++ivn)
6325 tree *elts = XALLOCAVEC (tree, nunits);
6326 bool constant_p = true;
6327 for (unsigned eltn = 0; eltn < nunits; ++eltn)
6329 if (ivn*nunits + eltn >= group_size
6330 && (ivn*nunits + eltn) % group_size == 0)
6332 stmts = NULL;
6333 elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
6334 elt, step_expr);
6335 if (stmts)
6337 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6338 gcc_assert (!new_bb);
6341 if (! CONSTANT_CLASS_P (elt))
6342 constant_p = false;
6343 elts[eltn] = elt;
6345 if (constant_p)
6346 new_vec = build_vector (vectype, elts);
6347 else
6349 vec<constructor_elt, va_gc> *v;
6350 vec_alloc (v, nunits);
6351 for (i = 0; i < nunits; ++i)
6352 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
6353 new_vec = build_constructor (vectype, v);
6355 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6357 /* Create the induction-phi that defines the induction-operand. */
6358 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6359 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6360 set_vinfo_for_stmt (induction_phi,
6361 new_stmt_vec_info (induction_phi, loop_vinfo));
6362 induc_def = PHI_RESULT (induction_phi);
6364 /* Create the iv update inside the loop */
6365 vec_def = make_ssa_name (vec_dest);
6366 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6367 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6368 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6370 /* Set the arguments of the phi node: */
6371 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6372 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6373 UNKNOWN_LOCATION);
6375 SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
6378 /* Re-use IVs when we can. */
6379 if (ivn < nvects)
6381 unsigned vfp
6382 = least_common_multiple (group_size, nunits) / group_size;
6383 /* Generate [VF'*S, VF'*S, ... ]. */
6384 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6386 expr = build_int_cst (integer_type_node, vfp);
6387 expr = fold_convert (TREE_TYPE (step_expr), expr);
6389 else
6390 expr = build_int_cst (TREE_TYPE (step_expr), vfp);
6391 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6392 expr, step_expr);
6393 if (! CONSTANT_CLASS_P (new_name))
6394 new_name = vect_init_vector (phi, new_name,
6395 TREE_TYPE (step_expr), NULL);
6396 new_vec = build_vector_from_val (vectype, new_name);
6397 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6398 for (; ivn < nvects; ++ivn)
6400 gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
6401 tree def;
6402 if (gimple_code (iv) == GIMPLE_PHI)
6403 def = gimple_phi_result (iv);
6404 else
6405 def = gimple_assign_lhs (iv);
6406 new_stmt = gimple_build_assign (make_ssa_name (vectype),
6407 PLUS_EXPR,
6408 def, vec_step);
6409 if (gimple_code (iv) == GIMPLE_PHI)
6410 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6411 else
6413 gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
6414 gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
6416 set_vinfo_for_stmt (new_stmt,
6417 new_stmt_vec_info (new_stmt, loop_vinfo));
6418 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6422 return true;
6425 /* Create the vector that holds the initial_value of the induction. */
6426 if (nested_in_vect_loop)
6428 /* iv_loop is nested in the loop to be vectorized. init_expr had already
6429 been created during vectorization of previous stmts. We obtain it
6430 from the STMT_VINFO_VEC_STMT of the defining stmt. */
6431 vec_init = vect_get_vec_def_for_operand (init_expr, phi);
6432 /* If the initial value is not of proper type, convert it. */
6433 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
6435 new_stmt
6436 = gimple_build_assign (vect_get_new_ssa_name (vectype,
6437 vect_simple_var,
6438 "vec_iv_"),
6439 VIEW_CONVERT_EXPR,
6440 build1 (VIEW_CONVERT_EXPR, vectype,
6441 vec_init));
6442 vec_init = gimple_assign_lhs (new_stmt);
6443 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
6444 new_stmt);
6445 gcc_assert (!new_bb);
6446 set_vinfo_for_stmt (new_stmt,
6447 new_stmt_vec_info (new_stmt, loop_vinfo));
6450 else
6452 vec<constructor_elt, va_gc> *v;
6454 /* iv_loop is the loop to be vectorized. Create:
6455 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
6456 stmts = NULL;
6457 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6459 vec_alloc (v, nunits);
6460 bool constant_p = is_gimple_min_invariant (new_name);
6461 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6462 for (i = 1; i < nunits; i++)
6464 /* Create: new_name_i = new_name + step_expr */
6465 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
6466 new_name, step_expr);
6467 if (!is_gimple_min_invariant (new_name))
6468 constant_p = false;
6469 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6471 if (stmts)
6473 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6474 gcc_assert (!new_bb);
6477 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
6478 if (constant_p)
6479 new_vec = build_vector_from_ctor (vectype, v);
6480 else
6481 new_vec = build_constructor (vectype, v);
6482 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6486 /* Create the vector that holds the step of the induction. */
6487 if (nested_in_vect_loop)
6488 /* iv_loop is nested in the loop to be vectorized. Generate:
6489 vec_step = [S, S, S, S] */
6490 new_name = step_expr;
6491 else
6493 /* iv_loop is the loop to be vectorized. Generate:
6494 vec_step = [VF*S, VF*S, VF*S, VF*S] */
6495 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6497 expr = build_int_cst (integer_type_node, vf);
6498 expr = fold_convert (TREE_TYPE (step_expr), expr);
6500 else
6501 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6502 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6503 expr, step_expr);
6504 if (TREE_CODE (step_expr) == SSA_NAME)
6505 new_name = vect_init_vector (phi, new_name,
6506 TREE_TYPE (step_expr), NULL);
6509 t = unshare_expr (new_name);
6510 gcc_assert (CONSTANT_CLASS_P (new_name)
6511 || TREE_CODE (new_name) == SSA_NAME);
6512 new_vec = build_vector_from_val (vectype, t);
6513 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6516 /* Create the following def-use cycle:
6517 loop prolog:
6518 vec_init = ...
6519 vec_step = ...
6520 loop:
6521 vec_iv = PHI <vec_init, vec_loop>
6523 STMT
6525 vec_loop = vec_iv + vec_step; */
6527 /* Create the induction-phi that defines the induction-operand. */
6528 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6529 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6530 set_vinfo_for_stmt (induction_phi,
6531 new_stmt_vec_info (induction_phi, loop_vinfo));
6532 induc_def = PHI_RESULT (induction_phi);
6534 /* Create the iv update inside the loop */
6535 vec_def = make_ssa_name (vec_dest);
6536 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6537 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6538 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6540 /* Set the arguments of the phi node: */
6541 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6542 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6543 UNKNOWN_LOCATION);
6545 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
6547 /* In case that vectorization factor (VF) is bigger than the number
6548 of elements that we can fit in a vectype (nunits), we have to generate
6549 more than one vector stmt - i.e - we need to "unroll" the
6550 vector stmt by a factor VF/nunits. For more details see documentation
6551 in vectorizable_operation. */
6553 if (ncopies > 1)
6555 stmt_vec_info prev_stmt_vinfo;
6556 /* FORNOW. This restriction should be relaxed. */
6557 gcc_assert (!nested_in_vect_loop);
6559 /* Create the vector that holds the step of the induction. */
6560 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6562 expr = build_int_cst (integer_type_node, nunits);
6563 expr = fold_convert (TREE_TYPE (step_expr), expr);
6565 else
6566 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
6567 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6568 expr, step_expr);
6569 if (TREE_CODE (step_expr) == SSA_NAME)
6570 new_name = vect_init_vector (phi, new_name,
6571 TREE_TYPE (step_expr), NULL);
6572 t = unshare_expr (new_name);
6573 gcc_assert (CONSTANT_CLASS_P (new_name)
6574 || TREE_CODE (new_name) == SSA_NAME);
6575 new_vec = build_vector_from_val (vectype, t);
6576 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6578 vec_def = induc_def;
6579 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
6580 for (i = 1; i < ncopies; i++)
6582 /* vec_i = vec_prev + vec_step */
6583 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
6584 vec_def, vec_step);
6585 vec_def = make_ssa_name (vec_dest, new_stmt);
6586 gimple_assign_set_lhs (new_stmt, vec_def);
6588 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6589 set_vinfo_for_stmt (new_stmt,
6590 new_stmt_vec_info (new_stmt, loop_vinfo));
6591 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
6592 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
6596 if (nested_in_vect_loop)
6598 /* Find the loop-closed exit-phi of the induction, and record
6599 the final vector of induction results: */
6600 exit_phi = NULL;
6601 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6603 gimple *use_stmt = USE_STMT (use_p);
6604 if (is_gimple_debug (use_stmt))
6605 continue;
6607 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
6609 exit_phi = use_stmt;
6610 break;
6613 if (exit_phi)
6615 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
6616 /* FORNOW. Currently not supporting the case that an inner-loop induction
6617 is not used in the outer-loop (i.e. only outside the outer-loop). */
6618 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
6619 && !STMT_VINFO_LIVE_P (stmt_vinfo));
6621 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
6622 if (dump_enabled_p ())
6624 dump_printf_loc (MSG_NOTE, vect_location,
6625 "vector of inductions after inner-loop:");
6626 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
6632 if (dump_enabled_p ())
6634 dump_printf_loc (MSG_NOTE, vect_location,
6635 "transform induction: created def-use cycle: ");
6636 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
6637 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
6638 SSA_NAME_DEF_STMT (vec_def), 0);
6641 return true;
6644 /* Function vectorizable_live_operation.
6646 STMT computes a value that is used outside the loop. Check if
6647 it can be supported. */
6649 bool
6650 vectorizable_live_operation (gimple *stmt,
6651 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6652 slp_tree slp_node, int slp_index,
6653 gimple **vec_stmt)
6655 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6656 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6657 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6658 imm_use_iterator imm_iter;
6659 tree lhs, lhs_type, bitsize, vec_bitsize;
6660 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6661 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6662 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6663 gimple *use_stmt;
6664 auto_vec<tree> vec_oprnds;
6666 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
6668 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
6669 return false;
6671 /* FORNOW. CHECKME. */
6672 if (nested_in_vect_loop_p (loop, stmt))
6673 return false;
6675 /* If STMT is not relevant and it is a simple assignment and its inputs are
6676 invariant then it can remain in place, unvectorized. The original last
6677 scalar value that it computes will be used. */
6678 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6680 gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
6681 if (dump_enabled_p ())
6682 dump_printf_loc (MSG_NOTE, vect_location,
6683 "statement is simple and uses invariant. Leaving in "
6684 "place.\n");
6685 return true;
6688 if (!vec_stmt)
6689 /* No transformation required. */
6690 return true;
6692 /* If stmt has a related stmt, then use that for getting the lhs. */
6693 if (is_pattern_stmt_p (stmt_info))
6694 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
6696 lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
6697 : gimple_get_lhs (stmt);
6698 lhs_type = TREE_TYPE (lhs);
6700 bitsize = TYPE_SIZE (TREE_TYPE (vectype));
6701 vec_bitsize = TYPE_SIZE (vectype);
6703 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
6704 tree vec_lhs, bitstart;
6705 if (slp_node)
6707 gcc_assert (slp_index >= 0);
6709 int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6710 int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6712 /* Get the last occurrence of the scalar index from the concatenation of
6713 all the slp vectors. Calculate which slp vector it is and the index
6714 within. */
6715 int pos = (num_vec * nunits) - num_scalar + slp_index;
6716 int vec_entry = pos / nunits;
6717 int vec_index = pos % nunits;
6719 /* Get the correct slp vectorized stmt. */
6720 vec_lhs = gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[vec_entry]);
6722 /* Get entry to use. */
6723 bitstart = build_int_cst (unsigned_type_node, vec_index);
6724 bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
6726 else
6728 enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
6729 vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
6731 /* For multiple copies, get the last copy. */
6732 for (int i = 1; i < ncopies; ++i)
6733 vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
6734 vec_lhs);
6736 /* Get the last lane in the vector. */
6737 bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
6740 /* Create a new vectorized stmt for the uses of STMT and insert outside the
6741 loop. */
6742 gimple_seq stmts = NULL;
6743 tree bftype = TREE_TYPE (vectype);
6744 if (VECTOR_BOOLEAN_TYPE_P (vectype))
6745 bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
6746 tree new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
6747 new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree), &stmts,
6748 true, NULL_TREE);
6749 if (stmts)
6750 gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
6752 /* Replace use of lhs with newly computed result. If the use stmt is a
6753 single arg PHI, just replace all uses of PHI result. It's necessary
6754 because lcssa PHI defining lhs may be before newly inserted stmt. */
6755 use_operand_p use_p;
6756 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
6757 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
6758 && !is_gimple_debug (use_stmt))
6760 if (gimple_code (use_stmt) == GIMPLE_PHI
6761 && gimple_phi_num_args (use_stmt) == 1)
6763 replace_uses_by (gimple_phi_result (use_stmt), new_tree);
6765 else
6767 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
6768 SET_USE (use_p, new_tree);
6770 update_stmt (use_stmt);
6773 return true;
6776 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
6778 static void
6779 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
6781 ssa_op_iter op_iter;
6782 imm_use_iterator imm_iter;
6783 def_operand_p def_p;
6784 gimple *ustmt;
6786 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
6788 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
6790 basic_block bb;
6792 if (!is_gimple_debug (ustmt))
6793 continue;
6795 bb = gimple_bb (ustmt);
6797 if (!flow_bb_inside_loop_p (loop, bb))
6799 if (gimple_debug_bind_p (ustmt))
6801 if (dump_enabled_p ())
6802 dump_printf_loc (MSG_NOTE, vect_location,
6803 "killing debug use\n");
6805 gimple_debug_bind_reset_value (ustmt);
6806 update_stmt (ustmt);
6808 else
6809 gcc_unreachable ();
6815 /* Given loop represented by LOOP_VINFO, return true if computation of
6816 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
6817 otherwise. */
6819 static bool
6820 loop_niters_no_overflow (loop_vec_info loop_vinfo)
6822 /* Constant case. */
6823 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6825 tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
6826 tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
6828 gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
6829 gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
6830 if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
6831 return true;
6834 widest_int max;
6835 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6836 /* Check the upper bound of loop niters. */
6837 if (get_max_loop_iterations (loop, &max))
6839 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
6840 signop sgn = TYPE_SIGN (type);
6841 widest_int type_max = widest_int::from (wi::max_value (type), sgn);
6842 if (max < type_max)
6843 return true;
6845 return false;
6848 /* Scale profiling counters by estimation for LOOP which is vectorized
6849 by factor VF. */
6851 static void
6852 scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
6854 edge preheader = loop_preheader_edge (loop);
6855 /* Reduce loop iterations by the vectorization factor. */
6856 gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
6857 profile_count freq_h = loop->header->count, freq_e = preheader->count;
6859 /* Use frequency only if counts are zero. */
6860 if (!(freq_h > 0) && !(freq_e > 0))
6862 freq_h = profile_count::from_gcov_type (loop->header->frequency);
6863 freq_e = profile_count::from_gcov_type (EDGE_FREQUENCY (preheader));
6865 if (freq_h > 0)
6867 gcov_type scale;
6869 /* Avoid dropping loop body profile counter to 0 because of zero count
6870 in loop's preheader. */
6871 if (!(freq_e > profile_count::from_gcov_type (1)))
6872 freq_e = profile_count::from_gcov_type (1);
6873 /* This should not overflow. */
6874 scale = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
6875 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
6878 basic_block exit_bb = single_pred (loop->latch);
6879 edge exit_e = single_exit (loop);
6880 exit_e->count = loop_preheader_edge (loop)->count;
6881 exit_e->probability = REG_BR_PROB_BASE / (new_est_niter + 1);
6883 edge exit_l = single_pred_edge (loop->latch);
6884 int prob = exit_l->probability;
6885 exit_l->probability = REG_BR_PROB_BASE - exit_e->probability;
6886 exit_l->count = exit_bb->count - exit_e->count;
6887 if (prob > 0)
6888 scale_bbs_frequencies_int (&loop->latch, 1, exit_l->probability, prob);
6891 /* Function vect_transform_loop.
6893 The analysis phase has determined that the loop is vectorizable.
6894 Vectorize the loop - created vectorized stmts to replace the scalar
6895 stmts in the loop, and update the loop exit condition.
6896 Returns scalar epilogue loop if any. */
6898 struct loop *
6899 vect_transform_loop (loop_vec_info loop_vinfo)
6901 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6902 struct loop *epilogue = NULL;
6903 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
6904 int nbbs = loop->num_nodes;
6905 int i;
6906 tree niters_vector = NULL;
6907 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6908 bool grouped_store;
6909 bool slp_scheduled = false;
6910 gimple *stmt, *pattern_stmt;
6911 gimple_seq pattern_def_seq = NULL;
6912 gimple_stmt_iterator pattern_def_si = gsi_none ();
6913 bool transform_pattern_stmt = false;
6914 bool check_profitability = false;
6915 int th;
6917 if (dump_enabled_p ())
6918 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
6920 /* Use the more conservative vectorization threshold. If the number
6921 of iterations is constant assume the cost check has been performed
6922 by our caller. If the threshold makes all loops profitable that
6923 run at least the vectorization factor number of times checking
6924 is pointless, too. */
6925 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
6926 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
6927 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6929 if (dump_enabled_p ())
6930 dump_printf_loc (MSG_NOTE, vect_location,
6931 "Profitability threshold is %d loop iterations.\n",
6932 th);
6933 check_profitability = true;
6936 /* Make sure there exists a single-predecessor exit bb. Do this before
6937 versioning. */
6938 edge e = single_exit (loop);
6939 if (! single_pred_p (e->dest))
6941 split_loop_exit_edge (e);
6942 if (dump_enabled_p ())
6943 dump_printf (MSG_NOTE, "split exit edge\n");
6946 /* Version the loop first, if required, so the profitability check
6947 comes first. */
6949 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
6951 vect_loop_versioning (loop_vinfo, th, check_profitability);
6952 check_profitability = false;
6955 /* Make sure there exists a single-predecessor exit bb also on the
6956 scalar loop copy. Do this after versioning but before peeling
6957 so CFG structure is fine for both scalar and if-converted loop
6958 to make slpeel_duplicate_current_defs_from_edges face matched
6959 loop closed PHI nodes on the exit. */
6960 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
6962 e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
6963 if (! single_pred_p (e->dest))
6965 split_loop_exit_edge (e);
6966 if (dump_enabled_p ())
6967 dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
6971 tree niters = vect_build_loop_niters (loop_vinfo);
6972 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
6973 tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
6974 bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
6975 epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector, th,
6976 check_profitability, niters_no_overflow);
6977 if (niters_vector == NULL_TREE)
6979 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6980 niters_vector
6981 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
6982 LOOP_VINFO_INT_NITERS (loop_vinfo) / vf);
6983 else
6984 vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
6985 niters_no_overflow);
6988 /* 1) Make sure the loop header has exactly two entries
6989 2) Make sure we have a preheader basic block. */
6991 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
6993 split_edge (loop_preheader_edge (loop));
6995 /* FORNOW: the vectorizer supports only loops which body consist
6996 of one basic block (header + empty latch). When the vectorizer will
6997 support more involved loop forms, the order by which the BBs are
6998 traversed need to be reconsidered. */
7000 for (i = 0; i < nbbs; i++)
7002 basic_block bb = bbs[i];
7003 stmt_vec_info stmt_info;
7005 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7006 gsi_next (&si))
7008 gphi *phi = si.phi ();
7009 if (dump_enabled_p ())
7011 dump_printf_loc (MSG_NOTE, vect_location,
7012 "------>vectorizing phi: ");
7013 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
7015 stmt_info = vinfo_for_stmt (phi);
7016 if (!stmt_info)
7017 continue;
7019 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7020 vect_loop_kill_debug_uses (loop, phi);
7022 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7023 && !STMT_VINFO_LIVE_P (stmt_info))
7024 continue;
7026 if (STMT_VINFO_VECTYPE (stmt_info)
7027 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
7028 != (unsigned HOST_WIDE_INT) vf)
7029 && dump_enabled_p ())
7030 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7032 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
7033 && ! PURE_SLP_STMT (stmt_info))
7035 if (dump_enabled_p ())
7036 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
7037 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
7041 pattern_stmt = NULL;
7042 for (gimple_stmt_iterator si = gsi_start_bb (bb);
7043 !gsi_end_p (si) || transform_pattern_stmt;)
7045 bool is_store;
7047 if (transform_pattern_stmt)
7048 stmt = pattern_stmt;
7049 else
7051 stmt = gsi_stmt (si);
7052 /* During vectorization remove existing clobber stmts. */
7053 if (gimple_clobber_p (stmt))
7055 unlink_stmt_vdef (stmt);
7056 gsi_remove (&si, true);
7057 release_defs (stmt);
7058 continue;
7062 if (dump_enabled_p ())
7064 dump_printf_loc (MSG_NOTE, vect_location,
7065 "------>vectorizing statement: ");
7066 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7069 stmt_info = vinfo_for_stmt (stmt);
7071 /* vector stmts created in the outer-loop during vectorization of
7072 stmts in an inner-loop may not have a stmt_info, and do not
7073 need to be vectorized. */
7074 if (!stmt_info)
7076 gsi_next (&si);
7077 continue;
7080 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7081 vect_loop_kill_debug_uses (loop, stmt);
7083 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7084 && !STMT_VINFO_LIVE_P (stmt_info))
7086 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7087 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7088 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7089 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7091 stmt = pattern_stmt;
7092 stmt_info = vinfo_for_stmt (stmt);
7094 else
7096 gsi_next (&si);
7097 continue;
7100 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7101 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7102 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7103 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7104 transform_pattern_stmt = true;
7106 /* If pattern statement has def stmts, vectorize them too. */
7107 if (is_pattern_stmt_p (stmt_info))
7109 if (pattern_def_seq == NULL)
7111 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
7112 pattern_def_si = gsi_start (pattern_def_seq);
7114 else if (!gsi_end_p (pattern_def_si))
7115 gsi_next (&pattern_def_si);
7116 if (pattern_def_seq != NULL)
7118 gimple *pattern_def_stmt = NULL;
7119 stmt_vec_info pattern_def_stmt_info = NULL;
7121 while (!gsi_end_p (pattern_def_si))
7123 pattern_def_stmt = gsi_stmt (pattern_def_si);
7124 pattern_def_stmt_info
7125 = vinfo_for_stmt (pattern_def_stmt);
7126 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
7127 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
7128 break;
7129 gsi_next (&pattern_def_si);
7132 if (!gsi_end_p (pattern_def_si))
7134 if (dump_enabled_p ())
7136 dump_printf_loc (MSG_NOTE, vect_location,
7137 "==> vectorizing pattern def "
7138 "stmt: ");
7139 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7140 pattern_def_stmt, 0);
7143 stmt = pattern_def_stmt;
7144 stmt_info = pattern_def_stmt_info;
7146 else
7148 pattern_def_si = gsi_none ();
7149 transform_pattern_stmt = false;
7152 else
7153 transform_pattern_stmt = false;
7156 if (STMT_VINFO_VECTYPE (stmt_info))
7158 unsigned int nunits
7159 = (unsigned int)
7160 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
7161 if (!STMT_SLP_TYPE (stmt_info)
7162 && nunits != (unsigned int) vf
7163 && dump_enabled_p ())
7164 /* For SLP VF is set according to unrolling factor, and not
7165 to vector size, hence for SLP this print is not valid. */
7166 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7169 /* SLP. Schedule all the SLP instances when the first SLP stmt is
7170 reached. */
7171 if (STMT_SLP_TYPE (stmt_info))
7173 if (!slp_scheduled)
7175 slp_scheduled = true;
7177 if (dump_enabled_p ())
7178 dump_printf_loc (MSG_NOTE, vect_location,
7179 "=== scheduling SLP instances ===\n");
7181 vect_schedule_slp (loop_vinfo);
7184 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
7185 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
7187 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7189 pattern_def_seq = NULL;
7190 gsi_next (&si);
7192 continue;
7196 /* -------- vectorize statement ------------ */
7197 if (dump_enabled_p ())
7198 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
7200 grouped_store = false;
7201 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
7202 if (is_store)
7204 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
7206 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
7207 interleaving chain was completed - free all the stores in
7208 the chain. */
7209 gsi_next (&si);
7210 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
7212 else
7214 /* Free the attached stmt_vec_info and remove the stmt. */
7215 gimple *store = gsi_stmt (si);
7216 free_stmt_vec_info (store);
7217 unlink_stmt_vdef (store);
7218 gsi_remove (&si, true);
7219 release_defs (store);
7222 /* Stores can only appear at the end of pattern statements. */
7223 gcc_assert (!transform_pattern_stmt);
7224 pattern_def_seq = NULL;
7226 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7228 pattern_def_seq = NULL;
7229 gsi_next (&si);
7231 } /* stmts in BB */
7232 } /* BBs in loop */
7234 slpeel_make_loop_iterate_ntimes (loop, niters_vector);
7236 scale_profile_for_vect_loop (loop, vf);
7238 /* The minimum number of iterations performed by the epilogue. This
7239 is 1 when peeling for gaps because we always need a final scalar
7240 iteration. */
7241 int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
7242 /* +1 to convert latch counts to loop iteration counts,
7243 -min_epilogue_iters to remove iterations that cannot be performed
7244 by the vector code. */
7245 int bias = 1 - min_epilogue_iters;
7246 /* In these calculations the "- 1" converts loop iteration counts
7247 back to latch counts. */
7248 if (loop->any_upper_bound)
7249 loop->nb_iterations_upper_bound
7250 = wi::udiv_floor (loop->nb_iterations_upper_bound + bias, vf) - 1;
7251 if (loop->any_likely_upper_bound)
7252 loop->nb_iterations_likely_upper_bound
7253 = wi::udiv_floor (loop->nb_iterations_likely_upper_bound + bias, vf) - 1;
7254 if (loop->any_estimate)
7255 loop->nb_iterations_estimate
7256 = wi::udiv_floor (loop->nb_iterations_estimate + bias, vf) - 1;
7258 if (dump_enabled_p ())
7260 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7262 dump_printf_loc (MSG_NOTE, vect_location,
7263 "LOOP VECTORIZED\n");
7264 if (loop->inner)
7265 dump_printf_loc (MSG_NOTE, vect_location,
7266 "OUTER LOOP VECTORIZED\n");
7267 dump_printf (MSG_NOTE, "\n");
7269 else
7270 dump_printf_loc (MSG_NOTE, vect_location,
7271 "LOOP EPILOGUE VECTORIZED (VS=%d)\n",
7272 current_vector_size);
7275 /* Free SLP instances here because otherwise stmt reference counting
7276 won't work. */
7277 slp_instance instance;
7278 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
7279 vect_free_slp_instance (instance);
7280 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
7281 /* Clear-up safelen field since its value is invalid after vectorization
7282 since vectorized loop can have loop-carried dependencies. */
7283 loop->safelen = 0;
7285 /* Don't vectorize epilogue for epilogue. */
7286 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7287 epilogue = NULL;
7289 if (epilogue)
7291 unsigned int vector_sizes
7292 = targetm.vectorize.autovectorize_vector_sizes ();
7293 vector_sizes &= current_vector_size - 1;
7295 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
7296 epilogue = NULL;
7297 else if (!vector_sizes)
7298 epilogue = NULL;
7299 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
7300 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
7302 int smallest_vec_size = 1 << ctz_hwi (vector_sizes);
7303 int ratio = current_vector_size / smallest_vec_size;
7304 int eiters = LOOP_VINFO_INT_NITERS (loop_vinfo)
7305 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
7306 eiters = eiters % vf;
7308 epilogue->nb_iterations_upper_bound = eiters - 1;
7310 if (eiters < vf / ratio)
7311 epilogue = NULL;
7315 if (epilogue)
7317 epilogue->force_vectorize = loop->force_vectorize;
7318 epilogue->safelen = loop->safelen;
7319 epilogue->dont_vectorize = false;
7321 /* We may need to if-convert epilogue to vectorize it. */
7322 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7323 tree_if_conversion (epilogue);
7326 return epilogue;
7329 /* The code below is trying to perform simple optimization - revert
7330 if-conversion for masked stores, i.e. if the mask of a store is zero
7331 do not perform it and all stored value producers also if possible.
7332 For example,
7333 for (i=0; i<n; i++)
7334 if (c[i])
7336 p1[i] += 1;
7337 p2[i] = p3[i] +2;
7339 this transformation will produce the following semi-hammock:
7341 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
7343 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
7344 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
7345 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
7346 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
7347 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
7348 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
7352 void
7353 optimize_mask_stores (struct loop *loop)
7355 basic_block *bbs = get_loop_body (loop);
7356 unsigned nbbs = loop->num_nodes;
7357 unsigned i;
7358 basic_block bb;
7359 struct loop *bb_loop;
7360 gimple_stmt_iterator gsi;
7361 gimple *stmt;
7362 auto_vec<gimple *> worklist;
7364 vect_location = find_loop_location (loop);
7365 /* Pick up all masked stores in loop if any. */
7366 for (i = 0; i < nbbs; i++)
7368 bb = bbs[i];
7369 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7370 gsi_next (&gsi))
7372 stmt = gsi_stmt (gsi);
7373 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
7374 worklist.safe_push (stmt);
7378 free (bbs);
7379 if (worklist.is_empty ())
7380 return;
7382 /* Loop has masked stores. */
7383 while (!worklist.is_empty ())
7385 gimple *last, *last_store;
7386 edge e, efalse;
7387 tree mask;
7388 basic_block store_bb, join_bb;
7389 gimple_stmt_iterator gsi_to;
7390 tree vdef, new_vdef;
7391 gphi *phi;
7392 tree vectype;
7393 tree zero;
7395 last = worklist.pop ();
7396 mask = gimple_call_arg (last, 2);
7397 bb = gimple_bb (last);
7398 /* Create then_bb and if-then structure in CFG, then_bb belongs to
7399 the same loop as if_bb. It could be different to LOOP when two
7400 level loop-nest is vectorized and mask_store belongs to the inner
7401 one. */
7402 e = split_block (bb, last);
7403 bb_loop = bb->loop_father;
7404 gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
7405 join_bb = e->dest;
7406 store_bb = create_empty_bb (bb);
7407 add_bb_to_loop (store_bb, bb_loop);
7408 e->flags = EDGE_TRUE_VALUE;
7409 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7410 /* Put STORE_BB to likely part. */
7411 efalse->probability = PROB_UNLIKELY;
7412 store_bb->frequency = PROB_ALWAYS - EDGE_FREQUENCY (efalse);
7413 make_edge (store_bb, join_bb, EDGE_FALLTHRU);
7414 if (dom_info_available_p (CDI_DOMINATORS))
7415 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7416 if (dump_enabled_p ())
7417 dump_printf_loc (MSG_NOTE, vect_location,
7418 "Create new block %d to sink mask stores.",
7419 store_bb->index);
7420 /* Create vector comparison with boolean result. */
7421 vectype = TREE_TYPE (mask);
7422 zero = build_zero_cst (vectype);
7423 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7424 gsi = gsi_last_bb (bb);
7425 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7426 /* Create new PHI node for vdef of the last masked store:
7427 .MEM_2 = VDEF <.MEM_1>
7428 will be converted to
7429 .MEM.3 = VDEF <.MEM_1>
7430 and new PHI node will be created in join bb
7431 .MEM_2 = PHI <.MEM_1, .MEM_3>
7433 vdef = gimple_vdef (last);
7434 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7435 gimple_set_vdef (last, new_vdef);
7436 phi = create_phi_node (vdef, join_bb);
7437 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7439 /* Put all masked stores with the same mask to STORE_BB if possible. */
7440 while (true)
7442 gimple_stmt_iterator gsi_from;
7443 gimple *stmt1 = NULL;
7445 /* Move masked store to STORE_BB. */
7446 last_store = last;
7447 gsi = gsi_for_stmt (last);
7448 gsi_from = gsi;
7449 /* Shift GSI to the previous stmt for further traversal. */
7450 gsi_prev (&gsi);
7451 gsi_to = gsi_start_bb (store_bb);
7452 gsi_move_before (&gsi_from, &gsi_to);
7453 /* Setup GSI_TO to the non-empty block start. */
7454 gsi_to = gsi_start_bb (store_bb);
7455 if (dump_enabled_p ())
7457 dump_printf_loc (MSG_NOTE, vect_location,
7458 "Move stmt to created bb\n");
7459 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7461 /* Move all stored value producers if possible. */
7462 while (!gsi_end_p (gsi))
7464 tree lhs;
7465 imm_use_iterator imm_iter;
7466 use_operand_p use_p;
7467 bool res;
7469 /* Skip debug statements. */
7470 if (is_gimple_debug (gsi_stmt (gsi)))
7472 gsi_prev (&gsi);
7473 continue;
7475 stmt1 = gsi_stmt (gsi);
7476 /* Do not consider statements writing to memory or having
7477 volatile operand. */
7478 if (gimple_vdef (stmt1)
7479 || gimple_has_volatile_ops (stmt1))
7480 break;
7481 gsi_from = gsi;
7482 gsi_prev (&gsi);
7483 lhs = gimple_get_lhs (stmt1);
7484 if (!lhs)
7485 break;
7487 /* LHS of vectorized stmt must be SSA_NAME. */
7488 if (TREE_CODE (lhs) != SSA_NAME)
7489 break;
7491 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7493 /* Remove dead scalar statement. */
7494 if (has_zero_uses (lhs))
7496 gsi_remove (&gsi_from, true);
7497 continue;
7501 /* Check that LHS does not have uses outside of STORE_BB. */
7502 res = true;
7503 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7505 gimple *use_stmt;
7506 use_stmt = USE_STMT (use_p);
7507 if (is_gimple_debug (use_stmt))
7508 continue;
7509 if (gimple_bb (use_stmt) != store_bb)
7511 res = false;
7512 break;
7515 if (!res)
7516 break;
7518 if (gimple_vuse (stmt1)
7519 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7520 break;
7522 /* Can move STMT1 to STORE_BB. */
7523 if (dump_enabled_p ())
7525 dump_printf_loc (MSG_NOTE, vect_location,
7526 "Move stmt to created bb\n");
7527 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7529 gsi_move_before (&gsi_from, &gsi_to);
7530 /* Shift GSI_TO for further insertion. */
7531 gsi_prev (&gsi_to);
7533 /* Put other masked stores with the same mask to STORE_BB. */
7534 if (worklist.is_empty ()
7535 || gimple_call_arg (worklist.last (), 2) != mask
7536 || worklist.last () != stmt1)
7537 break;
7538 last = worklist.pop ();
7540 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);