1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
26 #include "coretypes.h"
33 #include "insn-config.h"
38 #include "langhooks.h"
42 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
43 unsigned HOST_WIDE_INT
,
44 unsigned HOST_WIDE_INT
, rtx
);
45 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
46 unsigned HOST_WIDE_INT
, rtx
);
47 static rtx
extract_fixed_bit_field (enum machine_mode
, rtx
,
48 unsigned HOST_WIDE_INT
,
49 unsigned HOST_WIDE_INT
,
50 unsigned HOST_WIDE_INT
, rtx
, int);
51 static rtx
mask_rtx (enum machine_mode
, int, int, int);
52 static rtx
lshift_value (enum machine_mode
, rtx
, int, int);
53 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
54 unsigned HOST_WIDE_INT
, int);
55 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, enum machine_mode
, rtx
);
56 static rtx
expand_smod_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
57 static rtx
expand_sdiv_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
67 static bool sdiv_pow2_cheap
[NUM_MACHINE_MODES
];
68 static bool smod_pow2_cheap
[NUM_MACHINE_MODES
];
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
82 /* Reduce conditional compilation elsewhere. */
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost
;
102 static int add_cost
[NUM_MACHINE_MODES
];
103 static int neg_cost
[NUM_MACHINE_MODES
];
104 static int shift_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
105 static int shiftadd_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
106 static int shiftsub_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
107 static int mul_cost
[NUM_MACHINE_MODES
];
108 static int sdiv_cost
[NUM_MACHINE_MODES
];
109 static int udiv_cost
[NUM_MACHINE_MODES
];
110 static int mul_widen_cost
[NUM_MACHINE_MODES
];
111 static int mul_highpart_cost
[NUM_MACHINE_MODES
];
118 struct rtx_def reg
; rtunion reg_fld
[2];
119 struct rtx_def plus
; rtunion plus_fld1
;
121 struct rtx_def mult
; rtunion mult_fld1
;
122 struct rtx_def sdiv
; rtunion sdiv_fld1
;
123 struct rtx_def udiv
; rtunion udiv_fld1
;
125 struct rtx_def sdiv_32
; rtunion sdiv_32_fld1
;
126 struct rtx_def smod_32
; rtunion smod_32_fld1
;
127 struct rtx_def wide_mult
; rtunion wide_mult_fld1
;
128 struct rtx_def wide_lshr
; rtunion wide_lshr_fld1
;
129 struct rtx_def wide_trunc
;
130 struct rtx_def shift
; rtunion shift_fld1
;
131 struct rtx_def shift_mult
; rtunion shift_mult_fld1
;
132 struct rtx_def shift_add
; rtunion shift_add_fld1
;
133 struct rtx_def shift_sub
; rtunion shift_sub_fld1
;
136 rtx pow2
[MAX_BITS_PER_WORD
];
137 rtx cint
[MAX_BITS_PER_WORD
];
139 enum machine_mode mode
, wider_mode
;
141 zero_cost
= rtx_cost (const0_rtx
, 0);
143 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
145 pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
146 cint
[m
] = GEN_INT (m
);
149 memset (&all
, 0, sizeof all
);
151 PUT_CODE (&all
.reg
, REG
);
152 /* Avoid using hard regs in ways which may be unsupported. */
153 SET_REGNO (&all
.reg
, LAST_VIRTUAL_REGISTER
+ 1);
155 PUT_CODE (&all
.plus
, PLUS
);
156 XEXP (&all
.plus
, 0) = &all
.reg
;
157 XEXP (&all
.plus
, 1) = &all
.reg
;
159 PUT_CODE (&all
.neg
, NEG
);
160 XEXP (&all
.neg
, 0) = &all
.reg
;
162 PUT_CODE (&all
.mult
, MULT
);
163 XEXP (&all
.mult
, 0) = &all
.reg
;
164 XEXP (&all
.mult
, 1) = &all
.reg
;
166 PUT_CODE (&all
.sdiv
, DIV
);
167 XEXP (&all
.sdiv
, 0) = &all
.reg
;
168 XEXP (&all
.sdiv
, 1) = &all
.reg
;
170 PUT_CODE (&all
.udiv
, UDIV
);
171 XEXP (&all
.udiv
, 0) = &all
.reg
;
172 XEXP (&all
.udiv
, 1) = &all
.reg
;
174 PUT_CODE (&all
.sdiv_32
, DIV
);
175 XEXP (&all
.sdiv_32
, 0) = &all
.reg
;
176 XEXP (&all
.sdiv_32
, 1) = 32 < MAX_BITS_PER_WORD
? cint
[32] : GEN_INT (32);
178 PUT_CODE (&all
.smod_32
, MOD
);
179 XEXP (&all
.smod_32
, 0) = &all
.reg
;
180 XEXP (&all
.smod_32
, 1) = XEXP (&all
.sdiv_32
, 1);
182 PUT_CODE (&all
.zext
, ZERO_EXTEND
);
183 XEXP (&all
.zext
, 0) = &all
.reg
;
185 PUT_CODE (&all
.wide_mult
, MULT
);
186 XEXP (&all
.wide_mult
, 0) = &all
.zext
;
187 XEXP (&all
.wide_mult
, 1) = &all
.zext
;
189 PUT_CODE (&all
.wide_lshr
, LSHIFTRT
);
190 XEXP (&all
.wide_lshr
, 0) = &all
.wide_mult
;
192 PUT_CODE (&all
.wide_trunc
, TRUNCATE
);
193 XEXP (&all
.wide_trunc
, 0) = &all
.wide_lshr
;
195 PUT_CODE (&all
.shift
, ASHIFT
);
196 XEXP (&all
.shift
, 0) = &all
.reg
;
198 PUT_CODE (&all
.shift_mult
, MULT
);
199 XEXP (&all
.shift_mult
, 0) = &all
.reg
;
201 PUT_CODE (&all
.shift_add
, PLUS
);
202 XEXP (&all
.shift_add
, 0) = &all
.shift_mult
;
203 XEXP (&all
.shift_add
, 1) = &all
.reg
;
205 PUT_CODE (&all
.shift_sub
, MINUS
);
206 XEXP (&all
.shift_sub
, 0) = &all
.shift_mult
;
207 XEXP (&all
.shift_sub
, 1) = &all
.reg
;
209 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
211 mode
= GET_MODE_WIDER_MODE (mode
))
213 PUT_MODE (&all
.reg
, mode
);
214 PUT_MODE (&all
.plus
, mode
);
215 PUT_MODE (&all
.neg
, mode
);
216 PUT_MODE (&all
.mult
, mode
);
217 PUT_MODE (&all
.sdiv
, mode
);
218 PUT_MODE (&all
.udiv
, mode
);
219 PUT_MODE (&all
.sdiv_32
, mode
);
220 PUT_MODE (&all
.smod_32
, mode
);
221 PUT_MODE (&all
.wide_trunc
, mode
);
222 PUT_MODE (&all
.shift
, mode
);
223 PUT_MODE (&all
.shift_mult
, mode
);
224 PUT_MODE (&all
.shift_add
, mode
);
225 PUT_MODE (&all
.shift_sub
, mode
);
227 add_cost
[mode
] = rtx_cost (&all
.plus
, SET
);
228 neg_cost
[mode
] = rtx_cost (&all
.neg
, SET
);
229 mul_cost
[mode
] = rtx_cost (&all
.mult
, SET
);
230 sdiv_cost
[mode
] = rtx_cost (&all
.sdiv
, SET
);
231 udiv_cost
[mode
] = rtx_cost (&all
.udiv
, SET
);
233 sdiv_pow2_cheap
[mode
] = (rtx_cost (&all
.sdiv_32
, SET
)
234 <= 2 * add_cost
[mode
]);
235 smod_pow2_cheap
[mode
] = (rtx_cost (&all
.smod_32
, SET
)
236 <= 4 * add_cost
[mode
]);
238 wider_mode
= GET_MODE_WIDER_MODE (mode
);
239 if (wider_mode
!= VOIDmode
)
241 PUT_MODE (&all
.zext
, wider_mode
);
242 PUT_MODE (&all
.wide_mult
, wider_mode
);
243 PUT_MODE (&all
.wide_lshr
, wider_mode
);
244 XEXP (&all
.wide_lshr
, 1) = GEN_INT (GET_MODE_BITSIZE (mode
));
246 mul_widen_cost
[wider_mode
] = rtx_cost (&all
.wide_mult
, SET
);
247 mul_highpart_cost
[mode
] = rtx_cost (&all
.wide_trunc
, SET
);
250 shift_cost
[mode
][0] = 0;
251 shiftadd_cost
[mode
][0] = shiftsub_cost
[mode
][0] = add_cost
[mode
];
253 n
= MIN (MAX_BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
254 for (m
= 1; m
< n
; m
++)
256 XEXP (&all
.shift
, 1) = cint
[m
];
257 XEXP (&all
.shift_mult
, 1) = pow2
[m
];
259 shift_cost
[mode
][m
] = rtx_cost (&all
.shift
, SET
);
260 shiftadd_cost
[mode
][m
] = rtx_cost (&all
.shift_add
, SET
);
261 shiftsub_cost
[mode
][m
] = rtx_cost (&all
.shift_sub
, SET
);
266 /* Return an rtx representing minus the value of X.
267 MODE is the intended mode of the result,
268 useful if X is a CONST_INT. */
271 negate_rtx (enum machine_mode mode
, rtx x
)
273 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
276 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
281 /* Report on the availability of insv/extv/extzv and the desired mode
282 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
283 is false; else the mode of the specified operand. If OPNO is -1,
284 all the caller cares about is whether the insn is available. */
286 mode_for_extraction (enum extraction_pattern pattern
, int opno
)
288 const struct insn_data
*data
;
295 data
= &insn_data
[CODE_FOR_insv
];
298 return MAX_MACHINE_MODE
;
303 data
= &insn_data
[CODE_FOR_extv
];
306 return MAX_MACHINE_MODE
;
311 data
= &insn_data
[CODE_FOR_extzv
];
314 return MAX_MACHINE_MODE
;
323 /* Everyone who uses this function used to follow it with
324 if (result == VOIDmode) result = word_mode; */
325 if (data
->operand
[opno
].mode
== VOIDmode
)
327 return data
->operand
[opno
].mode
;
330 /* Return true if X, of mode MODE, matches the predicate for operand
331 OPNO of instruction ICODE. Allow volatile memories, regardless of
332 the ambient volatile_ok setting. */
335 check_predicate_volatile_ok (enum insn_code icode
, int opno
,
336 rtx x
, enum machine_mode mode
)
338 bool save_volatile_ok
, result
;
340 save_volatile_ok
= volatile_ok
;
341 result
= insn_data
[(int) icode
].operand
[opno
].predicate (x
, mode
);
342 volatile_ok
= save_volatile_ok
;
346 /* A subroutine of store_bit_field, with the same arguments. Return true
347 if the operation could be implemented.
349 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
350 no other way of implementing the operation. If FALLBACK_P is false,
351 return false instead. */
354 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
355 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
356 rtx value
, bool fallback_p
)
359 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
360 unsigned HOST_WIDE_INT offset
, bitpos
;
365 enum machine_mode op_mode
= mode_for_extraction (EP_insv
, 3);
367 while (GET_CODE (op0
) == SUBREG
)
369 /* The following line once was done only if WORDS_BIG_ENDIAN,
370 but I think that is a mistake. WORDS_BIG_ENDIAN is
371 meaningful at a much higher level; when structures are copied
372 between memory and regs, the higher-numbered regs
373 always get higher addresses. */
374 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
375 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
379 /* Paradoxical subregs need special handling on big endian machines. */
380 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
382 int difference
= inner_mode_size
- outer_mode_size
;
384 if (WORDS_BIG_ENDIAN
)
385 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
386 if (BYTES_BIG_ENDIAN
)
387 byte_offset
+= difference
% UNITS_PER_WORD
;
390 byte_offset
= SUBREG_BYTE (op0
);
392 bitnum
+= byte_offset
* BITS_PER_UNIT
;
393 op0
= SUBREG_REG (op0
);
396 /* No action is needed if the target is a register and if the field
397 lies completely outside that register. This can occur if the source
398 code contains an out-of-bounds access to a small array. */
399 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
402 /* Use vec_set patterns for inserting parts of vectors whenever
404 if (VECTOR_MODE_P (GET_MODE (op0
))
406 && (optab_handler (vec_set_optab
, GET_MODE (op0
))->insn_code
408 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
409 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
410 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
412 enum machine_mode outermode
= GET_MODE (op0
);
413 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
414 int icode
= (int) optab_handler (vec_set_optab
, outermode
)->insn_code
;
415 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
416 rtx rtxpos
= GEN_INT (pos
);
420 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
421 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
422 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
426 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
427 src
= copy_to_mode_reg (mode1
, src
);
429 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
430 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
432 /* We could handle this, but we should always be called with a pseudo
433 for our targets and all insns should take them as outputs. */
434 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
435 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
436 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
437 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
448 /* If the target is a register, overwriting the entire object, or storing
449 a full-word or multi-word field can be done with just a SUBREG.
451 If the target is memory, storing any naturally aligned field can be
452 done with a simple store. For targets that support fast unaligned
453 memory, any naturally sized, unit aligned field can be done directly. */
455 offset
= bitnum
/ unit
;
456 bitpos
= bitnum
% unit
;
457 byte_offset
= (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
458 + (offset
* UNITS_PER_WORD
);
461 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
463 ? ((GET_MODE_SIZE (fieldmode
) >= UNITS_PER_WORD
464 || GET_MODE_SIZE (GET_MODE (op0
)) == GET_MODE_SIZE (fieldmode
))
465 && byte_offset
% GET_MODE_SIZE (fieldmode
) == 0)
466 : (! SLOW_UNALIGNED_ACCESS (fieldmode
, MEM_ALIGN (op0
))
467 || (offset
* BITS_PER_UNIT
% bitsize
== 0
468 && MEM_ALIGN (op0
) % GET_MODE_BITSIZE (fieldmode
) == 0))))
471 op0
= adjust_address (op0
, fieldmode
, offset
);
472 else if (GET_MODE (op0
) != fieldmode
)
473 op0
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
475 emit_move_insn (op0
, value
);
479 /* Make sure we are playing with integral modes. Pun with subregs
480 if we aren't. This must come after the entire register case above,
481 since that case is valid for any mode. The following cases are only
482 valid for integral modes. */
484 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
485 if (imode
!= GET_MODE (op0
))
488 op0
= adjust_address (op0
, imode
, 0);
491 gcc_assert (imode
!= BLKmode
);
492 op0
= gen_lowpart (imode
, op0
);
497 /* We may be accessing data outside the field, which means
498 we can alias adjacent data. */
501 op0
= shallow_copy_rtx (op0
);
502 set_mem_alias_set (op0
, 0);
503 set_mem_expr (op0
, 0);
506 /* If OP0 is a register, BITPOS must count within a word.
507 But as we have it, it counts within whatever size OP0 now has.
508 On a bigendian machine, these are not the same, so convert. */
511 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
512 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
514 /* Storing an lsb-aligned field in a register
515 can be done with a movestrict instruction. */
518 && (BYTES_BIG_ENDIAN
? bitpos
+ bitsize
== unit
: bitpos
== 0)
519 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
520 && (optab_handler (movstrict_optab
, fieldmode
)->insn_code
521 != CODE_FOR_nothing
))
523 int icode
= optab_handler (movstrict_optab
, fieldmode
)->insn_code
;
525 /* Get appropriate low part of the value being stored. */
526 if (GET_CODE (value
) == CONST_INT
|| REG_P (value
))
527 value
= gen_lowpart (fieldmode
, value
);
528 else if (!(GET_CODE (value
) == SYMBOL_REF
529 || GET_CODE (value
) == LABEL_REF
530 || GET_CODE (value
) == CONST
))
531 value
= convert_to_mode (fieldmode
, value
, 0);
533 if (! (*insn_data
[icode
].operand
[1].predicate
) (value
, fieldmode
))
534 value
= copy_to_mode_reg (fieldmode
, value
);
536 if (GET_CODE (op0
) == SUBREG
)
538 /* Else we've got some float mode source being extracted into
539 a different float mode destination -- this combination of
540 subregs results in Severe Tire Damage. */
541 gcc_assert (GET_MODE (SUBREG_REG (op0
)) == fieldmode
542 || GET_MODE_CLASS (fieldmode
) == MODE_INT
543 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
544 op0
= SUBREG_REG (op0
);
547 emit_insn (GEN_FCN (icode
)
548 (gen_rtx_SUBREG (fieldmode
, op0
,
549 (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
550 + (offset
* UNITS_PER_WORD
)),
556 /* Handle fields bigger than a word. */
558 if (bitsize
> BITS_PER_WORD
)
560 /* Here we transfer the words of the field
561 in the order least significant first.
562 This is because the most significant word is the one which may
564 However, only do that if the value is not BLKmode. */
566 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
567 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
571 /* This is the mode we must force value to, so that there will be enough
572 subwords to extract. Note that fieldmode will often (always?) be
573 VOIDmode, because that is what store_field uses to indicate that this
574 is a bit field, but passing VOIDmode to operand_subword_force
576 fieldmode
= GET_MODE (value
);
577 if (fieldmode
== VOIDmode
)
578 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
580 last
= get_last_insn ();
581 for (i
= 0; i
< nwords
; i
++)
583 /* If I is 0, use the low-order word in both field and target;
584 if I is 1, use the next to lowest word; and so on. */
585 unsigned int wordnum
= (backwards
? nwords
- i
- 1 : i
);
586 unsigned int bit_offset
= (backwards
587 ? MAX ((int) bitsize
- ((int) i
+ 1)
590 : (int) i
* BITS_PER_WORD
);
591 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
593 if (!store_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
594 bitsize
- i
* BITS_PER_WORD
),
595 bitnum
+ bit_offset
, word_mode
,
596 value_word
, fallback_p
))
598 delete_insns_since (last
);
605 /* From here on we can assume that the field to be stored in is
606 a full-word (whatever type that is), since it is shorter than a word. */
608 /* OFFSET is the number of words or bytes (UNIT says which)
609 from STR_RTX to the first word or byte containing part of the field. */
614 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
618 /* Since this is a destination (lvalue), we can't copy
619 it to a pseudo. We can remove a SUBREG that does not
620 change the size of the operand. Such a SUBREG may
621 have been added above. */
622 gcc_assert (GET_CODE (op0
) == SUBREG
623 && (GET_MODE_SIZE (GET_MODE (op0
))
624 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))));
625 op0
= SUBREG_REG (op0
);
627 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
628 op0
, (offset
* UNITS_PER_WORD
));
633 /* If VALUE has a floating-point or complex mode, access it as an
634 integer of the corresponding size. This can occur on a machine
635 with 64 bit registers that uses SFmode for float. It can also
636 occur for unaligned float or complex fields. */
638 if (GET_MODE (value
) != VOIDmode
639 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
640 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
642 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
643 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
646 /* Now OFFSET is nonzero only if OP0 is memory
647 and is therefore always measured in bytes. */
650 && GET_MODE (value
) != BLKmode
652 && GET_MODE_BITSIZE (op_mode
) >= bitsize
653 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
654 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (op_mode
)))
655 && insn_data
[CODE_FOR_insv
].operand
[1].predicate (GEN_INT (bitsize
),
657 && check_predicate_volatile_ok (CODE_FOR_insv
, 0, op0
, VOIDmode
))
659 int xbitpos
= bitpos
;
662 rtx last
= get_last_insn ();
665 /* Add OFFSET into OP0's address. */
667 xop0
= adjust_address (xop0
, byte_mode
, offset
);
669 /* If xop0 is a register, we need it in OP_MODE
670 to make it acceptable to the format of insv. */
671 if (GET_CODE (xop0
) == SUBREG
)
672 /* We can't just change the mode, because this might clobber op0,
673 and we will need the original value of op0 if insv fails. */
674 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
675 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
676 xop0
= gen_rtx_SUBREG (op_mode
, xop0
, 0);
678 /* On big-endian machines, we count bits from the most significant.
679 If the bit field insn does not, we must invert. */
681 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
682 xbitpos
= unit
- bitsize
- xbitpos
;
684 /* We have been counting XBITPOS within UNIT.
685 Count instead within the size of the register. */
686 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
687 xbitpos
+= GET_MODE_BITSIZE (op_mode
) - unit
;
689 unit
= GET_MODE_BITSIZE (op_mode
);
691 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
693 if (GET_MODE (value
) != op_mode
)
695 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
697 /* Optimization: Don't bother really extending VALUE
698 if it has all the bits we will actually use. However,
699 if we must narrow it, be sure we do it correctly. */
701 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (op_mode
))
705 tmp
= simplify_subreg (op_mode
, value1
, GET_MODE (value
), 0);
707 tmp
= simplify_gen_subreg (op_mode
,
708 force_reg (GET_MODE (value
),
710 GET_MODE (value
), 0);
714 value1
= gen_lowpart (op_mode
, value1
);
716 else if (GET_CODE (value
) == CONST_INT
)
717 value1
= gen_int_mode (INTVAL (value
), op_mode
);
719 /* Parse phase is supposed to make VALUE's data type
720 match that of the component reference, which is a type
721 at least as wide as the field; so VALUE should have
722 a mode that corresponds to that type. */
723 gcc_assert (CONSTANT_P (value
));
726 /* If this machine's insv insists on a register,
727 get VALUE1 into a register. */
728 if (! ((*insn_data
[(int) CODE_FOR_insv
].operand
[3].predicate
)
730 value1
= force_reg (op_mode
, value1
);
732 pat
= gen_insv (xop0
, GEN_INT (bitsize
), GEN_INT (xbitpos
), value1
);
738 delete_insns_since (last
);
741 /* If OP0 is a memory, try copying it to a register and seeing if a
742 cheap register alternative is available. */
743 if (HAVE_insv
&& MEM_P (op0
))
745 enum machine_mode bestmode
;
747 /* Get the mode to use for inserting into this field. If OP0 is
748 BLKmode, get the smallest mode consistent with the alignment. If
749 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
750 mode. Otherwise, use the smallest mode containing the field. */
752 if (GET_MODE (op0
) == BLKmode
753 || (op_mode
!= MAX_MACHINE_MODE
754 && GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (op_mode
)))
755 bestmode
= get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
),
756 (op_mode
== MAX_MACHINE_MODE
757 ? VOIDmode
: op_mode
),
758 MEM_VOLATILE_P (op0
));
760 bestmode
= GET_MODE (op0
);
762 if (bestmode
!= VOIDmode
763 && GET_MODE_SIZE (bestmode
) >= GET_MODE_SIZE (fieldmode
)
764 && !(SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
765 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
767 rtx last
, tempreg
, xop0
;
768 unsigned HOST_WIDE_INT xoffset
, xbitpos
;
770 last
= get_last_insn ();
772 /* Adjust address to point to the containing unit of
773 that mode. Compute the offset as a multiple of this unit,
774 counting in bytes. */
775 unit
= GET_MODE_BITSIZE (bestmode
);
776 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
777 xbitpos
= bitnum
% unit
;
778 xop0
= adjust_address (op0
, bestmode
, xoffset
);
780 /* Fetch that unit, store the bitfield in it, then store
782 tempreg
= copy_to_reg (xop0
);
783 if (store_bit_field_1 (tempreg
, bitsize
, xbitpos
,
784 fieldmode
, orig_value
, false))
786 emit_move_insn (xop0
, tempreg
);
789 delete_insns_since (last
);
796 store_fixed_bit_field (op0
, offset
, bitsize
, bitpos
, value
);
800 /* Generate code to store value from rtx VALUE
801 into a bit-field within structure STR_RTX
802 containing BITSIZE bits starting at bit BITNUM.
803 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
806 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
807 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
810 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
, fieldmode
, value
, true))
814 /* Use shifts and boolean operations to store VALUE
815 into a bit field of width BITSIZE
816 in a memory location specified by OP0 except offset by OFFSET bytes.
817 (OFFSET must be 0 if OP0 is a register.)
818 The field starts at position BITPOS within the byte.
819 (If OP0 is a register, it may be a full word or a narrower mode,
820 but BITPOS still counts within a full word,
821 which is significant on bigendian machines.) */
824 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT offset
,
825 unsigned HOST_WIDE_INT bitsize
,
826 unsigned HOST_WIDE_INT bitpos
, rtx value
)
828 enum machine_mode mode
;
829 unsigned int total_bits
= BITS_PER_WORD
;
834 /* There is a case not handled here:
835 a structure with a known alignment of just a halfword
836 and a field split across two aligned halfwords within the structure.
837 Or likewise a structure with a known alignment of just a byte
838 and a field split across two bytes.
839 Such cases are not supposed to be able to occur. */
841 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
843 gcc_assert (!offset
);
844 /* Special treatment for a bit field split across two registers. */
845 if (bitsize
+ bitpos
> BITS_PER_WORD
)
847 store_split_bit_field (op0
, bitsize
, bitpos
, value
);
853 /* Get the proper mode to use for this field. We want a mode that
854 includes the entire field. If such a mode would be larger than
855 a word, we won't be doing the extraction the normal way.
856 We don't want a mode bigger than the destination. */
858 mode
= GET_MODE (op0
);
859 if (GET_MODE_BITSIZE (mode
) == 0
860 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
862 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
863 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
865 if (mode
== VOIDmode
)
867 /* The only way this should occur is if the field spans word
869 store_split_bit_field (op0
, bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
874 total_bits
= GET_MODE_BITSIZE (mode
);
876 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
877 be in the range 0 to total_bits-1, and put any excess bytes in
879 if (bitpos
>= total_bits
)
881 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
882 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
886 /* Get ref to an aligned byte, halfword, or word containing the field.
887 Adjust BITPOS to be position within a word,
888 and OFFSET to be the offset of that word.
889 Then alter OP0 to refer to that word. */
890 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
891 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
892 op0
= adjust_address (op0
, mode
, offset
);
895 mode
= GET_MODE (op0
);
897 /* Now MODE is either some integral mode for a MEM as OP0,
898 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
899 The bit field is contained entirely within OP0.
900 BITPOS is the starting bit number within OP0.
901 (OP0's mode may actually be narrower than MODE.) */
903 if (BYTES_BIG_ENDIAN
)
904 /* BITPOS is the distance between our msb
905 and that of the containing datum.
906 Convert it to the distance from the lsb. */
907 bitpos
= total_bits
- bitsize
- bitpos
;
909 /* Now BITPOS is always the distance between our lsb
912 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
913 we must first convert its mode to MODE. */
915 if (GET_CODE (value
) == CONST_INT
)
917 HOST_WIDE_INT v
= INTVAL (value
);
919 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
920 v
&= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
924 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
925 && v
== ((HOST_WIDE_INT
) 1 << bitsize
) - 1)
926 || (bitsize
== HOST_BITS_PER_WIDE_INT
&& v
== -1))
929 value
= lshift_value (mode
, value
, bitpos
, bitsize
);
933 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
934 && bitpos
+ bitsize
!= GET_MODE_BITSIZE (mode
));
936 if (GET_MODE (value
) != mode
)
938 if ((REG_P (value
) || GET_CODE (value
) == SUBREG
)
939 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (value
)))
940 value
= gen_lowpart (mode
, value
);
942 value
= convert_to_mode (mode
, value
, 1);
946 value
= expand_binop (mode
, and_optab
, value
,
947 mask_rtx (mode
, 0, bitsize
, 0),
948 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
950 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
951 build_int_cst (NULL_TREE
, bitpos
), NULL_RTX
, 1);
954 /* Now clear the chosen bits in OP0,
955 except that if VALUE is -1 we need not bother. */
956 /* We keep the intermediates in registers to allow CSE to combine
957 consecutive bitfield assignments. */
959 temp
= force_reg (mode
, op0
);
963 temp
= expand_binop (mode
, and_optab
, temp
,
964 mask_rtx (mode
, bitpos
, bitsize
, 1),
965 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
966 temp
= force_reg (mode
, temp
);
969 /* Now logical-or VALUE into OP0, unless it is zero. */
973 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
974 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
975 temp
= force_reg (mode
, temp
);
979 emit_move_insn (op0
, temp
);
982 /* Store a bit field that is split across multiple accessible memory objects.
984 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
985 BITSIZE is the field width; BITPOS the position of its first bit
987 VALUE is the value to store.
989 This does not yet handle fields wider than BITS_PER_WORD. */
992 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
993 unsigned HOST_WIDE_INT bitpos
, rtx value
)
996 unsigned int bitsdone
= 0;
998 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1000 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1001 unit
= BITS_PER_WORD
;
1003 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1005 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1006 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1007 that VALUE might be a floating-point constant. */
1008 if (CONSTANT_P (value
) && GET_CODE (value
) != CONST_INT
)
1010 rtx word
= gen_lowpart_common (word_mode
, value
);
1012 if (word
&& (value
!= word
))
1015 value
= gen_lowpart_common (word_mode
,
1016 force_reg (GET_MODE (value
) != VOIDmode
1018 : word_mode
, value
));
1021 while (bitsdone
< bitsize
)
1023 unsigned HOST_WIDE_INT thissize
;
1025 unsigned HOST_WIDE_INT thispos
;
1026 unsigned HOST_WIDE_INT offset
;
1028 offset
= (bitpos
+ bitsdone
) / unit
;
1029 thispos
= (bitpos
+ bitsdone
) % unit
;
1031 /* THISSIZE must not overrun a word boundary. Otherwise,
1032 store_fixed_bit_field will call us again, and we will mutually
1034 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1035 thissize
= MIN (thissize
, unit
- thispos
);
1037 if (BYTES_BIG_ENDIAN
)
1041 /* We must do an endian conversion exactly the same way as it is
1042 done in extract_bit_field, so that the two calls to
1043 extract_fixed_bit_field will have comparable arguments. */
1044 if (!MEM_P (value
) || GET_MODE (value
) == BLKmode
)
1045 total_bits
= BITS_PER_WORD
;
1047 total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1049 /* Fetch successively less significant portions. */
1050 if (GET_CODE (value
) == CONST_INT
)
1051 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1052 >> (bitsize
- bitsdone
- thissize
))
1053 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1055 /* The args are chosen so that the last part includes the
1056 lsb. Give extract_bit_field the value it needs (with
1057 endianness compensation) to fetch the piece we want. */
1058 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1059 total_bits
- bitsize
+ bitsdone
,
1064 /* Fetch successively more significant portions. */
1065 if (GET_CODE (value
) == CONST_INT
)
1066 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1068 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1070 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1071 bitsdone
, NULL_RTX
, 1);
1074 /* If OP0 is a register, then handle OFFSET here.
1076 When handling multiword bitfields, extract_bit_field may pass
1077 down a word_mode SUBREG of a larger REG for a bitfield that actually
1078 crosses a word boundary. Thus, for a SUBREG, we must find
1079 the current word starting from the base register. */
1080 if (GET_CODE (op0
) == SUBREG
)
1082 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1083 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1084 GET_MODE (SUBREG_REG (op0
)));
1087 else if (REG_P (op0
))
1089 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1095 /* OFFSET is in UNITs, and UNIT is in bits.
1096 store_fixed_bit_field wants offset in bytes. */
1097 store_fixed_bit_field (word
, offset
* unit
/ BITS_PER_UNIT
, thissize
,
1099 bitsdone
+= thissize
;
1103 /* A subroutine of extract_bit_field_1 that converts return value X
1104 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1105 to extract_bit_field. */
1108 convert_extracted_bit_field (rtx x
, enum machine_mode mode
,
1109 enum machine_mode tmode
, bool unsignedp
)
1111 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1114 /* If the x mode is not a scalar integral, first convert to the
1115 integer mode of that size and then access it as a floating-point
1116 value via a SUBREG. */
1117 if (!SCALAR_INT_MODE_P (tmode
))
1119 enum machine_mode smode
;
1121 smode
= mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1122 x
= convert_to_mode (smode
, x
, unsignedp
);
1123 x
= force_reg (smode
, x
);
1124 return gen_lowpart (tmode
, x
);
1127 return convert_to_mode (tmode
, x
, unsignedp
);
1130 /* A subroutine of extract_bit_field, with the same arguments.
1131 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1132 if we can find no other means of implementing the operation.
1133 if FALLBACK_P is false, return NULL instead. */
1136 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1137 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1138 enum machine_mode mode
, enum machine_mode tmode
,
1142 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
1143 unsigned HOST_WIDE_INT offset
, bitpos
;
1145 enum machine_mode int_mode
;
1146 enum machine_mode ext_mode
;
1147 enum machine_mode mode1
;
1148 enum insn_code icode
;
1151 if (tmode
== VOIDmode
)
1154 while (GET_CODE (op0
) == SUBREG
)
1156 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1157 op0
= SUBREG_REG (op0
);
1160 /* If we have an out-of-bounds access to a register, just return an
1161 uninitialized register of the required mode. This can occur if the
1162 source code contains an out-of-bounds access to a small array. */
1163 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1164 return gen_reg_rtx (tmode
);
1167 && mode
== GET_MODE (op0
)
1169 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1171 /* We're trying to extract a full register from itself. */
1175 /* See if we can get a better vector mode before extracting. */
1176 if (VECTOR_MODE_P (GET_MODE (op0
))
1178 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1180 enum machine_mode new_mode
;
1181 int nunits
= GET_MODE_NUNITS (GET_MODE (op0
));
1183 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1184 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1185 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1186 new_mode
= MIN_MODE_VECTOR_FRACT
;
1187 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1188 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1189 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1190 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1191 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1192 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1194 new_mode
= MIN_MODE_VECTOR_INT
;
1196 for (; new_mode
!= VOIDmode
; new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1197 if (GET_MODE_NUNITS (new_mode
) == nunits
1198 && GET_MODE_INNER (new_mode
) == tmode
1199 && targetm
.vector_mode_supported_p (new_mode
))
1201 if (new_mode
!= VOIDmode
)
1202 op0
= gen_lowpart (new_mode
, op0
);
1205 /* Use vec_extract patterns for extracting parts of vectors whenever
1207 if (VECTOR_MODE_P (GET_MODE (op0
))
1209 && (optab_handler (vec_extract_optab
, GET_MODE (op0
))->insn_code
1210 != CODE_FOR_nothing
)
1211 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1212 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1214 enum machine_mode outermode
= GET_MODE (op0
);
1215 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
1216 int icode
= (int) optab_handler (vec_extract_optab
, outermode
)->insn_code
;
1217 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1218 rtx rtxpos
= GEN_INT (pos
);
1220 rtx dest
= NULL
, pat
, seq
;
1221 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
1222 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
1223 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
1225 if (innermode
== tmode
|| innermode
== mode
)
1229 dest
= gen_reg_rtx (innermode
);
1233 if (! (*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
))
1234 dest
= copy_to_mode_reg (mode0
, dest
);
1236 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
1237 src
= copy_to_mode_reg (mode1
, src
);
1239 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
1240 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
1242 /* We could handle this, but we should always be called with a pseudo
1243 for our targets and all insns should take them as outputs. */
1244 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
1245 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
1246 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
1248 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
1256 return gen_lowpart (tmode
, dest
);
1261 /* Make sure we are playing with integral modes. Pun with subregs
1264 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1265 if (imode
!= GET_MODE (op0
))
1268 op0
= adjust_address (op0
, imode
, 0);
1271 gcc_assert (imode
!= BLKmode
);
1272 op0
= gen_lowpart (imode
, op0
);
1274 /* If we got a SUBREG, force it into a register since we
1275 aren't going to be able to do another SUBREG on it. */
1276 if (GET_CODE (op0
) == SUBREG
)
1277 op0
= force_reg (imode
, op0
);
1282 /* We may be accessing data outside the field, which means
1283 we can alias adjacent data. */
1286 op0
= shallow_copy_rtx (op0
);
1287 set_mem_alias_set (op0
, 0);
1288 set_mem_expr (op0
, 0);
1291 /* Extraction of a full-word or multi-word value from a structure
1292 in a register or aligned memory can be done with just a SUBREG.
1293 A subword value in the least significant part of a register
1294 can also be extracted with a SUBREG. For this, we need the
1295 byte offset of the value in op0. */
1297 bitpos
= bitnum
% unit
;
1298 offset
= bitnum
/ unit
;
1299 byte_offset
= bitpos
/ BITS_PER_UNIT
+ offset
* UNITS_PER_WORD
;
1301 /* If OP0 is a register, BITPOS must count within a word.
1302 But as we have it, it counts within whatever size OP0 now has.
1303 On a bigendian machine, these are not the same, so convert. */
1304 if (BYTES_BIG_ENDIAN
1306 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
1307 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1309 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1310 If that's wrong, the solution is to test for it and set TARGET to 0
1313 /* Only scalar integer modes can be converted via subregs. There is an
1314 additional problem for FP modes here in that they can have a precision
1315 which is different from the size. mode_for_size uses precision, but
1316 we want a mode based on the size, so we must avoid calling it for FP
1318 mode1
= (SCALAR_INT_MODE_P (tmode
)
1319 ? mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0)
1322 if (((bitsize
>= BITS_PER_WORD
&& bitsize
== GET_MODE_BITSIZE (mode
)
1323 && bitpos
% BITS_PER_WORD
== 0)
1324 || (mode1
!= BLKmode
1325 /* ??? The big endian test here is wrong. This is correct
1326 if the value is in a register, and if mode_for_size is not
1327 the same mode as op0. This causes us to get unnecessarily
1328 inefficient code from the Thumb port when -mbig-endian. */
1329 && (BYTES_BIG_ENDIAN
1330 ? bitpos
+ bitsize
== BITS_PER_WORD
1333 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
1334 GET_MODE_BITSIZE (GET_MODE (op0
)))
1335 && GET_MODE_SIZE (mode1
) != 0
1336 && byte_offset
% GET_MODE_SIZE (mode1
) == 0)
1338 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
1339 || (offset
* BITS_PER_UNIT
% bitsize
== 0
1340 && MEM_ALIGN (op0
) % bitsize
== 0)))))
1342 if (mode1
!= GET_MODE (op0
))
1345 op0
= adjust_address (op0
, mode1
, offset
);
1348 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1351 goto no_subreg_mode_swap
;
1356 return convert_to_mode (tmode
, op0
, unsignedp
);
1359 no_subreg_mode_swap
:
1361 /* Handle fields bigger than a word. */
1363 if (bitsize
> BITS_PER_WORD
)
1365 /* Here we transfer the words of the field
1366 in the order least significant first.
1367 This is because the most significant word is the one which may
1368 be less than full. */
1370 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1373 if (target
== 0 || !REG_P (target
))
1374 target
= gen_reg_rtx (mode
);
1376 /* Indicate for flow that the entire target reg is being set. */
1377 emit_insn (gen_rtx_CLOBBER (VOIDmode
, target
));
1379 for (i
= 0; i
< nwords
; i
++)
1381 /* If I is 0, use the low-order word in both field and target;
1382 if I is 1, use the next to lowest word; and so on. */
1383 /* Word number in TARGET to use. */
1384 unsigned int wordnum
1386 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1388 /* Offset from start of field in OP0. */
1389 unsigned int bit_offset
= (WORDS_BIG_ENDIAN
1390 ? MAX (0, ((int) bitsize
- ((int) i
+ 1)
1391 * (int) BITS_PER_WORD
))
1392 : (int) i
* BITS_PER_WORD
);
1393 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1395 = extract_bit_field (op0
, MIN (BITS_PER_WORD
,
1396 bitsize
- i
* BITS_PER_WORD
),
1397 bitnum
+ bit_offset
, 1, target_part
, mode
,
1400 gcc_assert (target_part
);
1402 if (result_part
!= target_part
)
1403 emit_move_insn (target_part
, result_part
);
1408 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1409 need to be zero'd out. */
1410 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1412 unsigned int i
, total_words
;
1414 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1415 for (i
= nwords
; i
< total_words
; i
++)
1417 (operand_subword (target
,
1418 WORDS_BIG_ENDIAN
? total_words
- i
- 1 : i
,
1425 /* Signed bit field: sign-extend with two arithmetic shifts. */
1426 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1427 build_int_cst (NULL_TREE
,
1428 GET_MODE_BITSIZE (mode
) - bitsize
),
1430 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1431 build_int_cst (NULL_TREE
,
1432 GET_MODE_BITSIZE (mode
) - bitsize
),
1436 /* From here on we know the desired field is smaller than a word. */
1438 /* Check if there is a correspondingly-sized integer field, so we can
1439 safely extract it as one size of integer, if necessary; then
1440 truncate or extend to the size that is wanted; then use SUBREGs or
1441 convert_to_mode to get one of the modes we really wanted. */
1443 int_mode
= int_mode_for_mode (tmode
);
1444 if (int_mode
== BLKmode
)
1445 int_mode
= int_mode_for_mode (mode
);
1446 /* Should probably push op0 out to memory and then do a load. */
1447 gcc_assert (int_mode
!= BLKmode
);
1449 /* OFFSET is the number of words or bytes (UNIT says which)
1450 from STR_RTX to the first word or byte containing part of the field. */
1454 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1457 op0
= copy_to_reg (op0
);
1458 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
1459 op0
, (offset
* UNITS_PER_WORD
));
1464 /* Now OFFSET is nonzero only for memory operands. */
1465 ext_mode
= mode_for_extraction (unsignedp
? EP_extzv
: EP_extv
, 0);
1466 icode
= unsignedp
? CODE_FOR_extzv
: CODE_FOR_extv
;
1467 if (ext_mode
!= MAX_MACHINE_MODE
1469 && GET_MODE_BITSIZE (ext_mode
) >= bitsize
1470 /* If op0 is a register, we need it in EXT_MODE to make it
1471 acceptable to the format of ext(z)v. */
1472 && !(GET_CODE (op0
) == SUBREG
&& GET_MODE (op0
) != ext_mode
)
1473 && !((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1474 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (ext_mode
)))
1475 && check_predicate_volatile_ok (icode
, 1, op0
, GET_MODE (op0
)))
1477 unsigned HOST_WIDE_INT xbitpos
= bitpos
, xoffset
= offset
;
1478 rtx bitsize_rtx
, bitpos_rtx
;
1479 rtx last
= get_last_insn ();
1481 rtx xtarget
= target
;
1482 rtx xspec_target
= target
;
1483 rtx xspec_target_subreg
= 0;
1486 /* If op0 is a register, we need it in EXT_MODE to make it
1487 acceptable to the format of ext(z)v. */
1488 if (REG_P (xop0
) && GET_MODE (xop0
) != ext_mode
)
1489 xop0
= gen_rtx_SUBREG (ext_mode
, xop0
, 0);
1491 /* Get ref to first byte containing part of the field. */
1492 xop0
= adjust_address (xop0
, byte_mode
, xoffset
);
1494 /* On big-endian machines, we count bits from the most significant.
1495 If the bit field insn does not, we must invert. */
1496 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1497 xbitpos
= unit
- bitsize
- xbitpos
;
1499 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1500 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
1501 xbitpos
+= GET_MODE_BITSIZE (ext_mode
) - unit
;
1503 unit
= GET_MODE_BITSIZE (ext_mode
);
1506 xtarget
= xspec_target
= gen_reg_rtx (tmode
);
1508 if (GET_MODE (xtarget
) != ext_mode
)
1510 if (REG_P (xtarget
))
1512 xtarget
= gen_lowpart (ext_mode
, xtarget
);
1513 if (GET_MODE_SIZE (ext_mode
)
1514 > GET_MODE_SIZE (GET_MODE (xspec_target
)))
1515 xspec_target_subreg
= xtarget
;
1518 xtarget
= gen_reg_rtx (ext_mode
);
1521 /* If this machine's ext(z)v insists on a register target,
1522 make sure we have one. */
1523 if (!insn_data
[(int) icode
].operand
[0].predicate (xtarget
, ext_mode
))
1524 xtarget
= gen_reg_rtx (ext_mode
);
1526 bitsize_rtx
= GEN_INT (bitsize
);
1527 bitpos_rtx
= GEN_INT (xbitpos
);
1530 ? gen_extzv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
)
1531 : gen_extv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
));
1535 if (xtarget
== xspec_target
)
1537 if (xtarget
== xspec_target_subreg
)
1538 return xspec_target
;
1539 return convert_extracted_bit_field (xtarget
, mode
, tmode
, unsignedp
);
1541 delete_insns_since (last
);
1544 /* If OP0 is a memory, try copying it to a register and seeing if a
1545 cheap register alternative is available. */
1546 if (ext_mode
!= MAX_MACHINE_MODE
&& MEM_P (op0
))
1548 enum machine_mode bestmode
;
1550 /* Get the mode to use for inserting into this field. If
1551 OP0 is BLKmode, get the smallest mode consistent with the
1552 alignment. If OP0 is a non-BLKmode object that is no
1553 wider than EXT_MODE, use its mode. Otherwise, use the
1554 smallest mode containing the field. */
1556 if (GET_MODE (op0
) == BLKmode
1557 || (ext_mode
!= MAX_MACHINE_MODE
1558 && GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (ext_mode
)))
1559 bestmode
= get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
),
1560 (ext_mode
== MAX_MACHINE_MODE
1561 ? VOIDmode
: ext_mode
),
1562 MEM_VOLATILE_P (op0
));
1564 bestmode
= GET_MODE (op0
);
1566 if (bestmode
!= VOIDmode
1567 && !(SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
1568 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
1570 unsigned HOST_WIDE_INT xoffset
, xbitpos
;
1572 /* Compute the offset as a multiple of this unit,
1573 counting in bytes. */
1574 unit
= GET_MODE_BITSIZE (bestmode
);
1575 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
1576 xbitpos
= bitnum
% unit
;
1578 /* Make sure the register is big enough for the whole field. */
1579 if (xoffset
* BITS_PER_UNIT
+ unit
1580 >= offset
* BITS_PER_UNIT
+ bitsize
)
1582 rtx last
, result
, xop0
;
1584 last
= get_last_insn ();
1586 /* Fetch it to a register in that size. */
1587 xop0
= adjust_address (op0
, bestmode
, xoffset
);
1588 xop0
= force_reg (bestmode
, xop0
);
1589 result
= extract_bit_field_1 (xop0
, bitsize
, xbitpos
,
1591 mode
, tmode
, false);
1595 delete_insns_since (last
);
1603 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1604 bitpos
, target
, unsignedp
);
1605 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1608 /* Generate code to extract a byte-field from STR_RTX
1609 containing BITSIZE bits, starting at BITNUM,
1610 and put it in TARGET if possible (if TARGET is nonzero).
1611 Regardless of TARGET, we return the rtx for where the value is placed.
1613 STR_RTX is the structure containing the byte (a REG or MEM).
1614 UNSIGNEDP is nonzero if this is an unsigned bit field.
1615 MODE is the natural mode of the field value once extracted.
1616 TMODE is the mode the caller would like the value to have;
1617 but the value may be returned with type MODE instead.
1619 If a TARGET is specified and we can store in it at no extra cost,
1620 we do so, and return TARGET.
1621 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1622 if they are equally easy. */
1625 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1626 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1627 enum machine_mode mode
, enum machine_mode tmode
)
1629 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1630 target
, mode
, tmode
, true);
1633 /* Extract a bit field using shifts and boolean operations
1634 Returns an rtx to represent the value.
1635 OP0 addresses a register (word) or memory (byte).
1636 BITPOS says which bit within the word or byte the bit field starts in.
1637 OFFSET says how many bytes farther the bit field starts;
1638 it is 0 if OP0 is a register.
1639 BITSIZE says how many bits long the bit field is.
1640 (If OP0 is a register, it may be narrower than a full word,
1641 but BITPOS still counts within a full word,
1642 which is significant on bigendian machines.)
1644 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1645 If TARGET is nonzero, attempts to store the value there
1646 and return TARGET, but this is not guaranteed.
1647 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1650 extract_fixed_bit_field (enum machine_mode tmode
, rtx op0
,
1651 unsigned HOST_WIDE_INT offset
,
1652 unsigned HOST_WIDE_INT bitsize
,
1653 unsigned HOST_WIDE_INT bitpos
, rtx target
,
1656 unsigned int total_bits
= BITS_PER_WORD
;
1657 enum machine_mode mode
;
1659 if (GET_CODE (op0
) == SUBREG
|| REG_P (op0
))
1661 /* Special treatment for a bit field split across two registers. */
1662 if (bitsize
+ bitpos
> BITS_PER_WORD
)
1663 return extract_split_bit_field (op0
, bitsize
, bitpos
, unsignedp
);
1667 /* Get the proper mode to use for this field. We want a mode that
1668 includes the entire field. If such a mode would be larger than
1669 a word, we won't be doing the extraction the normal way. */
1671 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
1672 MEM_ALIGN (op0
), word_mode
, MEM_VOLATILE_P (op0
));
1674 if (mode
== VOIDmode
)
1675 /* The only way this should occur is if the field spans word
1677 return extract_split_bit_field (op0
, bitsize
,
1678 bitpos
+ offset
* BITS_PER_UNIT
,
1681 total_bits
= GET_MODE_BITSIZE (mode
);
1683 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1684 be in the range 0 to total_bits-1, and put any excess bytes in
1686 if (bitpos
>= total_bits
)
1688 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
1689 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
1693 /* Get ref to an aligned byte, halfword, or word containing the field.
1694 Adjust BITPOS to be position within a word,
1695 and OFFSET to be the offset of that word.
1696 Then alter OP0 to refer to that word. */
1697 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
1698 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
1699 op0
= adjust_address (op0
, mode
, offset
);
1702 mode
= GET_MODE (op0
);
1704 if (BYTES_BIG_ENDIAN
)
1705 /* BITPOS is the distance between our msb and that of OP0.
1706 Convert it to the distance from the lsb. */
1707 bitpos
= total_bits
- bitsize
- bitpos
;
1709 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1710 We have reduced the big-endian case to the little-endian case. */
1716 /* If the field does not already start at the lsb,
1717 shift it so it does. */
1718 tree amount
= build_int_cst (NULL_TREE
, bitpos
);
1719 /* Maybe propagate the target for the shift. */
1720 /* But not if we will return it--could confuse integrate.c. */
1721 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1722 if (tmode
!= mode
) subtarget
= 0;
1723 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1725 /* Convert the value to the desired mode. */
1727 op0
= convert_to_mode (tmode
, op0
, 1);
1729 /* Unless the msb of the field used to be the msb when we shifted,
1730 mask out the upper bits. */
1732 if (GET_MODE_BITSIZE (mode
) != bitpos
+ bitsize
)
1733 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1734 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1735 target
, 1, OPTAB_LIB_WIDEN
);
1739 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1740 then arithmetic-shift its lsb to the lsb of the word. */
1741 op0
= force_reg (mode
, op0
);
1745 /* Find the narrowest integer mode that contains the field. */
1747 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1748 mode
= GET_MODE_WIDER_MODE (mode
))
1749 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitpos
)
1751 op0
= convert_to_mode (mode
, op0
, 0);
1755 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitpos
))
1758 = build_int_cst (NULL_TREE
,
1759 GET_MODE_BITSIZE (mode
) - (bitsize
+ bitpos
));
1760 /* Maybe propagate the target for the shift. */
1761 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1762 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1765 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1766 build_int_cst (NULL_TREE
,
1767 GET_MODE_BITSIZE (mode
) - bitsize
),
1771 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1772 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1773 complement of that if COMPLEMENT. The mask is truncated if
1774 necessary to the width of mode MODE. The mask is zero-extended if
1775 BITSIZE+BITPOS is too small for MODE. */
1778 mask_rtx (enum machine_mode mode
, int bitpos
, int bitsize
, int complement
)
1780 HOST_WIDE_INT masklow
, maskhigh
;
1784 else if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1785 masklow
= (HOST_WIDE_INT
) -1 << bitpos
;
1789 if (bitpos
+ bitsize
< HOST_BITS_PER_WIDE_INT
)
1790 masklow
&= ((unsigned HOST_WIDE_INT
) -1
1791 >> (HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1793 if (bitpos
<= HOST_BITS_PER_WIDE_INT
)
1796 maskhigh
= (HOST_WIDE_INT
) -1 << (bitpos
- HOST_BITS_PER_WIDE_INT
);
1800 else if (bitpos
+ bitsize
> HOST_BITS_PER_WIDE_INT
)
1801 maskhigh
&= ((unsigned HOST_WIDE_INT
) -1
1802 >> (2 * HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1808 maskhigh
= ~maskhigh
;
1812 return immed_double_const (masklow
, maskhigh
, mode
);
1815 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1816 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1819 lshift_value (enum machine_mode mode
, rtx value
, int bitpos
, int bitsize
)
1821 unsigned HOST_WIDE_INT v
= INTVAL (value
);
1822 HOST_WIDE_INT low
, high
;
1824 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1825 v
&= ~((HOST_WIDE_INT
) -1 << bitsize
);
1827 if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1830 high
= (bitpos
> 0 ? (v
>> (HOST_BITS_PER_WIDE_INT
- bitpos
)) : 0);
1835 high
= v
<< (bitpos
- HOST_BITS_PER_WIDE_INT
);
1838 return immed_double_const (low
, high
, mode
);
1841 /* Extract a bit field from a memory by forcing the alignment of the
1842 memory. This efficient only if the field spans at least 4 boundaries.
1845 BITSIZE is the field width; BITPOS is the position of the first bit.
1846 UNSIGNEDP is true if the result should be zero-extended. */
1849 extract_force_align_mem_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1850 unsigned HOST_WIDE_INT bitpos
,
1853 enum machine_mode mode
, dmode
;
1854 unsigned int m_bitsize
, m_size
;
1855 unsigned int sign_shift_up
, sign_shift_dn
;
1856 rtx base
, a1
, a2
, v1
, v2
, comb
, shift
, result
, start
;
1858 /* Choose a mode that will fit BITSIZE. */
1859 mode
= smallest_mode_for_size (bitsize
, MODE_INT
);
1860 m_size
= GET_MODE_SIZE (mode
);
1861 m_bitsize
= GET_MODE_BITSIZE (mode
);
1863 /* Choose a mode twice as wide. Fail if no such mode exists. */
1864 dmode
= mode_for_size (m_bitsize
* 2, MODE_INT
, false);
1865 if (dmode
== BLKmode
)
1868 do_pending_stack_adjust ();
1869 start
= get_last_insn ();
1871 /* At the end, we'll need an additional shift to deal with sign/zero
1872 extension. By default this will be a left+right shift of the
1873 appropriate size. But we may be able to eliminate one of them. */
1874 sign_shift_up
= sign_shift_dn
= m_bitsize
- bitsize
;
1876 if (STRICT_ALIGNMENT
)
1878 base
= plus_constant (XEXP (op0
, 0), bitpos
/ BITS_PER_UNIT
);
1879 bitpos
%= BITS_PER_UNIT
;
1881 /* We load two values to be concatenate. There's an edge condition
1882 that bears notice -- an aligned value at the end of a page can
1883 only load one value lest we segfault. So the two values we load
1884 are at "base & -size" and "(base + size - 1) & -size". If base
1885 is unaligned, the addresses will be aligned and sequential; if
1886 base is aligned, the addresses will both be equal to base. */
1888 a1
= expand_simple_binop (Pmode
, AND
, force_operand (base
, NULL
),
1889 GEN_INT (-(HOST_WIDE_INT
)m_size
),
1890 NULL
, true, OPTAB_LIB_WIDEN
);
1891 mark_reg_pointer (a1
, m_bitsize
);
1892 v1
= gen_rtx_MEM (mode
, a1
);
1893 set_mem_align (v1
, m_bitsize
);
1894 v1
= force_reg (mode
, validize_mem (v1
));
1896 a2
= plus_constant (base
, GET_MODE_SIZE (mode
) - 1);
1897 a2
= expand_simple_binop (Pmode
, AND
, force_operand (a2
, NULL
),
1898 GEN_INT (-(HOST_WIDE_INT
)m_size
),
1899 NULL
, true, OPTAB_LIB_WIDEN
);
1900 v2
= gen_rtx_MEM (mode
, a2
);
1901 set_mem_align (v2
, m_bitsize
);
1902 v2
= force_reg (mode
, validize_mem (v2
));
1904 /* Combine these two values into a double-word value. */
1905 if (m_bitsize
== BITS_PER_WORD
)
1907 comb
= gen_reg_rtx (dmode
);
1908 emit_insn (gen_rtx_CLOBBER (VOIDmode
, comb
));
1909 emit_move_insn (gen_rtx_SUBREG (mode
, comb
, 0), v1
);
1910 emit_move_insn (gen_rtx_SUBREG (mode
, comb
, m_size
), v2
);
1914 if (BYTES_BIG_ENDIAN
)
1915 comb
= v1
, v1
= v2
, v2
= comb
;
1916 v1
= convert_modes (dmode
, mode
, v1
, true);
1919 v2
= convert_modes (dmode
, mode
, v2
, true);
1920 v2
= expand_simple_binop (dmode
, ASHIFT
, v2
, GEN_INT (m_bitsize
),
1921 NULL
, true, OPTAB_LIB_WIDEN
);
1924 comb
= expand_simple_binop (dmode
, IOR
, v1
, v2
, NULL
,
1925 true, OPTAB_LIB_WIDEN
);
1930 shift
= expand_simple_binop (Pmode
, AND
, base
, GEN_INT (m_size
- 1),
1931 NULL
, true, OPTAB_LIB_WIDEN
);
1932 shift
= expand_mult (Pmode
, shift
, GEN_INT (BITS_PER_UNIT
), NULL
, 1);
1936 if (sign_shift_up
<= bitpos
)
1937 bitpos
-= sign_shift_up
, sign_shift_up
= 0;
1938 shift
= expand_simple_binop (Pmode
, PLUS
, shift
, GEN_INT (bitpos
),
1939 NULL
, true, OPTAB_LIB_WIDEN
);
1944 unsigned HOST_WIDE_INT offset
= bitpos
/ BITS_PER_UNIT
;
1945 bitpos
%= BITS_PER_UNIT
;
1947 /* When strict alignment is not required, we can just load directly
1948 from memory without masking. If the remaining BITPOS offset is
1949 small enough, we may be able to do all operations in MODE as
1950 opposed to DMODE. */
1951 if (bitpos
+ bitsize
<= m_bitsize
)
1953 comb
= adjust_address (op0
, dmode
, offset
);
1955 if (sign_shift_up
<= bitpos
)
1956 bitpos
-= sign_shift_up
, sign_shift_up
= 0;
1957 shift
= GEN_INT (bitpos
);
1960 /* Shift down the double-word such that the requested value is at bit 0. */
1961 if (shift
!= const0_rtx
)
1962 comb
= expand_simple_binop (dmode
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
1963 comb
, shift
, NULL
, unsignedp
, OPTAB_LIB_WIDEN
);
1967 /* If the field exactly matches MODE, then all we need to do is return the
1968 lowpart. Otherwise, shift to get the sign bits set properly. */
1969 result
= force_reg (mode
, gen_lowpart (mode
, comb
));
1972 result
= expand_simple_binop (mode
, ASHIFT
, result
,
1973 GEN_INT (sign_shift_up
),
1974 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
1976 result
= expand_simple_binop (mode
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
1977 result
, GEN_INT (sign_shift_dn
),
1978 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
1983 delete_insns_since (start
);
1987 /* Extract a bit field that is split across two words
1988 and return an RTX for the result.
1990 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1991 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1992 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1995 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1996 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
1999 unsigned int bitsdone
= 0;
2000 rtx result
= NULL_RTX
;
2003 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2005 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
2006 unit
= BITS_PER_WORD
;
2009 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
2010 if (0 && bitsize
/ unit
> 2)
2012 rtx tmp
= extract_force_align_mem_bit_field (op0
, bitsize
, bitpos
,
2019 while (bitsdone
< bitsize
)
2021 unsigned HOST_WIDE_INT thissize
;
2023 unsigned HOST_WIDE_INT thispos
;
2024 unsigned HOST_WIDE_INT offset
;
2026 offset
= (bitpos
+ bitsdone
) / unit
;
2027 thispos
= (bitpos
+ bitsdone
) % unit
;
2029 /* THISSIZE must not overrun a word boundary. Otherwise,
2030 extract_fixed_bit_field will call us again, and we will mutually
2032 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
2033 thissize
= MIN (thissize
, unit
- thispos
);
2035 /* If OP0 is a register, then handle OFFSET here.
2037 When handling multiword bitfields, extract_bit_field may pass
2038 down a word_mode SUBREG of a larger REG for a bitfield that actually
2039 crosses a word boundary. Thus, for a SUBREG, we must find
2040 the current word starting from the base register. */
2041 if (GET_CODE (op0
) == SUBREG
)
2043 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
2044 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
2045 GET_MODE (SUBREG_REG (op0
)));
2048 else if (REG_P (op0
))
2050 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
2056 /* Extract the parts in bit-counting order,
2057 whose meaning is determined by BYTES_PER_UNIT.
2058 OFFSET is in UNITs, and UNIT is in bits.
2059 extract_fixed_bit_field wants offset in bytes. */
2060 part
= extract_fixed_bit_field (word_mode
, word
,
2061 offset
* unit
/ BITS_PER_UNIT
,
2062 thissize
, thispos
, 0, 1);
2063 bitsdone
+= thissize
;
2065 /* Shift this part into place for the result. */
2066 if (BYTES_BIG_ENDIAN
)
2068 if (bitsize
!= bitsdone
)
2069 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2070 build_int_cst (NULL_TREE
, bitsize
- bitsdone
),
2075 if (bitsdone
!= thissize
)
2076 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2077 build_int_cst (NULL_TREE
,
2078 bitsdone
- thissize
), 0, 1);
2084 /* Combine the parts with bitwise or. This works
2085 because we extracted each part as an unsigned bit field. */
2086 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2092 /* Unsigned bit field: we are done. */
2095 /* Signed bit field: sign-extend with two arithmetic shifts. */
2096 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2097 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
2099 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2100 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
2104 /* Add INC into TARGET. */
2107 expand_inc (rtx target
, rtx inc
)
2109 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2111 target
, 0, OPTAB_LIB_WIDEN
);
2112 if (value
!= target
)
2113 emit_move_insn (target
, value
);
2116 /* Subtract DEC from TARGET. */
2119 expand_dec (rtx target
, rtx dec
)
2121 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2123 target
, 0, OPTAB_LIB_WIDEN
);
2124 if (value
!= target
)
2125 emit_move_insn (target
, value
);
2128 /* Output a shift instruction for expression code CODE,
2129 with SHIFTED being the rtx for the value to shift,
2130 and AMOUNT the tree for the amount to shift by.
2131 Store the result in the rtx TARGET, if that is convenient.
2132 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2133 Return the rtx for where the value is. */
2136 expand_shift (enum tree_code code
, enum machine_mode mode
, rtx shifted
,
2137 tree amount
, rtx target
, int unsignedp
)
2140 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2141 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2144 /* Previously detected shift-counts computed by NEGATE_EXPR
2145 and shifted in the other direction; but that does not work
2148 op1
= expand_normal (amount
);
2150 if (SHIFT_COUNT_TRUNCATED
)
2152 if (GET_CODE (op1
) == CONST_INT
2153 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2154 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)))
2155 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2156 % GET_MODE_BITSIZE (mode
));
2157 else if (GET_CODE (op1
) == SUBREG
2158 && subreg_lowpart_p (op1
))
2159 op1
= SUBREG_REG (op1
);
2162 if (op1
== const0_rtx
)
2165 /* Check whether its cheaper to implement a left shift by a constant
2166 bit count by a sequence of additions. */
2167 if (code
== LSHIFT_EXPR
2168 && GET_CODE (op1
) == CONST_INT
2170 && INTVAL (op1
) < GET_MODE_BITSIZE (mode
)
2171 && INTVAL (op1
) < MAX_BITS_PER_WORD
2172 && shift_cost
[mode
][INTVAL (op1
)] > INTVAL (op1
) * add_cost
[mode
]
2173 && shift_cost
[mode
][INTVAL (op1
)] != MAX_COST
)
2176 for (i
= 0; i
< INTVAL (op1
); i
++)
2178 temp
= force_reg (mode
, shifted
);
2179 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2180 unsignedp
, OPTAB_LIB_WIDEN
);
2185 for (try = 0; temp
== 0 && try < 3; try++)
2187 enum optab_methods methods
;
2190 methods
= OPTAB_DIRECT
;
2192 methods
= OPTAB_WIDEN
;
2194 methods
= OPTAB_LIB_WIDEN
;
2198 /* Widening does not work for rotation. */
2199 if (methods
== OPTAB_WIDEN
)
2201 else if (methods
== OPTAB_LIB_WIDEN
)
2203 /* If we have been unable to open-code this by a rotation,
2204 do it as the IOR of two shifts. I.e., to rotate A
2205 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2206 where C is the bitsize of A.
2208 It is theoretically possible that the target machine might
2209 not be able to perform either shift and hence we would
2210 be making two libcalls rather than just the one for the
2211 shift (similarly if IOR could not be done). We will allow
2212 this extremely unlikely lossage to avoid complicating the
2215 rtx subtarget
= target
== shifted
? 0 : target
;
2216 tree new_amount
, other_amount
;
2218 tree type
= TREE_TYPE (amount
);
2219 if (GET_MODE (op1
) != TYPE_MODE (type
)
2220 && GET_MODE (op1
) != VOIDmode
)
2221 op1
= convert_to_mode (TYPE_MODE (type
), op1
, 1);
2222 new_amount
= make_tree (type
, op1
);
2224 = fold_build2 (MINUS_EXPR
, type
,
2225 build_int_cst (type
, GET_MODE_BITSIZE (mode
)),
2228 shifted
= force_reg (mode
, shifted
);
2230 temp
= expand_shift (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2231 mode
, shifted
, new_amount
, 0, 1);
2232 temp1
= expand_shift (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2233 mode
, shifted
, other_amount
, subtarget
, 1);
2234 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2235 unsignedp
, methods
);
2238 temp
= expand_binop (mode
,
2239 left
? rotl_optab
: rotr_optab
,
2240 shifted
, op1
, target
, unsignedp
, methods
);
2243 temp
= expand_binop (mode
,
2244 left
? ashl_optab
: lshr_optab
,
2245 shifted
, op1
, target
, unsignedp
, methods
);
2247 /* Do arithmetic shifts.
2248 Also, if we are going to widen the operand, we can just as well
2249 use an arithmetic right-shift instead of a logical one. */
2250 if (temp
== 0 && ! rotate
2251 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2253 enum optab_methods methods1
= methods
;
2255 /* If trying to widen a log shift to an arithmetic shift,
2256 don't accept an arithmetic shift of the same size. */
2258 methods1
= OPTAB_MUST_WIDEN
;
2260 /* Arithmetic shift */
2262 temp
= expand_binop (mode
,
2263 left
? ashl_optab
: ashr_optab
,
2264 shifted
, op1
, target
, unsignedp
, methods1
);
2267 /* We used to try extzv here for logical right shifts, but that was
2268 only useful for one machine, the VAX, and caused poor code
2269 generation there for lshrdi3, so the code was deleted and a
2270 define_expand for lshrsi3 was added to vax.md. */
2290 /* This structure holds the "cost" of a multiply sequence. The
2291 "cost" field holds the total rtx_cost of every operator in the
2292 synthetic multiplication sequence, hence cost(a op b) is defined
2293 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2294 The "latency" field holds the minimum possible latency of the
2295 synthetic multiply, on a hypothetical infinitely parallel CPU.
2296 This is the critical path, or the maximum height, of the expression
2297 tree which is the sum of rtx_costs on the most expensive path from
2298 any leaf to the root. Hence latency(a op b) is defined as zero for
2299 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2302 short cost
; /* Total rtx_cost of the multiplication sequence. */
2303 short latency
; /* The latency of the multiplication sequence. */
2306 /* This macro is used to compare a pointer to a mult_cost against an
2307 single integer "rtx_cost" value. This is equivalent to the macro
2308 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2309 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2310 || ((X)->cost == (Y) && (X)->latency < (Y)))
2312 /* This macro is used to compare two pointers to mult_costs against
2313 each other. The macro returns true if X is cheaper than Y.
2314 Currently, the cheaper of two mult_costs is the one with the
2315 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2316 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2317 || ((X)->cost == (Y)->cost \
2318 && (X)->latency < (Y)->latency))
2320 /* This structure records a sequence of operations.
2321 `ops' is the number of operations recorded.
2322 `cost' is their total cost.
2323 The operations are stored in `op' and the corresponding
2324 logarithms of the integer coefficients in `log'.
2326 These are the operations:
2327 alg_zero total := 0;
2328 alg_m total := multiplicand;
2329 alg_shift total := total * coeff
2330 alg_add_t_m2 total := total + multiplicand * coeff;
2331 alg_sub_t_m2 total := total - multiplicand * coeff;
2332 alg_add_factor total := total * coeff + total;
2333 alg_sub_factor total := total * coeff - total;
2334 alg_add_t2_m total := total * coeff + multiplicand;
2335 alg_sub_t2_m total := total * coeff - multiplicand;
2337 The first operand must be either alg_zero or alg_m. */
2341 struct mult_cost cost
;
2343 /* The size of the OP and LOG fields are not directly related to the
2344 word size, but the worst-case algorithms will be if we have few
2345 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2346 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2347 in total wordsize operations. */
2348 enum alg_code op
[MAX_BITS_PER_WORD
];
2349 char log
[MAX_BITS_PER_WORD
];
2352 /* The entry for our multiplication cache/hash table. */
2353 struct alg_hash_entry
{
2354 /* The number we are multiplying by. */
2355 unsigned HOST_WIDE_INT t
;
2357 /* The mode in which we are multiplying something by T. */
2358 enum machine_mode mode
;
2360 /* The best multiplication algorithm for t. */
2363 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2364 Otherwise, the cost within which multiplication by T is
2366 struct mult_cost cost
;
2369 /* The number of cache/hash entries. */
2370 #if HOST_BITS_PER_WIDE_INT == 64
2371 #define NUM_ALG_HASH_ENTRIES 1031
2373 #define NUM_ALG_HASH_ENTRIES 307
2376 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2377 actually a hash table. If we have a collision, that the older
2378 entry is kicked out. */
2379 static struct alg_hash_entry alg_hash
[NUM_ALG_HASH_ENTRIES
];
2381 /* Indicates the type of fixup needed after a constant multiplication.
2382 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2383 the result should be negated, and ADD_VARIANT means that the
2384 multiplicand should be added to the result. */
2385 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2387 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2388 const struct mult_cost
*, enum machine_mode mode
);
2389 static bool choose_mult_variant (enum machine_mode
, HOST_WIDE_INT
,
2390 struct algorithm
*, enum mult_variant
*, int);
2391 static rtx
expand_mult_const (enum machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2392 const struct algorithm
*, enum mult_variant
);
2393 static unsigned HOST_WIDE_INT
choose_multiplier (unsigned HOST_WIDE_INT
, int,
2394 int, rtx
*, int *, int *);
2395 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2396 static rtx
extract_high_half (enum machine_mode
, rtx
);
2397 static rtx
expand_mult_highpart (enum machine_mode
, rtx
, rtx
, rtx
, int, int);
2398 static rtx
expand_mult_highpart_optab (enum machine_mode
, rtx
, rtx
, rtx
,
2400 /* Compute and return the best algorithm for multiplying by T.
2401 The algorithm must cost less than cost_limit
2402 If retval.cost >= COST_LIMIT, no algorithm was found and all
2403 other field of the returned struct are undefined.
2404 MODE is the machine mode of the multiplication. */
2407 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2408 const struct mult_cost
*cost_limit
, enum machine_mode mode
)
2411 struct algorithm
*alg_in
, *best_alg
;
2412 struct mult_cost best_cost
;
2413 struct mult_cost new_limit
;
2414 int op_cost
, op_latency
;
2415 unsigned HOST_WIDE_INT q
;
2416 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
2418 bool cache_hit
= false;
2419 enum alg_code cache_alg
= alg_zero
;
2421 /* Indicate that no algorithm is yet found. If no algorithm
2422 is found, this value will be returned and indicate failure. */
2423 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2424 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2426 if (cost_limit
->cost
< 0
2427 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2430 /* Restrict the bits of "t" to the multiplication's mode. */
2431 t
&= GET_MODE_MASK (mode
);
2433 /* t == 1 can be done in zero cost. */
2437 alg_out
->cost
.cost
= 0;
2438 alg_out
->cost
.latency
= 0;
2439 alg_out
->op
[0] = alg_m
;
2443 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2447 if (MULT_COST_LESS (cost_limit
, zero_cost
))
2452 alg_out
->cost
.cost
= zero_cost
;
2453 alg_out
->cost
.latency
= zero_cost
;
2454 alg_out
->op
[0] = alg_zero
;
2459 /* We'll be needing a couple extra algorithm structures now. */
2461 alg_in
= alloca (sizeof (struct algorithm
));
2462 best_alg
= alloca (sizeof (struct algorithm
));
2463 best_cost
= *cost_limit
;
2465 /* Compute the hash index. */
2466 hash_index
= (t
^ (unsigned int) mode
) % NUM_ALG_HASH_ENTRIES
;
2468 /* See if we already know what to do for T. */
2469 if (alg_hash
[hash_index
].t
== t
2470 && alg_hash
[hash_index
].mode
== mode
2471 && alg_hash
[hash_index
].alg
!= alg_unknown
)
2473 cache_alg
= alg_hash
[hash_index
].alg
;
2475 if (cache_alg
== alg_impossible
)
2477 /* The cache tells us that it's impossible to synthesize
2478 multiplication by T within alg_hash[hash_index].cost. */
2479 if (!CHEAPER_MULT_COST (&alg_hash
[hash_index
].cost
, cost_limit
))
2480 /* COST_LIMIT is at least as restrictive as the one
2481 recorded in the hash table, in which case we have no
2482 hope of synthesizing a multiplication. Just
2486 /* If we get here, COST_LIMIT is less restrictive than the
2487 one recorded in the hash table, so we may be able to
2488 synthesize a multiplication. Proceed as if we didn't
2489 have the cache entry. */
2493 if (CHEAPER_MULT_COST (cost_limit
, &alg_hash
[hash_index
].cost
))
2494 /* The cached algorithm shows that this multiplication
2495 requires more cost than COST_LIMIT. Just return. This
2496 way, we don't clobber this cache entry with
2497 alg_impossible but retain useful information. */
2509 goto do_alg_addsub_t_m2
;
2511 case alg_add_factor
:
2512 case alg_sub_factor
:
2513 goto do_alg_addsub_factor
;
2516 goto do_alg_add_t2_m
;
2519 goto do_alg_sub_t2_m
;
2527 /* If we have a group of zero bits at the low-order part of T, try
2528 multiplying by the remaining bits and then doing a shift. */
2533 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2537 /* The function expand_shift will choose between a shift and
2538 a sequence of additions, so the observed cost is given as
2539 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2540 op_cost
= m
* add_cost
[mode
];
2541 if (shift_cost
[mode
][m
] < op_cost
)
2542 op_cost
= shift_cost
[mode
][m
];
2543 new_limit
.cost
= best_cost
.cost
- op_cost
;
2544 new_limit
.latency
= best_cost
.latency
- op_cost
;
2545 synth_mult (alg_in
, q
, &new_limit
, mode
);
2547 alg_in
->cost
.cost
+= op_cost
;
2548 alg_in
->cost
.latency
+= op_cost
;
2549 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2551 struct algorithm
*x
;
2552 best_cost
= alg_in
->cost
;
2553 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2554 best_alg
->log
[best_alg
->ops
] = m
;
2555 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2562 /* If we have an odd number, add or subtract one. */
2565 unsigned HOST_WIDE_INT w
;
2568 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2570 /* If T was -1, then W will be zero after the loop. This is another
2571 case where T ends with ...111. Handling this with (T + 1) and
2572 subtract 1 produces slightly better code and results in algorithm
2573 selection much faster than treating it like the ...0111 case
2577 /* Reject the case where t is 3.
2578 Thus we prefer addition in that case. */
2581 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2583 op_cost
= add_cost
[mode
];
2584 new_limit
.cost
= best_cost
.cost
- op_cost
;
2585 new_limit
.latency
= best_cost
.latency
- op_cost
;
2586 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2588 alg_in
->cost
.cost
+= op_cost
;
2589 alg_in
->cost
.latency
+= op_cost
;
2590 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2592 struct algorithm
*x
;
2593 best_cost
= alg_in
->cost
;
2594 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2595 best_alg
->log
[best_alg
->ops
] = 0;
2596 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2601 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2603 op_cost
= add_cost
[mode
];
2604 new_limit
.cost
= best_cost
.cost
- op_cost
;
2605 new_limit
.latency
= best_cost
.latency
- op_cost
;
2606 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2608 alg_in
->cost
.cost
+= op_cost
;
2609 alg_in
->cost
.latency
+= op_cost
;
2610 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2612 struct algorithm
*x
;
2613 best_cost
= alg_in
->cost
;
2614 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2615 best_alg
->log
[best_alg
->ops
] = 0;
2616 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2623 /* Look for factors of t of the form
2624 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2625 If we find such a factor, we can multiply by t using an algorithm that
2626 multiplies by q, shift the result by m and add/subtract it to itself.
2628 We search for large factors first and loop down, even if large factors
2629 are less probable than small; if we find a large factor we will find a
2630 good sequence quickly, and therefore be able to prune (by decreasing
2631 COST_LIMIT) the search. */
2633 do_alg_addsub_factor
:
2634 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2636 unsigned HOST_WIDE_INT d
;
2638 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2639 if (t
% d
== 0 && t
> d
&& m
< maxm
2640 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2642 /* If the target has a cheap shift-and-add instruction use
2643 that in preference to a shift insn followed by an add insn.
2644 Assume that the shift-and-add is "atomic" with a latency
2645 equal to its cost, otherwise assume that on superscalar
2646 hardware the shift may be executed concurrently with the
2647 earlier steps in the algorithm. */
2648 op_cost
= add_cost
[mode
] + shift_cost
[mode
][m
];
2649 if (shiftadd_cost
[mode
][m
] < op_cost
)
2651 op_cost
= shiftadd_cost
[mode
][m
];
2652 op_latency
= op_cost
;
2655 op_latency
= add_cost
[mode
];
2657 new_limit
.cost
= best_cost
.cost
- op_cost
;
2658 new_limit
.latency
= best_cost
.latency
- op_latency
;
2659 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2661 alg_in
->cost
.cost
+= op_cost
;
2662 alg_in
->cost
.latency
+= op_latency
;
2663 if (alg_in
->cost
.latency
< op_cost
)
2664 alg_in
->cost
.latency
= op_cost
;
2665 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2667 struct algorithm
*x
;
2668 best_cost
= alg_in
->cost
;
2669 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2670 best_alg
->log
[best_alg
->ops
] = m
;
2671 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2673 /* Other factors will have been taken care of in the recursion. */
2677 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2678 if (t
% d
== 0 && t
> d
&& m
< maxm
2679 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2681 /* If the target has a cheap shift-and-subtract insn use
2682 that in preference to a shift insn followed by a sub insn.
2683 Assume that the shift-and-sub is "atomic" with a latency
2684 equal to it's cost, otherwise assume that on superscalar
2685 hardware the shift may be executed concurrently with the
2686 earlier steps in the algorithm. */
2687 op_cost
= add_cost
[mode
] + shift_cost
[mode
][m
];
2688 if (shiftsub_cost
[mode
][m
] < op_cost
)
2690 op_cost
= shiftsub_cost
[mode
][m
];
2691 op_latency
= op_cost
;
2694 op_latency
= add_cost
[mode
];
2696 new_limit
.cost
= best_cost
.cost
- op_cost
;
2697 new_limit
.latency
= best_cost
.latency
- op_latency
;
2698 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2700 alg_in
->cost
.cost
+= op_cost
;
2701 alg_in
->cost
.latency
+= op_latency
;
2702 if (alg_in
->cost
.latency
< op_cost
)
2703 alg_in
->cost
.latency
= op_cost
;
2704 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2706 struct algorithm
*x
;
2707 best_cost
= alg_in
->cost
;
2708 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2709 best_alg
->log
[best_alg
->ops
] = m
;
2710 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2718 /* Try shift-and-add (load effective address) instructions,
2719 i.e. do a*3, a*5, a*9. */
2726 if (m
>= 0 && m
< maxm
)
2728 op_cost
= shiftadd_cost
[mode
][m
];
2729 new_limit
.cost
= best_cost
.cost
- op_cost
;
2730 new_limit
.latency
= best_cost
.latency
- op_cost
;
2731 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2733 alg_in
->cost
.cost
+= op_cost
;
2734 alg_in
->cost
.latency
+= op_cost
;
2735 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2737 struct algorithm
*x
;
2738 best_cost
= alg_in
->cost
;
2739 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2740 best_alg
->log
[best_alg
->ops
] = m
;
2741 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2751 if (m
>= 0 && m
< maxm
)
2753 op_cost
= shiftsub_cost
[mode
][m
];
2754 new_limit
.cost
= best_cost
.cost
- op_cost
;
2755 new_limit
.latency
= best_cost
.latency
- op_cost
;
2756 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2758 alg_in
->cost
.cost
+= op_cost
;
2759 alg_in
->cost
.latency
+= op_cost
;
2760 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2762 struct algorithm
*x
;
2763 best_cost
= alg_in
->cost
;
2764 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2765 best_alg
->log
[best_alg
->ops
] = m
;
2766 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2774 /* If best_cost has not decreased, we have not found any algorithm. */
2775 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2777 /* We failed to find an algorithm. Record alg_impossible for
2778 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2779 we are asked to find an algorithm for T within the same or
2780 lower COST_LIMIT, we can immediately return to the
2782 alg_hash
[hash_index
].t
= t
;
2783 alg_hash
[hash_index
].mode
= mode
;
2784 alg_hash
[hash_index
].alg
= alg_impossible
;
2785 alg_hash
[hash_index
].cost
= *cost_limit
;
2789 /* Cache the result. */
2792 alg_hash
[hash_index
].t
= t
;
2793 alg_hash
[hash_index
].mode
= mode
;
2794 alg_hash
[hash_index
].alg
= best_alg
->op
[best_alg
->ops
];
2795 alg_hash
[hash_index
].cost
.cost
= best_cost
.cost
;
2796 alg_hash
[hash_index
].cost
.latency
= best_cost
.latency
;
2799 /* If we are getting a too long sequence for `struct algorithm'
2800 to record, make this search fail. */
2801 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2804 /* Copy the algorithm from temporary space to the space at alg_out.
2805 We avoid using structure assignment because the majority of
2806 best_alg is normally undefined, and this is a critical function. */
2807 alg_out
->ops
= best_alg
->ops
+ 1;
2808 alg_out
->cost
= best_cost
;
2809 memcpy (alg_out
->op
, best_alg
->op
,
2810 alg_out
->ops
* sizeof *alg_out
->op
);
2811 memcpy (alg_out
->log
, best_alg
->log
,
2812 alg_out
->ops
* sizeof *alg_out
->log
);
2815 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2816 Try three variations:
2818 - a shift/add sequence based on VAL itself
2819 - a shift/add sequence based on -VAL, followed by a negation
2820 - a shift/add sequence based on VAL - 1, followed by an addition.
2822 Return true if the cheapest of these cost less than MULT_COST,
2823 describing the algorithm in *ALG and final fixup in *VARIANT. */
2826 choose_mult_variant (enum machine_mode mode
, HOST_WIDE_INT val
,
2827 struct algorithm
*alg
, enum mult_variant
*variant
,
2830 struct algorithm alg2
;
2831 struct mult_cost limit
;
2834 /* Fail quickly for impossible bounds. */
2838 /* Ensure that mult_cost provides a reasonable upper bound.
2839 Any constant multiplication can be performed with less
2840 than 2 * bits additions. */
2841 op_cost
= 2 * GET_MODE_BITSIZE (mode
) * add_cost
[mode
];
2842 if (mult_cost
> op_cost
)
2843 mult_cost
= op_cost
;
2845 *variant
= basic_variant
;
2846 limit
.cost
= mult_cost
;
2847 limit
.latency
= mult_cost
;
2848 synth_mult (alg
, val
, &limit
, mode
);
2850 /* This works only if the inverted value actually fits in an
2852 if (HOST_BITS_PER_INT
>= GET_MODE_BITSIZE (mode
))
2854 op_cost
= neg_cost
[mode
];
2855 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2857 limit
.cost
= alg
->cost
.cost
- op_cost
;
2858 limit
.latency
= alg
->cost
.latency
- op_cost
;
2862 limit
.cost
= mult_cost
- op_cost
;
2863 limit
.latency
= mult_cost
- op_cost
;
2866 synth_mult (&alg2
, -val
, &limit
, mode
);
2867 alg2
.cost
.cost
+= op_cost
;
2868 alg2
.cost
.latency
+= op_cost
;
2869 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2870 *alg
= alg2
, *variant
= negate_variant
;
2873 /* This proves very useful for division-by-constant. */
2874 op_cost
= add_cost
[mode
];
2875 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2877 limit
.cost
= alg
->cost
.cost
- op_cost
;
2878 limit
.latency
= alg
->cost
.latency
- op_cost
;
2882 limit
.cost
= mult_cost
- op_cost
;
2883 limit
.latency
= mult_cost
- op_cost
;
2886 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2887 alg2
.cost
.cost
+= op_cost
;
2888 alg2
.cost
.latency
+= op_cost
;
2889 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2890 *alg
= alg2
, *variant
= add_variant
;
2892 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2895 /* A subroutine of expand_mult, used for constant multiplications.
2896 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2897 convenient. Use the shift/add sequence described by ALG and apply
2898 the final fixup specified by VARIANT. */
2901 expand_mult_const (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2902 rtx target
, const struct algorithm
*alg
,
2903 enum mult_variant variant
)
2905 HOST_WIDE_INT val_so_far
;
2906 rtx insn
, accum
, tem
;
2908 enum machine_mode nmode
;
2910 /* Avoid referencing memory over and over and invalid sharing
2912 op0
= force_reg (mode
, op0
);
2914 /* ACCUM starts out either as OP0 or as a zero, depending on
2915 the first operation. */
2917 if (alg
->op
[0] == alg_zero
)
2919 accum
= copy_to_mode_reg (mode
, const0_rtx
);
2922 else if (alg
->op
[0] == alg_m
)
2924 accum
= copy_to_mode_reg (mode
, op0
);
2930 for (opno
= 1; opno
< alg
->ops
; opno
++)
2932 int log
= alg
->log
[opno
];
2933 rtx shift_subtarget
= optimize
? 0 : accum
;
2935 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
2938 rtx accum_target
= optimize
? 0 : accum
;
2940 switch (alg
->op
[opno
])
2943 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2944 build_int_cst (NULL_TREE
, log
),
2950 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2951 build_int_cst (NULL_TREE
, log
),
2953 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2954 add_target
? add_target
: accum_target
);
2955 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
2959 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2960 build_int_cst (NULL_TREE
, log
),
2962 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
2963 add_target
? add_target
: accum_target
);
2964 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
2968 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2969 build_int_cst (NULL_TREE
, log
),
2972 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
2973 add_target
? add_target
: accum_target
);
2974 val_so_far
= (val_so_far
<< log
) + 1;
2978 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2979 build_int_cst (NULL_TREE
, log
),
2980 shift_subtarget
, 0);
2981 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
2982 add_target
? add_target
: accum_target
);
2983 val_so_far
= (val_so_far
<< log
) - 1;
2986 case alg_add_factor
:
2987 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2988 build_int_cst (NULL_TREE
, log
),
2990 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2991 add_target
? add_target
: accum_target
);
2992 val_so_far
+= val_so_far
<< log
;
2995 case alg_sub_factor
:
2996 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2997 build_int_cst (NULL_TREE
, log
),
2999 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3001 ? add_target
: (optimize
? 0 : tem
)));
3002 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3009 /* Write a REG_EQUAL note on the last insn so that we can cse
3010 multiplication sequences. Note that if ACCUM is a SUBREG,
3011 we've set the inner register and must properly indicate
3014 tem
= op0
, nmode
= mode
;
3015 if (GET_CODE (accum
) == SUBREG
)
3017 nmode
= GET_MODE (SUBREG_REG (accum
));
3018 tem
= gen_lowpart (nmode
, op0
);
3021 insn
= get_last_insn ();
3022 set_unique_reg_note (insn
, REG_EQUAL
,
3023 gen_rtx_MULT (nmode
, tem
,
3024 GEN_INT (val_so_far
)));
3027 if (variant
== negate_variant
)
3029 val_so_far
= -val_so_far
;
3030 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3032 else if (variant
== add_variant
)
3034 val_so_far
= val_so_far
+ 1;
3035 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3038 /* Compare only the bits of val and val_so_far that are significant
3039 in the result mode, to avoid sign-/zero-extension confusion. */
3040 val
&= GET_MODE_MASK (mode
);
3041 val_so_far
&= GET_MODE_MASK (mode
);
3042 gcc_assert (val
== val_so_far
);
3047 /* Perform a multiplication and return an rtx for the result.
3048 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3049 TARGET is a suggestion for where to store the result (an rtx).
3051 We check specially for a constant integer as OP1.
3052 If you want this check for OP0 as well, then before calling
3053 you should swap the two operands if OP0 would be constant. */
3056 expand_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3059 enum mult_variant variant
;
3060 struct algorithm algorithm
;
3063 /* Handling const0_rtx here allows us to use zero as a rogue value for
3065 if (op1
== const0_rtx
)
3067 if (op1
== const1_rtx
)
3069 if (op1
== constm1_rtx
)
3070 return expand_unop (mode
,
3071 GET_MODE_CLASS (mode
) == MODE_INT
3072 && !unsignedp
&& flag_trapv
3073 ? negv_optab
: neg_optab
,
3076 /* These are the operations that are potentially turned into a sequence
3077 of shifts and additions. */
3078 if (SCALAR_INT_MODE_P (mode
)
3079 && (unsignedp
|| !flag_trapv
))
3081 HOST_WIDE_INT coeff
= 0;
3082 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3084 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3085 less than or equal in size to `unsigned int' this doesn't matter.
3086 If the mode is larger than `unsigned int', then synth_mult works
3087 only if the constant value exactly fits in an `unsigned int' without
3088 any truncation. This means that multiplying by negative values does
3089 not work; results are off by 2^32 on a 32 bit machine. */
3091 if (GET_CODE (op1
) == CONST_INT
)
3093 /* Attempt to handle multiplication of DImode values by negative
3094 coefficients, by performing the multiplication by a positive
3095 multiplier and then inverting the result. */
3096 if (INTVAL (op1
) < 0
3097 && GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
3099 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3100 result is interpreted as an unsigned coefficient.
3101 Exclude cost of op0 from max_cost to match the cost
3102 calculation of the synth_mult. */
3103 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
)
3106 && choose_mult_variant (mode
, -INTVAL (op1
), &algorithm
,
3107 &variant
, max_cost
))
3109 rtx temp
= expand_mult_const (mode
, op0
, -INTVAL (op1
),
3110 NULL_RTX
, &algorithm
,
3112 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3115 else coeff
= INTVAL (op1
);
3117 else if (GET_CODE (op1
) == CONST_DOUBLE
)
3119 /* If we are multiplying in DImode, it may still be a win
3120 to try to work with shifts and adds. */
3121 if (CONST_DOUBLE_HIGH (op1
) == 0)
3122 coeff
= CONST_DOUBLE_LOW (op1
);
3123 else if (CONST_DOUBLE_LOW (op1
) == 0
3124 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1
)))
3126 int shift
= floor_log2 (CONST_DOUBLE_HIGH (op1
))
3127 + HOST_BITS_PER_WIDE_INT
;
3128 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3129 build_int_cst (NULL_TREE
, shift
),
3134 /* We used to test optimize here, on the grounds that it's better to
3135 produce a smaller program when -O is not used. But this causes
3136 such a terrible slowdown sometimes that it seems better to always
3140 /* Special case powers of two. */
3141 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3142 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3143 build_int_cst (NULL_TREE
, floor_log2 (coeff
)),
3146 /* Exclude cost of op0 from max_cost to match the cost
3147 calculation of the synth_mult. */
3148 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
);
3149 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3151 return expand_mult_const (mode
, op0
, coeff
, target
,
3152 &algorithm
, variant
);
3156 if (GET_CODE (op0
) == CONST_DOUBLE
)
3163 /* Expand x*2.0 as x+x. */
3164 if (GET_CODE (op1
) == CONST_DOUBLE
3165 && SCALAR_FLOAT_MODE_P (mode
))
3168 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3170 if (REAL_VALUES_EQUAL (d
, dconst2
))
3172 op0
= force_reg (GET_MODE (op0
), op0
);
3173 return expand_binop (mode
, add_optab
, op0
, op0
,
3174 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3178 /* This used to use umul_optab if unsigned, but for non-widening multiply
3179 there is no difference between signed and unsigned. */
3180 op0
= expand_binop (mode
,
3182 && flag_trapv
&& (GET_MODE_CLASS(mode
) == MODE_INT
)
3183 ? smulv_optab
: smul_optab
,
3184 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3189 /* Return the smallest n such that 2**n >= X. */
3192 ceil_log2 (unsigned HOST_WIDE_INT x
)
3194 return floor_log2 (x
- 1) + 1;
3197 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3198 replace division by D, and put the least significant N bits of the result
3199 in *MULTIPLIER_PTR and return the most significant bit.
3201 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3202 needed precision is in PRECISION (should be <= N).
3204 PRECISION should be as small as possible so this function can choose
3205 multiplier more freely.
3207 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3208 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3210 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3211 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3214 unsigned HOST_WIDE_INT
3215 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3216 rtx
*multiplier_ptr
, int *post_shift_ptr
, int *lgup_ptr
)
3218 HOST_WIDE_INT mhigh_hi
, mlow_hi
;
3219 unsigned HOST_WIDE_INT mhigh_lo
, mlow_lo
;
3220 int lgup
, post_shift
;
3222 unsigned HOST_WIDE_INT nl
, dummy1
;
3223 HOST_WIDE_INT nh
, dummy2
;
3225 /* lgup = ceil(log2(divisor)); */
3226 lgup
= ceil_log2 (d
);
3228 gcc_assert (lgup
<= n
);
3231 pow2
= n
+ lgup
- precision
;
3233 /* We could handle this with some effort, but this case is much
3234 better handled directly with a scc insn, so rely on caller using
3236 gcc_assert (pow
!= 2 * HOST_BITS_PER_WIDE_INT
);
3238 /* mlow = 2^(N + lgup)/d */
3239 if (pow
>= HOST_BITS_PER_WIDE_INT
)
3241 nh
= (HOST_WIDE_INT
) 1 << (pow
- HOST_BITS_PER_WIDE_INT
);
3247 nl
= (unsigned HOST_WIDE_INT
) 1 << pow
;
3249 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3250 &mlow_lo
, &mlow_hi
, &dummy1
, &dummy2
);
3252 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3253 if (pow2
>= HOST_BITS_PER_WIDE_INT
)
3254 nh
|= (HOST_WIDE_INT
) 1 << (pow2
- HOST_BITS_PER_WIDE_INT
);
3256 nl
|= (unsigned HOST_WIDE_INT
) 1 << pow2
;
3257 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3258 &mhigh_lo
, &mhigh_hi
, &dummy1
, &dummy2
);
3260 gcc_assert (!mhigh_hi
|| nh
- d
< d
);
3261 gcc_assert (mhigh_hi
<= 1 && mlow_hi
<= 1);
3262 /* Assert that mlow < mhigh. */
3263 gcc_assert (mlow_hi
< mhigh_hi
3264 || (mlow_hi
== mhigh_hi
&& mlow_lo
< mhigh_lo
));
3266 /* If precision == N, then mlow, mhigh exceed 2^N
3267 (but they do not exceed 2^(N+1)). */
3269 /* Reduce to lowest terms. */
3270 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3272 unsigned HOST_WIDE_INT ml_lo
= (mlow_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mlow_lo
>> 1);
3273 unsigned HOST_WIDE_INT mh_lo
= (mhigh_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mhigh_lo
>> 1);
3283 *post_shift_ptr
= post_shift
;
3285 if (n
< HOST_BITS_PER_WIDE_INT
)
3287 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3288 *multiplier_ptr
= GEN_INT (mhigh_lo
& mask
);
3289 return mhigh_lo
>= mask
;
3293 *multiplier_ptr
= GEN_INT (mhigh_lo
);
3298 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3299 congruent to 1 (mod 2**N). */
3301 static unsigned HOST_WIDE_INT
3302 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3304 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3306 /* The algorithm notes that the choice y = x satisfies
3307 x*y == 1 mod 2^3, since x is assumed odd.
3308 Each iteration doubles the number of bits of significance in y. */
3310 unsigned HOST_WIDE_INT mask
;
3311 unsigned HOST_WIDE_INT y
= x
;
3314 mask
= (n
== HOST_BITS_PER_WIDE_INT
3315 ? ~(unsigned HOST_WIDE_INT
) 0
3316 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3320 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3326 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3327 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3328 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3329 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3332 The result is put in TARGET if that is convenient.
3334 MODE is the mode of operation. */
3337 expand_mult_highpart_adjust (enum machine_mode mode
, rtx adj_operand
, rtx op0
,
3338 rtx op1
, rtx target
, int unsignedp
)
3341 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3343 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3344 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3346 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3348 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3351 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3352 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3354 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3355 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3361 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3364 extract_high_half (enum machine_mode mode
, rtx op
)
3366 enum machine_mode wider_mode
;
3368 if (mode
== word_mode
)
3369 return gen_highpart (mode
, op
);
3371 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3373 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3374 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3375 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
)), 0, 1);
3376 return convert_modes (mode
, wider_mode
, op
, 0);
3379 /* Like expand_mult_highpart, but only consider using a multiplication
3380 optab. OP1 is an rtx for the constant operand. */
3383 expand_mult_highpart_optab (enum machine_mode mode
, rtx op0
, rtx op1
,
3384 rtx target
, int unsignedp
, int max_cost
)
3386 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3387 enum machine_mode wider_mode
;
3392 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3394 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3395 size
= GET_MODE_BITSIZE (mode
);
3397 /* Firstly, try using a multiplication insn that only generates the needed
3398 high part of the product, and in the sign flavor of unsignedp. */
3399 if (mul_highpart_cost
[mode
] < max_cost
)
3401 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3402 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3403 unsignedp
, OPTAB_DIRECT
);
3408 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3409 Need to adjust the result after the multiplication. */
3410 if (size
- 1 < BITS_PER_WORD
3411 && (mul_highpart_cost
[mode
] + 2 * shift_cost
[mode
][size
-1]
3412 + 4 * add_cost
[mode
] < max_cost
))
3414 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3415 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3416 unsignedp
, OPTAB_DIRECT
);
3418 /* We used the wrong signedness. Adjust the result. */
3419 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3423 /* Try widening multiplication. */
3424 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3425 if (optab_handler (moptab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3426 && mul_widen_cost
[wider_mode
] < max_cost
)
3428 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3429 unsignedp
, OPTAB_WIDEN
);
3431 return extract_high_half (mode
, tem
);
3434 /* Try widening the mode and perform a non-widening multiplication. */
3435 if (optab_handler (smul_optab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3436 && size
- 1 < BITS_PER_WORD
3437 && mul_cost
[wider_mode
] + shift_cost
[mode
][size
-1] < max_cost
)
3439 rtx insns
, wop0
, wop1
;
3441 /* We need to widen the operands, for example to ensure the
3442 constant multiplier is correctly sign or zero extended.
3443 Use a sequence to clean-up any instructions emitted by
3444 the conversions if things don't work out. */
3446 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3447 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3448 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3449 unsignedp
, OPTAB_WIDEN
);
3450 insns
= get_insns ();
3456 return extract_high_half (mode
, tem
);
3460 /* Try widening multiplication of opposite signedness, and adjust. */
3461 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3462 if (optab_handler (moptab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3463 && size
- 1 < BITS_PER_WORD
3464 && (mul_widen_cost
[wider_mode
] + 2 * shift_cost
[mode
][size
-1]
3465 + 4 * add_cost
[mode
] < max_cost
))
3467 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3468 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3471 tem
= extract_high_half (mode
, tem
);
3472 /* We used the wrong signedness. Adjust the result. */
3473 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3481 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3482 putting the high half of the result in TARGET if that is convenient,
3483 and return where the result is. If the operation can not be performed,
3486 MODE is the mode of operation and result.
3488 UNSIGNEDP nonzero means unsigned multiply.
3490 MAX_COST is the total allowed cost for the expanded RTL. */
3493 expand_mult_highpart (enum machine_mode mode
, rtx op0
, rtx op1
,
3494 rtx target
, int unsignedp
, int max_cost
)
3496 enum machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3497 unsigned HOST_WIDE_INT cnst1
;
3499 bool sign_adjust
= false;
3500 enum mult_variant variant
;
3501 struct algorithm alg
;
3504 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3505 /* We can't support modes wider than HOST_BITS_PER_INT. */
3506 gcc_assert (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
);
3508 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3510 /* We can't optimize modes wider than BITS_PER_WORD.
3511 ??? We might be able to perform double-word arithmetic if
3512 mode == word_mode, however all the cost calculations in
3513 synth_mult etc. assume single-word operations. */
3514 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3515 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3516 unsignedp
, max_cost
);
3518 extra_cost
= shift_cost
[mode
][GET_MODE_BITSIZE (mode
) - 1];
3520 /* Check whether we try to multiply by a negative constant. */
3521 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3524 extra_cost
+= add_cost
[mode
];
3527 /* See whether shift/add multiplication is cheap enough. */
3528 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3529 max_cost
- extra_cost
))
3531 /* See whether the specialized multiplication optabs are
3532 cheaper than the shift/add version. */
3533 tem
= expand_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3534 alg
.cost
.cost
+ extra_cost
);
3538 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3539 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3540 tem
= extract_high_half (mode
, tem
);
3542 /* Adjust result for signedness. */
3544 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3548 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3549 unsignedp
, max_cost
);
3553 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3556 expand_smod_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3558 unsigned HOST_WIDE_INT masklow
, maskhigh
;
3559 rtx result
, temp
, shift
, label
;
3562 logd
= floor_log2 (d
);
3563 result
= gen_reg_rtx (mode
);
3565 /* Avoid conditional branches when they're expensive. */
3566 if (BRANCH_COST
>= 2
3569 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3573 signmask
= force_reg (mode
, signmask
);
3574 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3575 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3577 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3578 which instruction sequence to use. If logical right shifts
3579 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3580 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3582 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3583 if (optab_handler (lshr_optab
, mode
)->insn_code
== CODE_FOR_nothing
3584 || rtx_cost (temp
, SET
) > COSTS_N_INSNS (2))
3586 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3587 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3588 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3589 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3590 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3591 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3592 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3593 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3594 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3595 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3599 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3600 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3601 signmask
= force_reg (mode
, signmask
);
3603 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3604 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3605 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3606 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3607 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3608 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3614 /* Mask contains the mode's signbit and the significant bits of the
3615 modulus. By including the signbit in the operation, many targets
3616 can avoid an explicit compare operation in the following comparison
3619 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3620 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3622 masklow
|= (HOST_WIDE_INT
) -1 << (GET_MODE_BITSIZE (mode
) - 1);
3626 maskhigh
= (HOST_WIDE_INT
) -1
3627 << (GET_MODE_BITSIZE (mode
) - HOST_BITS_PER_WIDE_INT
- 1);
3629 temp
= expand_binop (mode
, and_optab
, op0
,
3630 immed_double_const (masklow
, maskhigh
, mode
),
3631 result
, 1, OPTAB_LIB_WIDEN
);
3633 emit_move_insn (result
, temp
);
3635 label
= gen_label_rtx ();
3636 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3638 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3639 0, OPTAB_LIB_WIDEN
);
3640 masklow
= (HOST_WIDE_INT
) -1 << logd
;
3642 temp
= expand_binop (mode
, ior_optab
, temp
,
3643 immed_double_const (masklow
, maskhigh
, mode
),
3644 result
, 1, OPTAB_LIB_WIDEN
);
3645 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3646 0, OPTAB_LIB_WIDEN
);
3648 emit_move_insn (result
, temp
);
3653 /* Expand signed division of OP0 by a power of two D in mode MODE.
3654 This routine is only called for positive values of D. */
3657 expand_sdiv_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3663 logd
= floor_log2 (d
);
3664 shift
= build_int_cst (NULL_TREE
, logd
);
3666 if (d
== 2 && BRANCH_COST
>= 1)
3668 temp
= gen_reg_rtx (mode
);
3669 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3670 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3671 0, OPTAB_LIB_WIDEN
);
3672 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3675 #ifdef HAVE_conditional_move
3676 if (BRANCH_COST
>= 2)
3680 /* ??? emit_conditional_move forces a stack adjustment via
3681 compare_from_rtx so, if the sequence is discarded, it will
3682 be lost. Do it now instead. */
3683 do_pending_stack_adjust ();
3686 temp2
= copy_to_mode_reg (mode
, op0
);
3687 temp
= expand_binop (mode
, add_optab
, temp2
, GEN_INT (d
-1),
3688 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3689 temp
= force_reg (mode
, temp
);
3691 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3692 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3693 mode
, temp
, temp2
, mode
, 0);
3696 rtx seq
= get_insns ();
3699 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, shift
, NULL_RTX
, 0);
3705 if (BRANCH_COST
>= 2)
3707 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3709 temp
= gen_reg_rtx (mode
);
3710 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3711 if (shift_cost
[mode
][ushift
] > COSTS_N_INSNS (1))
3712 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (d
- 1),
3713 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3715 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3716 build_int_cst (NULL_TREE
, ushift
),
3718 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3719 0, OPTAB_LIB_WIDEN
);
3720 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3723 label
= gen_label_rtx ();
3724 temp
= copy_to_mode_reg (mode
, op0
);
3725 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3726 expand_inc (temp
, GEN_INT (d
- 1));
3728 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3731 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3732 if that is convenient, and returning where the result is.
3733 You may request either the quotient or the remainder as the result;
3734 specify REM_FLAG nonzero to get the remainder.
3736 CODE is the expression code for which kind of division this is;
3737 it controls how rounding is done. MODE is the machine mode to use.
3738 UNSIGNEDP nonzero means do unsigned division. */
3740 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3741 and then correct it by or'ing in missing high bits
3742 if result of ANDI is nonzero.
3743 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3744 This could optimize to a bfexts instruction.
3745 But C doesn't use these operations, so their optimizations are
3747 /* ??? For modulo, we don't actually need the highpart of the first product,
3748 the low part will do nicely. And for small divisors, the second multiply
3749 can also be a low-part only multiply or even be completely left out.
3750 E.g. to calculate the remainder of a division by 3 with a 32 bit
3751 multiply, multiply with 0x55555556 and extract the upper two bits;
3752 the result is exact for inputs up to 0x1fffffff.
3753 The input range can be reduced by using cross-sum rules.
3754 For odd divisors >= 3, the following table gives right shift counts
3755 so that if a number is shifted by an integer multiple of the given
3756 amount, the remainder stays the same:
3757 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3758 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3759 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3760 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3761 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3763 Cross-sum rules for even numbers can be derived by leaving as many bits
3764 to the right alone as the divisor has zeros to the right.
3765 E.g. if x is an unsigned 32 bit number:
3766 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3770 expand_divmod (int rem_flag
, enum tree_code code
, enum machine_mode mode
,
3771 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3773 enum machine_mode compute_mode
;
3775 rtx quotient
= 0, remainder
= 0;
3779 optab optab1
, optab2
;
3780 int op1_is_constant
, op1_is_pow2
= 0;
3781 int max_cost
, extra_cost
;
3782 static HOST_WIDE_INT last_div_const
= 0;
3783 static HOST_WIDE_INT ext_op1
;
3785 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3786 if (op1_is_constant
)
3788 ext_op1
= INTVAL (op1
);
3790 ext_op1
&= GET_MODE_MASK (mode
);
3791 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3792 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3796 This is the structure of expand_divmod:
3798 First comes code to fix up the operands so we can perform the operations
3799 correctly and efficiently.
3801 Second comes a switch statement with code specific for each rounding mode.
3802 For some special operands this code emits all RTL for the desired
3803 operation, for other cases, it generates only a quotient and stores it in
3804 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3805 to indicate that it has not done anything.
3807 Last comes code that finishes the operation. If QUOTIENT is set and
3808 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3809 QUOTIENT is not set, it is computed using trunc rounding.
3811 We try to generate special code for division and remainder when OP1 is a
3812 constant. If |OP1| = 2**n we can use shifts and some other fast
3813 operations. For other values of OP1, we compute a carefully selected
3814 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3817 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3818 half of the product. Different strategies for generating the product are
3819 implemented in expand_mult_highpart.
3821 If what we actually want is the remainder, we generate that by another
3822 by-constant multiplication and a subtraction. */
3824 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3825 code below will malfunction if we are, so check here and handle
3826 the special case if so. */
3827 if (op1
== const1_rtx
)
3828 return rem_flag
? const0_rtx
: op0
;
3830 /* When dividing by -1, we could get an overflow.
3831 negv_optab can handle overflows. */
3832 if (! unsignedp
&& op1
== constm1_rtx
)
3836 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS(mode
) == MODE_INT
3837 ? negv_optab
: neg_optab
, op0
, target
, 0);
3841 /* Don't use the function value register as a target
3842 since we have to read it as well as write it,
3843 and function-inlining gets confused by this. */
3844 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3845 /* Don't clobber an operand while doing a multi-step calculation. */
3846 || ((rem_flag
|| op1_is_constant
)
3847 && (reg_mentioned_p (target
, op0
)
3848 || (MEM_P (op0
) && MEM_P (target
))))
3849 || reg_mentioned_p (target
, op1
)
3850 || (MEM_P (op1
) && MEM_P (target
))))
3853 /* Get the mode in which to perform this computation. Normally it will
3854 be MODE, but sometimes we can't do the desired operation in MODE.
3855 If so, pick a wider mode in which we can do the operation. Convert
3856 to that mode at the start to avoid repeated conversions.
3858 First see what operations we need. These depend on the expression
3859 we are evaluating. (We assume that divxx3 insns exist under the
3860 same conditions that modxx3 insns and that these insns don't normally
3861 fail. If these assumptions are not correct, we may generate less
3862 efficient code in some cases.)
3864 Then see if we find a mode in which we can open-code that operation
3865 (either a division, modulus, or shift). Finally, check for the smallest
3866 mode for which we can do the operation with a library call. */
3868 /* We might want to refine this now that we have division-by-constant
3869 optimization. Since expand_mult_highpart tries so many variants, it is
3870 not straightforward to generalize this. Maybe we should make an array
3871 of possible modes in init_expmed? Save this for GCC 2.7. */
3873 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3874 ? (unsignedp
? lshr_optab
: ashr_optab
)
3875 : (unsignedp
? udiv_optab
: sdiv_optab
));
3876 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3878 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
3880 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3881 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3882 if (optab_handler (optab1
, compute_mode
)->insn_code
!= CODE_FOR_nothing
3883 || optab_handler (optab2
, compute_mode
)->insn_code
!= CODE_FOR_nothing
)
3886 if (compute_mode
== VOIDmode
)
3887 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3888 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3889 if (optab_libfunc (optab1
, compute_mode
)
3890 || optab_libfunc (optab2
, compute_mode
))
3893 /* If we still couldn't find a mode, use MODE, but expand_binop will
3895 if (compute_mode
== VOIDmode
)
3896 compute_mode
= mode
;
3898 if (target
&& GET_MODE (target
) == compute_mode
)
3901 tquotient
= gen_reg_rtx (compute_mode
);
3903 size
= GET_MODE_BITSIZE (compute_mode
);
3905 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3906 (mode), and thereby get better code when OP1 is a constant. Do that
3907 later. It will require going over all usages of SIZE below. */
3908 size
= GET_MODE_BITSIZE (mode
);
3911 /* Only deduct something for a REM if the last divide done was
3912 for a different constant. Then set the constant of the last
3914 max_cost
= unsignedp
? udiv_cost
[compute_mode
] : sdiv_cost
[compute_mode
];
3915 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
3916 && INTVAL (op1
) == last_div_const
))
3917 max_cost
-= mul_cost
[compute_mode
] + add_cost
[compute_mode
];
3919 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
3921 /* Now convert to the best mode to use. */
3922 if (compute_mode
!= mode
)
3924 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
3925 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
3927 /* convert_modes may have placed op1 into a register, so we
3928 must recompute the following. */
3929 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3930 op1_is_pow2
= (op1_is_constant
3931 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
3933 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1
)))))) ;
3936 /* If one of the operands is a volatile MEM, copy it into a register. */
3938 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
3939 op0
= force_reg (compute_mode
, op0
);
3940 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
3941 op1
= force_reg (compute_mode
, op1
);
3943 /* If we need the remainder or if OP1 is constant, we need to
3944 put OP0 in a register in case it has any queued subexpressions. */
3945 if (rem_flag
|| op1_is_constant
)
3946 op0
= force_reg (compute_mode
, op0
);
3948 last
= get_last_insn ();
3950 /* Promote floor rounding to trunc rounding for unsigned operations. */
3953 if (code
== FLOOR_DIV_EXPR
)
3954 code
= TRUNC_DIV_EXPR
;
3955 if (code
== FLOOR_MOD_EXPR
)
3956 code
= TRUNC_MOD_EXPR
;
3957 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
3958 code
= TRUNC_DIV_EXPR
;
3961 if (op1
!= const0_rtx
)
3964 case TRUNC_MOD_EXPR
:
3965 case TRUNC_DIV_EXPR
:
3966 if (op1_is_constant
)
3970 unsigned HOST_WIDE_INT mh
;
3971 int pre_shift
, post_shift
;
3974 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
3975 & GET_MODE_MASK (compute_mode
));
3977 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
3979 pre_shift
= floor_log2 (d
);
3983 = expand_binop (compute_mode
, and_optab
, op0
,
3984 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
3988 return gen_lowpart (mode
, remainder
);
3990 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
3991 build_int_cst (NULL_TREE
,
3995 else if (size
<= HOST_BITS_PER_WIDE_INT
)
3997 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
3999 /* Most significant bit of divisor is set; emit an scc
4001 quotient
= emit_store_flag (tquotient
, GEU
, op0
, op1
,
4002 compute_mode
, 1, 1);
4008 /* Find a suitable multiplier and right shift count
4009 instead of multiplying with D. */
4011 mh
= choose_multiplier (d
, size
, size
,
4012 &ml
, &post_shift
, &dummy
);
4014 /* If the suggested multiplier is more than SIZE bits,
4015 we can do better for even divisors, using an
4016 initial right shift. */
4017 if (mh
!= 0 && (d
& 1) == 0)
4019 pre_shift
= floor_log2 (d
& -d
);
4020 mh
= choose_multiplier (d
>> pre_shift
, size
,
4022 &ml
, &post_shift
, &dummy
);
4032 if (post_shift
- 1 >= BITS_PER_WORD
)
4036 = (shift_cost
[compute_mode
][post_shift
- 1]
4037 + shift_cost
[compute_mode
][1]
4038 + 2 * add_cost
[compute_mode
]);
4039 t1
= expand_mult_highpart (compute_mode
, op0
, ml
,
4041 max_cost
- extra_cost
);
4044 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
4048 (RSHIFT_EXPR
, compute_mode
, t2
,
4049 build_int_cst (NULL_TREE
, 1),
4051 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4054 quotient
= expand_shift
4055 (RSHIFT_EXPR
, compute_mode
, t4
,
4056 build_int_cst (NULL_TREE
, post_shift
- 1),
4063 if (pre_shift
>= BITS_PER_WORD
4064 || post_shift
>= BITS_PER_WORD
)
4068 (RSHIFT_EXPR
, compute_mode
, op0
,
4069 build_int_cst (NULL_TREE
, pre_shift
),
4072 = (shift_cost
[compute_mode
][pre_shift
]
4073 + shift_cost
[compute_mode
][post_shift
]);
4074 t2
= expand_mult_highpart (compute_mode
, t1
, ml
,
4076 max_cost
- extra_cost
);
4079 quotient
= expand_shift
4080 (RSHIFT_EXPR
, compute_mode
, t2
,
4081 build_int_cst (NULL_TREE
, post_shift
),
4086 else /* Too wide mode to use tricky code */
4089 insn
= get_last_insn ();
4091 && (set
= single_set (insn
)) != 0
4092 && SET_DEST (set
) == quotient
)
4093 set_unique_reg_note (insn
,
4095 gen_rtx_UDIV (compute_mode
, op0
, op1
));
4097 else /* TRUNC_DIV, signed */
4099 unsigned HOST_WIDE_INT ml
;
4100 int lgup
, post_shift
;
4102 HOST_WIDE_INT d
= INTVAL (op1
);
4103 unsigned HOST_WIDE_INT abs_d
;
4105 /* Since d might be INT_MIN, we have to cast to
4106 unsigned HOST_WIDE_INT before negating to avoid
4107 undefined signed overflow. */
4109 ? (unsigned HOST_WIDE_INT
) d
4110 : - (unsigned HOST_WIDE_INT
) d
);
4112 /* n rem d = n rem -d */
4113 if (rem_flag
&& d
< 0)
4116 op1
= gen_int_mode (abs_d
, compute_mode
);
4122 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4124 else if (abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4126 /* This case is not handled correctly below. */
4127 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4128 compute_mode
, 1, 1);
4132 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4133 && (rem_flag
? smod_pow2_cheap
[compute_mode
]
4134 : sdiv_pow2_cheap
[compute_mode
])
4135 /* We assume that cheap metric is true if the
4136 optab has an expander for this mode. */
4137 && ((optab_handler ((rem_flag
? smod_optab
4139 compute_mode
)->insn_code
4140 != CODE_FOR_nothing
)
4141 || (optab_handler(sdivmod_optab
,
4143 ->insn_code
!= CODE_FOR_nothing
)))
4145 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4149 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4151 return gen_lowpart (mode
, remainder
);
4154 if (sdiv_pow2_cheap
[compute_mode
]
4155 && ((optab_handler (sdiv_optab
, compute_mode
)->insn_code
4156 != CODE_FOR_nothing
)
4157 || (optab_handler (sdivmod_optab
, compute_mode
)->insn_code
4158 != CODE_FOR_nothing
)))
4159 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4161 gen_int_mode (abs_d
,
4165 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4167 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4168 negate the quotient. */
4171 insn
= get_last_insn ();
4173 && (set
= single_set (insn
)) != 0
4174 && SET_DEST (set
) == quotient
4175 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4176 << (HOST_BITS_PER_WIDE_INT
- 1)))
4177 set_unique_reg_note (insn
,
4179 gen_rtx_DIV (compute_mode
,
4186 quotient
= expand_unop (compute_mode
, neg_optab
,
4187 quotient
, quotient
, 0);
4190 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4192 choose_multiplier (abs_d
, size
, size
- 1,
4193 &mlr
, &post_shift
, &lgup
);
4194 ml
= (unsigned HOST_WIDE_INT
) INTVAL (mlr
);
4195 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4199 if (post_shift
>= BITS_PER_WORD
4200 || size
- 1 >= BITS_PER_WORD
)
4203 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4204 + shift_cost
[compute_mode
][size
- 1]
4205 + add_cost
[compute_mode
]);
4206 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4208 max_cost
- extra_cost
);
4212 (RSHIFT_EXPR
, compute_mode
, t1
,
4213 build_int_cst (NULL_TREE
, post_shift
),
4216 (RSHIFT_EXPR
, compute_mode
, op0
,
4217 build_int_cst (NULL_TREE
, size
- 1),
4221 = force_operand (gen_rtx_MINUS (compute_mode
,
4226 = force_operand (gen_rtx_MINUS (compute_mode
,
4234 if (post_shift
>= BITS_PER_WORD
4235 || size
- 1 >= BITS_PER_WORD
)
4238 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4239 mlr
= gen_int_mode (ml
, compute_mode
);
4240 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4241 + shift_cost
[compute_mode
][size
- 1]
4242 + 2 * add_cost
[compute_mode
]);
4243 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4245 max_cost
- extra_cost
);
4248 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4252 (RSHIFT_EXPR
, compute_mode
, t2
,
4253 build_int_cst (NULL_TREE
, post_shift
),
4256 (RSHIFT_EXPR
, compute_mode
, op0
,
4257 build_int_cst (NULL_TREE
, size
- 1),
4261 = force_operand (gen_rtx_MINUS (compute_mode
,
4266 = force_operand (gen_rtx_MINUS (compute_mode
,
4271 else /* Too wide mode to use tricky code */
4274 insn
= get_last_insn ();
4276 && (set
= single_set (insn
)) != 0
4277 && SET_DEST (set
) == quotient
)
4278 set_unique_reg_note (insn
,
4280 gen_rtx_DIV (compute_mode
, op0
, op1
));
4285 delete_insns_since (last
);
4288 case FLOOR_DIV_EXPR
:
4289 case FLOOR_MOD_EXPR
:
4290 /* We will come here only for signed operations. */
4291 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4293 unsigned HOST_WIDE_INT mh
;
4294 int pre_shift
, lgup
, post_shift
;
4295 HOST_WIDE_INT d
= INTVAL (op1
);
4300 /* We could just as easily deal with negative constants here,
4301 but it does not seem worth the trouble for GCC 2.6. */
4302 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4304 pre_shift
= floor_log2 (d
);
4307 remainder
= expand_binop (compute_mode
, and_optab
, op0
,
4308 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
4309 remainder
, 0, OPTAB_LIB_WIDEN
);
4311 return gen_lowpart (mode
, remainder
);
4313 quotient
= expand_shift
4314 (RSHIFT_EXPR
, compute_mode
, op0
,
4315 build_int_cst (NULL_TREE
, pre_shift
),
4322 mh
= choose_multiplier (d
, size
, size
- 1,
4323 &ml
, &post_shift
, &lgup
);
4326 if (post_shift
< BITS_PER_WORD
4327 && size
- 1 < BITS_PER_WORD
)
4330 (RSHIFT_EXPR
, compute_mode
, op0
,
4331 build_int_cst (NULL_TREE
, size
- 1),
4333 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4334 NULL_RTX
, 0, OPTAB_WIDEN
);
4335 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4336 + shift_cost
[compute_mode
][size
- 1]
4337 + 2 * add_cost
[compute_mode
]);
4338 t3
= expand_mult_highpart (compute_mode
, t2
, ml
,
4340 max_cost
- extra_cost
);
4344 (RSHIFT_EXPR
, compute_mode
, t3
,
4345 build_int_cst (NULL_TREE
, post_shift
),
4347 quotient
= expand_binop (compute_mode
, xor_optab
,
4348 t4
, t1
, tquotient
, 0,
4356 rtx nsign
, t1
, t2
, t3
, t4
;
4357 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4358 op0
, constm1_rtx
), NULL_RTX
);
4359 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4361 nsign
= expand_shift
4362 (RSHIFT_EXPR
, compute_mode
, t2
,
4363 build_int_cst (NULL_TREE
, size
- 1),
4365 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4367 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4372 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4374 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4383 delete_insns_since (last
);
4385 /* Try using an instruction that produces both the quotient and
4386 remainder, using truncation. We can easily compensate the quotient
4387 or remainder to get floor rounding, once we have the remainder.
4388 Notice that we compute also the final remainder value here,
4389 and return the result right away. */
4390 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4391 target
= gen_reg_rtx (compute_mode
);
4396 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4397 quotient
= gen_reg_rtx (compute_mode
);
4402 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4403 remainder
= gen_reg_rtx (compute_mode
);
4406 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4407 quotient
, remainder
, 0))
4409 /* This could be computed with a branch-less sequence.
4410 Save that for later. */
4412 rtx label
= gen_label_rtx ();
4413 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4414 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4415 NULL_RTX
, 0, OPTAB_WIDEN
);
4416 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4417 expand_dec (quotient
, const1_rtx
);
4418 expand_inc (remainder
, op1
);
4420 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4423 /* No luck with division elimination or divmod. Have to do it
4424 by conditionally adjusting op0 *and* the result. */
4426 rtx label1
, label2
, label3
, label4
, label5
;
4430 quotient
= gen_reg_rtx (compute_mode
);
4431 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4432 label1
= gen_label_rtx ();
4433 label2
= gen_label_rtx ();
4434 label3
= gen_label_rtx ();
4435 label4
= gen_label_rtx ();
4436 label5
= gen_label_rtx ();
4437 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4438 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4439 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4440 quotient
, 0, OPTAB_LIB_WIDEN
);
4441 if (tem
!= quotient
)
4442 emit_move_insn (quotient
, tem
);
4443 emit_jump_insn (gen_jump (label5
));
4445 emit_label (label1
);
4446 expand_inc (adjusted_op0
, const1_rtx
);
4447 emit_jump_insn (gen_jump (label4
));
4449 emit_label (label2
);
4450 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4451 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4452 quotient
, 0, OPTAB_LIB_WIDEN
);
4453 if (tem
!= quotient
)
4454 emit_move_insn (quotient
, tem
);
4455 emit_jump_insn (gen_jump (label5
));
4457 emit_label (label3
);
4458 expand_dec (adjusted_op0
, const1_rtx
);
4459 emit_label (label4
);
4460 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4461 quotient
, 0, OPTAB_LIB_WIDEN
);
4462 if (tem
!= quotient
)
4463 emit_move_insn (quotient
, tem
);
4464 expand_dec (quotient
, const1_rtx
);
4465 emit_label (label5
);
4473 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4476 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4477 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4478 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4480 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4482 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4483 t3
= gen_reg_rtx (compute_mode
);
4484 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4485 compute_mode
, 1, 1);
4489 lab
= gen_label_rtx ();
4490 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4491 expand_inc (t1
, const1_rtx
);
4496 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4502 /* Try using an instruction that produces both the quotient and
4503 remainder, using truncation. We can easily compensate the
4504 quotient or remainder to get ceiling rounding, once we have the
4505 remainder. Notice that we compute also the final remainder
4506 value here, and return the result right away. */
4507 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4508 target
= gen_reg_rtx (compute_mode
);
4512 remainder
= (REG_P (target
)
4513 ? target
: gen_reg_rtx (compute_mode
));
4514 quotient
= gen_reg_rtx (compute_mode
);
4518 quotient
= (REG_P (target
)
4519 ? target
: gen_reg_rtx (compute_mode
));
4520 remainder
= gen_reg_rtx (compute_mode
);
4523 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4526 /* This could be computed with a branch-less sequence.
4527 Save that for later. */
4528 rtx label
= gen_label_rtx ();
4529 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4530 compute_mode
, label
);
4531 expand_inc (quotient
, const1_rtx
);
4532 expand_dec (remainder
, op1
);
4534 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4537 /* No luck with division elimination or divmod. Have to do it
4538 by conditionally adjusting op0 *and* the result. */
4541 rtx adjusted_op0
, tem
;
4543 quotient
= gen_reg_rtx (compute_mode
);
4544 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4545 label1
= gen_label_rtx ();
4546 label2
= gen_label_rtx ();
4547 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4548 compute_mode
, label1
);
4549 emit_move_insn (quotient
, const0_rtx
);
4550 emit_jump_insn (gen_jump (label2
));
4552 emit_label (label1
);
4553 expand_dec (adjusted_op0
, const1_rtx
);
4554 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4555 quotient
, 1, OPTAB_LIB_WIDEN
);
4556 if (tem
!= quotient
)
4557 emit_move_insn (quotient
, tem
);
4558 expand_inc (quotient
, const1_rtx
);
4559 emit_label (label2
);
4564 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4565 && INTVAL (op1
) >= 0)
4567 /* This is extremely similar to the code for the unsigned case
4568 above. For 2.7 we should merge these variants, but for
4569 2.6.1 I don't want to touch the code for unsigned since that
4570 get used in C. The signed case will only be used by other
4574 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4575 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4576 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4578 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4580 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4581 t3
= gen_reg_rtx (compute_mode
);
4582 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4583 compute_mode
, 1, 1);
4587 lab
= gen_label_rtx ();
4588 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4589 expand_inc (t1
, const1_rtx
);
4594 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4600 /* Try using an instruction that produces both the quotient and
4601 remainder, using truncation. We can easily compensate the
4602 quotient or remainder to get ceiling rounding, once we have the
4603 remainder. Notice that we compute also the final remainder
4604 value here, and return the result right away. */
4605 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4606 target
= gen_reg_rtx (compute_mode
);
4609 remainder
= (REG_P (target
)
4610 ? target
: gen_reg_rtx (compute_mode
));
4611 quotient
= gen_reg_rtx (compute_mode
);
4615 quotient
= (REG_P (target
)
4616 ? target
: gen_reg_rtx (compute_mode
));
4617 remainder
= gen_reg_rtx (compute_mode
);
4620 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4623 /* This could be computed with a branch-less sequence.
4624 Save that for later. */
4626 rtx label
= gen_label_rtx ();
4627 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4628 compute_mode
, label
);
4629 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4630 NULL_RTX
, 0, OPTAB_WIDEN
);
4631 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4632 expand_inc (quotient
, const1_rtx
);
4633 expand_dec (remainder
, op1
);
4635 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4638 /* No luck with division elimination or divmod. Have to do it
4639 by conditionally adjusting op0 *and* the result. */
4641 rtx label1
, label2
, label3
, label4
, label5
;
4645 quotient
= gen_reg_rtx (compute_mode
);
4646 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4647 label1
= gen_label_rtx ();
4648 label2
= gen_label_rtx ();
4649 label3
= gen_label_rtx ();
4650 label4
= gen_label_rtx ();
4651 label5
= gen_label_rtx ();
4652 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4653 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4654 compute_mode
, label1
);
4655 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4656 quotient
, 0, OPTAB_LIB_WIDEN
);
4657 if (tem
!= quotient
)
4658 emit_move_insn (quotient
, tem
);
4659 emit_jump_insn (gen_jump (label5
));
4661 emit_label (label1
);
4662 expand_dec (adjusted_op0
, const1_rtx
);
4663 emit_jump_insn (gen_jump (label4
));
4665 emit_label (label2
);
4666 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4667 compute_mode
, label3
);
4668 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4669 quotient
, 0, OPTAB_LIB_WIDEN
);
4670 if (tem
!= quotient
)
4671 emit_move_insn (quotient
, tem
);
4672 emit_jump_insn (gen_jump (label5
));
4674 emit_label (label3
);
4675 expand_inc (adjusted_op0
, const1_rtx
);
4676 emit_label (label4
);
4677 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4678 quotient
, 0, OPTAB_LIB_WIDEN
);
4679 if (tem
!= quotient
)
4680 emit_move_insn (quotient
, tem
);
4681 expand_inc (quotient
, const1_rtx
);
4682 emit_label (label5
);
4687 case EXACT_DIV_EXPR
:
4688 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4690 HOST_WIDE_INT d
= INTVAL (op1
);
4691 unsigned HOST_WIDE_INT ml
;
4695 pre_shift
= floor_log2 (d
& -d
);
4696 ml
= invert_mod2n (d
>> pre_shift
, size
);
4697 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4698 build_int_cst (NULL_TREE
, pre_shift
),
4699 NULL_RTX
, unsignedp
);
4700 quotient
= expand_mult (compute_mode
, t1
,
4701 gen_int_mode (ml
, compute_mode
),
4704 insn
= get_last_insn ();
4705 set_unique_reg_note (insn
,
4707 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4713 case ROUND_DIV_EXPR
:
4714 case ROUND_MOD_EXPR
:
4719 label
= gen_label_rtx ();
4720 quotient
= gen_reg_rtx (compute_mode
);
4721 remainder
= gen_reg_rtx (compute_mode
);
4722 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4725 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4726 quotient
, 1, OPTAB_LIB_WIDEN
);
4727 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4728 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4729 remainder
, 1, OPTAB_LIB_WIDEN
);
4731 tem
= plus_constant (op1
, -1);
4732 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4733 build_int_cst (NULL_TREE
, 1),
4735 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4736 expand_inc (quotient
, const1_rtx
);
4737 expand_dec (remainder
, op1
);
4742 rtx abs_rem
, abs_op1
, tem
, mask
;
4744 label
= gen_label_rtx ();
4745 quotient
= gen_reg_rtx (compute_mode
);
4746 remainder
= gen_reg_rtx (compute_mode
);
4747 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4750 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4751 quotient
, 0, OPTAB_LIB_WIDEN
);
4752 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4753 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4754 remainder
, 0, OPTAB_LIB_WIDEN
);
4756 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4757 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4758 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4759 build_int_cst (NULL_TREE
, 1),
4761 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4762 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4763 NULL_RTX
, 0, OPTAB_WIDEN
);
4764 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4765 build_int_cst (NULL_TREE
, size
- 1),
4767 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4768 NULL_RTX
, 0, OPTAB_WIDEN
);
4769 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4770 NULL_RTX
, 0, OPTAB_WIDEN
);
4771 expand_inc (quotient
, tem
);
4772 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4773 NULL_RTX
, 0, OPTAB_WIDEN
);
4774 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4775 NULL_RTX
, 0, OPTAB_WIDEN
);
4776 expand_dec (remainder
, tem
);
4779 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4787 if (target
&& GET_MODE (target
) != compute_mode
)
4792 /* Try to produce the remainder without producing the quotient.
4793 If we seem to have a divmod pattern that does not require widening,
4794 don't try widening here. We should really have a WIDEN argument
4795 to expand_twoval_binop, since what we'd really like to do here is
4796 1) try a mod insn in compute_mode
4797 2) try a divmod insn in compute_mode
4798 3) try a div insn in compute_mode and multiply-subtract to get
4800 4) try the same things with widening allowed. */
4802 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4805 ((optab_handler (optab2
, compute_mode
)->insn_code
4806 != CODE_FOR_nothing
)
4807 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4810 /* No luck there. Can we do remainder and divide at once
4811 without a library call? */
4812 remainder
= gen_reg_rtx (compute_mode
);
4813 if (! expand_twoval_binop ((unsignedp
4817 NULL_RTX
, remainder
, unsignedp
))
4822 return gen_lowpart (mode
, remainder
);
4825 /* Produce the quotient. Try a quotient insn, but not a library call.
4826 If we have a divmod in this mode, use it in preference to widening
4827 the div (for this test we assume it will not fail). Note that optab2
4828 is set to the one of the two optabs that the call below will use. */
4830 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4831 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4833 ((optab_handler (optab2
, compute_mode
)->insn_code
4834 != CODE_FOR_nothing
)
4835 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4839 /* No luck there. Try a quotient-and-remainder insn,
4840 keeping the quotient alone. */
4841 quotient
= gen_reg_rtx (compute_mode
);
4842 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4844 quotient
, NULL_RTX
, unsignedp
))
4848 /* Still no luck. If we are not computing the remainder,
4849 use a library call for the quotient. */
4850 quotient
= sign_expand_binop (compute_mode
,
4851 udiv_optab
, sdiv_optab
,
4853 unsignedp
, OPTAB_LIB_WIDEN
);
4860 if (target
&& GET_MODE (target
) != compute_mode
)
4865 /* No divide instruction either. Use library for remainder. */
4866 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4868 unsignedp
, OPTAB_LIB_WIDEN
);
4869 /* No remainder function. Try a quotient-and-remainder
4870 function, keeping the remainder. */
4873 remainder
= gen_reg_rtx (compute_mode
);
4874 if (!expand_twoval_binop_libfunc
4875 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4877 NULL_RTX
, remainder
,
4878 unsignedp
? UMOD
: MOD
))
4879 remainder
= NULL_RTX
;
4884 /* We divided. Now finish doing X - Y * (X / Y). */
4885 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4886 NULL_RTX
, unsignedp
);
4887 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4888 remainder
, target
, unsignedp
,
4893 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4896 /* Return a tree node with data type TYPE, describing the value of X.
4897 Usually this is an VAR_DECL, if there is no obvious better choice.
4898 X may be an expression, however we only support those expressions
4899 generated by loop.c. */
4902 make_tree (tree type
, rtx x
)
4906 switch (GET_CODE (x
))
4910 HOST_WIDE_INT hi
= 0;
4913 && !(TYPE_UNSIGNED (type
)
4914 && (GET_MODE_BITSIZE (TYPE_MODE (type
))
4915 < HOST_BITS_PER_WIDE_INT
)))
4918 t
= build_int_cst_wide (type
, INTVAL (x
), hi
);
4924 if (GET_MODE (x
) == VOIDmode
)
4925 t
= build_int_cst_wide (type
,
4926 CONST_DOUBLE_LOW (x
), CONST_DOUBLE_HIGH (x
));
4931 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
4932 t
= build_real (type
, d
);
4939 int units
= CONST_VECTOR_NUNITS (x
);
4940 tree itype
= TREE_TYPE (type
);
4945 /* Build a tree with vector elements. */
4946 for (i
= units
- 1; i
>= 0; --i
)
4948 rtx elt
= CONST_VECTOR_ELT (x
, i
);
4949 t
= tree_cons (NULL_TREE
, make_tree (itype
, elt
), t
);
4952 return build_vector (type
, t
);
4956 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4957 make_tree (type
, XEXP (x
, 1)));
4960 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4961 make_tree (type
, XEXP (x
, 1)));
4964 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
4967 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4968 make_tree (type
, XEXP (x
, 1)));
4971 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4972 make_tree (type
, XEXP (x
, 1)));
4975 t
= unsigned_type_for (type
);
4976 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
4977 make_tree (t
, XEXP (x
, 0)),
4978 make_tree (type
, XEXP (x
, 1))));
4981 t
= signed_type_for (type
);
4982 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
4983 make_tree (t
, XEXP (x
, 0)),
4984 make_tree (type
, XEXP (x
, 1))));
4987 if (TREE_CODE (type
) != REAL_TYPE
)
4988 t
= signed_type_for (type
);
4992 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
4993 make_tree (t
, XEXP (x
, 0)),
4994 make_tree (t
, XEXP (x
, 1))));
4996 t
= unsigned_type_for (type
);
4997 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
4998 make_tree (t
, XEXP (x
, 0)),
4999 make_tree (t
, XEXP (x
, 1))));
5003 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5004 GET_CODE (x
) == ZERO_EXTEND
);
5005 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5008 return make_tree (type
, XEXP (x
, 0));
5011 t
= SYMBOL_REF_DECL (x
);
5013 return fold_convert (type
, build_fold_addr_expr (t
));
5014 /* else fall through. */
5017 t
= build_decl (VAR_DECL
, NULL_TREE
, type
);
5019 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
5020 ptr_mode. So convert. */
5021 if (POINTER_TYPE_P (type
))
5022 x
= convert_memory_address (TYPE_MODE (type
), x
);
5024 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5025 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5026 t
->decl_with_rtl
.rtl
= x
;
5032 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5033 and returning TARGET.
5035 If TARGET is 0, a pseudo-register or constant is returned. */
5038 expand_and (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5042 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5043 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5045 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5049 else if (tem
!= target
)
5050 emit_move_insn (target
, tem
);
5054 /* Helper function for emit_store_flag. */
5056 emit_store_flag_1 (rtx target
, rtx subtarget
, enum machine_mode mode
,
5060 enum machine_mode target_mode
= GET_MODE (target
);
5062 /* If we are converting to a wider mode, first convert to
5063 TARGET_MODE, then normalize. This produces better combining
5064 opportunities on machines that have a SIGN_EXTRACT when we are
5065 testing a single bit. This mostly benefits the 68k.
5067 If STORE_FLAG_VALUE does not have the sign bit set when
5068 interpreted in MODE, we can do this conversion as unsigned, which
5069 is usually more efficient. */
5070 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5072 convert_move (target
, subtarget
,
5073 (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
5074 && 0 == (STORE_FLAG_VALUE
5075 & ((HOST_WIDE_INT
) 1
5076 << (GET_MODE_BITSIZE (mode
) -1))));
5083 /* If we want to keep subexpressions around, don't reuse our last
5088 /* Now normalize to the proper value in MODE. Sometimes we don't
5089 have to do anything. */
5090 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5092 /* STORE_FLAG_VALUE might be the most negative number, so write
5093 the comparison this way to avoid a compiler-time warning. */
5094 else if (- normalizep
== STORE_FLAG_VALUE
)
5095 op0
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5097 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5098 it hard to use a value of just the sign bit due to ANSI integer
5099 constant typing rules. */
5100 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5101 && (STORE_FLAG_VALUE
5102 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))))
5103 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5104 size_int (GET_MODE_BITSIZE (mode
) - 1), subtarget
,
5108 gcc_assert (STORE_FLAG_VALUE
& 1);
5110 op0
= expand_and (mode
, op0
, const1_rtx
, subtarget
);
5111 if (normalizep
== -1)
5112 op0
= expand_unop (mode
, neg_optab
, op0
, op0
, 0);
5115 /* If we were converting to a smaller mode, do the conversion now. */
5116 if (target_mode
!= mode
)
5118 convert_move (target
, op0
, 0);
5125 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5126 and storing in TARGET. Normally return TARGET.
5127 Return 0 if that cannot be done.
5129 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5130 it is VOIDmode, they cannot both be CONST_INT.
5132 UNSIGNEDP is for the case where we have to widen the operands
5133 to perform the operation. It says to use zero-extension.
5135 NORMALIZEP is 1 if we should convert the result to be either zero
5136 or one. Normalize is -1 if we should convert the result to be
5137 either zero or -1. If NORMALIZEP is zero, the result will be left
5138 "raw" out of the scc insn. */
5141 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5142 enum machine_mode mode
, int unsignedp
, int normalizep
)
5145 enum insn_code icode
;
5146 enum machine_mode compare_mode
;
5147 enum machine_mode target_mode
= GET_MODE (target
);
5149 rtx last
= get_last_insn ();
5150 rtx pattern
, comparison
;
5153 code
= unsigned_condition (code
);
5155 /* If one operand is constant, make it the second one. Only do this
5156 if the other operand is not constant as well. */
5158 if (swap_commutative_operands_p (op0
, op1
))
5163 code
= swap_condition (code
);
5166 if (mode
== VOIDmode
)
5167 mode
= GET_MODE (op0
);
5169 /* For some comparisons with 1 and -1, we can convert this to
5170 comparisons with zero. This will often produce more opportunities for
5171 store-flag insns. */
5176 if (op1
== const1_rtx
)
5177 op1
= const0_rtx
, code
= LE
;
5180 if (op1
== constm1_rtx
)
5181 op1
= const0_rtx
, code
= LT
;
5184 if (op1
== const1_rtx
)
5185 op1
= const0_rtx
, code
= GT
;
5188 if (op1
== constm1_rtx
)
5189 op1
= const0_rtx
, code
= GE
;
5192 if (op1
== const1_rtx
)
5193 op1
= const0_rtx
, code
= NE
;
5196 if (op1
== const1_rtx
)
5197 op1
= const0_rtx
, code
= EQ
;
5203 /* If we are comparing a double-word integer with zero or -1, we can
5204 convert the comparison into one involving a single word. */
5205 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5206 && GET_MODE_CLASS (mode
) == MODE_INT
5207 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5209 if ((code
== EQ
|| code
== NE
)
5210 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5212 rtx op00
, op01
, op0both
;
5214 /* Do a logical OR or AND of the two words and compare the
5216 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5217 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5218 op0both
= expand_binop (word_mode
,
5219 op1
== const0_rtx
? ior_optab
: and_optab
,
5220 op00
, op01
, NULL_RTX
, unsignedp
,
5224 return emit_store_flag (target
, code
, op0both
, op1
, word_mode
,
5225 unsignedp
, normalizep
);
5227 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5231 /* If testing the sign bit, can just test on high word. */
5232 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5233 subreg_highpart_offset (word_mode
,
5235 return emit_store_flag (target
, code
, op0h
, op1
, word_mode
,
5236 unsignedp
, normalizep
);
5240 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5241 complement of A (for GE) and shifting the sign bit to the low bit. */
5242 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5243 && GET_MODE_CLASS (mode
) == MODE_INT
5244 && (normalizep
|| STORE_FLAG_VALUE
== 1
5245 || (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5246 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5247 == ((unsigned HOST_WIDE_INT
) 1
5248 << (GET_MODE_BITSIZE (mode
) - 1))))))
5252 /* If the result is to be wider than OP0, it is best to convert it
5253 first. If it is to be narrower, it is *incorrect* to convert it
5255 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5257 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5261 if (target_mode
!= mode
)
5265 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5266 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5267 ? 0 : subtarget
), 0);
5269 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5270 /* If we are supposed to produce a 0/1 value, we want to do
5271 a logical shift from the sign bit to the low-order bit; for
5272 a -1/0 value, we do an arithmetic shift. */
5273 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5274 size_int (GET_MODE_BITSIZE (mode
) - 1),
5275 subtarget
, normalizep
!= -1);
5277 if (mode
!= target_mode
)
5278 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5283 icode
= setcc_gen_code
[(int) code
];
5285 if (icode
!= CODE_FOR_nothing
)
5287 insn_operand_predicate_fn pred
;
5289 /* We think we may be able to do this with a scc insn. Emit the
5290 comparison and then the scc insn. */
5292 do_pending_stack_adjust ();
5293 last
= get_last_insn ();
5296 = compare_from_rtx (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
);
5297 if (CONSTANT_P (comparison
))
5299 switch (GET_CODE (comparison
))
5302 if (comparison
== const0_rtx
)
5306 #ifdef FLOAT_STORE_FLAG_VALUE
5308 if (comparison
== CONST0_RTX (GET_MODE (comparison
)))
5316 if (normalizep
== 1)
5318 if (normalizep
== -1)
5320 return const_true_rtx
;
5323 /* The code of COMPARISON may not match CODE if compare_from_rtx
5324 decided to swap its operands and reverse the original code.
5326 We know that compare_from_rtx returns either a CONST_INT or
5327 a new comparison code, so it is safe to just extract the
5328 code from COMPARISON. */
5329 code
= GET_CODE (comparison
);
5331 /* Get a reference to the target in the proper mode for this insn. */
5332 compare_mode
= insn_data
[(int) icode
].operand
[0].mode
;
5334 pred
= insn_data
[(int) icode
].operand
[0].predicate
;
5335 if (optimize
|| ! (*pred
) (subtarget
, compare_mode
))
5336 subtarget
= gen_reg_rtx (compare_mode
);
5338 pattern
= GEN_FCN (icode
) (subtarget
);
5341 emit_insn (pattern
);
5342 return emit_store_flag_1 (target
, subtarget
, compare_mode
,
5348 /* We don't have an scc insn, so try a cstore insn. */
5350 for (compare_mode
= mode
; compare_mode
!= VOIDmode
;
5351 compare_mode
= GET_MODE_WIDER_MODE (compare_mode
))
5353 icode
= optab_handler (cstore_optab
, compare_mode
)->insn_code
;
5354 if (icode
!= CODE_FOR_nothing
)
5358 if (icode
!= CODE_FOR_nothing
)
5360 enum machine_mode result_mode
5361 = insn_data
[(int) icode
].operand
[0].mode
;
5362 rtx cstore_op0
= op0
;
5363 rtx cstore_op1
= op1
;
5365 do_pending_stack_adjust ();
5366 last
= get_last_insn ();
5368 if (compare_mode
!= mode
)
5370 cstore_op0
= convert_modes (compare_mode
, mode
, cstore_op0
,
5372 cstore_op1
= convert_modes (compare_mode
, mode
, cstore_op1
,
5376 if (!insn_data
[(int) icode
].operand
[2].predicate (cstore_op0
,
5378 cstore_op0
= copy_to_mode_reg (compare_mode
, cstore_op0
);
5380 if (!insn_data
[(int) icode
].operand
[3].predicate (cstore_op1
,
5382 cstore_op1
= copy_to_mode_reg (compare_mode
, cstore_op1
);
5384 comparison
= gen_rtx_fmt_ee (code
, result_mode
, cstore_op0
,
5388 if (optimize
|| !(insn_data
[(int) icode
].operand
[0].predicate
5389 (subtarget
, result_mode
)))
5390 subtarget
= gen_reg_rtx (result_mode
);
5392 pattern
= GEN_FCN (icode
) (subtarget
, comparison
, cstore_op0
,
5397 emit_insn (pattern
);
5398 return emit_store_flag_1 (target
, subtarget
, result_mode
,
5404 delete_insns_since (last
);
5406 /* If optimizing, use different pseudo registers for each insn, instead
5407 of reusing the same pseudo. This leads to better CSE, but slows
5408 down the compiler, since there are more pseudos */
5409 subtarget
= (!optimize
5410 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5412 /* If we reached here, we can't do this with a scc insn. However, there
5413 are some comparisons that can be done directly. For example, if
5414 this is an equality comparison of integers, we can try to exclusive-or
5415 (or subtract) the two operands and use a recursive call to try the
5416 comparison with zero. Don't do any of these cases if branches are
5420 && GET_MODE_CLASS (mode
) == MODE_INT
&& (code
== EQ
|| code
== NE
)
5421 && op1
!= const0_rtx
)
5423 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5427 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5430 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5431 mode
, unsignedp
, normalizep
);
5433 delete_insns_since (last
);
5437 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5438 the constant zero. Reject all other comparisons at this point. Only
5439 do LE and GT if branches are expensive since they are expensive on
5440 2-operand machines. */
5442 if (BRANCH_COST
== 0
5443 || GET_MODE_CLASS (mode
) != MODE_INT
|| op1
!= const0_rtx
5444 || (code
!= EQ
&& code
!= NE
5445 && (BRANCH_COST
<= 1 || (code
!= LE
&& code
!= GT
))))
5448 /* See what we need to return. We can only return a 1, -1, or the
5451 if (normalizep
== 0)
5453 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5454 normalizep
= STORE_FLAG_VALUE
;
5456 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5457 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5458 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1)))
5464 /* Try to put the result of the comparison in the sign bit. Assume we can't
5465 do the necessary operation below. */
5469 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5470 the sign bit set. */
5474 /* This is destructive, so SUBTARGET can't be OP0. */
5475 if (rtx_equal_p (subtarget
, op0
))
5478 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5481 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5485 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5486 number of bits in the mode of OP0, minus one. */
5490 if (rtx_equal_p (subtarget
, op0
))
5493 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5494 size_int (GET_MODE_BITSIZE (mode
) - 1),
5496 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5500 if (code
== EQ
|| code
== NE
)
5502 /* For EQ or NE, one way to do the comparison is to apply an operation
5503 that converts the operand into a positive number if it is nonzero
5504 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5505 for NE we negate. This puts the result in the sign bit. Then we
5506 normalize with a shift, if needed.
5508 Two operations that can do the above actions are ABS and FFS, so try
5509 them. If that doesn't work, and MODE is smaller than a full word,
5510 we can use zero-extension to the wider mode (an unsigned conversion)
5511 as the operation. */
5513 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5514 that is compensated by the subsequent overflow when subtracting
5517 if (optab_handler (abs_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
5518 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5519 else if (optab_handler (ffs_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
5520 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5521 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5523 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5530 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5533 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5536 /* If we couldn't do it that way, for NE we can "or" the two's complement
5537 of the value with itself. For EQ, we take the one's complement of
5538 that "or", which is an extra insn, so we only handle EQ if branches
5541 if (tem
== 0 && (code
== NE
|| BRANCH_COST
> 1))
5543 if (rtx_equal_p (subtarget
, op0
))
5546 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5547 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5550 if (tem
&& code
== EQ
)
5551 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5555 if (tem
&& normalizep
)
5556 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5557 size_int (GET_MODE_BITSIZE (mode
) - 1),
5558 subtarget
, normalizep
== 1);
5562 if (GET_MODE (tem
) != target_mode
)
5564 convert_move (target
, tem
, 0);
5567 else if (!subtarget
)
5569 emit_move_insn (target
, tem
);
5574 delete_insns_since (last
);
5579 /* Like emit_store_flag, but always succeeds. */
5582 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5583 enum machine_mode mode
, int unsignedp
, int normalizep
)
5587 /* First see if emit_store_flag can do the job. */
5588 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5592 if (normalizep
== 0)
5595 /* If this failed, we have to do this with set/compare/jump/set code. */
5598 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5599 target
= gen_reg_rtx (GET_MODE (target
));
5601 emit_move_insn (target
, const1_rtx
);
5602 label
= gen_label_rtx ();
5603 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
,
5606 emit_move_insn (target
, const0_rtx
);
5612 /* Perform possibly multi-word comparison and conditional jump to LABEL
5613 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5614 now a thin wrapper around do_compare_rtx_and_jump. */
5617 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, enum machine_mode mode
,
5620 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5621 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
,
5622 NULL_RTX
, NULL_RTX
, label
);