Daily bump.
[official-gcc.git] / gcc / rtlanal.c
blobda1ceb4adbdf539e48b044893d21e01363bf3fc2
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
54 /* Forward declarations */
55 static void set_of_1 (rtx, const_rtx, void *);
56 static bool covers_regno_p (const_rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (const_rtx);
60 static void parms_set (rtx, const_rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
66 const_rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
69 const_rtx, enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
75 enum machine_mode, unsigned int);
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
85 int target_flags;
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
109 rtx_unstable_p (const_rtx x)
111 const RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
115 switch (code)
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_FIXED:
124 case CONST_VECTOR:
125 case SYMBOL_REF:
126 case LABEL_REF:
127 return 0;
129 case REG:
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
134 return 0;
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x == pic_offset_table_rtx)
140 return 0;
141 #endif
142 return 1;
144 case ASM_OPERANDS:
145 if (MEM_VOLATILE_P (x))
146 return 1;
148 /* Fall through. */
150 default:
151 break;
154 fmt = GET_RTX_FORMAT (code);
155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
156 if (fmt[i] == 'e')
158 if (rtx_unstable_p (XEXP (x, i)))
159 return 1;
161 else if (fmt[i] == 'E')
163 int j;
164 for (j = 0; j < XVECLEN (x, i); j++)
165 if (rtx_unstable_p (XVECEXP (x, i, j)))
166 return 1;
169 return 0;
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
179 bool
180 rtx_varies_p (const_rtx x, bool for_alias)
182 RTX_CODE code;
183 int i;
184 const char *fmt;
186 if (!x)
187 return 0;
189 code = GET_CODE (x);
190 switch (code)
192 case MEM:
193 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
195 case CONST:
196 case CONST_INT:
197 case CONST_DOUBLE:
198 case CONST_FIXED:
199 case CONST_VECTOR:
200 case SYMBOL_REF:
201 case LABEL_REF:
202 return 0;
204 case REG:
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
208 for pseudos. */
209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
212 return 0;
213 if (x == pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
219 && for_alias
220 #endif
222 return 0;
223 return 1;
225 case LO_SUM:
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
230 || rtx_varies_p (XEXP (x, 1), for_alias);
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
236 /* Fall through. */
238 default:
239 break;
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
246 if (rtx_varies_p (XEXP (x, i), for_alias))
247 return 1;
249 else if (fmt[i] == 'E')
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
254 return 1;
257 return 0;
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
265 static int
266 rtx_addr_can_trap_p_1 (const_rtx x, enum machine_mode mode, bool unaligned_mems)
268 enum rtx_code code = GET_CODE (x);
270 switch (code)
272 case SYMBOL_REF:
273 return SYMBOL_REF_WEAK (x);
275 case LABEL_REF:
276 return 0;
278 case REG:
279 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
280 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
281 || x == stack_pointer_rtx
282 /* The arg pointer varies if it is not a fixed register. */
283 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
284 return 0;
285 /* All of the virtual frame registers are stack references. */
286 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
287 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
288 return 0;
289 return 1;
291 case CONST:
292 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
294 case PLUS:
295 /* An address is assumed not to trap if:
296 - it is an address that can't trap plus a constant integer,
297 with the proper remainder modulo the mode size if we are
298 considering unaligned memory references. */
299 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
300 && GET_CODE (XEXP (x, 1)) == CONST_INT)
302 HOST_WIDE_INT offset;
304 if (!STRICT_ALIGNMENT
305 || !unaligned_mems
306 || GET_MODE_SIZE (mode) == 0)
307 return 0;
309 offset = INTVAL (XEXP (x, 1));
311 #ifdef SPARC_STACK_BOUNDARY_HACK
312 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
313 the real alignment of %sp. However, when it does this, the
314 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
315 if (SPARC_STACK_BOUNDARY_HACK
316 && (XEXP (x, 0) == stack_pointer_rtx
317 || XEXP (x, 0) == hard_frame_pointer_rtx))
318 offset -= STACK_POINTER_OFFSET;
319 #endif
321 return offset % GET_MODE_SIZE (mode) != 0;
324 /* - or it is the pic register plus a constant. */
325 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
326 return 0;
328 return 1;
330 case LO_SUM:
331 case PRE_MODIFY:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
334 case PRE_DEC:
335 case PRE_INC:
336 case POST_DEC:
337 case POST_INC:
338 case POST_MODIFY:
339 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
341 default:
342 break;
345 /* If it isn't one of the case above, it can cause a trap. */
346 return 1;
349 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
352 rtx_addr_can_trap_p (const_rtx x)
354 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
357 /* Return true if X is an address that is known to not be zero. */
359 bool
360 nonzero_address_p (const_rtx x)
362 const enum rtx_code code = GET_CODE (x);
364 switch (code)
366 case SYMBOL_REF:
367 return !SYMBOL_REF_WEAK (x);
369 case LABEL_REF:
370 return true;
372 case REG:
373 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
374 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
375 || x == stack_pointer_rtx
376 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
377 return true;
378 /* All of the virtual frame registers are stack references. */
379 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
380 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
381 return true;
382 return false;
384 case CONST:
385 return nonzero_address_p (XEXP (x, 0));
387 case PLUS:
388 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
389 return nonzero_address_p (XEXP (x, 0));
390 /* Handle PIC references. */
391 else if (XEXP (x, 0) == pic_offset_table_rtx
392 && CONSTANT_P (XEXP (x, 1)))
393 return true;
394 return false;
396 case PRE_MODIFY:
397 /* Similar to the above; allow positive offsets. Further, since
398 auto-inc is only allowed in memories, the register must be a
399 pointer. */
400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
401 && INTVAL (XEXP (x, 1)) > 0)
402 return true;
403 return nonzero_address_p (XEXP (x, 0));
405 case PRE_INC:
406 /* Similarly. Further, the offset is always positive. */
407 return true;
409 case PRE_DEC:
410 case POST_DEC:
411 case POST_INC:
412 case POST_MODIFY:
413 return nonzero_address_p (XEXP (x, 0));
415 case LO_SUM:
416 return nonzero_address_p (XEXP (x, 1));
418 default:
419 break;
422 /* If it isn't one of the case above, might be zero. */
423 return false;
426 /* Return 1 if X refers to a memory location whose address
427 cannot be compared reliably with constant addresses,
428 or if X refers to a BLKmode memory object.
429 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
430 zero, we are slightly more conservative. */
432 bool
433 rtx_addr_varies_p (const_rtx x, bool for_alias)
435 enum rtx_code code;
436 int i;
437 const char *fmt;
439 if (x == 0)
440 return 0;
442 code = GET_CODE (x);
443 if (code == MEM)
444 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
446 fmt = GET_RTX_FORMAT (code);
447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
448 if (fmt[i] == 'e')
450 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
451 return 1;
453 else if (fmt[i] == 'E')
455 int j;
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
458 return 1;
460 return 0;
463 /* Return the value of the integer term in X, if one is apparent;
464 otherwise return 0.
465 Only obvious integer terms are detected.
466 This is used in cse.c with the `related_value' field. */
468 HOST_WIDE_INT
469 get_integer_term (const_rtx x)
471 if (GET_CODE (x) == CONST)
472 x = XEXP (x, 0);
474 if (GET_CODE (x) == MINUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return - INTVAL (XEXP (x, 1));
477 if (GET_CODE (x) == PLUS
478 && GET_CODE (XEXP (x, 1)) == CONST_INT)
479 return INTVAL (XEXP (x, 1));
480 return 0;
483 /* If X is a constant, return the value sans apparent integer term;
484 otherwise return 0.
485 Only obvious integer terms are detected. */
488 get_related_value (const_rtx x)
490 if (GET_CODE (x) != CONST)
491 return 0;
492 x = XEXP (x, 0);
493 if (GET_CODE (x) == PLUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 else if (GET_CODE (x) == MINUS
497 && GET_CODE (XEXP (x, 1)) == CONST_INT)
498 return XEXP (x, 0);
499 return 0;
502 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
503 to somewhere in the same object or object_block as SYMBOL. */
505 bool
506 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
508 tree decl;
510 if (GET_CODE (symbol) != SYMBOL_REF)
511 return false;
513 if (offset == 0)
514 return true;
516 if (offset > 0)
518 if (CONSTANT_POOL_ADDRESS_P (symbol)
519 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
520 return true;
522 decl = SYMBOL_REF_DECL (symbol);
523 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
524 return true;
527 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
528 && SYMBOL_REF_BLOCK (symbol)
529 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
530 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
531 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
532 return true;
534 return false;
537 /* Split X into a base and a constant offset, storing them in *BASE_OUT
538 and *OFFSET_OUT respectively. */
540 void
541 split_const (rtx x, rtx *base_out, rtx *offset_out)
543 if (GET_CODE (x) == CONST)
545 x = XEXP (x, 0);
546 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
548 *base_out = XEXP (x, 0);
549 *offset_out = XEXP (x, 1);
550 return;
553 *base_out = x;
554 *offset_out = const0_rtx;
557 /* Return the number of places FIND appears within X. If COUNT_DEST is
558 zero, we do not count occurrences inside the destination of a SET. */
561 count_occurrences (const_rtx x, const_rtx find, int count_dest)
563 int i, j;
564 enum rtx_code code;
565 const char *format_ptr;
566 int count;
568 if (x == find)
569 return 1;
571 code = GET_CODE (x);
573 switch (code)
575 case REG:
576 case CONST_INT:
577 case CONST_DOUBLE:
578 case CONST_FIXED:
579 case CONST_VECTOR:
580 case SYMBOL_REF:
581 case CODE_LABEL:
582 case PC:
583 case CC0:
584 return 0;
586 case EXPR_LIST:
587 count = count_occurrences (XEXP (x, 0), find, count_dest);
588 if (XEXP (x, 1))
589 count += count_occurrences (XEXP (x, 1), find, count_dest);
590 return count;
592 case MEM:
593 if (MEM_P (find) && rtx_equal_p (x, find))
594 return 1;
595 break;
597 case SET:
598 if (SET_DEST (x) == find && ! count_dest)
599 return count_occurrences (SET_SRC (x), find, count_dest);
600 break;
602 default:
603 break;
606 format_ptr = GET_RTX_FORMAT (code);
607 count = 0;
609 for (i = 0; i < GET_RTX_LENGTH (code); i++)
611 switch (*format_ptr++)
613 case 'e':
614 count += count_occurrences (XEXP (x, i), find, count_dest);
615 break;
617 case 'E':
618 for (j = 0; j < XVECLEN (x, i); j++)
619 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
620 break;
623 return count;
627 /* Nonzero if register REG appears somewhere within IN.
628 Also works if REG is not a register; in this case it checks
629 for a subexpression of IN that is Lisp "equal" to REG. */
632 reg_mentioned_p (const_rtx reg, const_rtx in)
634 const char *fmt;
635 int i;
636 enum rtx_code code;
638 if (in == 0)
639 return 0;
641 if (reg == in)
642 return 1;
644 if (GET_CODE (in) == LABEL_REF)
645 return reg == XEXP (in, 0);
647 code = GET_CODE (in);
649 switch (code)
651 /* Compare registers by number. */
652 case REG:
653 return REG_P (reg) && REGNO (in) == REGNO (reg);
655 /* These codes have no constituent expressions
656 and are unique. */
657 case SCRATCH:
658 case CC0:
659 case PC:
660 return 0;
662 case CONST_INT:
663 case CONST_VECTOR:
664 case CONST_DOUBLE:
665 case CONST_FIXED:
666 /* These are kept unique for a given value. */
667 return 0;
669 default:
670 break;
673 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
674 return 1;
676 fmt = GET_RTX_FORMAT (code);
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
680 if (fmt[i] == 'E')
682 int j;
683 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
684 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
685 return 1;
687 else if (fmt[i] == 'e'
688 && reg_mentioned_p (reg, XEXP (in, i)))
689 return 1;
691 return 0;
694 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
695 no CODE_LABEL insn. */
698 no_labels_between_p (const_rtx beg, const_rtx end)
700 rtx p;
701 if (beg == end)
702 return 0;
703 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
704 if (LABEL_P (p))
705 return 0;
706 return 1;
709 /* Nonzero if register REG is used in an insn between
710 FROM_INSN and TO_INSN (exclusive of those two). */
713 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
715 rtx insn;
717 if (from_insn == to_insn)
718 return 0;
720 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
721 if (INSN_P (insn)
722 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
723 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
724 return 1;
725 return 0;
728 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
729 is entirely replaced by a new value and the only use is as a SET_DEST,
730 we do not consider it a reference. */
733 reg_referenced_p (const_rtx x, const_rtx body)
735 int i;
737 switch (GET_CODE (body))
739 case SET:
740 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
741 return 1;
743 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
744 of a REG that occupies all of the REG, the insn references X if
745 it is mentioned in the destination. */
746 if (GET_CODE (SET_DEST (body)) != CC0
747 && GET_CODE (SET_DEST (body)) != PC
748 && !REG_P (SET_DEST (body))
749 && ! (GET_CODE (SET_DEST (body)) == SUBREG
750 && REG_P (SUBREG_REG (SET_DEST (body)))
751 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
752 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
753 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
754 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
755 && reg_overlap_mentioned_p (x, SET_DEST (body)))
756 return 1;
757 return 0;
759 case ASM_OPERANDS:
760 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
761 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
762 return 1;
763 return 0;
765 case CALL:
766 case USE:
767 case IF_THEN_ELSE:
768 return reg_overlap_mentioned_p (x, body);
770 case TRAP_IF:
771 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
773 case PREFETCH:
774 return reg_overlap_mentioned_p (x, XEXP (body, 0));
776 case UNSPEC:
777 case UNSPEC_VOLATILE:
778 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
779 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
780 return 1;
781 return 0;
783 case PARALLEL:
784 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
785 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
786 return 1;
787 return 0;
789 case CLOBBER:
790 if (MEM_P (XEXP (body, 0)))
791 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
792 return 1;
793 return 0;
795 case COND_EXEC:
796 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
797 return 1;
798 return reg_referenced_p (x, COND_EXEC_CODE (body));
800 default:
801 return 0;
805 /* Nonzero if register REG is set or clobbered in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
809 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
811 const_rtx insn;
813 if (from_insn == to_insn)
814 return 0;
816 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
817 if (INSN_P (insn) && reg_set_p (reg, insn))
818 return 1;
819 return 0;
822 /* Internals of reg_set_between_p. */
824 reg_set_p (const_rtx reg, const_rtx insn)
826 /* We can be passed an insn or part of one. If we are passed an insn,
827 check if a side-effect of the insn clobbers REG. */
828 if (INSN_P (insn)
829 && (FIND_REG_INC_NOTE (insn, reg)
830 || (CALL_P (insn)
831 && ((REG_P (reg)
832 && REGNO (reg) < FIRST_PSEUDO_REGISTER
833 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
834 GET_MODE (reg), REGNO (reg)))
835 || MEM_P (reg)
836 || find_reg_fusage (insn, CLOBBER, reg)))))
837 return 1;
839 return set_of (reg, insn) != NULL_RTX;
842 /* Similar to reg_set_between_p, but check all registers in X. Return 0
843 only if none of them are modified between START and END. Return 1 if
844 X contains a MEM; this routine does usememory aliasing. */
847 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
849 const enum rtx_code code = GET_CODE (x);
850 const char *fmt;
851 int i, j;
852 rtx insn;
854 if (start == end)
855 return 0;
857 switch (code)
859 case CONST_INT:
860 case CONST_DOUBLE:
861 case CONST_FIXED:
862 case CONST_VECTOR:
863 case CONST:
864 case SYMBOL_REF:
865 case LABEL_REF:
866 return 0;
868 case PC:
869 case CC0:
870 return 1;
872 case MEM:
873 if (modified_between_p (XEXP (x, 0), start, end))
874 return 1;
875 if (MEM_READONLY_P (x))
876 return 0;
877 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
878 if (memory_modified_in_insn_p (x, insn))
879 return 1;
880 return 0;
881 break;
883 case REG:
884 return reg_set_between_p (x, start, end);
886 default:
887 break;
890 fmt = GET_RTX_FORMAT (code);
891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
893 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
894 return 1;
896 else if (fmt[i] == 'E')
897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
898 if (modified_between_p (XVECEXP (x, i, j), start, end))
899 return 1;
902 return 0;
905 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
906 of them are modified in INSN. Return 1 if X contains a MEM; this routine
907 does use memory aliasing. */
910 modified_in_p (const_rtx x, const_rtx insn)
912 const enum rtx_code code = GET_CODE (x);
913 const char *fmt;
914 int i, j;
916 switch (code)
918 case CONST_INT:
919 case CONST_DOUBLE:
920 case CONST_FIXED:
921 case CONST_VECTOR:
922 case CONST:
923 case SYMBOL_REF:
924 case LABEL_REF:
925 return 0;
927 case PC:
928 case CC0:
929 return 1;
931 case MEM:
932 if (modified_in_p (XEXP (x, 0), insn))
933 return 1;
934 if (MEM_READONLY_P (x))
935 return 0;
936 if (memory_modified_in_insn_p (x, insn))
937 return 1;
938 return 0;
939 break;
941 case REG:
942 return reg_set_p (x, insn);
944 default:
945 break;
948 fmt = GET_RTX_FORMAT (code);
949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
951 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
952 return 1;
954 else if (fmt[i] == 'E')
955 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
956 if (modified_in_p (XVECEXP (x, i, j), insn))
957 return 1;
960 return 0;
963 /* Helper function for set_of. */
964 struct set_of_data
966 const_rtx found;
967 const_rtx pat;
970 static void
971 set_of_1 (rtx x, const_rtx pat, void *data1)
973 struct set_of_data *const data = (struct set_of_data *) (data1);
974 if (rtx_equal_p (x, data->pat)
975 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
976 data->found = pat;
979 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
980 (either directly or via STRICT_LOW_PART and similar modifiers). */
981 const_rtx
982 set_of (const_rtx pat, const_rtx insn)
984 struct set_of_data data;
985 data.found = NULL_RTX;
986 data.pat = pat;
987 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
988 return data.found;
991 /* Given an INSN, return a SET expression if this insn has only a single SET.
992 It may also have CLOBBERs, USEs, or SET whose output
993 will not be used, which we ignore. */
996 single_set_2 (const_rtx insn, const_rtx pat)
998 rtx set = NULL;
999 int set_verified = 1;
1000 int i;
1002 if (GET_CODE (pat) == PARALLEL)
1004 for (i = 0; i < XVECLEN (pat, 0); i++)
1006 rtx sub = XVECEXP (pat, 0, i);
1007 switch (GET_CODE (sub))
1009 case USE:
1010 case CLOBBER:
1011 break;
1013 case SET:
1014 /* We can consider insns having multiple sets, where all
1015 but one are dead as single set insns. In common case
1016 only single set is present in the pattern so we want
1017 to avoid checking for REG_UNUSED notes unless necessary.
1019 When we reach set first time, we just expect this is
1020 the single set we are looking for and only when more
1021 sets are found in the insn, we check them. */
1022 if (!set_verified)
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1025 && !side_effects_p (set))
1026 set = NULL;
1027 else
1028 set_verified = 1;
1030 if (!set)
1031 set = sub, set_verified = 0;
1032 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1033 || side_effects_p (sub))
1034 return NULL_RTX;
1035 break;
1037 default:
1038 return NULL_RTX;
1042 return set;
1045 /* Given an INSN, return nonzero if it has more than one SET, else return
1046 zero. */
1049 multiple_sets (const_rtx insn)
1051 int found;
1052 int i;
1054 /* INSN must be an insn. */
1055 if (! INSN_P (insn))
1056 return 0;
1058 /* Only a PARALLEL can have multiple SETs. */
1059 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1061 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1062 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1064 /* If we have already found a SET, then return now. */
1065 if (found)
1066 return 1;
1067 else
1068 found = 1;
1072 /* Either zero or one SET. */
1073 return 0;
1076 /* Return nonzero if the destination of SET equals the source
1077 and there are no side effects. */
1080 set_noop_p (const_rtx set)
1082 rtx src = SET_SRC (set);
1083 rtx dst = SET_DEST (set);
1085 if (dst == pc_rtx && src == pc_rtx)
1086 return 1;
1088 if (MEM_P (dst) && MEM_P (src))
1089 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1091 if (GET_CODE (dst) == ZERO_EXTRACT)
1092 return rtx_equal_p (XEXP (dst, 0), src)
1093 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1094 && !side_effects_p (src);
1096 if (GET_CODE (dst) == STRICT_LOW_PART)
1097 dst = XEXP (dst, 0);
1099 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1101 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1102 return 0;
1103 src = SUBREG_REG (src);
1104 dst = SUBREG_REG (dst);
1107 return (REG_P (src) && REG_P (dst)
1108 && REGNO (src) == REGNO (dst));
1111 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1112 value to itself. */
1115 noop_move_p (const_rtx insn)
1117 rtx pat = PATTERN (insn);
1119 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1120 return 1;
1122 /* Insns carrying these notes are useful later on. */
1123 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1124 return 0;
1126 /* For now treat an insn with a REG_RETVAL note as a
1127 a special insn which should not be considered a no-op. */
1128 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1129 return 0;
1131 if (GET_CODE (pat) == SET && set_noop_p (pat))
1132 return 1;
1134 if (GET_CODE (pat) == PARALLEL)
1136 int i;
1137 /* If nothing but SETs of registers to themselves,
1138 this insn can also be deleted. */
1139 for (i = 0; i < XVECLEN (pat, 0); i++)
1141 rtx tem = XVECEXP (pat, 0, i);
1143 if (GET_CODE (tem) == USE
1144 || GET_CODE (tem) == CLOBBER)
1145 continue;
1147 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1148 return 0;
1151 return 1;
1153 return 0;
1157 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1158 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1159 If the object was modified, if we hit a partial assignment to X, or hit a
1160 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1161 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1162 be the src. */
1165 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1167 rtx p;
1169 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1170 p = PREV_INSN (p))
1171 if (INSN_P (p))
1173 rtx set = single_set (p);
1174 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1176 if (set && rtx_equal_p (x, SET_DEST (set)))
1178 rtx src = SET_SRC (set);
1180 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1181 src = XEXP (note, 0);
1183 if ((valid_to == NULL_RTX
1184 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1185 /* Reject hard registers because we don't usually want
1186 to use them; we'd rather use a pseudo. */
1187 && (! (REG_P (src)
1188 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1190 *pinsn = p;
1191 return src;
1195 /* If set in non-simple way, we don't have a value. */
1196 if (reg_set_p (x, p))
1197 break;
1200 return x;
1203 /* Return nonzero if register in range [REGNO, ENDREGNO)
1204 appears either explicitly or implicitly in X
1205 other than being stored into.
1207 References contained within the substructure at LOC do not count.
1208 LOC may be zero, meaning don't ignore anything. */
1211 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1212 rtx *loc)
1214 int i;
1215 unsigned int x_regno;
1216 RTX_CODE code;
1217 const char *fmt;
1219 repeat:
1220 /* The contents of a REG_NONNEG note is always zero, so we must come here
1221 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1222 if (x == 0)
1223 return 0;
1225 code = GET_CODE (x);
1227 switch (code)
1229 case REG:
1230 x_regno = REGNO (x);
1232 /* If we modifying the stack, frame, or argument pointer, it will
1233 clobber a virtual register. In fact, we could be more precise,
1234 but it isn't worth it. */
1235 if ((x_regno == STACK_POINTER_REGNUM
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 || x_regno == ARG_POINTER_REGNUM
1238 #endif
1239 || x_regno == FRAME_POINTER_REGNUM)
1240 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1241 return 1;
1243 return endregno > x_regno && regno < END_REGNO (x);
1245 case SUBREG:
1246 /* If this is a SUBREG of a hard reg, we can see exactly which
1247 registers are being modified. Otherwise, handle normally. */
1248 if (REG_P (SUBREG_REG (x))
1249 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1251 unsigned int inner_regno = subreg_regno (x);
1252 unsigned int inner_endregno
1253 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1254 ? subreg_nregs (x) : 1);
1256 return endregno > inner_regno && regno < inner_endregno;
1258 break;
1260 case CLOBBER:
1261 case SET:
1262 if (&SET_DEST (x) != loc
1263 /* Note setting a SUBREG counts as referring to the REG it is in for
1264 a pseudo but not for hard registers since we can
1265 treat each word individually. */
1266 && ((GET_CODE (SET_DEST (x)) == SUBREG
1267 && loc != &SUBREG_REG (SET_DEST (x))
1268 && REG_P (SUBREG_REG (SET_DEST (x)))
1269 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1270 && refers_to_regno_p (regno, endregno,
1271 SUBREG_REG (SET_DEST (x)), loc))
1272 || (!REG_P (SET_DEST (x))
1273 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1274 return 1;
1276 if (code == CLOBBER || loc == &SET_SRC (x))
1277 return 0;
1278 x = SET_SRC (x);
1279 goto repeat;
1281 default:
1282 break;
1285 /* X does not match, so try its subexpressions. */
1287 fmt = GET_RTX_FORMAT (code);
1288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1290 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1292 if (i == 0)
1294 x = XEXP (x, 0);
1295 goto repeat;
1297 else
1298 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1299 return 1;
1301 else if (fmt[i] == 'E')
1303 int j;
1304 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1305 if (loc != &XVECEXP (x, i, j)
1306 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1307 return 1;
1310 return 0;
1313 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1314 we check if any register number in X conflicts with the relevant register
1315 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1316 contains a MEM (we don't bother checking for memory addresses that can't
1317 conflict because we expect this to be a rare case. */
1320 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1322 unsigned int regno, endregno;
1324 /* If either argument is a constant, then modifying X can not
1325 affect IN. Here we look at IN, we can profitably combine
1326 CONSTANT_P (x) with the switch statement below. */
1327 if (CONSTANT_P (in))
1328 return 0;
1330 recurse:
1331 switch (GET_CODE (x))
1333 case STRICT_LOW_PART:
1334 case ZERO_EXTRACT:
1335 case SIGN_EXTRACT:
1336 /* Overly conservative. */
1337 x = XEXP (x, 0);
1338 goto recurse;
1340 case SUBREG:
1341 regno = REGNO (SUBREG_REG (x));
1342 if (regno < FIRST_PSEUDO_REGISTER)
1343 regno = subreg_regno (x);
1344 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1345 ? subreg_nregs (x) : 1);
1346 goto do_reg;
1348 case REG:
1349 regno = REGNO (x);
1350 endregno = END_REGNO (x);
1351 do_reg:
1352 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1354 case MEM:
1356 const char *fmt;
1357 int i;
1359 if (MEM_P (in))
1360 return 1;
1362 fmt = GET_RTX_FORMAT (GET_CODE (in));
1363 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1364 if (fmt[i] == 'e')
1366 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1367 return 1;
1369 else if (fmt[i] == 'E')
1371 int j;
1372 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1373 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1374 return 1;
1377 return 0;
1380 case SCRATCH:
1381 case PC:
1382 case CC0:
1383 return reg_mentioned_p (x, in);
1385 case PARALLEL:
1387 int i;
1389 /* If any register in here refers to it we return true. */
1390 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1391 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1392 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1393 return 1;
1394 return 0;
1397 default:
1398 gcc_assert (CONSTANT_P (x));
1399 return 0;
1403 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1404 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1405 ignored by note_stores, but passed to FUN.
1407 FUN receives three arguments:
1408 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1409 2. the SET or CLOBBER rtx that does the store,
1410 3. the pointer DATA provided to note_stores.
1412 If the item being stored in or clobbered is a SUBREG of a hard register,
1413 the SUBREG will be passed. */
1415 void
1416 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1418 int i;
1420 if (GET_CODE (x) == COND_EXEC)
1421 x = COND_EXEC_CODE (x);
1423 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1425 rtx dest = SET_DEST (x);
1427 while ((GET_CODE (dest) == SUBREG
1428 && (!REG_P (SUBREG_REG (dest))
1429 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1430 || GET_CODE (dest) == ZERO_EXTRACT
1431 || GET_CODE (dest) == STRICT_LOW_PART)
1432 dest = XEXP (dest, 0);
1434 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1435 each of whose first operand is a register. */
1436 if (GET_CODE (dest) == PARALLEL)
1438 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1439 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1440 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1442 else
1443 (*fun) (dest, x, data);
1446 else if (GET_CODE (x) == PARALLEL)
1447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1448 note_stores (XVECEXP (x, 0, i), fun, data);
1451 /* Like notes_stores, but call FUN for each expression that is being
1452 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1453 FUN for each expression, not any interior subexpressions. FUN receives a
1454 pointer to the expression and the DATA passed to this function.
1456 Note that this is not quite the same test as that done in reg_referenced_p
1457 since that considers something as being referenced if it is being
1458 partially set, while we do not. */
1460 void
1461 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1463 rtx body = *pbody;
1464 int i;
1466 switch (GET_CODE (body))
1468 case COND_EXEC:
1469 (*fun) (&COND_EXEC_TEST (body), data);
1470 note_uses (&COND_EXEC_CODE (body), fun, data);
1471 return;
1473 case PARALLEL:
1474 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1475 note_uses (&XVECEXP (body, 0, i), fun, data);
1476 return;
1478 case SEQUENCE:
1479 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1480 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1481 return;
1483 case USE:
1484 (*fun) (&XEXP (body, 0), data);
1485 return;
1487 case ASM_OPERANDS:
1488 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1489 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1490 return;
1492 case TRAP_IF:
1493 (*fun) (&TRAP_CONDITION (body), data);
1494 return;
1496 case PREFETCH:
1497 (*fun) (&XEXP (body, 0), data);
1498 return;
1500 case UNSPEC:
1501 case UNSPEC_VOLATILE:
1502 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1503 (*fun) (&XVECEXP (body, 0, i), data);
1504 return;
1506 case CLOBBER:
1507 if (MEM_P (XEXP (body, 0)))
1508 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1509 return;
1511 case SET:
1513 rtx dest = SET_DEST (body);
1515 /* For sets we replace everything in source plus registers in memory
1516 expression in store and operands of a ZERO_EXTRACT. */
1517 (*fun) (&SET_SRC (body), data);
1519 if (GET_CODE (dest) == ZERO_EXTRACT)
1521 (*fun) (&XEXP (dest, 1), data);
1522 (*fun) (&XEXP (dest, 2), data);
1525 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1526 dest = XEXP (dest, 0);
1528 if (MEM_P (dest))
1529 (*fun) (&XEXP (dest, 0), data);
1531 return;
1533 default:
1534 /* All the other possibilities never store. */
1535 (*fun) (pbody, data);
1536 return;
1540 /* Return nonzero if X's old contents don't survive after INSN.
1541 This will be true if X is (cc0) or if X is a register and
1542 X dies in INSN or because INSN entirely sets X.
1544 "Entirely set" means set directly and not through a SUBREG, or
1545 ZERO_EXTRACT, so no trace of the old contents remains.
1546 Likewise, REG_INC does not count.
1548 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1549 but for this use that makes no difference, since regs don't overlap
1550 during their lifetimes. Therefore, this function may be used
1551 at any time after deaths have been computed.
1553 If REG is a hard reg that occupies multiple machine registers, this
1554 function will only return 1 if each of those registers will be replaced
1555 by INSN. */
1558 dead_or_set_p (const_rtx insn, const_rtx x)
1560 unsigned int regno, end_regno;
1561 unsigned int i;
1563 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1564 if (GET_CODE (x) == CC0)
1565 return 1;
1567 gcc_assert (REG_P (x));
1569 regno = REGNO (x);
1570 end_regno = END_REGNO (x);
1571 for (i = regno; i < end_regno; i++)
1572 if (! dead_or_set_regno_p (insn, i))
1573 return 0;
1575 return 1;
1578 /* Return TRUE iff DEST is a register or subreg of a register and
1579 doesn't change the number of words of the inner register, and any
1580 part of the register is TEST_REGNO. */
1582 static bool
1583 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1585 unsigned int regno, endregno;
1587 if (GET_CODE (dest) == SUBREG
1588 && (((GET_MODE_SIZE (GET_MODE (dest))
1589 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1590 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1591 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1592 dest = SUBREG_REG (dest);
1594 if (!REG_P (dest))
1595 return false;
1597 regno = REGNO (dest);
1598 endregno = END_REGNO (dest);
1599 return (test_regno >= regno && test_regno < endregno);
1602 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1603 any member matches the covers_regno_no_parallel_p criteria. */
1605 static bool
1606 covers_regno_p (const_rtx dest, unsigned int test_regno)
1608 if (GET_CODE (dest) == PARALLEL)
1610 /* Some targets place small structures in registers for return
1611 values of functions, and those registers are wrapped in
1612 PARALLELs that we may see as the destination of a SET. */
1613 int i;
1615 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1617 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1618 if (inner != NULL_RTX
1619 && covers_regno_no_parallel_p (inner, test_regno))
1620 return true;
1623 return false;
1625 else
1626 return covers_regno_no_parallel_p (dest, test_regno);
1629 /* Utility function for dead_or_set_p to check an individual register. */
1632 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1634 const_rtx pattern;
1636 /* See if there is a death note for something that includes TEST_REGNO. */
1637 if (find_regno_note (insn, REG_DEAD, test_regno))
1638 return 1;
1640 if (CALL_P (insn)
1641 && find_regno_fusage (insn, CLOBBER, test_regno))
1642 return 1;
1644 pattern = PATTERN (insn);
1646 if (GET_CODE (pattern) == COND_EXEC)
1647 pattern = COND_EXEC_CODE (pattern);
1649 if (GET_CODE (pattern) == SET)
1650 return covers_regno_p (SET_DEST (pattern), test_regno);
1651 else if (GET_CODE (pattern) == PARALLEL)
1653 int i;
1655 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1657 rtx body = XVECEXP (pattern, 0, i);
1659 if (GET_CODE (body) == COND_EXEC)
1660 body = COND_EXEC_CODE (body);
1662 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1663 && covers_regno_p (SET_DEST (body), test_regno))
1664 return 1;
1668 return 0;
1671 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1672 If DATUM is nonzero, look for one whose datum is DATUM. */
1675 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1677 rtx link;
1679 gcc_assert (insn);
1681 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1682 if (! INSN_P (insn))
1683 return 0;
1684 if (datum == 0)
1686 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1687 if (REG_NOTE_KIND (link) == kind)
1688 return link;
1689 return 0;
1692 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1693 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1694 return link;
1695 return 0;
1698 /* Return the reg-note of kind KIND in insn INSN which applies to register
1699 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1700 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1701 it might be the case that the note overlaps REGNO. */
1704 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1706 rtx link;
1708 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1709 if (! INSN_P (insn))
1710 return 0;
1712 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1713 if (REG_NOTE_KIND (link) == kind
1714 /* Verify that it is a register, so that scratch and MEM won't cause a
1715 problem here. */
1716 && REG_P (XEXP (link, 0))
1717 && REGNO (XEXP (link, 0)) <= regno
1718 && END_REGNO (XEXP (link, 0)) > regno)
1719 return link;
1720 return 0;
1723 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1724 has such a note. */
1727 find_reg_equal_equiv_note (const_rtx insn)
1729 rtx link;
1731 if (!INSN_P (insn))
1732 return 0;
1734 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1735 if (REG_NOTE_KIND (link) == REG_EQUAL
1736 || REG_NOTE_KIND (link) == REG_EQUIV)
1738 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1739 insns that have multiple sets. Checking single_set to
1740 make sure of this is not the proper check, as explained
1741 in the comment in set_unique_reg_note.
1743 This should be changed into an assert. */
1744 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1745 return 0;
1746 return link;
1748 return NULL;
1751 /* Check whether INSN is a single_set whose source is known to be
1752 equivalent to a constant. Return that constant if so, otherwise
1753 return null. */
1756 find_constant_src (const_rtx insn)
1758 rtx note, set, x;
1760 set = single_set (insn);
1761 if (set)
1763 x = avoid_constant_pool_reference (SET_SRC (set));
1764 if (CONSTANT_P (x))
1765 return x;
1768 note = find_reg_equal_equiv_note (insn);
1769 if (note && CONSTANT_P (XEXP (note, 0)))
1770 return XEXP (note, 0);
1772 return NULL_RTX;
1775 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1776 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1779 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1781 /* If it's not a CALL_INSN, it can't possibly have a
1782 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1783 if (!CALL_P (insn))
1784 return 0;
1786 gcc_assert (datum);
1788 if (!REG_P (datum))
1790 rtx link;
1792 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1793 link;
1794 link = XEXP (link, 1))
1795 if (GET_CODE (XEXP (link, 0)) == code
1796 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1797 return 1;
1799 else
1801 unsigned int regno = REGNO (datum);
1803 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1804 to pseudo registers, so don't bother checking. */
1806 if (regno < FIRST_PSEUDO_REGISTER)
1808 unsigned int end_regno = END_HARD_REGNO (datum);
1809 unsigned int i;
1811 for (i = regno; i < end_regno; i++)
1812 if (find_regno_fusage (insn, code, i))
1813 return 1;
1817 return 0;
1820 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1821 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1824 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1826 rtx link;
1828 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1829 to pseudo registers, so don't bother checking. */
1831 if (regno >= FIRST_PSEUDO_REGISTER
1832 || !CALL_P (insn) )
1833 return 0;
1835 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1837 rtx op, reg;
1839 if (GET_CODE (op = XEXP (link, 0)) == code
1840 && REG_P (reg = XEXP (op, 0))
1841 && REGNO (reg) <= regno
1842 && END_HARD_REGNO (reg) > regno)
1843 return 1;
1846 return 0;
1849 /* Return true if INSN is a call to a pure function. */
1852 pure_call_p (const_rtx insn)
1854 const_rtx link;
1856 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1857 return 0;
1859 /* Look for the note that differentiates const and pure functions. */
1860 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1862 rtx u, m;
1864 if (GET_CODE (u = XEXP (link, 0)) == USE
1865 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1866 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1867 return 1;
1870 return 0;
1873 /* Remove register note NOTE from the REG_NOTES of INSN. */
1875 void
1876 remove_note (rtx insn, const_rtx note)
1878 rtx link;
1880 if (note == NULL_RTX)
1881 return;
1883 if (REG_NOTES (insn) == note)
1884 REG_NOTES (insn) = XEXP (note, 1);
1885 else
1886 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1887 if (XEXP (link, 1) == note)
1889 XEXP (link, 1) = XEXP (note, 1);
1890 break;
1893 switch (REG_NOTE_KIND (note))
1895 case REG_EQUAL:
1896 case REG_EQUIV:
1897 df_notes_rescan (insn);
1898 break;
1899 default:
1900 break;
1904 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1906 void
1907 remove_reg_equal_equiv_notes (rtx insn)
1909 rtx *loc;
1911 loc = &REG_NOTES (insn);
1912 while (*loc)
1914 enum reg_note kind = REG_NOTE_KIND (*loc);
1915 if (kind == REG_EQUAL || kind == REG_EQUIV)
1916 *loc = XEXP (*loc, 1);
1917 else
1918 loc = &XEXP (*loc, 1);
1922 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1923 return 1 if it is found. A simple equality test is used to determine if
1924 NODE matches. */
1927 in_expr_list_p (const_rtx listp, const_rtx node)
1929 const_rtx x;
1931 for (x = listp; x; x = XEXP (x, 1))
1932 if (node == XEXP (x, 0))
1933 return 1;
1935 return 0;
1938 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1939 remove that entry from the list if it is found.
1941 A simple equality test is used to determine if NODE matches. */
1943 void
1944 remove_node_from_expr_list (const_rtx node, rtx *listp)
1946 rtx temp = *listp;
1947 rtx prev = NULL_RTX;
1949 while (temp)
1951 if (node == XEXP (temp, 0))
1953 /* Splice the node out of the list. */
1954 if (prev)
1955 XEXP (prev, 1) = XEXP (temp, 1);
1956 else
1957 *listp = XEXP (temp, 1);
1959 return;
1962 prev = temp;
1963 temp = XEXP (temp, 1);
1967 /* Nonzero if X contains any volatile instructions. These are instructions
1968 which may cause unpredictable machine state instructions, and thus no
1969 instructions should be moved or combined across them. This includes
1970 only volatile asms and UNSPEC_VOLATILE instructions. */
1973 volatile_insn_p (const_rtx x)
1975 const RTX_CODE code = GET_CODE (x);
1976 switch (code)
1978 case LABEL_REF:
1979 case SYMBOL_REF:
1980 case CONST_INT:
1981 case CONST:
1982 case CONST_DOUBLE:
1983 case CONST_FIXED:
1984 case CONST_VECTOR:
1985 case CC0:
1986 case PC:
1987 case REG:
1988 case SCRATCH:
1989 case CLOBBER:
1990 case ADDR_VEC:
1991 case ADDR_DIFF_VEC:
1992 case CALL:
1993 case MEM:
1994 return 0;
1996 case UNSPEC_VOLATILE:
1997 /* case TRAP_IF: This isn't clear yet. */
1998 return 1;
2000 case ASM_INPUT:
2001 case ASM_OPERANDS:
2002 if (MEM_VOLATILE_P (x))
2003 return 1;
2005 default:
2006 break;
2009 /* Recursively scan the operands of this expression. */
2012 const char *const fmt = GET_RTX_FORMAT (code);
2013 int i;
2015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2017 if (fmt[i] == 'e')
2019 if (volatile_insn_p (XEXP (x, i)))
2020 return 1;
2022 else if (fmt[i] == 'E')
2024 int j;
2025 for (j = 0; j < XVECLEN (x, i); j++)
2026 if (volatile_insn_p (XVECEXP (x, i, j)))
2027 return 1;
2031 return 0;
2034 /* Nonzero if X contains any volatile memory references
2035 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2038 volatile_refs_p (const_rtx x)
2040 const RTX_CODE code = GET_CODE (x);
2041 switch (code)
2043 case LABEL_REF:
2044 case SYMBOL_REF:
2045 case CONST_INT:
2046 case CONST:
2047 case CONST_DOUBLE:
2048 case CONST_FIXED:
2049 case CONST_VECTOR:
2050 case CC0:
2051 case PC:
2052 case REG:
2053 case SCRATCH:
2054 case CLOBBER:
2055 case ADDR_VEC:
2056 case ADDR_DIFF_VEC:
2057 return 0;
2059 case UNSPEC_VOLATILE:
2060 return 1;
2062 case MEM:
2063 case ASM_INPUT:
2064 case ASM_OPERANDS:
2065 if (MEM_VOLATILE_P (x))
2066 return 1;
2068 default:
2069 break;
2072 /* Recursively scan the operands of this expression. */
2075 const char *const fmt = GET_RTX_FORMAT (code);
2076 int i;
2078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2080 if (fmt[i] == 'e')
2082 if (volatile_refs_p (XEXP (x, i)))
2083 return 1;
2085 else if (fmt[i] == 'E')
2087 int j;
2088 for (j = 0; j < XVECLEN (x, i); j++)
2089 if (volatile_refs_p (XVECEXP (x, i, j)))
2090 return 1;
2094 return 0;
2097 /* Similar to above, except that it also rejects register pre- and post-
2098 incrementing. */
2101 side_effects_p (const_rtx x)
2103 const RTX_CODE code = GET_CODE (x);
2104 switch (code)
2106 case LABEL_REF:
2107 case SYMBOL_REF:
2108 case CONST_INT:
2109 case CONST:
2110 case CONST_DOUBLE:
2111 case CONST_FIXED:
2112 case CONST_VECTOR:
2113 case CC0:
2114 case PC:
2115 case REG:
2116 case SCRATCH:
2117 case ADDR_VEC:
2118 case ADDR_DIFF_VEC:
2119 return 0;
2121 case CLOBBER:
2122 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2123 when some combination can't be done. If we see one, don't think
2124 that we can simplify the expression. */
2125 return (GET_MODE (x) != VOIDmode);
2127 case PRE_INC:
2128 case PRE_DEC:
2129 case POST_INC:
2130 case POST_DEC:
2131 case PRE_MODIFY:
2132 case POST_MODIFY:
2133 case CALL:
2134 case UNSPEC_VOLATILE:
2135 /* case TRAP_IF: This isn't clear yet. */
2136 return 1;
2138 case MEM:
2139 case ASM_INPUT:
2140 case ASM_OPERANDS:
2141 if (MEM_VOLATILE_P (x))
2142 return 1;
2144 default:
2145 break;
2148 /* Recursively scan the operands of this expression. */
2151 const char *fmt = GET_RTX_FORMAT (code);
2152 int i;
2154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2156 if (fmt[i] == 'e')
2158 if (side_effects_p (XEXP (x, i)))
2159 return 1;
2161 else if (fmt[i] == 'E')
2163 int j;
2164 for (j = 0; j < XVECLEN (x, i); j++)
2165 if (side_effects_p (XVECEXP (x, i, j)))
2166 return 1;
2170 return 0;
2173 enum may_trap_p_flags
2175 MTP_UNALIGNED_MEMS = 1,
2176 MTP_AFTER_MOVE = 2
2178 /* Return nonzero if evaluating rtx X might cause a trap.
2179 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2180 unaligned memory accesses on strict alignment machines. If
2181 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2182 cannot trap at its current location, but it might become trapping if moved
2183 elsewhere. */
2185 static int
2186 may_trap_p_1 (const_rtx x, unsigned flags)
2188 int i;
2189 enum rtx_code code;
2190 const char *fmt;
2191 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2193 if (x == 0)
2194 return 0;
2195 code = GET_CODE (x);
2196 switch (code)
2198 /* Handle these cases quickly. */
2199 case CONST_INT:
2200 case CONST_DOUBLE:
2201 case CONST_FIXED:
2202 case CONST_VECTOR:
2203 case SYMBOL_REF:
2204 case LABEL_REF:
2205 case CONST:
2206 case PC:
2207 case CC0:
2208 case REG:
2209 case SCRATCH:
2210 return 0;
2212 case ASM_INPUT:
2213 case UNSPEC_VOLATILE:
2214 case TRAP_IF:
2215 return 1;
2217 case ASM_OPERANDS:
2218 return MEM_VOLATILE_P (x);
2220 /* Memory ref can trap unless it's a static var or a stack slot. */
2221 case MEM:
2222 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2223 reference; moving it out of condition might cause its address
2224 become invalid. */
2225 !(flags & MTP_AFTER_MOVE)
2226 && MEM_NOTRAP_P (x)
2227 && (!STRICT_ALIGNMENT || !unaligned_mems))
2228 return 0;
2229 return
2230 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2232 /* Division by a non-constant might trap. */
2233 case DIV:
2234 case MOD:
2235 case UDIV:
2236 case UMOD:
2237 if (HONOR_SNANS (GET_MODE (x)))
2238 return 1;
2239 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2240 return flag_trapping_math;
2241 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2242 return 1;
2243 break;
2245 case EXPR_LIST:
2246 /* An EXPR_LIST is used to represent a function call. This
2247 certainly may trap. */
2248 return 1;
2250 case GE:
2251 case GT:
2252 case LE:
2253 case LT:
2254 case LTGT:
2255 case COMPARE:
2256 /* Some floating point comparisons may trap. */
2257 if (!flag_trapping_math)
2258 break;
2259 /* ??? There is no machine independent way to check for tests that trap
2260 when COMPARE is used, though many targets do make this distinction.
2261 For instance, sparc uses CCFPE for compares which generate exceptions
2262 and CCFP for compares which do not generate exceptions. */
2263 if (HONOR_NANS (GET_MODE (x)))
2264 return 1;
2265 /* But often the compare has some CC mode, so check operand
2266 modes as well. */
2267 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2268 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2269 return 1;
2270 break;
2272 case EQ:
2273 case NE:
2274 if (HONOR_SNANS (GET_MODE (x)))
2275 return 1;
2276 /* Often comparison is CC mode, so check operand modes. */
2277 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2278 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2279 return 1;
2280 break;
2282 case FIX:
2283 /* Conversion of floating point might trap. */
2284 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2285 return 1;
2286 break;
2288 case NEG:
2289 case ABS:
2290 case SUBREG:
2291 /* These operations don't trap even with floating point. */
2292 break;
2294 default:
2295 /* Any floating arithmetic may trap. */
2296 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2297 && flag_trapping_math)
2298 return 1;
2301 fmt = GET_RTX_FORMAT (code);
2302 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2304 if (fmt[i] == 'e')
2306 if (may_trap_p_1 (XEXP (x, i), flags))
2307 return 1;
2309 else if (fmt[i] == 'E')
2311 int j;
2312 for (j = 0; j < XVECLEN (x, i); j++)
2313 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2314 return 1;
2317 return 0;
2320 /* Return nonzero if evaluating rtx X might cause a trap. */
2323 may_trap_p (const_rtx x)
2325 return may_trap_p_1 (x, 0);
2328 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2329 is moved from its current location by some optimization. */
2332 may_trap_after_code_motion_p (const_rtx x)
2334 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2337 /* Same as above, but additionally return nonzero if evaluating rtx X might
2338 cause a fault. We define a fault for the purpose of this function as a
2339 erroneous execution condition that cannot be encountered during the normal
2340 execution of a valid program; the typical example is an unaligned memory
2341 access on a strict alignment machine. The compiler guarantees that it
2342 doesn't generate code that will fault from a valid program, but this
2343 guarantee doesn't mean anything for individual instructions. Consider
2344 the following example:
2346 struct S { int d; union { char *cp; int *ip; }; };
2348 int foo(struct S *s)
2350 if (s->d == 1)
2351 return *s->ip;
2352 else
2353 return *s->cp;
2356 on a strict alignment machine. In a valid program, foo will never be
2357 invoked on a structure for which d is equal to 1 and the underlying
2358 unique field of the union not aligned on a 4-byte boundary, but the
2359 expression *s->ip might cause a fault if considered individually.
2361 At the RTL level, potentially problematic expressions will almost always
2362 verify may_trap_p; for example, the above dereference can be emitted as
2363 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2364 However, suppose that foo is inlined in a caller that causes s->cp to
2365 point to a local character variable and guarantees that s->d is not set
2366 to 1; foo may have been effectively translated into pseudo-RTL as:
2368 if ((reg:SI) == 1)
2369 (set (reg:SI) (mem:SI (%fp - 7)))
2370 else
2371 (set (reg:QI) (mem:QI (%fp - 7)))
2373 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2374 memory reference to a stack slot, but it will certainly cause a fault
2375 on a strict alignment machine. */
2378 may_trap_or_fault_p (const_rtx x)
2380 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2383 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2384 i.e., an inequality. */
2387 inequality_comparisons_p (const_rtx x)
2389 const char *fmt;
2390 int len, i;
2391 const enum rtx_code code = GET_CODE (x);
2393 switch (code)
2395 case REG:
2396 case SCRATCH:
2397 case PC:
2398 case CC0:
2399 case CONST_INT:
2400 case CONST_DOUBLE:
2401 case CONST_FIXED:
2402 case CONST_VECTOR:
2403 case CONST:
2404 case LABEL_REF:
2405 case SYMBOL_REF:
2406 return 0;
2408 case LT:
2409 case LTU:
2410 case GT:
2411 case GTU:
2412 case LE:
2413 case LEU:
2414 case GE:
2415 case GEU:
2416 return 1;
2418 default:
2419 break;
2422 len = GET_RTX_LENGTH (code);
2423 fmt = GET_RTX_FORMAT (code);
2425 for (i = 0; i < len; i++)
2427 if (fmt[i] == 'e')
2429 if (inequality_comparisons_p (XEXP (x, i)))
2430 return 1;
2432 else if (fmt[i] == 'E')
2434 int j;
2435 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2436 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2437 return 1;
2441 return 0;
2444 /* Replace any occurrence of FROM in X with TO. The function does
2445 not enter into CONST_DOUBLE for the replace.
2447 Note that copying is not done so X must not be shared unless all copies
2448 are to be modified. */
2451 replace_rtx (rtx x, rtx from, rtx to)
2453 int i, j;
2454 const char *fmt;
2456 /* The following prevents loops occurrence when we change MEM in
2457 CONST_DOUBLE onto the same CONST_DOUBLE. */
2458 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2459 return x;
2461 if (x == from)
2462 return to;
2464 /* Allow this function to make replacements in EXPR_LISTs. */
2465 if (x == 0)
2466 return 0;
2468 if (GET_CODE (x) == SUBREG)
2470 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2472 if (GET_CODE (new) == CONST_INT)
2474 x = simplify_subreg (GET_MODE (x), new,
2475 GET_MODE (SUBREG_REG (x)),
2476 SUBREG_BYTE (x));
2477 gcc_assert (x);
2479 else
2480 SUBREG_REG (x) = new;
2482 return x;
2484 else if (GET_CODE (x) == ZERO_EXTEND)
2486 rtx new = replace_rtx (XEXP (x, 0), from, to);
2488 if (GET_CODE (new) == CONST_INT)
2490 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2491 new, GET_MODE (XEXP (x, 0)));
2492 gcc_assert (x);
2494 else
2495 XEXP (x, 0) = new;
2497 return x;
2500 fmt = GET_RTX_FORMAT (GET_CODE (x));
2501 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2503 if (fmt[i] == 'e')
2504 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2505 else if (fmt[i] == 'E')
2506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2507 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2510 return x;
2513 /* Replace occurrences of the old label in *X with the new one.
2514 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2517 replace_label (rtx *x, void *data)
2519 rtx l = *x;
2520 rtx old_label = ((replace_label_data *) data)->r1;
2521 rtx new_label = ((replace_label_data *) data)->r2;
2522 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2524 if (l == NULL_RTX)
2525 return 0;
2527 if (GET_CODE (l) == SYMBOL_REF
2528 && CONSTANT_POOL_ADDRESS_P (l))
2530 rtx c = get_pool_constant (l);
2531 if (rtx_referenced_p (old_label, c))
2533 rtx new_c, new_l;
2534 replace_label_data *d = (replace_label_data *) data;
2536 /* Create a copy of constant C; replace the label inside
2537 but do not update LABEL_NUSES because uses in constant pool
2538 are not counted. */
2539 new_c = copy_rtx (c);
2540 d->update_label_nuses = false;
2541 for_each_rtx (&new_c, replace_label, data);
2542 d->update_label_nuses = update_label_nuses;
2544 /* Add the new constant NEW_C to constant pool and replace
2545 the old reference to constant by new reference. */
2546 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2547 *x = replace_rtx (l, l, new_l);
2549 return 0;
2552 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2553 field. This is not handled by for_each_rtx because it doesn't
2554 handle unprinted ('0') fields. */
2555 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2556 JUMP_LABEL (l) = new_label;
2558 if ((GET_CODE (l) == LABEL_REF
2559 || GET_CODE (l) == INSN_LIST)
2560 && XEXP (l, 0) == old_label)
2562 XEXP (l, 0) = new_label;
2563 if (update_label_nuses)
2565 ++LABEL_NUSES (new_label);
2566 --LABEL_NUSES (old_label);
2568 return 0;
2571 return 0;
2574 /* When *BODY is equal to X or X is directly referenced by *BODY
2575 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2576 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2578 static int
2579 rtx_referenced_p_1 (rtx *body, void *x)
2581 rtx y = (rtx) x;
2583 if (*body == NULL_RTX)
2584 return y == NULL_RTX;
2586 /* Return true if a label_ref *BODY refers to label Y. */
2587 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2588 return XEXP (*body, 0) == y;
2590 /* If *BODY is a reference to pool constant traverse the constant. */
2591 if (GET_CODE (*body) == SYMBOL_REF
2592 && CONSTANT_POOL_ADDRESS_P (*body))
2593 return rtx_referenced_p (y, get_pool_constant (*body));
2595 /* By default, compare the RTL expressions. */
2596 return rtx_equal_p (*body, y);
2599 /* Return true if X is referenced in BODY. */
2602 rtx_referenced_p (rtx x, rtx body)
2604 return for_each_rtx (&body, rtx_referenced_p_1, x);
2607 /* If INSN is a tablejump return true and store the label (before jump table) to
2608 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2610 bool
2611 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2613 rtx label, table;
2615 if (JUMP_P (insn)
2616 && (label = JUMP_LABEL (insn)) != NULL_RTX
2617 && (table = next_active_insn (label)) != NULL_RTX
2618 && JUMP_P (table)
2619 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2620 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2622 if (labelp)
2623 *labelp = label;
2624 if (tablep)
2625 *tablep = table;
2626 return true;
2628 return false;
2631 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2632 constant that is not in the constant pool and not in the condition
2633 of an IF_THEN_ELSE. */
2635 static int
2636 computed_jump_p_1 (const_rtx x)
2638 const enum rtx_code code = GET_CODE (x);
2639 int i, j;
2640 const char *fmt;
2642 switch (code)
2644 case LABEL_REF:
2645 case PC:
2646 return 0;
2648 case CONST:
2649 case CONST_INT:
2650 case CONST_DOUBLE:
2651 case CONST_FIXED:
2652 case CONST_VECTOR:
2653 case SYMBOL_REF:
2654 case REG:
2655 return 1;
2657 case MEM:
2658 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2659 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2661 case IF_THEN_ELSE:
2662 return (computed_jump_p_1 (XEXP (x, 1))
2663 || computed_jump_p_1 (XEXP (x, 2)));
2665 default:
2666 break;
2669 fmt = GET_RTX_FORMAT (code);
2670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2672 if (fmt[i] == 'e'
2673 && computed_jump_p_1 (XEXP (x, i)))
2674 return 1;
2676 else if (fmt[i] == 'E')
2677 for (j = 0; j < XVECLEN (x, i); j++)
2678 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2679 return 1;
2682 return 0;
2685 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2687 Tablejumps and casesi insns are not considered indirect jumps;
2688 we can recognize them by a (use (label_ref)). */
2691 computed_jump_p (const_rtx insn)
2693 int i;
2694 if (JUMP_P (insn))
2696 rtx pat = PATTERN (insn);
2698 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2699 if (JUMP_LABEL (insn) != NULL)
2700 return 0;
2702 if (GET_CODE (pat) == PARALLEL)
2704 int len = XVECLEN (pat, 0);
2705 int has_use_labelref = 0;
2707 for (i = len - 1; i >= 0; i--)
2708 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2709 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2710 == LABEL_REF))
2711 has_use_labelref = 1;
2713 if (! has_use_labelref)
2714 for (i = len - 1; i >= 0; i--)
2715 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2716 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2717 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2718 return 1;
2720 else if (GET_CODE (pat) == SET
2721 && SET_DEST (pat) == pc_rtx
2722 && computed_jump_p_1 (SET_SRC (pat)))
2723 return 1;
2725 return 0;
2728 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2729 calls. Processes the subexpressions of EXP and passes them to F. */
2730 static int
2731 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2733 int result, i, j;
2734 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2735 rtx *x;
2737 for (; format[n] != '\0'; n++)
2739 switch (format[n])
2741 case 'e':
2742 /* Call F on X. */
2743 x = &XEXP (exp, n);
2744 result = (*f) (x, data);
2745 if (result == -1)
2746 /* Do not traverse sub-expressions. */
2747 continue;
2748 else if (result != 0)
2749 /* Stop the traversal. */
2750 return result;
2752 if (*x == NULL_RTX)
2753 /* There are no sub-expressions. */
2754 continue;
2756 i = non_rtx_starting_operands[GET_CODE (*x)];
2757 if (i >= 0)
2759 result = for_each_rtx_1 (*x, i, f, data);
2760 if (result != 0)
2761 return result;
2763 break;
2765 case 'V':
2766 case 'E':
2767 if (XVEC (exp, n) == 0)
2768 continue;
2769 for (j = 0; j < XVECLEN (exp, n); ++j)
2771 /* Call F on X. */
2772 x = &XVECEXP (exp, n, j);
2773 result = (*f) (x, data);
2774 if (result == -1)
2775 /* Do not traverse sub-expressions. */
2776 continue;
2777 else if (result != 0)
2778 /* Stop the traversal. */
2779 return result;
2781 if (*x == NULL_RTX)
2782 /* There are no sub-expressions. */
2783 continue;
2785 i = non_rtx_starting_operands[GET_CODE (*x)];
2786 if (i >= 0)
2788 result = for_each_rtx_1 (*x, i, f, data);
2789 if (result != 0)
2790 return result;
2793 break;
2795 default:
2796 /* Nothing to do. */
2797 break;
2801 return 0;
2804 /* Traverse X via depth-first search, calling F for each
2805 sub-expression (including X itself). F is also passed the DATA.
2806 If F returns -1, do not traverse sub-expressions, but continue
2807 traversing the rest of the tree. If F ever returns any other
2808 nonzero value, stop the traversal, and return the value returned
2809 by F. Otherwise, return 0. This function does not traverse inside
2810 tree structure that contains RTX_EXPRs, or into sub-expressions
2811 whose format code is `0' since it is not known whether or not those
2812 codes are actually RTL.
2814 This routine is very general, and could (should?) be used to
2815 implement many of the other routines in this file. */
2818 for_each_rtx (rtx *x, rtx_function f, void *data)
2820 int result;
2821 int i;
2823 /* Call F on X. */
2824 result = (*f) (x, data);
2825 if (result == -1)
2826 /* Do not traverse sub-expressions. */
2827 return 0;
2828 else if (result != 0)
2829 /* Stop the traversal. */
2830 return result;
2832 if (*x == NULL_RTX)
2833 /* There are no sub-expressions. */
2834 return 0;
2836 i = non_rtx_starting_operands[GET_CODE (*x)];
2837 if (i < 0)
2838 return 0;
2840 return for_each_rtx_1 (*x, i, f, data);
2844 /* Searches X for any reference to REGNO, returning the rtx of the
2845 reference found if any. Otherwise, returns NULL_RTX. */
2848 regno_use_in (unsigned int regno, rtx x)
2850 const char *fmt;
2851 int i, j;
2852 rtx tem;
2854 if (REG_P (x) && REGNO (x) == regno)
2855 return x;
2857 fmt = GET_RTX_FORMAT (GET_CODE (x));
2858 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2860 if (fmt[i] == 'e')
2862 if ((tem = regno_use_in (regno, XEXP (x, i))))
2863 return tem;
2865 else if (fmt[i] == 'E')
2866 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2867 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2868 return tem;
2871 return NULL_RTX;
2874 /* Return a value indicating whether OP, an operand of a commutative
2875 operation, is preferred as the first or second operand. The higher
2876 the value, the stronger the preference for being the first operand.
2877 We use negative values to indicate a preference for the first operand
2878 and positive values for the second operand. */
2881 commutative_operand_precedence (rtx op)
2883 enum rtx_code code = GET_CODE (op);
2885 /* Constants always come the second operand. Prefer "nice" constants. */
2886 if (code == CONST_INT)
2887 return -8;
2888 if (code == CONST_DOUBLE)
2889 return -7;
2890 if (code == CONST_FIXED)
2891 return -7;
2892 op = avoid_constant_pool_reference (op);
2893 code = GET_CODE (op);
2895 switch (GET_RTX_CLASS (code))
2897 case RTX_CONST_OBJ:
2898 if (code == CONST_INT)
2899 return -6;
2900 if (code == CONST_DOUBLE)
2901 return -5;
2902 if (code == CONST_FIXED)
2903 return -5;
2904 return -4;
2906 case RTX_EXTRA:
2907 /* SUBREGs of objects should come second. */
2908 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2909 return -3;
2910 return 0;
2912 case RTX_OBJ:
2913 /* Complex expressions should be the first, so decrease priority
2914 of objects. Prefer pointer objects over non pointer objects. */
2915 if ((REG_P (op) && REG_POINTER (op))
2916 || (MEM_P (op) && MEM_POINTER (op)))
2917 return -1;
2918 return -2;
2920 case RTX_COMM_ARITH:
2921 /* Prefer operands that are themselves commutative to be first.
2922 This helps to make things linear. In particular,
2923 (and (and (reg) (reg)) (not (reg))) is canonical. */
2924 return 4;
2926 case RTX_BIN_ARITH:
2927 /* If only one operand is a binary expression, it will be the first
2928 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2929 is canonical, although it will usually be further simplified. */
2930 return 2;
2932 case RTX_UNARY:
2933 /* Then prefer NEG and NOT. */
2934 if (code == NEG || code == NOT)
2935 return 1;
2937 default:
2938 return 0;
2942 /* Return 1 iff it is necessary to swap operands of commutative operation
2943 in order to canonicalize expression. */
2945 bool
2946 swap_commutative_operands_p (rtx x, rtx y)
2948 return (commutative_operand_precedence (x)
2949 < commutative_operand_precedence (y));
2952 /* Return 1 if X is an autoincrement side effect and the register is
2953 not the stack pointer. */
2955 auto_inc_p (const_rtx x)
2957 switch (GET_CODE (x))
2959 case PRE_INC:
2960 case POST_INC:
2961 case PRE_DEC:
2962 case POST_DEC:
2963 case PRE_MODIFY:
2964 case POST_MODIFY:
2965 /* There are no REG_INC notes for SP. */
2966 if (XEXP (x, 0) != stack_pointer_rtx)
2967 return 1;
2968 default:
2969 break;
2971 return 0;
2974 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2976 loc_mentioned_in_p (rtx *loc, const_rtx in)
2978 enum rtx_code code;
2979 const char *fmt;
2980 int i, j;
2982 if (!in)
2983 return 0;
2985 code = GET_CODE (in);
2986 fmt = GET_RTX_FORMAT (code);
2987 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2989 if (loc == &in->u.fld[i].rt_rtx)
2990 return 1;
2991 if (fmt[i] == 'e')
2993 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2994 return 1;
2996 else if (fmt[i] == 'E')
2997 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2998 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2999 return 1;
3001 return 0;
3004 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3005 and SUBREG_BYTE, return the bit offset where the subreg begins
3006 (counting from the least significant bit of the operand). */
3008 unsigned int
3009 subreg_lsb_1 (enum machine_mode outer_mode,
3010 enum machine_mode inner_mode,
3011 unsigned int subreg_byte)
3013 unsigned int bitpos;
3014 unsigned int byte;
3015 unsigned int word;
3017 /* A paradoxical subreg begins at bit position 0. */
3018 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3019 return 0;
3021 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3022 /* If the subreg crosses a word boundary ensure that
3023 it also begins and ends on a word boundary. */
3024 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3025 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3026 && (subreg_byte % UNITS_PER_WORD
3027 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3029 if (WORDS_BIG_ENDIAN)
3030 word = (GET_MODE_SIZE (inner_mode)
3031 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3032 else
3033 word = subreg_byte / UNITS_PER_WORD;
3034 bitpos = word * BITS_PER_WORD;
3036 if (BYTES_BIG_ENDIAN)
3037 byte = (GET_MODE_SIZE (inner_mode)
3038 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3039 else
3040 byte = subreg_byte % UNITS_PER_WORD;
3041 bitpos += byte * BITS_PER_UNIT;
3043 return bitpos;
3046 /* Given a subreg X, return the bit offset where the subreg begins
3047 (counting from the least significant bit of the reg). */
3049 unsigned int
3050 subreg_lsb (const_rtx x)
3052 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3053 SUBREG_BYTE (x));
3056 /* Fill in information about a subreg of a hard register.
3057 xregno - A regno of an inner hard subreg_reg (or what will become one).
3058 xmode - The mode of xregno.
3059 offset - The byte offset.
3060 ymode - The mode of a top level SUBREG (or what may become one).
3061 info - Pointer to structure to fill in. */
3062 static void
3063 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3064 unsigned int offset, enum machine_mode ymode,
3065 struct subreg_info *info)
3067 int nregs_xmode, nregs_ymode;
3068 int mode_multiple, nregs_multiple;
3069 int offset_adj, y_offset, y_offset_adj;
3070 int regsize_xmode, regsize_ymode;
3071 bool rknown;
3073 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3075 rknown = false;
3077 /* If there are holes in a non-scalar mode in registers, we expect
3078 that it is made up of its units concatenated together. */
3079 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3081 enum machine_mode xmode_unit;
3083 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3084 if (GET_MODE_INNER (xmode) == VOIDmode)
3085 xmode_unit = xmode;
3086 else
3087 xmode_unit = GET_MODE_INNER (xmode);
3088 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3089 gcc_assert (nregs_xmode
3090 == (GET_MODE_NUNITS (xmode)
3091 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3092 gcc_assert (hard_regno_nregs[xregno][xmode]
3093 == (hard_regno_nregs[xregno][xmode_unit]
3094 * GET_MODE_NUNITS (xmode)));
3096 /* You can only ask for a SUBREG of a value with holes in the middle
3097 if you don't cross the holes. (Such a SUBREG should be done by
3098 picking a different register class, or doing it in memory if
3099 necessary.) An example of a value with holes is XCmode on 32-bit
3100 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3101 3 for each part, but in memory it's two 128-bit parts.
3102 Padding is assumed to be at the end (not necessarily the 'high part')
3103 of each unit. */
3104 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3105 < GET_MODE_NUNITS (xmode))
3106 && (offset / GET_MODE_SIZE (xmode_unit)
3107 != ((offset + GET_MODE_SIZE (ymode) - 1)
3108 / GET_MODE_SIZE (xmode_unit))))
3110 info->representable_p = false;
3111 rknown = true;
3114 else
3115 nregs_xmode = hard_regno_nregs[xregno][xmode];
3117 nregs_ymode = hard_regno_nregs[xregno][ymode];
3119 /* Paradoxical subregs are otherwise valid. */
3120 if (!rknown
3121 && offset == 0
3122 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3124 info->representable_p = true;
3125 /* If this is a big endian paradoxical subreg, which uses more
3126 actual hard registers than the original register, we must
3127 return a negative offset so that we find the proper highpart
3128 of the register. */
3129 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3130 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3131 info->offset = nregs_xmode - nregs_ymode;
3132 else
3133 info->offset = 0;
3134 info->nregs = nregs_ymode;
3135 return;
3138 /* If registers store different numbers of bits in the different
3139 modes, we cannot generally form this subreg. */
3140 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3141 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3142 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3143 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3145 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3146 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3147 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3149 info->representable_p = false;
3150 info->nregs
3151 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3152 info->offset = offset / regsize_xmode;
3153 return;
3155 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3157 info->representable_p = false;
3158 info->nregs
3159 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3160 info->offset = offset / regsize_xmode;
3161 return;
3165 /* Lowpart subregs are otherwise valid. */
3166 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3168 info->representable_p = true;
3169 rknown = true;
3171 if (offset == 0 || nregs_xmode == nregs_ymode)
3173 info->offset = 0;
3174 info->nregs = nregs_ymode;
3175 return;
3179 /* This should always pass, otherwise we don't know how to verify
3180 the constraint. These conditions may be relaxed but
3181 subreg_regno_offset would need to be redesigned. */
3182 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3183 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3185 /* The XMODE value can be seen as a vector of NREGS_XMODE
3186 values. The subreg must represent a lowpart of given field.
3187 Compute what field it is. */
3188 offset_adj = offset;
3189 offset_adj -= subreg_lowpart_offset (ymode,
3190 mode_for_size (GET_MODE_BITSIZE (xmode)
3191 / nregs_xmode,
3192 MODE_INT, 0));
3194 /* Size of ymode must not be greater than the size of xmode. */
3195 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3196 gcc_assert (mode_multiple != 0);
3198 y_offset = offset / GET_MODE_SIZE (ymode);
3199 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3200 nregs_multiple = nregs_xmode / nregs_ymode;
3202 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3203 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3205 if (!rknown)
3207 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3208 rknown = true;
3210 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3211 info->nregs = nregs_ymode;
3214 /* This function returns the regno offset of a subreg expression.
3215 xregno - A regno of an inner hard subreg_reg (or what will become one).
3216 xmode - The mode of xregno.
3217 offset - The byte offset.
3218 ymode - The mode of a top level SUBREG (or what may become one).
3219 RETURN - The regno offset which would be used. */
3220 unsigned int
3221 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3222 unsigned int offset, enum machine_mode ymode)
3224 struct subreg_info info;
3225 subreg_get_info (xregno, xmode, offset, ymode, &info);
3226 return info.offset;
3229 /* This function returns true when the offset is representable via
3230 subreg_offset in the given regno.
3231 xregno - A regno of an inner hard subreg_reg (or what will become one).
3232 xmode - The mode of xregno.
3233 offset - The byte offset.
3234 ymode - The mode of a top level SUBREG (or what may become one).
3235 RETURN - Whether the offset is representable. */
3236 bool
3237 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3238 unsigned int offset, enum machine_mode ymode)
3240 struct subreg_info info;
3241 subreg_get_info (xregno, xmode, offset, ymode, &info);
3242 return info.representable_p;
3245 /* Return the final regno that a subreg expression refers to. */
3246 unsigned int
3247 subreg_regno (const_rtx x)
3249 unsigned int ret;
3250 rtx subreg = SUBREG_REG (x);
3251 int regno = REGNO (subreg);
3253 ret = regno + subreg_regno_offset (regno,
3254 GET_MODE (subreg),
3255 SUBREG_BYTE (x),
3256 GET_MODE (x));
3257 return ret;
3261 /* Return the number of registers that a subreg expression refers
3262 to. */
3263 unsigned int
3264 subreg_nregs (const_rtx x)
3266 struct subreg_info info;
3267 rtx subreg = SUBREG_REG (x);
3268 int regno = REGNO (subreg);
3270 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3271 &info);
3272 return info.nregs;
3275 struct parms_set_data
3277 int nregs;
3278 HARD_REG_SET regs;
3281 /* Helper function for noticing stores to parameter registers. */
3282 static void
3283 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3285 struct parms_set_data *d = data;
3286 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3287 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3289 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3290 d->nregs--;
3294 /* Look backward for first parameter to be loaded.
3295 Note that loads of all parameters will not necessarily be
3296 found if CSE has eliminated some of them (e.g., an argument
3297 to the outer function is passed down as a parameter).
3298 Do not skip BOUNDARY. */
3300 find_first_parameter_load (rtx call_insn, rtx boundary)
3302 struct parms_set_data parm;
3303 rtx p, before, first_set;
3305 /* Since different machines initialize their parameter registers
3306 in different orders, assume nothing. Collect the set of all
3307 parameter registers. */
3308 CLEAR_HARD_REG_SET (parm.regs);
3309 parm.nregs = 0;
3310 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3311 if (GET_CODE (XEXP (p, 0)) == USE
3312 && REG_P (XEXP (XEXP (p, 0), 0)))
3314 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3316 /* We only care about registers which can hold function
3317 arguments. */
3318 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3319 continue;
3321 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3322 parm.nregs++;
3324 before = call_insn;
3325 first_set = call_insn;
3327 /* Search backward for the first set of a register in this set. */
3328 while (parm.nregs && before != boundary)
3330 before = PREV_INSN (before);
3332 /* It is possible that some loads got CSEed from one call to
3333 another. Stop in that case. */
3334 if (CALL_P (before))
3335 break;
3337 /* Our caller needs either ensure that we will find all sets
3338 (in case code has not been optimized yet), or take care
3339 for possible labels in a way by setting boundary to preceding
3340 CODE_LABEL. */
3341 if (LABEL_P (before))
3343 gcc_assert (before == boundary);
3344 break;
3347 if (INSN_P (before))
3349 int nregs_old = parm.nregs;
3350 note_stores (PATTERN (before), parms_set, &parm);
3351 /* If we found something that did not set a parameter reg,
3352 we're done. Do not keep going, as that might result
3353 in hoisting an insn before the setting of a pseudo
3354 that is used by the hoisted insn. */
3355 if (nregs_old != parm.nregs)
3356 first_set = before;
3357 else
3358 break;
3361 return first_set;
3364 /* Return true if we should avoid inserting code between INSN and preceding
3365 call instruction. */
3367 bool
3368 keep_with_call_p (const_rtx insn)
3370 rtx set;
3372 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3374 if (REG_P (SET_DEST (set))
3375 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3376 && fixed_regs[REGNO (SET_DEST (set))]
3377 && general_operand (SET_SRC (set), VOIDmode))
3378 return true;
3379 if (REG_P (SET_SRC (set))
3380 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3381 && REG_P (SET_DEST (set))
3382 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3383 return true;
3384 /* There may be a stack pop just after the call and before the store
3385 of the return register. Search for the actual store when deciding
3386 if we can break or not. */
3387 if (SET_DEST (set) == stack_pointer_rtx)
3389 /* This CONST_CAST is okay because next_nonnote_insn just
3390 returns it's argument and we assign it to a const_rtx
3391 variable. */
3392 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3393 if (i2 && keep_with_call_p (i2))
3394 return true;
3397 return false;
3400 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3401 to non-complex jumps. That is, direct unconditional, conditional,
3402 and tablejumps, but not computed jumps or returns. It also does
3403 not apply to the fallthru case of a conditional jump. */
3405 bool
3406 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3408 rtx tmp = JUMP_LABEL (jump_insn);
3410 if (label == tmp)
3411 return true;
3413 if (tablejump_p (jump_insn, NULL, &tmp))
3415 rtvec vec = XVEC (PATTERN (tmp),
3416 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3417 int i, veclen = GET_NUM_ELEM (vec);
3419 for (i = 0; i < veclen; ++i)
3420 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3421 return true;
3424 return false;
3428 /* Return an estimate of the cost of computing rtx X.
3429 One use is in cse, to decide which expression to keep in the hash table.
3430 Another is in rtl generation, to pick the cheapest way to multiply.
3431 Other uses like the latter are expected in the future. */
3434 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3436 int i, j;
3437 enum rtx_code code;
3438 const char *fmt;
3439 int total;
3441 if (x == 0)
3442 return 0;
3444 /* Compute the default costs of certain things.
3445 Note that targetm.rtx_costs can override the defaults. */
3447 code = GET_CODE (x);
3448 switch (code)
3450 case MULT:
3451 total = COSTS_N_INSNS (5);
3452 break;
3453 case DIV:
3454 case UDIV:
3455 case MOD:
3456 case UMOD:
3457 total = COSTS_N_INSNS (7);
3458 break;
3459 case USE:
3460 /* Used in combine.c as a marker. */
3461 total = 0;
3462 break;
3463 default:
3464 total = COSTS_N_INSNS (1);
3467 switch (code)
3469 case REG:
3470 return 0;
3472 case SUBREG:
3473 total = 0;
3474 /* If we can't tie these modes, make this expensive. The larger
3475 the mode, the more expensive it is. */
3476 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3477 return COSTS_N_INSNS (2
3478 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3479 break;
3481 default:
3482 if (targetm.rtx_costs (x, code, outer_code, &total))
3483 return total;
3484 break;
3487 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3488 which is already in total. */
3490 fmt = GET_RTX_FORMAT (code);
3491 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3492 if (fmt[i] == 'e')
3493 total += rtx_cost (XEXP (x, i), code);
3494 else if (fmt[i] == 'E')
3495 for (j = 0; j < XVECLEN (x, i); j++)
3496 total += rtx_cost (XVECEXP (x, i, j), code);
3498 return total;
3501 /* Return cost of address expression X.
3502 Expect that X is properly formed address reference. */
3505 address_cost (rtx x, enum machine_mode mode)
3507 /* We may be asked for cost of various unusual addresses, such as operands
3508 of push instruction. It is not worthwhile to complicate writing
3509 of the target hook by such cases. */
3511 if (!memory_address_p (mode, x))
3512 return 1000;
3514 return targetm.address_cost (x);
3517 /* If the target doesn't override, compute the cost as with arithmetic. */
3520 default_address_cost (rtx x)
3522 return rtx_cost (x, MEM);
3526 unsigned HOST_WIDE_INT
3527 nonzero_bits (const_rtx x, enum machine_mode mode)
3529 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3532 unsigned int
3533 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3535 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3538 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3539 It avoids exponential behavior in nonzero_bits1 when X has
3540 identical subexpressions on the first or the second level. */
3542 static unsigned HOST_WIDE_INT
3543 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3544 enum machine_mode known_mode,
3545 unsigned HOST_WIDE_INT known_ret)
3547 if (x == known_x && mode == known_mode)
3548 return known_ret;
3550 /* Try to find identical subexpressions. If found call
3551 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3552 precomputed value for the subexpression as KNOWN_RET. */
3554 if (ARITHMETIC_P (x))
3556 rtx x0 = XEXP (x, 0);
3557 rtx x1 = XEXP (x, 1);
3559 /* Check the first level. */
3560 if (x0 == x1)
3561 return nonzero_bits1 (x, mode, x0, mode,
3562 cached_nonzero_bits (x0, mode, known_x,
3563 known_mode, known_ret));
3565 /* Check the second level. */
3566 if (ARITHMETIC_P (x0)
3567 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3568 return nonzero_bits1 (x, mode, x1, mode,
3569 cached_nonzero_bits (x1, mode, known_x,
3570 known_mode, known_ret));
3572 if (ARITHMETIC_P (x1)
3573 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3574 return nonzero_bits1 (x, mode, x0, mode,
3575 cached_nonzero_bits (x0, mode, known_x,
3576 known_mode, known_ret));
3579 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3582 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3583 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3584 is less useful. We can't allow both, because that results in exponential
3585 run time recursion. There is a nullstone testcase that triggered
3586 this. This macro avoids accidental uses of num_sign_bit_copies. */
3587 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3589 /* Given an expression, X, compute which bits in X can be nonzero.
3590 We don't care about bits outside of those defined in MODE.
3592 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3593 an arithmetic operation, we can do better. */
3595 static unsigned HOST_WIDE_INT
3596 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3597 enum machine_mode known_mode,
3598 unsigned HOST_WIDE_INT known_ret)
3600 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3601 unsigned HOST_WIDE_INT inner_nz;
3602 enum rtx_code code;
3603 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3605 /* For floating-point values, assume all bits are needed. */
3606 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3607 return nonzero;
3609 /* If X is wider than MODE, use its mode instead. */
3610 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3612 mode = GET_MODE (x);
3613 nonzero = GET_MODE_MASK (mode);
3614 mode_width = GET_MODE_BITSIZE (mode);
3617 if (mode_width > HOST_BITS_PER_WIDE_INT)
3618 /* Our only callers in this case look for single bit values. So
3619 just return the mode mask. Those tests will then be false. */
3620 return nonzero;
3622 #ifndef WORD_REGISTER_OPERATIONS
3623 /* If MODE is wider than X, but both are a single word for both the host
3624 and target machines, we can compute this from which bits of the
3625 object might be nonzero in its own mode, taking into account the fact
3626 that on many CISC machines, accessing an object in a wider mode
3627 causes the high-order bits to become undefined. So they are
3628 not known to be zero. */
3630 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3631 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3632 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3633 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3635 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3636 known_x, known_mode, known_ret);
3637 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3638 return nonzero;
3640 #endif
3642 code = GET_CODE (x);
3643 switch (code)
3645 case REG:
3646 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3647 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3648 all the bits above ptr_mode are known to be zero. */
3649 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3650 && REG_POINTER (x))
3651 nonzero &= GET_MODE_MASK (ptr_mode);
3652 #endif
3654 /* Include declared information about alignment of pointers. */
3655 /* ??? We don't properly preserve REG_POINTER changes across
3656 pointer-to-integer casts, so we can't trust it except for
3657 things that we know must be pointers. See execute/960116-1.c. */
3658 if ((x == stack_pointer_rtx
3659 || x == frame_pointer_rtx
3660 || x == arg_pointer_rtx)
3661 && REGNO_POINTER_ALIGN (REGNO (x)))
3663 unsigned HOST_WIDE_INT alignment
3664 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3666 #ifdef PUSH_ROUNDING
3667 /* If PUSH_ROUNDING is defined, it is possible for the
3668 stack to be momentarily aligned only to that amount,
3669 so we pick the least alignment. */
3670 if (x == stack_pointer_rtx && PUSH_ARGS)
3671 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3672 alignment);
3673 #endif
3675 nonzero &= ~(alignment - 1);
3679 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3680 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3681 known_mode, known_ret,
3682 &nonzero_for_hook);
3684 if (new)
3685 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3686 known_mode, known_ret);
3688 return nonzero_for_hook;
3691 case CONST_INT:
3692 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3693 /* If X is negative in MODE, sign-extend the value. */
3694 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3695 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3696 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3697 #endif
3699 return INTVAL (x);
3701 case MEM:
3702 #ifdef LOAD_EXTEND_OP
3703 /* In many, if not most, RISC machines, reading a byte from memory
3704 zeros the rest of the register. Noticing that fact saves a lot
3705 of extra zero-extends. */
3706 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3707 nonzero &= GET_MODE_MASK (GET_MODE (x));
3708 #endif
3709 break;
3711 case EQ: case NE:
3712 case UNEQ: case LTGT:
3713 case GT: case GTU: case UNGT:
3714 case LT: case LTU: case UNLT:
3715 case GE: case GEU: case UNGE:
3716 case LE: case LEU: case UNLE:
3717 case UNORDERED: case ORDERED:
3718 /* If this produces an integer result, we know which bits are set.
3719 Code here used to clear bits outside the mode of X, but that is
3720 now done above. */
3721 /* Mind that MODE is the mode the caller wants to look at this
3722 operation in, and not the actual operation mode. We can wind
3723 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3724 that describes the results of a vector compare. */
3725 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3726 && mode_width <= HOST_BITS_PER_WIDE_INT)
3727 nonzero = STORE_FLAG_VALUE;
3728 break;
3730 case NEG:
3731 #if 0
3732 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3733 and num_sign_bit_copies. */
3734 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3735 == GET_MODE_BITSIZE (GET_MODE (x)))
3736 nonzero = 1;
3737 #endif
3739 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3740 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3741 break;
3743 case ABS:
3744 #if 0
3745 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3746 and num_sign_bit_copies. */
3747 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3748 == GET_MODE_BITSIZE (GET_MODE (x)))
3749 nonzero = 1;
3750 #endif
3751 break;
3753 case TRUNCATE:
3754 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3755 known_x, known_mode, known_ret)
3756 & GET_MODE_MASK (mode));
3757 break;
3759 case ZERO_EXTEND:
3760 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3761 known_x, known_mode, known_ret);
3762 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3763 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3764 break;
3766 case SIGN_EXTEND:
3767 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3768 Otherwise, show all the bits in the outer mode but not the inner
3769 may be nonzero. */
3770 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3771 known_x, known_mode, known_ret);
3772 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3774 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3775 if (inner_nz
3776 & (((HOST_WIDE_INT) 1
3777 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3778 inner_nz |= (GET_MODE_MASK (mode)
3779 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3782 nonzero &= inner_nz;
3783 break;
3785 case AND:
3786 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3787 known_x, known_mode, known_ret)
3788 & cached_nonzero_bits (XEXP (x, 1), mode,
3789 known_x, known_mode, known_ret);
3790 break;
3792 case XOR: case IOR:
3793 case UMIN: case UMAX: case SMIN: case SMAX:
3795 unsigned HOST_WIDE_INT nonzero0 =
3796 cached_nonzero_bits (XEXP (x, 0), mode,
3797 known_x, known_mode, known_ret);
3799 /* Don't call nonzero_bits for the second time if it cannot change
3800 anything. */
3801 if ((nonzero & nonzero0) != nonzero)
3802 nonzero &= nonzero0
3803 | cached_nonzero_bits (XEXP (x, 1), mode,
3804 known_x, known_mode, known_ret);
3806 break;
3808 case PLUS: case MINUS:
3809 case MULT:
3810 case DIV: case UDIV:
3811 case MOD: case UMOD:
3812 /* We can apply the rules of arithmetic to compute the number of
3813 high- and low-order zero bits of these operations. We start by
3814 computing the width (position of the highest-order nonzero bit)
3815 and the number of low-order zero bits for each value. */
3817 unsigned HOST_WIDE_INT nz0 =
3818 cached_nonzero_bits (XEXP (x, 0), mode,
3819 known_x, known_mode, known_ret);
3820 unsigned HOST_WIDE_INT nz1 =
3821 cached_nonzero_bits (XEXP (x, 1), mode,
3822 known_x, known_mode, known_ret);
3823 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3824 int width0 = floor_log2 (nz0) + 1;
3825 int width1 = floor_log2 (nz1) + 1;
3826 int low0 = floor_log2 (nz0 & -nz0);
3827 int low1 = floor_log2 (nz1 & -nz1);
3828 HOST_WIDE_INT op0_maybe_minusp
3829 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3830 HOST_WIDE_INT op1_maybe_minusp
3831 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3832 unsigned int result_width = mode_width;
3833 int result_low = 0;
3835 switch (code)
3837 case PLUS:
3838 result_width = MAX (width0, width1) + 1;
3839 result_low = MIN (low0, low1);
3840 break;
3841 case MINUS:
3842 result_low = MIN (low0, low1);
3843 break;
3844 case MULT:
3845 result_width = width0 + width1;
3846 result_low = low0 + low1;
3847 break;
3848 case DIV:
3849 if (width1 == 0)
3850 break;
3851 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3852 result_width = width0;
3853 break;
3854 case UDIV:
3855 if (width1 == 0)
3856 break;
3857 result_width = width0;
3858 break;
3859 case MOD:
3860 if (width1 == 0)
3861 break;
3862 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3863 result_width = MIN (width0, width1);
3864 result_low = MIN (low0, low1);
3865 break;
3866 case UMOD:
3867 if (width1 == 0)
3868 break;
3869 result_width = MIN (width0, width1);
3870 result_low = MIN (low0, low1);
3871 break;
3872 default:
3873 gcc_unreachable ();
3876 if (result_width < mode_width)
3877 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3879 if (result_low > 0)
3880 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3882 #ifdef POINTERS_EXTEND_UNSIGNED
3883 /* If pointers extend unsigned and this is an addition or subtraction
3884 to a pointer in Pmode, all the bits above ptr_mode are known to be
3885 zero. */
3886 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3887 && (code == PLUS || code == MINUS)
3888 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3889 nonzero &= GET_MODE_MASK (ptr_mode);
3890 #endif
3892 break;
3894 case ZERO_EXTRACT:
3895 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3896 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3897 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3898 break;
3900 case SUBREG:
3901 /* If this is a SUBREG formed for a promoted variable that has
3902 been zero-extended, we know that at least the high-order bits
3903 are zero, though others might be too. */
3905 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3906 nonzero = GET_MODE_MASK (GET_MODE (x))
3907 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3908 known_x, known_mode, known_ret);
3910 /* If the inner mode is a single word for both the host and target
3911 machines, we can compute this from which bits of the inner
3912 object might be nonzero. */
3913 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3914 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3915 <= HOST_BITS_PER_WIDE_INT))
3917 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3918 known_x, known_mode, known_ret);
3920 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3921 /* If this is a typical RISC machine, we only have to worry
3922 about the way loads are extended. */
3923 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3924 ? (((nonzero
3925 & (((unsigned HOST_WIDE_INT) 1
3926 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3927 != 0))
3928 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3929 || !MEM_P (SUBREG_REG (x)))
3930 #endif
3932 /* On many CISC machines, accessing an object in a wider mode
3933 causes the high-order bits to become undefined. So they are
3934 not known to be zero. */
3935 if (GET_MODE_SIZE (GET_MODE (x))
3936 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3937 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3938 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3941 break;
3943 case ASHIFTRT:
3944 case LSHIFTRT:
3945 case ASHIFT:
3946 case ROTATE:
3947 /* The nonzero bits are in two classes: any bits within MODE
3948 that aren't in GET_MODE (x) are always significant. The rest of the
3949 nonzero bits are those that are significant in the operand of
3950 the shift when shifted the appropriate number of bits. This
3951 shows that high-order bits are cleared by the right shift and
3952 low-order bits by left shifts. */
3953 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3954 && INTVAL (XEXP (x, 1)) >= 0
3955 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3957 enum machine_mode inner_mode = GET_MODE (x);
3958 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3959 int count = INTVAL (XEXP (x, 1));
3960 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3961 unsigned HOST_WIDE_INT op_nonzero =
3962 cached_nonzero_bits (XEXP (x, 0), mode,
3963 known_x, known_mode, known_ret);
3964 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3965 unsigned HOST_WIDE_INT outer = 0;
3967 if (mode_width > width)
3968 outer = (op_nonzero & nonzero & ~mode_mask);
3970 if (code == LSHIFTRT)
3971 inner >>= count;
3972 else if (code == ASHIFTRT)
3974 inner >>= count;
3976 /* If the sign bit may have been nonzero before the shift, we
3977 need to mark all the places it could have been copied to
3978 by the shift as possibly nonzero. */
3979 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3980 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3982 else if (code == ASHIFT)
3983 inner <<= count;
3984 else
3985 inner = ((inner << (count % width)
3986 | (inner >> (width - (count % width)))) & mode_mask);
3988 nonzero &= (outer | inner);
3990 break;
3992 case FFS:
3993 case POPCOUNT:
3994 /* This is at most the number of bits in the mode. */
3995 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3996 break;
3998 case CLZ:
3999 /* If CLZ has a known value at zero, then the nonzero bits are
4000 that value, plus the number of bits in the mode minus one. */
4001 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4002 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4003 else
4004 nonzero = -1;
4005 break;
4007 case CTZ:
4008 /* If CTZ has a known value at zero, then the nonzero bits are
4009 that value, plus the number of bits in the mode minus one. */
4010 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4011 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4012 else
4013 nonzero = -1;
4014 break;
4016 case PARITY:
4017 nonzero = 1;
4018 break;
4020 case IF_THEN_ELSE:
4022 unsigned HOST_WIDE_INT nonzero_true =
4023 cached_nonzero_bits (XEXP (x, 1), mode,
4024 known_x, known_mode, known_ret);
4026 /* Don't call nonzero_bits for the second time if it cannot change
4027 anything. */
4028 if ((nonzero & nonzero_true) != nonzero)
4029 nonzero &= nonzero_true
4030 | cached_nonzero_bits (XEXP (x, 2), mode,
4031 known_x, known_mode, known_ret);
4033 break;
4035 default:
4036 break;
4039 return nonzero;
4042 /* See the macro definition above. */
4043 #undef cached_num_sign_bit_copies
4046 /* The function cached_num_sign_bit_copies is a wrapper around
4047 num_sign_bit_copies1. It avoids exponential behavior in
4048 num_sign_bit_copies1 when X has identical subexpressions on the
4049 first or the second level. */
4051 static unsigned int
4052 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4053 enum machine_mode known_mode,
4054 unsigned int known_ret)
4056 if (x == known_x && mode == known_mode)
4057 return known_ret;
4059 /* Try to find identical subexpressions. If found call
4060 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4061 the precomputed value for the subexpression as KNOWN_RET. */
4063 if (ARITHMETIC_P (x))
4065 rtx x0 = XEXP (x, 0);
4066 rtx x1 = XEXP (x, 1);
4068 /* Check the first level. */
4069 if (x0 == x1)
4070 return
4071 num_sign_bit_copies1 (x, mode, x0, mode,
4072 cached_num_sign_bit_copies (x0, mode, known_x,
4073 known_mode,
4074 known_ret));
4076 /* Check the second level. */
4077 if (ARITHMETIC_P (x0)
4078 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4079 return
4080 num_sign_bit_copies1 (x, mode, x1, mode,
4081 cached_num_sign_bit_copies (x1, mode, known_x,
4082 known_mode,
4083 known_ret));
4085 if (ARITHMETIC_P (x1)
4086 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4087 return
4088 num_sign_bit_copies1 (x, mode, x0, mode,
4089 cached_num_sign_bit_copies (x0, mode, known_x,
4090 known_mode,
4091 known_ret));
4094 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4097 /* Return the number of bits at the high-order end of X that are known to
4098 be equal to the sign bit. X will be used in mode MODE; if MODE is
4099 VOIDmode, X will be used in its own mode. The returned value will always
4100 be between 1 and the number of bits in MODE. */
4102 static unsigned int
4103 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4104 enum machine_mode known_mode,
4105 unsigned int known_ret)
4107 enum rtx_code code = GET_CODE (x);
4108 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4109 int num0, num1, result;
4110 unsigned HOST_WIDE_INT nonzero;
4112 /* If we weren't given a mode, use the mode of X. If the mode is still
4113 VOIDmode, we don't know anything. Likewise if one of the modes is
4114 floating-point. */
4116 if (mode == VOIDmode)
4117 mode = GET_MODE (x);
4119 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4120 return 1;
4122 /* For a smaller object, just ignore the high bits. */
4123 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4125 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4126 known_x, known_mode, known_ret);
4127 return MAX (1,
4128 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4131 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4133 #ifndef WORD_REGISTER_OPERATIONS
4134 /* If this machine does not do all register operations on the entire
4135 register and MODE is wider than the mode of X, we can say nothing
4136 at all about the high-order bits. */
4137 return 1;
4138 #else
4139 /* Likewise on machines that do, if the mode of the object is smaller
4140 than a word and loads of that size don't sign extend, we can say
4141 nothing about the high order bits. */
4142 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4143 #ifdef LOAD_EXTEND_OP
4144 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4145 #endif
4147 return 1;
4148 #endif
4151 switch (code)
4153 case REG:
4155 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4156 /* If pointers extend signed and this is a pointer in Pmode, say that
4157 all the bits above ptr_mode are known to be sign bit copies. */
4158 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4159 && REG_POINTER (x))
4160 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4161 #endif
4164 unsigned int copies_for_hook = 1, copies = 1;
4165 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4166 known_mode, known_ret,
4167 &copies_for_hook);
4169 if (new)
4170 copies = cached_num_sign_bit_copies (new, mode, known_x,
4171 known_mode, known_ret);
4173 if (copies > 1 || copies_for_hook > 1)
4174 return MAX (copies, copies_for_hook);
4176 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4178 break;
4180 case MEM:
4181 #ifdef LOAD_EXTEND_OP
4182 /* Some RISC machines sign-extend all loads of smaller than a word. */
4183 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4184 return MAX (1, ((int) bitwidth
4185 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4186 #endif
4187 break;
4189 case CONST_INT:
4190 /* If the constant is negative, take its 1's complement and remask.
4191 Then see how many zero bits we have. */
4192 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4193 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4194 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4195 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4197 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4199 case SUBREG:
4200 /* If this is a SUBREG for a promoted object that is sign-extended
4201 and we are looking at it in a wider mode, we know that at least the
4202 high-order bits are known to be sign bit copies. */
4204 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4206 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4207 known_x, known_mode, known_ret);
4208 return MAX ((int) bitwidth
4209 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4210 num0);
4213 /* For a smaller object, just ignore the high bits. */
4214 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4216 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4217 known_x, known_mode, known_ret);
4218 return MAX (1, (num0
4219 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4220 - bitwidth)));
4223 #ifdef WORD_REGISTER_OPERATIONS
4224 #ifdef LOAD_EXTEND_OP
4225 /* For paradoxical SUBREGs on machines where all register operations
4226 affect the entire register, just look inside. Note that we are
4227 passing MODE to the recursive call, so the number of sign bit copies
4228 will remain relative to that mode, not the inner mode. */
4230 /* This works only if loads sign extend. Otherwise, if we get a
4231 reload for the inner part, it may be loaded from the stack, and
4232 then we lose all sign bit copies that existed before the store
4233 to the stack. */
4235 if ((GET_MODE_SIZE (GET_MODE (x))
4236 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4237 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4238 && MEM_P (SUBREG_REG (x)))
4239 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4240 known_x, known_mode, known_ret);
4241 #endif
4242 #endif
4243 break;
4245 case SIGN_EXTRACT:
4246 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4247 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4248 break;
4250 case SIGN_EXTEND:
4251 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4252 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4253 known_x, known_mode, known_ret));
4255 case TRUNCATE:
4256 /* For a smaller object, just ignore the high bits. */
4257 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4258 known_x, known_mode, known_ret);
4259 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4260 - bitwidth)));
4262 case NOT:
4263 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4264 known_x, known_mode, known_ret);
4266 case ROTATE: case ROTATERT:
4267 /* If we are rotating left by a number of bits less than the number
4268 of sign bit copies, we can just subtract that amount from the
4269 number. */
4270 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4271 && INTVAL (XEXP (x, 1)) >= 0
4272 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4274 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4275 known_x, known_mode, known_ret);
4276 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4277 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4279 break;
4281 case NEG:
4282 /* In general, this subtracts one sign bit copy. But if the value
4283 is known to be positive, the number of sign bit copies is the
4284 same as that of the input. Finally, if the input has just one bit
4285 that might be nonzero, all the bits are copies of the sign bit. */
4286 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4287 known_x, known_mode, known_ret);
4288 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4289 return num0 > 1 ? num0 - 1 : 1;
4291 nonzero = nonzero_bits (XEXP (x, 0), mode);
4292 if (nonzero == 1)
4293 return bitwidth;
4295 if (num0 > 1
4296 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4297 num0--;
4299 return num0;
4301 case IOR: case AND: case XOR:
4302 case SMIN: case SMAX: case UMIN: case UMAX:
4303 /* Logical operations will preserve the number of sign-bit copies.
4304 MIN and MAX operations always return one of the operands. */
4305 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4306 known_x, known_mode, known_ret);
4307 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4308 known_x, known_mode, known_ret);
4310 /* If num1 is clearing some of the top bits then regardless of
4311 the other term, we are guaranteed to have at least that many
4312 high-order zero bits. */
4313 if (code == AND
4314 && num1 > 1
4315 && bitwidth <= HOST_BITS_PER_WIDE_INT
4316 && GET_CODE (XEXP (x, 1)) == CONST_INT
4317 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4318 return num1;
4320 /* Similarly for IOR when setting high-order bits. */
4321 if (code == IOR
4322 && num1 > 1
4323 && bitwidth <= HOST_BITS_PER_WIDE_INT
4324 && GET_CODE (XEXP (x, 1)) == CONST_INT
4325 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4326 return num1;
4328 return MIN (num0, num1);
4330 case PLUS: case MINUS:
4331 /* For addition and subtraction, we can have a 1-bit carry. However,
4332 if we are subtracting 1 from a positive number, there will not
4333 be such a carry. Furthermore, if the positive number is known to
4334 be 0 or 1, we know the result is either -1 or 0. */
4336 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4337 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4339 nonzero = nonzero_bits (XEXP (x, 0), mode);
4340 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4341 return (nonzero == 1 || nonzero == 0 ? bitwidth
4342 : bitwidth - floor_log2 (nonzero) - 1);
4345 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4346 known_x, known_mode, known_ret);
4347 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4348 known_x, known_mode, known_ret);
4349 result = MAX (1, MIN (num0, num1) - 1);
4351 #ifdef POINTERS_EXTEND_UNSIGNED
4352 /* If pointers extend signed and this is an addition or subtraction
4353 to a pointer in Pmode, all the bits above ptr_mode are known to be
4354 sign bit copies. */
4355 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4356 && (code == PLUS || code == MINUS)
4357 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4358 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4359 - GET_MODE_BITSIZE (ptr_mode) + 1),
4360 result);
4361 #endif
4362 return result;
4364 case MULT:
4365 /* The number of bits of the product is the sum of the number of
4366 bits of both terms. However, unless one of the terms if known
4367 to be positive, we must allow for an additional bit since negating
4368 a negative number can remove one sign bit copy. */
4370 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4371 known_x, known_mode, known_ret);
4372 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4373 known_x, known_mode, known_ret);
4375 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4376 if (result > 0
4377 && (bitwidth > HOST_BITS_PER_WIDE_INT
4378 || (((nonzero_bits (XEXP (x, 0), mode)
4379 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4380 && ((nonzero_bits (XEXP (x, 1), mode)
4381 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4382 result--;
4384 return MAX (1, result);
4386 case UDIV:
4387 /* The result must be <= the first operand. If the first operand
4388 has the high bit set, we know nothing about the number of sign
4389 bit copies. */
4390 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4391 return 1;
4392 else if ((nonzero_bits (XEXP (x, 0), mode)
4393 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4394 return 1;
4395 else
4396 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4397 known_x, known_mode, known_ret);
4399 case UMOD:
4400 /* The result must be <= the second operand. */
4401 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4402 known_x, known_mode, known_ret);
4404 case DIV:
4405 /* Similar to unsigned division, except that we have to worry about
4406 the case where the divisor is negative, in which case we have
4407 to add 1. */
4408 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4409 known_x, known_mode, known_ret);
4410 if (result > 1
4411 && (bitwidth > HOST_BITS_PER_WIDE_INT
4412 || (nonzero_bits (XEXP (x, 1), mode)
4413 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4414 result--;
4416 return result;
4418 case MOD:
4419 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4420 known_x, known_mode, known_ret);
4421 if (result > 1
4422 && (bitwidth > HOST_BITS_PER_WIDE_INT
4423 || (nonzero_bits (XEXP (x, 1), mode)
4424 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4425 result--;
4427 return result;
4429 case ASHIFTRT:
4430 /* Shifts by a constant add to the number of bits equal to the
4431 sign bit. */
4432 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4433 known_x, known_mode, known_ret);
4434 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4435 && INTVAL (XEXP (x, 1)) > 0)
4436 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4438 return num0;
4440 case ASHIFT:
4441 /* Left shifts destroy copies. */
4442 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4443 || INTVAL (XEXP (x, 1)) < 0
4444 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4445 return 1;
4447 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4448 known_x, known_mode, known_ret);
4449 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4451 case IF_THEN_ELSE:
4452 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4453 known_x, known_mode, known_ret);
4454 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4455 known_x, known_mode, known_ret);
4456 return MIN (num0, num1);
4458 case EQ: case NE: case GE: case GT: case LE: case LT:
4459 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4460 case GEU: case GTU: case LEU: case LTU:
4461 case UNORDERED: case ORDERED:
4462 /* If the constant is negative, take its 1's complement and remask.
4463 Then see how many zero bits we have. */
4464 nonzero = STORE_FLAG_VALUE;
4465 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4466 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4467 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4469 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4471 default:
4472 break;
4475 /* If we haven't been able to figure it out by one of the above rules,
4476 see if some of the high-order bits are known to be zero. If so,
4477 count those bits and return one less than that amount. If we can't
4478 safely compute the mask for this mode, always return BITWIDTH. */
4480 bitwidth = GET_MODE_BITSIZE (mode);
4481 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4482 return 1;
4484 nonzero = nonzero_bits (x, mode);
4485 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4486 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4489 /* Calculate the rtx_cost of a single instruction. A return value of
4490 zero indicates an instruction pattern without a known cost. */
4493 insn_rtx_cost (rtx pat)
4495 int i, cost;
4496 rtx set;
4498 /* Extract the single set rtx from the instruction pattern.
4499 We can't use single_set since we only have the pattern. */
4500 if (GET_CODE (pat) == SET)
4501 set = pat;
4502 else if (GET_CODE (pat) == PARALLEL)
4504 set = NULL_RTX;
4505 for (i = 0; i < XVECLEN (pat, 0); i++)
4507 rtx x = XVECEXP (pat, 0, i);
4508 if (GET_CODE (x) == SET)
4510 if (set)
4511 return 0;
4512 set = x;
4515 if (!set)
4516 return 0;
4518 else
4519 return 0;
4521 cost = rtx_cost (SET_SRC (set), SET);
4522 return cost > 0 ? cost : COSTS_N_INSNS (1);
4525 /* Given an insn INSN and condition COND, return the condition in a
4526 canonical form to simplify testing by callers. Specifically:
4528 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4529 (2) Both operands will be machine operands; (cc0) will have been replaced.
4530 (3) If an operand is a constant, it will be the second operand.
4531 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4532 for GE, GEU, and LEU.
4534 If the condition cannot be understood, or is an inequality floating-point
4535 comparison which needs to be reversed, 0 will be returned.
4537 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4539 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4540 insn used in locating the condition was found. If a replacement test
4541 of the condition is desired, it should be placed in front of that
4542 insn and we will be sure that the inputs are still valid.
4544 If WANT_REG is nonzero, we wish the condition to be relative to that
4545 register, if possible. Therefore, do not canonicalize the condition
4546 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4547 to be a compare to a CC mode register.
4549 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4550 and at INSN. */
4553 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4554 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4556 enum rtx_code code;
4557 rtx prev = insn;
4558 const_rtx set;
4559 rtx tem;
4560 rtx op0, op1;
4561 int reverse_code = 0;
4562 enum machine_mode mode;
4563 basic_block bb = BLOCK_FOR_INSN (insn);
4565 code = GET_CODE (cond);
4566 mode = GET_MODE (cond);
4567 op0 = XEXP (cond, 0);
4568 op1 = XEXP (cond, 1);
4570 if (reverse)
4571 code = reversed_comparison_code (cond, insn);
4572 if (code == UNKNOWN)
4573 return 0;
4575 if (earliest)
4576 *earliest = insn;
4578 /* If we are comparing a register with zero, see if the register is set
4579 in the previous insn to a COMPARE or a comparison operation. Perform
4580 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4581 in cse.c */
4583 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4584 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4585 && op1 == CONST0_RTX (GET_MODE (op0))
4586 && op0 != want_reg)
4588 /* Set nonzero when we find something of interest. */
4589 rtx x = 0;
4591 #ifdef HAVE_cc0
4592 /* If comparison with cc0, import actual comparison from compare
4593 insn. */
4594 if (op0 == cc0_rtx)
4596 if ((prev = prev_nonnote_insn (prev)) == 0
4597 || !NONJUMP_INSN_P (prev)
4598 || (set = single_set (prev)) == 0
4599 || SET_DEST (set) != cc0_rtx)
4600 return 0;
4602 op0 = SET_SRC (set);
4603 op1 = CONST0_RTX (GET_MODE (op0));
4604 if (earliest)
4605 *earliest = prev;
4607 #endif
4609 /* If this is a COMPARE, pick up the two things being compared. */
4610 if (GET_CODE (op0) == COMPARE)
4612 op1 = XEXP (op0, 1);
4613 op0 = XEXP (op0, 0);
4614 continue;
4616 else if (!REG_P (op0))
4617 break;
4619 /* Go back to the previous insn. Stop if it is not an INSN. We also
4620 stop if it isn't a single set or if it has a REG_INC note because
4621 we don't want to bother dealing with it. */
4623 if ((prev = prev_nonnote_insn (prev)) == 0
4624 || !NONJUMP_INSN_P (prev)
4625 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4626 /* In cfglayout mode, there do not have to be labels at the
4627 beginning of a block, or jumps at the end, so the previous
4628 conditions would not stop us when we reach bb boundary. */
4629 || BLOCK_FOR_INSN (prev) != bb)
4630 break;
4632 set = set_of (op0, prev);
4634 if (set
4635 && (GET_CODE (set) != SET
4636 || !rtx_equal_p (SET_DEST (set), op0)))
4637 break;
4639 /* If this is setting OP0, get what it sets it to if it looks
4640 relevant. */
4641 if (set)
4643 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4644 #ifdef FLOAT_STORE_FLAG_VALUE
4645 REAL_VALUE_TYPE fsfv;
4646 #endif
4648 /* ??? We may not combine comparisons done in a CCmode with
4649 comparisons not done in a CCmode. This is to aid targets
4650 like Alpha that have an IEEE compliant EQ instruction, and
4651 a non-IEEE compliant BEQ instruction. The use of CCmode is
4652 actually artificial, simply to prevent the combination, but
4653 should not affect other platforms.
4655 However, we must allow VOIDmode comparisons to match either
4656 CCmode or non-CCmode comparison, because some ports have
4657 modeless comparisons inside branch patterns.
4659 ??? This mode check should perhaps look more like the mode check
4660 in simplify_comparison in combine. */
4662 if ((GET_CODE (SET_SRC (set)) == COMPARE
4663 || (((code == NE
4664 || (code == LT
4665 && GET_MODE_CLASS (inner_mode) == MODE_INT
4666 && (GET_MODE_BITSIZE (inner_mode)
4667 <= HOST_BITS_PER_WIDE_INT)
4668 && (STORE_FLAG_VALUE
4669 & ((HOST_WIDE_INT) 1
4670 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4671 #ifdef FLOAT_STORE_FLAG_VALUE
4672 || (code == LT
4673 && SCALAR_FLOAT_MODE_P (inner_mode)
4674 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4675 REAL_VALUE_NEGATIVE (fsfv)))
4676 #endif
4678 && COMPARISON_P (SET_SRC (set))))
4679 && (((GET_MODE_CLASS (mode) == MODE_CC)
4680 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4681 || mode == VOIDmode || inner_mode == VOIDmode))
4682 x = SET_SRC (set);
4683 else if (((code == EQ
4684 || (code == GE
4685 && (GET_MODE_BITSIZE (inner_mode)
4686 <= HOST_BITS_PER_WIDE_INT)
4687 && GET_MODE_CLASS (inner_mode) == MODE_INT
4688 && (STORE_FLAG_VALUE
4689 & ((HOST_WIDE_INT) 1
4690 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4691 #ifdef FLOAT_STORE_FLAG_VALUE
4692 || (code == GE
4693 && SCALAR_FLOAT_MODE_P (inner_mode)
4694 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4695 REAL_VALUE_NEGATIVE (fsfv)))
4696 #endif
4698 && COMPARISON_P (SET_SRC (set))
4699 && (((GET_MODE_CLASS (mode) == MODE_CC)
4700 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4701 || mode == VOIDmode || inner_mode == VOIDmode))
4704 reverse_code = 1;
4705 x = SET_SRC (set);
4707 else
4708 break;
4711 else if (reg_set_p (op0, prev))
4712 /* If this sets OP0, but not directly, we have to give up. */
4713 break;
4715 if (x)
4717 /* If the caller is expecting the condition to be valid at INSN,
4718 make sure X doesn't change before INSN. */
4719 if (valid_at_insn_p)
4720 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4721 break;
4722 if (COMPARISON_P (x))
4723 code = GET_CODE (x);
4724 if (reverse_code)
4726 code = reversed_comparison_code (x, prev);
4727 if (code == UNKNOWN)
4728 return 0;
4729 reverse_code = 0;
4732 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4733 if (earliest)
4734 *earliest = prev;
4738 /* If constant is first, put it last. */
4739 if (CONSTANT_P (op0))
4740 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4742 /* If OP0 is the result of a comparison, we weren't able to find what
4743 was really being compared, so fail. */
4744 if (!allow_cc_mode
4745 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4746 return 0;
4748 /* Canonicalize any ordered comparison with integers involving equality
4749 if we can do computations in the relevant mode and we do not
4750 overflow. */
4752 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4753 && GET_CODE (op1) == CONST_INT
4754 && GET_MODE (op0) != VOIDmode
4755 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4757 HOST_WIDE_INT const_val = INTVAL (op1);
4758 unsigned HOST_WIDE_INT uconst_val = const_val;
4759 unsigned HOST_WIDE_INT max_val
4760 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4762 switch (code)
4764 case LE:
4765 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4766 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4767 break;
4769 /* When cross-compiling, const_val might be sign-extended from
4770 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4771 case GE:
4772 if ((HOST_WIDE_INT) (const_val & max_val)
4773 != (((HOST_WIDE_INT) 1
4774 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4775 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4776 break;
4778 case LEU:
4779 if (uconst_val < max_val)
4780 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4781 break;
4783 case GEU:
4784 if (uconst_val != 0)
4785 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4786 break;
4788 default:
4789 break;
4793 /* Never return CC0; return zero instead. */
4794 if (CC0_P (op0))
4795 return 0;
4797 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4800 /* Given a jump insn JUMP, return the condition that will cause it to branch
4801 to its JUMP_LABEL. If the condition cannot be understood, or is an
4802 inequality floating-point comparison which needs to be reversed, 0 will
4803 be returned.
4805 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4806 insn used in locating the condition was found. If a replacement test
4807 of the condition is desired, it should be placed in front of that
4808 insn and we will be sure that the inputs are still valid. If EARLIEST
4809 is null, the returned condition will be valid at INSN.
4811 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4812 compare CC mode register.
4814 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4817 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4819 rtx cond;
4820 int reverse;
4821 rtx set;
4823 /* If this is not a standard conditional jump, we can't parse it. */
4824 if (!JUMP_P (jump)
4825 || ! any_condjump_p (jump))
4826 return 0;
4827 set = pc_set (jump);
4829 cond = XEXP (SET_SRC (set), 0);
4831 /* If this branches to JUMP_LABEL when the condition is false, reverse
4832 the condition. */
4833 reverse
4834 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4835 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4837 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4838 allow_cc_mode, valid_at_insn_p);
4841 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4842 TARGET_MODE_REP_EXTENDED.
4844 Note that we assume that the property of
4845 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4846 narrower than mode B. I.e., if A is a mode narrower than B then in
4847 order to be able to operate on it in mode B, mode A needs to
4848 satisfy the requirements set by the representation of mode B. */
4850 static void
4851 init_num_sign_bit_copies_in_rep (void)
4853 enum machine_mode mode, in_mode;
4855 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4856 in_mode = GET_MODE_WIDER_MODE (mode))
4857 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4858 mode = GET_MODE_WIDER_MODE (mode))
4860 enum machine_mode i;
4862 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4863 extends to the next widest mode. */
4864 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4865 || GET_MODE_WIDER_MODE (mode) == in_mode);
4867 /* We are in in_mode. Count how many bits outside of mode
4868 have to be copies of the sign-bit. */
4869 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4871 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4873 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4874 /* We can only check sign-bit copies starting from the
4875 top-bit. In order to be able to check the bits we
4876 have already seen we pretend that subsequent bits
4877 have to be sign-bit copies too. */
4878 || num_sign_bit_copies_in_rep [in_mode][mode])
4879 num_sign_bit_copies_in_rep [in_mode][mode]
4880 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4885 /* Suppose that truncation from the machine mode of X to MODE is not a
4886 no-op. See if there is anything special about X so that we can
4887 assume it already contains a truncated value of MODE. */
4889 bool
4890 truncated_to_mode (enum machine_mode mode, const_rtx x)
4892 /* This register has already been used in MODE without explicit
4893 truncation. */
4894 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4895 return true;
4897 /* See if we already satisfy the requirements of MODE. If yes we
4898 can just switch to MODE. */
4899 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4900 && (num_sign_bit_copies (x, GET_MODE (x))
4901 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4902 return true;
4904 return false;
4907 /* Initialize non_rtx_starting_operands, which is used to speed up
4908 for_each_rtx. */
4909 void
4910 init_rtlanal (void)
4912 int i;
4913 for (i = 0; i < NUM_RTX_CODE; i++)
4915 const char *format = GET_RTX_FORMAT (i);
4916 const char *first = strpbrk (format, "eEV");
4917 non_rtx_starting_operands[i] = first ? first - format : -1;
4920 init_num_sign_bit_copies_in_rep ();
4923 /* Check whether this is a constant pool constant. */
4924 bool
4925 constant_pool_constant_p (rtx x)
4927 x = avoid_constant_pool_reference (x);
4928 return GET_CODE (x) == CONST_DOUBLE;