2002-06-05 David S. Miller <davem@redhat.com>
[official-gcc.git] / gcc / gcse.c
blob28b7264751ae34bce9e994c1552df03d0dad73df
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "toplev.h"
150 #include "rtl.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "real.h"
156 #include "insn-config.h"
157 #include "recog.h"
158 #include "basic-block.h"
159 #include "output.h"
160 #include "function.h"
161 #include "expr.h"
162 #include "except.h"
163 #include "ggc.h"
164 #include "params.h"
166 #include "obstack.h"
167 #define obstack_chunk_alloc gmalloc
168 #define obstack_chunk_free free
170 /* Propagate flow information through back edges and thus enable PRE's
171 moving loop invariant calculations out of loops.
173 Originally this tended to create worse overall code, but several
174 improvements during the development of PRE seem to have made following
175 back edges generally a win.
177 Note much of the loop invariant code motion done here would normally
178 be done by loop.c, which has more heuristics for when to move invariants
179 out of loops. At some point we might need to move some of those
180 heuristics into gcse.c. */
181 #define FOLLOW_BACK_EDGES 1
183 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
184 are a superset of those done by GCSE.
186 We perform the following steps:
188 1) Compute basic block information.
190 2) Compute table of places where registers are set.
192 3) Perform copy/constant propagation.
194 4) Perform global cse.
196 5) Perform another pass of copy/constant propagation.
198 Two passes of copy/constant propagation are done because the first one
199 enables more GCSE and the second one helps to clean up the copies that
200 GCSE creates. This is needed more for PRE than for Classic because Classic
201 GCSE will try to use an existing register containing the common
202 subexpression rather than create a new one. This is harder to do for PRE
203 because of the code motion (which Classic GCSE doesn't do).
205 Expressions we are interested in GCSE-ing are of the form
206 (set (pseudo-reg) (expression)).
207 Function want_to_gcse_p says what these are.
209 PRE handles moving invariant expressions out of loops (by treating them as
210 partially redundant).
212 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
213 assignment) based GVN (global value numbering). L. T. Simpson's paper
214 (Rice University) on value numbering is a useful reference for this.
216 **********************
218 We used to support multiple passes but there are diminishing returns in
219 doing so. The first pass usually makes 90% of the changes that are doable.
220 A second pass can make a few more changes made possible by the first pass.
221 Experiments show any further passes don't make enough changes to justify
222 the expense.
224 A study of spec92 using an unlimited number of passes:
225 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
229 It was found doing copy propagation between each pass enables further
230 substitutions.
232 PRE is quite expensive in complicated functions because the DFA can take
233 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
234 be modified if one wants to experiment.
236 **********************
238 The steps for PRE are:
240 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
242 2) Perform the data flow analysis for PRE.
244 3) Delete the redundant instructions
246 4) Insert the required copies [if any] that make the partially
247 redundant instructions fully redundant.
249 5) For other reaching expressions, insert an instruction to copy the value
250 to a newly created pseudo that will reach the redundant instruction.
252 The deletion is done first so that when we do insertions we
253 know which pseudo reg to use.
255 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
256 argue it is not. The number of iterations for the algorithm to converge
257 is typically 2-4 so I don't view it as that expensive (relatively speaking).
259 PRE GCSE depends heavily on the second CSE pass to clean up the copies
260 we create. To make an expression reach the place where it's redundant,
261 the result of the expression is copied to a new register, and the redundant
262 expression is deleted by replacing it with this new register. Classic GCSE
263 doesn't have this problem as much as it computes the reaching defs of
264 each register in each block and thus can try to use an existing register.
266 **********************
268 A fair bit of simplicity is created by creating small functions for simple
269 tasks, even when the function is only called in one place. This may
270 measurably slow things down [or may not] by creating more function call
271 overhead than is necessary. The source is laid out so that it's trivial
272 to make the affected functions inline so that one can measure what speed
273 up, if any, can be achieved, and maybe later when things settle things can
274 be rearranged.
276 Help stamp out big monolithic functions! */
278 /* GCSE global vars. */
280 /* -dG dump file. */
281 static FILE *gcse_file;
283 /* Note whether or not we should run jump optimization after gcse. We
284 want to do this for two cases.
286 * If we changed any jumps via cprop.
288 * If we added any labels via edge splitting. */
290 static int run_jump_opt_after_gcse;
292 /* Bitmaps are normally not included in debugging dumps.
293 However it's useful to be able to print them from GDB.
294 We could create special functions for this, but it's simpler to
295 just allow passing stderr to the dump_foo fns. Since stderr can
296 be a macro, we store a copy here. */
297 static FILE *debug_stderr;
299 /* An obstack for our working variables. */
300 static struct obstack gcse_obstack;
302 /* Non-zero for each mode that supports (set (reg) (reg)).
303 This is trivially true for integer and floating point values.
304 It may or may not be true for condition codes. */
305 static char can_copy_p[(int) NUM_MACHINE_MODES];
307 /* Non-zero if can_copy_p has been initialized. */
308 static int can_copy_init_p;
310 struct reg_use {rtx reg_rtx; };
312 /* Hash table of expressions. */
314 struct expr
316 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
317 rtx expr;
318 /* Index in the available expression bitmaps. */
319 int bitmap_index;
320 /* Next entry with the same hash. */
321 struct expr *next_same_hash;
322 /* List of anticipatable occurrences in basic blocks in the function.
323 An "anticipatable occurrence" is one that is the first occurrence in the
324 basic block, the operands are not modified in the basic block prior
325 to the occurrence and the output is not used between the start of
326 the block and the occurrence. */
327 struct occr *antic_occr;
328 /* List of available occurrence in basic blocks in the function.
329 An "available occurrence" is one that is the last occurrence in the
330 basic block and the operands are not modified by following statements in
331 the basic block [including this insn]. */
332 struct occr *avail_occr;
333 /* Non-null if the computation is PRE redundant.
334 The value is the newly created pseudo-reg to record a copy of the
335 expression in all the places that reach the redundant copy. */
336 rtx reaching_reg;
339 /* Occurrence of an expression.
340 There is one per basic block. If a pattern appears more than once the
341 last appearance is used [or first for anticipatable expressions]. */
343 struct occr
345 /* Next occurrence of this expression. */
346 struct occr *next;
347 /* The insn that computes the expression. */
348 rtx insn;
349 /* Non-zero if this [anticipatable] occurrence has been deleted. */
350 char deleted_p;
351 /* Non-zero if this [available] occurrence has been copied to
352 reaching_reg. */
353 /* ??? This is mutually exclusive with deleted_p, so they could share
354 the same byte. */
355 char copied_p;
358 /* Expression and copy propagation hash tables.
359 Each hash table is an array of buckets.
360 ??? It is known that if it were an array of entries, structure elements
361 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
362 not clear whether in the final analysis a sufficient amount of memory would
363 be saved as the size of the available expression bitmaps would be larger
364 [one could build a mapping table without holes afterwards though].
365 Someday I'll perform the computation and figure it out. */
367 /* Total size of the expression hash table, in elements. */
368 static unsigned int expr_hash_table_size;
370 /* The table itself.
371 This is an array of `expr_hash_table_size' elements. */
372 static struct expr **expr_hash_table;
374 /* Total size of the copy propagation hash table, in elements. */
375 static unsigned int set_hash_table_size;
377 /* The table itself.
378 This is an array of `set_hash_table_size' elements. */
379 static struct expr **set_hash_table;
381 /* Mapping of uids to cuids.
382 Only real insns get cuids. */
383 static int *uid_cuid;
385 /* Highest UID in UID_CUID. */
386 static int max_uid;
388 /* Get the cuid of an insn. */
389 #ifdef ENABLE_CHECKING
390 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
391 #else
392 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
393 #endif
395 /* Number of cuids. */
396 static int max_cuid;
398 /* Mapping of cuids to insns. */
399 static rtx *cuid_insn;
401 /* Get insn from cuid. */
402 #define CUID_INSN(CUID) (cuid_insn[CUID])
404 /* Maximum register number in function prior to doing gcse + 1.
405 Registers created during this pass have regno >= max_gcse_regno.
406 This is named with "gcse" to not collide with global of same name. */
407 static unsigned int max_gcse_regno;
409 /* Maximum number of cse-able expressions found. */
410 static int n_exprs;
412 /* Maximum number of assignments for copy propagation found. */
413 static int n_sets;
415 /* Table of registers that are modified.
417 For each register, each element is a list of places where the pseudo-reg
418 is set.
420 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
421 requires knowledge of which blocks kill which regs [and thus could use
422 a bitmap instead of the lists `reg_set_table' uses].
424 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
425 num-regs) [however perhaps it may be useful to keep the data as is]. One
426 advantage of recording things this way is that `reg_set_table' is fairly
427 sparse with respect to pseudo regs but for hard regs could be fairly dense
428 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
429 up functions like compute_transp since in the case of pseudo-regs we only
430 need to iterate over the number of times a pseudo-reg is set, not over the
431 number of basic blocks [clearly there is a bit of a slow down in the cases
432 where a pseudo is set more than once in a block, however it is believed
433 that the net effect is to speed things up]. This isn't done for hard-regs
434 because recording call-clobbered hard-regs in `reg_set_table' at each
435 function call can consume a fair bit of memory, and iterating over
436 hard-regs stored this way in compute_transp will be more expensive. */
438 typedef struct reg_set
440 /* The next setting of this register. */
441 struct reg_set *next;
442 /* The insn where it was set. */
443 rtx insn;
444 } reg_set;
446 static reg_set **reg_set_table;
448 /* Size of `reg_set_table'.
449 The table starts out at max_gcse_regno + slop, and is enlarged as
450 necessary. */
451 static int reg_set_table_size;
453 /* Amount to grow `reg_set_table' by when it's full. */
454 #define REG_SET_TABLE_SLOP 100
456 /* This is a list of expressions which are MEMs and will be used by load
457 or store motion.
458 Load motion tracks MEMs which aren't killed by
459 anything except itself. (ie, loads and stores to a single location).
460 We can then allow movement of these MEM refs with a little special
461 allowance. (all stores copy the same value to the reaching reg used
462 for the loads). This means all values used to store into memory must have
463 no side effects so we can re-issue the setter value.
464 Store Motion uses this structure as an expression table to track stores
465 which look interesting, and might be moveable towards the exit block. */
467 struct ls_expr
469 struct expr * expr; /* Gcse expression reference for LM. */
470 rtx pattern; /* Pattern of this mem. */
471 rtx loads; /* INSN list of loads seen. */
472 rtx stores; /* INSN list of stores seen. */
473 struct ls_expr * next; /* Next in the list. */
474 int invalid; /* Invalid for some reason. */
475 int index; /* If it maps to a bitmap index. */
476 int hash_index; /* Index when in a hash table. */
477 rtx reaching_reg; /* Register to use when re-writing. */
480 /* Head of the list of load/store memory refs. */
481 static struct ls_expr * pre_ldst_mems = NULL;
483 /* Bitmap containing one bit for each register in the program.
484 Used when performing GCSE to track which registers have been set since
485 the start of the basic block. */
486 static regset reg_set_bitmap;
488 /* For each block, a bitmap of registers set in the block.
489 This is used by expr_killed_p and compute_transp.
490 It is computed during hash table computation and not by compute_sets
491 as it includes registers added since the last pass (or between cprop and
492 gcse) and it's currently not easy to realloc sbitmap vectors. */
493 static sbitmap *reg_set_in_block;
495 /* Array, indexed by basic block number for a list of insns which modify
496 memory within that block. */
497 static rtx * modify_mem_list;
498 bitmap modify_mem_list_set;
500 /* This array parallels modify_mem_list, but is kept canonicalized. */
501 static rtx * canon_modify_mem_list;
502 bitmap canon_modify_mem_list_set;
503 /* Various variables for statistics gathering. */
505 /* Memory used in a pass.
506 This isn't intended to be absolutely precise. Its intent is only
507 to keep an eye on memory usage. */
508 static int bytes_used;
510 /* GCSE substitutions made. */
511 static int gcse_subst_count;
512 /* Number of copy instructions created. */
513 static int gcse_create_count;
514 /* Number of constants propagated. */
515 static int const_prop_count;
516 /* Number of copys propagated. */
517 static int copy_prop_count;
519 /* These variables are used by classic GCSE.
520 Normally they'd be defined a bit later, but `rd_gen' needs to
521 be declared sooner. */
523 /* Each block has a bitmap of each type.
524 The length of each blocks bitmap is:
526 max_cuid - for reaching definitions
527 n_exprs - for available expressions
529 Thus we view the bitmaps as 2 dimensional arrays. i.e.
530 rd_kill[block_num][cuid_num]
531 ae_kill[block_num][expr_num] */
533 /* For reaching defs */
534 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
536 /* for available exprs */
537 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
539 /* Objects of this type are passed around by the null-pointer check
540 removal routines. */
541 struct null_pointer_info
543 /* The basic block being processed. */
544 basic_block current_block;
545 /* The first register to be handled in this pass. */
546 unsigned int min_reg;
547 /* One greater than the last register to be handled in this pass. */
548 unsigned int max_reg;
549 sbitmap *nonnull_local;
550 sbitmap *nonnull_killed;
553 static void compute_can_copy PARAMS ((void));
554 static char *gmalloc PARAMS ((unsigned int));
555 static char *grealloc PARAMS ((char *, unsigned int));
556 static char *gcse_alloc PARAMS ((unsigned long));
557 static void alloc_gcse_mem PARAMS ((rtx));
558 static void free_gcse_mem PARAMS ((void));
559 static void alloc_reg_set_mem PARAMS ((int));
560 static void free_reg_set_mem PARAMS ((void));
561 static int get_bitmap_width PARAMS ((int, int, int));
562 static void record_one_set PARAMS ((int, rtx));
563 static void record_set_info PARAMS ((rtx, rtx, void *));
564 static void compute_sets PARAMS ((rtx));
565 static void hash_scan_insn PARAMS ((rtx, int, int));
566 static void hash_scan_set PARAMS ((rtx, rtx, int));
567 static void hash_scan_clobber PARAMS ((rtx, rtx));
568 static void hash_scan_call PARAMS ((rtx, rtx));
569 static int want_to_gcse_p PARAMS ((rtx));
570 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
571 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
572 static int oprs_available_p PARAMS ((rtx, rtx));
573 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
574 int, int));
575 static void insert_set_in_table PARAMS ((rtx, rtx));
576 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
577 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
578 static unsigned int hash_string_1 PARAMS ((const char *));
579 static unsigned int hash_set PARAMS ((int, int));
580 static int expr_equiv_p PARAMS ((rtx, rtx));
581 static void record_last_reg_set_info PARAMS ((rtx, int));
582 static void record_last_mem_set_info PARAMS ((rtx));
583 static void record_last_set_info PARAMS ((rtx, rtx, void *));
584 static void compute_hash_table PARAMS ((int));
585 static void alloc_set_hash_table PARAMS ((int));
586 static void free_set_hash_table PARAMS ((void));
587 static void compute_set_hash_table PARAMS ((void));
588 static void alloc_expr_hash_table PARAMS ((unsigned int));
589 static void free_expr_hash_table PARAMS ((void));
590 static void compute_expr_hash_table PARAMS ((void));
591 static void dump_hash_table PARAMS ((FILE *, const char *, struct expr **,
592 int, int));
593 static struct expr *lookup_expr PARAMS ((rtx));
594 static struct expr *lookup_set PARAMS ((unsigned int, rtx));
595 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
596 static void reset_opr_set_tables PARAMS ((void));
597 static int oprs_not_set_p PARAMS ((rtx, rtx));
598 static void mark_call PARAMS ((rtx));
599 static void mark_set PARAMS ((rtx, rtx));
600 static void mark_clobber PARAMS ((rtx, rtx));
601 static void mark_oprs_set PARAMS ((rtx));
602 static void alloc_cprop_mem PARAMS ((int, int));
603 static void free_cprop_mem PARAMS ((void));
604 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
605 static void compute_transpout PARAMS ((void));
606 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
607 int));
608 static void compute_cprop_data PARAMS ((void));
609 static void find_used_regs PARAMS ((rtx *, void *));
610 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
611 static struct expr *find_avail_set PARAMS ((int, rtx));
612 static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx, rtx));
613 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
614 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
615 static void canon_list_insert PARAMS ((rtx, rtx, void *));
616 static int cprop_insn PARAMS ((basic_block, rtx, int));
617 static int cprop PARAMS ((int));
618 static int one_cprop_pass PARAMS ((int, int));
619 static struct expr *find_bypass_set PARAMS ((int, int));
620 static int bypass_block PARAMS ((basic_block, rtx, rtx));
621 static int bypass_conditional_jumps PARAMS ((void));
622 static void alloc_pre_mem PARAMS ((int, int));
623 static void free_pre_mem PARAMS ((void));
624 static void compute_pre_data PARAMS ((void));
625 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
626 basic_block));
627 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
628 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
629 static void pre_insert_copies PARAMS ((void));
630 static int pre_delete PARAMS ((void));
631 static int pre_gcse PARAMS ((void));
632 static int one_pre_gcse_pass PARAMS ((int));
633 static void add_label_notes PARAMS ((rtx, rtx));
634 static void alloc_code_hoist_mem PARAMS ((int, int));
635 static void free_code_hoist_mem PARAMS ((void));
636 static void compute_code_hoist_vbeinout PARAMS ((void));
637 static void compute_code_hoist_data PARAMS ((void));
638 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
639 char *));
640 static void hoist_code PARAMS ((void));
641 static int one_code_hoisting_pass PARAMS ((void));
642 static void alloc_rd_mem PARAMS ((int, int));
643 static void free_rd_mem PARAMS ((void));
644 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
645 static void compute_kill_rd PARAMS ((void));
646 static void compute_rd PARAMS ((void));
647 static void alloc_avail_expr_mem PARAMS ((int, int));
648 static void free_avail_expr_mem PARAMS ((void));
649 static void compute_ae_gen PARAMS ((void));
650 static int expr_killed_p PARAMS ((rtx, basic_block));
651 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *));
652 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
653 basic_block, int));
654 static rtx computing_insn PARAMS ((struct expr *, rtx));
655 static int def_reaches_here_p PARAMS ((rtx, rtx));
656 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
657 static int handle_avail_expr PARAMS ((rtx, struct expr *));
658 static int classic_gcse PARAMS ((void));
659 static int one_classic_gcse_pass PARAMS ((int));
660 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
661 static void delete_null_pointer_checks_1 PARAMS ((unsigned int *,
662 sbitmap *, sbitmap *,
663 struct null_pointer_info *));
664 static rtx process_insert_insn PARAMS ((struct expr *));
665 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
666 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
667 basic_block, int, char *));
668 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
669 basic_block, char *));
670 static struct ls_expr * ldst_entry PARAMS ((rtx));
671 static void free_ldst_entry PARAMS ((struct ls_expr *));
672 static void free_ldst_mems PARAMS ((void));
673 static void print_ldst_list PARAMS ((FILE *));
674 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
675 static int enumerate_ldsts PARAMS ((void));
676 static inline struct ls_expr * first_ls_expr PARAMS ((void));
677 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
678 static int simple_mem PARAMS ((rtx));
679 static void invalidate_any_buried_refs PARAMS ((rtx));
680 static void compute_ld_motion_mems PARAMS ((void));
681 static void trim_ld_motion_mems PARAMS ((void));
682 static void update_ld_motion_stores PARAMS ((struct expr *));
683 static void reg_set_info PARAMS ((rtx, rtx, void *));
684 static int store_ops_ok PARAMS ((rtx, basic_block));
685 static void find_moveable_store PARAMS ((rtx));
686 static int compute_store_table PARAMS ((void));
687 static int load_kills_store PARAMS ((rtx, rtx));
688 static int find_loads PARAMS ((rtx, rtx));
689 static int store_killed_in_insn PARAMS ((rtx, rtx));
690 static int store_killed_after PARAMS ((rtx, rtx, basic_block));
691 static int store_killed_before PARAMS ((rtx, rtx, basic_block));
692 static void build_store_vectors PARAMS ((void));
693 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
694 static int insert_store PARAMS ((struct ls_expr *, edge));
695 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
696 static void delete_store PARAMS ((struct ls_expr *,
697 basic_block));
698 static void free_store_memory PARAMS ((void));
699 static void store_motion PARAMS ((void));
700 static void free_insn_expr_list_list PARAMS ((rtx *));
701 static void clear_modify_mem_tables PARAMS ((void));
702 static void free_modify_mem_tables PARAMS ((void));
703 static rtx gcse_emit_move_after PARAMS ((rtx, rtx, rtx));
705 /* Entry point for global common subexpression elimination.
706 F is the first instruction in the function. */
709 gcse_main (f, file)
710 rtx f;
711 FILE *file;
713 int changed, pass;
714 /* Bytes used at start of pass. */
715 int initial_bytes_used;
716 /* Maximum number of bytes used by a pass. */
717 int max_pass_bytes;
718 /* Point to release obstack data from for each pass. */
719 char *gcse_obstack_bottom;
721 /* Insertion of instructions on edges can create new basic blocks; we
722 need the original basic block count so that we can properly deallocate
723 arrays sized on the number of basic blocks originally in the cfg. */
724 int orig_bb_count;
725 /* We do not construct an accurate cfg in functions which call
726 setjmp, so just punt to be safe. */
727 if (current_function_calls_setjmp)
728 return 0;
730 /* Assume that we do not need to run jump optimizations after gcse. */
731 run_jump_opt_after_gcse = 0;
733 /* For calling dump_foo fns from gdb. */
734 debug_stderr = stderr;
735 gcse_file = file;
737 /* Identify the basic block information for this function, including
738 successors and predecessors. */
739 max_gcse_regno = max_reg_num ();
741 if (file)
742 dump_flow_info (file);
744 orig_bb_count = n_basic_blocks;
745 /* Return if there's nothing to do. */
746 if (n_basic_blocks <= 1)
747 return 0;
749 /* Trying to perform global optimizations on flow graphs which have
750 a high connectivity will take a long time and is unlikely to be
751 particularly useful.
753 In normal circumstances a cfg should have about twice as many edges
754 as blocks. But we do not want to punish small functions which have
755 a couple switch statements. So we require a relatively large number
756 of basic blocks and the ratio of edges to blocks to be high. */
757 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
759 if (warn_disabled_optimization)
760 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
761 n_basic_blocks, n_edges / n_basic_blocks);
762 return 0;
765 /* If allocating memory for the cprop bitmap would take up too much
766 storage it's better just to disable the optimization. */
767 if ((n_basic_blocks
768 * SBITMAP_SET_SIZE (max_gcse_regno)
769 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
771 if (warn_disabled_optimization)
772 warning ("GCSE disabled: %d basic blocks and %d registers",
773 n_basic_blocks, max_gcse_regno);
775 return 0;
778 /* See what modes support reg/reg copy operations. */
779 if (! can_copy_init_p)
781 compute_can_copy ();
782 can_copy_init_p = 1;
785 gcc_obstack_init (&gcse_obstack);
786 bytes_used = 0;
788 /* We need alias. */
789 init_alias_analysis ();
790 /* Record where pseudo-registers are set. This data is kept accurate
791 during each pass. ??? We could also record hard-reg information here
792 [since it's unchanging], however it is currently done during hash table
793 computation.
795 It may be tempting to compute MEM set information here too, but MEM sets
796 will be subject to code motion one day and thus we need to compute
797 information about memory sets when we build the hash tables. */
799 alloc_reg_set_mem (max_gcse_regno);
800 compute_sets (f);
802 pass = 0;
803 initial_bytes_used = bytes_used;
804 max_pass_bytes = 0;
805 gcse_obstack_bottom = gcse_alloc (1);
806 changed = 1;
807 while (changed && pass < MAX_GCSE_PASSES)
809 changed = 0;
810 if (file)
811 fprintf (file, "GCSE pass %d\n\n", pass + 1);
813 /* Initialize bytes_used to the space for the pred/succ lists,
814 and the reg_set_table data. */
815 bytes_used = initial_bytes_used;
817 /* Each pass may create new registers, so recalculate each time. */
818 max_gcse_regno = max_reg_num ();
820 alloc_gcse_mem (f);
822 /* Don't allow constant propagation to modify jumps
823 during this pass. */
824 changed = one_cprop_pass (pass + 1, 0);
826 if (optimize_size)
827 changed |= one_classic_gcse_pass (pass + 1);
828 else
830 changed |= one_pre_gcse_pass (pass + 1);
831 /* We may have just created new basic blocks. Release and
832 recompute various things which are sized on the number of
833 basic blocks. */
834 if (changed)
836 free_modify_mem_tables ();
837 modify_mem_list
838 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
839 canon_modify_mem_list
840 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
841 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
842 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
843 orig_bb_count = n_basic_blocks;
845 free_reg_set_mem ();
846 alloc_reg_set_mem (max_reg_num ());
847 compute_sets (f);
848 run_jump_opt_after_gcse = 1;
851 if (max_pass_bytes < bytes_used)
852 max_pass_bytes = bytes_used;
854 /* Free up memory, then reallocate for code hoisting. We can
855 not re-use the existing allocated memory because the tables
856 will not have info for the insns or registers created by
857 partial redundancy elimination. */
858 free_gcse_mem ();
860 /* It does not make sense to run code hoisting unless we optimizing
861 for code size -- it rarely makes programs faster, and can make
862 them bigger if we did partial redundancy elimination (when optimizing
863 for space, we use a classic gcse algorithm instead of partial
864 redundancy algorithms). */
865 if (optimize_size)
867 max_gcse_regno = max_reg_num ();
868 alloc_gcse_mem (f);
869 changed |= one_code_hoisting_pass ();
870 free_gcse_mem ();
872 if (max_pass_bytes < bytes_used)
873 max_pass_bytes = bytes_used;
876 if (file)
878 fprintf (file, "\n");
879 fflush (file);
882 obstack_free (&gcse_obstack, gcse_obstack_bottom);
883 pass++;
886 /* Do one last pass of copy propagation, including cprop into
887 conditional jumps. */
889 max_gcse_regno = max_reg_num ();
890 alloc_gcse_mem (f);
891 /* This time, go ahead and allow cprop to alter jumps. */
892 one_cprop_pass (pass + 1, 1);
893 free_gcse_mem ();
895 if (file)
897 fprintf (file, "GCSE of %s: %d basic blocks, ",
898 current_function_name, n_basic_blocks);
899 fprintf (file, "%d pass%s, %d bytes\n\n",
900 pass, pass > 1 ? "es" : "", max_pass_bytes);
903 obstack_free (&gcse_obstack, NULL);
904 free_reg_set_mem ();
905 /* We are finished with alias. */
906 end_alias_analysis ();
907 allocate_reg_info (max_reg_num (), FALSE, FALSE);
909 /* Store motion disabled until it is fixed. */
910 if (0 && !optimize_size && flag_gcse_sm)
911 store_motion ();
912 /* Record where pseudo-registers are set. */
913 return run_jump_opt_after_gcse;
916 /* Misc. utilities. */
918 /* Compute which modes support reg/reg copy operations. */
920 static void
921 compute_can_copy ()
923 int i;
924 #ifndef AVOID_CCMODE_COPIES
925 rtx reg, insn;
926 #endif
927 memset (can_copy_p, 0, NUM_MACHINE_MODES);
929 start_sequence ();
930 for (i = 0; i < NUM_MACHINE_MODES; i++)
931 if (GET_MODE_CLASS (i) == MODE_CC)
933 #ifdef AVOID_CCMODE_COPIES
934 can_copy_p[i] = 0;
935 #else
936 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
937 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
938 if (recog (PATTERN (insn), insn, NULL) >= 0)
939 can_copy_p[i] = 1;
940 #endif
942 else
943 can_copy_p[i] = 1;
945 end_sequence ();
948 /* Cover function to xmalloc to record bytes allocated. */
950 static char *
951 gmalloc (size)
952 unsigned int size;
954 bytes_used += size;
955 return xmalloc (size);
958 /* Cover function to xrealloc.
959 We don't record the additional size since we don't know it.
960 It won't affect memory usage stats much anyway. */
962 static char *
963 grealloc (ptr, size)
964 char *ptr;
965 unsigned int size;
967 return xrealloc (ptr, size);
970 /* Cover function to obstack_alloc.
971 We don't need to record the bytes allocated here since
972 obstack_chunk_alloc is set to gmalloc. */
974 static char *
975 gcse_alloc (size)
976 unsigned long size;
978 return (char *) obstack_alloc (&gcse_obstack, size);
981 /* Allocate memory for the cuid mapping array,
982 and reg/memory set tracking tables.
984 This is called at the start of each pass. */
986 static void
987 alloc_gcse_mem (f)
988 rtx f;
990 int i, n;
991 rtx insn;
993 /* Find the largest UID and create a mapping from UIDs to CUIDs.
994 CUIDs are like UIDs except they increase monotonically, have no gaps,
995 and only apply to real insns. */
997 max_uid = get_max_uid ();
998 n = (max_uid + 1) * sizeof (int);
999 uid_cuid = (int *) gmalloc (n);
1000 memset ((char *) uid_cuid, 0, n);
1001 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1003 if (INSN_P (insn))
1004 uid_cuid[INSN_UID (insn)] = i++;
1005 else
1006 uid_cuid[INSN_UID (insn)] = i;
1009 /* Create a table mapping cuids to insns. */
1011 max_cuid = i;
1012 n = (max_cuid + 1) * sizeof (rtx);
1013 cuid_insn = (rtx *) gmalloc (n);
1014 memset ((char *) cuid_insn, 0, n);
1015 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1016 if (INSN_P (insn))
1017 CUID_INSN (i++) = insn;
1019 /* Allocate vars to track sets of regs. */
1020 reg_set_bitmap = BITMAP_XMALLOC ();
1022 /* Allocate vars to track sets of regs, memory per block. */
1023 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
1024 max_gcse_regno);
1025 /* Allocate array to keep a list of insns which modify memory in each
1026 basic block. */
1027 modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1028 canon_modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1029 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
1030 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
1031 modify_mem_list_set = BITMAP_XMALLOC ();
1032 canon_modify_mem_list_set = BITMAP_XMALLOC ();
1035 /* Free memory allocated by alloc_gcse_mem. */
1037 static void
1038 free_gcse_mem ()
1040 free (uid_cuid);
1041 free (cuid_insn);
1043 BITMAP_XFREE (reg_set_bitmap);
1045 sbitmap_vector_free (reg_set_in_block);
1046 free_modify_mem_tables ();
1047 BITMAP_XFREE (modify_mem_list_set);
1048 BITMAP_XFREE (canon_modify_mem_list_set);
1051 /* Many of the global optimization algorithms work by solving dataflow
1052 equations for various expressions. Initially, some local value is
1053 computed for each expression in each block. Then, the values across the
1054 various blocks are combined (by following flow graph edges) to arrive at
1055 global values. Conceptually, each set of equations is independent. We
1056 may therefore solve all the equations in parallel, solve them one at a
1057 time, or pick any intermediate approach.
1059 When you're going to need N two-dimensional bitmaps, each X (say, the
1060 number of blocks) by Y (say, the number of expressions), call this
1061 function. It's not important what X and Y represent; only that Y
1062 correspond to the things that can be done in parallel. This function will
1063 return an appropriate chunking factor C; you should solve C sets of
1064 equations in parallel. By going through this function, we can easily
1065 trade space against time; by solving fewer equations in parallel we use
1066 less space. */
1068 static int
1069 get_bitmap_width (n, x, y)
1070 int n;
1071 int x;
1072 int y;
1074 /* It's not really worth figuring out *exactly* how much memory will
1075 be used by a particular choice. The important thing is to get
1076 something approximately right. */
1077 size_t max_bitmap_memory = 10 * 1024 * 1024;
1079 /* The number of bytes we'd use for a single column of minimum
1080 width. */
1081 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1083 /* Often, it's reasonable just to solve all the equations in
1084 parallel. */
1085 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1086 return y;
1088 /* Otherwise, pick the largest width we can, without going over the
1089 limit. */
1090 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1091 / column_size);
1094 /* Compute the local properties of each recorded expression.
1096 Local properties are those that are defined by the block, irrespective of
1097 other blocks.
1099 An expression is transparent in a block if its operands are not modified
1100 in the block.
1102 An expression is computed (locally available) in a block if it is computed
1103 at least once and expression would contain the same value if the
1104 computation was moved to the end of the block.
1106 An expression is locally anticipatable in a block if it is computed at
1107 least once and expression would contain the same value if the computation
1108 was moved to the beginning of the block.
1110 We call this routine for cprop, pre and code hoisting. They all compute
1111 basically the same information and thus can easily share this code.
1113 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1114 properties. If NULL, then it is not necessary to compute or record that
1115 particular property.
1117 SETP controls which hash table to look at. If zero, this routine looks at
1118 the expr hash table; if nonzero this routine looks at the set hash table.
1119 Additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1120 ABSALTERED. */
1122 static void
1123 compute_local_properties (transp, comp, antloc, setp)
1124 sbitmap *transp;
1125 sbitmap *comp;
1126 sbitmap *antloc;
1127 int setp;
1129 unsigned int i, hash_table_size;
1130 struct expr **hash_table;
1132 /* Initialize any bitmaps that were passed in. */
1133 if (transp)
1135 if (setp)
1136 sbitmap_vector_zero (transp, last_basic_block);
1137 else
1138 sbitmap_vector_ones (transp, last_basic_block);
1141 if (comp)
1142 sbitmap_vector_zero (comp, last_basic_block);
1143 if (antloc)
1144 sbitmap_vector_zero (antloc, last_basic_block);
1146 /* We use the same code for cprop, pre and hoisting. For cprop
1147 we care about the set hash table, for pre and hoisting we
1148 care about the expr hash table. */
1149 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
1150 hash_table = setp ? set_hash_table : expr_hash_table;
1152 for (i = 0; i < hash_table_size; i++)
1154 struct expr *expr;
1156 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1158 int indx = expr->bitmap_index;
1159 struct occr *occr;
1161 /* The expression is transparent in this block if it is not killed.
1162 We start by assuming all are transparent [none are killed], and
1163 then reset the bits for those that are. */
1164 if (transp)
1165 compute_transp (expr->expr, indx, transp, setp);
1167 /* The occurrences recorded in antic_occr are exactly those that
1168 we want to set to non-zero in ANTLOC. */
1169 if (antloc)
1170 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1172 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1174 /* While we're scanning the table, this is a good place to
1175 initialize this. */
1176 occr->deleted_p = 0;
1179 /* The occurrences recorded in avail_occr are exactly those that
1180 we want to set to non-zero in COMP. */
1181 if (comp)
1182 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1184 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1186 /* While we're scanning the table, this is a good place to
1187 initialize this. */
1188 occr->copied_p = 0;
1191 /* While we're scanning the table, this is a good place to
1192 initialize this. */
1193 expr->reaching_reg = 0;
1198 /* Register set information.
1200 `reg_set_table' records where each register is set or otherwise
1201 modified. */
1203 static struct obstack reg_set_obstack;
1205 static void
1206 alloc_reg_set_mem (n_regs)
1207 int n_regs;
1209 unsigned int n;
1211 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1212 n = reg_set_table_size * sizeof (struct reg_set *);
1213 reg_set_table = (struct reg_set **) gmalloc (n);
1214 memset ((char *) reg_set_table, 0, n);
1216 gcc_obstack_init (&reg_set_obstack);
1219 static void
1220 free_reg_set_mem ()
1222 free (reg_set_table);
1223 obstack_free (&reg_set_obstack, NULL);
1226 /* Record REGNO in the reg_set table. */
1228 static void
1229 record_one_set (regno, insn)
1230 int regno;
1231 rtx insn;
1233 /* Allocate a new reg_set element and link it onto the list. */
1234 struct reg_set *new_reg_info;
1236 /* If the table isn't big enough, enlarge it. */
1237 if (regno >= reg_set_table_size)
1239 int new_size = regno + REG_SET_TABLE_SLOP;
1241 reg_set_table
1242 = (struct reg_set **) grealloc ((char *) reg_set_table,
1243 new_size * sizeof (struct reg_set *));
1244 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1245 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1246 reg_set_table_size = new_size;
1249 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1250 sizeof (struct reg_set));
1251 bytes_used += sizeof (struct reg_set);
1252 new_reg_info->insn = insn;
1253 new_reg_info->next = reg_set_table[regno];
1254 reg_set_table[regno] = new_reg_info;
1257 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1258 an insn. The DATA is really the instruction in which the SET is
1259 occurring. */
1261 static void
1262 record_set_info (dest, setter, data)
1263 rtx dest, setter ATTRIBUTE_UNUSED;
1264 void *data;
1266 rtx record_set_insn = (rtx) data;
1268 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1269 record_one_set (REGNO (dest), record_set_insn);
1272 /* Scan the function and record each set of each pseudo-register.
1274 This is called once, at the start of the gcse pass. See the comments for
1275 `reg_set_table' for further documenation. */
1277 static void
1278 compute_sets (f)
1279 rtx f;
1281 rtx insn;
1283 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1284 if (INSN_P (insn))
1285 note_stores (PATTERN (insn), record_set_info, insn);
1288 /* Hash table support. */
1290 /* For each register, the cuid of the first/last insn in the block
1291 that set it, or -1 if not set. */
1292 #define NEVER_SET -1
1294 struct reg_avail_info
1296 basic_block last_bb;
1297 int first_set;
1298 int last_set;
1301 static struct reg_avail_info *reg_avail_info;
1302 static basic_block current_bb;
1305 /* See whether X, the source of a set, is something we want to consider for
1306 GCSE. */
1308 static GTY(()) rtx test_insn;
1309 static int
1310 want_to_gcse_p (x)
1311 rtx x;
1313 int num_clobbers = 0;
1314 int icode;
1316 switch (GET_CODE (x))
1318 case REG:
1319 case SUBREG:
1320 case CONST_INT:
1321 case CONST_DOUBLE:
1322 case CONST_VECTOR:
1323 case CALL:
1324 return 0;
1326 default:
1327 break;
1330 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1331 if (general_operand (x, GET_MODE (x)))
1332 return 1;
1333 else if (GET_MODE (x) == VOIDmode)
1334 return 0;
1336 /* Otherwise, check if we can make a valid insn from it. First initialize
1337 our test insn if we haven't already. */
1338 if (test_insn == 0)
1340 test_insn
1341 = make_insn_raw (gen_rtx_SET (VOIDmode,
1342 gen_rtx_REG (word_mode,
1343 FIRST_PSEUDO_REGISTER * 2),
1344 const0_rtx));
1345 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1348 /* Now make an insn like the one we would make when GCSE'ing and see if
1349 valid. */
1350 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1351 SET_SRC (PATTERN (test_insn)) = x;
1352 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1353 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1356 /* Return non-zero if the operands of expression X are unchanged from the
1357 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1358 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1360 static int
1361 oprs_unchanged_p (x, insn, avail_p)
1362 rtx x, insn;
1363 int avail_p;
1365 int i, j;
1366 enum rtx_code code;
1367 const char *fmt;
1369 if (x == 0)
1370 return 1;
1372 code = GET_CODE (x);
1373 switch (code)
1375 case REG:
1377 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1379 if (info->last_bb != current_bb)
1380 return 1;
1381 if (avail_p)
1382 return info->last_set < INSN_CUID (insn);
1383 else
1384 return info->first_set >= INSN_CUID (insn);
1387 case MEM:
1388 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1389 x, avail_p))
1390 return 0;
1391 else
1392 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1394 case PRE_DEC:
1395 case PRE_INC:
1396 case POST_DEC:
1397 case POST_INC:
1398 case PRE_MODIFY:
1399 case POST_MODIFY:
1400 return 0;
1402 case PC:
1403 case CC0: /*FIXME*/
1404 case CONST:
1405 case CONST_INT:
1406 case CONST_DOUBLE:
1407 case CONST_VECTOR:
1408 case SYMBOL_REF:
1409 case LABEL_REF:
1410 case ADDR_VEC:
1411 case ADDR_DIFF_VEC:
1412 return 1;
1414 default:
1415 break;
1418 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1420 if (fmt[i] == 'e')
1422 /* If we are about to do the last recursive call needed at this
1423 level, change it into iteration. This function is called enough
1424 to be worth it. */
1425 if (i == 0)
1426 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1428 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1429 return 0;
1431 else if (fmt[i] == 'E')
1432 for (j = 0; j < XVECLEN (x, i); j++)
1433 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1434 return 0;
1437 return 1;
1440 /* Used for communication between mems_conflict_for_gcse_p and
1441 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1442 conflict between two memory references. */
1443 static int gcse_mems_conflict_p;
1445 /* Used for communication between mems_conflict_for_gcse_p and
1446 load_killed_in_block_p. A memory reference for a load instruction,
1447 mems_conflict_for_gcse_p will see if a memory store conflicts with
1448 this memory load. */
1449 static rtx gcse_mem_operand;
1451 /* DEST is the output of an instruction. If it is a memory reference, and
1452 possibly conflicts with the load found in gcse_mem_operand, then set
1453 gcse_mems_conflict_p to a nonzero value. */
1455 static void
1456 mems_conflict_for_gcse_p (dest, setter, data)
1457 rtx dest, setter ATTRIBUTE_UNUSED;
1458 void *data ATTRIBUTE_UNUSED;
1460 while (GET_CODE (dest) == SUBREG
1461 || GET_CODE (dest) == ZERO_EXTRACT
1462 || GET_CODE (dest) == SIGN_EXTRACT
1463 || GET_CODE (dest) == STRICT_LOW_PART)
1464 dest = XEXP (dest, 0);
1466 /* If DEST is not a MEM, then it will not conflict with the load. Note
1467 that function calls are assumed to clobber memory, but are handled
1468 elsewhere. */
1469 if (GET_CODE (dest) != MEM)
1470 return;
1472 /* If we are setting a MEM in our list of specially recognized MEMs,
1473 don't mark as killed this time. */
1475 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1477 if (!find_rtx_in_ldst (dest))
1478 gcse_mems_conflict_p = 1;
1479 return;
1482 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1483 rtx_addr_varies_p))
1484 gcse_mems_conflict_p = 1;
1487 /* Return nonzero if the expression in X (a memory reference) is killed
1488 in block BB before or after the insn with the CUID in UID_LIMIT.
1489 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1490 before UID_LIMIT.
1492 To check the entire block, set UID_LIMIT to max_uid + 1 and
1493 AVAIL_P to 0. */
1495 static int
1496 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1497 basic_block bb;
1498 int uid_limit;
1499 rtx x;
1500 int avail_p;
1502 rtx list_entry = modify_mem_list[bb->index];
1503 while (list_entry)
1505 rtx setter;
1506 /* Ignore entries in the list that do not apply. */
1507 if ((avail_p
1508 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1509 || (! avail_p
1510 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1512 list_entry = XEXP (list_entry, 1);
1513 continue;
1516 setter = XEXP (list_entry, 0);
1518 /* If SETTER is a call everything is clobbered. Note that calls
1519 to pure functions are never put on the list, so we need not
1520 worry about them. */
1521 if (GET_CODE (setter) == CALL_INSN)
1522 return 1;
1524 /* SETTER must be an INSN of some kind that sets memory. Call
1525 note_stores to examine each hunk of memory that is modified.
1527 The note_stores interface is pretty limited, so we have to
1528 communicate via global variables. Yuk. */
1529 gcse_mem_operand = x;
1530 gcse_mems_conflict_p = 0;
1531 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1532 if (gcse_mems_conflict_p)
1533 return 1;
1534 list_entry = XEXP (list_entry, 1);
1536 return 0;
1539 /* Return non-zero if the operands of expression X are unchanged from
1540 the start of INSN's basic block up to but not including INSN. */
1542 static int
1543 oprs_anticipatable_p (x, insn)
1544 rtx x, insn;
1546 return oprs_unchanged_p (x, insn, 0);
1549 /* Return non-zero if the operands of expression X are unchanged from
1550 INSN to the end of INSN's basic block. */
1552 static int
1553 oprs_available_p (x, insn)
1554 rtx x, insn;
1556 return oprs_unchanged_p (x, insn, 1);
1559 /* Hash expression X.
1561 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1562 indicating if a volatile operand is found or if the expression contains
1563 something we don't want to insert in the table.
1565 ??? One might want to merge this with canon_hash. Later. */
1567 static unsigned int
1568 hash_expr (x, mode, do_not_record_p, hash_table_size)
1569 rtx x;
1570 enum machine_mode mode;
1571 int *do_not_record_p;
1572 int hash_table_size;
1574 unsigned int hash;
1576 *do_not_record_p = 0;
1578 hash = hash_expr_1 (x, mode, do_not_record_p);
1579 return hash % hash_table_size;
1582 /* Hash a string. Just add its bytes up. */
1584 static inline unsigned
1585 hash_string_1 (ps)
1586 const char *ps;
1588 unsigned hash = 0;
1589 const unsigned char *p = (const unsigned char *) ps;
1591 if (p)
1592 while (*p)
1593 hash += *p++;
1595 return hash;
1598 /* Subroutine of hash_expr to do the actual work. */
1600 static unsigned int
1601 hash_expr_1 (x, mode, do_not_record_p)
1602 rtx x;
1603 enum machine_mode mode;
1604 int *do_not_record_p;
1606 int i, j;
1607 unsigned hash = 0;
1608 enum rtx_code code;
1609 const char *fmt;
1611 /* Used to turn recursion into iteration. We can't rely on GCC's
1612 tail-recursion eliminatio since we need to keep accumulating values
1613 in HASH. */
1615 if (x == 0)
1616 return hash;
1618 repeat:
1619 code = GET_CODE (x);
1620 switch (code)
1622 case REG:
1623 hash += ((unsigned int) REG << 7) + REGNO (x);
1624 return hash;
1626 case CONST_INT:
1627 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1628 + (unsigned int) INTVAL (x));
1629 return hash;
1631 case CONST_DOUBLE:
1632 /* This is like the general case, except that it only counts
1633 the integers representing the constant. */
1634 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1635 if (GET_MODE (x) != VOIDmode)
1636 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1637 hash += (unsigned int) XWINT (x, i);
1638 else
1639 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1640 + (unsigned int) CONST_DOUBLE_HIGH (x));
1641 return hash;
1643 case CONST_VECTOR:
1645 int units;
1646 rtx elt;
1648 units = CONST_VECTOR_NUNITS (x);
1650 for (i = 0; i < units; ++i)
1652 elt = CONST_VECTOR_ELT (x, i);
1653 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1656 return hash;
1659 /* Assume there is only one rtx object for any given label. */
1660 case LABEL_REF:
1661 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1662 differences and differences between each stage's debugging dumps. */
1663 hash += (((unsigned int) LABEL_REF << 7)
1664 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1665 return hash;
1667 case SYMBOL_REF:
1669 /* Don't hash on the symbol's address to avoid bootstrap differences.
1670 Different hash values may cause expressions to be recorded in
1671 different orders and thus different registers to be used in the
1672 final assembler. This also avoids differences in the dump files
1673 between various stages. */
1674 unsigned int h = 0;
1675 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1677 while (*p)
1678 h += (h << 7) + *p++; /* ??? revisit */
1680 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1681 return hash;
1684 case MEM:
1685 if (MEM_VOLATILE_P (x))
1687 *do_not_record_p = 1;
1688 return 0;
1691 hash += (unsigned int) MEM;
1692 /* We used alias set for hashing, but this is not good, since the alias
1693 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1694 causing the profiles to fail to match. */
1695 x = XEXP (x, 0);
1696 goto repeat;
1698 case PRE_DEC:
1699 case PRE_INC:
1700 case POST_DEC:
1701 case POST_INC:
1702 case PC:
1703 case CC0:
1704 case CALL:
1705 case UNSPEC_VOLATILE:
1706 *do_not_record_p = 1;
1707 return 0;
1709 case ASM_OPERANDS:
1710 if (MEM_VOLATILE_P (x))
1712 *do_not_record_p = 1;
1713 return 0;
1715 else
1717 /* We don't want to take the filename and line into account. */
1718 hash += (unsigned) code + (unsigned) GET_MODE (x)
1719 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1720 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1721 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1723 if (ASM_OPERANDS_INPUT_LENGTH (x))
1725 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1727 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1728 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1729 do_not_record_p)
1730 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1731 (x, i)));
1734 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1735 x = ASM_OPERANDS_INPUT (x, 0);
1736 mode = GET_MODE (x);
1737 goto repeat;
1739 return hash;
1742 default:
1743 break;
1746 hash += (unsigned) code + (unsigned) GET_MODE (x);
1747 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1749 if (fmt[i] == 'e')
1751 /* If we are about to do the last recursive call
1752 needed at this level, change it into iteration.
1753 This function is called enough to be worth it. */
1754 if (i == 0)
1756 x = XEXP (x, i);
1757 goto repeat;
1760 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1761 if (*do_not_record_p)
1762 return 0;
1765 else if (fmt[i] == 'E')
1766 for (j = 0; j < XVECLEN (x, i); j++)
1768 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1769 if (*do_not_record_p)
1770 return 0;
1773 else if (fmt[i] == 's')
1774 hash += hash_string_1 (XSTR (x, i));
1775 else if (fmt[i] == 'i')
1776 hash += (unsigned int) XINT (x, i);
1777 else
1778 abort ();
1781 return hash;
1784 /* Hash a set of register REGNO.
1786 Sets are hashed on the register that is set. This simplifies the PRE copy
1787 propagation code.
1789 ??? May need to make things more elaborate. Later, as necessary. */
1791 static unsigned int
1792 hash_set (regno, hash_table_size)
1793 int regno;
1794 int hash_table_size;
1796 unsigned int hash;
1798 hash = regno;
1799 return hash % hash_table_size;
1802 /* Return non-zero if exp1 is equivalent to exp2.
1803 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1805 static int
1806 expr_equiv_p (x, y)
1807 rtx x, y;
1809 int i, j;
1810 enum rtx_code code;
1811 const char *fmt;
1813 if (x == y)
1814 return 1;
1816 if (x == 0 || y == 0)
1817 return x == y;
1819 code = GET_CODE (x);
1820 if (code != GET_CODE (y))
1821 return 0;
1823 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1824 if (GET_MODE (x) != GET_MODE (y))
1825 return 0;
1827 switch (code)
1829 case PC:
1830 case CC0:
1831 return x == y;
1833 case CONST_INT:
1834 return INTVAL (x) == INTVAL (y);
1836 case LABEL_REF:
1837 return XEXP (x, 0) == XEXP (y, 0);
1839 case SYMBOL_REF:
1840 return XSTR (x, 0) == XSTR (y, 0);
1842 case REG:
1843 return REGNO (x) == REGNO (y);
1845 case MEM:
1846 /* Can't merge two expressions in different alias sets, since we can
1847 decide that the expression is transparent in a block when it isn't,
1848 due to it being set with the different alias set. */
1849 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1850 return 0;
1851 break;
1853 /* For commutative operations, check both orders. */
1854 case PLUS:
1855 case MULT:
1856 case AND:
1857 case IOR:
1858 case XOR:
1859 case NE:
1860 case EQ:
1861 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1862 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1863 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1864 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1866 case ASM_OPERANDS:
1867 /* We don't use the generic code below because we want to
1868 disregard filename and line numbers. */
1870 /* A volatile asm isn't equivalent to any other. */
1871 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1872 return 0;
1874 if (GET_MODE (x) != GET_MODE (y)
1875 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1876 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1877 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1878 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1879 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1880 return 0;
1882 if (ASM_OPERANDS_INPUT_LENGTH (x))
1884 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1885 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1886 ASM_OPERANDS_INPUT (y, i))
1887 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1888 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1889 return 0;
1892 return 1;
1894 default:
1895 break;
1898 /* Compare the elements. If any pair of corresponding elements
1899 fail to match, return 0 for the whole thing. */
1901 fmt = GET_RTX_FORMAT (code);
1902 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1904 switch (fmt[i])
1906 case 'e':
1907 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1908 return 0;
1909 break;
1911 case 'E':
1912 if (XVECLEN (x, i) != XVECLEN (y, i))
1913 return 0;
1914 for (j = 0; j < XVECLEN (x, i); j++)
1915 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1916 return 0;
1917 break;
1919 case 's':
1920 if (strcmp (XSTR (x, i), XSTR (y, i)))
1921 return 0;
1922 break;
1924 case 'i':
1925 if (XINT (x, i) != XINT (y, i))
1926 return 0;
1927 break;
1929 case 'w':
1930 if (XWINT (x, i) != XWINT (y, i))
1931 return 0;
1932 break;
1934 case '0':
1935 break;
1937 default:
1938 abort ();
1942 return 1;
1945 /* Insert expression X in INSN in the hash table.
1946 If it is already present, record it as the last occurrence in INSN's
1947 basic block.
1949 MODE is the mode of the value X is being stored into.
1950 It is only used if X is a CONST_INT.
1952 ANTIC_P is non-zero if X is an anticipatable expression.
1953 AVAIL_P is non-zero if X is an available expression. */
1955 static void
1956 insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1957 rtx x;
1958 enum machine_mode mode;
1959 rtx insn;
1960 int antic_p, avail_p;
1962 int found, do_not_record_p;
1963 unsigned int hash;
1964 struct expr *cur_expr, *last_expr = NULL;
1965 struct occr *antic_occr, *avail_occr;
1966 struct occr *last_occr = NULL;
1968 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1970 /* Do not insert expression in table if it contains volatile operands,
1971 or if hash_expr determines the expression is something we don't want
1972 to or can't handle. */
1973 if (do_not_record_p)
1974 return;
1976 cur_expr = expr_hash_table[hash];
1977 found = 0;
1979 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1981 /* If the expression isn't found, save a pointer to the end of
1982 the list. */
1983 last_expr = cur_expr;
1984 cur_expr = cur_expr->next_same_hash;
1987 if (! found)
1989 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1990 bytes_used += sizeof (struct expr);
1991 if (expr_hash_table[hash] == NULL)
1992 /* This is the first pattern that hashed to this index. */
1993 expr_hash_table[hash] = cur_expr;
1994 else
1995 /* Add EXPR to end of this hash chain. */
1996 last_expr->next_same_hash = cur_expr;
1998 /* Set the fields of the expr element. */
1999 cur_expr->expr = x;
2000 cur_expr->bitmap_index = n_exprs++;
2001 cur_expr->next_same_hash = NULL;
2002 cur_expr->antic_occr = NULL;
2003 cur_expr->avail_occr = NULL;
2006 /* Now record the occurrence(s). */
2007 if (antic_p)
2009 antic_occr = cur_expr->antic_occr;
2011 /* Search for another occurrence in the same basic block. */
2012 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2014 /* If an occurrence isn't found, save a pointer to the end of
2015 the list. */
2016 last_occr = antic_occr;
2017 antic_occr = antic_occr->next;
2020 if (antic_occr)
2021 /* Found another instance of the expression in the same basic block.
2022 Prefer the currently recorded one. We want the first one in the
2023 block and the block is scanned from start to end. */
2024 ; /* nothing to do */
2025 else
2027 /* First occurrence of this expression in this basic block. */
2028 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2029 bytes_used += sizeof (struct occr);
2030 /* First occurrence of this expression in any block? */
2031 if (cur_expr->antic_occr == NULL)
2032 cur_expr->antic_occr = antic_occr;
2033 else
2034 last_occr->next = antic_occr;
2036 antic_occr->insn = insn;
2037 antic_occr->next = NULL;
2041 if (avail_p)
2043 avail_occr = cur_expr->avail_occr;
2045 /* Search for another occurrence in the same basic block. */
2046 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2048 /* If an occurrence isn't found, save a pointer to the end of
2049 the list. */
2050 last_occr = avail_occr;
2051 avail_occr = avail_occr->next;
2054 if (avail_occr)
2055 /* Found another instance of the expression in the same basic block.
2056 Prefer this occurrence to the currently recorded one. We want
2057 the last one in the block and the block is scanned from start
2058 to end. */
2059 avail_occr->insn = insn;
2060 else
2062 /* First occurrence of this expression in this basic block. */
2063 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2064 bytes_used += sizeof (struct occr);
2066 /* First occurrence of this expression in any block? */
2067 if (cur_expr->avail_occr == NULL)
2068 cur_expr->avail_occr = avail_occr;
2069 else
2070 last_occr->next = avail_occr;
2072 avail_occr->insn = insn;
2073 avail_occr->next = NULL;
2078 /* Insert pattern X in INSN in the hash table.
2079 X is a SET of a reg to either another reg or a constant.
2080 If it is already present, record it as the last occurrence in INSN's
2081 basic block. */
2083 static void
2084 insert_set_in_table (x, insn)
2085 rtx x;
2086 rtx insn;
2088 int found;
2089 unsigned int hash;
2090 struct expr *cur_expr, *last_expr = NULL;
2091 struct occr *cur_occr, *last_occr = NULL;
2093 if (GET_CODE (x) != SET
2094 || GET_CODE (SET_DEST (x)) != REG)
2095 abort ();
2097 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
2099 cur_expr = set_hash_table[hash];
2100 found = 0;
2102 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2104 /* If the expression isn't found, save a pointer to the end of
2105 the list. */
2106 last_expr = cur_expr;
2107 cur_expr = cur_expr->next_same_hash;
2110 if (! found)
2112 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2113 bytes_used += sizeof (struct expr);
2114 if (set_hash_table[hash] == NULL)
2115 /* This is the first pattern that hashed to this index. */
2116 set_hash_table[hash] = cur_expr;
2117 else
2118 /* Add EXPR to end of this hash chain. */
2119 last_expr->next_same_hash = cur_expr;
2121 /* Set the fields of the expr element.
2122 We must copy X because it can be modified when copy propagation is
2123 performed on its operands. */
2124 cur_expr->expr = copy_rtx (x);
2125 cur_expr->bitmap_index = n_sets++;
2126 cur_expr->next_same_hash = NULL;
2127 cur_expr->antic_occr = NULL;
2128 cur_expr->avail_occr = NULL;
2131 /* Now record the occurrence. */
2132 cur_occr = cur_expr->avail_occr;
2134 /* Search for another occurrence in the same basic block. */
2135 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2137 /* If an occurrence isn't found, save a pointer to the end of
2138 the list. */
2139 last_occr = cur_occr;
2140 cur_occr = cur_occr->next;
2143 if (cur_occr)
2144 /* Found another instance of the expression in the same basic block.
2145 Prefer this occurrence to the currently recorded one. We want the
2146 last one in the block and the block is scanned from start to end. */
2147 cur_occr->insn = insn;
2148 else
2150 /* First occurrence of this expression in this basic block. */
2151 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2152 bytes_used += sizeof (struct occr);
2154 /* First occurrence of this expression in any block? */
2155 if (cur_expr->avail_occr == NULL)
2156 cur_expr->avail_occr = cur_occr;
2157 else
2158 last_occr->next = cur_occr;
2160 cur_occr->insn = insn;
2161 cur_occr->next = NULL;
2165 /* Scan pattern PAT of INSN and add an entry to the hash table. If SET_P is
2166 non-zero, this is for the assignment hash table, otherwise it is for the
2167 expression hash table. */
2169 static void
2170 hash_scan_set (pat, insn, set_p)
2171 rtx pat, insn;
2172 int set_p;
2174 rtx src = SET_SRC (pat);
2175 rtx dest = SET_DEST (pat);
2176 rtx note;
2178 if (GET_CODE (src) == CALL)
2179 hash_scan_call (src, insn);
2181 else if (GET_CODE (dest) == REG)
2183 unsigned int regno = REGNO (dest);
2184 rtx tmp;
2186 /* If this is a single set and we are doing constant propagation,
2187 see if a REG_NOTE shows this equivalent to a constant. */
2188 if (set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2189 && CONSTANT_P (XEXP (note, 0)))
2190 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2192 /* Only record sets of pseudo-regs in the hash table. */
2193 if (! set_p
2194 && regno >= FIRST_PSEUDO_REGISTER
2195 /* Don't GCSE something if we can't do a reg/reg copy. */
2196 && can_copy_p [GET_MODE (dest)]
2197 /* GCSE commonly inserts instruction after the insn. We can't
2198 do that easily for EH_REGION notes so disable GCSE on these
2199 for now. */
2200 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2201 /* Is SET_SRC something we want to gcse? */
2202 && want_to_gcse_p (src)
2203 /* Don't CSE a nop. */
2204 && ! set_noop_p (pat)
2205 /* Don't GCSE if it has attached REG_EQUIV note.
2206 At this point this only function parameters should have
2207 REG_EQUIV notes and if the argument slot is used somewhere
2208 explicitly, it means address of parameter has been taken,
2209 so we should not extend the lifetime of the pseudo. */
2210 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2211 || GET_CODE (XEXP (note, 0)) != MEM))
2213 /* An expression is not anticipatable if its operands are
2214 modified before this insn or if this is not the only SET in
2215 this insn. */
2216 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2217 /* An expression is not available if its operands are
2218 subsequently modified, including this insn. It's also not
2219 available if this is a branch, because we can't insert
2220 a set after the branch. */
2221 int avail_p = (oprs_available_p (src, insn)
2222 && ! JUMP_P (insn));
2224 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
2227 /* Record sets for constant/copy propagation. */
2228 else if (set_p
2229 && regno >= FIRST_PSEUDO_REGISTER
2230 && ((GET_CODE (src) == REG
2231 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2232 && can_copy_p [GET_MODE (dest)]
2233 && REGNO (src) != regno)
2234 || CONSTANT_P (src))
2235 /* A copy is not available if its src or dest is subsequently
2236 modified. Here we want to search from INSN+1 on, but
2237 oprs_available_p searches from INSN on. */
2238 && (insn == BLOCK_END (BLOCK_NUM (insn))
2239 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2240 && oprs_available_p (pat, tmp))))
2241 insert_set_in_table (pat, insn);
2245 static void
2246 hash_scan_clobber (x, insn)
2247 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2249 /* Currently nothing to do. */
2252 static void
2253 hash_scan_call (x, insn)
2254 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2256 /* Currently nothing to do. */
2259 /* Process INSN and add hash table entries as appropriate.
2261 Only available expressions that set a single pseudo-reg are recorded.
2263 Single sets in a PARALLEL could be handled, but it's an extra complication
2264 that isn't dealt with right now. The trick is handling the CLOBBERs that
2265 are also in the PARALLEL. Later.
2267 If SET_P is non-zero, this is for the assignment hash table,
2268 otherwise it is for the expression hash table.
2269 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2270 not record any expressions. */
2272 static void
2273 hash_scan_insn (insn, set_p, in_libcall_block)
2274 rtx insn;
2275 int set_p;
2276 int in_libcall_block;
2278 rtx pat = PATTERN (insn);
2279 int i;
2281 if (in_libcall_block)
2282 return;
2284 /* Pick out the sets of INSN and for other forms of instructions record
2285 what's been modified. */
2287 if (GET_CODE (pat) == SET)
2288 hash_scan_set (pat, insn, set_p);
2289 else if (GET_CODE (pat) == PARALLEL)
2290 for (i = 0; i < XVECLEN (pat, 0); i++)
2292 rtx x = XVECEXP (pat, 0, i);
2294 if (GET_CODE (x) == SET)
2295 hash_scan_set (x, insn, set_p);
2296 else if (GET_CODE (x) == CLOBBER)
2297 hash_scan_clobber (x, insn);
2298 else if (GET_CODE (x) == CALL)
2299 hash_scan_call (x, insn);
2302 else if (GET_CODE (pat) == CLOBBER)
2303 hash_scan_clobber (pat, insn);
2304 else if (GET_CODE (pat) == CALL)
2305 hash_scan_call (pat, insn);
2308 static void
2309 dump_hash_table (file, name, table, table_size, total_size)
2310 FILE *file;
2311 const char *name;
2312 struct expr **table;
2313 int table_size, total_size;
2315 int i;
2316 /* Flattened out table, so it's printed in proper order. */
2317 struct expr **flat_table;
2318 unsigned int *hash_val;
2319 struct expr *expr;
2321 flat_table
2322 = (struct expr **) xcalloc (total_size, sizeof (struct expr *));
2323 hash_val = (unsigned int *) xmalloc (total_size * sizeof (unsigned int));
2325 for (i = 0; i < table_size; i++)
2326 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
2328 flat_table[expr->bitmap_index] = expr;
2329 hash_val[expr->bitmap_index] = i;
2332 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2333 name, table_size, total_size);
2335 for (i = 0; i < total_size; i++)
2336 if (flat_table[i] != 0)
2338 expr = flat_table[i];
2339 fprintf (file, "Index %d (hash value %d)\n ",
2340 expr->bitmap_index, hash_val[i]);
2341 print_rtl (file, expr->expr);
2342 fprintf (file, "\n");
2345 fprintf (file, "\n");
2347 free (flat_table);
2348 free (hash_val);
2351 /* Record register first/last/block set information for REGNO in INSN.
2353 first_set records the first place in the block where the register
2354 is set and is used to compute "anticipatability".
2356 last_set records the last place in the block where the register
2357 is set and is used to compute "availability".
2359 last_bb records the block for which first_set and last_set are
2360 valid, as a quick test to invalidate them.
2362 reg_set_in_block records whether the register is set in the block
2363 and is used to compute "transparency". */
2365 static void
2366 record_last_reg_set_info (insn, regno)
2367 rtx insn;
2368 int regno;
2370 struct reg_avail_info *info = &reg_avail_info[regno];
2371 int cuid = INSN_CUID (insn);
2373 info->last_set = cuid;
2374 if (info->last_bb != current_bb)
2376 info->last_bb = current_bb;
2377 info->first_set = cuid;
2378 SET_BIT (reg_set_in_block[current_bb->index], regno);
2383 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2384 Note we store a pair of elements in the list, so they have to be
2385 taken off pairwise. */
2387 static void
2388 canon_list_insert (dest, unused1, v_insn)
2389 rtx dest ATTRIBUTE_UNUSED;
2390 rtx unused1 ATTRIBUTE_UNUSED;
2391 void * v_insn;
2393 rtx dest_addr, insn;
2394 int bb;
2396 while (GET_CODE (dest) == SUBREG
2397 || GET_CODE (dest) == ZERO_EXTRACT
2398 || GET_CODE (dest) == SIGN_EXTRACT
2399 || GET_CODE (dest) == STRICT_LOW_PART)
2400 dest = XEXP (dest, 0);
2402 /* If DEST is not a MEM, then it will not conflict with a load. Note
2403 that function calls are assumed to clobber memory, but are handled
2404 elsewhere. */
2406 if (GET_CODE (dest) != MEM)
2407 return;
2409 dest_addr = get_addr (XEXP (dest, 0));
2410 dest_addr = canon_rtx (dest_addr);
2411 insn = (rtx) v_insn;
2412 bb = BLOCK_NUM (insn);
2414 canon_modify_mem_list[bb] =
2415 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2416 canon_modify_mem_list[bb] =
2417 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2418 bitmap_set_bit (canon_modify_mem_list_set, bb);
2421 /* Record memory modification information for INSN. We do not actually care
2422 about the memory location(s) that are set, or even how they are set (consider
2423 a CALL_INSN). We merely need to record which insns modify memory. */
2425 static void
2426 record_last_mem_set_info (insn)
2427 rtx insn;
2429 int bb = BLOCK_NUM (insn);
2431 /* load_killed_in_block_p will handle the case of calls clobbering
2432 everything. */
2433 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2434 bitmap_set_bit (modify_mem_list_set, bb);
2436 if (GET_CODE (insn) == CALL_INSN)
2438 /* Note that traversals of this loop (other than for free-ing)
2439 will break after encountering a CALL_INSN. So, there's no
2440 need to insert a pair of items, as canon_list_insert does. */
2441 canon_modify_mem_list[bb] =
2442 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2443 bitmap_set_bit (canon_modify_mem_list_set, bb);
2445 else
2446 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2449 /* Called from compute_hash_table via note_stores to handle one
2450 SET or CLOBBER in an insn. DATA is really the instruction in which
2451 the SET is taking place. */
2453 static void
2454 record_last_set_info (dest, setter, data)
2455 rtx dest, setter ATTRIBUTE_UNUSED;
2456 void *data;
2458 rtx last_set_insn = (rtx) data;
2460 if (GET_CODE (dest) == SUBREG)
2461 dest = SUBREG_REG (dest);
2463 if (GET_CODE (dest) == REG)
2464 record_last_reg_set_info (last_set_insn, REGNO (dest));
2465 else if (GET_CODE (dest) == MEM
2466 /* Ignore pushes, they clobber nothing. */
2467 && ! push_operand (dest, GET_MODE (dest)))
2468 record_last_mem_set_info (last_set_insn);
2471 /* Top level function to create an expression or assignment hash table.
2473 Expression entries are placed in the hash table if
2474 - they are of the form (set (pseudo-reg) src),
2475 - src is something we want to perform GCSE on,
2476 - none of the operands are subsequently modified in the block
2478 Assignment entries are placed in the hash table if
2479 - they are of the form (set (pseudo-reg) src),
2480 - src is something we want to perform const/copy propagation on,
2481 - none of the operands or target are subsequently modified in the block
2483 Currently src must be a pseudo-reg or a const_int.
2485 F is the first insn.
2486 SET_P is non-zero for computing the assignment hash table. */
2488 static void
2489 compute_hash_table (set_p)
2490 int set_p;
2492 unsigned int i;
2494 /* While we compute the hash table we also compute a bit array of which
2495 registers are set in which blocks.
2496 ??? This isn't needed during const/copy propagation, but it's cheap to
2497 compute. Later. */
2498 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2500 /* re-Cache any INSN_LIST nodes we have allocated. */
2501 clear_modify_mem_tables ();
2502 /* Some working arrays used to track first and last set in each block. */
2503 reg_avail_info = (struct reg_avail_info*)
2504 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2506 for (i = 0; i < max_gcse_regno; ++i)
2507 reg_avail_info[i].last_bb = NULL;
2509 FOR_EACH_BB (current_bb)
2511 rtx insn;
2512 unsigned int regno;
2513 int in_libcall_block;
2515 /* First pass over the instructions records information used to
2516 determine when registers and memory are first and last set.
2517 ??? hard-reg reg_set_in_block computation
2518 could be moved to compute_sets since they currently don't change. */
2520 for (insn = current_bb->head;
2521 insn && insn != NEXT_INSN (current_bb->end);
2522 insn = NEXT_INSN (insn))
2524 if (! INSN_P (insn))
2525 continue;
2527 if (GET_CODE (insn) == CALL_INSN)
2529 bool clobbers_all = false;
2530 #ifdef NON_SAVING_SETJMP
2531 if (NON_SAVING_SETJMP
2532 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2533 clobbers_all = true;
2534 #endif
2536 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2537 if (clobbers_all
2538 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2539 record_last_reg_set_info (insn, regno);
2541 mark_call (insn);
2544 note_stores (PATTERN (insn), record_last_set_info, insn);
2547 /* The next pass builds the hash table. */
2549 for (insn = current_bb->head, in_libcall_block = 0;
2550 insn && insn != NEXT_INSN (current_bb->end);
2551 insn = NEXT_INSN (insn))
2552 if (INSN_P (insn))
2554 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2555 in_libcall_block = 1;
2556 else if (set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2557 in_libcall_block = 0;
2558 hash_scan_insn (insn, set_p, in_libcall_block);
2559 if (!set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2560 in_libcall_block = 0;
2564 free (reg_avail_info);
2565 reg_avail_info = NULL;
2568 /* Allocate space for the set hash table.
2569 N_INSNS is the number of instructions in the function.
2570 It is used to determine the number of buckets to use. */
2572 static void
2573 alloc_set_hash_table (n_insns)
2574 int n_insns;
2576 int n;
2578 set_hash_table_size = n_insns / 4;
2579 if (set_hash_table_size < 11)
2580 set_hash_table_size = 11;
2582 /* Attempt to maintain efficient use of hash table.
2583 Making it an odd number is simplest for now.
2584 ??? Later take some measurements. */
2585 set_hash_table_size |= 1;
2586 n = set_hash_table_size * sizeof (struct expr *);
2587 set_hash_table = (struct expr **) gmalloc (n);
2590 /* Free things allocated by alloc_set_hash_table. */
2592 static void
2593 free_set_hash_table ()
2595 free (set_hash_table);
2598 /* Compute the hash table for doing copy/const propagation. */
2600 static void
2601 compute_set_hash_table ()
2603 /* Initialize count of number of entries in hash table. */
2604 n_sets = 0;
2605 memset ((char *) set_hash_table, 0,
2606 set_hash_table_size * sizeof (struct expr *));
2608 compute_hash_table (1);
2611 /* Allocate space for the expression hash table.
2612 N_INSNS is the number of instructions in the function.
2613 It is used to determine the number of buckets to use. */
2615 static void
2616 alloc_expr_hash_table (n_insns)
2617 unsigned int n_insns;
2619 int n;
2621 expr_hash_table_size = n_insns / 2;
2622 /* Make sure the amount is usable. */
2623 if (expr_hash_table_size < 11)
2624 expr_hash_table_size = 11;
2626 /* Attempt to maintain efficient use of hash table.
2627 Making it an odd number is simplest for now.
2628 ??? Later take some measurements. */
2629 expr_hash_table_size |= 1;
2630 n = expr_hash_table_size * sizeof (struct expr *);
2631 expr_hash_table = (struct expr **) gmalloc (n);
2634 /* Free things allocated by alloc_expr_hash_table. */
2636 static void
2637 free_expr_hash_table ()
2639 free (expr_hash_table);
2642 /* Compute the hash table for doing GCSE. */
2644 static void
2645 compute_expr_hash_table ()
2647 /* Initialize count of number of entries in hash table. */
2648 n_exprs = 0;
2649 memset ((char *) expr_hash_table, 0,
2650 expr_hash_table_size * sizeof (struct expr *));
2652 compute_hash_table (0);
2655 /* Expression tracking support. */
2657 /* Lookup pattern PAT in the expression table.
2658 The result is a pointer to the table entry, or NULL if not found. */
2660 static struct expr *
2661 lookup_expr (pat)
2662 rtx pat;
2664 int do_not_record_p;
2665 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2666 expr_hash_table_size);
2667 struct expr *expr;
2669 if (do_not_record_p)
2670 return NULL;
2672 expr = expr_hash_table[hash];
2674 while (expr && ! expr_equiv_p (expr->expr, pat))
2675 expr = expr->next_same_hash;
2677 return expr;
2680 /* Lookup REGNO in the set table. If PAT is non-NULL look for the entry that
2681 matches it, otherwise return the first entry for REGNO. The result is a
2682 pointer to the table entry, or NULL if not found. */
2684 static struct expr *
2685 lookup_set (regno, pat)
2686 unsigned int regno;
2687 rtx pat;
2689 unsigned int hash = hash_set (regno, set_hash_table_size);
2690 struct expr *expr;
2692 expr = set_hash_table[hash];
2694 if (pat)
2696 while (expr && ! expr_equiv_p (expr->expr, pat))
2697 expr = expr->next_same_hash;
2699 else
2701 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2702 expr = expr->next_same_hash;
2705 return expr;
2708 /* Return the next entry for REGNO in list EXPR. */
2710 static struct expr *
2711 next_set (regno, expr)
2712 unsigned int regno;
2713 struct expr *expr;
2716 expr = expr->next_same_hash;
2717 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2719 return expr;
2722 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2723 types may be mixed. */
2725 static void
2726 free_insn_expr_list_list (listp)
2727 rtx *listp;
2729 rtx list, next;
2731 for (list = *listp; list ; list = next)
2733 next = XEXP (list, 1);
2734 if (GET_CODE (list) == EXPR_LIST)
2735 free_EXPR_LIST_node (list);
2736 else
2737 free_INSN_LIST_node (list);
2740 *listp = NULL;
2743 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2744 static void
2745 clear_modify_mem_tables ()
2747 int i;
2749 EXECUTE_IF_SET_IN_BITMAP
2750 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2751 bitmap_clear (modify_mem_list_set);
2753 EXECUTE_IF_SET_IN_BITMAP
2754 (canon_modify_mem_list_set, 0, i,
2755 free_insn_expr_list_list (canon_modify_mem_list + i));
2756 bitmap_clear (canon_modify_mem_list_set);
2759 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2761 static void
2762 free_modify_mem_tables ()
2764 clear_modify_mem_tables ();
2765 free (modify_mem_list);
2766 free (canon_modify_mem_list);
2767 modify_mem_list = 0;
2768 canon_modify_mem_list = 0;
2771 /* Reset tables used to keep track of what's still available [since the
2772 start of the block]. */
2774 static void
2775 reset_opr_set_tables ()
2777 /* Maintain a bitmap of which regs have been set since beginning of
2778 the block. */
2779 CLEAR_REG_SET (reg_set_bitmap);
2781 /* Also keep a record of the last instruction to modify memory.
2782 For now this is very trivial, we only record whether any memory
2783 location has been modified. */
2784 clear_modify_mem_tables ();
2787 /* Return non-zero if the operands of X are not set before INSN in
2788 INSN's basic block. */
2790 static int
2791 oprs_not_set_p (x, insn)
2792 rtx x, insn;
2794 int i, j;
2795 enum rtx_code code;
2796 const char *fmt;
2798 if (x == 0)
2799 return 1;
2801 code = GET_CODE (x);
2802 switch (code)
2804 case PC:
2805 case CC0:
2806 case CONST:
2807 case CONST_INT:
2808 case CONST_DOUBLE:
2809 case CONST_VECTOR:
2810 case SYMBOL_REF:
2811 case LABEL_REF:
2812 case ADDR_VEC:
2813 case ADDR_DIFF_VEC:
2814 return 1;
2816 case MEM:
2817 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2818 INSN_CUID (insn), x, 0))
2819 return 0;
2820 else
2821 return oprs_not_set_p (XEXP (x, 0), insn);
2823 case REG:
2824 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2826 default:
2827 break;
2830 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2832 if (fmt[i] == 'e')
2834 /* If we are about to do the last recursive call
2835 needed at this level, change it into iteration.
2836 This function is called enough to be worth it. */
2837 if (i == 0)
2838 return oprs_not_set_p (XEXP (x, i), insn);
2840 if (! oprs_not_set_p (XEXP (x, i), insn))
2841 return 0;
2843 else if (fmt[i] == 'E')
2844 for (j = 0; j < XVECLEN (x, i); j++)
2845 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2846 return 0;
2849 return 1;
2852 /* Mark things set by a CALL. */
2854 static void
2855 mark_call (insn)
2856 rtx insn;
2858 if (! CONST_OR_PURE_CALL_P (insn))
2859 record_last_mem_set_info (insn);
2862 /* Mark things set by a SET. */
2864 static void
2865 mark_set (pat, insn)
2866 rtx pat, insn;
2868 rtx dest = SET_DEST (pat);
2870 while (GET_CODE (dest) == SUBREG
2871 || GET_CODE (dest) == ZERO_EXTRACT
2872 || GET_CODE (dest) == SIGN_EXTRACT
2873 || GET_CODE (dest) == STRICT_LOW_PART)
2874 dest = XEXP (dest, 0);
2876 if (GET_CODE (dest) == REG)
2877 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2878 else if (GET_CODE (dest) == MEM)
2879 record_last_mem_set_info (insn);
2881 if (GET_CODE (SET_SRC (pat)) == CALL)
2882 mark_call (insn);
2885 /* Record things set by a CLOBBER. */
2887 static void
2888 mark_clobber (pat, insn)
2889 rtx pat, insn;
2891 rtx clob = XEXP (pat, 0);
2893 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2894 clob = XEXP (clob, 0);
2896 if (GET_CODE (clob) == REG)
2897 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2898 else
2899 record_last_mem_set_info (insn);
2902 /* Record things set by INSN.
2903 This data is used by oprs_not_set_p. */
2905 static void
2906 mark_oprs_set (insn)
2907 rtx insn;
2909 rtx pat = PATTERN (insn);
2910 int i;
2912 if (GET_CODE (pat) == SET)
2913 mark_set (pat, insn);
2914 else if (GET_CODE (pat) == PARALLEL)
2915 for (i = 0; i < XVECLEN (pat, 0); i++)
2917 rtx x = XVECEXP (pat, 0, i);
2919 if (GET_CODE (x) == SET)
2920 mark_set (x, insn);
2921 else if (GET_CODE (x) == CLOBBER)
2922 mark_clobber (x, insn);
2923 else if (GET_CODE (x) == CALL)
2924 mark_call (insn);
2927 else if (GET_CODE (pat) == CLOBBER)
2928 mark_clobber (pat, insn);
2929 else if (GET_CODE (pat) == CALL)
2930 mark_call (insn);
2934 /* Classic GCSE reaching definition support. */
2936 /* Allocate reaching def variables. */
2938 static void
2939 alloc_rd_mem (n_blocks, n_insns)
2940 int n_blocks, n_insns;
2942 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2943 sbitmap_vector_zero (rd_kill, n_blocks);
2945 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2946 sbitmap_vector_zero (rd_gen, n_blocks);
2948 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2949 sbitmap_vector_zero (reaching_defs, n_blocks);
2951 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2952 sbitmap_vector_zero (rd_out, n_blocks);
2955 /* Free reaching def variables. */
2957 static void
2958 free_rd_mem ()
2960 sbitmap_vector_free (rd_kill);
2961 sbitmap_vector_free (rd_gen);
2962 sbitmap_vector_free (reaching_defs);
2963 sbitmap_vector_free (rd_out);
2966 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2968 static void
2969 handle_rd_kill_set (insn, regno, bb)
2970 rtx insn;
2971 int regno;
2972 basic_block bb;
2974 struct reg_set *this_reg;
2976 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2977 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2978 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2981 /* Compute the set of kill's for reaching definitions. */
2983 static void
2984 compute_kill_rd ()
2986 int cuid;
2987 unsigned int regno;
2988 int i;
2989 basic_block bb;
2991 /* For each block
2992 For each set bit in `gen' of the block (i.e each insn which
2993 generates a definition in the block)
2994 Call the reg set by the insn corresponding to that bit regx
2995 Look at the linked list starting at reg_set_table[regx]
2996 For each setting of regx in the linked list, which is not in
2997 this block
2998 Set the bit in `kill' corresponding to that insn. */
2999 FOR_EACH_BB (bb)
3000 for (cuid = 0; cuid < max_cuid; cuid++)
3001 if (TEST_BIT (rd_gen[bb->index], cuid))
3003 rtx insn = CUID_INSN (cuid);
3004 rtx pat = PATTERN (insn);
3006 if (GET_CODE (insn) == CALL_INSN)
3008 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
3009 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
3010 handle_rd_kill_set (insn, regno, bb);
3013 if (GET_CODE (pat) == PARALLEL)
3015 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
3017 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
3019 if ((code == SET || code == CLOBBER)
3020 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
3021 handle_rd_kill_set (insn,
3022 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
3023 bb);
3026 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
3027 /* Each setting of this register outside of this block
3028 must be marked in the set of kills in this block. */
3029 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
3033 /* Compute the reaching definitions as in
3034 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
3035 Chapter 10. It is the same algorithm as used for computing available
3036 expressions but applied to the gens and kills of reaching definitions. */
3038 static void
3039 compute_rd ()
3041 int changed, passes;
3042 basic_block bb;
3044 FOR_EACH_BB (bb)
3045 sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/);
3047 passes = 0;
3048 changed = 1;
3049 while (changed)
3051 changed = 0;
3052 FOR_EACH_BB (bb)
3054 sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index);
3055 changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index],
3056 reaching_defs[bb->index], rd_kill[bb->index]);
3058 passes++;
3061 if (gcse_file)
3062 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3065 /* Classic GCSE available expression support. */
3067 /* Allocate memory for available expression computation. */
3069 static void
3070 alloc_avail_expr_mem (n_blocks, n_exprs)
3071 int n_blocks, n_exprs;
3073 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3074 sbitmap_vector_zero (ae_kill, n_blocks);
3076 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3077 sbitmap_vector_zero (ae_gen, n_blocks);
3079 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3080 sbitmap_vector_zero (ae_in, n_blocks);
3082 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3083 sbitmap_vector_zero (ae_out, n_blocks);
3086 static void
3087 free_avail_expr_mem ()
3089 sbitmap_vector_free (ae_kill);
3090 sbitmap_vector_free (ae_gen);
3091 sbitmap_vector_free (ae_in);
3092 sbitmap_vector_free (ae_out);
3095 /* Compute the set of available expressions generated in each basic block. */
3097 static void
3098 compute_ae_gen ()
3100 unsigned int i;
3101 struct expr *expr;
3102 struct occr *occr;
3104 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3105 This is all we have to do because an expression is not recorded if it
3106 is not available, and the only expressions we want to work with are the
3107 ones that are recorded. */
3108 for (i = 0; i < expr_hash_table_size; i++)
3109 for (expr = expr_hash_table[i]; expr != 0; expr = expr->next_same_hash)
3110 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3111 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3114 /* Return non-zero if expression X is killed in BB. */
3116 static int
3117 expr_killed_p (x, bb)
3118 rtx x;
3119 basic_block bb;
3121 int i, j;
3122 enum rtx_code code;
3123 const char *fmt;
3125 if (x == 0)
3126 return 1;
3128 code = GET_CODE (x);
3129 switch (code)
3131 case REG:
3132 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3134 case MEM:
3135 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3136 return 1;
3137 else
3138 return expr_killed_p (XEXP (x, 0), bb);
3140 case PC:
3141 case CC0: /*FIXME*/
3142 case CONST:
3143 case CONST_INT:
3144 case CONST_DOUBLE:
3145 case CONST_VECTOR:
3146 case SYMBOL_REF:
3147 case LABEL_REF:
3148 case ADDR_VEC:
3149 case ADDR_DIFF_VEC:
3150 return 0;
3152 default:
3153 break;
3156 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3158 if (fmt[i] == 'e')
3160 /* If we are about to do the last recursive call
3161 needed at this level, change it into iteration.
3162 This function is called enough to be worth it. */
3163 if (i == 0)
3164 return expr_killed_p (XEXP (x, i), bb);
3165 else if (expr_killed_p (XEXP (x, i), bb))
3166 return 1;
3168 else if (fmt[i] == 'E')
3169 for (j = 0; j < XVECLEN (x, i); j++)
3170 if (expr_killed_p (XVECEXP (x, i, j), bb))
3171 return 1;
3174 return 0;
3177 /* Compute the set of available expressions killed in each basic block. */
3179 static void
3180 compute_ae_kill (ae_gen, ae_kill)
3181 sbitmap *ae_gen, *ae_kill;
3183 basic_block bb;
3184 unsigned int i;
3185 struct expr *expr;
3187 FOR_EACH_BB (bb)
3188 for (i = 0; i < expr_hash_table_size; i++)
3189 for (expr = expr_hash_table[i]; expr; expr = expr->next_same_hash)
3191 /* Skip EXPR if generated in this block. */
3192 if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index))
3193 continue;
3195 if (expr_killed_p (expr->expr, bb))
3196 SET_BIT (ae_kill[bb->index], expr->bitmap_index);
3200 /* Actually perform the Classic GCSE optimizations. */
3202 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
3204 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
3205 as a positive reach. We want to do this when there are two computations
3206 of the expression in the block.
3208 VISITED is a pointer to a working buffer for tracking which BB's have
3209 been visited. It is NULL for the top-level call.
3211 We treat reaching expressions that go through blocks containing the same
3212 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3213 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3214 2 as not reaching. The intent is to improve the probability of finding
3215 only one reaching expression and to reduce register lifetimes by picking
3216 the closest such expression. */
3218 static int
3219 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3220 struct occr *occr;
3221 struct expr *expr;
3222 basic_block bb;
3223 int check_self_loop;
3224 char *visited;
3226 edge pred;
3228 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3230 basic_block pred_bb = pred->src;
3232 if (visited[pred_bb->index])
3233 /* This predecessor has already been visited. Nothing to do. */
3235 else if (pred_bb == bb)
3237 /* BB loops on itself. */
3238 if (check_self_loop
3239 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3240 && BLOCK_NUM (occr->insn) == pred_bb->index)
3241 return 1;
3243 visited[pred_bb->index] = 1;
3246 /* Ignore this predecessor if it kills the expression. */
3247 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3248 visited[pred_bb->index] = 1;
3250 /* Does this predecessor generate this expression? */
3251 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3253 /* Is this the occurrence we're looking for?
3254 Note that there's only one generating occurrence per block
3255 so we just need to check the block number. */
3256 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3257 return 1;
3259 visited[pred_bb->index] = 1;
3262 /* Neither gen nor kill. */
3263 else
3265 visited[pred_bb->index] = 1;
3266 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3267 visited))
3269 return 1;
3273 /* All paths have been checked. */
3274 return 0;
3277 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3278 memory allocated for that function is returned. */
3280 static int
3281 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3282 struct occr *occr;
3283 struct expr *expr;
3284 basic_block bb;
3285 int check_self_loop;
3287 int rval;
3288 char *visited = (char *) xcalloc (last_basic_block, 1);
3290 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3292 free (visited);
3293 return rval;
3296 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3297 If there is more than one such instruction, return NULL.
3299 Called only by handle_avail_expr. */
3301 static rtx
3302 computing_insn (expr, insn)
3303 struct expr *expr;
3304 rtx insn;
3306 basic_block bb = BLOCK_FOR_INSN (insn);
3308 if (expr->avail_occr->next == NULL)
3310 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3311 /* The available expression is actually itself
3312 (i.e. a loop in the flow graph) so do nothing. */
3313 return NULL;
3315 /* (FIXME) Case that we found a pattern that was created by
3316 a substitution that took place. */
3317 return expr->avail_occr->insn;
3319 else
3321 /* Pattern is computed more than once.
3322 Search backwards from this insn to see how many of these
3323 computations actually reach this insn. */
3324 struct occr *occr;
3325 rtx insn_computes_expr = NULL;
3326 int can_reach = 0;
3328 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3330 if (BLOCK_FOR_INSN (occr->insn) == bb)
3332 /* The expression is generated in this block.
3333 The only time we care about this is when the expression
3334 is generated later in the block [and thus there's a loop].
3335 We let the normal cse pass handle the other cases. */
3336 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3337 && expr_reaches_here_p (occr, expr, bb, 1))
3339 can_reach++;
3340 if (can_reach > 1)
3341 return NULL;
3343 insn_computes_expr = occr->insn;
3346 else if (expr_reaches_here_p (occr, expr, bb, 0))
3348 can_reach++;
3349 if (can_reach > 1)
3350 return NULL;
3352 insn_computes_expr = occr->insn;
3356 if (insn_computes_expr == NULL)
3357 abort ();
3359 return insn_computes_expr;
3363 /* Return non-zero if the definition in DEF_INSN can reach INSN.
3364 Only called by can_disregard_other_sets. */
3366 static int
3367 def_reaches_here_p (insn, def_insn)
3368 rtx insn, def_insn;
3370 rtx reg;
3372 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3373 return 1;
3375 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3377 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3379 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3380 return 1;
3381 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3382 reg = XEXP (PATTERN (def_insn), 0);
3383 else if (GET_CODE (PATTERN (def_insn)) == SET)
3384 reg = SET_DEST (PATTERN (def_insn));
3385 else
3386 abort ();
3388 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3390 else
3391 return 0;
3394 return 0;
3397 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN. The
3398 value returned is the number of definitions that reach INSN. Returning a
3399 value of zero means that [maybe] more than one definition reaches INSN and
3400 the caller can't perform whatever optimization it is trying. i.e. it is
3401 always safe to return zero. */
3403 static int
3404 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3405 struct reg_set **addr_this_reg;
3406 rtx insn;
3407 int for_combine;
3409 int number_of_reaching_defs = 0;
3410 struct reg_set *this_reg;
3412 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3413 if (def_reaches_here_p (insn, this_reg->insn))
3415 number_of_reaching_defs++;
3416 /* Ignore parallels for now. */
3417 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3418 return 0;
3420 if (!for_combine
3421 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3422 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3423 SET_SRC (PATTERN (insn)))))
3424 /* A setting of the reg to a different value reaches INSN. */
3425 return 0;
3427 if (number_of_reaching_defs > 1)
3429 /* If in this setting the value the register is being set to is
3430 equal to the previous value the register was set to and this
3431 setting reaches the insn we are trying to do the substitution
3432 on then we are ok. */
3433 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3434 return 0;
3435 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3436 SET_SRC (PATTERN (insn))))
3437 return 0;
3440 *addr_this_reg = this_reg;
3443 return number_of_reaching_defs;
3446 /* Expression computed by insn is available and the substitution is legal,
3447 so try to perform the substitution.
3449 The result is non-zero if any changes were made. */
3451 static int
3452 handle_avail_expr (insn, expr)
3453 rtx insn;
3454 struct expr *expr;
3456 rtx pat, insn_computes_expr, expr_set;
3457 rtx to;
3458 struct reg_set *this_reg;
3459 int found_setting, use_src;
3460 int changed = 0;
3462 /* We only handle the case where one computation of the expression
3463 reaches this instruction. */
3464 insn_computes_expr = computing_insn (expr, insn);
3465 if (insn_computes_expr == NULL)
3466 return 0;
3467 expr_set = single_set (insn_computes_expr);
3468 if (!expr_set)
3469 abort ();
3471 found_setting = 0;
3472 use_src = 0;
3474 /* At this point we know only one computation of EXPR outside of this
3475 block reaches this insn. Now try to find a register that the
3476 expression is computed into. */
3477 if (GET_CODE (SET_SRC (expr_set)) == REG)
3479 /* This is the case when the available expression that reaches
3480 here has already been handled as an available expression. */
3481 unsigned int regnum_for_replacing
3482 = REGNO (SET_SRC (expr_set));
3484 /* If the register was created by GCSE we can't use `reg_set_table',
3485 however we know it's set only once. */
3486 if (regnum_for_replacing >= max_gcse_regno
3487 /* If the register the expression is computed into is set only once,
3488 or only one set reaches this insn, we can use it. */
3489 || (((this_reg = reg_set_table[regnum_for_replacing]),
3490 this_reg->next == NULL)
3491 || can_disregard_other_sets (&this_reg, insn, 0)))
3493 use_src = 1;
3494 found_setting = 1;
3498 if (!found_setting)
3500 unsigned int regnum_for_replacing
3501 = REGNO (SET_DEST (expr_set));
3503 /* This shouldn't happen. */
3504 if (regnum_for_replacing >= max_gcse_regno)
3505 abort ();
3507 this_reg = reg_set_table[regnum_for_replacing];
3509 /* If the register the expression is computed into is set only once,
3510 or only one set reaches this insn, use it. */
3511 if (this_reg->next == NULL
3512 || can_disregard_other_sets (&this_reg, insn, 0))
3513 found_setting = 1;
3516 if (found_setting)
3518 pat = PATTERN (insn);
3519 if (use_src)
3520 to = SET_SRC (expr_set);
3521 else
3522 to = SET_DEST (expr_set);
3523 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3525 /* We should be able to ignore the return code from validate_change but
3526 to play it safe we check. */
3527 if (changed)
3529 gcse_subst_count++;
3530 if (gcse_file != NULL)
3532 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3533 INSN_UID (insn));
3534 fprintf (gcse_file, " reg %d %s insn %d\n",
3535 REGNO (to), use_src ? "from" : "set in",
3536 INSN_UID (insn_computes_expr));
3541 /* The register that the expr is computed into is set more than once. */
3542 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3544 /* Insert an insn after insnx that copies the reg set in insnx
3545 into a new pseudo register call this new register REGN.
3546 From insnb until end of basic block or until REGB is set
3547 replace all uses of REGB with REGN. */
3548 rtx new_insn;
3550 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3552 /* Generate the new insn. */
3553 /* ??? If the change fails, we return 0, even though we created
3554 an insn. I think this is ok. */
3555 new_insn
3556 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3557 SET_DEST (expr_set)),
3558 insn_computes_expr);
3560 /* Keep register set table up to date. */
3561 record_one_set (REGNO (to), new_insn);
3563 gcse_create_count++;
3564 if (gcse_file != NULL)
3566 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3567 INSN_UID (NEXT_INSN (insn_computes_expr)),
3568 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3569 fprintf (gcse_file, ", computed in insn %d,\n",
3570 INSN_UID (insn_computes_expr));
3571 fprintf (gcse_file, " into newly allocated reg %d\n",
3572 REGNO (to));
3575 pat = PATTERN (insn);
3577 /* Do register replacement for INSN. */
3578 changed = validate_change (insn, &SET_SRC (pat),
3579 SET_DEST (PATTERN
3580 (NEXT_INSN (insn_computes_expr))),
3583 /* We should be able to ignore the return code from validate_change but
3584 to play it safe we check. */
3585 if (changed)
3587 gcse_subst_count++;
3588 if (gcse_file != NULL)
3590 fprintf (gcse_file,
3591 "GCSE: Replacing the source in insn %d with reg %d ",
3592 INSN_UID (insn),
3593 REGNO (SET_DEST (PATTERN (NEXT_INSN
3594 (insn_computes_expr)))));
3595 fprintf (gcse_file, "set in insn %d\n",
3596 INSN_UID (insn_computes_expr));
3601 return changed;
3604 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3605 the dataflow analysis has been done.
3607 The result is non-zero if a change was made. */
3609 static int
3610 classic_gcse ()
3612 int changed;
3613 rtx insn;
3614 basic_block bb;
3616 /* Note we start at block 1. */
3618 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3619 return 0;
3621 changed = 0;
3622 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3624 /* Reset tables used to keep track of what's still valid [since the
3625 start of the block]. */
3626 reset_opr_set_tables ();
3628 for (insn = bb->head;
3629 insn != NULL && insn != NEXT_INSN (bb->end);
3630 insn = NEXT_INSN (insn))
3632 /* Is insn of form (set (pseudo-reg) ...)? */
3633 if (GET_CODE (insn) == INSN
3634 && GET_CODE (PATTERN (insn)) == SET
3635 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3636 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3638 rtx pat = PATTERN (insn);
3639 rtx src = SET_SRC (pat);
3640 struct expr *expr;
3642 if (want_to_gcse_p (src)
3643 /* Is the expression recorded? */
3644 && ((expr = lookup_expr (src)) != NULL)
3645 /* Is the expression available [at the start of the
3646 block]? */
3647 && TEST_BIT (ae_in[bb->index], expr->bitmap_index)
3648 /* Are the operands unchanged since the start of the
3649 block? */
3650 && oprs_not_set_p (src, insn))
3651 changed |= handle_avail_expr (insn, expr);
3654 /* Keep track of everything modified by this insn. */
3655 /* ??? Need to be careful w.r.t. mods done to INSN. */
3656 if (INSN_P (insn))
3657 mark_oprs_set (insn);
3661 return changed;
3664 /* Top level routine to perform one classic GCSE pass.
3666 Return non-zero if a change was made. */
3668 static int
3669 one_classic_gcse_pass (pass)
3670 int pass;
3672 int changed = 0;
3674 gcse_subst_count = 0;
3675 gcse_create_count = 0;
3677 alloc_expr_hash_table (max_cuid);
3678 alloc_rd_mem (last_basic_block, max_cuid);
3679 compute_expr_hash_table ();
3680 if (gcse_file)
3681 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3682 expr_hash_table_size, n_exprs);
3684 if (n_exprs > 0)
3686 compute_kill_rd ();
3687 compute_rd ();
3688 alloc_avail_expr_mem (last_basic_block, n_exprs);
3689 compute_ae_gen ();
3690 compute_ae_kill (ae_gen, ae_kill);
3691 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3692 changed = classic_gcse ();
3693 free_avail_expr_mem ();
3696 free_rd_mem ();
3697 free_expr_hash_table ();
3699 if (gcse_file)
3701 fprintf (gcse_file, "\n");
3702 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3703 current_function_name, pass, bytes_used, gcse_subst_count);
3704 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3707 return changed;
3710 /* Compute copy/constant propagation working variables. */
3712 /* Local properties of assignments. */
3713 static sbitmap *cprop_pavloc;
3714 static sbitmap *cprop_absaltered;
3716 /* Global properties of assignments (computed from the local properties). */
3717 static sbitmap *cprop_avin;
3718 static sbitmap *cprop_avout;
3720 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3721 basic blocks. N_SETS is the number of sets. */
3723 static void
3724 alloc_cprop_mem (n_blocks, n_sets)
3725 int n_blocks, n_sets;
3727 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3728 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3730 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3731 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3734 /* Free vars used by copy/const propagation. */
3736 static void
3737 free_cprop_mem ()
3739 sbitmap_vector_free (cprop_pavloc);
3740 sbitmap_vector_free (cprop_absaltered);
3741 sbitmap_vector_free (cprop_avin);
3742 sbitmap_vector_free (cprop_avout);
3745 /* For each block, compute whether X is transparent. X is either an
3746 expression or an assignment [though we don't care which, for this context
3747 an assignment is treated as an expression]. For each block where an
3748 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3749 bit in BMAP. */
3751 static void
3752 compute_transp (x, indx, bmap, set_p)
3753 rtx x;
3754 int indx;
3755 sbitmap *bmap;
3756 int set_p;
3758 int i, j;
3759 basic_block bb;
3760 enum rtx_code code;
3761 reg_set *r;
3762 const char *fmt;
3764 /* repeat is used to turn tail-recursion into iteration since GCC
3765 can't do it when there's no return value. */
3766 repeat:
3768 if (x == 0)
3769 return;
3771 code = GET_CODE (x);
3772 switch (code)
3774 case REG:
3775 if (set_p)
3777 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3779 FOR_EACH_BB (bb)
3780 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3781 SET_BIT (bmap[bb->index], indx);
3783 else
3785 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3786 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3789 else
3791 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3793 FOR_EACH_BB (bb)
3794 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3795 RESET_BIT (bmap[bb->index], indx);
3797 else
3799 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3800 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3804 return;
3806 case MEM:
3807 FOR_EACH_BB (bb)
3809 rtx list_entry = canon_modify_mem_list[bb->index];
3811 while (list_entry)
3813 rtx dest, dest_addr;
3815 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3817 if (set_p)
3818 SET_BIT (bmap[bb->index], indx);
3819 else
3820 RESET_BIT (bmap[bb->index], indx);
3821 break;
3823 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3824 Examine each hunk of memory that is modified. */
3826 dest = XEXP (list_entry, 0);
3827 list_entry = XEXP (list_entry, 1);
3828 dest_addr = XEXP (list_entry, 0);
3830 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3831 x, rtx_addr_varies_p))
3833 if (set_p)
3834 SET_BIT (bmap[bb->index], indx);
3835 else
3836 RESET_BIT (bmap[bb->index], indx);
3837 break;
3839 list_entry = XEXP (list_entry, 1);
3843 x = XEXP (x, 0);
3844 goto repeat;
3846 case PC:
3847 case CC0: /*FIXME*/
3848 case CONST:
3849 case CONST_INT:
3850 case CONST_DOUBLE:
3851 case CONST_VECTOR:
3852 case SYMBOL_REF:
3853 case LABEL_REF:
3854 case ADDR_VEC:
3855 case ADDR_DIFF_VEC:
3856 return;
3858 default:
3859 break;
3862 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3864 if (fmt[i] == 'e')
3866 /* If we are about to do the last recursive call
3867 needed at this level, change it into iteration.
3868 This function is called enough to be worth it. */
3869 if (i == 0)
3871 x = XEXP (x, i);
3872 goto repeat;
3875 compute_transp (XEXP (x, i), indx, bmap, set_p);
3877 else if (fmt[i] == 'E')
3878 for (j = 0; j < XVECLEN (x, i); j++)
3879 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3883 /* Top level routine to do the dataflow analysis needed by copy/const
3884 propagation. */
3886 static void
3887 compute_cprop_data ()
3889 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
3890 compute_available (cprop_pavloc, cprop_absaltered,
3891 cprop_avout, cprop_avin);
3894 /* Copy/constant propagation. */
3896 /* Maximum number of register uses in an insn that we handle. */
3897 #define MAX_USES 8
3899 /* Table of uses found in an insn.
3900 Allocated statically to avoid alloc/free complexity and overhead. */
3901 static struct reg_use reg_use_table[MAX_USES];
3903 /* Index into `reg_use_table' while building it. */
3904 static int reg_use_count;
3906 /* Set up a list of register numbers used in INSN. The found uses are stored
3907 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3908 and contains the number of uses in the table upon exit.
3910 ??? If a register appears multiple times we will record it multiple times.
3911 This doesn't hurt anything but it will slow things down. */
3913 static void
3914 find_used_regs (xptr, data)
3915 rtx *xptr;
3916 void *data ATTRIBUTE_UNUSED;
3918 int i, j;
3919 enum rtx_code code;
3920 const char *fmt;
3921 rtx x = *xptr;
3923 /* repeat is used to turn tail-recursion into iteration since GCC
3924 can't do it when there's no return value. */
3925 repeat:
3926 if (x == 0)
3927 return;
3929 code = GET_CODE (x);
3930 if (REG_P (x))
3932 if (reg_use_count == MAX_USES)
3933 return;
3935 reg_use_table[reg_use_count].reg_rtx = x;
3936 reg_use_count++;
3939 /* Recursively scan the operands of this expression. */
3941 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3943 if (fmt[i] == 'e')
3945 /* If we are about to do the last recursive call
3946 needed at this level, change it into iteration.
3947 This function is called enough to be worth it. */
3948 if (i == 0)
3950 x = XEXP (x, 0);
3951 goto repeat;
3954 find_used_regs (&XEXP (x, i), data);
3956 else if (fmt[i] == 'E')
3957 for (j = 0; j < XVECLEN (x, i); j++)
3958 find_used_regs (&XVECEXP (x, i, j), data);
3962 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3963 Returns non-zero is successful. */
3965 static int
3966 try_replace_reg (from, to, insn)
3967 rtx from, to, insn;
3969 rtx note = find_reg_equal_equiv_note (insn);
3970 rtx src = 0;
3971 int success = 0;
3972 rtx set = single_set (insn);
3974 success = validate_replace_src (from, to, insn);
3976 /* If above failed and this is a single set, try to simplify the source of
3977 the set given our substitution. We could perhaps try this for multiple
3978 SETs, but it probably won't buy us anything. */
3979 if (!success && set != 0)
3981 src = simplify_replace_rtx (SET_SRC (set), from, to);
3983 if (!rtx_equal_p (src, SET_SRC (set))
3984 && validate_change (insn, &SET_SRC (set), src, 0))
3985 success = 1;
3988 /* If we've failed to do replacement, have a single SET, and don't already
3989 have a note, add a REG_EQUAL note to not lose information. */
3990 if (!success && note == 0 && set != 0)
3991 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3993 /* If there is already a NOTE, update the expression in it with our
3994 replacement. */
3995 else if (note != 0)
3996 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3998 /* REG_EQUAL may get simplified into register.
3999 We don't allow that. Remove that note. This code ought
4000 not to hapen, because previous code ought to syntetize
4001 reg-reg move, but be on the safe side. */
4002 if (note && REG_P (XEXP (note, 0)))
4003 remove_note (insn, note);
4005 return success;
4008 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
4009 NULL no such set is found. */
4011 static struct expr *
4012 find_avail_set (regno, insn)
4013 int regno;
4014 rtx insn;
4016 /* SET1 contains the last set found that can be returned to the caller for
4017 use in a substitution. */
4018 struct expr *set1 = 0;
4020 /* Loops are not possible here. To get a loop we would need two sets
4021 available at the start of the block containing INSN. ie we would
4022 need two sets like this available at the start of the block:
4024 (set (reg X) (reg Y))
4025 (set (reg Y) (reg X))
4027 This can not happen since the set of (reg Y) would have killed the
4028 set of (reg X) making it unavailable at the start of this block. */
4029 while (1)
4031 rtx src;
4032 struct expr *set = lookup_set (regno, NULL_RTX);
4034 /* Find a set that is available at the start of the block
4035 which contains INSN. */
4036 while (set)
4038 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
4039 break;
4040 set = next_set (regno, set);
4043 /* If no available set was found we've reached the end of the
4044 (possibly empty) copy chain. */
4045 if (set == 0)
4046 break;
4048 if (GET_CODE (set->expr) != SET)
4049 abort ();
4051 src = SET_SRC (set->expr);
4053 /* We know the set is available.
4054 Now check that SRC is ANTLOC (i.e. none of the source operands
4055 have changed since the start of the block).
4057 If the source operand changed, we may still use it for the next
4058 iteration of this loop, but we may not use it for substitutions. */
4060 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4061 set1 = set;
4063 /* If the source of the set is anything except a register, then
4064 we have reached the end of the copy chain. */
4065 if (GET_CODE (src) != REG)
4066 break;
4068 /* Follow the copy chain, ie start another iteration of the loop
4069 and see if we have an available copy into SRC. */
4070 regno = REGNO (src);
4073 /* SET1 holds the last set that was available and anticipatable at
4074 INSN. */
4075 return set1;
4078 /* Subroutine of cprop_insn that tries to propagate constants into
4079 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
4080 it is the instruction that immediately preceeds JUMP, and must be a
4081 single SET of a register. FROM is what we will try to replace,
4082 SRC is the constant we will try to substitute for it. Returns nonzero
4083 if a change was made. */
4085 static int
4086 cprop_jump (bb, setcc, jump, from, src)
4087 basic_block bb;
4088 rtx setcc;
4089 rtx jump;
4090 rtx from;
4091 rtx src;
4093 rtx new, new_set;
4094 rtx set = pc_set (jump);
4096 /* First substitute in the INSN condition as the SET_SRC of the JUMP,
4097 then substitute that given values in this expanded JUMP. */
4098 if (setcc != NULL)
4100 rtx setcc_set = single_set (setcc);
4101 new_set = simplify_replace_rtx (SET_SRC (set),
4102 SET_DEST (setcc_set),
4103 SET_SRC (setcc_set));
4105 else
4106 new_set = set;
4108 new = simplify_replace_rtx (new_set, from, src);
4110 /* If no simplification can be made, then try the next
4111 register. */
4112 if (rtx_equal_p (new, new_set))
4113 return 0;
4115 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4116 if (new == pc_rtx)
4117 delete_insn (jump);
4118 else
4120 if (! validate_change (jump, &SET_SRC (set), new, 0))
4121 return 0;
4123 /* If this has turned into an unconditional jump,
4124 then put a barrier after it so that the unreachable
4125 code will be deleted. */
4126 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4127 emit_barrier_after (jump);
4130 #ifdef HAVE_cc0
4131 /* Delete the cc0 setter. */
4132 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
4133 delete_insn (setcc);
4134 #endif
4136 run_jump_opt_after_gcse = 1;
4138 const_prop_count++;
4139 if (gcse_file != NULL)
4141 fprintf (gcse_file,
4142 "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
4143 REGNO (from), INSN_UID (jump));
4144 print_rtl (gcse_file, src);
4145 fprintf (gcse_file, "\n");
4147 purge_dead_edges (bb);
4149 return 1;
4152 /* Perform constant and copy propagation on INSN.
4153 The result is non-zero if a change was made. */
4155 static int
4156 cprop_insn (bb, insn, alter_jumps)
4157 basic_block bb;
4158 rtx insn;
4159 int alter_jumps;
4161 struct reg_use *reg_used;
4162 int changed = 0;
4163 rtx note;
4165 if (!INSN_P (insn))
4166 return 0;
4168 reg_use_count = 0;
4169 note_uses (&PATTERN (insn), find_used_regs, NULL);
4171 note = find_reg_equal_equiv_note (insn);
4173 /* We may win even when propagating constants into notes. */
4174 if (note)
4175 find_used_regs (&XEXP (note, 0), NULL);
4177 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4178 reg_used++, reg_use_count--)
4180 unsigned int regno = REGNO (reg_used->reg_rtx);
4181 rtx pat, src;
4182 struct expr *set;
4184 /* Ignore registers created by GCSE.
4185 We do this because ... */
4186 if (regno >= max_gcse_regno)
4187 continue;
4189 /* If the register has already been set in this block, there's
4190 nothing we can do. */
4191 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4192 continue;
4194 /* Find an assignment that sets reg_used and is available
4195 at the start of the block. */
4196 set = find_avail_set (regno, insn);
4197 if (! set)
4198 continue;
4200 pat = set->expr;
4201 /* ??? We might be able to handle PARALLELs. Later. */
4202 if (GET_CODE (pat) != SET)
4203 abort ();
4205 src = SET_SRC (pat);
4207 /* Constant propagation. */
4208 if (CONSTANT_P (src))
4210 rtx sset;
4212 /* Check for reg or cc0 setting instructions followed by
4213 conditional branch instructions first. */
4214 if (alter_jumps
4215 && (sset = single_set (insn)) != NULL
4216 && any_condjump_p (NEXT_INSN (insn))
4217 && onlyjump_p (NEXT_INSN (insn)))
4219 rtx dest = SET_DEST (sset);
4220 if ((REG_P (dest) || CC0_P (dest))
4221 && cprop_jump (bb, insn, NEXT_INSN (insn),
4222 reg_used->reg_rtx, src))
4224 changed = 1;
4225 break;
4229 /* Handle normal insns next. */
4230 if (GET_CODE (insn) == INSN
4231 && try_replace_reg (reg_used->reg_rtx, src, insn))
4233 changed = 1;
4234 const_prop_count++;
4235 if (gcse_file != NULL)
4237 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in ",
4238 regno);
4239 fprintf (gcse_file, "insn %d with constant ",
4240 INSN_UID (insn));
4241 print_rtl (gcse_file, src);
4242 fprintf (gcse_file, "\n");
4245 /* The original insn setting reg_used may or may not now be
4246 deletable. We leave the deletion to flow. */
4249 /* Try to propagate a CONST_INT into a conditional jump.
4250 We're pretty specific about what we will handle in this
4251 code, we can extend this as necessary over time.
4253 Right now the insn in question must look like
4254 (set (pc) (if_then_else ...)) */
4255 else if (alter_jumps
4256 && any_condjump_p (insn)
4257 && onlyjump_p (insn))
4258 changed |= cprop_jump (bb, NULL, insn, reg_used->reg_rtx, src);
4261 else if (GET_CODE (src) == REG
4262 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4263 && REGNO (src) != regno)
4265 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4267 changed = 1;
4268 copy_prop_count++;
4269 if (gcse_file != NULL)
4271 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d",
4272 regno, INSN_UID (insn));
4273 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4276 /* The original insn setting reg_used may or may not now be
4277 deletable. We leave the deletion to flow. */
4278 /* FIXME: If it turns out that the insn isn't deletable,
4279 then we may have unnecessarily extended register lifetimes
4280 and made things worse. */
4285 return changed;
4288 /* Forward propagate copies. This includes copies and constants. Return
4289 non-zero if a change was made. */
4291 static int
4292 cprop (alter_jumps)
4293 int alter_jumps;
4295 int changed;
4296 basic_block bb;
4297 rtx insn;
4299 /* Note we start at block 1. */
4300 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4302 if (gcse_file != NULL)
4303 fprintf (gcse_file, "\n");
4304 return 0;
4307 changed = 0;
4308 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
4310 /* Reset tables used to keep track of what's still valid [since the
4311 start of the block]. */
4312 reset_opr_set_tables ();
4314 for (insn = bb->head;
4315 insn != NULL && insn != NEXT_INSN (bb->end);
4316 insn = NEXT_INSN (insn))
4317 if (INSN_P (insn))
4319 changed |= cprop_insn (bb, insn, alter_jumps);
4321 /* Keep track of everything modified by this insn. */
4322 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4323 call mark_oprs_set if we turned the insn into a NOTE. */
4324 if (GET_CODE (insn) != NOTE)
4325 mark_oprs_set (insn);
4329 if (gcse_file != NULL)
4330 fprintf (gcse_file, "\n");
4332 return changed;
4335 /* Perform one copy/constant propagation pass.
4336 F is the first insn in the function.
4337 PASS is the pass count. */
4339 static int
4340 one_cprop_pass (pass, alter_jumps)
4341 int pass;
4342 int alter_jumps;
4344 int changed = 0;
4346 const_prop_count = 0;
4347 copy_prop_count = 0;
4349 alloc_set_hash_table (max_cuid);
4350 compute_set_hash_table ();
4351 if (gcse_file)
4352 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
4353 n_sets);
4354 if (n_sets > 0)
4356 alloc_cprop_mem (last_basic_block, n_sets);
4357 compute_cprop_data ();
4358 changed = cprop (alter_jumps);
4359 if (alter_jumps)
4360 changed |= bypass_conditional_jumps ();
4361 free_cprop_mem ();
4364 free_set_hash_table ();
4366 if (gcse_file)
4368 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4369 current_function_name, pass, bytes_used);
4370 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4371 const_prop_count, copy_prop_count);
4374 return changed;
4377 /* Bypass conditional jumps. */
4379 /* Find a set of REGNO to a constant that is available at the end of basic
4380 block BB. Returns NULL if no such set is found. Based heavily upon
4381 find_avail_set. */
4383 static struct expr *
4384 find_bypass_set (regno, bb)
4385 int regno;
4386 int bb;
4388 struct expr *result = 0;
4390 for (;;)
4392 rtx src;
4393 struct expr *set = lookup_set (regno, NULL_RTX);
4395 while (set)
4397 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
4398 break;
4399 set = next_set (regno, set);
4402 if (set == 0)
4403 break;
4405 if (GET_CODE (set->expr) != SET)
4406 abort ();
4408 src = SET_SRC (set->expr);
4409 if (CONSTANT_P (src))
4410 result = set;
4412 if (GET_CODE (src) != REG)
4413 break;
4415 regno = REGNO (src);
4417 return result;
4421 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
4422 basic block BB which has more than one predecessor. If not NULL, SETCC
4423 is the first instruction of BB, which is immediately followed by JUMP_INSN
4424 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
4425 Returns nonzero if a change was made. */
4427 static int
4428 bypass_block (bb, setcc, jump)
4429 basic_block bb;
4430 rtx setcc, jump;
4432 rtx insn, note;
4433 edge e, enext;
4434 int i, change;
4436 insn = (setcc != NULL) ? setcc : jump;
4438 /* Determine set of register uses in INSN. */
4439 reg_use_count = 0;
4440 note_uses (&PATTERN (insn), find_used_regs, NULL);
4441 note = find_reg_equal_equiv_note (insn);
4442 if (note)
4443 find_used_regs (&XEXP (note, 0), NULL);
4445 change = 0;
4446 for (e = bb->pred; e; e = enext)
4448 enext = e->pred_next;
4449 for (i = 0; i < reg_use_count; i++)
4451 struct reg_use *reg_used = &reg_use_table[i];
4452 unsigned int regno = REGNO (reg_used->reg_rtx);
4453 basic_block dest, old_dest;
4454 struct expr *set;
4455 rtx src, new;
4457 if (regno >= max_gcse_regno)
4458 continue;
4460 set = find_bypass_set (regno, e->src->index);
4462 if (! set)
4463 continue;
4465 src = SET_SRC (pc_set (jump));
4467 if (setcc != NULL)
4468 src = simplify_replace_rtx (src,
4469 SET_DEST (PATTERN (setcc)),
4470 SET_SRC (PATTERN (setcc)));
4472 new = simplify_replace_rtx (src, reg_used->reg_rtx,
4473 SET_SRC (set->expr));
4475 if (new == pc_rtx)
4476 dest = FALLTHRU_EDGE (bb)->dest;
4477 else if (GET_CODE (new) == LABEL_REF)
4478 dest = BRANCH_EDGE (bb)->dest;
4479 else
4480 dest = NULL;
4482 /* Once basic block indices are stable, we should be able
4483 to use redirect_edge_and_branch_force instead. */
4484 old_dest = e->dest;
4485 if (dest != NULL && dest != old_dest
4486 && redirect_edge_and_branch (e, dest))
4488 /* Copy the register setter to the redirected edge.
4489 Don't copy CC0 setters, as CC0 is dead after jump. */
4490 if (setcc)
4492 rtx pat = PATTERN (setcc);
4493 if (!CC0_P (SET_DEST (pat)))
4494 insert_insn_on_edge (copy_insn (pat), e);
4497 if (gcse_file != NULL)
4499 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
4500 regno, INSN_UID (jump));
4501 print_rtl (gcse_file, SET_SRC (set->expr));
4502 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
4503 e->src->index, old_dest->index, dest->index);
4505 change = 1;
4506 break;
4510 return change;
4513 /* Find basic blocks with more than one predecessor that only contain a
4514 single conditional jump. If the result of the comparison is known at
4515 compile-time from any incoming edge, redirect that edge to the
4516 appropriate target. Returns nonzero if a change was made. */
4518 static int
4519 bypass_conditional_jumps ()
4521 basic_block bb;
4522 int changed;
4523 rtx setcc;
4524 rtx insn;
4525 rtx dest;
4527 /* Note we start at block 1. */
4528 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4529 return 0;
4531 changed = 0;
4532 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
4533 EXIT_BLOCK_PTR, next_bb)
4535 /* Check for more than one predecessor. */
4536 if (bb->pred && bb->pred->pred_next)
4538 setcc = NULL_RTX;
4539 for (insn = bb->head;
4540 insn != NULL && insn != NEXT_INSN (bb->end);
4541 insn = NEXT_INSN (insn))
4542 if (GET_CODE (insn) == INSN)
4544 if (setcc)
4545 break;
4546 if (GET_CODE (PATTERN (insn)) != SET)
4547 break;
4549 dest = SET_DEST (PATTERN (insn));
4550 if (REG_P (dest) || CC0_P (dest))
4551 setcc = insn;
4552 else
4553 break;
4555 else if (GET_CODE (insn) == JUMP_INSN)
4557 if (any_condjump_p (insn) && onlyjump_p (insn))
4558 changed |= bypass_block (bb, setcc, insn);
4559 break;
4561 else if (INSN_P (insn))
4562 break;
4566 /* If we bypassed any register setting insns, we inserted a
4567 copy on the redirected edge. These need to be commited. */
4568 if (changed)
4569 commit_edge_insertions();
4571 return changed;
4574 /* Compute PRE+LCM working variables. */
4576 /* Local properties of expressions. */
4577 /* Nonzero for expressions that are transparent in the block. */
4578 static sbitmap *transp;
4580 /* Nonzero for expressions that are transparent at the end of the block.
4581 This is only zero for expressions killed by abnormal critical edge
4582 created by a calls. */
4583 static sbitmap *transpout;
4585 /* Nonzero for expressions that are computed (available) in the block. */
4586 static sbitmap *comp;
4588 /* Nonzero for expressions that are locally anticipatable in the block. */
4589 static sbitmap *antloc;
4591 /* Nonzero for expressions where this block is an optimal computation
4592 point. */
4593 static sbitmap *pre_optimal;
4595 /* Nonzero for expressions which are redundant in a particular block. */
4596 static sbitmap *pre_redundant;
4598 /* Nonzero for expressions which should be inserted on a specific edge. */
4599 static sbitmap *pre_insert_map;
4601 /* Nonzero for expressions which should be deleted in a specific block. */
4602 static sbitmap *pre_delete_map;
4604 /* Contains the edge_list returned by pre_edge_lcm. */
4605 static struct edge_list *edge_list;
4607 /* Redundant insns. */
4608 static sbitmap pre_redundant_insns;
4610 /* Allocate vars used for PRE analysis. */
4612 static void
4613 alloc_pre_mem (n_blocks, n_exprs)
4614 int n_blocks, n_exprs;
4616 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4617 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4618 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4620 pre_optimal = NULL;
4621 pre_redundant = NULL;
4622 pre_insert_map = NULL;
4623 pre_delete_map = NULL;
4624 ae_in = NULL;
4625 ae_out = NULL;
4626 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4628 /* pre_insert and pre_delete are allocated later. */
4631 /* Free vars used for PRE analysis. */
4633 static void
4634 free_pre_mem ()
4636 sbitmap_vector_free (transp);
4637 sbitmap_vector_free (comp);
4639 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4641 if (pre_optimal)
4642 sbitmap_vector_free (pre_optimal);
4643 if (pre_redundant)
4644 sbitmap_vector_free (pre_redundant);
4645 if (pre_insert_map)
4646 sbitmap_vector_free (pre_insert_map);
4647 if (pre_delete_map)
4648 sbitmap_vector_free (pre_delete_map);
4649 if (ae_in)
4650 sbitmap_vector_free (ae_in);
4651 if (ae_out)
4652 sbitmap_vector_free (ae_out);
4654 transp = comp = NULL;
4655 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4656 ae_in = ae_out = NULL;
4659 /* Top level routine to do the dataflow analysis needed by PRE. */
4661 static void
4662 compute_pre_data ()
4664 sbitmap trapping_expr;
4665 basic_block bb;
4666 unsigned int ui;
4668 compute_local_properties (transp, comp, antloc, 0);
4669 sbitmap_vector_zero (ae_kill, last_basic_block);
4671 /* Collect expressions which might trap. */
4672 trapping_expr = sbitmap_alloc (n_exprs);
4673 sbitmap_zero (trapping_expr);
4674 for (ui = 0; ui < expr_hash_table_size; ui++)
4676 struct expr *e;
4677 for (e = expr_hash_table[ui]; e != NULL; e = e->next_same_hash)
4678 if (may_trap_p (e->expr))
4679 SET_BIT (trapping_expr, e->bitmap_index);
4682 /* Compute ae_kill for each basic block using:
4684 ~(TRANSP | COMP)
4686 This is significantly faster than compute_ae_kill. */
4688 FOR_EACH_BB (bb)
4690 edge e;
4692 /* If the current block is the destination of an abnormal edge, we
4693 kill all trapping expressions because we won't be able to properly
4694 place the instruction on the edge. So make them neither
4695 anticipatable nor transparent. This is fairly conservative. */
4696 for (e = bb->pred; e ; e = e->pred_next)
4697 if (e->flags & EDGE_ABNORMAL)
4699 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
4700 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
4701 break;
4704 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
4705 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
4708 edge_list = pre_edge_lcm (gcse_file, n_exprs, transp, comp, antloc,
4709 ae_kill, &pre_insert_map, &pre_delete_map);
4710 sbitmap_vector_free (antloc);
4711 antloc = NULL;
4712 sbitmap_vector_free (ae_kill);
4713 ae_kill = NULL;
4714 sbitmap_free (trapping_expr);
4717 /* PRE utilities */
4719 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4720 block BB.
4722 VISITED is a pointer to a working buffer for tracking which BB's have
4723 been visited. It is NULL for the top-level call.
4725 We treat reaching expressions that go through blocks containing the same
4726 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4727 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4728 2 as not reaching. The intent is to improve the probability of finding
4729 only one reaching expression and to reduce register lifetimes by picking
4730 the closest such expression. */
4732 static int
4733 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4734 basic_block occr_bb;
4735 struct expr *expr;
4736 basic_block bb;
4737 char *visited;
4739 edge pred;
4741 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4743 basic_block pred_bb = pred->src;
4745 if (pred->src == ENTRY_BLOCK_PTR
4746 /* Has predecessor has already been visited? */
4747 || visited[pred_bb->index])
4748 ;/* Nothing to do. */
4750 /* Does this predecessor generate this expression? */
4751 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4753 /* Is this the occurrence we're looking for?
4754 Note that there's only one generating occurrence per block
4755 so we just need to check the block number. */
4756 if (occr_bb == pred_bb)
4757 return 1;
4759 visited[pred_bb->index] = 1;
4761 /* Ignore this predecessor if it kills the expression. */
4762 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4763 visited[pred_bb->index] = 1;
4765 /* Neither gen nor kill. */
4766 else
4768 visited[pred_bb->index] = 1;
4769 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4770 return 1;
4774 /* All paths have been checked. */
4775 return 0;
4778 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4779 memory allocated for that function is returned. */
4781 static int
4782 pre_expr_reaches_here_p (occr_bb, expr, bb)
4783 basic_block occr_bb;
4784 struct expr *expr;
4785 basic_block bb;
4787 int rval;
4788 char *visited = (char *) xcalloc (last_basic_block, 1);
4790 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4792 free (visited);
4793 return rval;
4797 /* Given an expr, generate RTL which we can insert at the end of a BB,
4798 or on an edge. Set the block number of any insns generated to
4799 the value of BB. */
4801 static rtx
4802 process_insert_insn (expr)
4803 struct expr *expr;
4805 rtx reg = expr->reaching_reg;
4806 rtx exp = copy_rtx (expr->expr);
4807 rtx pat;
4809 start_sequence ();
4811 /* If the expression is something that's an operand, like a constant,
4812 just copy it to a register. */
4813 if (general_operand (exp, GET_MODE (reg)))
4814 emit_move_insn (reg, exp);
4816 /* Otherwise, make a new insn to compute this expression and make sure the
4817 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4818 expression to make sure we don't have any sharing issues. */
4819 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4820 abort ();
4822 pat = get_insns ();
4823 end_sequence ();
4825 return pat;
4828 /* Add EXPR to the end of basic block BB.
4830 This is used by both the PRE and code hoisting.
4832 For PRE, we want to verify that the expr is either transparent
4833 or locally anticipatable in the target block. This check makes
4834 no sense for code hoisting. */
4836 static void
4837 insert_insn_end_bb (expr, bb, pre)
4838 struct expr *expr;
4839 basic_block bb;
4840 int pre;
4842 rtx insn = bb->end;
4843 rtx new_insn;
4844 rtx reg = expr->reaching_reg;
4845 int regno = REGNO (reg);
4846 rtx pat, pat_end;
4848 pat = process_insert_insn (expr);
4849 if (pat == NULL_RTX || ! INSN_P (pat))
4850 abort ();
4852 pat_end = pat;
4853 while (NEXT_INSN (pat_end) != NULL_RTX)
4854 pat_end = NEXT_INSN (pat_end);
4856 /* If the last insn is a jump, insert EXPR in front [taking care to
4857 handle cc0, etc. properly]. Similary we need to care trapping
4858 instructions in presence of non-call exceptions. */
4860 if (GET_CODE (insn) == JUMP_INSN
4861 || (GET_CODE (insn) == INSN
4862 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
4864 #ifdef HAVE_cc0
4865 rtx note;
4866 #endif
4867 /* It should always be the case that we can put these instructions
4868 anywhere in the basic block with performing PRE optimizations.
4869 Check this. */
4870 if (GET_CODE (insn) == INSN && pre
4871 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4872 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4873 abort ();
4875 /* If this is a jump table, then we can't insert stuff here. Since
4876 we know the previous real insn must be the tablejump, we insert
4877 the new instruction just before the tablejump. */
4878 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4879 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4880 insn = prev_real_insn (insn);
4882 #ifdef HAVE_cc0
4883 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4884 if cc0 isn't set. */
4885 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4886 if (note)
4887 insn = XEXP (note, 0);
4888 else
4890 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4891 if (maybe_cc0_setter
4892 && INSN_P (maybe_cc0_setter)
4893 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4894 insn = maybe_cc0_setter;
4896 #endif
4897 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4898 new_insn = emit_insn_before (pat, insn);
4901 /* Likewise if the last insn is a call, as will happen in the presence
4902 of exception handling. */
4903 else if (GET_CODE (insn) == CALL_INSN
4904 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
4906 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4907 we search backward and place the instructions before the first
4908 parameter is loaded. Do this for everyone for consistency and a
4909 presumtion that we'll get better code elsewhere as well.
4911 It should always be the case that we can put these instructions
4912 anywhere in the basic block with performing PRE optimizations.
4913 Check this. */
4915 if (pre
4916 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
4917 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
4918 abort ();
4920 /* Since different machines initialize their parameter registers
4921 in different orders, assume nothing. Collect the set of all
4922 parameter registers. */
4923 insn = find_first_parameter_load (insn, bb->head);
4925 /* If we found all the parameter loads, then we want to insert
4926 before the first parameter load.
4928 If we did not find all the parameter loads, then we might have
4929 stopped on the head of the block, which could be a CODE_LABEL.
4930 If we inserted before the CODE_LABEL, then we would be putting
4931 the insn in the wrong basic block. In that case, put the insn
4932 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4933 while (GET_CODE (insn) == CODE_LABEL
4934 || NOTE_INSN_BASIC_BLOCK_P (insn))
4935 insn = NEXT_INSN (insn);
4937 new_insn = emit_insn_before (pat, insn);
4939 else
4940 new_insn = emit_insn_after (pat, insn);
4942 while (1)
4944 if (INSN_P (pat))
4946 add_label_notes (PATTERN (pat), new_insn);
4947 note_stores (PATTERN (pat), record_set_info, pat);
4949 if (pat == pat_end)
4950 break;
4951 pat = NEXT_INSN (pat);
4954 gcse_create_count++;
4956 if (gcse_file)
4958 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4959 bb->index, INSN_UID (new_insn));
4960 fprintf (gcse_file, "copying expression %d to reg %d\n",
4961 expr->bitmap_index, regno);
4965 /* Insert partially redundant expressions on edges in the CFG to make
4966 the expressions fully redundant. */
4968 static int
4969 pre_edge_insert (edge_list, index_map)
4970 struct edge_list *edge_list;
4971 struct expr **index_map;
4973 int e, i, j, num_edges, set_size, did_insert = 0;
4974 sbitmap *inserted;
4976 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4977 if it reaches any of the deleted expressions. */
4979 set_size = pre_insert_map[0]->size;
4980 num_edges = NUM_EDGES (edge_list);
4981 inserted = sbitmap_vector_alloc (num_edges, n_exprs);
4982 sbitmap_vector_zero (inserted, num_edges);
4984 for (e = 0; e < num_edges; e++)
4986 int indx;
4987 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4989 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4991 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4993 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
4994 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4996 struct expr *expr = index_map[j];
4997 struct occr *occr;
4999 /* Now look at each deleted occurrence of this expression. */
5000 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5002 if (! occr->deleted_p)
5003 continue;
5005 /* Insert this expression on this edge if if it would
5006 reach the deleted occurrence in BB. */
5007 if (!TEST_BIT (inserted[e], j))
5009 rtx insn;
5010 edge eg = INDEX_EDGE (edge_list, e);
5012 /* We can't insert anything on an abnormal and
5013 critical edge, so we insert the insn at the end of
5014 the previous block. There are several alternatives
5015 detailed in Morgans book P277 (sec 10.5) for
5016 handling this situation. This one is easiest for
5017 now. */
5019 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
5020 insert_insn_end_bb (index_map[j], bb, 0);
5021 else
5023 insn = process_insert_insn (index_map[j]);
5024 insert_insn_on_edge (insn, eg);
5027 if (gcse_file)
5029 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
5030 bb->index,
5031 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
5032 fprintf (gcse_file, "copy expression %d\n",
5033 expr->bitmap_index);
5036 update_ld_motion_stores (expr);
5037 SET_BIT (inserted[e], j);
5038 did_insert = 1;
5039 gcse_create_count++;
5046 sbitmap_vector_free (inserted);
5047 return did_insert;
5050 /* Copy the result of INSN to REG. INDX is the expression number. */
5052 static void
5053 pre_insert_copy_insn (expr, insn)
5054 struct expr *expr;
5055 rtx insn;
5057 rtx reg = expr->reaching_reg;
5058 int regno = REGNO (reg);
5059 int indx = expr->bitmap_index;
5060 rtx set = single_set (insn);
5061 rtx new_insn;
5063 if (!set)
5064 abort ();
5066 new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
5068 /* Keep register set table up to date. */
5069 record_one_set (regno, new_insn);
5071 gcse_create_count++;
5073 if (gcse_file)
5074 fprintf (gcse_file,
5075 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
5076 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
5077 INSN_UID (insn), regno);
5078 update_ld_motion_stores (expr);
5081 /* Copy available expressions that reach the redundant expression
5082 to `reaching_reg'. */
5084 static void
5085 pre_insert_copies ()
5087 unsigned int i;
5088 struct expr *expr;
5089 struct occr *occr;
5090 struct occr *avail;
5092 /* For each available expression in the table, copy the result to
5093 `reaching_reg' if the expression reaches a deleted one.
5095 ??? The current algorithm is rather brute force.
5096 Need to do some profiling. */
5098 for (i = 0; i < expr_hash_table_size; i++)
5099 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5101 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5102 we don't want to insert a copy here because the expression may not
5103 really be redundant. So only insert an insn if the expression was
5104 deleted. This test also avoids further processing if the
5105 expression wasn't deleted anywhere. */
5106 if (expr->reaching_reg == NULL)
5107 continue;
5109 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5111 if (! occr->deleted_p)
5112 continue;
5114 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
5116 rtx insn = avail->insn;
5118 /* No need to handle this one if handled already. */
5119 if (avail->copied_p)
5120 continue;
5122 /* Don't handle this one if it's a redundant one. */
5123 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
5124 continue;
5126 /* Or if the expression doesn't reach the deleted one. */
5127 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
5128 expr,
5129 BLOCK_FOR_INSN (occr->insn)))
5130 continue;
5132 /* Copy the result of avail to reaching_reg. */
5133 pre_insert_copy_insn (expr, insn);
5134 avail->copied_p = 1;
5140 /* Emit move from SRC to DEST noting the equivalence with expression computed
5141 in INSN. */
5142 static rtx
5143 gcse_emit_move_after (src, dest, insn)
5144 rtx src, dest, insn;
5146 rtx new;
5147 rtx set = single_set (insn);
5148 rtx note;
5149 rtx eqv;
5151 /* This should never fail since we're creating a reg->reg copy
5152 we've verified to be valid. */
5154 new = emit_insn_after (gen_rtx_SET (VOIDmode, dest, src), insn);
5156 /* Note the equivalence for local CSE pass. */
5157 if ((note = find_reg_equal_equiv_note (insn)))
5158 eqv = XEXP (note, 0);
5159 else
5160 eqv = SET_SRC (set);
5162 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (src));
5164 return new;
5167 /* Delete redundant computations.
5168 Deletion is done by changing the insn to copy the `reaching_reg' of
5169 the expression into the result of the SET. It is left to later passes
5170 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5172 Returns non-zero if a change is made. */
5174 static int
5175 pre_delete ()
5177 unsigned int i;
5178 int changed;
5179 struct expr *expr;
5180 struct occr *occr;
5182 changed = 0;
5183 for (i = 0; i < expr_hash_table_size; i++)
5184 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5186 int indx = expr->bitmap_index;
5188 /* We only need to search antic_occr since we require
5189 ANTLOC != 0. */
5191 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5193 rtx insn = occr->insn;
5194 rtx set;
5195 basic_block bb = BLOCK_FOR_INSN (insn);
5197 if (TEST_BIT (pre_delete_map[bb->index], indx))
5199 set = single_set (insn);
5200 if (! set)
5201 abort ();
5203 /* Create a pseudo-reg to store the result of reaching
5204 expressions into. Get the mode for the new pseudo from
5205 the mode of the original destination pseudo. */
5206 if (expr->reaching_reg == NULL)
5207 expr->reaching_reg
5208 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5210 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5211 delete_insn (insn);
5212 occr->deleted_p = 1;
5213 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
5214 changed = 1;
5215 gcse_subst_count++;
5217 if (gcse_file)
5219 fprintf (gcse_file,
5220 "PRE: redundant insn %d (expression %d) in ",
5221 INSN_UID (insn), indx);
5222 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5223 bb->index, REGNO (expr->reaching_reg));
5229 return changed;
5232 /* Perform GCSE optimizations using PRE.
5233 This is called by one_pre_gcse_pass after all the dataflow analysis
5234 has been done.
5236 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5237 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5238 Compiler Design and Implementation.
5240 ??? A new pseudo reg is created to hold the reaching expression. The nice
5241 thing about the classical approach is that it would try to use an existing
5242 reg. If the register can't be adequately optimized [i.e. we introduce
5243 reload problems], one could add a pass here to propagate the new register
5244 through the block.
5246 ??? We don't handle single sets in PARALLELs because we're [currently] not
5247 able to copy the rest of the parallel when we insert copies to create full
5248 redundancies from partial redundancies. However, there's no reason why we
5249 can't handle PARALLELs in the cases where there are no partial
5250 redundancies. */
5252 static int
5253 pre_gcse ()
5255 unsigned int i;
5256 int did_insert, changed;
5257 struct expr **index_map;
5258 struct expr *expr;
5260 /* Compute a mapping from expression number (`bitmap_index') to
5261 hash table entry. */
5263 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5264 for (i = 0; i < expr_hash_table_size; i++)
5265 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5266 index_map[expr->bitmap_index] = expr;
5268 /* Reset bitmap used to track which insns are redundant. */
5269 pre_redundant_insns = sbitmap_alloc (max_cuid);
5270 sbitmap_zero (pre_redundant_insns);
5272 /* Delete the redundant insns first so that
5273 - we know what register to use for the new insns and for the other
5274 ones with reaching expressions
5275 - we know which insns are redundant when we go to create copies */
5277 changed = pre_delete ();
5279 did_insert = pre_edge_insert (edge_list, index_map);
5281 /* In other places with reaching expressions, copy the expression to the
5282 specially allocated pseudo-reg that reaches the redundant expr. */
5283 pre_insert_copies ();
5284 if (did_insert)
5286 commit_edge_insertions ();
5287 changed = 1;
5290 free (index_map);
5291 sbitmap_free (pre_redundant_insns);
5292 return changed;
5295 /* Top level routine to perform one PRE GCSE pass.
5297 Return non-zero if a change was made. */
5299 static int
5300 one_pre_gcse_pass (pass)
5301 int pass;
5303 int changed = 0;
5305 gcse_subst_count = 0;
5306 gcse_create_count = 0;
5308 alloc_expr_hash_table (max_cuid);
5309 add_noreturn_fake_exit_edges ();
5310 if (flag_gcse_lm)
5311 compute_ld_motion_mems ();
5313 compute_expr_hash_table ();
5314 trim_ld_motion_mems ();
5315 if (gcse_file)
5316 dump_hash_table (gcse_file, "Expression", expr_hash_table,
5317 expr_hash_table_size, n_exprs);
5319 if (n_exprs > 0)
5321 alloc_pre_mem (last_basic_block, n_exprs);
5322 compute_pre_data ();
5323 changed |= pre_gcse ();
5324 free_edge_list (edge_list);
5325 free_pre_mem ();
5328 free_ldst_mems ();
5329 remove_fake_edges ();
5330 free_expr_hash_table ();
5332 if (gcse_file)
5334 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5335 current_function_name, pass, bytes_used);
5336 fprintf (gcse_file, "%d substs, %d insns created\n",
5337 gcse_subst_count, gcse_create_count);
5340 return changed;
5343 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5344 If notes are added to an insn which references a CODE_LABEL, the
5345 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5346 because the following loop optimization pass requires them. */
5348 /* ??? This is very similar to the loop.c add_label_notes function. We
5349 could probably share code here. */
5351 /* ??? If there was a jump optimization pass after gcse and before loop,
5352 then we would not need to do this here, because jump would add the
5353 necessary REG_LABEL notes. */
5355 static void
5356 add_label_notes (x, insn)
5357 rtx x;
5358 rtx insn;
5360 enum rtx_code code = GET_CODE (x);
5361 int i, j;
5362 const char *fmt;
5364 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5366 /* This code used to ignore labels that referred to dispatch tables to
5367 avoid flow generating (slighly) worse code.
5369 We no longer ignore such label references (see LABEL_REF handling in
5370 mark_jump_label for additional information). */
5372 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5373 REG_NOTES (insn));
5374 if (LABEL_P (XEXP (x, 0)))
5375 LABEL_NUSES (XEXP (x, 0))++;
5376 return;
5379 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5381 if (fmt[i] == 'e')
5382 add_label_notes (XEXP (x, i), insn);
5383 else if (fmt[i] == 'E')
5384 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5385 add_label_notes (XVECEXP (x, i, j), insn);
5389 /* Compute transparent outgoing information for each block.
5391 An expression is transparent to an edge unless it is killed by
5392 the edge itself. This can only happen with abnormal control flow,
5393 when the edge is traversed through a call. This happens with
5394 non-local labels and exceptions.
5396 This would not be necessary if we split the edge. While this is
5397 normally impossible for abnormal critical edges, with some effort
5398 it should be possible with exception handling, since we still have
5399 control over which handler should be invoked. But due to increased
5400 EH table sizes, this may not be worthwhile. */
5402 static void
5403 compute_transpout ()
5405 basic_block bb;
5406 unsigned int i;
5407 struct expr *expr;
5409 sbitmap_vector_ones (transpout, last_basic_block);
5411 FOR_EACH_BB (bb)
5413 /* Note that flow inserted a nop a the end of basic blocks that
5414 end in call instructions for reasons other than abnormal
5415 control flow. */
5416 if (GET_CODE (bb->end) != CALL_INSN)
5417 continue;
5419 for (i = 0; i < expr_hash_table_size; i++)
5420 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
5421 if (GET_CODE (expr->expr) == MEM)
5423 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5424 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5425 continue;
5427 /* ??? Optimally, we would use interprocedural alias
5428 analysis to determine if this mem is actually killed
5429 by this call. */
5430 RESET_BIT (transpout[bb->index], expr->bitmap_index);
5435 /* Removal of useless null pointer checks */
5437 /* Called via note_stores. X is set by SETTER. If X is a register we must
5438 invalidate nonnull_local and set nonnull_killed. DATA is really a
5439 `null_pointer_info *'.
5441 We ignore hard registers. */
5443 static void
5444 invalidate_nonnull_info (x, setter, data)
5445 rtx x;
5446 rtx setter ATTRIBUTE_UNUSED;
5447 void *data;
5449 unsigned int regno;
5450 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5452 while (GET_CODE (x) == SUBREG)
5453 x = SUBREG_REG (x);
5455 /* Ignore anything that is not a register or is a hard register. */
5456 if (GET_CODE (x) != REG
5457 || REGNO (x) < npi->min_reg
5458 || REGNO (x) >= npi->max_reg)
5459 return;
5461 regno = REGNO (x) - npi->min_reg;
5463 RESET_BIT (npi->nonnull_local[npi->current_block->index], regno);
5464 SET_BIT (npi->nonnull_killed[npi->current_block->index], regno);
5467 /* Do null-pointer check elimination for the registers indicated in
5468 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5469 they are not our responsibility to free. */
5471 static void
5472 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5473 nonnull_avout, npi)
5474 unsigned int *block_reg;
5475 sbitmap *nonnull_avin;
5476 sbitmap *nonnull_avout;
5477 struct null_pointer_info *npi;
5479 basic_block bb, current_block;
5480 sbitmap *nonnull_local = npi->nonnull_local;
5481 sbitmap *nonnull_killed = npi->nonnull_killed;
5483 /* Compute local properties, nonnull and killed. A register will have
5484 the nonnull property if at the end of the current block its value is
5485 known to be nonnull. The killed property indicates that somewhere in
5486 the block any information we had about the register is killed.
5488 Note that a register can have both properties in a single block. That
5489 indicates that it's killed, then later in the block a new value is
5490 computed. */
5491 sbitmap_vector_zero (nonnull_local, last_basic_block);
5492 sbitmap_vector_zero (nonnull_killed, last_basic_block);
5494 FOR_EACH_BB (current_block)
5496 rtx insn, stop_insn;
5498 /* Set the current block for invalidate_nonnull_info. */
5499 npi->current_block = current_block;
5501 /* Scan each insn in the basic block looking for memory references and
5502 register sets. */
5503 stop_insn = NEXT_INSN (current_block->end);
5504 for (insn = current_block->head;
5505 insn != stop_insn;
5506 insn = NEXT_INSN (insn))
5508 rtx set;
5509 rtx reg;
5511 /* Ignore anything that is not a normal insn. */
5512 if (! INSN_P (insn))
5513 continue;
5515 /* Basically ignore anything that is not a simple SET. We do have
5516 to make sure to invalidate nonnull_local and set nonnull_killed
5517 for such insns though. */
5518 set = single_set (insn);
5519 if (!set)
5521 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5522 continue;
5525 /* See if we've got a usable memory load. We handle it first
5526 in case it uses its address register as a dest (which kills
5527 the nonnull property). */
5528 if (GET_CODE (SET_SRC (set)) == MEM
5529 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5530 && REGNO (reg) >= npi->min_reg
5531 && REGNO (reg) < npi->max_reg)
5532 SET_BIT (nonnull_local[current_block->index],
5533 REGNO (reg) - npi->min_reg);
5535 /* Now invalidate stuff clobbered by this insn. */
5536 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5538 /* And handle stores, we do these last since any sets in INSN can
5539 not kill the nonnull property if it is derived from a MEM
5540 appearing in a SET_DEST. */
5541 if (GET_CODE (SET_DEST (set)) == MEM
5542 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5543 && REGNO (reg) >= npi->min_reg
5544 && REGNO (reg) < npi->max_reg)
5545 SET_BIT (nonnull_local[current_block->index],
5546 REGNO (reg) - npi->min_reg);
5550 /* Now compute global properties based on the local properties. This
5551 is a classic global availablity algorithm. */
5552 compute_available (nonnull_local, nonnull_killed,
5553 nonnull_avout, nonnull_avin);
5555 /* Now look at each bb and see if it ends with a compare of a value
5556 against zero. */
5557 FOR_EACH_BB (bb)
5559 rtx last_insn = bb->end;
5560 rtx condition, earliest;
5561 int compare_and_branch;
5563 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5564 since BLOCK_REG[BB] is zero if this block did not end with a
5565 comparison against zero, this condition works. */
5566 if (block_reg[bb->index] < npi->min_reg
5567 || block_reg[bb->index] >= npi->max_reg)
5568 continue;
5570 /* LAST_INSN is a conditional jump. Get its condition. */
5571 condition = get_condition (last_insn, &earliest);
5573 /* If we can't determine the condition then skip. */
5574 if (! condition)
5575 continue;
5577 /* Is the register known to have a nonzero value? */
5578 if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg))
5579 continue;
5581 /* Try to compute whether the compare/branch at the loop end is one or
5582 two instructions. */
5583 if (earliest == last_insn)
5584 compare_and_branch = 1;
5585 else if (earliest == prev_nonnote_insn (last_insn))
5586 compare_and_branch = 2;
5587 else
5588 continue;
5590 /* We know the register in this comparison is nonnull at exit from
5591 this block. We can optimize this comparison. */
5592 if (GET_CODE (condition) == NE)
5594 rtx new_jump;
5596 new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
5597 last_insn);
5598 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5599 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5600 emit_barrier_after (new_jump);
5603 delete_insn (last_insn);
5604 if (compare_and_branch == 2)
5605 delete_insn (earliest);
5606 purge_dead_edges (bb);
5608 /* Don't check this block again. (Note that BLOCK_END is
5609 invalid here; we deleted the last instruction in the
5610 block.) */
5611 block_reg[bb->index] = 0;
5615 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5616 at compile time.
5618 This is conceptually similar to global constant/copy propagation and
5619 classic global CSE (it even uses the same dataflow equations as cprop).
5621 If a register is used as memory address with the form (mem (reg)), then we
5622 know that REG can not be zero at that point in the program. Any instruction
5623 which sets REG "kills" this property.
5625 So, if every path leading to a conditional branch has an available memory
5626 reference of that form, then we know the register can not have the value
5627 zero at the conditional branch.
5629 So we merely need to compute the local properies and propagate that data
5630 around the cfg, then optimize where possible.
5632 We run this pass two times. Once before CSE, then again after CSE. This
5633 has proven to be the most profitable approach. It is rare for new
5634 optimization opportunities of this nature to appear after the first CSE
5635 pass.
5637 This could probably be integrated with global cprop with a little work. */
5639 void
5640 delete_null_pointer_checks (f)
5641 rtx f ATTRIBUTE_UNUSED;
5643 sbitmap *nonnull_avin, *nonnull_avout;
5644 unsigned int *block_reg;
5645 basic_block bb;
5646 int reg;
5647 int regs_per_pass;
5648 int max_reg;
5649 struct null_pointer_info npi;
5651 /* If we have only a single block, then there's nothing to do. */
5652 if (n_basic_blocks <= 1)
5653 return;
5655 /* Trying to perform global optimizations on flow graphs which have
5656 a high connectivity will take a long time and is unlikely to be
5657 particularly useful.
5659 In normal circumstances a cfg should have about twice as many edges
5660 as blocks. But we do not want to punish small functions which have
5661 a couple switch statements. So we require a relatively large number
5662 of basic blocks and the ratio of edges to blocks to be high. */
5663 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5664 return;
5666 /* We need four bitmaps, each with a bit for each register in each
5667 basic block. */
5668 max_reg = max_reg_num ();
5669 regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg);
5671 /* Allocate bitmaps to hold local and global properties. */
5672 npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5673 npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5674 nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5675 nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5677 /* Go through the basic blocks, seeing whether or not each block
5678 ends with a conditional branch whose condition is a comparison
5679 against zero. Record the register compared in BLOCK_REG. */
5680 block_reg = (unsigned int *) xcalloc (last_basic_block, sizeof (int));
5681 FOR_EACH_BB (bb)
5683 rtx last_insn = bb->end;
5684 rtx condition, earliest, reg;
5686 /* We only want conditional branches. */
5687 if (GET_CODE (last_insn) != JUMP_INSN
5688 || !any_condjump_p (last_insn)
5689 || !onlyjump_p (last_insn))
5690 continue;
5692 /* LAST_INSN is a conditional jump. Get its condition. */
5693 condition = get_condition (last_insn, &earliest);
5695 /* If we were unable to get the condition, or it is not an equality
5696 comparison against zero then there's nothing we can do. */
5697 if (!condition
5698 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5699 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5700 || (XEXP (condition, 1)
5701 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5702 continue;
5704 /* We must be checking a register against zero. */
5705 reg = XEXP (condition, 0);
5706 if (GET_CODE (reg) != REG)
5707 continue;
5709 block_reg[bb->index] = REGNO (reg);
5712 /* Go through the algorithm for each block of registers. */
5713 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5715 npi.min_reg = reg;
5716 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5717 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5718 nonnull_avout, &npi);
5721 /* Free the table of registers compared at the end of every block. */
5722 free (block_reg);
5724 /* Free bitmaps. */
5725 sbitmap_vector_free (npi.nonnull_local);
5726 sbitmap_vector_free (npi.nonnull_killed);
5727 sbitmap_vector_free (nonnull_avin);
5728 sbitmap_vector_free (nonnull_avout);
5731 /* Code Hoisting variables and subroutines. */
5733 /* Very busy expressions. */
5734 static sbitmap *hoist_vbein;
5735 static sbitmap *hoist_vbeout;
5737 /* Hoistable expressions. */
5738 static sbitmap *hoist_exprs;
5740 /* Dominator bitmaps. */
5741 static sbitmap *dominators;
5743 /* ??? We could compute post dominators and run this algorithm in
5744 reverse to to perform tail merging, doing so would probably be
5745 more effective than the tail merging code in jump.c.
5747 It's unclear if tail merging could be run in parallel with
5748 code hoisting. It would be nice. */
5750 /* Allocate vars used for code hoisting analysis. */
5752 static void
5753 alloc_code_hoist_mem (n_blocks, n_exprs)
5754 int n_blocks, n_exprs;
5756 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5757 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5758 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5760 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5761 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5762 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5763 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5765 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5768 /* Free vars used for code hoisting analysis. */
5770 static void
5771 free_code_hoist_mem ()
5773 sbitmap_vector_free (antloc);
5774 sbitmap_vector_free (transp);
5775 sbitmap_vector_free (comp);
5777 sbitmap_vector_free (hoist_vbein);
5778 sbitmap_vector_free (hoist_vbeout);
5779 sbitmap_vector_free (hoist_exprs);
5780 sbitmap_vector_free (transpout);
5782 sbitmap_vector_free (dominators);
5785 /* Compute the very busy expressions at entry/exit from each block.
5787 An expression is very busy if all paths from a given point
5788 compute the expression. */
5790 static void
5791 compute_code_hoist_vbeinout ()
5793 int changed, passes;
5794 basic_block bb;
5796 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
5797 sbitmap_vector_zero (hoist_vbein, last_basic_block);
5799 passes = 0;
5800 changed = 1;
5802 while (changed)
5804 changed = 0;
5806 /* We scan the blocks in the reverse order to speed up
5807 the convergence. */
5808 FOR_EACH_BB_REVERSE (bb)
5810 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
5811 hoist_vbeout[bb->index], transp[bb->index]);
5812 if (bb->next_bb != EXIT_BLOCK_PTR)
5813 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
5816 passes++;
5819 if (gcse_file)
5820 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5823 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5825 static void
5826 compute_code_hoist_data ()
5828 compute_local_properties (transp, comp, antloc, 0);
5829 compute_transpout ();
5830 compute_code_hoist_vbeinout ();
5831 calculate_dominance_info (NULL, dominators, CDI_DOMINATORS);
5832 if (gcse_file)
5833 fprintf (gcse_file, "\n");
5836 /* Determine if the expression identified by EXPR_INDEX would
5837 reach BB unimpared if it was placed at the end of EXPR_BB.
5839 It's unclear exactly what Muchnick meant by "unimpared". It seems
5840 to me that the expression must either be computed or transparent in
5841 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5842 would allow the expression to be hoisted out of loops, even if
5843 the expression wasn't a loop invariant.
5845 Contrast this to reachability for PRE where an expression is
5846 considered reachable if *any* path reaches instead of *all*
5847 paths. */
5849 static int
5850 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5851 basic_block expr_bb;
5852 int expr_index;
5853 basic_block bb;
5854 char *visited;
5856 edge pred;
5857 int visited_allocated_locally = 0;
5860 if (visited == NULL)
5862 visited_allocated_locally = 1;
5863 visited = xcalloc (last_basic_block, 1);
5866 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
5868 basic_block pred_bb = pred->src;
5870 if (pred->src == ENTRY_BLOCK_PTR)
5871 break;
5872 else if (visited[pred_bb->index])
5873 continue;
5875 /* Does this predecessor generate this expression? */
5876 else if (TEST_BIT (comp[pred_bb->index], expr_index))
5877 break;
5878 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
5879 break;
5881 /* Not killed. */
5882 else
5884 visited[pred_bb->index] = 1;
5885 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5886 pred_bb, visited))
5887 break;
5890 if (visited_allocated_locally)
5891 free (visited);
5893 return (pred == NULL);
5896 /* Actually perform code hoisting. */
5898 static void
5899 hoist_code ()
5901 basic_block bb, dominated;
5902 unsigned int i;
5903 struct expr **index_map;
5904 struct expr *expr;
5906 sbitmap_vector_zero (hoist_exprs, last_basic_block);
5908 /* Compute a mapping from expression number (`bitmap_index') to
5909 hash table entry. */
5911 index_map = (struct expr **) xcalloc (n_exprs, sizeof (struct expr *));
5912 for (i = 0; i < expr_hash_table_size; i++)
5913 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5914 index_map[expr->bitmap_index] = expr;
5916 /* Walk over each basic block looking for potentially hoistable
5917 expressions, nothing gets hoisted from the entry block. */
5918 FOR_EACH_BB (bb)
5920 int found = 0;
5921 int insn_inserted_p;
5923 /* Examine each expression that is very busy at the exit of this
5924 block. These are the potentially hoistable expressions. */
5925 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
5927 int hoistable = 0;
5929 if (TEST_BIT (hoist_vbeout[bb->index], i) && TEST_BIT (transpout[bb->index], i))
5931 /* We've found a potentially hoistable expression, now
5932 we look at every block BB dominates to see if it
5933 computes the expression. */
5934 FOR_EACH_BB (dominated)
5936 /* Ignore self dominance. */
5937 if (bb == dominated
5938 || ! TEST_BIT (dominators[dominated->index], bb->index))
5939 continue;
5941 /* We've found a dominated block, now see if it computes
5942 the busy expression and whether or not moving that
5943 expression to the "beginning" of that block is safe. */
5944 if (!TEST_BIT (antloc[dominated->index], i))
5945 continue;
5947 /* Note if the expression would reach the dominated block
5948 unimpared if it was placed at the end of BB.
5950 Keep track of how many times this expression is hoistable
5951 from a dominated block into BB. */
5952 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5953 hoistable++;
5956 /* If we found more than one hoistable occurrence of this
5957 expression, then note it in the bitmap of expressions to
5958 hoist. It makes no sense to hoist things which are computed
5959 in only one BB, and doing so tends to pessimize register
5960 allocation. One could increase this value to try harder
5961 to avoid any possible code expansion due to register
5962 allocation issues; however experiments have shown that
5963 the vast majority of hoistable expressions are only movable
5964 from two successors, so raising this threshhold is likely
5965 to nullify any benefit we get from code hoisting. */
5966 if (hoistable > 1)
5968 SET_BIT (hoist_exprs[bb->index], i);
5969 found = 1;
5974 /* If we found nothing to hoist, then quit now. */
5975 if (! found)
5976 continue;
5978 /* Loop over all the hoistable expressions. */
5979 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
5981 /* We want to insert the expression into BB only once, so
5982 note when we've inserted it. */
5983 insn_inserted_p = 0;
5985 /* These tests should be the same as the tests above. */
5986 if (TEST_BIT (hoist_vbeout[bb->index], i))
5988 /* We've found a potentially hoistable expression, now
5989 we look at every block BB dominates to see if it
5990 computes the expression. */
5991 FOR_EACH_BB (dominated)
5993 /* Ignore self dominance. */
5994 if (bb == dominated
5995 || ! TEST_BIT (dominators[dominated->index], bb->index))
5996 continue;
5998 /* We've found a dominated block, now see if it computes
5999 the busy expression and whether or not moving that
6000 expression to the "beginning" of that block is safe. */
6001 if (!TEST_BIT (antloc[dominated->index], i))
6002 continue;
6004 /* The expression is computed in the dominated block and
6005 it would be safe to compute it at the start of the
6006 dominated block. Now we have to determine if the
6007 expression would reach the dominated block if it was
6008 placed at the end of BB. */
6009 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6011 struct expr *expr = index_map[i];
6012 struct occr *occr = expr->antic_occr;
6013 rtx insn;
6014 rtx set;
6016 /* Find the right occurrence of this expression. */
6017 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
6018 occr = occr->next;
6020 /* Should never happen. */
6021 if (!occr)
6022 abort ();
6024 insn = occr->insn;
6026 set = single_set (insn);
6027 if (! set)
6028 abort ();
6030 /* Create a pseudo-reg to store the result of reaching
6031 expressions into. Get the mode for the new pseudo
6032 from the mode of the original destination pseudo. */
6033 if (expr->reaching_reg == NULL)
6034 expr->reaching_reg
6035 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
6037 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
6038 delete_insn (insn);
6039 occr->deleted_p = 1;
6040 if (!insn_inserted_p)
6042 insert_insn_end_bb (index_map[i], bb, 0);
6043 insn_inserted_p = 1;
6051 free (index_map);
6054 /* Top level routine to perform one code hoisting (aka unification) pass
6056 Return non-zero if a change was made. */
6058 static int
6059 one_code_hoisting_pass ()
6061 int changed = 0;
6063 alloc_expr_hash_table (max_cuid);
6064 compute_expr_hash_table ();
6065 if (gcse_file)
6066 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
6067 expr_hash_table_size, n_exprs);
6069 if (n_exprs > 0)
6071 alloc_code_hoist_mem (last_basic_block, n_exprs);
6072 compute_code_hoist_data ();
6073 hoist_code ();
6074 free_code_hoist_mem ();
6077 free_expr_hash_table ();
6079 return changed;
6082 /* Here we provide the things required to do store motion towards
6083 the exit. In order for this to be effective, gcse also needed to
6084 be taught how to move a load when it is kill only by a store to itself.
6086 int i;
6087 float a[10];
6089 void foo(float scale)
6091 for (i=0; i<10; i++)
6092 a[i] *= scale;
6095 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6096 the load out since its live around the loop, and stored at the bottom
6097 of the loop.
6099 The 'Load Motion' referred to and implemented in this file is
6100 an enhancement to gcse which when using edge based lcm, recognizes
6101 this situation and allows gcse to move the load out of the loop.
6103 Once gcse has hoisted the load, store motion can then push this
6104 load towards the exit, and we end up with no loads or stores of 'i'
6105 in the loop. */
6107 /* This will search the ldst list for a matching expression. If it
6108 doesn't find one, we create one and initialize it. */
6110 static struct ls_expr *
6111 ldst_entry (x)
6112 rtx x;
6114 struct ls_expr * ptr;
6116 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6117 if (expr_equiv_p (ptr->pattern, x))
6118 break;
6120 if (!ptr)
6122 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
6124 ptr->next = pre_ldst_mems;
6125 ptr->expr = NULL;
6126 ptr->pattern = x;
6127 ptr->loads = NULL_RTX;
6128 ptr->stores = NULL_RTX;
6129 ptr->reaching_reg = NULL_RTX;
6130 ptr->invalid = 0;
6131 ptr->index = 0;
6132 ptr->hash_index = 0;
6133 pre_ldst_mems = ptr;
6136 return ptr;
6139 /* Free up an individual ldst entry. */
6141 static void
6142 free_ldst_entry (ptr)
6143 struct ls_expr * ptr;
6145 free_INSN_LIST_list (& ptr->loads);
6146 free_INSN_LIST_list (& ptr->stores);
6148 free (ptr);
6151 /* Free up all memory associated with the ldst list. */
6153 static void
6154 free_ldst_mems ()
6156 while (pre_ldst_mems)
6158 struct ls_expr * tmp = pre_ldst_mems;
6160 pre_ldst_mems = pre_ldst_mems->next;
6162 free_ldst_entry (tmp);
6165 pre_ldst_mems = NULL;
6168 /* Dump debugging info about the ldst list. */
6170 static void
6171 print_ldst_list (file)
6172 FILE * file;
6174 struct ls_expr * ptr;
6176 fprintf (file, "LDST list: \n");
6178 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6180 fprintf (file, " Pattern (%3d): ", ptr->index);
6182 print_rtl (file, ptr->pattern);
6184 fprintf (file, "\n Loads : ");
6186 if (ptr->loads)
6187 print_rtl (file, ptr->loads);
6188 else
6189 fprintf (file, "(nil)");
6191 fprintf (file, "\n Stores : ");
6193 if (ptr->stores)
6194 print_rtl (file, ptr->stores);
6195 else
6196 fprintf (file, "(nil)");
6198 fprintf (file, "\n\n");
6201 fprintf (file, "\n");
6204 /* Returns 1 if X is in the list of ldst only expressions. */
6206 static struct ls_expr *
6207 find_rtx_in_ldst (x)
6208 rtx x;
6210 struct ls_expr * ptr;
6212 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6213 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6214 return ptr;
6216 return NULL;
6219 /* Assign each element of the list of mems a monotonically increasing value. */
6221 static int
6222 enumerate_ldsts ()
6224 struct ls_expr * ptr;
6225 int n = 0;
6227 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6228 ptr->index = n++;
6230 return n;
6233 /* Return first item in the list. */
6235 static inline struct ls_expr *
6236 first_ls_expr ()
6238 return pre_ldst_mems;
6241 /* Return the next item in ther list after the specified one. */
6243 static inline struct ls_expr *
6244 next_ls_expr (ptr)
6245 struct ls_expr * ptr;
6247 return ptr->next;
6250 /* Load Motion for loads which only kill themselves. */
6252 /* Return true if x is a simple MEM operation, with no registers or
6253 side effects. These are the types of loads we consider for the
6254 ld_motion list, otherwise we let the usual aliasing take care of it. */
6256 static int
6257 simple_mem (x)
6258 rtx x;
6260 if (GET_CODE (x) != MEM)
6261 return 0;
6263 if (MEM_VOLATILE_P (x))
6264 return 0;
6266 if (GET_MODE (x) == BLKmode)
6267 return 0;
6269 if (!rtx_varies_p (XEXP (x, 0), 0))
6270 return 1;
6272 return 0;
6275 /* Make sure there isn't a buried reference in this pattern anywhere.
6276 If there is, invalidate the entry for it since we're not capable
6277 of fixing it up just yet.. We have to be sure we know about ALL
6278 loads since the aliasing code will allow all entries in the
6279 ld_motion list to not-alias itself. If we miss a load, we will get
6280 the wrong value since gcse might common it and we won't know to
6281 fix it up. */
6283 static void
6284 invalidate_any_buried_refs (x)
6285 rtx x;
6287 const char * fmt;
6288 int i, j;
6289 struct ls_expr * ptr;
6291 /* Invalidate it in the list. */
6292 if (GET_CODE (x) == MEM && simple_mem (x))
6294 ptr = ldst_entry (x);
6295 ptr->invalid = 1;
6298 /* Recursively process the insn. */
6299 fmt = GET_RTX_FORMAT (GET_CODE (x));
6301 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6303 if (fmt[i] == 'e')
6304 invalidate_any_buried_refs (XEXP (x, i));
6305 else if (fmt[i] == 'E')
6306 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6307 invalidate_any_buried_refs (XVECEXP (x, i, j));
6311 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6312 being defined as MEM loads and stores to symbols, with no
6313 side effects and no registers in the expression. If there are any
6314 uses/defs which don't match this criteria, it is invalidated and
6315 trimmed out later. */
6317 static void
6318 compute_ld_motion_mems ()
6320 struct ls_expr * ptr;
6321 basic_block bb;
6322 rtx insn;
6324 pre_ldst_mems = NULL;
6326 FOR_EACH_BB (bb)
6328 for (insn = bb->head;
6329 insn && insn != NEXT_INSN (bb->end);
6330 insn = NEXT_INSN (insn))
6332 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6334 if (GET_CODE (PATTERN (insn)) == SET)
6336 rtx src = SET_SRC (PATTERN (insn));
6337 rtx dest = SET_DEST (PATTERN (insn));
6339 /* Check for a simple LOAD... */
6340 if (GET_CODE (src) == MEM && simple_mem (src))
6342 ptr = ldst_entry (src);
6343 if (GET_CODE (dest) == REG)
6344 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6345 else
6346 ptr->invalid = 1;
6348 else
6350 /* Make sure there isn't a buried load somewhere. */
6351 invalidate_any_buried_refs (src);
6354 /* Check for stores. Don't worry about aliased ones, they
6355 will block any movement we might do later. We only care
6356 about this exact pattern since those are the only
6357 circumstance that we will ignore the aliasing info. */
6358 if (GET_CODE (dest) == MEM && simple_mem (dest))
6360 ptr = ldst_entry (dest);
6362 if (GET_CODE (src) != MEM
6363 && GET_CODE (src) != ASM_OPERANDS)
6364 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6365 else
6366 ptr->invalid = 1;
6369 else
6370 invalidate_any_buried_refs (PATTERN (insn));
6376 /* Remove any references that have been either invalidated or are not in the
6377 expression list for pre gcse. */
6379 static void
6380 trim_ld_motion_mems ()
6382 struct ls_expr * last = NULL;
6383 struct ls_expr * ptr = first_ls_expr ();
6385 while (ptr != NULL)
6387 int del = ptr->invalid;
6388 struct expr * expr = NULL;
6390 /* Delete if entry has been made invalid. */
6391 if (!del)
6393 unsigned int i;
6395 del = 1;
6396 /* Delete if we cannot find this mem in the expression list. */
6397 for (i = 0; i < expr_hash_table_size && del; i++)
6399 for (expr = expr_hash_table[i];
6400 expr != NULL;
6401 expr = expr->next_same_hash)
6402 if (expr_equiv_p (expr->expr, ptr->pattern))
6404 del = 0;
6405 break;
6410 if (del)
6412 if (last != NULL)
6414 last->next = ptr->next;
6415 free_ldst_entry (ptr);
6416 ptr = last->next;
6418 else
6420 pre_ldst_mems = pre_ldst_mems->next;
6421 free_ldst_entry (ptr);
6422 ptr = pre_ldst_mems;
6425 else
6427 /* Set the expression field if we are keeping it. */
6428 last = ptr;
6429 ptr->expr = expr;
6430 ptr = ptr->next;
6434 /* Show the world what we've found. */
6435 if (gcse_file && pre_ldst_mems != NULL)
6436 print_ldst_list (gcse_file);
6439 /* This routine will take an expression which we are replacing with
6440 a reaching register, and update any stores that are needed if
6441 that expression is in the ld_motion list. Stores are updated by
6442 copying their SRC to the reaching register, and then storeing
6443 the reaching register into the store location. These keeps the
6444 correct value in the reaching register for the loads. */
6446 static void
6447 update_ld_motion_stores (expr)
6448 struct expr * expr;
6450 struct ls_expr * mem_ptr;
6452 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6454 /* We can try to find just the REACHED stores, but is shouldn't
6455 matter to set the reaching reg everywhere... some might be
6456 dead and should be eliminated later. */
6458 /* We replace SET mem = expr with
6459 SET reg = expr
6460 SET mem = reg , where reg is the
6461 reaching reg used in the load. */
6462 rtx list = mem_ptr->stores;
6464 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6466 rtx insn = XEXP (list, 0);
6467 rtx pat = PATTERN (insn);
6468 rtx src = SET_SRC (pat);
6469 rtx reg = expr->reaching_reg;
6470 rtx copy, new;
6472 /* If we've already copied it, continue. */
6473 if (expr->reaching_reg == src)
6474 continue;
6476 if (gcse_file)
6478 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6479 print_rtl (gcse_file, expr->reaching_reg);
6480 fprintf (gcse_file, ":\n ");
6481 print_inline_rtx (gcse_file, insn, 8);
6482 fprintf (gcse_file, "\n");
6485 copy = gen_move_insn ( reg, SET_SRC (pat));
6486 new = emit_insn_before (copy, insn);
6487 record_one_set (REGNO (reg), new);
6488 SET_SRC (pat) = reg;
6490 /* un-recognize this pattern since it's probably different now. */
6491 INSN_CODE (insn) = -1;
6492 gcse_create_count++;
6497 /* Store motion code. */
6499 /* This is used to communicate the target bitvector we want to use in the
6500 reg_set_info routine when called via the note_stores mechanism. */
6501 static sbitmap * regvec;
6503 /* Used in computing the reverse edge graph bit vectors. */
6504 static sbitmap * st_antloc;
6506 /* Global holding the number of store expressions we are dealing with. */
6507 static int num_stores;
6509 /* Checks to set if we need to mark a register set. Called from note_stores. */
6511 static void
6512 reg_set_info (dest, setter, data)
6513 rtx dest, setter ATTRIBUTE_UNUSED;
6514 void * data ATTRIBUTE_UNUSED;
6516 if (GET_CODE (dest) == SUBREG)
6517 dest = SUBREG_REG (dest);
6519 if (GET_CODE (dest) == REG)
6520 SET_BIT (*regvec, REGNO (dest));
6523 /* Return non-zero if the register operands of expression X are killed
6524 anywhere in basic block BB. */
6526 static int
6527 store_ops_ok (x, bb)
6528 rtx x;
6529 basic_block bb;
6531 int i;
6532 enum rtx_code code;
6533 const char * fmt;
6535 /* Repeat is used to turn tail-recursion into iteration. */
6536 repeat:
6538 if (x == 0)
6539 return 1;
6541 code = GET_CODE (x);
6542 switch (code)
6544 case REG:
6545 /* If a reg has changed after us in this
6546 block, the operand has been killed. */
6547 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
6549 case MEM:
6550 x = XEXP (x, 0);
6551 goto repeat;
6553 case PRE_DEC:
6554 case PRE_INC:
6555 case POST_DEC:
6556 case POST_INC:
6557 return 0;
6559 case PC:
6560 case CC0: /*FIXME*/
6561 case CONST:
6562 case CONST_INT:
6563 case CONST_DOUBLE:
6564 case CONST_VECTOR:
6565 case SYMBOL_REF:
6566 case LABEL_REF:
6567 case ADDR_VEC:
6568 case ADDR_DIFF_VEC:
6569 return 1;
6571 default:
6572 break;
6575 i = GET_RTX_LENGTH (code) - 1;
6576 fmt = GET_RTX_FORMAT (code);
6578 for (; i >= 0; i--)
6580 if (fmt[i] == 'e')
6582 rtx tem = XEXP (x, i);
6584 /* If we are about to do the last recursive call
6585 needed at this level, change it into iteration.
6586 This function is called enough to be worth it. */
6587 if (i == 0)
6589 x = tem;
6590 goto repeat;
6593 if (! store_ops_ok (tem, bb))
6594 return 0;
6596 else if (fmt[i] == 'E')
6598 int j;
6600 for (j = 0; j < XVECLEN (x, i); j++)
6602 if (! store_ops_ok (XVECEXP (x, i, j), bb))
6603 return 0;
6608 return 1;
6611 /* Determine whether insn is MEM store pattern that we will consider moving. */
6613 static void
6614 find_moveable_store (insn)
6615 rtx insn;
6617 struct ls_expr * ptr;
6618 rtx dest = PATTERN (insn);
6620 if (GET_CODE (dest) != SET
6621 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
6622 return;
6624 dest = SET_DEST (dest);
6626 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6627 || GET_MODE (dest) == BLKmode)
6628 return;
6630 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
6631 return;
6633 if (rtx_varies_p (XEXP (dest, 0), 0))
6634 return;
6636 ptr = ldst_entry (dest);
6637 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6640 /* Perform store motion. Much like gcse, except we move expressions the
6641 other way by looking at the flowgraph in reverse. */
6643 static int
6644 compute_store_table ()
6646 int ret;
6647 basic_block bb;
6648 unsigned regno;
6649 rtx insn, pat;
6651 max_gcse_regno = max_reg_num ();
6653 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
6654 max_gcse_regno);
6655 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
6656 pre_ldst_mems = 0;
6658 /* Find all the stores we care about. */
6659 FOR_EACH_BB (bb)
6661 regvec = & (reg_set_in_block[bb->index]);
6662 for (insn = bb->end;
6663 insn && insn != PREV_INSN (bb->end);
6664 insn = PREV_INSN (insn))
6666 /* Ignore anything that is not a normal insn. */
6667 if (! INSN_P (insn))
6668 continue;
6670 if (GET_CODE (insn) == CALL_INSN)
6672 bool clobbers_all = false;
6673 #ifdef NON_SAVING_SETJMP
6674 if (NON_SAVING_SETJMP
6675 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6676 clobbers_all = true;
6677 #endif
6679 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6680 if (clobbers_all
6681 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6682 SET_BIT (reg_set_in_block[bb->index], regno);
6685 pat = PATTERN (insn);
6686 note_stores (pat, reg_set_info, NULL);
6688 /* Now that we've marked regs, look for stores. */
6689 if (GET_CODE (pat) == SET)
6690 find_moveable_store (insn);
6694 ret = enumerate_ldsts ();
6696 if (gcse_file)
6698 fprintf (gcse_file, "Store Motion Expressions.\n");
6699 print_ldst_list (gcse_file);
6702 return ret;
6705 /* Check to see if the load X is aliased with STORE_PATTERN. */
6707 static int
6708 load_kills_store (x, store_pattern)
6709 rtx x, store_pattern;
6711 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6712 return 1;
6713 return 0;
6716 /* Go through the entire insn X, looking for any loads which might alias
6717 STORE_PATTERN. Return 1 if found. */
6719 static int
6720 find_loads (x, store_pattern)
6721 rtx x, store_pattern;
6723 const char * fmt;
6724 int i, j;
6725 int ret = 0;
6727 if (!x)
6728 return 0;
6730 if (GET_CODE (x) == SET)
6731 x = SET_SRC (x);
6733 if (GET_CODE (x) == MEM)
6735 if (load_kills_store (x, store_pattern))
6736 return 1;
6739 /* Recursively process the insn. */
6740 fmt = GET_RTX_FORMAT (GET_CODE (x));
6742 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6744 if (fmt[i] == 'e')
6745 ret |= find_loads (XEXP (x, i), store_pattern);
6746 else if (fmt[i] == 'E')
6747 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6748 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6750 return ret;
6753 /* Check if INSN kills the store pattern X (is aliased with it).
6754 Return 1 if it it does. */
6756 static int
6757 store_killed_in_insn (x, insn)
6758 rtx x, insn;
6760 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6761 return 0;
6763 if (GET_CODE (insn) == CALL_INSN)
6765 /* A normal or pure call might read from pattern,
6766 but a const call will not. */
6767 return ! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn);
6770 if (GET_CODE (PATTERN (insn)) == SET)
6772 rtx pat = PATTERN (insn);
6773 /* Check for memory stores to aliased objects. */
6774 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
6775 /* pretend its a load and check for aliasing. */
6776 if (find_loads (SET_DEST (pat), x))
6777 return 1;
6778 return find_loads (SET_SRC (pat), x);
6780 else
6781 return find_loads (PATTERN (insn), x);
6784 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6785 within basic block BB. */
6787 static int
6788 store_killed_after (x, insn, bb)
6789 rtx x, insn;
6790 basic_block bb;
6792 rtx last = bb->end;
6794 if (insn == last)
6795 return 0;
6797 /* Check if the register operands of the store are OK in this block.
6798 Note that if registers are changed ANYWHERE in the block, we'll
6799 decide we can't move it, regardless of whether it changed above
6800 or below the store. This could be improved by checking the register
6801 operands while lookinng for aliasing in each insn. */
6802 if (!store_ops_ok (XEXP (x, 0), bb))
6803 return 1;
6805 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6806 if (store_killed_in_insn (x, insn))
6807 return 1;
6809 return 0;
6812 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6813 within basic block BB. */
6814 static int
6815 store_killed_before (x, insn, bb)
6816 rtx x, insn;
6817 basic_block bb;
6819 rtx first = bb->head;
6821 if (insn == first)
6822 return store_killed_in_insn (x, insn);
6824 /* Check if the register operands of the store are OK in this block.
6825 Note that if registers are changed ANYWHERE in the block, we'll
6826 decide we can't move it, regardless of whether it changed above
6827 or below the store. This could be improved by checking the register
6828 operands while lookinng for aliasing in each insn. */
6829 if (!store_ops_ok (XEXP (x, 0), bb))
6830 return 1;
6832 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
6833 if (store_killed_in_insn (x, insn))
6834 return 1;
6836 return 0;
6839 #define ANTIC_STORE_LIST(x) ((x)->loads)
6840 #define AVAIL_STORE_LIST(x) ((x)->stores)
6842 /* Given the table of available store insns at the end of blocks,
6843 determine which ones are not killed by aliasing, and generate
6844 the appropriate vectors for gen and killed. */
6845 static void
6846 build_store_vectors ()
6848 basic_block bb, b;
6849 rtx insn, st;
6850 struct ls_expr * ptr;
6852 /* Build the gen_vector. This is any store in the table which is not killed
6853 by aliasing later in its block. */
6854 ae_gen = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
6855 sbitmap_vector_zero (ae_gen, last_basic_block);
6857 st_antloc = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
6858 sbitmap_vector_zero (st_antloc, last_basic_block);
6860 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6862 /* Put all the stores into either the antic list, or the avail list,
6863 or both. */
6864 rtx store_list = ptr->stores;
6865 ptr->stores = NULL_RTX;
6867 for (st = store_list; st != NULL; st = XEXP (st, 1))
6869 insn = XEXP (st, 0);
6870 bb = BLOCK_FOR_INSN (insn);
6872 if (!store_killed_after (ptr->pattern, insn, bb))
6874 /* If we've already seen an availale expression in this block,
6875 we can delete the one we saw already (It occurs earlier in
6876 the block), and replace it with this one). We'll copy the
6877 old SRC expression to an unused register in case there
6878 are any side effects. */
6879 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6881 /* Find previous store. */
6882 rtx st;
6883 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
6884 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
6885 break;
6886 if (st)
6888 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6889 if (gcse_file)
6890 fprintf (gcse_file, "Removing redundant store:\n");
6891 replace_store_insn (r, XEXP (st, 0), bb);
6892 XEXP (st, 0) = insn;
6893 continue;
6896 SET_BIT (ae_gen[bb->index], ptr->index);
6897 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6898 AVAIL_STORE_LIST (ptr));
6901 if (!store_killed_before (ptr->pattern, insn, bb))
6903 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
6904 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
6905 ANTIC_STORE_LIST (ptr));
6909 /* Free the original list of store insns. */
6910 free_INSN_LIST_list (&store_list);
6913 ae_kill = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
6914 sbitmap_vector_zero (ae_kill, last_basic_block);
6916 transp = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
6917 sbitmap_vector_zero (transp, last_basic_block);
6919 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6920 FOR_EACH_BB (b)
6922 if (store_killed_after (ptr->pattern, b->head, b))
6924 /* The anticipatable expression is not killed if it's gen'd. */
6926 We leave this check out for now. If we have a code sequence
6927 in a block which looks like:
6928 ST MEMa = x
6929 L y = MEMa
6930 ST MEMa = z
6931 We should flag this as having an ANTIC expression, NOT
6932 transparent, NOT killed, and AVAIL.
6933 Unfortunately, since we haven't re-written all loads to
6934 use the reaching reg, we'll end up doing an incorrect
6935 Load in the middle here if we push the store down. It happens in
6936 gcc.c-torture/execute/960311-1.c with -O3
6937 If we always kill it in this case, we'll sometimes do
6938 uneccessary work, but it shouldn't actually hurt anything.
6939 if (!TEST_BIT (ae_gen[b], ptr->index)). */
6940 SET_BIT (ae_kill[b->index], ptr->index);
6942 else
6943 SET_BIT (transp[b->index], ptr->index);
6946 /* Any block with no exits calls some non-returning function, so
6947 we better mark the store killed here, or we might not store to
6948 it at all. If we knew it was abort, we wouldn't have to store,
6949 but we don't know that for sure. */
6950 if (gcse_file)
6952 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
6953 print_ldst_list (gcse_file);
6954 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6955 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6956 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6957 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6961 /* Insert an instruction at the begining of a basic block, and update
6962 the BLOCK_HEAD if needed. */
6964 static void
6965 insert_insn_start_bb (insn, bb)
6966 rtx insn;
6967 basic_block bb;
6969 /* Insert at start of successor block. */
6970 rtx prev = PREV_INSN (bb->head);
6971 rtx before = bb->head;
6972 while (before != 0)
6974 if (GET_CODE (before) != CODE_LABEL
6975 && (GET_CODE (before) != NOTE
6976 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6977 break;
6978 prev = before;
6979 if (prev == bb->end)
6980 break;
6981 before = NEXT_INSN (before);
6984 insn = emit_insn_after (insn, prev);
6986 if (gcse_file)
6988 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6989 bb->index);
6990 print_inline_rtx (gcse_file, insn, 6);
6991 fprintf (gcse_file, "\n");
6995 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6996 the memory reference, and E is the edge to insert it on. Returns non-zero
6997 if an edge insertion was performed. */
6999 static int
7000 insert_store (expr, e)
7001 struct ls_expr * expr;
7002 edge e;
7004 rtx reg, insn;
7005 basic_block bb;
7006 edge tmp;
7008 /* We did all the deleted before this insert, so if we didn't delete a
7009 store, then we haven't set the reaching reg yet either. */
7010 if (expr->reaching_reg == NULL_RTX)
7011 return 0;
7013 reg = expr->reaching_reg;
7014 insn = gen_move_insn (expr->pattern, reg);
7016 /* If we are inserting this expression on ALL predecessor edges of a BB,
7017 insert it at the start of the BB, and reset the insert bits on the other
7018 edges so we don't try to insert it on the other edges. */
7019 bb = e->dest;
7020 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7022 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7023 if (index == EDGE_INDEX_NO_EDGE)
7024 abort ();
7025 if (! TEST_BIT (pre_insert_map[index], expr->index))
7026 break;
7029 /* If tmp is NULL, we found an insertion on every edge, blank the
7030 insertion vector for these edges, and insert at the start of the BB. */
7031 if (!tmp && bb != EXIT_BLOCK_PTR)
7033 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7035 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7036 RESET_BIT (pre_insert_map[index], expr->index);
7038 insert_insn_start_bb (insn, bb);
7039 return 0;
7042 /* We can't insert on this edge, so we'll insert at the head of the
7043 successors block. See Morgan, sec 10.5. */
7044 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
7046 insert_insn_start_bb (insn, bb);
7047 return 0;
7050 insert_insn_on_edge (insn, e);
7052 if (gcse_file)
7054 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
7055 e->src->index, e->dest->index);
7056 print_inline_rtx (gcse_file, insn, 6);
7057 fprintf (gcse_file, "\n");
7060 return 1;
7063 /* This routine will replace a store with a SET to a specified register. */
7065 static void
7066 replace_store_insn (reg, del, bb)
7067 rtx reg, del;
7068 basic_block bb;
7070 rtx insn;
7072 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
7073 insn = emit_insn_after (insn, del);
7075 if (gcse_file)
7077 fprintf (gcse_file,
7078 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
7079 print_inline_rtx (gcse_file, del, 6);
7080 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
7081 print_inline_rtx (gcse_file, insn, 6);
7082 fprintf (gcse_file, "\n");
7085 delete_insn (del);
7089 /* Delete a store, but copy the value that would have been stored into
7090 the reaching_reg for later storing. */
7092 static void
7093 delete_store (expr, bb)
7094 struct ls_expr * expr;
7095 basic_block bb;
7097 rtx reg, i, del;
7099 if (expr->reaching_reg == NULL_RTX)
7100 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
7103 /* If there is more than 1 store, the earlier ones will be dead,
7104 but it doesn't hurt to replace them here. */
7105 reg = expr->reaching_reg;
7107 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
7109 del = XEXP (i, 0);
7110 if (BLOCK_FOR_INSN (del) == bb)
7112 /* We know there is only one since we deleted redundant
7113 ones during the available computation. */
7114 replace_store_insn (reg, del, bb);
7115 break;
7120 /* Free memory used by store motion. */
7122 static void
7123 free_store_memory ()
7125 free_ldst_mems ();
7127 if (ae_gen)
7128 sbitmap_vector_free (ae_gen);
7129 if (ae_kill)
7130 sbitmap_vector_free (ae_kill);
7131 if (transp)
7132 sbitmap_vector_free (transp);
7133 if (st_antloc)
7134 sbitmap_vector_free (st_antloc);
7135 if (pre_insert_map)
7136 sbitmap_vector_free (pre_insert_map);
7137 if (pre_delete_map)
7138 sbitmap_vector_free (pre_delete_map);
7139 if (reg_set_in_block)
7140 sbitmap_vector_free (reg_set_in_block);
7142 ae_gen = ae_kill = transp = st_antloc = NULL;
7143 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
7146 /* Perform store motion. Much like gcse, except we move expressions the
7147 other way by looking at the flowgraph in reverse. */
7149 static void
7150 store_motion ()
7152 basic_block bb;
7153 int x;
7154 struct ls_expr * ptr;
7155 int update_flow = 0;
7157 if (gcse_file)
7159 fprintf (gcse_file, "before store motion\n");
7160 print_rtl (gcse_file, get_insns ());
7164 init_alias_analysis ();
7166 /* Find all the stores that are live to the end of their block. */
7167 num_stores = compute_store_table ();
7168 if (num_stores == 0)
7170 sbitmap_vector_free (reg_set_in_block);
7171 end_alias_analysis ();
7172 return;
7175 /* Now compute whats actually available to move. */
7176 add_noreturn_fake_exit_edges ();
7177 build_store_vectors ();
7179 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
7180 st_antloc, ae_kill, &pre_insert_map,
7181 &pre_delete_map);
7183 /* Now we want to insert the new stores which are going to be needed. */
7184 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7186 FOR_EACH_BB (bb)
7187 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
7188 delete_store (ptr, bb);
7190 for (x = 0; x < NUM_EDGES (edge_list); x++)
7191 if (TEST_BIT (pre_insert_map[x], ptr->index))
7192 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
7195 if (update_flow)
7196 commit_edge_insertions ();
7198 free_store_memory ();
7199 free_edge_list (edge_list);
7200 remove_fake_edges ();
7201 end_alias_analysis ();
7204 #include "gt-gcse.h"